
Concept Drift Handling in Information Systems:
Preserving the Validity of Deployed Machine

Learning Models

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Lucas Baier

Tag der mündlichen Prüfung: 07.07.2021

Referent: Prof. Dr. Gerhard Satzger

Korreferent: Prof. Dr. Ali Sunyaev

Abstract

Predictions computed by supervised machine learning models play a crucial role in
a variety of innovative applications in business and industry. Typically, value is gen-
erated as soon as these models are deployed and continuously used in information
systems of an organization. However, machine learning endeavors predominantly
focus on conceiving applications for static situations. In this context, the manage-
ment of the models’ lifecycle to preserve their effectiveness over time in dynamic
environments is still in its infancy.

Therefore, this thesis starts with systematically analyzing the full lifecycle of machine
learning applications from an information systems (IS) perspective—and under-
standing and documenting all choices that have to be made throughout this cycle.
On that basis, we then perform a qualitative study via practitioner interviews to
map particular challenges in the deployment phase. In this context, we identify
concept drift as a particularly important challenge to overcome: Concept drift refers
to changes in the environment over time which affect the behavior of a machine
learning model. This can have an impact on the model’s prediction quality and its
overall utility.

We analyze and categorize concept drift handling approaches covering both the
detection of concept drift as well as the appropriate adaptation of the model. We
identify two particular research gaps: the handling of concept drift for regression
tasks and the handling of concept drift for tasks where additional labels for retraining
a model are hard or costly to obtain. For both areas, we develop new methods and
demonstrate their effectiveness in technical experiments and real-world use cases.

This thesis contributes new methods to handle concept drift, for particular difficult
contexts: First, this thesis should raise researchers’ and practitioners’ awareness for
the topic of changing input data over time as well as for its impact on deployed
machine learning. Second, the developed and tested methods can either be im-
plemented directly or serve as inspiration to conceive appropriate drift handling
strategies within information systems. Finally, we expect that advanced concept drift
handling not only technically ensures a reliable prediction quality over time, but
that it will also increase trust and acceptance of machine learning-based information
systems—and, thus, help to boost the impact of machine learning.

iii

Acknowledgement

Completing this dissertation would not have been possible without the support of
many inspiring people surrounding me in the last four years. First, I am very grateful
to my supervisor Prof. Dr. Gerhard Satzger for allowing me to pursue a PhD at his
chair and his constant supervision and guidance during this entire time. Furthermore,
I want to thank Prof. Dr. Ali Sunyaev for reviewing my dissertation. Additionally,
I want to thank Prof. Dr. Stefan Nickel and Prof. Dr. Benjamin Scheibehenne for
serving on the dissertation committee and for their inspiring questions and ideas for
future research.

My PhD time would not have been the same experience without the fantastic team
at the chair for Digital Service Innovation. In this context, I want to especially thank
my post-doctoral supervisor Dr. Niklas Kühl who constantly supported my academic
work. It was always a great pleasure to discuss and develop ideas with him and his
very positive attitude helped me to overcome the setbacks associated with every PhD
thesis. Furthermore, the Applied AI in Services lab is a great place for any researcher
because my colleagues always took the time for interesting and inspiring discussions
regarding all my research projects. However, I also want to thank all team members
specifically for the time which we spent apart from research because this was always
a pleasant distraction. Regarding this final document, I especially want to thank
Jannis, Jakob, Philipp, and Lucas for reviewing and proofreading this dissertation.

Pursuing a PhD at the KIT provides the unique opportunity to work together with
very motivated and creative students. Some of these students have greatly supported
my work in recent years and often surprised me with their inspiring ideas regarding
concept drift handling. In this context, I want to especially highlight Josua, Fabian,
Marcel, Vincent and Tim for their contributions regarding joint research projects.

Finally, I want to thank my friends and family: Philipp and Michael whose expe-
riences initially sparked my interest in pursuing a PhD. Tsun-Tao, Henning, and
Jana for always being there for spending time apart from work. Furthermore, I
am very grateful to my parents and my sister for supporting me in every possible
situation. Above all, I want to thank my wife Maraike and our little son Jakob who
always stood by my side during this entire time. Their presence reminded me of the

v

important things in life, provided the necessary distractions, and lastly, they have
always succeeded in cheering me up.

vi

Contents

I Fundamentals 1

1 Introduction 3
1.1 Motivation . 4
1.2 Research Design . 7
1.3 Structure of Work . 12

2 Related Work 17
2.1 AI and Machine Learning in IS . 17
2.2 Learning in Dynamic Environments 21

2.2.1 Machine Learning in Data Streams 21
2.2.2 Online Learning . 24

2.3 Concept Drift . 26
2.3.1 Definition . 26
2.3.2 Concept Drift Handling . 29
2.3.3 Applications and Current Research 38

II Choices and Challenges for Machine Learning Applications 41

3 The Supervised Machine Learning Reportcard 43
3.1 Introduction . 43
3.2 Fundamentals and Positioning . 44
3.3 Towards Rigorous Supervised Machine Learning Documentation . . 48

3.3.1 Problem Characteristics and Key Choices of Supervised Ma-
chine Learning . 48

3.3.2 The Supervised Machine Learning Reportcard (SMLR) . . . 55
3.4 Empirical Study . 59

3.4.1 Methodology and Data Set 59
3.4.2 Model Initiation . 61
3.4.3 Performance Estimation . 63
3.4.4 Model Deployment . 64

3.5 Conclusion . 65

vii

4 Challenges in the Deployment of Machine Learning 67
4.1 Introduction . 67
4.2 Related Work . 68
4.3 Research Methodology . 74

4.3.1 Sampling . 74
4.3.2 Data Collection and Analysis 74

4.4 Results . 75
4.4.1 Pre-Deployment . 77
4.4.2 Deployment . 78
4.4.3 Non-Technical Challenges 80

4.5 Discussion . 81
4.6 Conclusion and Outlook . 86

III Challenges for the Application of Concept Drift Handling 89

5 Handling Concept Drift for Predictions in Business Process Mining 91
5.1 Introduction . 91
5.2 Related Work . 93

5.2.1 Concept Drift . 93
5.2.2 Process Mining . 94

5.3 Data Selection for Retraining . 96
5.3.1 Learning Mode . 96
5.3.2 Data Selection for Retraining of the Machine Learning Model 97

5.4 Use Case in Process Mining . 98
5.4.1 Data Analysis . 99
5.4.2 Evaluation of Prediction . 102

5.5 Conclusion . 105

6 Preserving Validity of Predictive Services over Time 107
6.1 Introduction . 107
6.2 Foundations . 109

6.2.1 Machine Learning for Services 109
6.2.2 Concept Drift . 110
6.2.3 Predictive Services . 111

6.3 Conceptual Framework . 112
6.3.1 Methodology . 112
6.3.2 Setup Decisions for Predictive Service 113
6.3.3 Algorithmic Decisions . 114
6.3.4 Operation of Predictive Service 116

viii

6.3.5 Heatmap of Research Papers 118
6.4 A Research Agenda for Preserving Validity of Predictive Services Over

Time . 120
6.5 Conclusion . 122

IV Concept Drift Handling for Regression Problems 125

7 Handling by Switching Models - the Error Intersection Approach 127
7.1 Introduction and Related Work . 127
7.2 Use Case . 131

7.2.1 New York City Taxi Dataset 132
7.2.2 Exemplary Drifts . 132

7.3 Design of the Error Intersection Approach 135
7.4 First Evaluation . 136
7.5 Discussion . 138
7.6 Conclusion . 140

8 Handling by Switching Adaptation Mode - the Switching Scheme 143
8.1 Introduction . 143
8.2 Related Work . 145

8.2.1 Concept Drift . 145
8.2.2 Demand Forecast . 146
8.2.3 Research Gap and Contribution 147

8.3 Use Case . 147
8.4 Methodology for Handling Incremental Drift 149

8.4.1 Adaptation Strategies . 149
8.4.2 Drift Detectors . 151

8.5 Evaluation . 152
8.5.1 Evaluation of Pre-Test . 152
8.5.2 Evaluation of Adaptation Strategies 155
8.5.3 Robustness Check . 158

8.6 Conclusion . 159

V Concept Drift Handling with Limited Label Availability 161

9 Handling by Model Uncertainty - Uncertainty Drift Detection 163
9.1 Introduction . 163
9.2 Background and Related Work . 164

9.2.1 Dataset Shift and Concept Drift 164

ix

9.2.2 Handling Concept Drift . 165
9.2.3 Uncertainty in Neural Networks 166

9.3 Methodology . 167
9.4 Experiments . 170

9.4.1 Experimental Setup . 170
9.4.2 Data Sets . 172
9.4.3 Performance Metrics . 174
9.4.4 Analysis on Synthetic Data Sets 174
9.4.5 Experimental Results . 176

9.5 Conclusion . 178

10 Handling by Outlier Detection - the Two-Step Prediction Method 181
10.1 Introduction . 181
10.2 Foundations . 183

10.2.1 Machine Learning . 183
10.2.2 Concept Drift . 184
10.2.3 Outlier Detection . 184

10.3 Problem Definition and Requirements 185
10.4 Design Options . 187

10.4.1 Step 1: Data Validity . 187
10.4.2 Step 2: Model Robustness 188

10.5 Evaluation . 188
10.5.1 Evaluation of Data Validity (Step 1) 190
10.5.2 Evaluation of Model Robustness (Step 2) 194
10.5.3 Evaluation of Overall Prediction Method 197

10.6 Conclusion . 200

VI Finale 203

11 Conclusion 205
11.1 Summary and Contributions . 205
11.2 Practical Implications . 214
11.3 Limitations and Future Research 216

Bibliography 221

A Appendix 265

Declarations 273

x

List of Abbreviations

ADWIN Adaptive Windowing
AI Artificial Intelligence
AUC Area Under the Curve
CC Correlation Coefficient
CO Complex Operations
COD Coefficient Of Determination
CRISP-DM Cross-Industry Standard Process for Data Mining
CS Computer Science
D&M DeLone & McLean
DDM Drift Detection Method
EIA Error Intersection Approach
ERP Enterprise Resource Planning
EWMA Exponential Weighted Moving Average
FHVs For-Hire-Vehicles
FPN Floating Point Numbers
GD Global Deviation
HDDDM Hellinger Distance Drift Detection Method
HLFR Hierarchical Linear Four Rate
IS Information Systems
ITA Information Theoretic Approach
JIT Just-In-Time
KDD Knowledge Discovery in Databases
KNN K-Nearest-Neighbors
KSWIN Kolmogorov-Smirnov Window
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MD Mahalanobis Distance
MK Mann-Kendall
ML Machine Learning
MLP MultiLayer Perceptron
MSE Mean Squared Error
NLP Natural Language Processing

xi

NN Neural Network
NRMSE Normalized Root Mean Squared Error
NYC New York City
PCA-CD Prinicipal Component Analysis-based Change Detection
PH Page-Hinkley
RMSE Root Mean Squared Error
RQ Research Question
SMAPE Symmetric Mean Absolute Percentage Error
SML Supervised Machine Learning
SMLR Supervised Machine Learning Reportcard
SNR Signal-Noise Ratio
SO Simple Operations
STEPD Statistical Test of Equal Proportions
SVR Support Vector Regression
TLC Taxi and Limousine Commission
TSMSD Two-Stage Multivariate Shift-Detection
UDD Uncertainty Drift Detection

xii

Part I

Fundamentals

Introduction 1
In recent years, many organizations have explored sophisticated techniques from the
field of machine learning to gain competitive advantages. Scientific breakthroughs
have resulted in a series of exciting applications. Examples range from the impressive
performance in playing Jeopardy (Ferrucci et al., 2013) to outperforming humans
in object recognition on the ImageNet dataset with 1000 different object classes
(Russakovsky et al., 2015) or mastering the complex board game Go even without
training on human generated matches (Silver et al., 2017). More recently, surprising
results have been achieved with machine learning systems performing in video games
where they master the games of Dota2 (OpenAI et al., 2019) or Starcraft II (Vinyals
et al., 2019) better than professional video gamers. Furthermore, machine learning
is boosting innovation in autonomous driving applications (Janai et al., 2020).
Tremendous progress has also been achieved in developing new models for natural
language processing which are applicable to various tasks such as translation and
question answering (Brown et al., 2020). In industrial settings, machine learning-
based predictive maintenance solutions are applied to reduce production downtimes
(Carvalho et al., 2019).

Progress in the field is due to multiple reasons: One major breakthrough in recent
years is the access to improved learning algorithms such as deep neural networks
(Brynjolfsson & Mitchell, 2017; Davenport, 2018; Jöhnk et al., 2020). Furthermore,
the sheer volume of data available makes it possible to appropriately train these
models (Zhou et al., 2017). This allows to capture highly valuable regularities that
enable models to outperform the best humans at a task (Brynjolfsson & Mitchell,
2017). Increased computing power enabled by the design of better microchips
(Monroe, 2018; Sunyaev, 2020b) as well as more storage capacity allow organiza-
tions to make use of the available data and train large enough models (Ågerfalk,
2020; Thrall et al., 2018). Another important reason for explaining machine learn-
ing dissemination is the broad availability of open source libraries (Ambati, 2019;
Prado et al., 2020). This allows to accelerate machine learning projects without the
necessity to develop frameworks from scratch (Rock, 2020).

The aforementioned reasons have also spurred the widespread adoption of machine
learning in many industries (Bughin et al., 2017) with rapidly increasing investments

3

(Pumplun et al., 2019). Currently, companies are moving from R&D solutions, which
were previously the main focus of budget spending (Bughin et al., 2017), to deployed
solutions (Holstein et al., 2019; Schelter et al., 2018). This allows organizations to
enhance existing products or services (Schüritz et al., 2017). Due to the increasing
share of deployed models, all steps of the machine learning lifecycle—from data
cleansing to model building and deployment as well as proper monitoring of the
model—must be taken into account (Wang, Ram, et al., 2020). In this context,
appropriate monitoring of models is especially critical since deployed machine
learning models are continuously fed with new data instances which are changing
over time as the related real-world phenomenon evolves.

The most widely used machine learning technique today is supervised machine
learning, where the objective is to learn a function that maps the input data X to a
corresponding label y (Jordan & Mitchell, 2015). A model is learned by considering
a set of training data samples where the information regarding both the input data X
and labels y is available. Once a model is trained, it can be deployed into production
to generate predictions for new incoming data instances. From this moment, the
model can generate added value for an organization in many applications. However,
the underlying distribution of the input data X or the relationship between the
input data X and the target y may change over time (Gama et al., 2014). This
phenomenon is also called concept drift (Widmer & Kubat, 1996). Concept drifts
can have a large impact on the prediction quality of the underlying prediction
model (Lindstrom et al., 2013; Lu et al., 2019; Žliobaitė et al., 2016). Due to
the substantial influence of machine learning models in many core components
of organizations, it is crucial that appropriate strategies are applied to tackle this
challenge. Otherwise, today’s complex systems optimized via machine learning (e.g.,
multi-stage supply chain networks) will fail to deliver their value proposition—with
far-reaching implications.

1.1 Motivation

Information systems are increasingly improved by the application of machine learn-
ing. While the adoption of this technology is still in its infancy, it eventually has
the potential to enhance every single component of information systems (Bawack
et al., 2019). This technological change also requires an adaptation and reinvention
of knowledge regarding efficient information systems management (Berente et al.,
2019). To keep a competitive advantage, companies need to adapt on various
levels since machine learning triggers change not only at the execution of tasks and

4 Chapter 1 Introduction

processes but also influences entire business models in different application areas
(Jöhnk et al., 2020).

Well-known examples of machine learning-based information systems are digital
assistants, such as chatbots, which aim to support humans for specific tasks in
contexts such as smart homes or customer services (Maedche et al., 2019). In other
scenarios, the analytical capabilities of machine learning are directly applied to
improve internal processes, e.g., by identifying customers prone to churn (Cai
et al., 2018). Furthermore, machine learning can be utilized to create entire
new service offerings (Schüritz & Satzger, 2016) such as predictive maintenance
solutions (Lüttenberg et al., 2018). Due to this widespread use of machine learning
technologies, it is important to guarantee the robustness and validity of those
solutions. However, the application of machine learning is associated with various
difficult choices and challenges. One of the identified challenges in the context
of deployed models is changing input data over time. Therefore, any information
system needs to be prepared to handle changing data as well as the corresponding
decay in prediction quality over time.

Information
Quality

Intention
to Use Use

System
Quality

Service
Quality

User
Satisfaction

Net
Benefits

Fig. 1.1.: D&M information systems success model, adapted from Delone and McLean
(2003, p. 24).

The DeLone & McLean (D&M) information systems success model (Delone & McLean,
2003) depicted in Figure 1.1 identifies different influencing factors on the net benefits
of an information system. Based on this model, the success of an information
system is mainly determined by various quality aspects which can be divided into
three different components: information quality, system quality and service quality
(Delone & McLean, 2003). Information quality can be measured in terms of accuracy,
timeliness, completeness, relevance, and consistency. In this context, machine
learning models with decreasing prediction quality surely affect the accuracy as well

1.1 Motivation 5

as the relevance of information quality with corresponding impact on the benefits
of the deployed information system. System quality can be measured in terms of
functionality and reliability, where reliability can be understood as the probability
that the system produces correct outputs (Sunyaev, 2020a). These two attributes
are also negatively influenced by predictions with decreasing quality.1

Whereas the previous paragraph highlights the need for the management of changing
data from a success model perspective, this requirement can also be motivated by a
more process-oriented view on information systems. Similar to many other products
or services, information systems use follows a lifecycle (Duarte & Costa, 2012)
which is depicted in Figure 1.2. Initially, this lifecycle was mainly derived from
observations during the introduction and usage of Enterprise Resource Planning
(ERP) systems (Stefanou, 2001), but the phases are also applicable to other forms
of information systems. During the application and use, organizations need to be
continuously proactive and adapt their information system to constant changes.
This especially applies to machine learning-enhanced components that are required
to process changing input data. Furthermore, the decline of such systems can be
delayed with correct management decisions regarding robustness and updates.

Adoption,
Decision &
Acquisition

Implementation Use &
Maintenance Decline

Time

Fig. 1.2.: Lifecycle of information systems, adapted from Duarte and Costa (2012, p. 27).

Besides the motivation from an information systems perspective on proper man-
agement of changing data, the need for adaptations for deployed machine learning
models is also given on an economic and ethical level (Schelter et al., 2018). In
the real world, data distributions are not stable but change over time and thereby
influence prediction quality. In recent years, the economic impact of machine learn-
ing models has grown significantly with potentially huge consequences in case of
failures (Bughin et al., 2017). Furthermore, individuals are often largely affected
by machine learning-based decision making, e.g., in lending (Barocas et al., 2017).
Therefore, it is critical that machine learning models are continuously adapted to
generate correct predictions. The phenomenon of changing data distributions over
1Depending on the definition, service quality can also be affected by decreasing prediction quality.
However, in the context of the D&M success model, service quality mainly refers to the responsiveness
and assurance of the customer support associated with an information system and is therefore not
influenced by a change in prediction performance.

6 Chapter 1 Introduction

time is described with the term concept drift the in computer science literature
(Gama et al., 2014).

Examples of data changes influencing machine learning predictions can be observed
in isolated settings such as replacing the input material in a production process
in a predictive maintenance setting. However, also on a global level, exceptional
events such as 9/11, the financial crisis in 2008/09, or COVID-19 have significant
macroeconomic consequences impacting the accuracy of demand prediction models
in different areas.

Due to the more widespread use of machine learning models in recent years, the
changes during the COVID-19 pandemic offer various examples where machine
learning models have experienced problems. For instance, many retailers needed
to adapt their deployed demand forecasting models because they provided inac-
curate predictions with the start of the COVID-19 crisis (Deeplearning.AI, 2020).
Furthermore, streaming services were surprised by changing consumer behavior
leading to less relevant content recommendations (Heaven, 2020), and food in-
ventory management systems based on sales forecasting struggled due to large
bulk orders (Heaven, 2020). The financial markets also provide various examples
where machine learning-based funds performed poorly during the March 2020 crisis
(Knight, 2020).

These examples clearly demonstrate the necessity to monitor and frequently adapt
deployed machine learning models to cope with changing environments. However,
adaptation strategies also need to be carefully implemented: In 2016, Microsoft
released a pretrained chatbot named “Tay” on Twitter which was equipped with
self-learning and adaptation capabilities. Within a few hours, the bot published a
variety of racist, antisemitic and offensive tweets by adapting its behavior based on
interactions with other Twitter users (Lee, 2016). In another example, Facebook
engineers released various chatbots which were allowed to adapt the underlying
machine learning models based on their experiences after deployment. The chatbots
quickly developed their own language that was completely incomprehensible to
humans (Wilson, 2017).

1.2 Research Design

Information systems are increasingly enhanced by machine learning techniques
(Buxmann et al., 2021). Therefore, it is important to understand the problem of
changing data over time in this context. Since finding unique solutions requires

1.2 Research Design 7

an in-depth understanding of the problem space (Sturm & Sunyaev, 2019), we
need to consider relevant knowledge from Computer Science (CS) literature for the
technical details as well as Information Systems (IS) literature for the requirements
from an information system’s perspective. Since most systems based on machine
learning in practical use apply supervised machine learning (Lipton, 2018), we seek
to better comprehend the application of this technique in IS. To this end, we aim
to explore and elaborate on the necessary steps and choices for the application of
supervised machine learning in IS. Furthermore, we analyze to which extent existing
IS literature fulfills these documentation requirements.

Research Question 1 (RQ1)
Which choices are relevant in the application of supervised machine learning in
IS research?

We answer Research Question (RQ) 1 by developing a reportcard for the application
of supervised machine learning. The reportcard describes which choices need to
be documented to ensure reproducibility of research results (Hutson, 2018). It
divides the application process into three phases: model initiation, performance
estimation and model deployment. Subsequently, we use the reportcard to analyze
published IS research papers applying machine learning. The results indicate that
these papers only scarcely report information about the model deployment phase,
which might be connected to a lack of knowledge regarding this topic. However,
this phenomenon might also be explained by the fact that researchers may only
want to prove feasibility of a machine learning approach. In this case, a detailed
discussion of deployment is not required. Nevertheless, difficulties with deployment
are also reported in other research domains such as network traffic analysis (Pacheco
et al., 2019). In industrial applications in general, machine learning deployment is a
difficult endeavor with several challenges such as access to different data sources,
removal of data silos, and hardware requirements (Jöhnk et al., 2020; Schelter et al.,
2018). Therefore, we aim to better understand the challenges of machine learning
operation and deployment in practical settings.

Research Question 2 (RQ2)
Which challenges arise regarding the deployment of supervised machine learn-
ing models?

We explore RQ2 by performing an interview study with machine learning practition-
ers. The interviews reveal numerous challenges including the standardization of

8 Chapter 1 Introduction

machine learning infrastructure but also non-technical challenges such as appropri-
ate communication and expectation management. Furthermore, another challenge
refers to concept drift (changing data distributions) and its impact on deployed
machine learning solutions. Models need to be intensively monitored over time, and
adaptations are required to ensure high-quality predictions. Otherwise, machine
learning models will achieve poor learning results and provide predictions with low
accuracy in a changing environment (Lu et al., 2019). Therefore, the phenomenon
of concept drift and the challenges associated with it are investigated in more detail
by considering the next research question.

Research Question 3 (RQ3)
What are typical challenges for the application of concept drift handling algo-
rithms?

RQ3 is investigated by pursuing two different research projects. First, we instantiate
concept drift handling in a technical experiment based on a real-world use case.
This enables us to better understand the effects of different handling strategies.
Additionally, we also elaborate on different data selection strategies in case of
retraining—a typical challenge in concept drift problems—and evaluate their impact
on prediction performance. Second, we perform a literature review regarding
concept drift handling projects in real application use cases. Based on the identified
literature, we derive a framework which describes different algorithmic options
and characteristics for deployed machine learning models confronted with concept
drift.

This framework allows us to identify various areas where concept drift handling
solutions are still limited. Current concept drift algorithms are mainly applicable
to classification problems (Jaworski, 2018), which is why concept drift handling
and its effects have been widely studied in this setting (Cavalcante et al., 2016).
The focus on classification tasks can be explained by the fact that many algorithms
make specific assumptions regarding the distribution of the prediction error (Gama
et al., 2014). Nevertheless, predicting numerical outputs (regression) is another
key activity within supervised machine learning relevant for many real-world tasks
(Harrington, 2012). However, regression and especially time series forecasting
problems have different characteristics that need to be considered for concept
drift handling (Cavalcante et al., 2016). This is reflected in the fourth research
question.

1.2 Research Design 9

Research Question 4 (RQ4)
How can concept drift in regression problems be handled?

We explore RQ4 by performing two technical experiments. Those experiments are
used to evaluate the feasibility and performance of two methods that we propose to
handle concept drift in regression problems. Both methods are based on a switching
mechanism. While the first method (Error Intersection Approach) switches between
two prediction models for concept drift handling, the second method (Switching
Scheme) switches between two different modes of adaptation for prediction mod-
els.

In detail, the Error Intersection Approach applies a simple as well as a complex
prediction model for handling concept drift in time series problems. The complex
model is applied during periods with regular patterns because it accurately captures
the general components of a time series. However, in times with sudden concept
drift, the simple model is utilized since it is capable of quickly adapting to the
current situation. In contrast, the Switching Scheme changes between performing
incremental updates and retraining of prediction models.

Besides the need for specific methods in regression contexts, true label availability
in operation is another critical aspect for the application of concept drift handling
strategies. Most concept drift detection algorithms are based on the error rate of
the underlying machine learning model (Lu et al., 2019). Computing the error rate
of a model requires the acquisition of true labels. However, obtaining true labels
can be expensive in real-world applications (Lindstrom et al., 2013), e.g., because
domain experts need to label new data instances. In other applications, true labels
will only be available with significant delay (Krawczyk et al., 2017). For instance,
the information whether a customer will default her credit card payments within
one year is only available after the entire year has been elapsed. Furthermore, the
speed and sheer volume of data streams in many real-world applications can simply
rule out the possibility to acquire all true labels (Hu et al., 2020; Lu et al., 2019).
Therefore, concept drift handling strategies for dealing with limited label availability
are investigated in research question 5.

Research Question 5 (RQ5)
How can concept drift be handled in machine learning settings with limited
availability of true labels?

10 Chapter 1 Introduction

RQ5 is answered by performing technical experiments evaluating two methods for
concept drift handling in settings with limited availability of true labels. While
the first method (Uncertainty Drift Detection (UDD)) detects drift by monitoring
uncertainty metrics and triggers corresponding adaptation, the second method (Two-
Step Prediction Method) prevents negative effects of concept drift by improving model
robustness with an outlier detection.

To be specific, UDD detects concept drift without requiring true labels by considering
uncertainty values associated with predictions. In this context, uncertainty refers to
the information how certain a model is about its computed predictions. For UDD,
we consider neural networks as prediction models and derive uncertainty based
on Monte-Carlo Dropout (Gal & Ghahramani, 2016). Nevertheless, this method
requires a limited set of true labels for retraining in case of drift. In contrast, the
Two-Step Prediction Method follows a different approach. Instead of adapting to
concept drift, it focuses on providing robust machine learning services in concept
drifting environments. This is achieved by combining an outlier prediction with a
robust machine learning model.

Challenges for the application
of concept drift handling

Challenges for the deployment
of supervised machine learning models

Relevant choices for the application
of supervised machine learning models

Concept drift handling for
regression problems

Concept drift handling with
limited label availability

Deployment
critical

Concept drift
challenge

RQ4

RQ1

RQ2

RQ3

RQ5

Fig. 1.3.: Overview of thesis content.

The overall content of this thesis is summarized in Figure 1.3. First, this thesis
describes relevant choices and documentation requirements for the application of
supervised machine learning models in IS (RQ1). However, the adoption of machine
learning technologies is still confronted with a large number of challenges. Those
are investigated in detail by performing an interview study (RQ2). One of the major
identified challenges refers to concept drift or changing data distributions over time
as well as its impact on prediction performance. For an improved understanding of
this problem, we perform two different activities: First, a concept drift algorithm
is instantiated on a real-world use case. Second, a framework describing typical
characteristics and choices for concept drift handling strategies is developed. Those

1.2 Research Design 11

activities allow to derive typical challenges for concept drift handling (RQ3). Based
on this acquired knowledge, two aspects for improvement of existing solutions are
investigated: concept drift handling for regression problems (RQ4) and concept drift
handling with limited label availability (RQ5).

For answering the research questions, we apply a set of different suitable research
methods. While we apply mainly qualitative research methods regarding RQ1-3,
quantitative methods are in focus for working with RQ4 and RQ5. RQ1 is answered
by performing a structured literature review and developing a reportcard. For
dealing with RQ2, we perform an expert interview study with a qualitative content
analysis. RQ3 is tackled from two different perspectives: While the first part is based
on a technical experiment, the second part builds on a structured literature review.
The final RQ4 and RQ5 are both answered by performing two technical experiments
each per research question.

1.3 Structure of Work

This thesis consists of six main parts with several chapters each. Part I covers general
foundations and Part II describes necessary steps as well as various challenges during
the application of supervised machine learning. Part III sheds light on the problem
of changing data distributions over time and its impact on deployed models. Part IV
and Part V offer solutions for specific aspects of concept drift handling, namely in
regression problems and in situations with limited availability of true labels. In
Part VI, the findings of the previous parts are summarized and directions for future
research are outlined. Figure 1.4 provides an overview of the thesis’s structure that
also shows which peer-reviewed publications are included in the individual chapters.
Note that this figure adopts the general structure introduced in Figure 1.3.

In Part I, we lay the foundations for this thesis. Chapter 1 introduces the motivation
as well as the research design. Chapter 2 presents relevant related work. First, we
review the role and applications of machine learning in IS. This is followed by an
overview of research considering machine learning in the context of data streams as
well as concept drift and strategies for handling concept drift.

Part II describes fundamental steps and challenges in the application of supervised
machine learning. Chapter 3 describes the development of a reportcard for docu-
menting necessary steps and choices in any kind of supervised machine learning
endeavor in IS. A subsequent analysis of 121 research papers with the help of this

12 Chapter 1 Introduction

Choices and Challenges for Machine Learning Applications

Fundamentals

1 Introduction

2 Related Work

Part I

Challenges for the Deployment of Supervised Machine Learning Models

Relevant Choices for the Application of Supervised Machine Learning Models

Concept Drift Handling for
Regression Problems

Concept Drift Handling with
Limited Label Availability

Challenges for the Application of Concept Drift Handling

Part II

3 The Supervised Machine Learning Reportcard
Kühl, N.; Hirt, R.; Baier, L.; Schmitz, B.; Satzger, G. (2020). “How to Conduct Rigorous
Supervised Machine Learning in Information Systems Research: The Supervised Machine
Learning Reportcard“. Communications of the Association for Information Systems [forthcoming]

4 Challenges in the Deployment of Machine Learning
Baier, L.; Jöhren, F.; Seebacher, S. (2019). “Challenges in the Deployment and Operation of
Machine Learning in Practice”. Proceedings of the 27th European Conference on Information
Systems (ECIS)

5 Handling Concept Drift for Predictions in Business Process Mining
Baier, L.; Reimold, J.; Kühl, N. (2020). “Handling Concept Drift for Predictions in
Business Process Mining”. Proceedings of the 22nd IEEE International Conference on
Business Informatics

6 Preserving Validity of Predictive Services over Time
Baier, L.; Kühl, N.; Satzger, G. (2019). “How to Cope with Change? Preserving Validity
of Predictive Services over Time”. Proceedings of the 52nd Hawaii International
Conference on System Sciences

Part III

Part IV Part V

7 Handling by Switching Models - the
Error Intersection Approach
Baier, L.; Hofmann, M.; Kühl, N.; Mohr, M.;
Satzger, G. (2020). “Handling Concept Drifts in
Regression Problems – the Error Intersection
Approach“. Proceedings of the 15th International
Conference on Wirtschaftsinformatik

8 Handling by Switching Adaptation
Mode - the Switching Scheme
Baier, L.; Kellner, V.; Kühl, N.; Satzger, G.
(2021). “Switching Scheme: A Novel Approach
for Handling Incremental Concept Drift in Real-
World Data Sets”. Proceedings of the 54th

Hawaii International Conference on System
Sciences

9 Handling by Model Uncertainty –
Uncertainty Drift Detection
Baier, L.; Schlör, T.; Schöffer, J.; Kühl, N.
(2020). “Detecting Concept Drift With Neural
Network Model Uncertainty“.
Working Paper

10 Handling by Outlier Detection - the
Two-Step Prediction Method
Baier, L.; Kühl, N.; Schmitt, J. (2021).
“Increasing Robustness for Machine Learning
Services in Challenging Environments – Limited
Resources and No Label Feedback”.
Proceedings of Intelligent Systems Conference
(IntelliSys) [forthcoming]

Finale

11 Conclusion

Part VI

Fig. 1.4.: Structure of this thesis.

1.3 Structure of Work 13

reportcard reveals various weaknesses regarding the documentation and implemen-
tation of machine learning projects. Therefore, Chapter 4 investigates and discusses
corresponding challenges in the operation and deployment of machine learning
in practice. To this end, we conduct an interview study with 11 machine learning
experts across various industries such as manufacturing, health care or finance and
perform a qualitative content analysis. This approach allows us to identify key
challenges along three categories and six clusters.

Part III introduces the general problem of changing data over time. Chapter 5 con-
tains a technical experiment where concept drift handling strategies are instantiated
in a use case requiring predictions for business process mining. We can show that the
application of those strategies significantly improves the performance for predicting
the delivery time of ordered goods. This chapter also illustrates the challenges for
setting up those systems with real-world data. The second chapter in this part (Chap-
ter 6) introduces a framework which describes possible alternatives for setting up
machine learning services for dealing with concept drift and is based on a literature
review of 34 research papers. Different design options for services in this context
can be divided into setup decisions, algorithmic decisions and decisions regarding
operation.

In Part IV, we investigate two methods for handling concept drift in regression
problems and also evaluate those with technical experiments. Chapter 7 describes
the Error Intersection Approach—a concept drift handling method—which is based
on two prediction models of different complexity for handling sudden concept drift
in demand forecasting. We instantiate this method on a data set describing the taxi
ride demand in New York City and show its superior overall prediction performance.
Furthermore, we also illustrate the operating principle of the method by investigating
specific examples of concept drift in detail. Whereas the previous method focuses
on sudden concept drift, Chapter 8 introduces the Switching Scheme, a newly
developed method for handling incremental concept drift. It describes a mechanism
for combining the advantages of different adaptation strategies for machine learning
models. This method is also evaluated on the New York City taxi ride data set as
well as on a data set containing information about flight delays in the US.

Part V contains two methods for handling concept drift in deployment situations
where the acquisition of true labels is difficult. The evaluation of both chapters in
this part is based on technical experiments. Chapter 9 introduces the Uncertainty
Drift Detection (UDD) approach which applies the uncertainty of a neural network
for detecting concept drift. The approach is evaluated on two synthetic data sets
as well as on a set of eight classification and two regression real-world data sets

14 Chapter 1 Introduction

which are often applied for testing novel concept drift strategies. Furthermore,
Chapter 10 introduces the Two-Step Prediction Method for increasing the robustness
of machine learning services. In contrast to the previous contributions, this method
does not focus on adapting the prediction model on novel concepts but rather
guarantees robustness regarding the issued predictions. This behavior is required
since it is impossible to acquire any true labels and, therefore, adapt the model
during operation at all. The method is validated with a data set from a large German
OEM with the objective to optimize engine control.

The final Part VI concludes this thesis by providing a summary of the insights
gained from working on the different research questions. It also describes practical
implications of this thesis and outlines limitations as well as provides potential ideas
for future research (Chapter 11).

A different view on the content of this thesis is provided in Figure 1.5 on page 16. It
illustrates the relationship between research questions, the corresponding chapters
of this thesis as well as the employed research methods.

1.3 Structure of Work 15

Chapter 1
Introduction

Chapter 2
Related Work

Pa
rt

 I
Pa

rt
 II

Chapter 3
The Supervised Machine

Learning Reportcard

Chapter 4
Challenges in the Deployment of

Machine Learning

Chapter 5
Handling Concept Drift for Predictions

in Business Process Mining

Chapter 6
Preserving Validity of Predictive

Services over Time

Chapter 7
Handling by Switching Models –
the Error Intersection Approach

Chapter 8
Handling by Switching Adaptation Mode –

the Switching Scheme

Chapter 9
Handling by Model Uncertainty –

Uncertainty Drift Detection

Chapter 10
Handling by Outlier Detection –
the Two-Step Prediction Method

Chapter 11
Conclusion

Pa
rt

 II
I

Pa
rt

 IV
Pa

rt
 V

Pa
rt

 V
I

Literature
review

Interview
study

Technical
experiment

Literature
review

Technical
experiment

Technical
experiment

Technical
experiment

Technical
experiment

Research
Question 1

Research
Question 2

Research
Question 3

Research
Question 4

Research
Question 5

Chapters Research
Method

Research
QuestionParts

Fig. 1.5.: Overview of research methods and research questions.

16 Chapter 1 Introduction

Related Work 2
In order to provide a common understanding, we outline the theoretical foundations
and related literature that are relevant to our work. First, Section 2.1 discusses the
role of Artificial Intelligence (AI) and machine learning from the perspective of the
IS literature and also introduces a wide range of application examples. Second, we
discuss the consequences and challenges of dynamic environments on the application
of machine learning based on CS literature. Therefore, the special characteristics
of machine learning algorithms in data stream settings are explained (Section 2.2).
Eventually, Section 2.3 introduces the definition of concept drift, illustrates various
concept drift handling algorithms as well as common data sets for evaluation and
discusses novel and open research directions.

2.1 AI and Machine Learning in IS

This section provides a short overview on the development of AI in general as well
as in IS specifically. Subsequently, we highlight the main research interests of IS
regarding this topic and explain the difference between AI and machine learning.
This is followed by an overview of different application cases. Lastly, we elaborate
on current research areas.

The term artificial intelligence was first popularized at a conference held in 1956
at Dartmouth College in the US, which connected researchers on various topics,
including language understanding and self-improvement of machines (McCarthy
et al., 2006). In the field of IS, AI has been discussed from the 1980s onwards,
and the overall increase of AI applications recently has also spurred considerable
research efforts (Berente et al., 2019). However, sometimes it is difficult to follow
the progress because the terminology for AI applications has been fragmented, since
AI can be divided into many facets and subfields (Kühl et al., 2019). For instance,
some popular terms for describing different fields of AI are expert systems, decision
support systems, big data analytics, data mining, and machine learning, with IS
contributing to each of those subfields (Nascimento et al., 2018).

17

Besides the technical implementation details, researchers are increasingly empha-
sizing AI as an object of broader research, as suggested by Shmueli and Koppius
(2011). In line with this general trend, the maturation process of AI solutions is
investigated apart from singular proofs-of-concept: Popovič et al. (2018) elaborate
on the maturity of AI systems and Pappas et al. (2018) stress the importance of
broader business analytics ecosystems as a pathway for successful digital transfor-
mation. In order to enable such transformations, data is a prerequisite as it is an
absolute necessity for any kind of AI application. The origin of data, e.g., open data
(Enders et al., 2020) and its value (Günther et al., 2017) are the subject of frequent
discussions in the IS community. The new perspective of data as a central resource
has also led to the broader discussion of data-driven vs. theory-driven research in IS
(Maass et al., 2018).

Due to the fundamental changes driven by AI, several researchers also stress the need
to adapt current management guidelines for an efficient handling of corresponding
challenges and opportunities (Berente et al., 2019). Since the introduction of
AI into organizations is a difficult task, researchers are increasingly evaluating
different factors such as technological, environmental and organizational aspects
for AI adoption (Alsheibani et al., 2018; Pumplun et al., 2019). Jöhnk et al. (2020)
develop a set of AI readiness factors within five categories: resources, knowledge,
culture, data, strategic alignment. These allow to assess whether organizations are
ready for AI adoption.

Based on data from different contexts, it has been shown that AI can provide
significant benefits for decision-making (Meyer et al., 2014). In line with this
finding, researchers agree that AI contributes to value creation (Wodecki, 2019).
The role of the human in this process, however, is a controversial issue. There are
three different levels of collaboration: 1) AI assisting the human (Terveen, 1995), 2)
vice versa (Holzinger, 2016), or 3) both entities collaborating on an equal basis in a
hybrid model (Seeber et al., 2020). The associated role changes are of major interest
for the research community, with first studies showing empirical results (Demetis &
Lee, 2018).

In this context, AI-based digital assistants such as chatbots or voice-based assistants
play an important role. Those assistants can support humans by relieving them from
routine tasks, e.g., by taking over redundant tasks in customer service. This frees
up time and resources of the employees for other, more demanding tasks (Maedche
et al., 2019). Besides technological barriers, IS researchers have investigated how
the design of digital assistants, e.g., by imitating human-like features, behaviors and
characteristics, affects the interaction quality between the digital assistant and the

18 Chapter 2 Related Work

user (Benlian et al., 2020). Furthermore, such systems have been tested in different
application areas with specific adaptations, e.g., for supporting financial investment
decisions with robo-advisory (Adam et al., 2019). Since those AI-based systems
increasingly influence decisions with far-reaching consequences, transparency into
their decision-making procedures is an important evaluation criterion (Rzepka &
Berger, 2018). In this context, establishing trust in AI systems is crucial. However,
the creation of trustworthy AI systems is associated with various challenges along
the different stages (e.g., input, model, or output stage) of such systems (Thiebes
et al., 2020).

For a better understanding of the subject, it is crucial to elaborate on the difference
between AI and machine learning. AI applies a broad range of different techniques to
mimic intelligent behavior in machines, whereas machine learning is just one of the
techniques applied (Kühl et al., 2019). Machine learning in turn can be divided into
three different paradigms (Jordan & Mitchell, 2015): 1) Supervised learning, where
a system learns a mapping f(x) based on a set of input features x and corresponding
labels y, 2) unsupervised learning, which usually involves the analysis of unlabeled
data to identify underlying structural properties of the data, e.g., by identifying
groups in the data, and 3) reinforcement learning, where the system learns to improve
its actions by receiving different types of rewards. In general, supervised machine
learning is the most popular paradigm (Jordan & Mitchell, 2015). This finding is also
confirmed for IS research by Nascimento et al. (2018) who reveal that IS researchers
mainly apply different classification or regression techniques—both subgroups of
supervised machine learning.

In fact, an extant body of research in the discipline of IS deals with the application
of machine learning, e.g., case studies showing its feasibility and efficiency. Typical
examples for applying machine learning to novel application contexts include, among
others, optimizing business operations by forecasting customer churn (Baumann
et al., 2015; Coussement et al., 2017; De Caigny et al., 2018) or detecting fraud
(Abbasi et al., 2012; Dong et al., 2018). Other studies describe its application for
predicting business processes without applying an explicit process model (Evermann
et al., 2016), or for optimizing human resources planning (Stein et al., 2018).
In e-commerce applications, machine learning techniques have been applied for
predicting conversion from users to buyers in e-commerce (Ding et al., 2015; Koehn
et al., 2020) or for delivering personalized recommendations (Guo et al., 2018)
as well as optimizing the sales promotion strategy (Wang, Li, et al., 2020). In the
context of social media, researchers use machine learning for detecting clickbait
on social media (Kadian et al., 2018) or identifying cyberbullies (Ptaszynski et al.,
2019).

2.1 AI and Machine Learning in IS 19

In industrial settings, predictive maintenance scenarios are also investigated, e.g., by
predicting road defects (Chatterjee, Saeedfar, et al., 2018) or by predicting compo-
nent failures for agricultural machines (Lüttenberg et al., 2018). Other applications
are instantiated within the energy sector, for improving oil price forecasting (Tripathi
& Kaur, 2018) or optimizing redispatch in energy transmission grids (Staudt et al.,
2018).

There are also numerous examples of IS researchers applying machine learning for
improving healthcare services, e.g., by monitoring diabetes patients (Chatterjee,
Byun, et al., 2018), enhancing the analysis of chest X-rays (Rädsch et al., 2021), or
forecasting the course of cardiovascular diseases (Brahma et al., 2020), as well as
predicting hospital readmission risk for patients with different diseases (Xie & Zhang,
2018). Furthermore, Öksüz et al. (2018) predict therapy success for obese children,
and Bahja (2018) extract patient experience and satisfaction with sentiment analysis
on online reviews.

However, recent progress in terms of machine learning performance is mainly driven
by the advances in deep learning. Unfortunately, the high prediction performance of
deep learning methods is accompanied by high complexity and low interpretabil-
ity (Lipton, 2018). Therefore, recent research focuses on different explainability
methods available to make these systems more interpretable (Heinrich et al., 2019).
This also allows to investigate the effect of different explainability methods on
users, e.g., by measuring the impact of different explanations techniques on users’
confidence and overall effectiveness of the decision process (Wanner, Herm, et al.,
2020). Furthermore, Wanner, Heinrich, et al. (2020) examine the relationship and
prioritization between explanation method, prediction accuracy and implementation
effort.

The previous paragraphs highlight the broad range of machine learning systems
within IS research. Due to their maturity, an increasing share of these systems is also
adopted for support in real-world organizations. Despite the initial setup and train-
ing, this also requires the necessary infrastructure for deployment and integration
into the respective information systems. Furthermore, constant monitoring after
deployment is crucial for ensuring a reliable prediction quality over time. Therefore,
it is necessary to consider those systems in the context of data streams where new
data instances continuously need to be processed.

20 Chapter 2 Related Work

2.2 Learning in Dynamic Environments

This section introduces related work regarding learning and predicting in dynamic
environments. Dynamic refers to non-static environments such as data streams
where new information arrives over time. Section 2.2.1 introduces research which
considers the problem of machine learning in data streams, whereas Section 2.2.2
introduces the research stream of online learning, which focuses on game-theoretic
aspects in dynamic settings.

2.2.1 Machine Learning in Data Streams

In traditional applications, machine learning algorithms assume the existence of
static batch data which can be used for training and evaluation. However, many
problems in real-world applications require the handling of dynamic information.
Companies need to be able to perform real-time analytics: They do not only want
answers to their queries instantly—the processing of the query must be fast—but
also with the most recent data (Bifet et al., 2018). Therefore, there has been a
shift in research from batch learning to data stream applications where models and
patterns need to be identified in a continuous stream of information (Gaber et al.,
2005). Methods for static data sets often cannot be transferred to data streams
due to their specific characteristics (Rutkowski et al., 2020), as algorithms should
mine continuous, high-volume, open-ended data streams as they arrive (Domingos
& Hulten, 2001).

A data stream S can be defined as S = (S1, S2, ..., Sn), where S1, S2, ..., Sn corre-
spond to the individual data instances. Thus, a data stream is an ordered sequence
of data instances with the cardinality n(S) possibly being infinity since the stream is
unlimited over time (Ramírez-Gallego et al., 2017). There are various characteristics
where streams differ from traditional setups. Instances are not given beforehand
but arrive sequentially one by one as the stream moves forward (Ramírez-Gallego
et al., 2017). Furthermore, new data instances might arrive at very high speed and
also with different time intervals between each other (Gama, 2012). Data volume
is another processing challenge as streams can be potentially infinite in size which
makes it impossible to store all incoming data (Rutkowski et al., 2020). Often, the
processing of a data instance is only possible once at arrival because subsequently it
is aggregated for storage reasons (Krawczyk et al., 2017). Additionally, the acqui-
sition of true class labels can be limited due to high cost (Ramírez-Gallego et al.,
2017).

2.2 Learning in Dynamic Environments 21

Due to the characteristics described above, data stream algorithms need to fulfill
certain criteria: Methods need to perform with a certain accuracy despite the
simplifications made for the stream setting (Gaber et al., 2005). A low processing
time of new instances is crucial since new data instances arrive with high velocity
(Bifet et al., 2018). Additionally, memory requirements are an important metric for
evaluation of any method since streams can be possibly infinite in size. Therefore,
the objective is to achieve “maximum accuracy with minimum time and low total
memory” (Bifet et al., 2018, p. 5). Other researchers also refer to specific metrics
for distributed data streams such as the required communication bandwidth (Gama,
2012).

For handling the complexity of data streams, either data-based or task-based solutions
can be applied (Gaber et al., 2005). Data-based solutions work by reducing the size
of the data that needs to be analyzed. Task-based solutions, in contrast, refer to
approximations of traditional algorithms for batch data. By allowing broader error
bounds and, therefore, less accurate models, fast and efficient solutions for data
streams can be achieved. Figure 2.1 depicts an overview of different solutions for
machine learning in data streams.

Data-based solutions Task-based solutions

Sampling

Window-based
approaches

Load shedding

Synopsis

Sketching

Error bound-based
techniques

Symbolic approximation-
based techniques

Granularity-based
techniques

Fig. 2.1.: Overview of solutions for machine learning in data streams.

Sampling is one data-based technique where only a subset of the data—based on
certain criteria, e.g., a random selection—is processed. The other data instances
are discarded, which naturally reduces the computational load and costs (Gama,
2012). Samples can either be drawn by simple random sampling or by applying
reservoir sampling (Aggarwal, 2006). In reservoir sampling, a sample of size k—the
reservoir—is kept. Every new element in the stream has the probability of k/n
to replace an old element in the reservoir, which means that the probability of

22 Chapter 2 Related Work

inclusion in the reservoir decreases with increasing data stream size n. In this
context, window-based approaches play an important role. Babcock et al. (2001)
propose two different methods: sequence-based and timestamp-based windows.
In a sequence-based window, the size of the window is defined by the number
of observations considered. In contrast, timestamp-based windows are described
based on the duration of a window. All data instances with a timestamp within the
time interval of the window are selected. Load shedding is similar to sampling but
drops whole sequences of incoming data instances. This might be necessary when
the input data speed exceeds the capacity of the system. Load shedding can be
applied to prevent system overload and large latency (Tatbul et al., 2003). Synopsis
works by summarizing the incoming data stream, e.g., with wavelet transformations
(Gaber et al., 2005) or aggregating information by computing means and variances
(Aggarwal et al., 2003). Sketching, in contrast, works with analyzing a subset of
features only (Muthukrishnan, 2005). For instance, Ramírez-Gallego et al. (2017)
suggest applying feature extraction algorithms such as Principal Component Analysis
in this context.

Task-based solutions refer to approximations of static methods for the online setting
of data streams. One strategy for computing approximated solutions is represented
by error bound-based techniques which have the objective of increasing the training
speed of models. This strategy is usually based on the concept of a Hoeffding bound
(Hoeffding, 1963), which allows to estimate the probability that a model deviates by
a certain amount from its optimal parameter configuration (Hulten et al., 2001). For
time series data, symbolic approximation-based techniques have been introduced (Lin
et al., 2003). Symbolic methods reduce computational complexity of determining
an appropriate model by applying piecewise aggregate approximation functions in
combination with symbolic values. Lastly, granularity-based techniques refer to a set
of machine learning methods that can adapt their resource consumption patterns
over time (Gaber, 2012). For instance, algorithm processing granularity refers to the
process of adapting the parameters of an algorithm to reduce the required processing
power.

A wide range of machine learning tasks such as clustering, classification, frequent
pattern mining as well as time series analysis have been considered in the context
of data streams (Gaber et al., 2005; Gama, 2012). In literature, many different
methods are proposed for handling these tasks: instance-based classifiers (k-nearest
neighbors), Bayesian classifiers (Naive Bayes), ANNs (multilayer perceptron), de-
cision trees (very fast decision tree) (Domingos & Hulten, 2000) and ensemble
techniques (Rutkowski et al., 2020).

2.2 Learning in Dynamic Environments 23

The previous paragraphs highlight the complexity of data stream mining. Various
challenges need to be considered such as the cost-performance management re-
garding incremental learning and forgetting (Kifer et al., 2004). Intuitively, there
is a trade-off between high prediction performance and the corresponding cost:
Frequent model updates lead to better prediction performance but also result in
higher cost due to the increased computing power required. Furthermore, data
streams are challenged with changing probability distributions over time, which
might endanger the validity of the applied methods (Rutkowski et al., 2020). In this
context, especially evolving features, e.g., new words over time in a text mining task,
are also challenging (Masud et al., 2013).

2.2.2 Online Learning

Closely related to machine learning in data streams is the research stream of online
learning. However, online learning specifically follows the supervised machine
learning paradigm (predict a label for a new data instance and then receive the
corresponding true label for this prediction), whereas machine learning in data
streams (Section 2.2.1) covers a broader range of techniques (e.g., also unsupervised
machine learning). Since this thesis puts a strong focus on supervised machine
learning tasks, we briefly introduce the fundamentals of online learning in the
following.

Online learning can be explained as making a series of predictions with knowledge
regarding the correctness of previous predictions (Shalev-Shwartz, 2011). In this
sense, online learning is very similar to machine learning in data streams due to the
dynamic nature of information processing. However, research around this topic is
mainly driven by a separate research community in computer science. In contrast to
other research streams, online learning investigates the dynamics of data streams
from a game-theoretic perspective. In this context, online learning considers the
problem of computing predictions over time as a game, and any kind of entity
capable of issuing predictions (e.g., a machine learning model or a human expert) is
referred to as player. In its simplest form, online learning considers one player only,
but there are also applications with several players.

Online learning is played in rounds. A player receives a question (a new data instance
xt) and is required to answer this question (perform a prediction pt). Subsequently,
the true answer is revealed (receive true label yt). Based on this information, the
loss l(pt, yt) that a player is suffering is computed (Beyazit et al., 2019). This loss
also triggers the corresponding learning process. Subsequently, the next round

24 Chapter 2 Related Work

Algorithm 1 Principle of online learning (Shalev-Shwartz, 2011)

1: for t = 1, 2, ... do
2: receive question xt ∈ X
3: predict pt ∈ D
4: receive true answers yt ∈ Y
5: suffer loss l(pt, yt)
6: end for

of the game is started. The game-theoretic aspect is induced by considering the
iterative nature of the problem setup. A player receives feedback about her previous
predictions and can adapt her behavior based on strategic decisions to minimize her
loss. The fundamental principle of online learning is depicted in algorithm 1.

Applications in online learning can be differentiated based on certain characteristics.
In some cases, additional knowledge in the form of other input features can also be
included for predictions. In other cases, a player receives only partial information
about the correctness of previous answers. Online classification is one of the main
problems in this research stream, where predictions and answers can only be either
yes or no. In this case, the two spaces for possible predictions D and true labels
Y are equivalent: D = Y = {0, 1} (Shalev-Shwartz, 2011). An example for this
setting is predicting whether it will rain tomorrow. Today, the learning algorithm
receives meteorological information in a vector xt (e.g., containing temperature and
humidity). Based on this vector, the learning algorithm predicts whether it is going
to rain tomorrow. The next day, the algorithm receives feedback and knows the true
answer. In the end, the objective of the learner is to minimize the total cumulative
loss over all time steps t.

Apart from online classification, examples for online learning are online regression,
where the objective is to predict a real-valued target (Moroshko et al., 2015). Other
approaches include prediction with expert advice where a player needs to select an
expert which she trusts, as well as online ranking where an item set needs to be
ordered according to its relevance for a player. Furthermore, a well-known problem
in this domain is the multi-armed bandit problem which is inspired by a gambler that
needs to decide which arm of various slot machines she needs to pull to maximize
her reward in several trials (Vermorel & Mohri, 2005). Each round, the player
receives a loss according to the chosen arm, but she does not receive any information
about the potential loss that she would have suffered by playing a different arm
(Agrawal & Goyal, 2012). Due to its game-theoretic approach, online learning also
considers adversarial learning cases, e.g., where an adversary intentionally delays
feedback for a prediction (Quanrud & Khashabi, 2015).

2.2 Learning in Dynamic Environments 25

Besides the introduced different research streams, various emerging problems are
currently investigated. For instance, Beyazit et al. (2019) examine the effect of
varying features within online learning settings, e.g., cases where some features
disappear and other features might emerge over time. Other researchers study the
incentives of experts in such an online scenario, e.g., regarding the behavior of
pollsters in elections (Roughgarden & Schrijvers, 2017). Further variants of online
learning algorithms can be found for the domain of deep learning representation in
graph analytics (Perozzi et al., 2014) or for topic modeling in text mining based on
latent Dirichlet allocation (Hoffman et al., 2010).

Both research streams—either online learning or machine learning in data streams—
require models to generate ongoing predictions over time. In this context, machine
learning models need to be able to react to changing data distributions while
keeping a high prediction performance. Therefore, we introduce research regarding
concept drift which describes solutions for this problem domain in the following
Section 2.3.

2.3 Concept Drift

This section contains research related to concept drift. Section 2.3.1 introduces
relevant definitions of concept drift and also explains different concept drift types.
The following Section 2.3.2 describes various algorithms for concept drift detection
and also explains how machine learning models can be adapted in case of concept
drift. Furthermore, it gives an overview on relevant evaluation strategies and
popular benchmarking data sets. Finally, Section 2.3.3 introduces several application
examples of concept drift handling and also elaborates on novel research areas.

2.3.1 Definition

Concept drift refers to changing data distributions over time and is, therefore, a
challenge when dealing with data streams because prediction models learned on
old data are not able to perform well on new data (Tsymbal, 2004). A concept is
defined as the common probability distribution P (X, y) of a set of input features X
and a target y (Webb et al., 2016). This definition reveals that the problem is mainly
considered in supervised machine learning settings. In general, concepts depend on
the context of the respective data stream which is often hidden from the machine
learning model (e.g., important factors that are not included in the input features of

26 Chapter 2 Related Work

the model). Therefore, changes in the context cannot be observed by the machine
learning model, leading to challenges for computing correct predictions (Widmer &
Kubat, 1996). A good example for concept drift are changing customer preferences
over time. In this context, a system for predicting the buying behavior of customers
is applied. Suddenly, one of the customers gets a significant pay raise which is
not observable for the algorithm (changing hidden context). Due to her changed
income, the customer adapts her shopping behavior, e.g., by buying more organic
products, which makes high-quality recommendations for the machine learning
model difficult.

Formally, concept drift is defined in the following way (Gama et al., 2014; Widmer &
Kubat, 1996):

Pt0(X, y) 6= Pt1(X, y).

Here, t0 and t1 are two different points in time with t1 > t0. Besides concept
drift, the machine learning community also uses other terms to describe similar
phenomena referring to changing data distributions (Moreno-Torres et al., 2012).
For instance, dataset shift (Quionero-Candela et al., 2009) is described as a change
in the common probability distribution of input data X and corresponding labels y
between training (tr) and test time (tst):

Ptr(X, y) 6= Ptst(X, y).

For the differentiation between the two definitions, the indices are crucial: Dataset
shift focuses on the difference between training and testing environment, whereas
concept drift refers to the temporal aspect of data and is, therefore, closely linked to
the problem of machine learning in data stream settings.

There are further subcategories of concept drift, where covariate shift refers to
changes in the distribution of the input dataX only, without affecting the distribution
of labels: Pt0(X) 6= Pt1(X) and Pt0(y|X) = Pt1(y|X) (Moreno-Torres et al., 2012).
This change is also referred to as virtual drift in the concept drift literature (Gama
et al., 2014). Furthermore, real concept drift describes any changes in P (y|X),
independent of whether this change is triggered by changes in P (X) or not. A
subtype of real concept drift is called label shift, concept shift or conditional change
(Gao et al., 2007; Moreno-Torres et al., 2012): Pt0(X) = Pt1(X) and Pt0(y|X) 6=
Pt1(y|X). In this case, it is only the distribution of the labels given X that changes
over time, whereas the distribution of the input features alone remains constant.

For purpose of illustration, an information system recommending sports products is
considered. The task of the system is to classify sports products as relevant or not not

2.3 Concept Drift 27

relevant to a given customer. In the beginning, the customer is interested in running
shoes. Therefore, any products related to running shoes are relevant and bicycle
equipment is not relevant. The following year, new running shoes with different
characteristics are available for sale. Despite changed characteristics, those shoes
are still relevant to the customer. This is an example of virtual drift. However, if the
customer has bought a pair of running shoes and additionally wants to exercise on a
bicycle, running shoes become irrelevant and bicycle equipment becomes relevant.
This represents a scenario of real concept drift.

The relationship between virtual and real concept drift is also depicted in Figure 2.2.
A dot in the figure represents a data instance and different colors refer to different
class affiliations. In case of virtual drift, the decision boundary compared to the
original data remains the same whereas the input data X changes. Therefore, no
adaptation of the machine learning model is required. In contrast, in case of real
concept drift, the decision boundary of the machine learning model needs to be
adapted to represent the new class affiliations. In this specific case, the concept drift
depicted represents a label shift since the distribution of the input data X remains
the same.

Original data Real concept driftVirtual drift

p(y|X) changesp(X) changes, but
not p(y|X)

Fig. 2.2.: Virtual and real concept drift, adapted from Gama et al. (2014).

In statistics, the problem of changing data is also investigated under the terms
structural breaks in time series (Aue & Horváth, 2013) or detection of change points
(Antoch et al., 2019). In this context, it is common to estimate several structural
breaks simultaneously from hindsight (Bai & Perron, 2003). Often, those statistical
models are applied in economic contexts, e.g., for detecting structural breaks in
financial time series due to economic and political events such as the introduction of
a single European currency (Antoch et al., 2019).

Besides different definitions of concept drift, researchers also differentiate various
structural types of concept drift, depicted in Figure 2.3. In this simplified case, it

28 Chapter 2 Related Work

is assumed that the data is just one-dimensional. In total, there are four different
types (Žliobaitė, 2010): Sudden or abrupt concept drift, incremental and gradual
concept drift as well as reoccurring concepts.

time

da
ta

sudden/abrupt outlier
(not concept drift)incremental gradual reoccuring

concepts

Fig. 2.3.: Overview of structural types of concept drift, adapted from Žliobaitė (2010).

Sudden concept drift refers to sudden changes in the data distribution. This can
be triggered for instance by the replacement of a sensor with a sensor with a
slightly different calibration in a manufacturing environment (Gama et al., 2014).
Another example is the sudden popularity of masks in e-commerce shops during the
beginning of the COVID-19 pandemic. Incremental concept drift is characterized
by slower changes, often referring to changes in a whole population (e.g., people
increasingly buying organic products) (Žliobaitė et al., 2016). An example for
gradual drift is a user changing her hobbies over time. At first, she mainly reads
articles about finance and then she also gets interested in sports articles. She
keeps coming back and reading finance articles but in the end, she stays with
sports (Žliobaitė, 2010). Reoccurring concepts are best characterized by seasonal
changes, e.g., changing sales of ice cream or air conditioning in summer and winter
(Ramamurthy & Bhatnagar, 2007). Note that reoccurring concepts go beyond simple
periodic seasonality (Žliobaitė, 2010): In the ice cream example, the peak of sales
will be slightly different each year depending on the precise weather profile in this
specific year as well as other factors. Outliers, in contrast, should not be interpreted
as concept drift (Tsymbal, 2004). Adjusting to outliers will lead to poor prediction
performance of the underlying machine learning model.

Besides these main structural types of concept drift, Webb et al. (2016) provide
a more detailed taxonomy of concept drift characteristics. Among others, several
features such as drift duration, concept duration as well as drift transition and
severity are introduced to further distinguish concept drifts.

2.3.2 Concept Drift Handling

The handling of concept drifts can be divided into two steps: First, the detection
of concept drifts and second, the required adaptation of the underlying prediction
models. Therefore, we first describe different algorithms for concept drift detection

2.3 Concept Drift 29

both from the machine learning as well as the statistics community (paragraph
Detection). Subsequently, the paragraph Adaptation explains how machine learning
models can be adapted in case of concept drift and illustrates a set of adaptive
learning strategies. Lastly, the paragraph Performance Evaluation gives an overview
on relevant evaluation metrics as well as popular benchmarking data sets.

Detection

An important feature of any machine learning system deployed in data stream
settings is the ability to detect concept drift. Therefore, literature provides a wide
variety of concept drift detection methods. Lu et al. (2019) define three different
categories of algorithms: error rate-based drift detection, data distribution-based
drift detection and multiple hypothesis test drift detection. Popular representatives
for each category are displayed in Table 2.1 and are explained briefly in the following
paragraphs.

Tab. 2.1.: Different categories of drift detection algorithms and popular representatives.

Error rate-based
drift detection

Data distribution-
based drift detection

Multiple hypothesis
test drift detection

• DDM (Gama et al.,
2004)

• PH (Page, 1954)
• ADWIN (Bifet &

Gavaldà, 2007)

• PCA-CD (Qahtan et al.,
2015)

• KSWIN (Raab et al.,
2020)

• ITA (Dasu et al., 2006)

• JIT (Alippi & Roveri,
2008)

• HLFR (Yu & Abraham,
2017)

• TMSD (Raza et al.,
2015)

The first category, error rate-based drift detection forms the largest category of
detection algorithms (Lu et al., 2019). They monitor the error rate of a prediction
model and if a significant increase or decrease in the error rate is detected, a drift
alarm is triggered. Methods include DDM, PH and ADWIN.

The Drift Detection Method (DDM) (Gama et al., 2004) assumes that the error of
a classifier can be modeled as a random variable from Bernoulli trials where the
classifier either makes a correct prediction (no error) or a false prediction (error).
The probability distribution of several prediction errors in turn can be modeled via
a binomial distribution. If the error rate deviates from the expected error rate to a
certain extent, a drift is likely to have happened. There are various other concept
drift detection algorithms which are based on the same principle (Lu et al., 2019).

The Page-Hinkley (PH) algorithm (Page, 1954) implements the idea of a cumulative
sum, a sequential analysis technique. The algorithm computes a test statistic which

30 Chapter 2 Related Work

monitors the cumulative difference between the mean and the observed value of a
variable over time. Usually, this variable is the error rate of the prediction model.
Concept drift is detected if the difference is larger than a predefined threshold set by
the user.

Adaptive Windowing (ADWIN) (Bifet & Gavaldà, 2007) is another popular approach
which works by analyzing a window of recent observations. As in the previously
presented methods, the variable that is being monitored is the prediction error.
ADWIN cuts this window of recent observations into two windows by computing
all possible subwindow combinations. If ADWIN detects a large difference between
the mean of the two windows, a concept drift alarm is triggered. The detection
threshold is derived by applying the Hoeffding bound.

The second category, data distribution-based drift detection, works by monitoring
historic as well as current data of the input features X and does not require the
prediction error rate. Usually, algorithms in this category apply some kind of distance
function to quantify the difference between the distribution of old as well as recent
data instances. Methods include PCA-CD, KSWIN and ITA.

As data distribution-based methods are often confronted with high dimensionality,
their computation can be difficult. Therefore, Prinicipal Component Analysis-based
Change Detection (PCA-CD) (Qahtan et al., 2015) applies PCA to project the data
stream to a lower-dimensional space. This enables the computation of density
estimations of the distribution between different time windows as well as the
computation of change scores. Drifts are detected by feeding change scores into a
PH algorithm.

Kolmogorov-Smirnov Window (KSWIN) (Raab et al., 2020), in contrast, is based on
computing the Kolmogorov-Smirnov test over windows of past input data. For each
input feature in the data stream, KSWIN computes an absolute difference between
the distributions of recent instances as well as a representative sample. If there
is a significant difference (based on the Kolmogorov-Smirnov test) for one of the
features included, KSWIN indicates a concept drift.

The Information Theoretic Approach (ITA) (Dasu et al., 2006) again relies on
two different windows of observations. Data instances are sorted into bins and
differences between the two window distributions are derived by computing the
Kullback-Leibler distance (Kullback & Leibler, 1951). The threshold for change
detection is estimated by applying bootstrapping on the empirical distribution of the
input data.

2.3 Concept Drift 31

Regarding the differences between error rate-based drift detection and data distri-
bution-based drift detection, Hu et al. (2020) note the limitations of data distribution-
based methods to detect label shift. Error-rate based drift detection performs
better for this type of drift but requires the acquisition of true labels. Therefore,
there is a trade-off between performance (higher drift detection accuracy) and cost
(acquisition cost for true labels) among drift detection algorithms. The authors
describe this as an example of the “no free lunch” theorem, according to which it
is impossible to have a single best performing approach with respect to multiple
evaluation criteria.

The third category, multiple hypothesis test drift detection, represents a group of
methods that uses similar techniques as in the two other categories, but it performs
several hypothesis tests or methods to improve detection accuracy. For instance,
Just-In-Time (JIT) detection (Alippi & Roveri, 2008) combines cumulative sum and
PCA techniques in parallel to improve drift detection. In contrast, Hierarchical
Linear Four Rate (HLFR) (Yu & Abraham, 2017) performs concept drift detection
in a sequential manner. First, it detects drift by monitoring all four rates of the
confusion matrix (e.g., true positive rate). Second, when a drift is detected in the
first layer, this information is sent to the second layer for confirmation in order to
prevent false alarms. Two-Stage Multivariate Shift-Detection (TSMSD) (Raza et al.,
2015) works in a similar way. First, an exponentially weighted moving average is
applied for drift detection. In case of drift, this information is validated by applying
a Kolmogorov-Smirnov test.

As described above, the problem of concept drift is related to the detection of struc-
tural changes in time series data in statistics (Verbesselt et al., 2010). The methods
applied from the statistics community typically differ in various aspects. Instead of
analyzing the prediction error or the distribution of input features, it is common
to fit various models on the time series and test whether the parameters of those
models differ (Hansen, 2001). The traditional test for identifying structural changes
is the Chow-test, which works by splitting the data set to be analyzed in two samples
(Chow, 1960). A linear model is fitted for each sample. Subsequently, the two sets
of parameters—one set per model—are tested for equality. A structural change has
occurred if the parameters differ significantly. However, this method requires an
assumed breakpoint date (e.g., based on external information) in advance as input
(Zeileis et al., 2003) and then tests whether the structural change at this date is
significant (Nielsen & Whitby, 2015). Furthermore, this method is not able to deal
with more than one structural break (Dufour, 1982).

32 Chapter 2 Related Work

Andrews (1993) provides a test that requires the time series as input only and
determines the timing of the break date itself. Furthermore, it is possible to estimate
confidence intervals for the possible breakpoint date which gives an indication for
the estimation accuracy of the method (Bai, 1994). Nevertheless, those methods can
also handle one structural break only. Therefore, Bai and Perron (1998) introduce
an iterative method to test for multiple breakpoints. First, the approach tests for one
structural break. Second, the time series is split according to the identified break
date and the approach continues to test on the two resulting smaller time series.

In general, the application of methods for break detection requires the full input data,
i.e., the complete time series (Perron, 1989). Furthermore, since those methods
basically rely on estimating parameters for two different models, their application is
difficult if a break is near the end or the beginning of a time series since there may
not be sufficient information to estimate the parameter values of the linear model
(Lai, 1995).

Besides fitting two different models, the development of monotonic trends can also
be analyzed for detecting changes in time series data. One statistical method in this
category is the non-parametric Mann-Kendall (MK) test (Kendall, 1948). This test is
often applied in long term data sets such as ecological or meteorological contexts
(Sonali & Kumar, 2013). The idea of the MK test is to investigate whether time
series observations follow a monotone trend over time or whether they are ordered
randomly. Furthermore, the analysis of stochastic trends can be performed by testing
for unit roots (White & Granger, 2011). This allows to analyze the characteristics of
the time series by investigating whether the time series is stationary, trend stationary
or has a unit root (Haldrup et al., 2013). Unit root time series follow a random
walk model. This implies that random shocks have a lasting effect on the trend of a
time series. In contrast, in a trend stationary model, the time series reverts back to
the previous trend some time after the shock (Hansen, 2001). For instance, those
methods can be used for analyzing the effect of external shocks on stock markets
(Kremser et al., 2019). However, unit root tests need to consider structural breaks
because otherwise inference for time series predictions can be misleading (Perron,
1989; Zeileis et al., 2003).

Adaptation

The previous paragraph Detection introduces a broad range of algorithms for de-
tecting changes in data streams. However, one important aspect of concept drift
handling is not only the detection of drifts but also how to adapt the underlying

2.3 Concept Drift 33

machine learning model in case of change. In general, the model might be adjusted
whenever new labeled instances are acquired. According to Gama et al. (2014),
there are two different learning modes available: retraining and incremental updates.
Retraining describes training a new model from scratch by accessing buffered data
with labels and discarding the current model. In contrast, incremental approaches
update the current model by considering the most recent data instances (Žliobaitė,
2010). Relevant parameters of the underlying model are continuously adapted, e.g.,
the weights of a neural network or a logistic regression.

Figure 2.4 shows an overview of four different classes of adaptive learning strategies
(Žliobaitė et al., 2016). One relevant dimension is the model form: This describes
whether a single machine learning model or an ensemble of multiple models is ap-
plied. The other dimension refers to the initiation of model adaptations. Adaptations
can either be based on triggers such as explicit concept drift detection algorithms
or are carried out regularly on an evolving level. Triggered adaptation strategies
are also described as informed or active strategies, whereas evolving strategies are
considered as blind or passive (Ditzler et al., 2015; Khamassi et al., 2018).

En
se

m
bl

e
Si

ng
le

m

od
el

Triggered Evolving

Detectors Forgetting

Contextual
Dynamic
ensemble

Model updates

M
od

el
 fo

rm

Fig. 2.4.: Adaptive learning strategies, adapted from Žliobaitė et al. (2016).

The detectors strategy uses a single prediction model and is based on a drift detection
algorithm (e.g., ADWIN). In case of a drift alarm, the machine learning model is
adapted. It is often a suitable strategy for handling sudden concept drift (Žliobaitė,
2010). The forgetting strategy, in contrast, does not apply a specific drift detection
algorithm. Instead, it uses a sliding window of fixed size over past data instances
and is periodically retrained with this data (Žliobaitė et al., 2016). Regarding
ensemble model strategies, the contextual strategy relies on triggered adaptation.
It uses available information for assigning the most relevant model contained in
the ensemble for decision making (Žliobaitė et al., 2016). A good example is food

34 Chapter 2 Related Work

sales prediction, where products are differentiated into different sales groups based
on certain characteristics with distinct prediction models each (Žliobaitė et al.,
2012). The last strategy, dynamic ensemble, refers to ensembles that evolve over
time. Usually, the decision rule determining how the different models are combined
(e.g., different models receive different weights) is dynamically updated over time
based on the performance of the individual machine learning models (Minku et al.,
2009). Due to their characteristics, ensemble strategies are especially suitable for
handling reoccurring concept drift (Lu et al., 2019).

Different forms of ensemble methods for concept drift handling can also be dis-
tinguished based on other dimensions (Krawczyk et al., 2017), for instance by
considering structural change. In this context, structural changes lead to the com-
plete replacement of individual machine learning models in an ensemble over time
(Kuncheva, 2004).

Within the supervised machine learning domain, concept drift handling for classifi-
cation problems represents the predominant share of approaches (Hu et al., 2018;
Iwashita & Papa, 2019; Jaworski, 2018). Ditzler et al. (2015) even provide an entire
literature review focused on classification task only. This focus can also be explained
by the fact that many drift detection algorithms exploit the characteristics of the
binomial error distribution in classification tasks (Gama et al., 2014). However,
many tasks need to be modeled as regression problems (Harrington, 2012), but only
very few approaches tackle the concept drift problem in this setting (Song et al.,
2019). Compared to classification, regression and especially time series forecasting
problems have certain characteristics that are relevant for concept drift analysis
(Cavalcante et al., 2016). For instance, Cavalcante et al. (2016) compute a set of
eight time-series specific metrics, such as autocorrelation and partial autocorrelation,
to identify concept drift in a time series context. Another approach by Song et al.
(2019) identifies historical patterns which are likely to reappear based on clustering
techniques for improved concept drift handling.

Performance Evaluation

For evaluating different concept drift handling strategies, various metrics can be
applied. One set of metrics refers to the concept drift detection itself, where the
mean time to detection, mean time between false alarms and missed detection
rate are popular examples (Bifet, 2017). The mean time to detection, or delay
of detection, describes the average duration until a drift is detected (Gama et al.,
2014). The missed detection rate refers to the probability of not receiving an alarm

2.3 Concept Drift 35

even though concept drift has occurred (Bifet, 2017). The mean time between false
alarms is an indicator of the number of false alarms where the presence of concept
drift is falsely assumed (Sethi & Kantardzic, 2017). However, all those metrics
require the knowledge of the true drift point (Gama et al., 2014). Real-world data
sets usually do not contain information about the precise start and end of drifts
since drifts in reality are often influenced by hidden factors that cannot be measured
(Gonçalves et al., 2014; Lu et al., 2019).

Therefore, it is a popular approach to compare the overall predictive accuracy of
different drift handling strategies (drift detection algorithm + prediction model)
on real-world data sets (Elwell & Polikar, 2011; Gonçalves et al., 2014; Souza
et al., 2020). Metrics such as accuracy, Area Under the Curve (AUC) or F1-score
are applied for classification tasks, and the mean absolute error for regression
tasks (Gonçalves et al., 2014; Song et al., 2019). Besides the detection accuracy,
the required computational resources such as RAM-hours (Bifet et al., 2010), the
necessary overall computational time (Gonçalves et al., 2014), or the decision time
for a single instance (Krawczyk et al., 2017) can be also considered as evaluation
metrics.

An additional level of evaluation for real-world data sets can be implemented
by considering relevant baseline strategies. The static baseline (Lindstrom et al.,
2013; Sethi & Kantardzic, 2017) model refers to a model that is held constant over
time. Therefore, no change is considered, and the model is never updated over the
course of the data stream. This is a lower-bound baseline which all drift handling
strategies should outperform. For classification problems, two other baselines can
be implemented: First, a naive predictor which always predicts the majority class
based on a moving window over time (Bifet, Read, Žliobaitė, et al., 2013). Second, a
no-change predictor that predicts the next class label in the data stream to be equal
to the class label of the previous data instance (Bifet, Read, Žliobaitė, et al., 2013;
Souza et al., 2020). A similar baseline can be implemented for time series problems,
where a random walk model predicts the next data instance to have the same value
as the last data instance (Gama et al., 2014).

For the evaluation of concept drift handling strategies, there are several simulated or
synthetic data sets available with different types of concept drift included. One way
to induce drift consists in changing the classification function or by manipulating
the input features over time. A good overview on different simulated data sets is
given by Bifet et al. (2009). Table 2.2 gives an overview on popular synthetic as well
as real-world data sets.

36 Chapter 2 Related Work

Real-world data sets for concept drift evaluation range from the prediction of
electricity prices (Electricity) to network intrusion detection (KDDCUP99) as well
as airline delay prediction (Airlines) and prediction of winning chances in games
(Pokerhand). Those data sets include different types of drift, among others daily,
seasonal, yearly or geographical concept drift (Lu et al., 2019). A detailed overview
and corresponding explanations on the data sets introduced in Table 2.2 as well as
further examples are given by Souza et al. (2020).

Tab. 2.2.: Popular synthetic and real-world data sets for concept drift evaluation.

Synthetic Real-world

• SEA (Street & Kim, 2001)
• STAGGER (Schlimmer &

Granger, 1986)
• Rotating Hyperplane (Hul-

ten et al., 2001)
• Random RBF (Bifet et al.,

2009)

• Electricity (Harries, 1999)
• KDDCUP99 (Tavallaee et al.,

2009)
• Airlines (Ikonomovska et al.,

2011)
• Pokerhand (Cattral et al.,

2002)

Despite the existence of the data sets described above, real-world evaluation of
concept drift handling strategies is still confronted with a number of challenges:
First, there is usually no information given regarding the exact drift time as well
as drift type (Gonçalves et al., 2014; Lu et al., 2019). Second, various researchers
have commented on a shortage of appropriate real-world data sets (Bifet et al.,
2009; Krawczyk et al., 2017; Nguyen et al., 2015; Souza et al., 2020). Third, class
distributions in real cases are often highly imbalanced (Hoens et al., 2012). Fourth,
in many real-world applications, the acquisition of true labels can either be very
expensive or simply impossible (Hu et al., 2020; Lindstrom et al., 2013). Therefore,
a large share of concept drift algorithms cannot be applied in this setting. Fifth,
some of the real-world data sets, e.g., the Electricity data set, have been questioned
regarding their applicability for concept drift analysis altogether (Žliobaitė, 2013).

To mitigate some of those problems, researchers have taken real-world data sets and
artificially induced concept drifts (Sethi & Kantardzic, 2017; Sobolewski & Wozniak,
2013). Some common approaches to simulate changes in real data with static
distributions are manipulating input features (Ramamurthy & Bhatnagar, 2007) or
joining classes (Vreeken et al., 2007).

2.3 Concept Drift 37

2.3.3 Applications and Current Research

There are examples of concept drift handling strategies for improved predictions in
different industry domains. In the energy sector, concept drift handling methods are
applied for the detection of wind power peaks (Tomin et al., 2015) or for improved
prediction of photovoltaic power production (Ceci et al., 2019). In a production
context, researchers utilize those methods to optimize a predictive maintenance
application for industrial radial fans (Zenisek et al., 2019), to set up a visual quality
control system on weld defects (Mera et al., 2019), and to detect intruders in
industrial control systems (Zizzo et al., 2019). Furthermore, Saadallah et al. (2020)
develop a system capable of handling different concept drift types for providing
more reliable mobility demand predictions. In the IT domain, the identification of
spam e-mails over time (Ruano-Ordas et al., 2018; Sheu et al., 2017), credit card
fraud detection (Dal Pozzolo et al., 2017; Somasundaram & Reddy, 2019) or churn
prediction (Machado & Ruiz, 2017) are all subject to concept drift investigation.
The same applies to the optimized analysis of event logs (Seeliger et al., 2017),
also in combination with human-in-the-loop systems (Barbon Junior et al., 2018).
In security research, ageing has been investigated under the notion of concept
drift for facial recognition tasks (Akhtar et al., 2015). Generally, Žliobaitė et al.
(2016) differentiate use cases with concept drift handling in three categories, namely
monitoring and control, information management, and analytics and diagnostics.
They also provide a more detailed overview on characteristics of each category.

Most research papers in the concept drift literature focus on developing methods
for concept drift detection (Webb et al., 2018). However, recently, more work has
also been dedicated towards understanding and explaining concept drift. Lu et al.
(2019) differentiate into three different categories of drift understanding: the timing
of concept drift, the severity of concept drift, and the drift regions of concept drift.
The timing of concept drift is a piece of information which is basically provided by
all concept drift detection algorithms and some algorithms even provide a warning
window (Gama et al., 2004). In this context, Webb et al. (2016) propose to measure
the drift and concept duration. The severity of concept drift can be measured by
considering the drift magnitude which can be determined by measuring the distance
between drifting distributions (Webb et al., 2016).

Most of the recent research advances have focused on providing novel solutions for
identifying the drift regions or the input features responsible for concept drift. For this
reason, Demšar et al. (2014) develop a method for visualizing model explanations
based on Shapley values in a data stream setting. This method is applied for
detecting concept drift which also allows to provide interpretable visualizations

38 Chapter 2 Related Work

of concept drift (Demšar & Bosnić, 2018). Other researchers use methods from
counterfactual explanations to better understand which features are responsible for
concept drift (Hinder & Hammer, 2020). Concept drift mapping (Webb et al., 2018)
analyzes concept drifts by considering the marginal distributions over different
combinations of input features. This allows for a detailed description of the type and
form of concept drift. Furthermore, visualization techniques have been combined
with established drift detectors for improved understanding and examination of
concept drift (Wang, Chen, et al., 2020), e.g., with the introduction of streaming
scatterplots (Yang et al., 2020).

To summarize, concept drift algorithms are already utilized in a broad range of
applications. However, most of the research papers either test their algorithms on
simulated or proprietary data sets. Therefore, publicly available real-world data sets
for evaluation of novel methods are scarce. Furthermore, regression problems only
play a minor role in concept drift research even though they represent a significant
share of machine learning modeling tasks. Lastly, the unrealistic assumption of
immediate true label feedback makes it impossible to utilize most concept drift
algorithms in many real-world problems. Therefore, this thesis introduces novel
methods and ideas to improve concept drift handling in those specific application
settings.

2.3 Concept Drift 39

Part II

Choices and Challenges for Machine
Learning Applications

The Supervised Machine
Learning Reportcard1

3

3.1 Introduction

Replication of published research is an important endeavor in the academic world.
Replication studies repeat previously conducted studies with the goal to investigate
whether the findings are reliable—and to what extent they can be generalized.
Over the last decade, a lack of these methodologically important supplements have
constituted the so-called “replication crisis”—reflecting that many scientific studies
and their results are in fact difficult or even impossible to replicate. So far, this
replication crisis has particularly been proclaimed in the fields of medicine and
psychology (Schooler, 2014; Tackett et al., 2019).

While IS research has started to actively incentivizing replication studies (Olbrich
et al., 2017; Weinhardt et al., 2019), the rise of methods from Machine Learning
in IS entail new challenges in replication (Coiera et al., 2018; Hutson, 2018).
Especially Supervised Machine Learning (SML) is gaining increasing popularity
in the field: Between 2010 and 2018, 35 contributions published in Management
Information Systems Quarterly (MISQ), Information Systems Research (ISR) and
Journal of Management Information Systems (JMIS) apply SML in their research. In
addition, the number of publications in typical IS conferences (European Conference
on Information Systems (ECIS), International Conference on Information Systems
(ICIS)) that rely on SML as a key method is also steadily growing over time.

While SML is enjoying widespread popularity and promises considerable potential
in IS research, there is room for improvement when it comes to rigorously applying
these technologies: Many IS research articles lack a thorough documentation of
the SML process and the results obtained, which makes it challenging or virtually

1This chapter comprises an article that was published as: Kühl, N., Hirt, R., Baier, L., Schmitz, B. &
Satzger, G. (2020). How to Conduct Rigorous Supervised Machine Learning in Information Systems
Research: The Supervised Machine Learning Reportcard. Communications of the Association for
Information Systems [forthcoming]. Note: The abstract has been removed. Tables and figures were
reformatted, and newly referenced to fit the structure of the thesis. Chapter and section numbering
and respective cross-references were modified. Formatting and reference style was adapted and
references were integrated into the overall references section of this thesis.

43

impossible to reproduce or replicate their results. Naturally, researchers may prefer
discussing the implications of SML results instead of stringently documenting the
SML process itself. This, however, will contribute to spread the replication crisis
described above also in the IS research community, as it is neither possible to follow
or replicate the precise choices of the research nor to judge whether its results are
indeed meaningful.

We set out to address this problem, and develop and test a documentation standard
ultimately enabling frequent replication of SML studies in IS. To this end, we first
review the literature to identify the typical problem characteristics and choices to be
made in SML endeavors. On this basis, we develop a “Supervised Machine Learn-
ing Reportcard (SMLR)” to provide guidelines for comprehensively and rigorously
conducting and documenting SML research. We review the literature concerning
extant steps and SML process frameworks and integrate them into a comprehensive
reportcard. Finally, we review 121 relevant articles, which were published from
2010 to 2018 in renowned IS outlets, such as Management Information Systems
Quarterly (MISQ), Information Systems Research (ISR) and Journal of Management
Information Systems (JMIS) and the proceedings of the International Conference on
Information Systems (ICIS) and the European Conference on Information Systems
(ECIS). We use this broad sample to analyze how and where the SML documentation
of current articles could be improved. This article therefore contributes to a com-
plete and rigorous application and documentation of SML research, which promotes
meaningful and reproducible results.

The remainder of this article is structured as follows: We introduce the fundamentals
and positioning in the upcoming Section 3.2. Then, we derive and describe the
problem characteristics and key choices of each SML endeavor in Section 3.3,
followed by the introduction of the Supervised Machine Learning Reportcard (SMLR)
addressing them. In Section 3.4, we apply this reportcard in an empirical study to
relevant IS articles and analyze their precision when it comes to SML application
and documentation. In Section 3.5, we conclude with recommendations, a summary
and limitations of the study.

3.2 Fundamentals and Positioning

When it comes to their type of learning, machine learning techniques can be classified
as either supervised or unsupervised ones2 (Mohri et al., 2013). In fact, most real-
2Other sources, for example, Fu (2003), also consider reinforcement learning as a third type. However,
there is no academic consensus on this definitory classification.

44 Chapter 3 The Supervised Machine Learning Reportcard

word applications of machine learning are of supervised nature (Jordan & Mitchell,
2015), whereby SML aims to predict the (discrete or continuous) value of an element
by using a data set of observations in which this element is already known and
labelled with the correct value (Rätsch, 2004). Precisely, we define supervised
machine learning as follows—based on Mohri et al., 2013, p. 5: Supervised machine
learning is the concept of learning a function mapping an input to an output based on
labelled training data, i.e. a sample of input-output pairs. For discrete target values,
the problem is called a classification problem, for example, when determining
product returns in e-commerce (Heilig et al., 2016). In contrast, predictions of
continuous variables, such as forecasts of electricity prices (Feuerriegel & Fehrer,
2016), are subsumed as regression problems. Here, the output of the SML algorithm
is not a class, but a numerical value that specifies the predicted attribute.

An SML endeavor, i.e. the application of SML methods to a problem, may serve
different purposes and its specific design heavily depends on the particular prob-
lem. Shmueli and Koppius (2011) differentiate these purposes in either explaining
or predicting a phenomenon. Regarding the first, statistical models can support
explanatory-oriented research for testing causal hypotheses. For instance, if a re-
searcher aims at explaining patterns in the data with a linear regression, individual
model results (like the loading of the regression coefficients, the coefficient of deter-
mination R2 , or p-values) might already fully warrant applying the model; there is
no further need to evaluate its predictive power on an unseen test or validation set
for possible deployment within information systems artifacts (Gong et al., 2018; Li
et al., 2016; Martens & Provost, 2014).

On the other hand, predictive models can be used to anticipate unseen or future
observations. In order to do so, researchers need to analyze SML’s potential to solve
an empirical prediction problem. Thus, they need to show its effectiveness in their
field studies by reporting on the predictive qualities of a trained model. Researchers
might compare an SML endeavor to different benchmarks and, consequently, not
only show its basic functionality, but also the efficiency of leveraging SML for a
certain, possibly productive task (Pant & Srinivasan, 2010). For instance, they
may analyze whether a machine can perform a task better than a human (Han
et al., 2015). Depending on the scope, this step may even require to implement a
predictive model and embed it into a software tool, for example, to continuously
make predictions (Oroszi & Ruhland, 2010). The focus of our work is on SML
applications for predictive purposes.

When discussing replicability or reproducibility of SML studies for predictive pur-
poses, we need to distinguish different possible levels of documentation. The

3.2 Fundamentals and Positioning 45

spectrum of reproducibility originally developed by Peng (2011) for the field of com-
puter science, is well applicable to our IS SML endeavors. On that basis, Figure 3.1
denotes the range of options that increasingly allow reproduction of results: While
mere results in a publication do not support any reproducibility, the exposure of
method details, code and/or data will help to do so. He argues for the publication of
“linked and executable code and data” along with the core article as a gold standard
to assure reproducibility.

Publication
only

Publication +

Full
replication

Problem
characteristics

and choices
Code Code and

data

Linked and
executable

code and data

Focus of
this work

Fig. 3.1.: The spectrum of reproducibility; extended figure based on Peng (2011).

However, typical IS studies cannot comply with a publication of code and/or data
due to confidentiality issues (Gimpel et al., 2018; Sharp & Babb, 2018; Timmerman
& Bronselaer, 2019), at least if not publicly available data sources are used. For
the work at hand, we will, therefore, primarily focus on the documentation of the
problem characteristics and choices of applying SML—but still stress the importance
of providing code and data whenever possible.

When it comes to process models that support SML for predictive tasks, a variety
of different possibilities exist—the most common being Knowledge Discovery in
Databases (KDD) (Fayyad et al., 1996), Cross-Industry Standard Process for Data
Mining (CRISP-DM) (Wirth & Hipp, 2000) and Microsoft Team Data Science Process
(Microsoft, 2020). Although these process models are extremely popular, they
are very broad and do not go deep enough to derive measurable criteria for SML
endeavors. As they are designed for more general data mining and machine learning
purposes, they are (by design) not detailed and lack helpfulness and transparency
for our purpose. The same shortcoming of high-level abstraction applies to other, less
popular process models (Anand & Büchner, 1998; Brodley & Smyth, 1995; Cabena
et al., 1998; Cios et al., 2000; Witten et al., 2011). Since these process models are
highly generic and can be applied to any kind of data analysis projects—and not SML
exclusively—they only focus on a limited part of the overall choices and problem

46 Chapter 3 The Supervised Machine Learning Reportcard

characteristics (Kurgan & Musilek, 2006). Furthermore, they do not include precise
guidelines for the performance estimation and deployment of an SML endeavor,
which are especially important in IS (Shmueli & Koppius, 2011). A process model is
also not suitable for communicating results in a scientific publication.

In this article, we therefore derive problem characteristics and key choices as part of
the Supervised Machine Learning Reportcard (SMLR); every SML endeavor needs
to consider and document them to enable readers and reviewers to fully grasp and
judge the individual project—also for replication studies of machine learning in
IS research (Hutson, 2018; Olorisade et al., 2017; Voets et al., 2018). Similarly
to the proposed reportcard for IS research, related “checklists” were proposed in
other disciplines—with the idea to append them when submitting a manuscript to a
conference or journal. A number of articles originate from the field of medicine and
aim to educate physicians the application of machine learning (Mongan et al., 2020;
Pineau, 2020; Qiao, 2019; Winkler-Schwartz et al., 2019). While these articles share
some problem characteristics and choices with IS research, their main goal is to map
them to the specific needs of a clinical audience.

In the field of CS, three main articles are important: Pineau (2020) proposes a short
checklist to foster reproducibility in general machine learning endeavors. He empha-
sizes precise descriptions in the areas of models, theory, data, code and results, e.g.,
to include clear README files. In the area of Natural Language Processing (NLP),
Dodge et al. (2019) stress aspects of result reporting and especially hyperparameter
tuning. To allow for more realistic results, they propose that researchers utilize their
novel technique of expected validation performance. Furthermore, they elaborate on
the documentation of the used hardware. While hardware is an important metric in
CS to estimate runtimes and complexities of machine learning models (Dodge et al.,
2019; Pineau, 2020), these aspects play a minor role in the reproducibility of the
more application-oriented IS—and will be neglected in the remainder of this work.
Mitchell et al. (2019) present a “model card” with a focus on fairness and ethics
of machine learning models, as they conclude fairness and bias topics are not (yet)
integrated into the minds of data scientists.

Apart from CS and with a strong focus on the industrial sector, Studer et al. (2020)
propose an adapted version of CRISP-DM for the application of machine learning in
the automotive sector with a checklist on specific quality assessment measures. In
contrast to these related checklists, our proposed SMLR a) focusses on the holistic
SML process from problem statement to productive deployment, b) details the
necessary problem characteristics of specifically SML (and not Machine Learning
(ML) in general) and c) presents the findings with an IS audience in mind. Where

3.2 Fundamentals and Positioning 47

appropriate, we will highlight where insights from other articles influenced the
design of our presented SMLR.

3.3 Towards Rigorous Supervised Machine Learning
Documentation

The results of the literature review confirm that so far no process model systemati-
cally captures all the problem characteristics to be reported and choices to be made
in SML projects in the field of IS. Thus, we set out to collect and merge the necessary
problem characteristics and key choices from various sources: We gather individual
parts of the entire process from relevant literature and augment other parts based
on logical reasoning and best practices gained from the execution of typical SML
projects.

3.3.1 Problem Characteristics and Key Choices of Supervised
Machine Learning

For the subsequent analysis, we further divide an SML endeavor into the following
three main steps: model initiation, model performance estimation, and, if applicable,
model deployment (Hirt et al., 2017)—as illustrated in Figure 3.2. In the model
initiation step, the objectives for the endeavor are formulated and the matching
data set is gathered, prepared, and characterized. Having initiated a model, its
performance will be estimated by training and testing models on a data set D in
which the target to be predicted is known. First, models learn patterns in the data
from a training subset Dtr ⊆ D and then apply it towards a test set DT e = D \DT r

of the data, which was not used for training. Cross-validation approaches are applied
to perform this with various alternative DT r/DT e splits.

When conducting SML endeavors, it is important to specify problem characteristics
(e.g., class distribution) and elaborate on the choices made (e.g., performance
measure). Additionally, it is necessary to state these key insights when publishing
the results, because only with this context information can the reader judge the
endeavor’s rigor and meaningfulness. For instance, if the author does not specify if
hyperparameter optimization was used in the SML process, it is difficult to verify
whether the models’ performance could be further improved or if the author has

48 Chapter 3 The Supervised Machine Learning Reportcard

Model training Model deploymentPerformance Estimation

Model initiation

Model testing

Set foundations, including data set characteristics

Estimate performance
on unseen data

Train model to learn
patterns in the data

Apply model to
unseen data

Deploy model within a
productive information

system

Fig. 3.2.: Overview of supervised machine learning steps.

simply accepted the performance of the first best tuple of hyperparameters (Dodge
et al., 2019).

As previously explained, the goal of the endeavor needs to be precisely defined: It
should show the purpose and the targeted application (Mongan et al., 2020). The
necessary activities of initiation and performance estimation are linked to the first
two, while model deployment is also important when implementation is the goal.
Model performance estimation aims to estimate a model’s performance on unseen
data based on a set DT e of data for which the feature to be predicted is known. This
is a typical SML step across all disciplines which leverage it, for example, medicine
(Shipp et al., 2002) or physics (Rupp et al., 2013). However, when conducting
an SML endeavor in IS, not only performance estimation is an inherent step, but
also model deployment. This implementation within a productive software tool
continuously exposes the model to new, incoming data (Shmueli & Koppius, 2011).
While model performance estimation builds on both training and testing activities,
model deployment only leverages the training to create a deployable model. For
instance, within a model performance estimation not all data can be used for model
training, as a certain share needs to be saved for validation and/or testing purposes.
For model deployment, however, it is important to use as much data as is available—
because more data enables the model to achieve better performances (Banko & Brill,
2001). Therefore, after estimating the model performance, the final model is built
by using all available data D in the model deployment phase.

3.3 Towards Rigorous Supervised Machine Learning Documentation 49

Model Initiation

When conducting SML, a model needs to be defined. A model can be considered
as a tuple of parameters that describe which algorithm is used, how its parameters
are initiated, and what the general process is like. These basic assumptions and
surrounding conditions are defined in the model initiation. They serve as the basis
for the subsequent model building, for model evaluation (as part of performance
estimation), as well as for model deployment.

First, it is important to state the problem which the SML endeavor aims to address
(Qiao, 2019). This requires specifying a target value and the SML problem type—for
instance, binary / multi-class classification or regression problems. It should be
clear from the start what the problem type is (“What should be solved”) (Wirth &
Hipp, 2000). Next, the different aspects of the data used and its characteristics
are important to estimate the complexity of the task and also to enable meaningful
judgement of the final results at a later point. This starts with the data gathering and
precise definitions on how it is performed (Oquendo et al., 2012; Winkler-Schwartz
et al., 2019). SML requires a target value, which can either be collected together
with the data or it can be separately labelled (automatically or manually) after the
collection. In any event, it needs to be explained if and how the labelling takes
place.

If the volume of the data is too large to be analyzed, it is possible to conduct a
sampling3, which pulls a representative subset of the larger data set (Dhar et al.,
2014). Especially in recent years, the process of sampling has not only been relevant
to retrieve a representative data set, but also a fair one without any biases (Barocas
et al., 2017). With a data set to analyze, additional problem characteristics and key
choices need to be specified. The data distribution is of major importance, since
it ultimately determines the interpretation of the results (He & Ma, 2013). For
instance, in a binary classification on a data set with a minority class distribution of
10%, an accuracy of 90% is easily achievable by simply predicting all observations
as belonging to the majority class. This is, furthermore, also a question of the
performance metric, which we address at a later point.

Irrespective of the performance metric, however, the number of classes and their
shares need to be specifically mentioned for every classification problem (e.g., as

3It should be noted that when it comes to machine learning, the term sampling can be used in three
different scenarios with different objectives: It can be used to pull representative data as part of data
gathering (as described above), it can be used in the distribution of data for a fold as part of the
cross-validation (stratified sampling), or it can be used to counterbalance a minority class as part of
the model training set (e.g., oversampling).

50 Chapter 3 The Supervised Machine Learning Reportcard

a table). The same applies to regression problems (e.g., a representation as a
boxplot) to enable the reader to understand the basic problem. Furthermore, it
is important if and which data preprocessing methods are applied—for any type
of data. For instance, in the specific case of natural language processing (NLP),
the possibilities of transforming unstructured text data into structured, machine-
digestible formats are manifold (Manning & Schütze, 2000). We, therefore, need
to specify which transformation techniques are applied and why they are applied
for a specific problem. Apart from the preprocessing, statements about the data
quality are of interest. Data quality covers many aspects, including correctness (“is it
true?”), accuracy (“how precise?”), completeness (“is it complete?”) and relevance
(“is it related to the initial problem?”) (Wang et al., 1993). Sparsity and noise are
two examples of data quality characteristics—and there are a number of different
complexity measures available to assess them (Ho & Basu, 2002).

Model Training and Testing

Training and testing are essential parts of each machine learning endeavor. However,
the purpose of these activities needs to be clearly defined: We particularly distin-
guish between estimating the model’s performance on unseen data (“Performance
Estimation”) and deploying a model within a software tool (“Model Deployment”).

In the model training phase, the sampling of data, which occurs prior to training a
model, can have a significant impact on the performance (Chawla, 2010). Popular
sampling techniques for dealing with uneven class sizes are undersampling, over-
sampling or Synthetic Minority Over-sampling Technique (SMOTE). Undersampling
is applied when the number of random sample instances taken from the majority of
observations is limited to match the size of the minority data set used for training
purposes (Rahman & Davis, 2013). In contrast, oversampling randomly duplicates
instances from the minority class so that researchers can work with more instances
than originally available (Rahman & Davis, 2013). SMOTE creates new additional
synthetic instances to match the number of training set elements in the majority
class (Chawla et al., 2002).

The core of the model training phase consists of selecting an algorithm, as well as
its parameters, which creates another set of choices. For instance, popular machine
learning frameworks like the python-based “scikit-learn” (Pedregosa et al., 2011) and
the Java-based “WEKA” (Hall et al., 2009) feature more than sixty, respectively, thirty
supervised learning algorithm implementations. SML algorithms can be classified
in different ways (Caruana & Niculescu-Mizil, 2006; Hastie et al., 2009; Kotsiantis,

3.3 Towards Rigorous Supervised Machine Learning Documentation 51

2007). Aggarwal and Zhai (2012) divide supervised algorithms into the major
classes of linear algorithms (e.g., Support Vector Machines or regressions), decision
trees, pattern (rule-)based algorithms, probabilistic and Naive Bayes algorithms, and
meta-algorithms. Each of these classes has its advantages and disadvantages—in
general, as well as in relation to the specific data and problem they are applied to.
While we cannot go into the details of each class, Kotsiantis (2007) provides more
details on the particular selection criteria.

When it comes to model testing, it is important to early define one or multiple per-
formance metrics, which serve as the central criteria to estimate alternative models’
performance and to finally evaluate the success of the SML endeavor. Common
metrics used for classification tasks are, for instance, accuracy, precision, sensitivity,
specificity, recall, F-measure or AUC (Powers, 2011). Metrics for regression tasks,
on the other hand, include Mean Squared Error (MSE), R2, Correlation Coefficient
(CC), Normalized Root Mean Squared Error (NRMSE), Signal-Noise Ratio (SNR),
Coefficient Of Determination (COD), as well as Global Deviation (GD) (Spuler et al.,
2015). When it comes to choosing one or multiple metrics, it is again important to
consider the nature of the problem, as well as the data set. For instance, although
recall is a valuable metric to present the fraction of relevant observations among the
retrieved observations, it is not meaningful on its own, since it can easily be brought
to 100% by simply predicting all observations as belonging to the positive class. The
inherent tradeoff between precision and recall is designed into the set of F-metrics
(Goutte & Gaussier, 2005). In the case of regression, R2 and explained variance
are popular choices. Additionally, for both regression and classification, the plotting
of a learning curve can be meaningful, because it can show the training and test
set errors for each fold of the cross-validation and the respective amounts of data,
which helps estimate the bias-variance tradeoff (Blanc, 2016).

Performance Estimation

Based on the performance estimation it is possible to draw conclusions on how the
trained model performs on unseen data. In order to do so, it leverages the previously
described steps of training and testing. The important step to conduct is splitting
the data set to allow for these two activities. There are two different options when
it comes to data splitting, namely percentage split and cross-validation (Abdullah
et al., 2011). A simple split into a (larger) training set and a (smaller) test set is
called a percentage split. The machine learning model is trained on the training
set and then applied to the test set for evaluation. In IS research, data is often
precious with a limited amount of available observations. Therefore, the prediction

52 Chapter 3 The Supervised Machine Learning Reportcard

performance on the test set may vary significantly in the case of a percentage split,
because, depending on which instances are present in the training set, it may or may
not be trained as “well” (James et al., 2013). Generally, the error resulting from
this prediction can be divided into bias, variance, and irreducible error (Friedman,
1997). In order to counteract the random effect of choosing data for the sets, a
k-fold cross-validation can be implemented. Here, the original data is divided into k
folds of equal size. The model is trained with (k-1) folds (training set) and applied
on the remaining fold, called validation set or local test set. This process is repeated
k times with each of the k folds. The aggregated performances from the individual
iterations are averaged and represent a more meaningful performance assessment
than a single percentage split (Golub et al., 1979). For both cases, percentage split
and cross-validation, stratified sampling allows for maintaining the original data
set’s distribution within the training and test set (Neyman, 1934), which reduces
the randomness associated with allocating the two subsets.

If the goal is to simply demonstrate the capabilities of one machine learning model,
one-time splits, such as percentage or k-fold, can be sufficient. If, however, the
plan is to try out different models, optimize parameters, and estimate the error of a
model on unseen data, additional steps should be undertaken. If any optimization
takes place, it is important to test the model on completely unseen data—that is,
data, which has never been used in any training or optimization iteration (Cawley
& Talbot, 2010). A so-called hold-out set or global test set should never be used to
change models or the choice of them, but preferably only to evaluate them once
(Tušar et al., 2017). In order to address this, the nested cross-validation first splits
the data into training/validation set and a hold-out set. Then, cross-validation with
parameter optimization can be applied within an inner cross-validation, thereby
making it possible to select and evaluate—but not again optimize—the best perform-
ing models within the outer cross-validation. To summarize, when it comes to model
performance estimation, separating the data into multiple sets is of importance and
depends on the use case:

• Training set refers to the data set on which the model is trained.

• Validation set or local test set refers to the data set on which the model is
optimized. It must, however, not be used to evaluate the model’s performance,
otherwise the model tends to overfit. A validation set is crucially important if
parameter optimization is performed.

• Hold-out set or global test refers to the data set according to which the model
is evaluated, but according to which it is never optimized.

3.3 Towards Rigorous Supervised Machine Learning Documentation 53

Model Deployment

The final model deployment phase aims at generating, implementing, and distribut-
ing a previously built supervised machine learning model within a software tool.
Data contains information and is valuable—therefore, using the complete data set is
meaningful for the final machine learning as depicted in Figure 3.3 (Gama et al.,
2004). It would incorporate parameters, which were typically previously selected
from the performance estimation. These parameters also help in understanding the
robustness of the model (i.e., its tendency for overfitting). For instance, analyzing
the optimal parameters of the cross-validation’s inner folds might reveal that a
specific parameter combination occurs multiple times, or, if the model is very stable,
all the time. This combination of parameters might then be directly used for the
final training. Alternatively, an additional cross-validation with the complete data
set can be utilized to choose the parameters for final training.

Data set

Data used for training in
model performance estimation

Data used for training in
model deployment

Data used for testing in
model performance estimation

Fig. 3.3.: Data sets for training, testing, and final deployment.

Then, an export of the final model, also called serialization (Zaharia et al., 2018), is
needed to save the state of the model and the used preprocessing pipeline for further
usage. Having concluded the serialization phase, the serialized object can be built
into a workflow, such as a connected web service, to predict the target value of new,
incoming data. Hereby, data is sent to the serialized object to be preprocessed and
classified by the model. It is important to consider the validity of this final model,
for example, how robust is it to changes in the data (Gama et al., 2004) and/or
whether its performance is continuously maintained (Feurer et al., 2015). Since the
model building data might be topical at that point in time, the data might change
in the future. It is important to address this, preferably directly by continuously
updating the model automatically, or, at least, by (qualitatively) estimating the
performance for future changes (Baier, Kühl, et al., 2019). For instance, in the case
of sensor data in a production line, the predictive model might still be valid for a
long time—as long as the produced goods remain the same. However, if elements

54 Chapter 3 The Supervised Machine Learning Reportcard

of the production line change or new goods are produced, the model needs to be
updated. In sum: It is important to address how the model copes with new, incoming
data and, consequently, whether or not the model is continuously improved—and if
not, why it is not necessary.

3.3.2 The Supervised Machine Learning Reportcard (SMLR)

For each step of an SML endeavor that were laid out in Section 3.3.1, we aim to
identify key choices and problem characteristics to systematically capture and docu-
ment them. In Figure 3.4, we present the Supervised Machine Learning Reportcard
(SMLR), which allocates the identified problem characteristics and key choices along-
side these steps. When conducting and describing a supervised machine learning
endeavor, they should be addressed and defined.

Model training

Sampling
(e.g., undersampling,
oversampling, SMOTE,
etc.)

Algorithm

Parameters

Model deployment

Data used

Continuous
improvement

Robustness

Model validity

Performance
Estimation

Parameter
optimization

Data splitting method
(e.g., percentage split,
nested cross validation,
etc.)

Search space

Search algorithm

Model initiation

Problem statement
(e.g., binary classification,
regression)

Data distribution
(e.g., amount of classes,
share, distribution)

Data quality
(e.g., sparsity, noise,
complexity)

Data gathering
(e.g., rigor, labeling)

Data preprocessing
methods
(which and why)

Sampling
(e.g., stratified sampling
from larger data pool)

Feature engineering
and vectorizing
(which and why)

Model testing

Performance metric
(which and why)

Performance
evaluation
(benchmarks)

ⓟ - problem characteristic ⓒ - choice

ⓟ

ⓟ

ⓟⓒ ⓒ

ⓒ ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓒ

ⓟ

Fig. 3.4.: Overview of supervised machine learning steps and corresponding problem char-
acteristics and key choices.

3.3 Towards Rigorous Supervised Machine Learning Documentation 55

During the model initiation phase, the problem statement itself is a key characteristic,
which classifies the supervised machine learning problem as being either a binary, a
multiclass or a regression problem. Since every supervised approach requires data,
a detailed description of the data gathering process, as well as the construction of a
ground truth data set, should be provided. In order to better understand the data
itself, data distribution should be described, as well as the overall data quality, that
is, for example, the sparsity and noise of the data. Depending on the distribution of
classes, sampling of data points might be necessary and needs to be described by
the authors (e.g., type of sampling). Lastly, data preprocessing (Kotsiantis, 2007),
as well as feature engineering and vectorizing (Domingos, 2012), not only have
a major influence on the overall performance of the trained model, but also bear
the risk for major methodological mistakes, such as data leakage. It is important to
consider different methods, as well as reasons for their usage.

In the error estimation phase, the model’s performance on unseen data should be
estimated. Thus, information about the algorithm, the parameter search space,
and the search algorithm (e.g., grid search, random search), as well as the data
splitting method (e.g., percentage split, cross validation) needs to be specified. In the
proposed reportcard, we list model training and testing as two separate units, which
require thorough description. During the model training phase, data can be sampled
to train a better prediction model. Furthermore, researchers should describe the
algorithm that was used, as well as its implementation. This requirement goes
beyond simply reporting the name of the approach. Especially for neural networks,
researchers need to rigorously document the architecture of their model which for
instance includes the type of network layers (e.g., convolutional, recurrent, or fully
connected layers) applied and the number of neurons per layer.

The choice of a suitable performance metric for a given problem is essential for
the success of a supervised machine learning endeavor. Whereas accuracy might
represent a model’s performance well in a class-balanced scenario, its descriptive
capability typically decreases when it comes to highly imbalanced data. Each
performance metric has its advantages and disadvantages. It is advisable to either
use multiple (e.g., Accuracy + Precision + Recall + AUC) or composed (e.g., F-
score) metrics, as single metrics can be easily tuned and do not represent a holistic
overview of the qualities of the predictive model. Furthermore, the results need to
be contextualized according to a performance evaluation/benchmark. For instance,
if the utilized data set has been used in other articles or even data science challenges
like Kaggle, the performance results obtained from these works should serve as
a benchmark for direct comparison. If such results are not available, obvious
benchmarks should be referred to. These could be either naïve models (e.g., a

56 Chapter 3 The Supervised Machine Learning Reportcard

random guess or the prediction of the majority class/mean from the training set) or
simpler models (e.g., a basic linear or logistic regression). By providing this context,
the reader can better understand the quality of the obtained performance.

The performance of an estimated model can be used to show the effectiveness of a
model. If it needs to be implemented for predictive modeling as part of the model
deployment phase, the model is put into practice to solve the initial problem. In this
scenario, the algorithm, as well as the previously identified parameters and sampling
method should be used for model training. Furthermore, the data, which was used
for training the final model, should be described. Since models can only represent
a hypothesis based on training data, its validity decreases as the corresponding
real-world situation changes. In order to address these changes, researchers should
address the model validity and possible continuous improvement techniques, as well
as the model’s application to unseen data (robustness).

To ensure the completeness of our approach, we compare the characteristics and
choices included in the reportcard with two widely used process models for data
science projects, namely Microsoft Team Data Science Process (Microsoft, 2020)
and CRISP-DM (Wirth & Hipp, 2000). This analysis reveals that the reportcard
in fact covers all important aspects of a machine learning endeavor. We can only
determine a gap between the reportcard and the two process models regarding the
documentation of requirements from the field as well as details on the business
assessment. However, those two aspects usually do not apply to the academic
context. A detailed comparison with Microsoft Team Data Science Process and with
CRISP-DM can be found in the appendix in Table A.1 and Table A.2.

The first and foremost aim of this work in general and the SMLR in specific is to
generate awareness for the identified problem characteristics and key choices when
conducting SML. However, if applicable, it can be also utilized as a framework to
document these precise choices. To demonstrate a possible application, we depict
a typical machine learning challenge—using the Iris data set (Fisher, 1936)—and
report on the results in Table 3.1.

3.3 Towards Rigorous Supervised Machine Learning Documentation 57

Tab. 3.1.: Exemplary reportcard based on the Iris data set. Bold writing indicates a problem
characteristic or choice from the Reportcard.

Problem statement
Predict iris flower class based on the four attributes
Petal Length, Petal Width, Sepal Length, Sepal Width

Data gathering
Pre-defined data set by scikit-learn package for
Python (Pedregosa et al., 2011), originating from
Fisher (1936)

Data distribution
Three flower classes setosa, versicolor, virginica with
50 instances each; 150 instances in total

Sampling No sampling
Data quality No missing values
Data preprocessing
methods

No preprocessing

Feature engineering
and vectorizing

No additional features apart from Petal Length,
Petal Width, Sepal Length, Sepal Width, no

Performance estimation
Yes

RBF kernel
γ ∈ {0.001; 0.0001}
C ∈ {1; 10; 100; 1000}Search

Space linear kernel C ∈ {1; 10; 100; 1000}Parameter
optimization

Search
algorithm

Grid Search

Data split Nested cross-validation, 3 outer folds, 5 inner folds
Algorithm Support Vector Classifier
Sampling No sampling
Performance metric F1-score as a compromise between precision and recall
Performance
evaluation

Average F1-score performance on outer folds: 0.9778,
which is a nearly perfect score

Model deployment
Data used Full data set (150 instances)

Continuous
improvement

No continuous improvement

Model validity
Robustness

No statement about the
suitability possible

Sampling No sampling
Support Vector Classifier

Algorithm
Parameters RBF kernel

γ = 0.001
C = 1000

58 Chapter 3 The Supervised Machine Learning Reportcard

3.4 Empirical Study

With the SMLR at hand, we review renowned articles from IS literature to identify
the strengths and possible improvements on the basis of the presented key choices
and problem characteristics.

3.4.1 Methodology and Data Set

For our study, we aim at covering a broad range of high standard, high quality
publications in IS. The JOURQUAL3 rating, which conducted a total of 64,113
journal and conference evaluations from 1,100 professors (VHB, 2012) serves as our
basis. We focus on the top three journals and top two conference proceedings in
the IS community (Hennig-Thurau et al., 2004), namely Management Information
Systems Quarterly (MISQ), Information Systems Research (ISR), Journal of Manage-
ment Information Systems (JMIS), of as well as the proceedings of, respectively, the
International Conference on Information Systems (ICIS) and the European Conference
on Information Systems (ECIS).

Tab. 3.2.: Number of screened and relevant articles for each outlet from 2010 to 2018.

MISQ ISR JMIS ICIS ECIS
∑

Screened
articles

288 463 390 3,118 2,257 6,516

Relevant
articles

7 13 15 43 43 121

Binary
classification

1 8 8 19 24 60

Multi-class
classification

5 2 7 15 10 39

Regression 1 3 0 9 9 22

In order to obtain a meaningful number of articles for our study, we cover the time
range from 2010 to 2018. In total, we download and screen 6,516 articles (see
Table 3.2). Among those papers, we identify those articles where the application of
SML plays a major role. Naturally, there are “borderline cases” where SML is only
applied on a side note and documented within a few sentences or small paragraph—
while the overall goal of the research article is of different nature and SML is not at
the core of the project. To name a few examples: Huang et al. (2017) apply SML
for an automated sentiment labeling, Walden et al. (2018) utilize SML for an aspect
of their experiment analysis and Ivanov and Sharman (2018) merely apply SML in

3.4 Empirical Study 59

Tab. 3.3.: Amount of supervised machine learning articles in the outlets of MISQ, ISR, JMIS,
ICIS, and ECIS from 2010 to 2018.

0

2

4

6

8

10

12

14

2010 2011 2012 2013 2014 2015 2016 2017 2018

EC
IS

Years

Regression

Mult i-class Classification

Binary Classi fication

0

2

4

6

8

10

12

14

IC
IS

Regression

Mult i-class Classification

Binary Classi fication

0

2

4

6

8

10

12

14

IS
R

Regression

Mult i-class Classification

Binary Classi fication

0

2

4

6

8

10

12

14
M

IS
Q

Regression

Mult i-class Classification

Binary Classi fication

0

2

4

6

8

10

12

14

JM
IS

Regression

Mult i-class Classification

Binary Classi fication

60 Chapter 3 The Supervised Machine Learning Reportcard

the appendix for a robustness check. For our study of rigor SML application, we
exclude these cases as SML was not the designated main method for the respective
articles. However, we want to stress that our proposed SMLR would be a meaningful
addition to the documentation of these small applications, too: While researchers
would not need to go into detail in the body of the text, they could just append the
filled reportcard at the end of the article for the interested reader and replicant.

In a first step, we identify 121 full-research and research-in-progress articles, which
describe an application of SML as detailed in Table 3.2. It is interesting to note how
the importance of SML in IS developed over the years. In 2010, only six articles
were published which applied SML in their research; in 2018, their number peaked
with 30 research articles. More details on the chronological development in the
distinct outlets are presented in Table 3.3.

Next, we thoroughly examine all 121 articles across the entire time frame regarding
the reportcard steps with their problem characteristics and key choices previously
defined in Section 3.3. We distinguish between binary classification, multi-class
classification, and regression problems (Chollet, 2018). The majority of SML-based
articles (60) solves binary classification problems (e.g., Amrit et al. (2015), Oh
and Sheng (2011), and Pant and Srinivasan (2010)), followed by 39 articles with
multi-class (e.g., Dorner and Alpers (2017), Geva and Oestreicher-Singer (2013),
and Wang et al. (2013)) and 22 articles with regression problems (e.g., Ding et al.
(2015), Feuerriegel et al. (2014), and Riekert et al. (2017)).

Next, we describe our findings with regard to the different steps of model initia-
tion, performance estimation, and model deployment, which we have defined in
Section 3.3. These findings are summarized in Table 3.4 and will be discussed in
the following. Table A.3 and Table A.4 in the appendix show the individual analyses
for journals and conferences. It is important to note that we assess all publications
according to the same, objective criteria. We do not consider whether each of the
indicators is meaningful for the individual publication; for example, it might not be
necessary for a study on the feasibility of SML for a certain business challenge to
deal with the necessary steps for deployment.

3.4.2 Model Initiation

Describing the data characteristics is a fundamental part of understanding the
model that is built on top of it. At first, it is necessary to name the data source
and/or the data collection process. In 12% (15/121) of all the reviewed articles,

3.4 Empirical Study 61

Tab. 3.4.: Overview of Supervised Machine Learning Reportcard steps and their documen-
tation.

23

Step Positive Example

100,00% (121/121) Abbasi et al. 2012

87,60% (106/121) Lin et al. 2017

74,38% (90/121) Stange and Funk 2016

14,88% (18/121) Dhar et al. 2014

67,77% (82/121) Hopf et al. 2017

76,03% (92/121) Johnson, Safadi, and Faraj 2015

74,38% (90/121) Martens and Provost 2014

Search Space 12,40% (15/121) Riekert et al. 2017

Search
Algorithm

13,22% (16/121) Zhou 2017

95,87% (116/121) Urbanke, Uhlig, and Kranz 2017

100,00% (121/121) Oh and Sheng 2011

6,61% (8/121) T. Wang et al. 2013

48,76% (59/121) Fang et al. 2013

48,76% (59/121) X. Han, Wang, and Huang 2017

1,65% (2/121) Abbasi et al. 2018

Continuous
Improvement

1,65% (2/121) Seebach, Pahlke, and
 Beck 2011

Robustness 15,70% (19/121) Koroleva and José
Bolufé Röhler 2012

Performance evaluation

Indicator

M
od

el

in
iti

at
io

n

Problem statement

Data gathering

Data distribution

Sampling

Data quality

Data preprocessing methods

Feature engineering and
vectorizing

M
od

el

de
pl

oy
m

en
t Data used

Model
validity

Described in articles

nnnnnnn

nnnnnnn

nn

nn

nnnn

nnnnnnnnnnnnnnnnnnnnnnnnn

Pe
rf

or
m

an
ce

es

tim
at

io
n

Parameter
Optimization

Data split

Algorithm

Sampling

Performance metric
(reasoned)

n

n

nnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnn

nn

nn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

neither the data’s origin, nor the source from where the authors have gathered it,
is clearly stated. The quality of data determines the quality of the model; however,
32% (39/121) of the screened articles do not provide any information on data
quality. 26% (31/121) of the articles do not describe the statistical distribution
of the applied data set. This relates both to the distribution of the target variable
and to the information about the attributes, which is used for prediction. When
this information is lacking, it is impossible to judge the final model’s performance
for a given metric. Furthermore, if the distribution is unknown to the reader, the
performance values can be meaningless—for example, a reported accuracy of 99%
with a 1% minority class can already be achieved by simply assigning all instances
to the majority class.

A good example of a sound data description is provided in Bretschneider and Peters
(2016) who refer to the total number of messages and the number of harassment
messages (target variable), which is included in their dataset. Data preprocessing
and the engineering of features are also essential choices during an SML endeavor.
However, 13% (16/121) of the reviewed articles do not include any information
about the preprocessing or feature engineering activities that are chosen. Yet, this
information is very valuable to any researcher or practitioner who wants to build a
predictive model in the same domain. For instance, if we do not know how quality
issues, such as incomplete data, have been handled, the results may be flawed.

62 Chapter 3 The Supervised Machine Learning Reportcard

Furthermore, it is impossible for other researchers to re-create results if the data’s
preprocessing techniques are omitted, because various different possibilities for
preprocessing exist. Stange and Funk (2015) thoroughly explain how they transform
real-time advertising data before feeding this data into the model training phase.
Thereby, they enable others to benefit from their knowledge.

The performance assessment of a model highly depends on the chosen performance
metric. This is therefore, a critically important decision for every SML endeavor.
Due to the importance of this step, it is vital to specify the performance metric and
the reason why it has been chosen. Nevertheless, only 49% (59/121) of all the
reviewed articles actually give the reason for the choice of their evaluation metric.
For instance, Riekert et al. (2016) state that they apply accuracy as evaluation
metric—however, they do not explain why this is the best suited (and meaningful)
metric for their underlying problem.

3.4.3 Performance Estimation

In only 19% (23/121) of the reviewed articles authors mention the parameters,
which they use in the model training phase. Model’s performance can vary signifi-
cantly depending on the chosen parameters and therefore the parameter space has
to be thoroughly defined and described4. In fact, 96% (116/121) of all the reviewed
articles include information about how they split the dataset into a training set and a
test set (e.g., Chatterjee, Saeedfar, et al. (2018), Lash and Zhao (2016), and Urbanke
et al. (2017)). If authors do not disclose this information, the reader cannot judge
whether induced results are truly rigorous, because it might even imply that they
did not split their data at all. If model training and model testing are performed on
the same dataset, the measured performance is misleading and unrealistically high
(James et al., 2013).

In order to comprehensively understand a trained model’s performance, it is impor-
tant to compare it to previously built models—or other approaches that strive to
solve the same problem. Thus, if any previous research or algorithm deals with the
same problem or data set, the performance of the developed model should always
be compared to the previous model. If there is no previous research, performance
should be compared to other metrics, for example, random guesses (Li et al., 2013)
or standard SML algorithms. Kozlovskiy et al. (2016) provide a good example
by comparing their model’s performance to a random guess. Only 49% (59/121)
of the reviewed articles actually introduce a performance comparison (e.g., Cui

4However, this does not apply to, for example, linear regression, since no parameter choice is required.

3.4 Empirical Study 63

et al. (2012), Geva and Oestreicher-Singer (2013), and Han et al. (2017)). The
remaining articles merely introduce the results of the predictive models without
any comparison, in which case a reader can hardly judge the actual quality of the
presented model.

3.4.4 Model Deployment

The articles in our study show the least reportcard compliance when it comes to
the model deployment phase. As we pointed out earlier, the deployment phase is
not a mandatory/necessary phase for each SML endeavor in IS research. In certain
cases, authors may only want to prove the feasibility of an approach, which includes
the application of SML. If a project focuses on this, it is not necessary to build a
deployable solution and describe how this is best achieved. Nevertheless, only 26%
(31/121) out of all the reviewed articles in our study at least describe the thoughts
about a possible model deployment and the corresponding implications. This is only
a small share of all screened articles, although IS, as a research discipline, should
have a strong focus on producing final, implementable results and implications for
practice (Gholami et al., 2016). On the other hand, we also found some evidence
for solutions, which were deployed (e.g., Schwaiger et al. (2017)), including ex-
planations on how the authors built their tool and which choices are necessary for
deployment in an industry setting. However, even the examples which discuss the
model deployment phase do not emphasize which data can be used for the final,
to-be-deployed model.

Another consideration is model validity in general and model updates in particular
(Baier, Kühl, et al., 2019; Studer et al., 2020). An SML model is built upon data.
One assumes that underlying concepts in this data are extracted to fulfill a given
task. If an SML model is then deployed, these concepts should not change over time;
otherwise the model has to adapt to such “concept drifts” (Gama et al., 2004). If,
for example, a model that classifies user-written texts on a social media platform
according the age of their authors is not updated from time to time, the prediction
quality will decrease—language (i.e., phrases used by certain age groups) will
change over time. Thus, we claim that the preservation of model validity needs to
be properly addressed.

64 Chapter 3 The Supervised Machine Learning Reportcard

3.5 Conclusion

Supervised Machine Learning (SML) has become a popular method to solve problems
in Information Systems (IS) research and other disciplines. Although SML offers
many possibilities for proving effectiveness, efficiency, and application in the problem
spaces of predictive modeling, it is important to conduct this research in a rigorous
and comprehensive manner. Only by doing so, IS researchers enable their peers
to understand and reproduce the conducted research. In this article, we have
developed a Supervised Machine Learning Reportcard (SMLR) capturing important
key choices and problem characteristics, which need to be considered in every SML
endeavor. We elaborate on them and their importance. In an empirical study, we
use this reportcard to analyze whether recent articles published in renowned IS
outlets already apply the necessary scrutiny in SML descriptions—and we identify
several shortcomings in the documentation of SML. For instance, not all the reviewed
articles justify the chosen performance metrics and only a minority of them uses
benchmarks to help the reader understand the evaluation of the models.

The article at hand has two major limitations. First, we only review articles from
five journals/proceedings and only consider instances from 2010 to 2018. While
the selection is based on an acknowledged ranking (VHB, 2012), other rankings on
important outlets obviously exist. As suggested by this ranking, we treat journal
and conference publications alike, although journal publications are typically more
mature and show longer histories of revisions. On the other hand, conference
publications are timelier and a good indicator for upcoming topics and methods
of the community. For the interested reader, however, we append differentiated
analyses in the appendix. Regardless of rankings and precise outlets, the general
message still remains that we can observe a lack of documentation. This lack can
have two reasons: Either the identified key choices and problem characteristics were
not considered, or they fell victim to shortening, for example, as part of the review
process or the compliance to submission guidelines. Our study can, therefore, only
analyze whether important key steps are addressed within the articles; our study
does not allow for conclusions to be drawn on the actual research conducted.

The proposed SMLR may prove helpful in future SML endeavors and serve as a
guideline to more rigorous, comprehensive research in this area. Once implemented,
the reportcard will enable a more transparent view on SML articles—and enable
their reproducibility in the future.

3.5 Conclusion 65

Challenges in the Deployment
of Machine Learning1

4

4.1 Introduction

Due to the large increase of data in recent years, various industries are trying to
reap the benefits of this new resource for their service offerings. Machine learning is
playing an important role in nearly all fields of business, ranging from marketing
over governmental tasks to scientific-, health- and security- related applications
(Chen et al., 2012). Furthermore, many companies rely on machine learning models
deployed in their information systems for increasing the efficiency of their processes
(Schüritz & Satzger, 2016) or for offering new services and products. (Dinges et al.,
2015). As Davenport (2006) describes, companies which are able to leverage their
data sources through analytical tools achieve a substantial competitive advantage.
But also for empirical science, machine learning enables novel ways of analyzing
high-dimensional experimental data. This growth in popularity in both science
and industry can also be explained by a massive increase in computational power
(Jordan & Mitchell, 2015).

However, the wide-spread application of machine learning is rather young and
therefore still confronted with many obstacles. Major challenges that have emerged
recently in research and practice are datasets with high dimensionality (Cai et al.,
2018), model scalability (Hazelwood et al., 2018), distributed computing (Zhou,
2017) and the live application of machine learning on streaming data (Zhou, 2017).
In addition, related work has argued that published machine learning research is
sometimes not driving sufficient real-world impact (Boutaba et al., 2018). The
performance differences in developed algorithms rapidly diminish once applied onto
real applications (Rudin & Wagstaff, 2014). Furthermore, it has been criticized that

1This chapter comprises an article that was published as: Baier, L., Jöhren, F., & Seebacher, S.
(2019). Challenges in the Deployment and Operation of Machine Learning in Practice. Proceedings
of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden.
https://aisel.aisnet.org/ecis2019_rp/163. Note: The abstract has been removed. Tables and figures
were reformatted, and newly referenced to fit the structure of the thesis. Chapter, section and research
question numbering and respective cross-references were modified. Formatting and reference style
was adapted and references were integrated into the overall references section of this thesis.

67

https://aisel.aisnet.org/ecis2019_rp/163

research indeed performs evaluations on real-word datasets but that it does not
appropriately communicate the results back to the application domain (Wagstaff,
2012). This is closely related to the criticism on using unrealistic evaluation metrics
(Rudin & Wagstaff, 2014). These challenges mainly refer to technical issues. How-
ever, the successful implementation of a machine learning project also requires the
consideration of organizational aspects. Therefore, in this work, we are interested
in the predominant challenges during the practical implementations of machine
learning projects. This leads to the following research question:

Research Question A
Which challenges in the application and deployment of machine learning can
we identify in practice?

For answering this question, we perform at first a structured literature review
of challenges named in literature which are organized along the categories pre-
deployment, deployment and non-technical challenges. Subsequently, we conduct
a study with 11 semi-structured interviews with machine learning practitioners
working in various industries for identifying relevant challenges in their daily work.
Subsequently, we perform a comparative analysis between challenges identified with
the interviews in practice and the results from literature. In contrast to previous
work focusing on technical challenges, we also identify non-technical ones such as
a proper expectation management as well as challenges with creating new digital
services based on machine learning. Our overview of challenges can guide the
development of more realistic machine learning models in academia and can also be
used as a support tool for practitioners in order to more efficiently plan and execute
their machine learning projects.

The remainder of the paper is structured as follows: Section 4.2 covers related
literature that we base our research on. In Section 4.3, we describe our methodology
for the interview study before we present our results in Section 4.4. Section 4.5
discusses our results and compares literature and interview challenges. The final Sec-
tion 4.6 describes theoretical and managerial implications, acknowledges limitations
and outlines future research.

4.2 Related Work

Various challenges regarding the application of machine learning are considered
in literature. In order to give a broad overview, we considered various domains

68 Chapter 4 Challenges in the Deployment of Machine Learning

and the whole life cycle of a machine learning project. We perform our literature
review with AISel and Scopus as databases according to the methodology described
in Webster and Watson (2002). We draw upon CRISP-DM (Wirth & Hipp, 2000)
which is a standard process model for data analytics projects for organizing the
resulting challenges. However, some of the steps of CRISP-DM overlap and it is
difficult to distinguish between them with regard to arising challenges in practice
(e.g., data understanding and data preparation). Furthermore, business under-
standing is usually not covered in scientific literature. Therefore, we merged all
challenges related to steps before the deployment of an machine learning model to
pre-deployment challenges and the subsequent challenges to deployment challenges.
Furthermore, we realize that machine learning projects often are also accompanied
by other challenges which cannot be classified into the previous two categories.
Therefore, the category non-technical challenges is added. Figure 4.1 introduces the
applied categories.

Business
Understanding

Data
Understanding

Data
Preparation Modeling Evaluation Deployment

Pre-Deployment Challenges Deployment
Challenges

Non-Technical ChallengesCh
al
le
ng
es

CR
IS
P-
D
M

Fig. 4.1.: Conceptual phase model for categories of challenges.

Additionally, after performing the literature search, we merged the identified chal-
lenges into 6 distinct clusters consisting of similar challenges: Data structure, Imple-
mentation, Infrastructure, Governance, Customer relation and Economic implica-
tions. Those are marked by blue boxes in Figure 4.2 which introduces the relevant
challenges identified in literature.

Pre-Deployment Challenges:

Data is the fundamental basis of every machine learning project. The proper data
structure with the right quality and also a sufficient amount of data samples is
a prerequisite for a successful project. Often only a small amount of data being
available is a problem (Boutaba et al., 2018; Brodley et al., 2012; García-Laencina
et al., 2008; Zhang et al., 2019).

4.2 Related Work 69

Pre-Deployment Deployment Non-Technical

§ Data quality
§ Data quantity
§ High dimensionality in

data
§ Imbalanced data
§ Encrypted training data

§ High-frequency data
§ Concept drift / data drift

Data structure

§ Computational effort
§ Energy consumption

§ Deployment infrastructure
§ Scalability

§ User-friendly tools

§ Data privacy protection
§ Anti-discrimination

validation for deep neural
networks

§ Legal requirements
§ Result transparency and

interpretability
§ Trust

§ Standardization of
terminology

§ Real-world value of ML
§ Evaluation metrics

§ Data collection
§ Data preprocessing
§ Transfer learning
§ Technical debt

§ Ongoing data validation
§ Ongoing result validation
§ Robustness

Implementation

Infrastructure

Governance

Customer relation

Economic implications

Fig. 4.2.: Challenges identified in literature.

If data is available, incomplete data, incorrect entries, or noisy features often make
it difficult to achieve satisfying results (Baesens et al., 2014; Brodley et al., 2012;
Kocheturov et al., 2019; Werts & Adya, 2000). One more problem is imbalanced or
biased data. Even though a lot of solution approaches have already been presented,
there is still room for improvement (Blenk et al., 2017; Kocheturov et al., 2019; Zhou
et al., 2016). Applying machine learning on encrypted data sets is also challenging.
However, even though some progress has been made for challenges such as training
on small encrypted data sets, there is still a lot of work to do for training on large
encrypted data sets (Graepel et al., 2012; Sarwate & Chaudhuri, 2013; Xie et al.,
2014).

Moreover, big data brings along its own challenges. In many cases, it is still a huge
problem to train algorithms on large amounts of data (Saidulu & Sasikala, 2017;
Zhang et al., 2019). Especially, handling big data in reasonable time is challenging
(Lopes & Ribeiro, 2017). Furthermore, the high dimensionality of datasets in big data
applications leads to a more complex feature engineering as well as requires other

70 Chapter 4 Challenges in the Deployment of Machine Learning

preprocessing steps (Cai et al., 2018; Domingos, 2012; Ferguson, 2017; Kocheturov
et al., 2019; Sarwate & Chaudhuri, 2013).

Furthermore, transfer learning for applying models on similar tasks across various
domains (Suthaharan, 2014) can be challenging due to different data distributions.
It is difficult to weight already learned patterns against information from new
training data in this context (Jordan & Mitchell, 2015; Silver, 2011; Wang et al.,
2016; Ying et al., 2015). Additional problems during the modeling phase are the
concept of technical debt, describing the additional time needed in the future to
adapt unclean code compared against clean code (Sculley et al., 2015). This is a
challenges which arises during pre-deployment but which also might consequences
during the deployment phase.

Infrastructure issues such as reducing the computational effort for model training
and thereby lowering the memory requirements and energy consumption as well
as increasing training and performance speed are often mentioned challenges with
regard to the model design (Jordan & Mitchell, 2015; Saidulu & Sasikala, 2017;
Shafique et al., 2017; Xie et al., 2014; Zhang et al., 2019). These problems especially
come along with big data sets. Solutions need to be found for making the models
applicable in practice (Dietterich et al., 2008).

In addition, data privacy protection and data security are governance challenges that
need to be considered when applying machine learning models (Lopes & Ribeiro,
2017). Legal frameworks like the European General Data Protection Regulation
increase the complexity of the deployment of well-functioning solutions (Malle et al.,
2017).

Since various authors use different terminologies when describing similar phenom-
ena, we will use the terms "evaluation" and "validation" synonymously. Especially
for ’black box’ models like deep neural networks validation is challenging (Staples
et al., 2016; Zhou, 2017). A certain level of transparency is necessary, if automated
decisions are supposed to be based on such models in the future. It is crucial to
ensure that the machine learning model does not discriminate based on any racial,
sexual or other characteristic during its decision process (Anderson & Anderson,
2015; Staples et al., 2016).

Deployment Challenges:

During deployment, incoming data arriving with high frequency and large quantity
can be challenging (Polyzotis et al., 2017). Concept drift, which describes a change

4.2 Related Work 71

in the distribution of input data or the distribution of the target variable, is an
additional relevant challenge during deployment (Baier, Kühl, et al., 2019; Gama
et al., 2014; Heit et al., 2016; Saidulu & Sasikala, 2017; Tsymbal, 2004; Widmer
& Kubat, 1996). Dietterich et al. (2008) name being able to handle changing
distributions as one of the requirements for theoretical models to be applicable in
practice.

Ongoing validation is an additional challenge for the implementation of machine
learning models in practice. Algorithms developed and validated in research envi-
ronments are not automatically applicable and easily validated for large data sets
during deployment (Staples et al., 2016). This applies to validating incoming data
with regard to quality and completeness as well as the resulting model predictions
(Polyzotis et al., 2017). Furthermore, robustness is named as a major challenge. This
refers, among others, to detecting and handling outliers appropriately. Moreover,
reasonable results still need to be issued when the quality of the input data decreases
(Boutaba et al., 2018; Hazelwood et al., 2018; Zhou, 2017). Ensuring robustness is
described as very crucial and difficult, especially in autonomous driving applications
(Koopman & Wagner, 2017).

The scaling of small models developed on local hardware to deploying it on a large
infrastructure with big amounts of data can cause problems. On the one hand,
the infrastructure itself often leads to difficulties. Building up infrastructures with
massive amounts of computing power (Hazelwood et al., 2018; Lopes & Ribeiro,
2017; Shea et al., 2018), handling the energy consumption of those architectures
(Hazelwood et al., 2018; Shafique et al., 2017) and working with infrastructures
like mobile devices or cars (Koopman & Wagner, 2017) is challenging. On the
other hand, applying the algorithms on large amounts of data or on various types
of infrastructures requires dedicated knowledge (Boutaba et al., 2018; Dyck, 2018;
Parker, 2012). Ensuring that the models process incoming data and generate
decisions within narrow time windows can be challenging, especially in use cases
such as credit fraud detection (Baesens et al., 2014).

Non-Technical Challenges:

The application of machine learning models for people with no background in data
science is still quite challenging. Therefore, the introduction of user-friendly tools
enabling non-technical employees to build their own models is required, since this
would drastically increase the real-world impact of machine learning techniques

72 Chapter 4 Challenges in the Deployment of Machine Learning

(Dyck, 2018; Ferguson, 2017; Zhou, 2017). This is closely related to the concept of
self-service analytics (Acito & Khatri, 2014).

Legal requirements often pose a significant challenge for a machine learning project.
This relates to data privacy protection as well as decisions on who is going to be
accountable for false decisions based on machine learning models (Koopman &
Wagner, 2017). In addition, the results of machine learning models need to become
more transparent and understandable for domain experts (Leung et al., 2016; Werts
& Adya, 2000). Especially deep neural networks appear as a problem when it
comes to transparency and interpretation (Nunes & Jannach, 2017). However, in
many domains results must be fully understandable to be really valuable (Nunes &
Jannach, 2017; Rudin & Wagstaff, 2014). A problem closely related to understanding
and transparency is trust. Only if users really trust the results of machine learning
models, they will rely on them when facing the challenge of making important
decisions. Since the level of transparency for many machine learning model types
is still low, also trust remains an open challenge (Baesens et al., 2014; Nunes &
Jannach, 2017; Shafique et al., 2017). Furthermore, the highly specialized and
little standardized terminology used in machine learning is stated as a problem for
novices in the field (Rudin & Wagstaff, 2014; Wagstaff, 2012).

It is often argued that machine learning solutions developed in research have
little or no real world value (Boutaba et al., 2018; Domingos, 2012; Sarwate &
Chaudhuri, 2013; Werts & Adya, 2000). More realistic evaluations of model results
need to be implemented to solve this problem (Heit et al., 2016; Rudin & Wagstaff,
2014). Journals and editors need to support this development by requesting rigorous
assessments of developed solutions under real world conditions (Wagstaff, 2012).

More standardization is needed for evaluating machine learning models (Shafique
et al., 2017; Spangler et al., 2000) and the corresponding economic implications.
On the other hand, evaluation metrics always have to be considered in the industry
context where they are applied. Frequently, the same metrics with equal value
ranges are compared for various application fields, even though the range implies
completely different meanings (Wagstaff, 2012).

As shown, literature deals with a lot of different challenges for applied machine
learning and motivation for research papers are often driven by real world problems.
However, we want to examine if the relevant challenges in practice match with the
ones stated in literature. The interviews intend to identify a potential gap between
the challenges stated in literature and the ones named by practitioners.

4.2 Related Work 73

4.3 Research Methodology

In order to gain a comprehensive overview of the practical challenges of machine
learning projects, 11 semi-structured expert interviews are conducted. Following
the approach of Helfferich (2011), an interview guideline is used, structuring the
interviews with regard to pre-deployment, deployment and non-technical issues.

4.3.1 Sampling

We apply a purposive sampling approach, including interview partners from var-
ious industries. Thereby, we aim to comprehensively cover occurring challenges
of machine learning projects by including a variety of different perspectives and
applications. Moreover, we ensure that different company sizes and maturity levels
regarding data science projects are represented within the interview study. The
interview partners (IP) are working in the following industries: Automotive (A)
and other Manufacturing (M), Process (P), Power Generation (PG), Health Care
(HC), Information Technology (IT), and machine learning as a Service (MLaaS). The
consultants (CO) from the MLaaS companies cover the additional fields of Retail
(R), Finance (F), E-Commerce (EC), Insurance (I), and Media (ME). Table 4.1 shows
a complete overview of the different IP as well as the industry of their respective
company.

All experts are developing machine learning solutions within specific projects in their
daily tasks. Moreover, each of them has at least one year of experience, except two
IP who have been working for six months in the field. Five of the eleven IPs work
in machine learning consultancies and six of them hold machine learning positions
within a specific company. Nine of the eleven experts live and work in Germany, one
in the United States and one in Canada.

4.3.2 Data Collection and Analysis

All interviews are either conducted in person at the interviewee’s office, via video
call, or via phone call. The interviews were recorded after consent was granted and
for further analysis transcribed. A qualitative content analysis (Krippendorff, 2004)
is conducted to analyze the interviews. In order to remain open for the identification
of new aspects and challenges of machine learning projects, the interview material is
coded by applying open coding. Two researchers independently conduct the analysis.

74 Chapter 4 Challenges in the Deployment of Machine Learning

Tab. 4.1.: Industry overview of interviewees.

Role Industry

Consultant
Industry
Expert

M/A P PG HC IT R F EC ME I

IP α X X X X
IP β X X X
IP γ X X
IP δ X X X X
IP ε X X
IP ζ X X
IP η X X
IP θ X X X
IP ι X X
IP κ X X X
IP λ X X X X X X

The resulting code system is discussed and merged after each interview. As the
involved researchers did not uncover additional insights after the fifth interview,
the final coding system was fully developed, along with the corresponding coding
rules. The remaining six interviews are used to evaluate the reliability of the coding
system by applying the intercoder accordance. Therefore, the same two researchers
code the remaining interviews, using the derived coding system. The number of
matching codes per interview is computed, resulting in an average value across all
interviews of 77,5%, which underscores the reliability of the derived coding system
(Krippendorff, 2004). In order to be able to compare the results of the literature
review (see Section 4.2) with the findings of the expert interviews, the derived
codes were sorted according to the main categories ’non-technical challenges’, ’pre-
deployment’, ’deployment’. A comparative analysis of machine learning challenges
from literature with barriers of industry projects is provided in Section 4.5.

4.4 Results

This chapter introduces the challenges resulting from the interviews as well as first
insights on best practices to deal with those challenges. Again, we differentiate
between pre-deployment, deployment and non-technical challenges. Furthermore,
we also apply the six clusters of challenges as defined in Section 4.2. Figure 4.3 gives
an aggregated overview of the identified challenges in both, the interviews (marked
with an asterisk) as well as the literature (marked with a four corner star).

4.4 Results 75

Pre-Deployment Deployment Non-Technical

§ Data quality
§ Data quantity
§ High dimensionality in

data
§ Imbalanced data
§ Encrypted training data

§ High-frequency data
§ Concept drift / data drift

Data structure

§ Computational effort
§ Energy consumption

§ Deployment infrastructure
§ Scalability

§ User-friendly tools

§ Data management
§ Data privacy protection
§ Anti-discrimination

validation for deep neural
networks

§ Legal requirements
§ Result transparency and

interpretability
§ Trust

§ Real-world value of ML
§ Business impact of ML
§ Creating digital services

with ML
§ Evaluation metrics

§ Data collection
§ Data preprocessing
§ Transfer learning
§ Technical debt

§ Ongoing data validation
§ Ongoing result validation
§ Robustness
§ Automated model updates

Implementation

Infrastructure

Governance

Customer relation

Economic implications

✥ Interviews ✦ Literature italic Challenges only mentioned one time (either literature or interviews)

✥✦
✥✦
✥✦

✥✦
✦

✥✦
✥✦

✥✦
✥✦
✥✦
✦

✥✦
✥✦
✥✦
✥

✥✦
✥✦

✥✦
✥✦

✥✦

✥
✥✦
✥✦

✥✦
✥✦

✥✦

§ Domain knowledge § Expectation management
§ Customer / Result

communication
§ Standardization of

terminology

✥
✥

✦

✥

✦
✥
✥

✥✦

Fig. 4.3.: Challenges identified in interviews as well as in literature.

Usually, the deployment of machine learning models is performed by a specialized
team of technical employees in collaboration with the corresponding department
which is requesting a solution for its business problems. Therefore, in the following,
departments requesting machine learning projects are referred to as ’customers’. We
do not differentiate whether the service provider is an external machine learning
consultancy or a dedicated machine learning team within the same company.

76 Chapter 4 Challenges in the Deployment of Machine Learning

4.4.1 Pre-Deployment

Challenges referring to the data structure are frequently named by the interview
partners, especially problems with data quality and quantity. Usually, data quality is
examined before the start of a new project. However, a realistic assessment whether
all required data sources are available is often only possible during the project (α,
γ, ε). Furthermore, recognizing quality problems within the data is often rather
difficult without domain expertise. Therefore, data scientists and domain experts
need to collaborate closely to identify data quality problems. Imbalanced training
data also complicates the application of machine learning models, e.g., in use cases
to predict faulty products with a dataset with only very little faulty products at all (ε).
Limited training data was also frequently mentioned as a challenge. However, some
interview partners also stated that this does not affect their daily work. Especially
when customers have a lot of experience with machine learning, they usually collect
required data before the project start (λ).

Both problems, data with low quality and limited training data, are handled almost
similar by all interview partners. First, domain knowledge is taken into account in
order to increase data quality. Sometimes, this knowledge is also used as input for
the model assumptions. Second, practitioners try to build initial machine learning
model as simple as possible, which can provide reasonable results even with a small
amount of data. In parallel, more data is collected and the implementation of
the model continues as soon as new data is available. However, several interview
partners also reported that projects are cancelled if data is too scarce (α,β,γ,ε,η).
In health care, the problem of data collection is even more complex than in other
domains (ζ). This is explained by two reasons: First, the progress of digitalization
in general is slower in health care compared to other industries. Some data is not
even available in digital form at all. Second, legal regulations for medical data are
especially strict.

Data preprocessing is also named a fundamental problem (ε) because it is as a very
time-consuming task which requires the vast majority of a project’s time. Therefore,
data preprocessing needs to be automated and accelerated (θ). Increasing the
performance of machine learning algorithms and reducing their training time has
no practical benefit, if data preprocessing remains as time-consuming as it is today
(ι).

The actual modeling work is hardly mentioned as challenging. This refers to activities
such as the decision on the type of algorithm or implementing the actual model which
has been simplified enormously by the development of open-source frameworks.

4.4 Results 77

Only occasional challenges like transferring a built solution to another domain (θ)
or use cases like autonomous driving (ε) are indicated. One interview partner (ι)
explained that they are working on making deep neural networks more energy-
efficient. Instead of using the whole range of available computing power, they
want to develop an algorithm which only focuses on the important part of a neural
network to improve prediction performance.

Furthermore, governance issues such as legal and access rights often play an im-
portant role. Data management in companies across different industries is often
organized poorly (γ, η). This is a challenge which is only mentioned during the
interviews. Data access guidelines are usually very strict and complex. In general,
several approvals are required to access relevant data (γ, ε, ζ). Before the actual
work on data pipelines and modeling can start, it is often necessary to perform
time-consuming tasks on data infrastructures (η). Hence, the wish for more so-
phisticated data structures in companies in general was stated (ε). Additionally,
technical transparency is seen as a challenging, e.g., it is difficult to train deep
learning algorithms which do not mimic the discriminatory behavior represented in
the input data (β).

4.4.2 Deployment

Data with high volume as well as drifts in the input data are frequent challenges.
Although there are several technical solutions for automatically recognizing shifts
within the input data, like using Kafka input streams, manual checks are done most
of the time (β, δ, κ). Changes within the input data are mentioned as a problem,
especially for the validation of the model results (ε). Manual model adjustments are
often performed to match the models to the new data distributions. Only in one
case the models are able to adapt themselves automatically to data drifts (η).

In case of machine learning model updates, it is necessary to provide a neat docu-
mentation of all models including older versions. It needs to be documented which
data has been used for training the model and under which conditions the model was
performing well. In addition, an easy rollback to older versions must be available (β,
δ). Therefore, a serving infrastructure with a proper model management is required.
This allows an easy handling of different model versions as well as the opportunity to
frequently update models (δ, ε). Furthermore, automated data pipelines pose a prob-
lem (κ) since they need to be able to combine database and machine learning model
management. Further, templates for machine learning models and an automated,
ongoing computation of prediction scores should be included. Cloud solutions offer

78 Chapter 4 Challenges in the Deployment of Machine Learning

standardized solutions for these challenges. Interview partners report fewer issues
when using cloud services (λ). However, access to those is often restricted due to
data privacy reasons or other restrictions. In general, robustness and stability are
seen as major problems in deployment (β, δ, ι). Models must still provide reasonable
results when facing minor data changes or a reduction in data quality.

In addition, ongoing validation of deployed machine learning solutions is mentioned
as a problem. It is described as a time consuming, unstructured, and unstandardized
process (ε, η). A key solution in most cases is a dedicated monitoring approach,
which is either done automatically, manually, or with a combination of both. Con-
tinuous evaluation is the most important principle (β) and a clear definition of the
corresponding metrics is required. Three different tests are proposed: consistency
checks for the input data, continuous monitoring of the model predictions, and the
effect of model predictions on prior defined KPIs. Such a continuous monitoring
approach is the basis for a stable system. Manual sanity checks are a widely used
mechanism to discover discrepancies in different areas within the pipeline. Further,
the results are regularly investigated by domain experts (β, γ, δ, ε). In addition,
automated consistency checks are used to compare current with previous prediction
results. If predefined thresholds are violated, notifications can be triggered. Often,
traffic light systems are used as a visualization tool (δ).

Infrastructure is one of the main problems during deployment of machine learning
models. Challenges are not only related to deployment infrastructures for running
the machine learning models, but also to setting up relevant data infrastructures (ζ,
η). Three frequent challenges occur with regard to model deployment architectures
according to our interview partners: First, data scientists often need to work with
the infrastructure already available on the customer side. Therefore, data scientists
have to adapt their solutions to various different infrastructures. This problem
arises since approval processes for investments in new infrastructure are very time-
intensive and complicated. Furthermore, many customers are very inexperienced
with machine learning solutions and do not know if the investment is worth it.
Second, standardized architectures for local solutions are scarce. Even if customers
are willing to build up new infrastructure, it is difficult to install a consistent
local infrastructure. However, cloud solutions already offer this standardization
extensively. Third, the actual deployment environment of machine learning models
differs significantly. It requires fundamentally different approaches for running a
model on either a large cluster in a manufacturing plant, directly in a car or on a
mobile device.

4.4 Results 79

Scaling up a model to deployment architectures also brings along additional chal-
lenges such as code parallelization. Only few programming languages are easy to
parallelize and most of them are limited to computations in the internal memory.
Usually, this is solved by building reasonable data partitions. Other approaches
rely on using methods that allow out of core calculations (β) or adding more hard-
ware (α, γ). However, the latter can be complicated. Methods for dimensionality
reduction such as PCA or auto-encoders are applied for reducing the high dimen-
sionality of datasets (δ). Usually, batch use cases can be handled by frameworks like
Apache Spark (α, β). Real-time use cases which require immediate feedback, are
more challenging and can require more advanced architectures (β). According to
interview κ, only few use cases exist so far where big data infrastructures are really
required. Many customers have so little experience that a well equipped, local server
combined with a proper feature engineering approach is sufficient and significantly
easier to run.

4.4.3 Non-Technical Challenges

During our interview study, we recognize that problems in the daily work with ma-
chine learning models are often also related to non-technical topics. Communication
with the customer or translating machine learning results into real business impact
are just two examples. Additionally, more standardization and user-friendliness
for application of machine learning models are mentioned as a challenge. Easily
applicable tools need to be developed in order to enable non-technical employees to
apply machine learning models (δ).

The effect of machine learning models on business impact refers to two aspects: First
of all, there are very different experience levels with regard to machine learning on
the customer side. Many customers do not have a clear understanding of machine
learning techniques and the corresponding benefits (α). This fact needs to be
considered during the development of the customer relation. Second, providing
transparency with regard to model results is challenging. It is difficult to convince
customers to trust the machine learning results and to apply them for making crucial
decisions (γ). Eventually, this challenge might be solved with technical solutions
such as advanced frameworks for the visualization of important features. However,
transparency itself remains a non-technical challenge. Standard metrics further
complicate the problem of transparency. Most metrics are not easily understood by
people without a machine learning background. Customers usually have difficulties
in translating those metrics (e.g., accuracy) into relevant KPIs such as revenue (β).

80 Chapter 4 Challenges in the Deployment of Machine Learning

Therefore, it is necessary to define individual, customer specific metrics at the
beginning of a project to evaluate the results (ε) and the economic implications of
the model. Furthermore, simpler, more understandable models are applied compared
to complex deep neural networks. Customers often behave rather conservatively
and select more understandable models over better performing ones (η). Technical
solutions for increasing transparency are rare (η). Only few support tools such as
Lime for visualizing deep learning models (ε) or Starlack for making R algorithms
(η) are available.

Still, customer questions often cannot be answered in a satisfying way. Therefore,
support from higher management positions is frequently required to communicate
results and apply those accordingly (γ).

Although many companies already apply machine learning successfully in support
systems, it is still difficult to create valuable digital services based on machine
learning solutions (κ). This might also be related to the different accuracy needs for
different domains. Changing legal requirements, such as data protection regulations,
can further complicate the successful economic application of machine learning
projects (β, ε).

4.5 Discussion

The interview results confirm the majority of challenges which are mentioned in
related literature (c.f. Section 4.2). However, we also identified gaps between the
challenges stated in literature and the ones mentioned in our study.

Researchers seem to be aware of many problems that practitioners are confronted
with during the development of machine learning models in practice. However,
solving these issues appears to be demanding, which might be due to two reasons.
First, there might exist dedicated tools but those are not used by the majority of
practitioners during their daily work either because those tools are not available
(e.g., too costly) or because their usage is difficult. Second, adequate solutions for
these problems have not been developed yet. However, we did not specifically ask
whether the first or the second reason are the main driver of the respective challenge
and therefore cannot make any statement about this.

Yet, the identified challenges are restricting practitioners in their daily work and
therefore hindering a more widespread use of machine learning in practice. However,
we cannot guarantee that individual highly advanced technology companies do not

4.5 Discussion 81

already possess sophisticated tools for some of the challenges which we discuss in
the following. With this discussion, we want to raise awareness for the need of
standardized solutions, which are easily applicable within companies with differing
machine learning maturity levels.

Pre-Deployment

Data in general is a major challenge during model development in practice as well
as in literature. Data collection and preprocessing requires the majority of time
during machine learning projects. Data is often widely spread across the information
systems of a company, is unstructured, and in a bad quality. Transforming data to
the proper format usually requires a lot of manual work. The interviews specifically
referred to data management with complicated access rights as a substantial chal-
lenge. Researchers typically are not confronted with this issue because they work
with predefined datasets. Additionally, knowledge of several people (e.g., domain
experts) needs to be merged to properly understand the data and raise the quality
level of the data in practice. Furthermore, several interview partners referred to
projects which were discarded after project start because of poor data conditions.
This clearly indicates the critical importance of an adequate data structure as well as
an appropriate data processing. Major problems in this category can easily jeopardize
an entire machine learning project.

General solutions for the automation of data preprocessing and data structuring were
directly requested by several of the interviewed experts. The problem has also been
mentioned for decades in literature (e.g., Spangler et al. (2000)). There is a clear
need for tools supporting the whole data pipeline. Such tools could also support
the faster evolution of machine learning techniques across different industries and
application fields.

The selection of suitable machine learning algorithms and their improvements was
named as challenging in both interviews and literature. However, several experts also
noted that researchers too often focus on improving algorithms by small percentage
points on statistical metrics while at the same time loosing sight of the complexity
in real application domain. This problem has been stated before in literature, but
we want to emphasize that researchers should also proof the applicability of their
work in real-world environments. In that sense, after performing the interviews, we
regard the identification and selection of the single best machine learning model
as less critical. With an adequate preprocessing and a parameter optimization, a

82 Chapter 4 Challenges in the Deployment of Machine Learning

prediction model will perform well enough to bring a machine learning project to a
successful end.

Literature, in contrast to the interviews, also refers to the problem of technical
debt. This is certainly a challenge in practice, however it is less critical compared
to other challenges since this issue usually can be solved with a corresponding
time investment. Encrypted training data is another challenge only mentioned in
literature. This might have not been a challenge so far in practice because encrypted
data require rather sophisticated machine learning approaches. Currently, due to the
novelty of deploying solutions, many companies still address the easiest and most
promising use cases.

Deployment

Deploying machine learning models often is still a challenging task. This is also
reflected by the fact that solutions in practice are often highly individual and require
a lot of manual work. There are almost no standardized solutions for machine
learning infrastructures in many domains. Hence, an individual infrastructure has to
be built for many projects which is severely complicating the deployment. Unsuitable
or missing infrastructure is a significant challenge for any machine learning project.
If no proper deployment infrastructure can be set up by the project team, the entire
project is prone to failure. Otherwise, infrastructure issues still will significantly
extend the timeline of a project due to long-lasting investment decisions, especially
in larger companies.

Ongoing validation and data drifts are common challenges for deployed models.
However, little automated strategies are available for handling these problems during
deployment. The validation of deployed models is done with manual sanity checks
in most cases. These often require the combined knowledge of data scientists and
domain experts, which makes it a time consuming and complicated task. Data drifts
are automatically detected by some models though, but are usually handled by
manual model adjustments.

Automated model updates and adaptations are therefore a challenge which requires
further research. This will either simplify and fasten the retraining process or even
lead to tools which completely handle concept drifts autonomously without any
human intervention. It is critical to develop a proper strategy to ensure the long-term
validity of a deployed model already during the initial development of the machine
learning model. Otherwise, the project is likely to fail to meet the performance

4.5 Discussion 83

expectations over time and customers with less technical experience might be
disappointed and therefore be less open to new machine learning projects.

Proper infrastructure as well as ongoing validation both increase the robustness of
deployed machine learning models in general which is widely confirmed as challenge
during the interview study. Model robustness can also be enhanced by the algorithm
development itself. Therefore, new or adapted algorithms should not only exhibit
an increase in performance metrics, but also a higher level of robustness when
confronted with erroneous data.

Non-Technical Challenges

Many machine learning projects are also considerably restricted by non-technical
challenges. Transparency is indispensable for successful machine learning solutions
and is often specifically demanded by customers and a proper understanding of
model results is a necessary prerequisite for trust in machine learning models. Only
trusted results will be considered for evaluating important decisions. Even though
literature has extensively argued for more transparency, little progress has been
achieved. This is especially true for deep neural networks which so far are very
little explainable. Practitioners often use advanced visualization tools to increase
transparency.

Creating more real-world value of machine learning solutions is an important chal-
lenge according to literature. Results from the interviews clearly support this
statement. However, research papers usually are rather vague what real-world value
actually means. During our interviews, we discovered that this challenges can be
viewed from 4 different aspects:

First, it is necessary to express machine learning model results in terms of real-world
business value and not in statistical metrics. In practice, evaluation metrics are
usually defined individually for every machine learning projects and those metrics
translate prediction results into important customer KPIs. However, this is very
time-consuming and standardized real-world metrics could facilitate this process.

Second, a proper expectation management with the customers during a machine
learning project is crucial. Many customers are inexperienced in the field of machine
learning which is why they cannot realistically assess what machine learning is able
to accomplish. It is crucial that the project objectives are reasonably defined before
any technical experiments start and that these objectives are also communicated
appropriately to all stakeholders. These challenges have not been mentioned in

84 Chapter 4 Challenges in the Deployment of Machine Learning

literature so far, probably because researchers usually do not work in such complex
project environments. However, a general framework for depicting the value and
potential for economic applications of machine learning with corresponding business
impact is in our opinion a valid research goal for resolving this challenge.

Third, the communication with the customer as well as the comprehensible explana-
tion of machine learning model results is important. Customers do not only want to
understand the effect of machine learning results on their KPIs but they also want
understand the influence of different features on the prediction results. In practice,
this leads to the application of rather simple algorithms, even though more complex
models usually easily outperform those. However, customers are often willing to
accept lower performance in exchange for higher transparency.

Fourth, creating valuable digital services or products based on machine learning
model results is still quite challenging. It is difficult to convince people to pay for
newly created services which are entirely based on machine learning or for existing
services that are enhanced with machine learning capabilities.

Expectation management, an adequate customer communication and the creation
of valuable digital services based on machine learning are all critical challenges with
regard to a more widespread use of machine learning. Concerning a single project,
they will typically only lead to significant delays. However, if relevant stakeholders
such as responsible line managers are not convinced by the capabilities of machine
learning after the end of a project, this might have long-lasting consequences. Those
managers are usually the ones who are identifying and providing use cases suitable
for a machine learning application. Furthermore, they normally also provide the
necessary funding for such a project. This means that if those stakeholders are not
satisfied with the results after the execution of a project, success in future projects
will be less likely.

Many of the introduced challenges actually go beyond the actual deployment of
machine learning solutions. However, CRISP-DM (Figure 4.1) as a standard process
model ends with the evaluation of the overall project after deployment. Therefore,
after having analyzed this large set of challenges, we argue for an extension of CRISP-
DM because many activities such as an appropriate transfer of machine learning
results or the ongoing monitoring and adaptation due to data drifts is not considered
so far.

4.5 Discussion 85

4.6 Conclusion and Outlook

The application of machine learning has spurred many new technological develop-
ments in both research and industry over the past years. However, many questions
with regard to the application of machine learning in real-world applications are still
unanswered. In this work, we identify typical challenges that are hindering machine
learning practitioners in their daily work. We conduct a structured literature review
as well as semi-structured interviews with 11 machine learning practitioners working
in different industries.

Compared to publications addressing machine learning in a scientific context, our
results show that practitioners do not only face traditional challenges such as data
quality and data preprocessing, but are also confronted with a variety of additional
problems during the deployment of machine learning solutions. This especially refers
to a proper setup of the necessary infrastructure as well as solution strategies for
handling concept drift and ensuring long-term validity of machine learning models.
We therefore argue for more research with respect to these challenges since they
can easily jeopardize the success of an entire project. Furthermore, practitioners
frequently encounter non-technical issues such as the expectation management of
customers (e.g., managers or non-technical employees) with regard to the deployed
solutions as well as a proper communication of the results. Frameworks for depicting
the value of machine learning can be a valuable resource in that case and could
therefore be a valid research contribution.

Our research generates several contributions to the field of machine learning. First,
we provide an overview of challenges of machine learning projects based on a
structured literature review. These challenges are organized along the categories pre-
deployment, deployment and non-technical challenges. Furthermore, we identified
6 overarching clusters of challenges: Data structure, Implementation, Infrastructure,
Governance, Customer relation, Economic implications. Second, we provide an
overview over challenges that machine learning practitioners are confronted with
during their daily work (c.f. Figure 4.3). Based on both overviews and literature,
we perform a comparative analysis, thereby, identifying similarities and differences
between the challenges mentioned in literature, originating from a scientific context,
and the practical barriers, which were identified through the interview analysis.
These results have both implications for academia and industry. One the one hand,
the total overview of identified challenges may be used to develop more realistic
machine learning models in academia and provides guidance for future research.

86 Chapter 4 Challenges in the Deployment of Machine Learning

On the other hand, it serves as guidance for practitioners in the implementation of
machine learning models.

Besides these contributions, our work faces a set of limitations. First, we conducted
a limited amount of eleven interviews with machine learning practitioners. Further-
more, due to the availability of suitable interview partners, we could not cover all
industry sectors with several interview partners. Nevertheless, we are confident
about the completeness and validity of our results, as we did not encounter new
challenges with the inclusion of new interview cases. Second, most of our interview
partners are currently working in Germany, which might lead to a certain bias in our
results. Third, due to the chosen qualitative approach, only limited statements can
be made about the severity of one challenge in comparison to another, as well as
about the prioritization of the different research needs.

Future work could overcome these shortcomings by performing an interview study
with an international sample and could also identify corresponding best practices.
During our study, we also realized that there are large differences in the perception
of machine learning between experts and involved company managers. Therefore,
a subsequent interview study with machine learning experts as well as with com-
pany managers would surely generate valuable insights. Additionally, based on
these results, a larger quantitative study (e.g., survey-based) could be initiated and
performed. This would allow the derivation of quantitative findings and the identifi-
cation of the magnitude and severity of each challenge as well as the corresponding
research need. Those findings could subsequently be used to derive holistic research
priorities which promote the general progress of the field as a whole. In general,
machine learning as a field has rapidly evolved over the past years. Therefore, it is
necessary to continuously align the challenges occurring in the practical application
with research pursued in academia.

Related literature has noted before that large parts of machine learning research are
too narrowly focused on optimizing performance on benchmark datasets while not
creating sufficient real-word value (Rudin & Wagstaff, 2014). With our work, we
want to initiate discussions and projects with the aim of closing the gap between
academic and practical application. Solutions for the identified research needs can
help to strengthen the practical implications of machine learning solutions.

4.6 Conclusion and Outlook 87

Part III

Challenges for the Application of Concept
Drift Handling

Handling Concept Drift for
Predictions in Business
Process Mining1

5

5.1 Introduction

Machine learning plays a major role in the recent developments of artificial intelli-
gence (Kühl et al., 2019). It is widely considered to be one of the most disruptive
technologies in the last decades. Its fast progress is fueled by both the development
of new learning algorithms and the huge availability of low-cost computation and
data (Jordan & Mitchell, 2015). Machine learning is applied across all sectors and
in all functional business areas, such as research and development, marketing or
finance (Chen et al., 2012). Many companies rely on machine learning models for
offering new services or for improving their existing ones (Schüritz & Satzger, 2016).
As Davenport (2006) has shown, companies leveraging their data sources achieve a
substantial competitive advantage. Especially in the area of services, there seems to
be large untapped potential in both, research and practice (Ching, 2018; Ostrom
et al., 2015).

To address this promising gap, predictive services offer the possibilities to implement
machine learning into different application fields (Baier, Kühl, et al., 2019). Typically,
techniques of supervised machine learning provide the basis for such predictive
services (Jordan & Mitchell, 2015) which are trained by using historical data of
input features and a label. Subsequently, the model is used to continuously compute
predictions on a stream of incoming data. However, data streams typically change
over time. This is one of the major challenges for applying machine learning in
practice (Baier, Jöhren, et al., 2019) since the prediction quality is very sensitive to
the input data (Tsymbal, 2004). Therefore, the problem of changing data stream

1This chapter comprises an article that was published as: Baier, L., Reimold, J., & Kühl, N. (2020).
Handling Concept Drift for Predictions in Business Process Mining. Proceedings of IEEE 22nd Conference
on Business Informatics (CBI), Antwerp, Belgium, pp. 76-83. https://doi.org/10.1109/CBI49978.
2020.00016. Note: The abstract has been removed. Tables and figures were reformatted, and newly
referenced to fit the structure of the thesis. Chapter, section and research question numbering and
respective cross-references were modified. Formatting and reference style was adapted and references
were integrated into the overall references section of this thesis.

91

https://doi.org/10.1109/CBI49978.2020.00016
https://doi.org/10.1109/CBI49978.2020.00016

over time has been examined under the term “concept drift” (Widmer & Kubat,
1996).

Usual strategies for handling concept drift rely on dedicated drift detection algo-
rithms (Gama et al., 2014). As soon as a drift is detected, the corresponding machine
learning model will be retrained. However, it remains an open research question
which data instances for the retraining of the machine learning model should be
applied (e.g., data before or after the detection). Therefore, we aim at systematically
examining the difference between different retraining options which is expressed in
RQ B.1.

Research Question B.1
Which data should be used for the retraining of a machine learning model when
a concept drift is detected?

Subsequently, we apply our findings of RQ B.1 in a real-life use case in business pro-
cess mining, a typical example of a predictive service. Business process management
in general, and business process mining in particular, have received a lot of attention
recently in top management because it improves decision making in organizations
(Rosemann & vom Brocke, 2015; Van Der Aalst et al., 2016). New applications are
extended by the use of predictive analytics (Zur Muehlen & Shapiro, 2015). Since
business processes are inherently dynamic, those new features are largely exposed
to concept drift (van der Aalst et al., 2012). This requires the adaptation of existing
methods to ensure their validity over time. Therefore, we want to examine the
effects of the different data options on this use case which is regularly confronted
with concept drift in the second research question.

Research Question B.2
What are the effects of the different retraining options in a real-life use case in
business process mining?

The remainder of the paper is structured as follows: Section 5.2 presents related
work on which we base our research. Section 5.3 introduces different aspects which
can be considered for the retraining of a machine learning model after detection
of a drift. Section 5.4 presents the chosen use case as well as the evaluation of the
different options discussed in the previous section. The final section discusses our
results, describes theoretical and managerial implications, acknowledges limitations
and outlines future research.

92 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

5.2 Related Work

This section gives a brief overview of related work about concept drift as well as its
detection. Furthermore, related work regarding process mining is introduced.

5.2.1 Concept Drift

Machine learning can create ongoing value when the corresponding prediction
models are deployed in connected information systems and deliver ongoing recom-
mendations on continuous data streams. However, data streams usually change and
evolve over time. This is also reflected in changes in the underlying probability dis-
tribution or their data structures (Aggarwal et al., 2003). The challenge of changing
data streams for machine learning tasks has been described with the term “concept
drift” (Widmer & Kubat, 1996) in computer science. A concept p(X, y) is defined as
the joint probability distribution of a set of input features X and the corresponding
label y (Gama et al., 2014). In real applications, concepts often change with time
(Tsymbal, 2004). This change can be expressed in a mathematical definition as
follows (Gama et al., 2014):

∃X : pt0(X, y) 6= pt1(X, y)

This definition explains concept drift as the change in the joint probability distri-
bution between two time points t0 and t1. Therefore, machine learning models
built on previous data (in t0) might not be suitable for making predictions on new
incoming data (in t1). This change requires the frequent adaptation of the prediction
approach.

Changes in the incoming data stream can depend on a multitude of different internal
or external influences. Usually, it is impossible to measure all of those possible
confounding factors in an environment—which is why this information cannot be
included in the predictive features of a ML model. Those factors are often considered
as “hidden context” of a predictive model (Widmer & Kubat, 1996). Concept drift is
usually classified into the following categories (Žliobaitė, 2010): Abrupt or sudden
concept drift where data structures change very quickly (e.g., sensor failure), gradual
and incremental concept drift (e.g., change in customers’ buying preferences) or
seasonal and reoccurring drifts (e.g., A/C sales in summer). There exists also a more
fine-grained taxonomy (Webb et al., 2016) which also considers the magnitude of
the drift for instance.

5.2 Related Work 93

A wide variety of approaches for the handling of concept drifts has been proposed
(Gama et al., 2014). However, most approaches rely on an explicit drift detection
which detects changes in the data distribution and triggers corresponding adap-
tations. Two of the most popular algorithms are Page-Hinkley (Page, 1954) and
ADWIN (Bifet & Gavaldà, 2007). Page-Hinkley works by continuously monitoring
an input variable (e.g., the input data or the prediction accuracy). As soon as the
variable differs significantly from its historical average, a change is flagged. ADWIN,
in contrast, is a change detector which relies on two detection windows. As soon as
the means of those two windows are distinct enough, a change alert is triggered,
and the older window is dropped.

5.2.2 Process Mining

Business process mining is a research discipline that originates from business process
modeling and analysis on the one side and data mining on the other side (Manoj
Kumar et al., 2015). The goal of process mining is to discover, monitor and improve
operational processes by extracting data from event logs (Van Der Aalst, 2011). This
way, business processes are analyzed in the way as they are really executed (Van Der
Aalst & Weijters, 2004). These event logs can be created by extracting the digital
traces of business processes that are stored in today’s information systems, e.g., ERP
or CRM systems (Van Der Aalst et al., 2007). The minimum information needed
for an event log is therefore a unique CaseID to identify and differentiate each case
and an event with relating timestamp to define the activity of the process. This
combination is important, so that the real sequence of the events can be ensured.

Process mining can be differentiated into three types (van der Aalst et al., 2012)
where the first type is discovery. After extraction of the event logs, a process model
can be built. This also allows to understand different variants of business processes
(Dumas et al., 2013). The second type is conformance. In this case, existing process
models can be compared with an event log of the same process and discrepancies
between both can be discovered. The third type relates to enhancement where
existing process models are extended. This can also refer to operational support
where predictions and recommendations based on prediction models from historic
information can be used to optimize running cases (Van Der Aalst et al., 2011).
An application could be the prediction of the remaining time of a case (Verenich
et al., 2019) or the prediction of the next executed activity in a case (Márquez-
Chamorro et al., 2017).Furthermore, there are approaches predicting whether a
case will be completed (Di Francescomarino et al., 2017). With such predictions,
the organizational procedures can be optimized, and personnel planning is more

94 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

accurate. For instance, it can be very valuable for a customer to know the remaining
process time of his insurance claim or when his product order will arrive.

A very important challenge in process mining is the occurrence of concept drift
(van der Aalst et al., 2012) which refers to processes that are changing while being
analyzed. For instance, the sequence of events can change, e.g., two events that
occurred in parallel are now occurring one after another. Processes may change due
to a variety of reasons, from seasonal effects over market changes to organizational
adjustments. Business processes are inherently dynamic over time and therefore
prone to change. Nevertheless, concept drift research in business process mining
is rather scarce. Sudden concept drift in process mining, such as rearranging or
replacing activities, has been examined (Manoj Kumar et al., 2015). The authors
propose to detect those drifts by computing correlation between event classes.
Another approach proposes a framework which computes dedicated features on
the event logs and subsequently compares those features over different windows to
detect concept drift (Bose et al., 2014). In this context, this method to detect drifts
is similar to traditional concept drift approaches described in subsection 5.2.1. More
advanced options use an adaptive approach based on a Chi-square test which also
allows to detect different types of process drift (Maaradji et al., 2017). Other research
aims at better understanding the type or the degree of change (Yeshchenko et al.,
2019) or providing more robustness to process drift detection methods (Ostovar
et al., 2020).

The approaches described above focus on concept drift in the type of event or their
order in a process. This is related to the first type of process mining (discovery) that
focuses on deriving a process model. The ultimate objective of this analysis is to
identify and better understand the activities that trigger process drift in the first
place.

However, this analysis does not contain any predictive component. Existing work has
not yet considered concept drift in the enhancement type of process mining where
predictions based on machine learning are computed to optimize operations (Van
Der Aalst et al., 2011). Compared to previous work, this also requires strategies for
an adaption of prediction models over time.

5.2 Related Work 95

5.3 Data Selection for Retraining

This section introduces the two different learning modes for machine learning
models and provides an overview on which data can be used for the retraining of a
model if the training process has to be started from the beginning.

5.3.1 Learning Mode

In the context of data streams and ongoing predictions, two learning modes for
machine learning models can be differentiated: retraining and incremental learning
(Baier, Kühl, et al., 2019).

The method of retraining is illustrated in Figure 5.1. The figure shows that in the
beginning the model is trained on an initial batch of data. After the initial model
has been trained, new incoming data instances X result in predictions y (e.g., y1 in
Figure 5.1). This happens iteratively for every new data instance in the data stream
until the drift detection method issues an alert which requires an adaptation of the
prediction model. Correspondingly, the old model is discarded, and a completely
new prediction model is trained which is subsequently applied to every incoming
data instance (e.g., the new prediction model after retraining is applied for the first
time by predicting y378 and the following data instances in Figure 5.1).

Time

Pred
ict

 Y 1

Predict

X

y

Receive

Initial Training

Pred
ict

 Y 2

…

…

Pred
ict

 Y 3
76

Pred
ict

 Y 3
77

X

y

Retrain Model

Pred
ict

 Y 3
78

Pred
ict

 Y 3
79

…

…

Pred
ict

 Y 3
80

Drift
detected

Fig. 5.1.: Depiction of learning mode retraining.

Incremental learning, in contrast, works by continuously updating the prediction
model. Comparably, the starting model is trained on an initial data set. When new
data instances arrive, the model issues a prediction. However, as soon as the true
target label of this data instance is known, this information is used to incrementally
improve the prediction model. The main advantage of this approach is that every
new labeled instance arriving will be used for model improvement and thus, the
model automatically adapts to changing concepts. This approach is comparable

96 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

to a sliding window approach. In general, the incremental updates will not be
computed after a single new data instance has arrived but rather after the reception
of a small batch of data instances (e.g., 10 or 20). This reduces the computational
complexity. Unfortunately, only few machine learning algorithms such as Naïve
Bayes, Neural Networks or Hoeffding Trees (Pfahringer et al., 2007; Žliobaitė et al.,
2016) implement the opportunity for incremental updates.

Despite the continuous updates of the prediction model, this approach might be
confronted with degrading performance over time. For instance, the incremental
updates of the model cannot adapt to very quick changes which occur during sudden
concept drifts. In this case, it might be also necessary to discard the current model
and train a new model. This would depict a combination of both learning modes
retraining and incremental updates.

5.3.2 Data Selection for Retraining of the Machine Learning Model

In case of concept drift, the previous model will be discarded, and a new model is
trained as depicted in Figure 5.1. However, when implementing this approach, we
need to select the data that is used for the retraining of the machine learning model.
So far, literature does not provide any knowledge on which data of the data stream
should be used for the retraining of the prediction model. Therefore, we implement
and evaluate three different data selection strategies which we call next, mixed and
last. The difference between these approaches is depicted in Figure 5.2.

The approach next is displayed in the upper part of Figure 5.2. As soon as a concept
drift is detected, the model collects the next batch of instances with corresponding
labels (e.g., two new data instances in the figure). When this next batch is complete,
the retraining is started and subsequently the new model is applied. This also means
that the previous model is used to predict the next batch after the concept drift since
it is also necessary to issue predictions for those instances (and the new model has
not been learned yet). The intuition guiding this approach is that data following a
concept drift, complies with the new concept and is therefore an optimal basis for a
new model.

The other approaches mixed and last are also displayed in Figure 5.2. In case of the
mixed approach, the model retraining relies on data from before and also after the
detection. Compared to the first approach (next), the new model can be applied
faster since it requires less data after the concept drift. The last approach entirely
relies on data which was acquired before the concept drift detection alert. This

5.3 Data Selection for Retraining 97

means that the new prediction model will be applied right on the next data instances
after the detection of a drift. This approach might work well because drift detection
algorithms usually work with a slight delay. Therefore, the data batch before the
alert might already belong to the new concept.

Time

Pred
ict

 Y 1

X

y

N
ex

t

Initial Training

Pred
ict

 Y 2

…

…

Pred
ict

 Y 37
6

Pred
ict

 Y 37
7

X

y

Retrain Model
Drift Detected

Pred
ict

 Y 37
8

Pred
ict

 Y 3
79

…

…

Pred
ict

 Y 38
0

X

y

M
ix

ed

Initial Training

…

…

X

y

Retrain Model

…

…

X

y

La
st

Initial Training

…

…

X

y

Retrain Model

…

…

Fig. 5.2.: Three different approaches for retraining of model.

During the application of our use case, we aim to systematically test all three
approaches in order to quantify the differences between those and also to give
recommendations for future implementations.

5.4 Use Case in Process Mining

A process mining solution provider gives us access to a data set of the purchase
to pay (P2P) service process of a large German company. This process contains
all activities related to the procurement of a product or service. A simplified P2P
process starts with the creation of a purchase order and is followed by the reception
of the respective goods by the logistics department and the invoice which is then
processed over various financial departments in the company. An exemplary process
of this P2P process can be seen in Figure 5.3.

98 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

Star
t

Crea
te

Purc
ha

se

Orde
r Rece

ive

Goo
ds Rece

ive

Inv
oic

e (
M)

Rece
ive

Inv
oic

e (
FI)

Auth
ori

ze

pa
ym

en
t (F

I) Pay

Inv
oic

e (
FI) End

Delivery time

Fig. 5.3.: Typical process variant for a P2P process.

In this use case, we want to predict the throughput time or delivery time (marked
in bold) between the creation time of the purchase order and the reception of the
goods. This information is quite important for the company since all subsequent
process steps such as production can be optimized, and significant cost savings
can be realized. The data is extracted from the business intelligence platform Qlik
and then preprocessed in Python. The foundation of the data set is an event log
that is enriched with numerous additional attributes to fully describe the process.
The attributes are anonymized and transformed to ensure that the data is not
retraceable. In total, we receive data about 70,774 purchase transactions from 2016
until 2018 which we can use to train and evaluate the machine learning approach.
Importantly, those transactions are displayed in chronological order, which is a
necessary prerequisite for an analysis of concept drift over time.

We use the package scikit-mulitflow (Montiel et al., 2018) as the basis of our
analysis since it extends the machine learning package scikit-learn with a stream
data framework. It allows to process data sets and simulate them as a data stream.
Furthermore, different concept drift detectors are implemented and can be evaluated.
We extend the package by implementing the different training modes (last, mixed,
next) which we discussed in Section 5.3.

5.4.1 Data Analysis

We first perform an exploratory data analysis to analyze the available features and
build a predictive model that can be used for the analysis of concept drift in process
mining. Table 5.1 gives an overview on available features of the data set. Categorical
features are one-hot-encoded for the subsequent data processing. Material class
refers to the product category of the purchased product. Regarding this feature, we
only use the first four numbers of the material class in order to reduce the number

5.4 Use Case in Process Mining 99

of different categories resulting in 123 different categories in total. Furthermore,
we have information about the purchase order value. The purchase order value is
an important feature for our endeavor since it is a clear indicator of the relevance
of the respective purchase order for the company. However, the distribution of the
order value is highly skewed which might pose a problem for the prediction model.
Therefore, the values are transformed with a Box-Cox transformation (Box & Cox,
1964) into a gaussian distribution.

Tab. 5.1.: Overview of predictive features.

Feature Variable type
Number of items/
Range of values

Material class categorical 123
Document type categorical 7
Plant code categorical 4
Purchase order value numerical 1 – 458,079
Supplier categorical 799
Bank country categorical 18
Supplier country categorical 14
Purchasing group categorical 75
Throughput time [h]
(Target)

numerical 1 – 120,000

Other features included in the data set are the country of the bank were the payment
is executed and the document type of the purchase order. The document type includes
information about different ways to create a purchase order: e.g., the order is
created manually by an employee in the purchasing department or is based on
existing long-time contracts. Other options include the automatic creation by an
MRP-system. The country of the supplier is also relevant for the analysis. Obviously,
a purchasing process requires more time if the supplier is located in another country
because this leads to additional steps during the sales process such as customs
papers, currency conversion or additional insurance of the transport. The feature
plant code stores information about the plant which initiated the purchase process.
Purchasing group is the department or group at which the purchase order is created
and processed. Furthermore, we also have information about the supplier itself who
is distributing the requested product.

The target variable in this use case is the throughput time or delivery time of a
purchase order. This refers to the amount of time between the first two steps
depicted in Figure 5.3. By considering the delivery time, we ensure that the start of
the purchase process is considered as well as the most important event for production
and workforce scheduling, namely the arrival of the ordered goods. The prediction

100 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

of the estimated arrival time of a product is important because planning processes
can be optimized with this information. This might result in significant cost savings
as well as the minimization of production time due to the optimization of waiting
time.

A histogram of the throughput time can be seen in Figure 5.4. For approximately
50% of all purchase orders, respective products and goods are received within 14
days (<336h). Regarding the remaining purchase orders, another 25% of those
have a delivery time within 60 days. The other purchase orders even have a larger
delivery time, up to 537 days.

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

Fig. 5.4.: Histogram of the throughput time [h].

Due to the challenging distribution of the target variable, we transform the use case
into a multi-class classification problem. Although this leads to an abstraction and
loss of information, this step is meaningful for an initial analysis of the use case.
To transform the target variable, all purchase orders are divided into three equally
sized classes of throughput times as can be seen in Table 5.2. Therefore, the first
class contains purchase orders with a delivery time of up to 6 days. The second class
contains purchase orders with a delivery time between 7 and 39 days and the last
class contains all cases for which the delivery takes more than 40 days. We train a
machine learning model which predicts whether a purchase order will belong to the
short, medium or large throughput time class.

Tab. 5.2.: Overview of multi-class target variable.

Short time Medium time Large time

Delivery time 0 – 6 days 7 – 39 days > 39 days

5.4 Use Case in Process Mining 101

5.4.2 Evaluation of Prediction

We first perform a pretest with various machine learning algorithms in their standard
parameter configuration (Pedregosa et al., 2011): Naïve Bayes, Neural Network,
Support Vector Machine and Decision Tree. The results depicted in Table 5.3 are
computed by performing a 70%-30% train-test-split on the first 2,000 data instances.
We assume that those data instances all belong to the same concept as there is no
significant change observable in the input data. Therefore, we can safely apply the
machine learning algorithms without considering and handling concept drift. Note
that prediction performance on later parts of the data set might be lower due to the
challenges induced by concept drift.

Tab. 5.3.: Pretest with different models on subset of data.

Model Accuracy

Naïve Bayes 0.767
Neural Network 0.805
Support Vector Machine 0.697
Decision Tree 0.740

Naïve Bayes, Neural Networks and Decision Trees all achieve similar accuracy values.
We choose Naïve Bayes classifier as the prediction algorithm which is due to two
reasons: First, Naïve Bayes implements incremental learning which allows incre-
mental uptates of the prediction model. Second, computational complexity of Naïve
Bayes is rather low compared to other machine learning algorithms which allows
frequent retraining of the model without the necessity for a large computational
infrastructure.

Our work mainly focuses on the quantification and handling of concept drift. How-
ever, we do not have any knowledge whether there are any drifts at all in the data
set or at which point in time they are occurring. Therefore, first of all, we analyze
the impact of concept drift by applying a Naïve Bayes classification without any
concept drift detection method—called “static model”—to the entire data set of
70,774 data instances. Subsequently, we apply Naïve Bayes classifier in combination
with a Page-Hinkley test and ADWIN as drift detection methods. As evaluation
metric, we use the accuracy by measuring how often the algorithm predicts the
appropriate throughput time class. This metric is chosen since the instances are
distributed equally over all three target classes.

The course of the accuracy of the static model without concept drift detection and
incremental learning can be seen in Figure 5.5. The first 2,000 data instances are
used for the initial training. Subsequently, we compute the first predictions and the

102 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

accuracy level moves at around 0.7. Then, there is a first drop in accuracy after
approximately 25,000 instances. However, the prediction performance recovers to
around 0.7 shortly after. Subsequently, after approximately 35,000 instances, the
prediction quality of the model decreases significantly. Supposedly, a concept drift
has occurred because the model that is only trained on an initial data batch does
not issue any useful prediction anymore. The accuracy over all predictions reaches
0.5400.

Fig. 5.5.: Accuracy of Naïve Bayes without retraining and no drift detection method.

As usual, it is difficult to determine the underlying reasons for this concept drift with
certainty (Žliobaitė et al., 2016). However, after a thorough analysis of additional
data—which is not available the moment when the prediction is computed—we
identify a possible explanation. The feature automation contains information about
the percentage of process steps in the entire P2P process which are executed auto-
matically by corresponding information systems, while the other steps are executed
manually. Thereby, the feature automation contains information about the level of
automation in all processes. In order to analyze the development of this feature over
time, we compute and plot a rolling mean (window = 1000) of this feature which is
depicted in Figure 5.6.

0 10000 20000 30000 40000 50000 60000 70000
Time

0.3

0.4

0.5

0.6

0.7

0.8

Au
to

m
at

io
n

le
ve

l

Fig. 5.6.: Rolling mean (window 1000) of feature automation.

At first, the rate of automation is rather stable before it rises abruptly and then
fluctuates at a higher level. This plot clearly indicates on how the automation rate
in the organization increases over time and thus, this may be one of the causes for
concept drift and according changes in product delivery times. The sudden rise in
automation maps rather well to the decrease in prediction accuracy in Figure 5.5.

5.4 Use Case in Process Mining 103

Relating to section 5.2, this abrupt change can be seen as a sudden concept drift.
Since this feature is not known at the time of prediction, it can be interpreted as a
hidden context influencing the prediction.

Due to the detected drift, we apply a Page-Hinkley test as concept drift detection
method in combination with the Naïve Bayes classifier. In case of drift, the model is
retrained. The course of the accuracy of the model can be seen in Figure 5.7.

Fig. 5.7.: Accuracy of Naïve Bayes with Page-Hinkley.

At the beginning, the figure looks similar to the model without drift detection
(Figure 5.5 above). After approximately 35,000 instances, this model performs
better because the drift is detected, and a retraining of the Naïve Bayes is triggered.
The accuracy rises again and then stays same level with its corresponding fluctuations
leading to an overall accuracy of 0.6732 (see Table 5.4). This is equivalent to a
performance increase of 24%. Furthermore, we extend this approach by activating
incremental learning. This means that the model is constantly updated with new
training data after it has issued prediction for those data. The application of
incremental learning alone leads to a performance of 0.6717. With both retraining
and incremental learning, the overall prediction accuracy reaches 0.6938.

Tab. 5.4.: Performance of drift detection strategies on process mining data set.

Change detection
Incremental

learning
Accuracy

Performance
increase

None (baseline) No 0.5400 – (baseline)
None Yes 0.6717 24.39%

Yes (Page-Hinkley) No 0.6732 24.67%
Yes (Page-Hinkley) Yes 0.6938 28.48%

We perform a grid search on the first 10,000 data instances in order to optimize
the parameters of the drift detection method ADWIN (δ = 0.001) and Page-Hinkley
(λ = 0.6). With those parameters, we evaluate the different data selection strategies
as discussed in Section 5.3. Table 5.5 depicts the accuracy score of a Naïve Bayes
classifier with incremental learning in combination with a Page-Hinkley test or
ADWIN as drift detection. Furthermore, we examine the influence of four different

104 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

batch sizes (500, 1000, 2000, 5000) on the overall prediction accuracy. This refers to
the amount of data instances which are provided to the model in case of retraining.
The best results are marked in bold in Table 5.5.

As depicted in the table, the data selection strategy last performs always best. For
our use case, Page-Hinkley appears to be the more suitable drift detector resulting in
higher performance. Interestingly, the prediction accuracy decreases with increasing
batch size which might indicate that the approach does not adapt fast enough with
larger batches for retraining. Furthermore, the performance difference between the
different data selection strategies also rises with the size of the batches. For instance,
the difference between last and next for Page-Hinkley with batch size 500 equals
0.0073 in comparison to 0.0164 for Page-Hinkley with batch size 5000.

Tab. 5.5.: Performance of data selection strategies on process mining data set.

Change detection Batch size Incr. learning Last Mixed Next

Page-Hinkley 500 Yes 0.7010 0.6961 0.6937
Page-Hinkley 1000 Yes 0.6965 0.6920 0.6903
Page-Hinkley 2000 Yes 0.6938 0.6845 0.6821
Page-Hinkley 5000 Yes 0.6842 0.6757 0.6678

ADWIN 500 Yes 0.6856 0.6849 0.6843
ADWIN 1000 Yes 0.6854 0.6838 0.6825
ADWIN 2000 Yes 0.6803 0.6775 0.6750
ADWIN 5000 Yes 0.6758 0.6704 0.6675

In general, the evaluation section clearly shows how the prediction performance can
be increased by implementing drift handling strategies. Both, incremental learning
as well as drift detection with retraining, have significant influence on the accuracy.
Best results are achieved with the combination of both approaches.

5.5 Conclusion

Process mining relies more and more on techniques of machine learning. This
work explores the challenge of concept drift for ongoing value creation in process
mining. Specifically, we apply a concept drift detection algorithm on a use case
which aims at predicting the delivery time for all purchase orders of a company.
With this information, the company can optimize its internal service processes. We
can show that concept drift handling significantly outperforms a static model in
the given use case. Best results are achieved by combining incremental learning
with retraining in case of concept drift. Regarding the best training data selection

5.5 Conclusion 105

strategy for retraining, the last approach appears to be the best performing option.
This means that data scientists should rely on the last collected data batch for the
retraining of the prediction model.

The contribution of this paper is twofold. First, we systematically explain and depict
the options for training data selection for the retraining of machine learning models
in case of concept drift. Second, we apply and evaluate those options in a real-life
use case in process mining where we can measure a significant increase in prediction
performance from 0.5400 to 0.7010. Regarding the managerial implication, this
work clearly shows the importance of a continuous monitoring and adaptation
scheme of predictive services in operation. Otherwise, they can quickly lose their
validity and corresponding service offerings will not deliver expected benefits.

However, more research is required to understand the full effects of concept drift and
the best strategies to deal with this problem. This work only describes and evaluates
three options for the training data selection in case of retraining. Future work needs
to evaluate more sophisticated approaches. Additional limitations regarding the
use case arise through the transformation of the target variable from a regression
problem into a multi-class classification problem. Furthermore, we only evaluate the
data selection on one use case. More general recommendations could be derived by
applying those options onto more use cases and benchmark data sets.

This paper clearly shows the importance of constant monitoring of predictive ser-
vices for the detection of concept drifts. Frequent retraining and adaptations of
a machine learning model are necessary requirements to keep and guarantee a
high prediction performance. If practitioners consequently implement necessary
monitoring activities, the economic benefits of predictive services and supervised
machine learning solutions can still even be increased.

106 Chapter 5 Handling Concept Drift for Predictions in Business ProcessMining

Preserving Validity of
Predictive Services over
Time1

6

6.1 Introduction

Due to the large increase of data in recent years, various industries are trying to
reap the benefits of this new resource for their service offerings. Machine learning is
playing an important role in nearly all fields of business, ranging from marketing
over governmental tasks to scientific-, health- and security-related applications
(Chen et al., 2012). Many companies rely on machine learning models deployed in
their information systems for increasing the efficiency of their processes (Schüritz
& Satzger, 2016) or for offering new services (Dinges et al., 2015). As Davenport
(2006) describes, companies which are able to leverage their data sources through
analytical tools achieve a substantial competitive advantage.

However, it is worth regarding how such predictive services based on machine
learning are built, deployed and executed in the long run. Traditionally, supervised
machine learning models are trained using historical data containing input features
and a corresponding target (Hirt et al., 2017). Subsequently, the model is used to
continuously make predictions for a specific service (e.g., the failure of a machine)
on a stream of unseen incoming data. We define such a service as a “predictive
service”. However, data streams typically evolve over time and thus, their data
structure or the underlying probability distribution changes (Aggarwal et al., 2003).
This depicts a challenge since supervised machine learning models are very sensitive
to changes in their input data, e.g., to the adjustment of production parameters
(Tsymbal, 2004). Even small deviations can have significant impact on the deployed
model—drastically influencing its prediction performance and the utility of the

1This chapter comprises an article that was published as: Baier, L.; Kühl, N.; Satzger, G. (2019).
How to Cope with Change? Preserving Validity of Predictive Services over Time. Proceedings of
the 52nd Hawaii International Conference on System Sciences (HICSS), Maui, Hawaii, USA. https:
//doi.org/10.24251/HICSS.2019.133. Note: The abstract has been removed. Tables and figures were
reformatted, and newly referenced to fit the structure of the thesis. Chapter, section and research
question numbering and respective cross-references were modified. Formatting and reference style
was adapted and references were integrated into the overall references section of this thesis.

107

https://doi.org/10.24251/HICSS.2019.133
https://doi.org/10.24251/HICSS.2019.133

predictive service (Russell et al., 2015). However, it is difficult to detect this change
in the input data and, furthermore, to adapt the model accordingly (Tsymbal, 2004).
In the field of computer science, the phenomenon of a changing relation over time
between the input features and the target labels is predominantly called “concept
drift” (Gama et al., 2014).

An example for an application with evolving data over time is a predictive service
which monitors the output quality in a chemical production process and predicts
corresponding failures (Žliobaitė et al., 2016). Such a predictive service relies on the
input data generated by the sensors that the production machine is equipped with.
Sensors wear out over time (Kadlec & Gabrys, 2011) and the resulting measurements
change accordingly, leading to different input data. However—without the necessary
precautions—a machine learning model is not prepared for this change since this
pattern has not been observed before in the training set. Thus, meaningful quality
predictions are impossible to make in the long run, and the service does not keep
up to its promised validity. Therefore, we define a general research question which
guides this research paper:

General Research Question C
How can we design an effective and efficient automated artifact for predictive
services, which ensures their long-term validity?

Based on this general research question, we aim to describe the current status of
predictive services.

Research Question C.1
How can we distinguish between various forms of existing predictive services
with regard to their lifecycle?

For answering this question, this work introduces a definition of predictive services
as well as a framework for characterizing predictive services with respect to their
validity over time. The framework can be used as a support tool for practitioners
during the introduction of a predictive service so that all relevant design options
are considered. Furthermore, the framework allows a thorough analysis as well as
comparison of existing approaches. In demarcation to existing frameworks such as
Gama et al. (2014), our framework includes the setup as well as operation phase
of predictive services. Subsequently, we classify available research papers into the
framework resulting in a heatmap which serves as a foundation for deriving a

108 Chapter 6 Preserving Validity of Predictive Services over Time

research agenda of valuable research topics: The different availability of true labels
during operation as well as methods for domain expert integration.

The remainder of the paper is structured as follows: Section 6.2 presents related
work on which we base our research and introduces a definition of predictive services.
Section 6.3 presents a framework for characterizing aspects of predictive services and
classifies existing practical research on that basis. Section 6.4 introduces research
opportunities that are derived from challenges identified in the previous section.
Section 6.5 discusses our results, describes theoretical and managerial implications,
acknowledges limitations and outlines future research.

6.2 Foundations

To allow for a common understanding, we first introduce the theoretical foundations
for the examination of the validity of predictive services. We give a brief overview
on machine learning for services, followed by an overview of research in com-
puter science that deals with concept drift. Subsequently, we introduce predictive
services.

6.2.1 Machine Learning for Services

Machine learning in general has recently received a lot of attention due to the
massive flow of available data and increasing computation power. Traditionally,
approaches are divided into supervised and unsupervised machine learning (Han et
al., 2012). Supervised machine learning depends on labeled examples in the training
data, whereas unsupervised machine learning aims at detecting unknown patterns in
the data. Most real-word applications of machine learning are of supervised nature
(Jordan & Mitchell, 2015; Kotsiantis, 2007). Therefore, we focus on supervised
approaches in the following. Well-known application examples are the prediction of
a credit rating or the fingerprint matching on current smartphones.

The importance of analytical and machine learning solutions for service science has
been highlighted by the introduction of service analytics (Fromm et al., 2012). Ser-
vice analytics describes the dedicated application of analytical tools such as machine
learning on data created in service systems to improve or extend existing service
offerings. In this context, continuous data streams over time play an important
role. Machine learning is, for instance, applied to monitor click streams on web
pages or to monitor events and notifications (Kambatla et al., 2014). All those

6.2 Foundations 109

examples are confronted with changing data streams over time. Therefore, the next
section introduces definitions as well as solutions developed for this challenge from
a computer science perspective.

6.2.2 Concept Drift

The computer science community has examined the challenge of changing data
streams in machine learning over time under the term “concept drift” (Widmer &
Kubat, 1996). A concept p(X,y) is described as the joint probability distribution over
a set of input variables X and the label or target variable y. However, “in the real
world concepts are often not stable but change with time” (Tsymbal, 2004, p. 1).
This leads to the problem that machine learning models built on previous data are
not valid anymore for new incoming data which requires regular model updates or
retraining. There exists a variety of descriptive definitions of concept drift (Tsymbal,
2004; Widmer & Kubat, 1996; Žliobaitė et al., 2016). A mathematical definition
is given by Gama et al. (2014): pt0(X, y) 6= pt1(X, y) The definition states that we
are facing a concept drift if there is a difference in the concept at t0 compared to
the concept at t1. This change of the joint distribution is challenging for supervised
machine learning models since they are typically trained on a fixed initial training
set (Tsymbal, 2004). However, if the features and the label of the training set just
belong to the concept at t0, the model is only trained to recognize objects of the first
concept whereas it does not know how to handle instances belonging to the second
concept at t1. Changes in the incoming data stream can depend on many internal
or external factors. Therefore, it is intuitive that different types of changes in data
streams can be identified. One popular classification of concept drift depicts four
different types (Žliobaitė, 2010): Sudden concept drift, incremental concept drift,
gradual concept drift and reoccurring concept drift such as seasonal patterns. Webb
et al. (2016) also provide a more detailed taxonomy with categories such as drift
and concept duration as well as drift magnitude.

Gama et al. (2014) introduce a framework which focuses on algorithmic methods
for changing data streams. The framework consists of four categories: Memory,
change detection, learning and loss estimation. A description on application-related
use cases is given by Žliobaitė et al. (2016). They provide a list of 54 research
papers that implement solutions and methods for changing data streams with real
data. Concrete use cases which consider the challenges of concept drift occurrence
can be clustered into monitoring and control tasks (Ivannikov et al., 2009; Pawling
et al., 2007), information management (Delany et al., 2006; Fdez-Riverola et al.,

110 Chapter 6 Preserving Validity of Predictive Services over Time

2007) and analytics and diagnostics tasks (Giacomini & Rossi, 2009; Harries & Horn,
1995).

Based on the foundations in the previous two subsections, we introduce predictive
services in the following.

6.2.3 Predictive Services

We define predictive services as services based on predictions that are acquired
through the application of supervised machine learning models on data available
in its service system environment. Predictive services are fully deployed on a
productive IT infrastructure and thereby are constantly issuing new predictions. The
final objective can either be the delivery of the prediction itself (e.g., forecast for
the market demand for a product) or an action based on the prediction (e.g., the
automated adjustment of the production schedule for a product).

We assume that the validity of predictive services can be affected in two ways: First,
the environment of the service changes, which influences the resulting data, and thus,
the quality of the prediction. This is the case when a sensor on a production machine
wears out over time and delivers less reliable results. Second, the application of
the service itself affects its predictive power over time. The second case can be
illustrated by a predictive policing service indicating the neighborhoods in a city
with the most criminal activities. The local police will accordingly reinforce their
presence in this area which results in a decreasing criminal statistic over time. This
development, however, will invalidate the recommendations of the predictive service
which continues to classify this neighborhood as a high-risk area (Perry, 2013). After
all, any kind of predictive service is facing the challenge of a changing environment
over time; it is just a matter of the time span that is considered.

The example above illustrates the complexity of ensuring the long-term validity of
predictive services. Therefore, the problem requires a comprehensive and inter-
disciplinary analysis. On the one hand, it is necessary to thoroughly examine the
technological side of the problem. On the other hand, the economic side must be
also considered, and benefits or downsides of possible solutions must be assessed.

The next section introduces a framework which can be used to set up a predictive
service and to prepare it for changes in the data stream in order to guarantee the
validity over time.

6.2 Foundations 111

6.3 Conceptual Framework

The framework can be understood as a tool to support the initiation and imple-
mentation of a predictive service. It gives guidance for decisions during the setup
phase of a predictive service but also provides solutions for challenges during the
operation and use of the predictive service. Furthermore, it allows to differentiate
between characteristics of predictive services. At first, we explain the methodology
that we applied for the development of the framework. Subsequently, we introduce
the framework itself which is split into three parts. The first part relates to necessary
design decisions during the setup of a predictive service. The second part displays
the algorithmic options for keeping the validity over time. The third part presents
characteristics that need to be considered during operation, especially the availability
of true labels and the constant evaluation of the service.

6.3.1 Methodology

Gama et al. (2014) provide a taxonomy which explains the different algorithmic
options for handling changing data streams. This taxonomy is the basis for our frame-
work and is mainly reflected in the second part (c.f. section 6.3.3). However, their
taxonomy is missing design decisions during setup as well as operation of predictive
services. The consideration of both phases is (besides the algorithmic methods)
crucial for the development of a successful predictive service. Our framework is
therefore built as an extension to the prevailing taxonomy.

We developed our framework by a rigorous analysis of existing use cases in research
that examine concept drift. We base this analysis on the 54 research papers which
are presented in Žliobaitė et al. (2016), as those include papers from a wide range of
application tasks. We remove all research papers with unsupervised approaches and
those that do not provide sufficient information for in-depth comparisons resulting
in 23 remaining research papers. Based on a forward and backward search on this
list, we identified 11 additional research papers. In total, we included 34 research
papers into our detailed analysis2. During the analysis, we iteratively added or

2Agrawal et al. (2018), Black and Hickey (2002, 2004), Bose et al. (2014), Delany et al. (2006), Ding
and Li (2005), Ekanayake et al. (2009), Fdez-Riverola et al. (2007), Forman (2002), Gago et al.
(2007), Harries and Horn (1995), Harries et al. (1998), Huang and Dong (2007), Ivannikov et al.
(2009), Kadlec and Gabrys (2011), Klinkenberg (2005), Krawczyk (2017), Kukar (2003), Kurlej and
Wozniak (2011), Kurlej and Woźniak (2011), Laghmari et al. (2018), Lebanon and Zhao (2008), Liao
et al. (2007), Luo et al. (2007), Mohamad et al. (2016), Mourão et al. (2008), Pawling et al. (2007),
Soares and Araújo (2016), Sun et al. (2016), Tsymbal et al. (2008), Widyantoro and Yen (2005), Xu
et al. (2017), Zhou et al. (2008), and Žliobaitė et al. (2014)

112 Chapter 6 Preserving Validity of Predictive Services over Time

removed categories as we progressed with the number of research papers. The items
are based on existing literature. If we could not identify suitable literature, we added
the items based on our analysis of the research papers. The resulting framework
needs to be understood as an exploratory tool which still develops over time as new
research papers are included.

6.3.2 Setup Decisions for Predictive Service

Before a predictive service can be offered, fundamental decisions about the setup of
the service must be made. Table 6.1 depicts the different categories for the setup
phase.

Business focus: When designing a predictive service, one of the first steps is to
clearly define the business focus. What is the benefit that the service is delivering
and who is the final user/customer of it? The customer can either be external (e.g.,
a service provider offers constant social media analytics to a customer with a tool) or
internal (e.g., predictive service is used for the improvement of internal processes)
(Schüritz & Satzger, 2016).

Tab. 6.1.: Setup decisions for predictive service.

Business focus External Internal Unknown

Data input Structured Unstructured

Machine
learning task Regression Classification

Domain expert
knowledge

Label
provision

Feature
generation

Model
building

Change
detection None

Type of
change Sudden / Abrupt Incremental /

Gradual Reoccurring Unknown

Data input: A differentiation with regard to the data input which is used for the
predictive service is necessary. Structured data in form of tables (e.g., Žliobaitė et al.
(2014)) can easily be utilized by most machine learning algorithms and change
detection approaches. However, unstructured data (e.g., text data (Lebanon & Zhao,
2008)) is more complex to process and requires more advanced handling techniques,
especially for the change detection.

6.3 Conceptual Framework 113

Machine learning task: A clear definition of the relevant machine learning task
behind the predictive service is indispensable. If the aim is to predict the continuous
value of a target, regression techniques have to be applied (e.g., Ivannikov et al.
(2009)). If the aim is to predict the class membership of an object, classification will
be used (e.g., Black and Hickey (2004)).

Inclusion of domain expert knowledge: The knowledge of domain experts is a
valuable resource for the validity of predictive services (Žliobaitė et al., 2016). Sev-
eral ways in which domain experts can support the development of valid predictive
services have been identified. The simplest way to include domain experts into
the process is the provision of true labels for the service. For instance, a predictive
service is monitoring the quality in a chemical production facility. True labels for the
chemical product can be acquired from experts who examine selected samples in a
laboratory. Domain experts can also be included into the feature generation process
for the machine learning model (Kubat et al., 1998). Especially experienced machine
operators often know which hints and signals are relevant for the prediction of a
machine failure and jointly it can be thought how to transform this information into
a feature for the learning algorithm. It is also possible to explicitly apply knowledge
of domain experts during the model building process, e.g., through the inclusion of
fixed decision rules. Domain experts can also be relevant for the explicit detection
of changes in the data. Human experts supported and empowered by advanced
visual analytics tools can provide more insights than an algorithm alone (Keim et al.,
2010).

Type of change: During the setup phase of a predictive service, expected changes of
the data stream which affect the validity can already be identified. If this information
is known a priori, suitable algorithms can be chosen beforehand. The different types
of changes are based on the definition by Žliobaitė (2010). Sudden concept drift
refers to situation where the data changes abruptly from one time point to another.
Incremental and gradual concept drift both refer to situations where the change in
the data stream happens slower over time. The two types are merged here since
in real use cases the two are mainly not differentiable. Reoccurring concept drift
refers to situations where data changes regularly to already known patterns such as
seasonal contexts.

6.3.3 Algorithmic Decisions

The second part of the framework relates to the algorithmic and technical charac-
teristics of the predictive service. This subsection is built on the research paper by

114 Chapter 6 Preserving Validity of Predictive Services over Time

Gama et al. (2014) which identifies four categories for dealing with changing data
over time:

Memory, Detection model, Learning, Loss estimation. The items for each category
are also based on the work by Gama et al. (2014), however their item specification
is very detailed. During our analysis, we realized that items can be merged without
information loss. table 6.2 contains the corresponding categories as well as the items
that we specified during our analysis.

Memory: Due to the massive amount of data produced in data streams, it is often
infeasible to consider all data instances of a data stream. This category deals with
the memory management of the predictive service. How many instances are stored
for training or retraining of the algorithm? The quantity can range from a single
instance to multiple or all instances. Often, algorithms only consider a window of
the last n instances which are deemed to be still relevant to the algorithm. In cases
with massive computing power or limited size of data in the stream, the algorithm
might also consider all instances. It is also possible that only a sample of past data is
used.

Tab. 6.2.: Algorithmic decisions for predictive service.

Memory Single Multiple
(window)

All (gradual
forgetting)

All (no
forgetting) Sampling

Detection
model

Sequential
analysis

Control
chart

Two
distributions Contextual Others

Learning
mode

Retraining +
single

Incremental +
single

Retraining +
ensemble

Incremental +
ensemble

Loss
estimation Model independent Model dependent

Change detection: Change detection refers to the mechanism that is applied to
detect a change in the data stream. Various approaches have been proposed in
research. In sequential analysis, the values of new data instances are compared to
older values on the basis of statistical tests. Other approaches rely on statistical
process control which is widely applied in chemical production processes. The
algorithm tracks the number of correct predictions over time and if the amount of
false predictions exceeds a predefined threshold, an alarm is triggered. However,
this approach requires the instant provisioning of the true labels after the prediction.
Another way is the application of two time-windows with different size. The statisti-
cal data distributions of the two windows are compared with statistical tests. In case

6.3 Conceptual Framework 115

of a difference, a change or concept drift has happened. Contextual approaches use
time-related measures for change detection.

Learning: As soon as new true labels for previous predictions are available to
the predictive service, the machine learning algorithm behind it might be adapted.
Usually, two different options are available: Retraining, where the old model is
discarded and a new one is trained from the scratch or incremental updates, where
the current model is slightly modified. Incremental learning is closely connected to
the idea of continuous learning where the model never stops to learn according to
the circumstances. Concerning the type of model, it can be differentiated between
a single model or ensemble models where several models are combined for a
prediction.

Loss estimation: Supervised machine learning models rely on feedback/true labels
to optimize their performance. One can differentiate between model-dependent and
model-independent loss estimation methods. Model-independent loss estimation
approaches are more popular where a metric such as accuracy is computed and
evaluated over time. However, some machine learning techniques such as Support
Vector Machines allow the detection of changes in the data based on internal
algorithmic characteristics.

While we now discussed the necessary characteristics of the setup of valid predictive
services, the next section describes challenges during the operation of predictive
services.

6.3.4 Operation of Predictive Service

During the operation of a predictive service, constant updates and improvements
are necessary. Therefore, relevant topics are the acquisition of true labels as well as
the evaluation criteria as depicted in table 6.3.

Label: The availability of true labels during operation is the most relevant feedback
for the optimization of a machine learning algorithm deployed on a data stream.
Therefore, this category is highly important to guarantee the validity and proper
functionality of predictive services. Label availability is differentiated into three
items: Full label, limited label and no label availability.

Full label availability refers to the case where the predictive service can receive
access to all true labels after the prediction. Thus, the service receives feedback to
every single prediction that it issued before, and the algorithm constantly receives

116 Chapter 6 Preserving Validity of Predictive Services over Time

new training data for improvement. Weather predictions are an example for this
item. If the service issues a weather prediction for the next day, we can always
receive the true label for the weather on the following day—and continue to learn
on these insights.

Tab. 6.3.: Operation of predictive service.

Label
availability Full Limited None

Evaluation
criteria

Statistical evaluation
metrics

Statistical evaluation combined
with business impact

Full label availability refers to the case where the predictive service can receive
access to all true labels after the prediction. Thus, the service receives feedback to
every single prediction that it issued before, and the algorithm constantly receives
new training data for improvement. Weather predictions are an example for this
item. If the service issues a weather prediction for the next day, we can always
receive the true label for the weather on the following day—and continue to learn
on these insights.

Limited label availability means that only a fraction of all true labels can be accessed
after the prediction. In this case, the algorithm only receives feedback on its perfor-
mance for a few instances. A further differentiation can be made by determining
whether it is possible to select the instances for which labels are acquired (e.g., true
quality of a specific chemical product can be determined by a laboratory analysis)
or whether it is a random sample. An example for this is a predictive service deter-
mining customer satisfaction and true labels are received by sending a survey to
all customers. However, we do not know who is going to respond to the inquiry.
Therefore, the instances in the sample cannot be influenced and are random.

No label availability describes a situation when it is impossible to acquire labels.
During training of the prediction model, a full data set with labels is available.
However, during operation, when the predictive service is deployed, no true labels
for previous predictions can be received. Therefore, the machine learning model
cannot adapt its predictions to changes in the data. This demands methods that are
specifically robust to outliers and unexpected deviations in the data (Russell et al.,
2015). Reasons for no label availability can be that it is too costly to acquire the true
labels. In other situations, it might just be impossible to receive the true labels, e.g.,
a machine part for whose functionality we can receive true labels with sensors in

6.3 Conceptual Framework 117

a specialized test bench; however, in the field of application these sensors are not
available and therefore labels are impossible to derive.

Evaluation criteria: The traditional evaluation of the performance of machine
learning models is based on statistical evaluation metrics such as accuracy, recall
or F1-score (Han et al., 2012). These metrics are suitable for expressing the mere
algorithmic performance on the use case that is reflected. However, since this work
considers the explicit service based on the algorithm, it is also necessary to study
the business impact of the predictive service, especially the influence of validity
over time (Gama et al., 2014). One way is to examine the influence on profits.
Many use cases where predictive services are applied also lead to imbalanced cost of
prediction mistakes. In case of predictive maintenance, it is costlier to not predict
and therefore miss the failure of a machine resulting in a very expensive stop of
the whole production instead of triggering a false alarm. It is also necessary to
consider the environment where the predictive service is deployed. This refers to
computational but also memory constraints in the IT infrastructure. Investment and
setup costs also need to be considered. This category is closely linked to the business
focus category in section 6.3.2.

6.3.5 Heatmap of Research Papers

In the following paragraph, we classify the 34 research papers which we used for
the development of the framework. The result of this approach is a heatmap which
is depicted in table 6.4.

Many application cases utilize several of the design options in parallel or test different
variations in their approaches. Therefore, the sum of papers per row often exceeds
34. The heatmap indicates the different design options which were chosen by the
different researchers. This allows to understand which of the available solutions
and methods are really implemented for use cases and how often they are used. As
stated above (section 6.3.1), the heatmap has to be understood as an exploratory
tool since we do not map all existing research papers.

The heatmap indicates that current use cases dealing with changing data over time
mainly use structured data for a classification problem with sudden or incremental
changes in the data (e.g., Black and Hickey (2004), Delany et al. (2006), and Zhou
et al. (2008)). There seems to be a lack in the consideration of economic challenges.
Many projects do not name a specific business focus behind the implemented
prediction model (e.g., Ivannikov et al. (2009)). The reason for this may lie in the

118 Chapter 6 Preserving Validity of Predictive Services over Time

academic nature of the projects. Furthermore, most use cases rely on statistical
evaluation only (e.g., Bose et al. (2014) and Kadlec and Gabrys (2011)). However,
this consideration lacks evidence whether its economically viable and useful to
implement such a service.

Tab. 6.4.: Heatmap of existing research classified into framework.

Business focus
External

4
Internal

4
Unknown

26

Data input
Structured

25
Unstructured

9

Machine
learning task

Regression
5

Classification
29

Domain expert
knowledge

Label
provision

17

Feature
generation

18

Model
building

2

Change
detection

1

None
5

Type of
change

Sudden / Abrupt

24

Incremental /
Gradual

31

Reoccurring

2

Unknown

0

Memory
Single

1

Multiple
(window)

25

All (gradual
forgetting)

9

All (no
forgetting)

4

Sampling

3

Detection
model

Sequential
analysis

1

Control
chart
12

Two
distributions

3

Contextual

5

Others

14

Learning
mode

Retraining +
single

15

Incremental +
single

11

Retraining +
ensemble

2

Incremental +
ensemble

9

Loss
estimation

Model independent
33

Model dependent
1

Label
availability

Full
21

Limited
13

None
0

Evaluation
criteria

Statistical evaluation
metrics

31

Statistical evaluation combined
with business impact

3

0 >0 & <5 ≥5 & <10 ≥10 & <20 ≥20

6.3 Conceptual Framework 119

Additionally, so far, the knowledge of domain experts is mainly used for label
provision and feature generation (e.g., Ivannikov et al. (2009) and Klinkenberg
(2005)). Efficient methods for expert integration into model building and change
detection are missing. Most research projects also assume a full availability of true
labels for the predictive service (e.g., Fdez-Riverola et al. (2007), Harries and Horn
(1995), and Pawling et al. (2007)). Only few approaches have been developed for a
limited label availability (e.g., Kurlej and Wozniak (2011)) and there is no approach
in our paper selection which deals with no label availability. However, those two are
the categories that prevail in real-world applications.

6.4 A Research Agenda for Preserving Validity of
Predictive Services Over Time

The heatmap in the previous section indicates that there is still a lack of dedicated
solutions for challenges during the design and operation of predictive services which
remain valid over time. Based on our analysis, we identify two areas where current
research approaches lack solutions so far.

Research Question C.2
Which are suitable methods for ensuring the validity of predictive services with
limited availability of true labels in operation?

True labels for a prediction are a very relevant feedback mechanism for any kind
of machine learning algorithm. However, for a predictive service in operation, this
information is only partly available—if at all (Krawczyk et al., 2017). The proposed
framework already depicts the different possibilities for the available number of
labels. Additionally, Žliobaitė et al. (2016) define temporal dimensions when the
true label is available to the predictive service. They differentiate this temporal
dimension into real-time, time-lag and on demand. Real-time availability means
that the labels are available in the next time period after the prediction. In other
situations, true labels might arrive after a fixed or variable time lag. Asking a user
for feedback is an example for a use case where the true labels can be acquired
on demand. If we combine the temporal dimensions with the volume dimensions,
several different scenarios emerge which are depicted in Table 6.5.

There exist various algorithms for predictive services with full label availability
during operation. However, solutions for the other scenarios when only limited or

120 Chapter 6 Preserving Validity of Predictive Services over Time

Tab. 6.5.: Different scenarios for label availability.

Time

Volume
Next time period Time-lag On demand

Full e.g., Klinkenberg
(2005)

e.g., Black et al.
(2002)

e.g., Fdez-Riverola
et al. (2007)

Limited ? ? ?

None ? (no time differentiation)

no true labels are available to the predictive service are sparse so far. This is depicted
by the question marks in Table 6.5. RQ C.2 aims at developing and establishing
methods for each of the scenarios with a question mark. In case only a limited
number of labels is available, it might be possible to derive the missing labels with
the help of the existing ones (e.g., in form of a semi-supervised approach (Zhu et al.,
2003)). Another approach might be an efficient method for the integration of expert
knowledge which leads to the next research question.

Research Question C.3
How can expert knowledge be leveraged to increase the long-term validity of
predictive services?

The knowledge of domain experts is a very valuable resource in any form of analytical
solution. This research question deals with the challenge on how this expertise can
be leveraged to increase the validity of predictive services. Therefore, this question
aims at examining and evaluating methods for expert knowledge integration. Several
areas for expert integration are already presented in the framework in section 6.3.
With regard to label provision, it is interesting to examine which labelled instances
are most useful for the predictive service in order to improve its importance. One
possible solution could be the application of active learning (Huang & Dong, 2007),
a machine learning technique. In case of changing data, the machine learning model
asks for expert support in labeling the most important instances for ensuring its
ongoing validity. This also relates to the limited label availability in RQ C.2.

Furthermore, a structured method to integrate experts into the model building pro-
cess is necessary. Possible methods can be derived from approaches in other machine
learning areas but also from research streams that already enabled the successful

6.4 A Research Agenda for Preserving Validity of Predictive Services
Over Time

121

integration of expert knowledge, e.g., in decision support systems (Kuusisto et al.,
2015).

Basing a change detection algorithm on expert input requires a constant monitoring
of the predictive service. However, for instance in most production plants, this is the
case anyway. This setup allows to use the strengths of each player involved in this
scenario. The algorithm can provide a constant monitoring and is not distracted by
other activities. The human expert meanwhile can work on other tasks and is only
alerted when unusual patterns are detected in the data. Supported by advanced
visual analytics, the expert can then for instance identify the type of change that
occurred in the data and act accordingly. Another approach is the inclusion of
experts directly in the training phase of the prediction model. Domain experts can
anticipate possible data drifts and a model can be tuned in order to detect these
corresponding drifts.

Independently of the actual method that is applied, the development of an efficient
integration method could also increase the acceptance and understanding of domain
experts for automated decisions made by predictive services which is a common
challenge in practice (Gama et al., 2014). During the answering of the RQs, a strong
focus should lie on the economic evaluation of the proposed solution. Resulting
costs (e.g., setup costs, computational costs during operation) need to be rigorously
compared to the economic consequences of fewer false predictions for the predictive
service.

6.5 Conclusion

Companies are increasingly dependent on data for the offering of their services.
Predictive services, which are services based on predictions by supervised machine
learning, are playing an important role in this context. These services constantly
issue predictions over time which are an important decision support or might even
act autonomously. Therefore, it is of high importance that predictive services work
reliably. However, data streams constantly evolve and change over time and thereby
challenge the proper functionality of the predictive service. This work proposes
research areas to ensure the validity of predictive services over time. The contribution
of this paper is threefold.

First, we provide a definition of predictive services and explain how their validity
over time can be influenced by changing data. Second, based on previous research
projects that are handling changing data streams, we develop a framework which

122 Chapter 6 Preserving Validity of Predictive Services over Time

gives guidance to practitioners but also to researchers for setting up a new predictive
service. Furthermore, it allows to differentiate between existing predictive services.
Third, after classifying the existing research approaches into the framework, we
identified two areas for improvement: The label availability in operation as well as
the integration of domain experts. Correspondingly, we developed a research agenda
which aims at developing solutions for those challenges. The derived research
agenda is of high importance to any endeavor dealing with predictive services. It
is important that such services are resilient against changes in the incoming data
streams.

Besides these contributions, this work has limitations. Validity is only one aspect
of predictive services which needs to be examined. However, a holistic view on
predictive services requires that also other aspects such as organizational challenges
are considered. Companies need to ensure that they have the required resources
such as a skilled workforce and IT infrastructure available. Furthermore, legal
requirements are gaining more and more importance. The introduction of GDPR
in Europe poses many challenges for most companies (Zerlang, 2017). Predictive
services often rely on personal data (e.g., the operators of a machine) or are based
on IP-relevant data sources.

With regard to the developed framework, we are aware that the number of papers
that we analyzed is limited, and we do not claim to have included all relevant
research papers. As new papers are added to the framework, it still might change
and adopt. Since this is work is a research agenda, its content is rather conceptual
and further quantitative evaluation of the problems stated is needed. By conducting
expert interviews with practitioners, we plan to further refine the research demand
and the possible solution space.

The use of predictive services in productive environments is only at the beginning
of its development. In the future, more and more services will rely on automated
decisions based on machine learning algorithms. Therefore, it is very worthwhile to
investigate methods to guarantee the long-term validity of those services.

6.5 Conclusion 123

Part IV

Concept Drift Handling for Regression
Problems

Handling by Switching Models
- the Error Intersection
Approach1

7

7.1 Introduction and Related Work

Due to the large increase of data in the last decade, various industries are examining
how to reap the benefits of this new resource. Machine learning is playing an
important role in this context by transforming and (semi-)automating established
business processes, spanning from marketing to operations (Chen et al., 2012).
Typically, companies rely on machine learning models for increasing the efficiency
of their processes or for offering new or improved services and products (Schüritz
& Satzger, 2016). Typical applications of machine learning range from computer
vision over speech recognition to natural language processing but also the control
of manufacturing robots. Thereby, these techniques are especially influencing data-
intensive tasks such as consumer services or the analysis and handling of faults
in complex production systems (Jordan & Mitchell, 2015). Nowadays, most of
these problems are tackled with supervised machine learning algorithms (Jordan &
Mitchell, 2015) where the algorithm depends on labeled training data.

Machine learning can create ongoing value when the resulting models are deployed
in the information systems of the respective company and deliver ongoing recom-
mendations and optimized decisions on continuous data streams (Baier, Kühl, et al.,
2019). However, data streams usually evolve over time and thus, their underlying
probability distribution or their data structure changes (Aggarwal et al., 2003).
The challenge of changing data streams for supervised machine learning tasks has
been described with the term “concept drift” (Widmer & Kubat, 1996). The joint

1This chapter comprises an article that was published as: Baier, L., Hofmann, M., Kühl, N., Mohr,
M., & Satzger, G. (2020). Handling Concept Drifts in Regression Problems – the Error Intersection
Approach. Proceedings of 15th International Conference on Wirtschaftsinformatik, Potsdam, Germany.
https://doi.org/10.30844/wi_2020_c1-baier. Note: The abstract has been removed. Tables and
figures were reformatted, and newly referenced to fit the structure of the thesis. Chapter, section
and research question numbering and respective cross-references were modified. Formatting and
reference style was adapted and references were integrated into the overall references section of this
thesis.

127

https://doi.org/10.30844/wi_2020_c1-baier

probability distribution of a set of input variables X and the label y is described as
concept p(X,y). However, “in the real world concepts are not stable but change with
time” (Tsymbal, 2004, p. 1). This fact indicates that machine learning models built
on previous data might not be suitable for making predictions on new data. There-
fore, it is necessary to frequently adapt the prediction approach. A mathematical
definition of concept drift can be expressed as follows (Gama et al., 2014):

∃X : pt0(X, y) 6= pt1(X, y)

This definition explains concept drift as the change in the joint probability distri-
bution between two time points t0 and t1. Changes in the incoming data stream
can depend on a multitude of different internal or external influences. Usually, it
is impossible to measure all of those possible confounding factors in an environ-
ment—which is why this information cannot be included in the predictive features of
a machine learning model. Those factors are considered as “hidden context” of the
machine learning model (Tsymbal, 2004). Concept drifts in data streams are usually
classified into the following types (Žliobaitė, 2010): Sudden or abrupt concept drift
refers to situations where the data changes very quickly. A typical example for
this drift type is the sudden failure of a sensor. Incremental and gradual concept
drift is characterized by slower and more gradual changes, for instance preference
shifts in a whole population. Reoccurring drift is determined by seasonal patterns
such as ice cream sales in summer. There exists also a more detailed taxonomy
for characterizing drifts which also contains categories such as drift duration and
magnitude (Webb et al., 2016).

Figure 7.1 gives an overview on strategies which can be applied for detecting and
handling concept drift. The first dimension refers to the application of an explicit
drift detection algorithm. The second dimension describes the adaptations of the
underlying machine learning model. The simplest option is the development of a
robust, static machine learning model which is trained once and then deployed for an
ongoing prediction (Guajardo et al., 2010), the upper left case in Figure 7.1. Other
approaches continuously adapt the prediction model, e.g., with a sliding window
where new data instances are continuously used to adapt the prediction model
(Kuncheva & Žliobaite, 2009). Such approaches rely on an ongoing adaptation of
the prediction model. Depending on the complexity of the model, this requires a
lot of computational power. Furthermore, time constraints might also not allow the
retraining of the entire model before the next prediction is required, especially in
environments with limited resources, e.g., on mobile devices (Oneto et al., 2015).
The lower part of Figure 7.1 depicts approaches which rely on a dedicated drift

128 Chapter 7 Handling by Switching Models - the Error Intersection Approach

detection. Drift detection can be handled by an algorithm which detects drifts in
the incoming data or the distribution of the prediction error. Based on detected
drifts, the model can either be retrained (Ivannikov et al., 2009) or another model
can be applied. Approaches with and without drift detection are also named as
active and passive approaches (Ditzler et al., 2015). Various explicit drift detection
(active approach) approaches have been proposed, among others the most popular
ones such as Page-Hinkley (Page, 1954), ADWIN (Bifet & Gavaldà, 2007), EDDM
(Baena-Garcia et al., 2006). Those drift detection approaches are often used as
benchmarks for new drift detection methods. All of these methods have in common
that they observe the misclassification error to detect drifts in the data.

Model Adaptation

No Yes

D
ri

ft
 D

et
ec

ti
on N
o Static model

(this work) Window-based approach

Ye
s Drift detection with

model change (this work)
Drift detection with
model adaptation

Fig. 7.1.: Model adaptation and drift detection options.

Interestingly, predominant approaches for concept drift adaptation focus on classifi-
cation tasks (Cavalcante et al., 2016) and require the statistical properties of a target
variable with binomial distribution. However, many machine learning challenges
need to be modeled as regression tasks, e.g., 20 out of 89 studies applying machine
learning and being published in ECIS and ICIS between 2010-2018 are regression
problems. In this case, approaches for classification cannot be applied or at least
require costly adaptation measures which might potentially harm their performance.
Therefore, this work focuses on the application of concept drift strategies for regres-
sion tasks which leads to the general research question of this work and the overall
research endeavor.

General Research Question D
How can we address concept drifts in regression problems?

Existing approaches for drift detection on regression problems focus on the compu-
tation of dedicated drift detection features on the input data in order to detect drifts
(Cavalcante et al., 2016). In contrast to this, we want to develop an approach based
on the prediction error of various models in regression problems. In statistics, a

7.1 Introduction and Related Work 129

similar problem is the detection of structural changes in time series data (Verbesselt
et al., 2010; Zeileis et al., 2003), a powerful tool to understand and analyze complex
interdependencies such as in econometric models (Fernald et al., 2017). Research in
this domain is closely related to unit root testing for time series where the character-
istics of a stochastic component (besides a deterministic component) are examined.
However, researchers have shown that unit root tests can lead to misleading results
when not considering structural breaks in the time series (Perron, 1989). An appli-
cation of those methods requires the full input data, i.e. the complete time series, as
well as a prior definition of the number of structural breaks to be expected (Perron,
1989). Therefore, those methods can only be applied in hindsight after the time
series has been completed which makes them less suitable for the application in
the scenario depicted in this work. An adaptation of a prediction model months or
even years after the occurrence of a concept drift does not promise large increases
in predictive performance.

Other techniques rely on ensemble methods which have been widely studied and
applied for concept drift (Sun et al., 2017; Xiao et al., 2019). Those methods usually
rely on an incremental update of each model’s importance and parameters. The
importance of one model for the overall prediction is decreased and its parameters
are adapted if the prediction error of the last prediction is rather large (Soares &
Araújo, 2015).

The novel approach introduced in this paper—labeled as Error Intersection Ap-
proach (EIA)—utilizes static prediction models which are alternated based on the
development of the error curve. Static models have the advantage that they need
to be implemented only once and can also be scrutinized and tested extensively
before they are deployed in production for ongoing predictions. Usually, companies
are reluctant to deploy models that adapt and change automatically such as the
above described ensemble methods due to the fear of bugs and unexpected behavior
(Dunning & Friedman, 2017). In general, such black-box approaches are regarded
critically due to the limited explainability of the issued predictions. Furthermore, our
static model approach compared to dynamic models does not need to be retrained
frequently which saves a significant amount of computational power as well as time.
This advantage is especially important when machine learning models are deployed
on local computing units, such as wireless sensor networks (Alsheikh et al., 2014).

EIA is inspired by the paired learner method for concept drift in classification tasks
(Bach & Maloof, 2008). This method uses differences in prediction accuracy between
a stable—but more accurate machine learning model and a reactive, simple model
to detect drift and to trigger a retraining of the stable model. However, we focus on

130 Chapter 7 Handling by Switching Models - the Error Intersection Approach

regression problems and we also do not want to replace existing models in case of
drift:

Research Question D.1
How can we design drift detectors utilizing multiple static models for regression
problems?

For answering this question, we are building EIA based on two prediction models,
one simple forecast model and a complex neural network model. EIA analyzes and
takes advantage of the different degrees of complexity between the two models.

As application domain, this work performs demand forecast for mobility solutions
which has been investigated before in IS and related disciplines, e.g., by predicting
demand for carsharing services (Kahlen et al., 2017). However, this work focuses on
the prediction of taxi demand in different taxi zones in New York City (NYC). The
dataset is publicly available and provides information about every taxi trip which
has been performed since January 2009. Due to the long timespan of the dataset,
different types of drift can be observed, which indicates its suitability for the task
at hand. Related work already investigated the problem of predicting taxi demand
based on this dataset with complex prediction models such as LSTM or convolutional
neural networks (Xu et al., 2018; Zhang et al., 2017). However, those approaches
focus on optimizing the prediction error on shorter time spans. In contrast, we use
this dataset for evaluating the long-term prediction of taxi demand on a test set of
6.5 years under the investigation of concept drift—and do so with our proposed
approach.

The remainder of this paper is structured as follows: Section 7.2 presents the
application domain and illustrates some of the existing drifts in the taxi demand
data. Section 7.3 describes the design of EIA and the corresponding benchmarks.
Section 7.4 introduces the results and explains the evaluation of our proposed
approach. Section 7.6 discusses our results, describes theoretical and managerial
implications, acknowledges limitations and outlines necessary next steps.

7.2 Use Case

This section describes the underlying dataset with taxi rides in NYC as well as some
exemplary concept drifts which largely influence the prediction models.

7.2 Use Case 131

7.2.1 New York City Taxi Dataset

The NYC taxi trip dataset (TLC, 2019) is provided by the New York Taxi and
Limousine Commission (TLC) and contains information about all taxi trips that are
conducted in NYC. We work with the taxi data from January 2009 up to June 2018.
TLC provides information about the taxi trips separately for yellow taxis, green
taxis and For-Hire-Vehicles (FHVs) respectively. Yellow taxis mainly operate within
Manhattan, whereas green taxis are only allowed to operate outside of Manhattan.
Furthermore, FHVs include ride-hailing services such as Uber. In this work, we
are focusing on the yellow taxis since only their data is available for the overall
timespan from the beginning in 2009. By focusing on a long-term duration, we
expect more frequent and more significant concept drifts (e.g., weather, rise of Uber)
to be present. In total, this gives us access to around 1.4 billion rides with yellow
cabs.

With regard to preprocessing the data, we first remove outliers where distance or
duration of a taxi ride are equal to zero. All trips before 2016 contain the exact
geolocation of the start as well as the end of the taxi trip. All subsequent taxi
trips only refer to the more high-level taxi-zones of pickup and drop-off of the
passengers. Therefore, we match the previous exact geolocation data with the taxi
zones introduced in 2016. Subsequently, we aggregate all taxi trips to identify the
hourly demand per taxi zone. In this work, we focus on the 20 largest taxi zones
because those already account for 60% of the overall taxi demand. This leads to a
demand history with 83,231 hourly taxi demands for each of the 20 taxi zones.

7.2.2 Exemplary Drifts

To lay the foundation for our work, we describe exemplary concept drifts which
we have identified in the taxi demand dataset. One source of change is the market
entry of new competitors in the passenger carriage business which has already been
discussed in related literature (Cramer & Krueger, 2016). Uber already launched its
service in NYC in 2011 with a small fleet of drivers. However, the tracking of FHVs
by the TLC only started back in 2015. Therefore, we do not have any information
with regard to the use of Uber, Lyft etc. before that date. Figure 7.2 shows the
overall demand trajectories for both Yellow cabs and Uber over the entire time span.
At first, demand for yellow cabs rises steadily between 2009 and 2012. After 2012,
however, the overall trend clearly indicates a decreasing demand due to the rise of
new competitors. The typical demand pattern during the course of a year stays fairly
constant during the whole duration. Referring to the previously introduced concept

132 Chapter 7 Handling by Switching Models - the Error Intersection Approach

drift patterns, the decreasing demand for yellow taxis over time can be described as
an incremental concept drift where data patterns slowly evolve. However, we need
to be careful with assumptions about the exact time as well as impact of drifts in this
real-world dataset since there is no ground truth describing the exact characteristics
of this drift as opposed to simulated data (Tsymbal, 2004). Furthermore, changes in
the real-world are often related to a multitude of factors.

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ri

de
s

1e7
Yellow Taxis
Uber

Fig. 7.2.: Overall NYC yellow cab and Uber demand per month.

Another source of drift in the dataset are extreme weather events such as hurricanes
or thunderstorms. Taxi demand naturally adapts to those unusual weather situations.
Figure 7.3 depicts the taxi demand during the course of Tuesday, January 27th, 2015
(in blue) and the average demand on Tuesdays in 2015 (in red) as well as the 25%
and 75%-quantile of the average demand.

0 4 8 12 16 20 24
Hour

0

2500

5000

7500

10000

12500

15000

17500

Ri

de
s

Demand on Tue., 2015-01-27
Avg. demand on Tue. (2015)
25%/75%-quantile of Tue. demand (2015)

Fig. 7.3.: Taxi demand during a blizzard on 2015-01-27.

7.2 Use Case 133

It is obvious that the average demand and the demand on January 27th clearly
deviate. The blue line indicates nearly zero demand during nighttime and early
morning which is due to a blizzard which passed by NYC with declared snow
emergencies as well as enacted travel bans. In contrast to the incremental drift
example above, this event can be regarded as a sudden concept drift. Another
example for sudden drifts in the dataset is the occurrence of special events such as
festivals in dedicated taxi zones. In this case, the demand for taxi rides is suddenly
increased dramatically in comparison to usual demand patterns.

When applying a machine learning model to predict future taxi demand, we are
aware that one could probably increase significantly the predictive power of a
model by including external data such as weather data, competitor data or an
events calendar. However, the focus of this work is not to provide the best possible
demand prediction. We aim at examining and quantifying the effect of concept drifts
in real-world situations. Therefore, we will consider weather and other facts as
external hidden variables (see Section 7.1) that we cannot observe in the application
environment. This requires an adequate preparation and adaptation of the applied
prediction model.

In this particular use case, it seems rather easy to identify factors (e.g., weather etc.)
which have a large influence on the prediction power of a model as well as how to
include this information as predictive features. This might also be due to the nature
of the overall project since nearly everyone has already used a taxi as a means of
transportation. However, in hindsight, it is often easier to identify unusual demand
patterns and subsequently investigate the underlying reason. For a predictive model,
though, this information is required in real time. Furthermore, including weather
features in this use case and disregarding other unidentified influencing factors
might lead to overfitting of drift behavior on weather phenomena.

In other use cases and application areas, it is often very difficult or impossible at all to
identify influencing variables apart from the obvious dataset (Stowers et al., 2016).
In case those can be identified, it is often impossible to measure and quantify those
factors. Therefore, we decide to restrain the inclusion of external data sources in this
work. Furthermore, after a thorough analysis of our data, we also have identified a
lot of fluctuations and abnormalities in the dataset where it is impossible to identify
the underlying reason without additional knowledge. Usually, drift detection and
adaption approaches are evaluated based on simulated datasets. In this work, we
want to evaluate our drift detection approach (EIA) based on a real-world dataset.

134 Chapter 7 Handling by Switching Models - the Error Intersection Approach

7.3 Design of the Error Intersection Approach

With the introduction of various examples for drifts in the NYC taxi dataset at hand,
it is necessary to develop a prediction strategy which accounts for those concept
drifts and provides reasonable predictions. As described in Section 7.2, we assume
incremental as well as sudden concept drift to be present in this dataset. Since
those two types of concept drifts are fundamentally different and require adapted
handling strategies each, we decide to focus on sudden concept drift in this work.
We propose an approach which relies on two different prediction models.

Ensemble methods have been widely used in concept drift adaptation methods
(Gama et al., 2014). Usually, those approaches rely on the combination of various
models with an average of the delivered predictions to increase the overall perfor-
mance. However, in this work, we propose a different approach which uses the
predictions issued by two static models with different complexity to detect drift
in the data and adapt the prediction accordingly. This approach is depicted in
Figure 7.4. As first model, we use a simple model (Msimple) which is only influenced
by the most recent demand in the respective taxi zone. As second model, we apply
a neural network (Mcomplex) which receives as input a large demand history over
all taxi zones. During normal times, Mcomplex is applied because it successfully
captures the general demand structure and therefore is able to compute accurate
predictions for the taxi demand in the respective taxi zone. However, during times
with sudden concept drifts, Mcomplex cannot provide accurate predictions since the
demand patterns clearly deviate from the usual trajectories. In those cases, Msimple

is applied because it can quickly adapt to current demand changes. By design, this
approach is presumably only able to deal with sudden concept drift since incremental
drifts require frequent adaptations of the predictions models which is not the focus
of this work. The switch between models is triggered by an intersection of the
prediction error curves of Mcomplex and Msimple. Therefore, we call this the “error
intersection approach” (EIA). EIA is feasible since we always receive the true label
for the prediction after the course of one hour.

EIA is inspired by a streaming architecture for deploying machine learning models
(Dunning & Friedman, 2017) which suggests the deployment of several individual
and independent prediction models. This way, it can be guaranteed that a prediction
can always be issued in time for a new data instance. Furthermore, EIA is based
on the paired learner approach (Bach & Maloof, 2008) which uses differences in
prediction accuracy between a stable and a reactive machine learning model to
detect drifts.

7.3 Design of the Error Intersection Approach 135

Data stream
(past taxi demand)

Simple model
(Msimple)

Complex model
(Mcomplex)

Compare predictive
performance and

switch between models

Fig. 7.4.: Design approach of EIA.

Msimple is a baseline model often used in time series forecasting literature (Hyndman
& Athanasopoulos, 2018). It just predicts the demand value from the last period in
the respective taxi zone. This model does not learn any parameters but is very good
at capturing current trends.

Mcomplex is a neural network which contains as input features the regions and the
current weekday as one-hot encoded vector. Furthermore, it receives the demand of
the last 24 hours as well as the demand during the same hour on the same weekday
in the four past weeks. Additionally, we include cosine and sine features to depict
that hours and months are cyclical features to improve prediction performance as
suggested in literature (Hernández et al., 2013).

coshour = cos(h ∗ 2 ∗ π
24), sinhour = sin(h ∗ 2 ∗ π

24)

To compute the respective features regarding months, the denominator is adapted
to 12. We use 128 neurons in the hidden layer with a “relu” activation function and
the network is trained using 50% dropout. Similar network architectures have been
used before for taxi demand prediction (Liao et al., 2018).

7.4 First Evaluation

This section introduces first results with the previously proposed design. Figure 7.5
illustrates the applied combinations of drift detectors and models for the prediction
of the taxi demand. The upper part of the table (in red) describes the combinations
that have been implemented so far. The lower part of the table (in blue) contains
the options that need to be pursued in future work.

As error measure, we apply the Root Mean Squared Error (RMSE) which is the
standard metric to evaluate taxi demand predictions on the NYC dataset (e.g., Zhang
et al. (2017)). Furthermore, we compute the Symmetric Mean Absolute Percentage

136 Chapter 7 Handling by Switching Models - the Error Intersection Approach

Ensemble Drift Detector Applied prediction
model

Retraining after
drift detection

No n/a 1 (Msimple or Mcomplex) No
Yes n/a 2 (Msimple and Mcomplex) No
No Page-Hinkley

ADWIN
EDDM
EIA

2 (Msimple and Mcomplex) No

No EIA N models (e.g. LSTM) No
No EIA N models (e.g. LSTM) Yes

Th
is

 w
or

k
Fu

tu
re

w

or
k

Fig. 7.5.: Overview of applied drift-detector and model combinations in this work and for
future work.

Error (SMAPE) as a relative error measure. Demand from 2009 up to 2011 is
considered as training data, whereas demand after 2012 is used as test data.

As baseline, the performance of Mcomplex and Msimple alone on the dataset is eval-
uated. Msimple does not contain any parameters and therefore cannot be updated.
However, with regard to Mcomplex, we retrain the weights once a year so that
Mcomplex can adapt to the general trend of the taxi demand over the years. This
means that the forecast for 2012 is performed with a model trained on data from
2009-2011, the forecast for 2013 is issued by a model trained on data from 2010-
2012. As additional baseline, we build an ensemble from both models’ predictions
since existing drift handling strategies for regression usually are built this way (see
Section 7.1). We compute the Exponential Weighted Moving Average (EWMA) of
the last 6 predictions errors of both models respectively and determine the sum of
errors. Subsequently, we compute the contribution of each model to the sum of
errors to determine the weights of each model for the ensemble prediction (e.g., if
Mcomplex accounts for 1/3 of the sum of errors, its weight for the next prediction
are 2/3). Furthermore, we test the established methods Page-Hinkley (PH), ADWIN
and EDDM as drift detectors. When those methods detect a drift, the switch be-
tween the two prediction models is performed. Since EDDM can only be applied to
classification problems, we need to transform the regression problem (Xiao et al.,
2019). EIA (see Section 7.3), in contrast, switches between models based on the
EWMA of the prediction errors in the last 6 hours. The model with the lower recent
prediction error (either Msimple or Mcomplex) is the active model for computing the
next prediction. After issuing the prediction, the error terms are evaluated once
more and the model for the subsequent hourly prediction is selected.

7.4 First Evaluation 137

Table 7.1 introduces the results for the overall prediction performance of the different
approaches on the test set. Not surprisingly, Msimple produces the highest RMSE by
far, which portrays the worst result. This model is just too simple for producing a
good overall forecast. In contrast, Mcomplex already performs well with an RMSE of
50.478. Standard drift detection methods seem to work reasonably on this dataset;
however, their application leads to a worse performance compared to Mcomplex. EIA
is depicted in the last row and shows a better performance than Mcomplex alone. The
amount of model switches is depicted in the second column.

Tab. 7.1.: First results of EIA in comparison to benchmarks, based on RMSE and SMAPE
(the lower the better).

Approach # Model switches RMSE SMAPE

Msimple n/a 115.871 13.80%
Mcomplex n/a 50.478 6.01%

Ensemble (EWMA) n/a 58.381 6.75%
ADWIN 70 97.657 11.64%
EDDM 30 112.783 13.47%

EIA 365 50.370 5.98%

The effectiveness of EIA is illustrated in Figure 7.6 which depicts the demand
predictions during the blizzard in 2015 (see Figure 7.3). In the beginning, EIA (red
dashed line) always chooses Mcomplex because of the lower prediction error (black
line). However, at around 4pm of January 26th (marked by a black vertical line),
the approach switches to Msimple (lower error curve in grey), which can quickly
adapt to the unusual demand pattern. Mcomplex clearly fails to predict this behavior
correctly (e.g., peak of the error curve at around 6pm).

7.5 Discussion

The absolute difference in RMSE between EIA and Mcomplex seems to be rather small.
However, in total, we average over more than 1.13 million predictions. Therefore,
we perform a Diebold-Mariano test to compare the predictive performance between
EIA and Mcomplex (Diebold & Mariano, 2002). With a p-value of 1.89 * 10-7, we
can conclude that there is a significant difference in forecast performance between
the two approaches. The absolute small difference can be explained by the fact EIA
only chooses Msimple in 1.24% of all necessary forecasts (706 out of 56,951 hourly
forecasts in total). This means that in 98.76% of all forecasts, the predictions of
EIA and Mcomplex are the same. However, during those 706 hourly forecasts where
Msimple is chosen by EIA, the prediction performance is largely improved by 8.4%

138 Chapter 7 Handling by Switching Models - the Error Intersection Approach

1-26 6am

1-26 12pm

1-26 6pm

1-27 12am

1-27 6am

1-27 12pm

1-27 6pm

1-28 12am

Date

0

100

200

300

400

500

600

Pr
ed

ict
ed

 D
em

an
d

Page-Hinkley
Ensemble
EIA
Real demand
Error Mcomplex (EWMA)
Error Msimple (EWMA)

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

6-
ho

ur
 E

W
M

A
of

 R
M

SE

Model switch Model switch

Fig. 7.6.: Predictions of EIA during blizzard on 2015-01-27.

(RMSE EIA: 75.31 vs RMSE Mcomplex: 82.21). This is a good indication for the
effectiveness of the approach and the share of Msimple might be larger on a different
dataset with corresponding impact on the difference in predictive performance.

The superiority of EIA compared to established drift detectors such as PH can
probably be explained by information asymmetry: EIA uses the information of two
prediction models and their error curve to select the current optimal model. PH, in
contrast, works by analyzing the development of the prediction error of only one
prediction model (in our case, either Mcomplex or Msimple) and therefore has access
to less information resulting in model switches at unfavorable points in time.

This argument does not hold true for the ensemble approach since both models
are used to compute the resulting predictions. However, performance loss in this
case might be explained by the overall bad performance of Msimple: The weight
for each model is determined by considering the past prediction errors which will
generally lead to a high weight for Mcomplex. Nevertheless, Msimple will almost
always also receive a weight larger than zero, thereby negatively impacting the
ensemble prediction.

Furthermore, we analyze for EIA on which days Msimple is applied the most. This
way, we can identify in hindsight the days with most significant concept drifts.
Table 7.2 shows an excerpt of days with a frequent use of Msimple for a prediction
as well as the corresponding special events (drift cause) on that day. The second
column depicts the absolute improvement in RMSE of EIA compared to predictions
by Mcomplex alone. In most cases, drift is triggered by unusual weather events or

7.5 Discussion 139

public holidays. However, we also find several days (e.g., August 1st, 2013) where
we are not able to identify the underlying reason for the drift cause. This depicts
the strengths of EIA since it does not require any additional data compared to an
explicit integration of features such as weather or public holidays (see explanation
in Section 7.2). Furthermore, we compared taxi demand during New Year’s Eve for
several years: In 2012, for instance, taxi demand peaked before midnight whereas
in 2017, the highest demand occurred after midnight. This variability complicates
the learning process even if an explicit feature for holidays is included. In future
work, we want to perform a more comprehensive analysis of these results in order
to understand when it is most suitable to apply the approach.

Tab. 7.2.: First results of EIA in comparison to benchmarks, based on RMSE and SMAPE
(the lower the better).

Date
Abs. RMSE

Improvement
Predictions

by Msimple

Probable
Drift Cause

2012-07-04 5.07 14/24 4th of July
2012-10-29 24.41 22/24 Hurricane Sandy
2012-12-25 9.22 17/24 Christmas Day
2013-08-01 9.35 10/24 ? (unknown)

...
2017-06-25 5.48 10/24 ? (unknown)
2018-03-21 15.21 14/24 Cyclone (Nor’easter)

7.6 Conclusion

In the work at hand, we explore a novel approach (“error intersection approach”)
for concept drift handling for supervised regression tasks. Established drift detection
methods usually focus on classification problems. Our approach, in its core, depicts a
strategy to switch between the application of simple and complex prediction models
which is designed to deliver superior performance results in real-world data sets
prone to concepts drifts. We hypothesize that the drift detector allows to play out
the individual strengths of each model, switching to the simpler model if a drift
occurs and switching back to the complex model for typical situations. To illustrate
our suggestion, we instantiate the approach on a real-world data set of taxi demand
in NYC. For this very data set, we are aware of multiple drifts, e.g., short-term drifts
such as the weather phenomena of a blizzard. We apply different, typical predictive
models for regression tasks and are able to show that our suggestion outperforms all
regarded baselines significantly.

140 Chapter 7 Handling by Switching Models - the Error Intersection Approach

Obviously, these results are preliminary and have certain limitations. Our prediction
is presumably worse than very complex CNN and LSTM architectures (Liao et al.,
2018; Xu et al., 2018). Also, we have not tested other powerful machine learning
techniques such as XGBoost (Chen & Guestrin, 2016). However, previous work has
evaluated those models only on shorter test periods (2 and 6 months respectively).
Furthermore, models from related work reveal no insights on their effectiveness
for drift handling, while EIA offers more transparency (e.g., how often were the
model switched, when was which model used, etc.) and, therefore, allows for more
interpretability (Gilpin et al., 2018). Still, the applied approach is (presumably)
only meaningful when sudden concept drift is expected. To further explore this,
more research is required to formulate clear guidelines on the precise cases in which
we can recommend the use of the suggested approach. Furthermore, our approach
is only feasible when the true label for a delivered prediction can be acquired
afterwards, which might not be the case in all applications. However, this limitation
also holds true for established drift detection methods.

In future work, we aim to further develop EIA regarding several aspects. To examine
generalizability, we aim to test the effectiveness of EIA on a different dataset. A
simulation study might be a worthwhile tool in this context. Furthermore, we want
to extend our work on the drift detection algorithm. Additionally, on the presented
data set, it will be interesting to identify regions with the highest drifts where it is
most appropriate to apply EIA. Furthermore, EIA in its current form is rather basic,
as we only regard one change detection and only switch between two models—a
simple and a complex one. In future work, we aim to employ more sophisticated
change algorithms, but also investigate approaches with more models, e.g., very
simple/average/very complex. Finally, we did not regard models with immediate
retraining after the drift detection—which also remains an interesting option for
future work.

7.6 Conclusion 141

Handling by Switching
Adaptation Mode - the
Switching Scheme1

8

8.1 Introduction

Artificial intelligence in general and machine learning in specific are omnipresent
when it comes to automation capabilities in information systems (Schüritz et al.,
2017). While there is an ever-growing body of knowledge on machine learning
methods, their application as well as their impact on socio-technical systems, only
a minority of research considers the effects when machine learning models are
incorporated into (existing) systems. Therefore, it is important to put more focus
on this “deployment” step (Shmueli & Koppius, 2011) and the choices associated
with it—as a successful deployed machine learning artifact is important to ensure
constant performance as well as the trust in the artifact by its users. Especially,
trust is of major importance when it comes to the acceptance of new technologies
(Söllner et al., 2016). Therefore, it must be in the best interest of researchers and
practitioners to ensure that machine learning models are not only explored in theory
and isolated proof-of-concepts—but also in their deployed environment to assure
long-term trust in the implemented solutions (Wang & Benbasat, 2005).

The aspects of machine learning artifact deployment are manifold (Baier, Jöhren,
et al., 2019): ranging from data access (Lennerholt et al., 2019), scalability (Baier,
Jöhren, et al., 2019) and security (Barreno et al., 2010) up to interface design
(Buitinck et al., 2013). However, one aspect needs to be incorporated into the very
early design of the models: The phenomenon of changing data over time, usually
referred to as concept drift (Tsymbal, 2004). While articles in the field of computer

1This chapter comprises an article that was published as: Baier, L., Kellner, V., Kühl, N., & Satzger, G.
(2021). Switching Scheme: A Novel Approach for Handling Incremental Concept Drift in Real-World
Data Sets. Proceedings of the 54th Hawaii International Conference on System Sciences, Maui, Hawaii,
USA. https://doi.org/10.24251/HICSS.2021.120. Note: The abstract has been removed. Tables and
figures were reformatted, and newly referenced to fit the structure of the thesis. Chapter, section
and research question numbering and respective cross-references were modified. Formatting and
reference style was adapted and references were integrated into the overall references section of this
thesis.

143

https://doi.org/10.24251/HICSS.2021.120

science already engineered different algorithms (e.g., ADWIN) and applied them
to synthetic data sets (e.g., STAGGER), most of the work remains on a theoretical
level. In our work, we stress the importance of incorporating concept drift strategies
into machine learning models and apply them on real-world data sets. We propose a
novel strategy called switching scheme, which we believe to be a meaningful addition
to the tool set of data scientists and IS researchers working with real-world data
sets, aiming to ensure long-term validity of their deployed artifacts. The switching
scheme—at its core—combines the two principles of retraining and incremental
updates of a machine learning model.

We explore existing approaches as well as our own in the application field of
demand forecasting, as it poses a popular application candidate within IS (Esswein
et al., 2019). In our work, we apply the proposed switching algorithm in-depth to
taxi demand data in New York City (TLC, 2019) and, furthermore, implement it
additionally on a flight record data set (Ikonomovska et al., 2011) as a robustness
check. In terms of concept drift, we focus on incremental drifts in this work, as they
are very typical for systems deployed with a long-time horizon, e.g., sensors wearing
off over time (Kadlec & Gabrys, 2011). Therefore, we aim to answer the following
research question:

Research Question E
How can a forecasting system be designed to handle incremental drift on
real-world data?

By answering this question, we contribute as follows: First, we introduce a switching
algorithm which combines the advantages of retraining and incremental updates.
Second, we benchmark various drift detectors regarding performance on a real-world
demand forecasting data set with incremental drift. Third, we can clearly show
that drift handling strategies improve prediction accuracy, whereas static models
wear out over time and their performance decreases. Fourth, there are differences
between drift handling strategies and the differences are significant—however, using
any drift detection strategy seems to be superior than to apply none at all. As a result,
we encourage researchers and practitioners to incorporate concept drift strategies
within their deployed machine learning artifacts.

The upcoming Section 8.2 presents related work on which we base our research.
Section 8.3 introduces the use case while Section 8.4 gives an overview of the applied
drift handling strategies. Section 8.5 describes the evaluation of those strategies and
Section 8.6 summarizes our results, acknowledges limitations and outlines future
research.

144 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

8.2 Related Work

To lay the necessary foundations for the remainder of this work, we briefly introduce
research regarding concept drift and demand prediction.

8.2.1 Concept Drift

Concept drift describes the phenomenon of changing data over time in machine
learning for data streams (Widmer & Kubat, 1996). A concept p(X, y) is described
as the joint probability distribution over a set of input variables X and the target
variable y. However, concepts are often not stable in the real world but change
over time (Tsymbal, 2004). Concept drifts are usually classified into the following
categories (Žliobaitė, 2010): Sudden concept drift where the data changes very
quickly (e.g., sudden machine failures), incremental and gradual concept drift
(e.g., macroeconomic changes) and reoccurring drift such as seasonal patterns (e.g.,
AC sales in summer). Successful concept drift handling usually requires various
decisions, including the selection of the right training data, the choice of a suitable
drift detection method and also how to adapt machine learning model in case of
drift (Gama et al., 2014).

Traditional methods for concept drift detection comprise algorithms such as STEPD,
ADWIN or HDDDM. The Statistical Test of Equal Proportions (STEPD) is based on
the idea of monitoring the recent accuracy of a machine learning model compared
to the overall accuracy (Nishida & Yamauchi, 2007). The Adaptive Windowing
(ADWIN) approach uses sliding windows with adaptive size to correspond to different
rates of change within the window (Bifet & Gavaldà, 2007). Drift is detected by
partitioning the window observations into subwindows and comparing the error rate
of the classifier among those subwindows. While STEPD and ADWIN require the
classification error for drift detection, the Hellinger Distance Drift Detection Method
(HDDDM) detects drifts by monitoring the input features (Ditzler & Polikar, 2011).
HDDDM detects drift by measuring the Hellinger distance between the distribution
of the input features of recent observations and a reference distribution.

While the previous algorithms all originate from the computer science community,
many statistical methods for handling changing data patterns exist as well. Unit
root testing allows the program to determine whether a time series is stationary,
trend stationary or has a unit root (Haldrup et al., 2013). This is a powerful tool
to understand and analyze complex interdependencies such as external effects on
stock markets, e.g., on the Bitcoin price (Kremser et al., 2019). However, it has

8.2 Related Work 145

been shown that unit root tests without considering structural breaks can cause false
inference for time series predictions (Zeileis et al., 2003). Dealing with structural
breaks require the complete time series as well as a prior definition of the number
of structural breaks to be expected (Glynn et al., 2007). Therefore, those methods
can only be applied in hindsight after the time series has been completed which
makes them not applicable to real-world scenarios. An adaptation of a prediction
model months or even years after the occurrence of a concept drift does not promise
large increases in predictive performance. Another statistical approach for detecting
monotonic trends in time series is the non-parametric Mann-Kendall (MK) test which
is often applied in the context of meteorological studies (Sonali & Kumar, 2013).
The MK test checks whether observations in a time series are following a monotone
trend.

8.2.2 Demand Forecast

Demand forecasts are a fundamental concept for optimizing many business processes
and numerous IS studies analyze this problem. Examples range from technical
applications like the prediction of liquidity demand (Esswein et al., 2019) up to socio-
economic ones like the demand of human resources to improve process operations
(Stein et al., 2018). Other approaches investigate demand forecasts for emergency
medical services (Steins et al., 2019) or to predict demand for automotive spare
parts (Steuer et al., 2018). In the mobility sector, the demand for carsharing services
has been analyzed (Kahlen et al., 2017).

In general, both statistical and machine learning methods are widely used for traffic
and transportation applications. Especially, parametric forecasting models such as
the ARIMA model have been commonly used for time series modeling in past studies
(De Gooijer & Hyndman, 2006). For instance, ARIMA and Possion models have been
combined to predict short-term taxi demand (Moreira-Matias et al., 2013). However,
recently, the importance of complex machine learning models such as XGBoost
(Liao et al., 2018) and deep learning models has increased significantly. Deep
learning applications in this domain consist of traditional multilayer perceptrons,
convolutional or LSTM networks and autoencoders as well as combinations of those
(Laptev et al., 2017; Zhu & Laptev, 2017).

146 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

8.2.3 Research Gap and Contribution

In terms of closely-related research, we previously highlighted works from the
streams of concept drift and demand forecasting. We can identify a lack of research
on the application of concept drift on real-world data (Mittal & Kashyap, 2018) and
regression problems (Baier, Kühl, et al., 2019). Therefore, we choose to investigate
the real-world New York City taxi data (see Section 8.3). In regard to that data set,
related projects so far try to optimize the forecast using complex prediction models
such as Long Short-Term Memory (LSTM) networks (Xu et al., 2018). However, those
approaches consider the demand forecasting task as a static problem and focus on
building one machine learning model only which achieves high prediction accuracy
on short time spans such as months—therefore, neglecting strategic perspectives
of the business involved, e.g., resource planing over multiple years. Our work,
in contrast, aims at investigating the prediction performance over the course of
several years. We systematically test and evaluate the effects of different adaptation
strategies on machine learning models over time. Therefore, first, we provide an
alternative way of analyzing the demand forecasting problem in NYC, which has
not been performed yet. Second, we add knowledge by providing a comprehensive
analysis and benchmark of different concept drift detection algorithms on real-world
data. Related work mostly evaluates on synthetic data sets (Žliobaitė et al., 2016),
constructed for the purpose of containing clear concept drifts, which are not typical
in real-world data (Gama et al., 2014). Third, we propose a novel strategy combining
updates and retraining of models to address characteristics of real-world data. In
contrast to most existing related work, this strategy is not any novel algorithm
for drift detection. Instead, we introduce a novel way for the adaptation of the
corresponding machine learning model after a drift has already been detected (see
Gama et al. (2014)). In fact, concept drifts in the real world are often overlapped
by a multitude of influencing factors. Therefore, the impact of concept drifts will
usually be delayed which is addressed by the proposed switching between updates
and retraining.

8.3 Use Case

The New York City Taxi and Limousine Commission (TLC) regulates the operations
of regular yellow taxis and for-hire vehicles such as Uber and Lyft in NYC. Currently,
around 1 million trips are recorded every day (TLC, 2019). TLC makes this data
available to the public since 2009. Each trip record contains, among other features,

8.3 Use Case 147

information about the pick-up and drop-off time and location, the trip distance,
payment types, fares and number of passengers. While information about the exact
pick-up and drop-off location was provided from 2009 to June 2016, the subsequent
records only contain a taxi zone ID. NYC is divided into 263 different taxi zones
in total covering the boroughs of Manhattan, Bronx, Queens, Brooklyn and Staten
Island.

This work focuses on the yellow taxi trip records due to its range over several years
including over 1.4 billion records. The large number of records in the data set and
the fact that the taxis operate in different taxi zones increases the chance to observe
different incremental drifts over time, since trip records reveal certain pattern and
habits of the customers (Liao et al., 2018).

Consequently, we use all taxi trip records from 2009 up to June 2018 for this analysis.
We remove all trips from the data set with locations outside of New York as well as
anomalies regarding trip information (e.g., negative metered distance). Similar to
previous work, we approximate the real demand by considering the actual number of
pick-ups in each taxi zone (Zhou et al., 2018). We transform this data by aggregating
the demand per taxi zone on an hourly basis. The transformed data set therefore
includes the taxi demand for a given hour starting in 2009 up to June 2018 for all
263 zones. Comparing the total demand among the taxi zones, the 20 busiest taxi
zones already account for almost 60% of the overall demand and are mainly located
in Manhattan. Thus, we only consider the 20 busiest taxi zones for further analysis
and modeling.

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

Nu
m

be
r o

f R
id

es
 [m

]

1e7

Yellow Cabs
Uber
Lyft
Total Rides

Fig. 8.1.: Taxi demand in NYC per month.

Analyzing the data set for possible drifts, a decreasing trend in the overall taxi
demand can be identified by considering the overall demand depicted in Figure 8.1.
While the yellow cab demand exhibits a yearly pattern and increases from 2009 to

148 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

2011, a downward trend is observable starting from 2014. This is remarkable since
the total demand of rides increases. This might be explained with the increased
competition among yellow cabs and ride-hailing services (Cramer & Krueger, 2016)
but also new forms of transportation such as shared bikes. This form of a slowly
changing demand pattern can be regarded as incremental drift.

8.4 Methodology for Handling Incremental Drift

With the foundations of the use case at hand, we now introduce the different drift
handling strategies addressing incremental concept drift. Furthermore, we explain
how we set up the drift detectors for the taxi demand data set.

8.4.1 Adaptation Strategies

Overall, the applied drift handling strategies can be differentiated on two dimensions:
Adaptation and learning mode. The adaptation dimension explains how a model
change is initiated, either based on a trigger such as a change detector or based
on a fixed periodic interval such as three months without any explicit detection of
change. The learning mode refers to how the model is changed when an adaptation
is required. The model can either be retrained from scratch or updated with the most
recent observations. The intuition behind the periodic adaptation is to frequently
train a new model on the most recent data. This way, a new model can capture new
concepts iteratively. Table 8.1 summarizes all performed strategies. All adaptation
strategies except for the switching scheme are inspired by the taxonomy of adaptive
learning systems (Gama et al., 2014).

Tab. 8.1.: Overview on drift handling strategies.

Learning mode

Ad
ap

ta
tio

n Retraining Update Switch

Periodically
•Quarterly Retraining •Quarterly Update
•Yearly Retraining •Yearly Update

Triggered •Retraining •Update •Switching Scheme

Regarding the periodic adaptation strategy, we test yearly and quarterly adaptation
as different strategies. The training data for each model is fixed to two years of
observations (sliding window of two years). In case of the yearly retraining strategy,

8.4 Methodology for Handling Incremental Drift 149

each model is deployed to make one-step-ahead forecasts for the upcoming year.
After all predictions have been computed, a new model is trained on the most recent
observations. This means that the initial model is trained on taxi demand data of
2009 and 2010 to compute forecasts for 2011, while the next model is trained on
data of 2010 and 2011 to compute forecasts for 2012 and similarly for the following
years. The quarterly retraining strategy follows the same procedure. However, a new
model is trained on a quarterly basis. In contrast, the incremental update strategy
regularly updates the existing model by performing incremental learning on the
most recent observations. The incremental update strategies follow the same logic as
the retraining strategies: A yearly incremental update strategy computes predictions
for the upcoming year. When all predictions are obtained, the model is updated with
the most recent observations.

The triggered adaptation strategy initiates a model change based on explicit drift
detection. Incoming data is monitored on a continuous basis and statistical tests are
performed to detect drift. If a change is suspected, an adaptive action is triggered.
We again test both retraining as well as updating the prediction model based on this
trigger. In accordance with the periodic adaptation strategies, the window of the
training data for each model change is set to two years. For instance, a drift detected
on 10th of July in 2012 initiates a training of a new model with a training data set
containing the observations from 10th of July 2010 up to 10th of July in 2012.

We also propose the novel switching scheme adaptation strategy for handling concept
drift in real-world data sets. This strategy performs a combination of incremental
updates and retraining of prediction models. The idea behind the switching scheme
is to take advantage of the individual benefits of a complete retraining and an
incremental update strategy. The initial model is kept and is incrementally updated
with the most recent observations for a certain period of time. This allows the model
to adapt to the most recent concepts. At the same time, the model profits from
access to an overall large training set since both the initial training data as well the
most recent observations are considered. However, after a certain period of time,
updates will not be sufficient to adapt the model to the latest data changes (since
the concept is now fundamentally different from the previous) which means that the
current model is outdated. Therefore, this requires the retraining of a new model.

Figure 8.2 illustrates the concept: First, the initial training of the model is performed.
Afterwards the model computes the next predictions. If a drift is detected at t < τ ,
the model is incrementally updated based on the observations in λ. The lock in
the figure symbolizes that no retraining is allowed during this period. If a drift is
detected at t > τ , a new model is trained to replace the existing model and τ is reset.

150 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

Training window 𝜆
Retraining

Initial Training

𝜏

Data
stream

driftdrift

Training window 𝜆
Update

Training window 𝜆
Update

𝜏

drift

Fig. 8.2.: Explanation of switching scheme.

This procedure is repeated until all forecasts are obtained. For our experiments, we
set the training window λ = 2 for all drift handling strategies. For the switching
scheme, we set τ = 1. As a result, the model is incrementally updated if a drift is
detected as long as the last retraining does not date back more than one year. In
general, τ is a parameter which is specific to the application domain and therefore
the selection of the optimal parameter value requires domain knowledge. We suggest
to use a value which also reflects a logically connected unit of time (e.g., one year in
our case or one month for projects with a shorter time horizon). Alternatively, an
optimal parameter could be estimated via grid search on validation data.

8.4.2 Drift Detectors

For the remainder of this work, we use the following four drift detectors which
already have been introduced in Section 8.2. While HDDDM and MK are able to
process raw data input, i.e. the raw past demand, for drift detection, ADWIN and
STEPD require the binary input of a classifiers performance over time. Therefore, we
create an additional variable for ADWIN and STEPD which transforms the predictions
into a binary variable indicating whether a prediction is correct or not. A single
prediction is considered correct if the relative deviation from the actual value is
within a threshold of 10%. Otherwise, this prediction is labelled false. Both HDDDM
and MK process raw observations instead of classification errors for drift detection.
However, the raw demand data in the taxi data set exhibits strong seasonal patterns.
Therefore, we apply seasonal differencing on a daily and a weekly basis to remove
seasonal effects. Therefore, monotonic trends are still included in the data whereas

8.4 Methodology for Handling Incremental Drift 151

seasonal trends are eliminated. This allows the drift detectors to detect incremental
change more accurately.

Furthermore, we need to adapt the MK test for drift detection, since it is usually
performed only once on past data (Sonali & Kumar, 2013). After a minimum number
of n observations are streamed, the initial MK test is performed. In case a monotonic
trend is detected, a drift is signaled and the MK test is reset. In case no drift is
detected, additional n instances are streamed and the MK test is performed again on
all 2 ∗ n observations. Depending on whether a drift is detected, the test is reset or
more instances are added to the observation window. For the experiments, we set
the number of instances to n = 168 corresponding to one week of observations. We
assume that incremental drift is captured more accurately by forcing the detectors
to process more instances, thus reducing the risk to detect short-term effects.

Finally, the evaluation of concept drift handling on real-world data sets is difficult as
we do not have any information about the size or duration of drifts or whether drifts
are included at all in the data set (Gonçalves et al., 2014). For artificial data sets,
in contrast, this information is known in advance and can be used for evaluation.
Therefore, real world data is usually not evaluated by analyzing the precision of
a drift detection algorithm but rather by monitoring the prediction accuracy of
machine learning model in combination with a drift detector (Elwell & Polikar, 2011;
Gonçalves et al., 2014). We follow this strategy in the remainder of this work.

8.5 Evaluation

The evaluation is split into two sections. At first, we perform a pre-test with different
models on the NYC taxi data set in order to identify the most suitable prediction
model. Subsequently, we choose the best forecasting model and apply the adaption
strategies described in Section 8.4.

8.5.1 Evaluation of Pre-Test

In order to identify the best prediction model for the given data set, we perform
pretests with a group of baseline models (Naive model and ARIMA) as well as a
group of complex models (MLP, LSTM, XGBoost).

The naive model predicts just that future demand is equal to the present demand:
Yt+1 = Yt and is a commonly used baseline (Zhu & Laptev, 2017). Regarding

152 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

the ARIMA model, we obtain a stationary time series by performing first order
differencing as well as seasonal differencing with a lag of 24 and 168 to remove
daily and weekly seasonal effects. The Augmented Dickey-Fuller test confirms
stationary for the transformed time series. The final parameters for the ARIMA
model are chosen in a grid search based on the model with the lowest Akaike’s
Information criterion and this step leads to a model of order (24, 0, 4).

Regarding the complex models, we apply a MultiLayer Perceptron (MLP), Long Short-
Term Memory networks (LSTM) and the tree-based XGBoost model. The MLP receives
as input features the regions and the current weekday as one-hot encoded vector.
Furthermore, it receives the demand during the past 24 hours as well as the demand
during the same hour on the same weekday in the four past weeks. Additionally,
we include cosine and sine features to depict that hours and months are cyclical
features to improve prediction performance as suggested in literature (Hernández
et al., 2013). We use 128 neurons in the hidden layer with a relu activation function
and the network is trained using 50% dropout. XGBoost is trained on the same input
data as the MLP. Regarding the LSTM, instead of one hot encoding the taxi zones,
we incorporate the past demand by including a multidimensional input array which
contains information about the taxi demand in each taxi zone. This way, the LSTM
can capture dependencies among neighboring taxi zones.

Each model is trained on the hourly demand ranging from January 1st, 2009 to
December 31st, 2010. All models are evaluated based on one-step-ahead forecasts
computed for the years 2011 up to June 2018. As evaluation metrics, we apply
the root mean squared error (RMSE) as well as the symmetric mean absolute
percentage error (SMAPE). Applying two metrics–one absolute (RMSE) and one
relative (SMAPE)–allows for a more holistic evaluation of our approach. Table 8.2
summarizes the average RMSE and SMAPE over all years and taxi zones based on
the forecasts by the static models for all 20 taxi zones and the whole forecasting
period.

Tab. 8.2.: Overall evaluation of static models.

Model SMAPE RMSE

Naive 27.512 132.045
ARIMA(24,0,4) 21.087 91.621
MLP 13.009 58.015
LSTM 14.007 64.047
XGBoost 11.354 57.568

Baseline models such as naive and ARIMA provide less accurate predictions than the
neural network models and XGBoost. The results of the naive model are as expected

8.5 Evaluation 153

since this model does not have any parameters to learn and might adapt too quickly
to unusual demand patterns. ARIMA provides a better forecast compared to the
Naive model, but cannot compete with the more complex models.

Interestingly, the LSTM does provide worse prediction results compared to XGBoost
and MLP which might be due to the relatively small training data set of two years
and a long forecasting range. Especially, the SMAPE result for XGBoost is notable as
it is far better than all other models. Presumably, the XGBoost model is especially
capable to compute correct predictions during periods of low demand where large
deviations severely influence the SMAPE value.

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

50

60

70

Qu
ar

te
rly

 R
M

SE

MLP
LSTM
XGBoost

Fig. 8.3.: Quarterly rolling RMSE of static models.

For analyzing the influence of drifts on the prediction performance over time,
we compute the rolling quarterly RMSE as depicted in Figure 8.3. Due to space
limitations, we only consider the complex models. The RMSE is increasing until
the year 2014 and then starts to decrease. This is contradictory to our intuition as
we expected the RMSE to increase over time as the static models become outdated.
However, the decreasing RMSE suggests an increase in performance over time. To
explain this phenomenon, we need to consider the overall demand trend for yellow
taxis in NYC (Figure 8.1 on page 148). The decreasing RMSE after 2014 maps well
to the decreasing taxi demand after 2014. Due to the quadratic term, the RMSE
penalizes more strongly higher differences in forecasts and demand which more
often appear within periods of high demand.

The intuition about a decreasing performance over time is confirmed by an analysis
of the SMAPE (Figure 8.4). Unlike the RMSE, the SMAPE metric considers the
relative error which is independent of the actual demand level. Consequently, the
SMAPE is not affected by an overall demand decrease. The results suggest that all
static models are unable to capture the incremental change of the demand, resulting
in decreasing prediction accuracy. Furthermore, all models exhibit an increase in the

154 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

error measures during the winter season. This can probably be explained with more
fluctuating taxi demand during winter times due to extreme weather conditions
such as blizzards or snow storms.

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

10

12

14

16

18

Qu
ar

te
rly

 sM
AP

E MLP
LSTM
XGBoost

Fig. 8.4.: Quarterly rolling SMAPE of static models.

8.5.2 Evaluation of Adaptation Strategies

This section presents the results of both the periodic as well as the triggered adaptation
strategies introduced in Table 8.1. For evaluation, we consider the overall average
RMSE and SMAPE results based on the forecasts for all 20 taxi zones between 2011
and 2018. We report the RMSE for completeness but to assess the ability of the
models to adapt to concept drift, the SMAPE measure is primarily considered as
discussed in Table 8.3. Due to space limitations, we only report the results for
XGBoost in this chapter. However, we have also performed all strategies with the
MLP model with similar results.

Tab. 8.3.: Evaluation of periodic adaptation.

Strategy SMAPE RMSE #Actions 1

Static 11.354 57.568 (-/-)
Quarterly Update 10.913 54.430 (30/-)
Quarterly Retraining 10.996 55.906 (-/30)
Yearly Update 11.021 55.288 (7/-)
Yearly Retraining 11.037 56.083 (-/7)
1 denotes (number of updates/number of retraining)

First, the results of the periodic retraining and update strategies are presented.
Table 8.3 summarizes the average performance metrics as well as the number of
adaptive actions performed by each strategy. The SMAPE suggests that that all
adaptation strategies improve the prediction performance compared to the static

8.5 Evaluation 155

model depicted in the first row. Furthermore, we perform cross-wise Diebold-
Mariano-tests (Diebold & Mariano, 2002) and can confirm that all prediction results
differ significantly (α = 0.01).

Regarding the differences between the adaptation strategies, the periodic update
strategy provides better results compared to mere retraining. These findings highlight
the effectiveness to update an existing model with recent observations instead of
performing a complete retraining. We assume that a model which is updated
incrementally better captures the underlying demand pattern since it processes a
larger number of observations compared to a newly created model. Furthermore, the
increased frequency–from yearly to quarterly–of adaptations improves the prediction
performance. A higher frequency of adaptive actions increases the chance to adapt
quickly to new concepts.

Tab. 8.4.: Evaluation of triggered adaptation.

Strategy SMAPE RMSE #Actions 1

ADWIN Retr. 11.036 56.013 (-/36)
ADWIN Upd. 10.946 54.447 (28/-)
ADWIN Sw. 10.726 54.582 (27/6)
STEPD Retr. 11.011 55.899 (-/16)
STEPD Upd. 10.921 54.6364 (16/-)
STEPD Sw. 10.864 55.218 (11/5)
HDDDM Retr. 11.017 55.942 (-/10)
HDDDM Upd. 10.955 54.972 (10/-)
HDDDM Sw. 10.947 55.593 (5/5)
MK Retr. 11.023 55.965 (-/24)
MK Upd. 10.914 54.516 (24/-)
MK Sw. 10.816 54.989 (18/6)
1 denotes (number of updates/number of retraining)

Table 8.4 introduces the results of the triggered adaptation strategies including the
retraining (retr.) as well as update (upd.) strategy and the switching scheme (sw.).
The best SMAPE results among all triggered strategies are obtained by the ADWIN
switching strategy followed by the MK switching strategy. The Diebold-Mariano test
also confirms that those strategies provide significantly better performance results
compared to the quarterly update strategy. However, both strategies trigger a large
number of adaptive actions. In case it is necessary to reduce the amount of adaptive
actions, the STEPD switching strategy also provides a competitive SMAPE result with
a low number of adaptations. This highlights that not only frequent adaptations
improve the prediction performance but also adaptations at the right point in time.
Note that the column #Actions also serves as an indicator for the computational

156 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

burden of each strategy—a higher combined number of update and retraining steps
requires also higher computational cost.

Comparing the strategies among each detector, it becomes evident that the switching
scheme provides the best results in combination with any detector while the second
best results are obtained through incremental updates. These findings demonstrate
that the switching scheme effectively leverages the strengths of a frequent retraining
and frequent incremental updates independent of the prediction model.

Figure 8.5 illustrates the performance of the best adaptation strategies over all years
in the test set. The SMAPE metric in 2011 is rather similar for all depicted strate-
gies, whereas the performance differences increase over time. During the whole
forecasting period, there is a distinct gap between the performance of the adapta-
tion strategies and the static model, indicating the effectiveness of the adaptation
strategies.

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

10

11

12

13

14

sM
AP

E

Static Model
Quarterly Update
Quarterly Retraining
ADWIN Switch
MK Switch

Fig. 8.5.: Yearly average SMAPE of best strategies.

Furthermore, the course of performance of the quarterly update strategy is inter-
esting. While it provides the best performance in the first years, the prediction
performance starts to decrease considerably after 2014 and becomes the least per-
forming adaptation strategy. At the same time, the switching scheme does not exhibit
such a strong decrease in predictive performance and even the quarterly retraining
strategy starts to provide better results after 2016. Presumably, the XGBoost model
does not benefit from endless incremental updates but rather needs to be reset at
some point by creating a new model. This finding also supports our hypothesis of
the underlying working principle (i.e. the need to retrain the model at some point
in time) of the switching scheme.

8.5 Evaluation 157

8.5.3 Robustness Check

We perform an additional robustness check of the proposed adaptation strategies
on a data set containing flight records (Ikonomovska et al., 2011). The data set
contains features such as carrier name, origin and destination airport as well as date
information about domestic flights in the US. It is a suitable data set for concept drift
evaluation since flight records are influenced by variety of changes over time, e.g.,
by a rapidly increasing passenger volume over the last years or the 9/11 attacks.
The objective is to predict whether a flight will be delayed (similar to Brzezinski and
Stefanowski (2014)). We select a subset of the data by focusing only on departures
from the busiest airport with most aircraft operations which is O’Hare International
Airport in Chicago. Furthermore, only flights in the time frame from 1990 up to 2008
are considered. This limitation still leaves us with data set including approximately
5.7 million flights. As prediction model, we apply an XGBoost classifier.

Tab. 8.5.: Evaluation on flight records data set.

Strategy Accuracy MCC

Static 0.7209 0.4458
ADWIN Retraining 0.7498 0.5023
ADWIN Update 0.7426 0.4856
ADWIN Switching 0.7489 0.4986
HDDDM Training 0.7430 0.4875
HDDDM Update 0.7373 0.4758
HDDDM Switching 0.7494 0.5007

Similar to the taxi data set, we use two years of data for retraining or updating
of a model. The initial training and the static model are both trained on data
from January 1st, 1990 to December 31st, 1991. Subsequently, the different drift
handling strategies are applied. Since the testing of the different handling strategies
is computationally expensive, we limit our evaluation regarding drift detectors to
ADWIN and HDDDM. Table 8.5 depicts the results achieved on the airline data set.
Again, drift handling strategies clearly improve prediction performance compared to
a static model and the switching scheme provides very competitive results regarding
predictive accuracy.

Comparing both the taxi data as well as the airline data set, we can clearly see that
concept drift handling, and especially the switching scheme, improves prediction
performance. However, we assume that drift in case of the airline data set is less
pronounced since delays are less vulnerable to changes compared to an overall
demand pattern as in the taxi case. This might also be a reason why the switching
scheme performs better on the taxi data set.

158 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

8.6 Conclusion

Concept drift is the phenomenon of changing data patterns over time. This work
examines the effects of concept drift on the real-world demand forecasting problem
of predicting taxi demand in New York City. This work contributes to the body
of knowledge on multiple levels: First, we introduce the switching scheme which
combines the advantages of retraining and incremental updates for machine learning
models in case of incremental concept drift. Second, we benchmark different drift
detectors for demand forecasting depicting their advantages and disadvantages.
Third, we can clearly demonstrate the effectiveness of drift handling strategies on
improving the overall prediction accuracy based on two real-word data sets, the NYC
taxi demand and the flight record data set. Static models wear out and cannot guar-
antee a high predictive performance over time. Fourth, we can show that there are
significant differences between the different drift handling strategies. Nevertheless,
the difference between using no adaptation strategy and any adaptation strategy at
all is more striking.

Consequently, we strongly encourage researchers and practitioners to incorporate
drift handling strategies into their deployed machine learning artifacts. Both the
periodic and the triggered adaptation strategies have their specific advantages. The
periodic adaptation strategies are easy to understand and implement but might
lead to unnecessary adaptations of the underlying machine learning model. The
triggered adaptation strategies, in contrast, cause an adaptation of the prediction
only in case a change in the data stream is detected. However, those strategies are
more complex to implement and the choice of the right parameters is difficult and
requires experience. Therefore, the selection of the right strategy does not only
depend on the properties of the use case but also on the experience and skills within
the organization deploying the model.

The generalizability of our results are subject to certain limitations. Despite these
first promising results, our findings are based on two data sets only. In future work,
we want to broaden the field of application by analyzing additional real-word data
sets. This requires the identification of additional real-world data with incremental
concept drift patterns. In addition, artificial data sets might also provide a valuable
source for additional evaluation of the switching scheme. Due to the nature of its
design, the switching scheme is rather suitable for handling incremental concept
drift. Sudden or reoccurring concept drift presumably requires a different approach
such as switching between two different prediction models, e.g., one model for

8.6 Conclusion 159

normal situations and one for extreme situations (Baier et al., 2020) or training a
prediction model for summer and winter respectively.

This work systematically tests different adaptation strategies for handling incremen-
tal concept drift and evaluates the strategies based on their prediction performance
in hindsight. However, in real-world applications, it is necessary to know upfront
before deployment which strategy is best suited for a specific use case. Therefore,
more research investigating the proper matching of drift handling strategies and use
cases is required. Furthermore, the effect of differently sized detection windows on
the prediction performance needs further research. Lastly, the triggered adaptation
strategies implemented in this work are based on the assumption that true labels
are received shortly after a prediction is computed. There are many fields of applica-
tion where this assumption does not hold true which require an adapted handling
strategy.

In general, this works shows the importance of including concept drift handling
into deployed machine learning artifacts. By implementing efficient drift adapta-
tion strategies, practitioners can create autonomous systems that—if implemented
correctly with carefully adjusted alarms—require less supervision and maintenance.
However, it needs to be noted that less supervision and increased automation can
have negative effects, for instance automation bias. As research shows, employees
prefer suggestions from automated systems and, over time, start to ignore con-
tradictory information, even if they are valid (Cummings, 2004). Therefore, any
automated decision-making system needs to account for this bias in its real-world
implementation.

Nonetheless, our proposed artifact will generate a better prediction performance
of the underlying machine learning model which in turn lead to improved service
offerings or internal efficiency gains. At the same time, if efficient handling strategies
are applied, employees will accustom to reliable actions by the machine learning
models which results in higher trust and confidence in IS systems powered by
machine learning.

160 Chapter 8 Handling by Switching Adaptation Mode - the Switching Scheme

Part V

Concept Drift Handling with Limited Label
Availability

Handling by Model
Uncertainty - Uncertainty Drift
Detection1

9

9.1 Introduction

Across most industries, machine learning models are deployed to capture the benefits
of the ever-increasing amounts of available data. When deploying models, most
practitioners assume that future incoming data streams are stationary, i.e., the data
generating process does not change over time. However, this assumption does
not hold true for the majority of real-world applications (Aggarwal et al., 2003).
In the literature, this phenomenon is referred to as concept drift or dataset shift,
which usually leads to a decreasing prediction performance. Even small changes
or perturbations in the distribution can cause large errors—which has been shown
through, e.g., adversarial examples (Szegedy et al., 2013).

The concept drift community has developed several learning algorithms that are
able to adapt incrementally (Shalev-Shwartz, 2011) or detect concept drift and
trigger retrainings of a corresponding learning algorithm (Bifet & Gavaldà, 2007;
Gama et al., 2004). These techniques usually require full and immediate access
to ground-truth labels, which is an unrealistic assumption in most real-world use
cases. As an example, let us consider a manufacturing line with a manual end-of-
line quality control. By collecting sensor data from all manufacturing stations and
combining this information with previously acquired quality assessments (labels)
of human experts, a predictive model can be built to replace the manual quality
control and thus reduce repetitive and expensive human labour. However, this
prediction model is likely exposed to concept drift due to, e.g., modifications in raw
materials, machine wear, ageing sensors or changing indoor temperatures due to

1This chapter comprises an article that was published as: Baier, L., Schlör, T., Schöffer, J., & Kühl, N.
(2021). Detecting Concept Drift With Neural Network Model Uncertainty. Working Paper. Note: The
abstract has been removed. Tables and figures were reformatted, and newly referenced to fit the
structure of the thesis. Chapter and section numbering and respective cross-references were modified.
Formatting and reference style was adapted and references were integrated into the overall references
section of this thesis.

163

seasonal changes. A continuous stream of true labels for concept drift detection
is not available in this use case—which is why traditional concept drift detection
algorithms are not applicable.

To that end, we propose a novel concept drift detection algorithm which detects drifts
based on the prediction uncertainty of a neural network at inference time, and we
call this method Uncertainty Drift Detection (UDD). Specifically, we derive uncertainty
by applying Monte Carlo Dropout (Gal & Ghahramani, 2016). In case of a detected
drift, we assume that true labels are available upon request (e.g., provided by domain
experts) for retraining of the prediction model. In contrast to most drift detection
algorithms, UDD can be used for both regression and classification problems. We
evaluate UDD on two synthetic as well as ten real-world benchmark data sets and
show that it outperforms other state-of-the-art drift detection algorithms.

9.2 Background and Related Work

9.2.1 Dataset Shift and Concept Drift

The machine learning and data mining communities use different terms to describe
the phenomenon of changing data distributions over time and its impact on machine
learning models (Moreno-Torres et al., 2012). Dataset shift (Quionero-Candela
et al., 2009) is described as a change in the common probability distribution of
input data x and corresponding labels y between training (tr) and test time (tst):
Ptr(x, y) 6= Ptst(x, y). This is similar to a common definition of concept drift (Gama
et al., 2014; Widmer & Kubat, 1996): Pt0(x, y) 6= Pt1(x, y), where t0 and t1 are
two different points in time with t1 > t0. Note the difference regarding the indices:
Dataset shift focuses on the difference between training and testing environment,
whereas concept drift refers to the temporal structure of the data.

Dataset shift and concept drift can be further divided into different subcategories:
Covariate shift (or virtual drift (Gama et al., 2014)) refers to changes in the distribu-
tion of the input data x, without affecting the distribution of labels: Ptr(x) 6= Ptst(x)
and Ptr(y|x) = Ptst(y|x) (Moreno-Torres et al., 2012). Real concept drift refers to
any changes in P (y|x), independent of whether this change is triggered by P (x) or
not.

164 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

9.2.2 Handling Concept Drift

While the above terms all describe related topics, research in the area of concept
drift not only deals with the detection of distributional changes and their impact on
the prediction quality but also focuses on the question of how to adapt and retrain
the affected model (Gama et al., 2014).

There are many reasons for changing data. Usually, it is intractable to measure
all confounding factors—which is why those factors cannot directly be included
in the machine learning model. Often, those factors are considered as “hidden
context” of the machine learning models’ environment (Tsymbal, 2004). In general,
three different categories for detecting concept drift can be distinguished (Lu et
al., 2019): First, error rate-based drift detection, which is also the largest group
of methods (Lu et al., 2019) and aims at tracking changes in the error rate of a
machine learning model. Popular algorithms in this category are the Drift Detection
Method (DDM) (Gama et al., 2004), Page-Hinkley test (Page, 1954), and ADaptive
WINdowing (ADWIN) (Bifet & Gavaldà, 2007). Note that the error rate-based
drift detection necessarily requires access to ground-truth labels. Second, data
distribution-based drift detection usually applies some distance function to quantify
the similarity between the distributions of a reference batch of data and the current
data. Algorithms in this category work on the input data x only and do not require
true labels for drift detection. Popular approaches are based on tests for distribution
similarity, such as Kolomogorov-Smirnov test (Raab et al., 2020). Third, the multiple
hypothesis test category detects drift by combining several methods from the previous
two categories.

In many real-world applications, the assumption that all true labels are available
is unrealistic (Krawczyk et al., 2017). Furthermore, the acquisition of true labels
from experts (e.g., in quality control) is likely expensive. Those limitations have
inspired research on handling concept drift under limited label availability. In
general, methods can be distinguished based on their (non-)requirement of true
labels for either drift detection or for retraining of the corresponding model: The first
category of algorithms assumes that true labels are available for both drift detection
and retraining, but they are only provided in limited portions at specific points in
time. In this category, algorithms based on active learning have been developed,
where true labels for selected samples are acquired based on a certain decision
criterion (Fan et al., 2004; Žliobaitė et al., 2014). Other approaches under limited
label availability apply semi-supervised learning methods with clustering techniques
to derive concept clusters which can be investigated for drifts (Masud et al., 2012;
Wu et al., 2012). The second category requires no true labels for detection of concept

9.2 Background and Related Work 165

drifts, but it uses them for retraining of the model in case of a drift. One approach
uses confidence scores produced by support vector machines during prediction time
and compares those over time by measuring a distance between a reference window
and a window of current instances (Lindstrom et al., 2013). If this distance reaches
a fixed threshold, an alarm is triggered and the model is retrained using a limited
set of current true labels. Other algorithms monitor the ratio of samples within
the decision margin of a support vector machine for change detection (Sethi &
Kantardzic, 2015). An incremental version of the Kolmogorov-Smirnov test has also
been applied in this category (Dos Reis et al., 2016). The third category handles
concept drift without any label access, neither for drift detection nor for retraining,
e.g., by applying ongoing self-supervised learning to the underlying classifier (Dyer
et al., 2014; Sun et al., 2020).

Note that the first category requires some true labels continuously over time in order
to be able to detect a drift and trigger corresponding retraining. In contrast, the
second category monitors the data stream for drifts based on the input data only and
then requires true labels in case a drift has been detected. This is also the category
that UDD belongs to. The third category can adapt without any true label knowledge.
However, this category of algorithms also has the least adaption capabilities due to
its limited knowledge of changes.

9.2.3 Uncertainty in Neural Networks

In many applications it is desirable to understand the certainty of a model’s predic-
tion. Often times, class probabilites (e.g., outputs of a softmax layer) are erroneously
interpreted as a model’s confidence. In fact, a model can be uncertain in its predic-
tions even with a high softmax output for a particular class (Gal, 2016). Generally,
neural networks are not good at extrapolating to unseen data (Haley & Soloway,
1992). Hence, if some unusual data is introduced to the model, the output of a
softmax layer can be misleading—e.g., unjustifiably high. This likely happens in the
case of concept drifts.

Generally, existing literature distinguishes two types of uncertainty: aleatory and
epistemic (Der Kiureghian & Ditlevsen, 2009). The former (also called data uncer-
tainty) can usually be explained by randomness in the data generation process and,
e.g., corresponds to the error term in a regression setting. The latter (statistical or
model uncertainty) usually results from insufficient training data. For classification
tasks, uncertainty can be for instance quantified through entropy, variation ratios or
mutual information (Hemmer et al., 2020).

166 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

One state-of-the-art approach to capture model uncertainty for neural networks is
Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016). While dropout at training
time has been widely used as a regularization technique to avoid overfitting (Srivas-
tava et al., 2014), the idea of MCD is to introduce randomness in the predictions
using dropout at inference time. This allows to deduce uncertainty estimates by
performing multiple forward passes of a given data instance through the network
and analyzing the resulting empirical distribution over the outputs or parameters.

Another family of methods to quantify predictive uncertainty is called Deep Ensem-
bles (Lakshminarayanan et al., 2017). In essence, the authors of the respective
paper (Lakshminarayanan et al., 2017) propose to enhance the final layer of a
neural network such that the model’s output is not just a single prediction but a
set of distributional parameters, e.g., the mean and variance for a Gaussian distri-
bution. The corresponding parameters can then be fitted by using the (negative)
log-likelihood as loss function. For previously unseen data, the approach suggests
then to train an ensemble of several neural networks with different initializations
at random. The average of all variance estimates can eventually be interpreted as
model uncertainty.

Other recent approaches for quantifying uncertainty in neural networks include varia-
tional inference (Blundell et al., 2015), expectation propagation (Hernández-Lobato
& Adams, 2015), evidential deep learning (Sensoy et al., 2018), and stochastic
gradient Markov Chain Monte Carlo methods (Welling & Teh, 2011), some of which
have been applied to areas like active learning (Beluch et al., 2018; Hemmer et al.,
2020) and others. A good overview of state-of-the-art methods for quantifying
uncertainty, including an empirical comparison regarding their performance under
dataset shift, is provided by Ovadia et al. (2019).

9.3 Methodology

When labels are expensive and their availability is limited, popular drift detection
algorithms like ADWIN, DDM and Page-Hinkley are not applicable in their original
form, as these algorithms detect drifts based on a change in the prediction error
rate (and therefore require true labels). As described in Section 9.2.2, there are
different scenarios for concept drift handling with limited label availability. In this
paper, we develop a novel approach which detects drifts without access to true
labels—yet it requires labels for retraining the model. For detecting drifts, we rely
on the uncertainty of a (deep) neural network’s predictions. Previously, it has been

9.3 Methodology 167

shown that the uncertainty of a prediction model is correlated with the test error
(Kendall & Gal, 2017; Roy et al., 2018). Thus, we argue that model uncertainty can
be used as a proxy for the error rate and should therefore be a meaningful indicator
of concept drift.

To investigate this hypothesis, we develop the following approach: For each data
instance, we measure the uncertainty of the corresponding prediction issued by
the neural network. Subsequently, this uncertainty value is used as input for the
ADWIN change detection algorithm. We choose ADWIN as it as able to work with
any kind of real-valued input and does not require any knowledge regarding the
input distribution (Bifet & Gavaldà, 2007). Other drift detection algorithms such
as DDM (Gama et al., 2004) or EDDM (Baena-Garcia et al., 2006) are designed for
inputs with a Binomial distribution and are therefore not applicable to uncertainty
measurements (which can have different distributions by nature).

We call our approach Uncertainty Drift Detection (UDD). By applying UDD, we can
detect significant changes in the mean uncertainty values over time. If a drift is
detected, we require true labels for retraining of the model. Since there are methods
for measuring uncertainty in both regression and classification settings, this approach
allows to detect concept drifts for both learning tasks—as opposed to most other
concept drift detection algorithms, which handle classification tasks only (Krawczyk
et al., 2017). Note that UDD cannot detect any label shift where Ptr(x) = Ptst(x)
and Ptr(y|x) 6= Ptst(y|x). However, we assume that in most real-world settings there
is no label shift without any changes in the input distribution.

For drift detection without true label availability, input data-based drift detection,
such as Kolmogorov-Smirnov (Raab et al., 2020), is generally also appropriate.
However, considering solely input data bears the risk of detecting changes in features
that may not be important for the prediction model. Specifically, it may occur that
input data-based methods detect drifts (including expensive acquisition of new
labels) where no retraining is required, because this drift will have little or no
impact on the predictions of the model (e.g., virtual drift where Pt0(x) 6= Pt1(x)
and Pt0(y|x) = Pt1(y|x)). Our uncertainty-based approach, on the other hand,
detects only changes in the input data that also have an impact (as reflected by the
uncertainty) on the predictions.

For measuring uncertainty and computing predictions, we apply Monte Carlo
Dropout (MCD) because it showed the best performance during our experiments.
However, note that the proposed method can be easily extended to use other uncer-
tainty estimates (e.g., Deep Ensembles) as well. In practice, MCD applies dropout
at inference time with a different filter for each stochastic forward pass through

168 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

the network. We denote T the number of stochastic forward passes. Predictions
p̂(y|x) are computed by averaging the predictions for each forward pass T given the
samples wi of model parameters from the dropout distribution and the input data x:

p̂(y|x) = 1
T

T∑
i=1

pi(y|wi, x) . (9.1)

Regression and classification require different methods for determining predictive
uncertainty. We choose to evaluate the uncertainty for classification tasks based on
Shannon’s entropy H over all different label classes K:

H [p̂(y|x)] = −
K∑

k=1
p̂(y = k|x) ∗ log2 p̂(y = k|x) . (9.2)

For regression tasks, uncertainty estimates can be obtained by computing the variance
of the empirical distribution of the T stochastic forward passes through the network
(Gal & Ghahramani, 2016):

σ̂2 = 1
T

T∑
i=1

(pi(y|wi, x)− p̂(y|x))2 . (9.3)

Real-world data streams for concept drift handling are heterogeneous, e.g., in
their number of class labels and size (Souza et al., 2020). This variability is also
reflected by heterogeneous distributions of the respective uncertainty indicator.
Furthermore, due to different approaches for computing uncertainty, this indicator
varies significantly in scale and fluctuation between regression and classification
problems. Therefore, ADWIN has to be adjusted to each data stream, which can be
achieved by setting its sensitivity parameter α ∈ (0, 1): A change is detected when
two sub-windows of a recent window of observations exhibit an absolute difference
in means larger than α.

New data instances arrive individually and are predicted at the time of arrival. The
obtained uncertainty Ut (either expressed as entropy or variance) from the prediction
at time t is used as input for an ADWIN change detector. Once a drift is detected, a
retraining of the prediction model is performed. For retraining, UDD uses the most
recent data instances in addition to the original training data. This way, we can
ensure that the model (a) can adapt to new concepts and (b) has enough training
data for good generalization. Algorithm 2 on page 170 describes the required steps
for UDD in a regression (Ut equals variance of prediction σ̂2) or classification setting
(Ut equals entropy of prediction Ht).

9.3 Methodology 169

Algorithm 2 Uncertainty Drift Detection

1: Input: Trained model M ; Data stream D; Training data Dtr

2: Output: Prediction ŷt at time t
3: repeat
4: Receive incoming instance xt

5: ŷt, Ut ←M .predict(xt)
6: Add Ut to ADWIN
7: if ADWIN detects change then
8: Acquire most recent labels yrecent

9: M .train(Dtr ∪ Drecent)
10: end if
11: until D ends

9.4 Experiments

For evaluation purposes, we conduct extensive experiments to compare UDD with
several competitive benchmark strategies on two synthetic and ten real-world data
sets. This stands in contrast to most concept drift literature, where new meth-
ods are mainly evaluated on simulated data sets with artificially induced concept
drifts. The code for our experiments can be found under https://github.com/
anonymous-account-research/uncertainty-drift-detection.

9.4.1 Experimental Setup

Throughout the experiments, for MCD, we set the number of stochastic forward
passes T = 100 for regression tasks and T = 50 for classification tasks. Regarding
the deep feed forward network, we vary the structure between three to five hidden
layers with relu activation functions depending on the data set. Each hidden layer
is followed by a dropout layer with dropout rate 0.1 or 0.2, as it is proposed in the
original MCD paper (Gal & Ghahramani, 2016). Details regarding the experimental
setup for each data set can be found in Table A.5 in the appendix.

For initial model training, we use the first five percent of a data stream’s instances.
We perform a parameter optimization for UDD by requiring the associated ADWIN
algorithm to detect one drift on a given validation data set—this yields a concrete
value for the sensitivity parameter α. If no drifts are detected on the validation data
with the initial value for α, we assume that no drifts are present in the validation
data and α is set to the scikit-multiflow (Montiel et al., 2018) default value of
0.002. We use the ten percent of instances following the initial training data as
validation data. Every time we detect a drift, we provide the last data instances as

170 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

https://github.com/anonymous-account-research/uncertainty-drift-detection
https://github.com/anonymous-account-research/uncertainty-drift-detection

well as corresponding labels equivalent to one percent of the overall data stream’s
length. The exemplary partitioning of a data stream is depicted in Figure 9.1.

5% 10% 85%
Train Validation for ADWIN Stream Evaluation

1%
Drift

Retrain set

Fig. 9.1.: Partitioning of data stream.

In order to benchmark UDD, we compare it against six different strategies within
two groups. The first group of strategies handles concept drift with Limited La-
bel Availability whereas the second group of strategies allows for Unlimited Label
Availability.

Limited Label Availability

The first benchmark is a non-adaptive model, No Retraining (No Retr.). This strategy
does not test for drifts and the machine learning model is only trained once with
the initial training set. The performance of this strategy constitutes a lower-bound
benchmark.

The second benchmark is an Uninformed Retraining (Uninf.) strategy which randomly
draws retraining points out of all possible time stamps included in the respective
data stream. To ensure comparability, we set the number of retrainings of this
strategy to be equal to the UDD approach. This also ensures that the uninformed
retraining strategy receives access to the same number of true labels. Otherwise,
a strategy with access to more true labels will likely perform better due to larger
training set sizes. To get a reliable performance estimate for this strategy, we repeat
this experiment five times and average the results.

The third benchmark, Equal Distribution (Equal D.), is similar to the previous bench-
mark but the retraining points are equally distributed over the course of the data
stream.

The Kolmogorov-Smirnov test-based drift detector (KSWIN) belongs to the category
of input data-based drift detection and works by individually investigating each input
feature for changes. We optimize its sensitivity parameter α with the same procedure
as for UDD. This detector is known to produce many false positive concept drift
signals, due to multiple hypothesis testing (Raab et al., 2020). Again, we restrict
the number of retrainings to be equal to the UDD approach. If this strategy detects
more drifts, detected drifts are sorted by the order of their p-values and only the top

9.4 Experiments 171

drifts are considered for retraining. For this strategy, we use the scikit-multiflow
(Montiel et al., 2018) implementation KSWIN (Kolmogorov-Smirnov WINdowing)
with the following parameters: window_size = 200, stat_size = 100.

Unlimited Label Availability

The second group of strategies is not restricted with respect to the amount of allowed
retrainings. Therefore, they are not an appropriate benchmark in a context where
true labels are scarce. We still include these strategies since they serve as an upper-
bound performance benchmark. This allows us to estimate the performance loss
when confronted with a situation where full label availability is infeasible.

The Kolmogorov-Smirnov test with unlimited retrainings (KSWIN(unl.)) benchmark
is similar to the previous KSWIN strategy but without restricting the number of
retrainings. Therefore, all detected drifts trigger a retraining of the prediction
model.

The last benchmark is the ADWIN change detection algorithm applied to the predic-
tion error rate. This strategy already requires all true labels for the computation
of the error rate and therefore for drift detection. Note that all other strategies
manage the drift detection without any true labels and then only require labels for
retraining. For this method, we use the scikit-multiflow (Montiel et al., 2018)
implementation with default parameter settings.

9.4.2 Data Sets

For evaluation, we consider two synthetic data sets (Friedman and Mixed) and ten
real-world data sets. The Friedman regression data set (Friedman, 1991) consists
of ten features that are each drawn from a uniform distribution from the interval
[0, 1]. The first five features are relevant for the prediction task, the remaining five
are noise. The Mixed classification data set is inspired by Gama et al. (Gama et al.,
2004) and contains six features where two features are Boolean and the other four
features are drawn from a discrete distribution. Two of the features are noise which
do not influence the classification function. By modifying the distribution of some
features, we can either induce real or virtual concept drifts (see Section 9.2.1) in
both the Friedman and the Mixed data set.

Furthermore, ten real-world data sets—eight classification and two regression tasks—
are used for the evaluation of the UDD method. The characteristics of the real-world

172 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

data sets regarding sample size, number of features, and targets can be found in
the appendix in Table A.6. The Air Quality data set (De Vito et al., 2008) contains
measurements from five metal oxide chemical sensors, a temperature, and a humidity
sensor. The learning task is to predict the benzene concentration, which is a proxy
for air pollution. The real benzene concentration is measured with a specialized,
expensive sensor. Concept drift is present due to seasonal weather changes. The
Bike Sharing data set (Fanaee-T & Gama, 2014) provides hourly rental data for a
bike sharing system between 2011 and 2012 in Washington, D.C., with the objective
to predict the hourly demand for bike rentals. Concept drift is again assumed to be
present due to seasonal weather changes.

All following classification data sets are taken from the USP Data Stream Repository
(Souza et al., 2020): The various Insects data sets were gathered by controlled
experiments on the use of optical sensors to classify six types of different flying
insects (three species with two sexes, respectively). Concept drift is artificially
induced by changes in temperature. The Abrupt data set contains five sudden
changes in temperature, whereas in the Incremental (Inc) data set, temperature is
slowly increased over time. The Incremental Abrupt (IncAbr) data set has three
cycles of incremental changes with additional abrupt drifts included as well. In the
Incremental Reoccurring (IncReo) data set, the temperature increases incrementally
within several cycles. The KDDCUP99 data set contains TCP connection records
from a local area network. Features comprise information such as connection
duration, protocol type, and transmitted bytes. The learning task is to recognize
whether the connection is normal or relates to one of 22 different types of attacks.
The Gas Sensor data set was collected over 36 months at a gas delivery system.
For each recording, one of six gases is diluted in synthetic dry air inside a sensing
chamber, and the objective is to identify the respective gas. Both sensor drift (due
to aging) and concept drift (due to external alterations) are included in the data.
The Electricity data set was gathered at the Australian New South Wales Electricity
Market. Each record contains information about recent electricity consumption and
market prices. The learning task is to predict whether the market price will increase
or decrease compared to the last 24 hours. The Rialto Bridge Timelapse data set
contains images taken by a webcam close to the Rialto Bridge in Venice, Italy during
May and June 2016. The objective is to correctly classify nearby buildings with
concept drift occurring due to changing weather and lighting conditions.

9.4 Experiments 173

9.4.3 Performance Metrics

Evaluating concept drift detection on real-world data sets is a challenging endeavor
as most real-world data sets do not have specified drift points. Specifically, for most
real-world data, it is intractable to measure the accuracy of drift detection itself.
Therefore, we perform two different analyses regarding the behaviour of UDD in
this work. First, we apply UDD on two synthetic data sets to specifically evaluate its
drift detection capabilities. Second, we perform extensive experiments to investigate
its performance on ten real-world data sets.

For synthetic data sets, the real drift points are known, which allows to compute
metrics regarding the drift detection capabilities of a drift detector (Bifet, Read,
Pfahringer, et al., 2013). In this work, we compute the Mean Time to Detection
(MTD), the False Alarm Count (FAC), and the missed detection count (MDC).

In contrast, an appropriate evaluation for real-world data sets is more difficult.
However, one can assume that a drift is present when the prediction performance
of a static model decreases over time. Since the real drift points are unknown,
we evaluate the different strategies based on their prediction performance, as it
is common in the concept drift literature (Elwell & Polikar, 2011). For regression
tasks, we apply the Root Mean Squared Error (RMSE), and we use the Matthews
Correlation Coefficient (MCC) for classification tasks. MCC is a popular metric for
classification settings as it can also handle data sets with class imbalance (Chicco &
Jurman, 2020).

9.4.4 Analysis on Synthetic Data Sets

To test the capabilities of UDD, we analyze its behaviour when applied on two
synthetic data sets (Friedman and Mixed). Both data sets contain virtual as well as
real concept drifts. Virtual drifts refer to changes in the input data with no effect
on the resulting label. Hence, UDD should not raise an alarm for these drifts as a
retraining of the machine learning model in this case is unnecessary. Recall that
this kind of analysis is only feasible on synthetic data sets, as we do not have any
knowledge regarding the type of concept drift as well as its timing on real-world
data sets. On the synthetic data sets, we test UDD and KSWIN(unl.) as they both do
not require true labels for drift detection. The parameters of both approaches are
optimized based on a validation set which includes one drift (see Section 9.4.1).

Figure 9.2 shows the trajectory of the predictive uncertainty over the course of the
Friedman data set. The uncertainty changes significantly each time a real concept

174 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

0 2500 5000 7500 10000 12500 15000 17500
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Va
ria

nc
e

of
 p

re
di

ct
io

n
2

Uncertainty (rolling mean)
Real Drift
Virtual Drift
Detected Drift

UDD (3 Detections)

KSWIN (20 Detections)

Fig. 9.2.: Behaviour of UDD and KSWIN on synthetic Friedman data set.

drift occurs. Accordingly, this is also detected by UDD. As expected, the two virtual
drifts (marked by orange vertical lines in the figure) do not trigger a drift detection.
In contrast, the input data-based detection (KSWIN) detects also these virtual drifts.
Furthermore, note the overall large number (20) of detected drifts by KSWIN despite
a parameter optimization. This illustrates KSWIN’s problem of high reactivity leading
to several false-positive drift detections. Figure A.1 in the appendix depicts this
analysis for the Mixed data set.

Since the real drift points for the synthetic data sets are known, we compute the
mean time to detection (MTD), the false alarm count (FAC), and the missed detection
count (MDC) for both strategies in Table 9.1. UDD correctly identifies all real concept
drifts in both data sets. Furthermore, no false alarms are raised. However, KSWIN
achieves lower MTD values compared to UDD in both data sets, which means that
KSWIN recognizes concept drifts faster. This can likely be explained by the high
sensitivity of KSWIN regarding changes. However, this sensitivity also leads to large
numbers of false alarms (17 and 11, respectively), as depicted in Table 9.1. Such a
behaviour is especially detrimental in scenarios where the acquisition of true labels
is expensive. Each time a false alarm is raised, new true labels must be acquired at a
high cost—even though a retraining is not required since no real concept drift has
occurred.

Tab. 9.1.: Evaluation on synthetic data sets.

Data Set Drift Detector MTD FAC MDC

Friedman
UDD 132.7 0 0

KSWIN 65.7 17 0

Mixed
UDD 247.3 0 0

KSWIN 50.3 11 0

9.4 Experiments 175

Tab. 9.2.: RMSE (the lower the better) on regression benchmark data sets. Number of
retrainings in brackets (the lower the less computationally expensive). No
Retraining depicts the lower-bound benchmark, while KSWIN(unl.) and ADWIN
represent the upper-bound performance benchmark.

Limited Label Avail. Unlimited Label Avail.
Data Set No Retr. Uninf. Equal D. KSWIN UDD KSWIN(unl.) ADWIN

Air Quality 1.170 (0) 1.383 (14) 1.231 (14) 1.285 (14) 1.151 (14) 1.304 (19) 1.387 (12)
Bike Sharing 171.47 (0) 170.00 (5) 144.94 (5) 143.88 (5) 129.93 (5) 120.69 (27) 127.07 (8)

Tab. 9.3.: MCC (the higher the better) on classification benchmark data sets. Number
of retrainings in brackets (the lower the less computationally expensive). No
Retraining depicts the lower-bound benchmark, while KSWIN(unl.) and ADWIN
represent the upper-bound performance benchmark.

Limited Label Avail. Unlimited Label Avail.
Data Set No Retr. Uninf. Equal D. KSWIN UDD KSWIN(unl.) ADWIN

Insects Abrupt 0.452 (0) 0.468 (9) 0.475 (9) 0.456 (9) 0.516 (9) 0.521 (192) 0.497 (9)
Insects Inc 0.052 (0) 0.210 (4) 0.211 (4) 0.191 (4) 0.242 (4) 0.238 (27) 0.251 (3)
Insects IncAbr 0.292 (0) 0.463 (22) 0.483 (22) 0.464 (22) 0.522 (22) 0.488 (107) 0.516 (23)
Insects IncReo 0.114 (0) 0.190 (10) 0.197 (10) 0.126 (10) 0.208 (10) 0.218 (149) 0.239 (13)
KDDCUP99 0.663 (0) 0.830 (20) 0.873 (20) 0.772 (20) 0.964 (20) 0.986 (345) 0.984 (61)
Gas Sensor 0.255 (0) 0.472 (39) 0.469 (39) 0.325 (39) 0.484 (39) 0.454 (149) 0.480 (49)
Electricity 0.139 (0) 0.372 (13) 0.362 (13) 0.254 (13) 0.436 (13) 0.511 (269) 0.471 (45)
Rialto Bridge 0.534 (0) 0.558 (14) 0.561 (14) 0.583 (14) 0.583 (14) 0.586 (17) 0.600 (116)

9.4.5 Experimental Results

Both UDD and KSWIN require as input a suitable value for α, which determines their
sensitivity regarding concept drift detection. Since the data sets included in this
experiment are fundamentally different from each other (e.g., different number of
class labels), individual values of α are required for each data set. As described in
Section 9.4.1, we determine the respective value for both strategies by performing a
test on a validation data set. The parameter values for UDD for each data set are
depicted in Table A.7 in the appendix.

A summary of the experimental results on all data sets is provided in Table 9.2 for
regression data sets (RMSE) and in Table 9.3 for classification (MCC). Furthermore,
we provide an additional view on the results by depicting the SMAPE metric in Table
A.8 and the F1-score in Table A.9 in the appendix. For the evaluation, we primarily
focus on the first five columns of the table which as a group can be characterized
by only requiring a limited amount of true labels. This is also illustrated by the
values in parentheses which describe how often the corresponding machine learning
models are retrained. As explained in Section 9.4.1, KSWIN(unl.) and ADWIN serve
as an upper-bound benchmark due to their requirement of full label availability.

The best strategy with limited label availability per data set is marked in bold. For
both regression data sets, UDD outperforms the other four strategies. Regarding

176 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

1 2 3 4 5 6 7 8 9 10
Variance (Deciles)

80

100

120

140

160

180

RM
SE

 p
er

 d
ec

ile
 (B

ik
e

Sh
ar

in
g)

Bike_Sharing
Air_Quality

0.5

1.0

1.5

2.0

2.5

RM
SE

 p
er

 d
ec

ile
 (A

ir
Qu

al
ity

)

(a) Regression

1 2 3 4 5 6 7 8 9 10
Entropy (Deciles)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Electricity
Gas_Sensor
Insects_Abrupt
Insects_Incremental
Insects_Inc_Abr
Insects_Inc_Reoc
Rialto

(b) Classification

Fig. 9.3.: Relationship between deciles of uncertainty and prediction performance.

the classification tasks, UDD achieves the best prediction performance on seven out
of eight data sets and always outperforms the strategies No Retraining, Uninformed
and Equal Distribution. Solely for the Rialto data set, the strategy based on KSWIN
performs equally well, which might be explained with rather significant changes in
individual input features that can be detected well with KSWIN. As expected, the No
Retraining strategy usually performs worst. Interestingly, the Uninformed already
achieves good prediction performance and sometimes even outperforms the KSWIN
strategy, especially for the regression tasks. By design, the number of retrainings is
equal for all four strategies—Uninformed, Equal Distribution, KSWIN, and UDD.

The right two columns in both Table 9.2 and Table 9.3 show the prediction perfor-
mance of the KSWIN(unl.) and ADWIN strategy. As expected, these strategies usually
outperform all other strategies but also require significantly more true labels for
retraining. For the KDDCUP99 data set, the difference in amounts of retrainings for
UDD compared to KSWIN(unl.) is most striking: While UDD requires 16 retraining,
KSWIN(unl.) performs 345 retrainings in total. Yet, the difference in predictive
performance is rather small. Also, recall that the ADWIN strategy requires all true
labels for drift detection itself. For the Insects Abrupt, Insects IncAbr, and the Gas
Sensor data set, the UDD strategy performs even better than ADWIN.

We also investigate the average prediction performance for UDD based on the level
of uncertainty in Figure 9.3. Per data set, we sort instances in deciles, from instances
with lowest uncertainty (decile 1) up to instances with highest uncertainty (decile
10) based on entropy H or variance σ̂2, respectively. Subsequently, we compute the
average prediction performance per decile. As expected, the RMSE for regression
data sets increases with rising uncertainty, as shown in the left plot (a). The right
plot (b) shows the classification data sets—decile 1 shows the highest mean accuracy

9.4 Experiments 177

1 2 3 4 5 6 7 8 9 10
Confidence (Deciles)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Electricity
Gas_Sensor
Insects_Abrupt
Insects_Incremental
Insects_Inc_Abr
Insects_Inc_Reoc
Rialto

Fig. 9.4.: Relationship between deciles of confidence and accuracy.

and decile 10 the lowest.2 Thus, Figure 9.3 confirms our assumption that uncertainty
represents a proxy for the error metric.

For classification tasks, we additionally analyze the relationship between confidence
and accuracy (similar to Lakshminarayanan et al. (2017)). We define confidence c :=
maxk p̂(y = k|x) as the highest predicted probability for one class of a specific data
instance. All instances of a data set are sorted into confidence deciles, where decile
10 contains all instances with highest confidence. Figure 9.4 depicts the relationship.
As expected, the mean accuracy score increases with larger confidence.

9.5 Conclusion

In this work, we have introduced the Uncertainty Drift Detection (UDD) algorithm for
concept drift detection. This algorithm does not depend on true labels for detection
of concept drift, and—only in case of a detected drift—requires access to a limited
set of true labels for retraining of the prediction model. Therefore, this algorithm is
especially suitable for drift handling in deployed machine learning settings within
real-world environments where the acquisition of true labels is expensive (e.g.,
quality control). Standard drift detection algorithms such as DDM and ADWIN
are not applicable in such settings because they require access to the entire set
of true labels. Our approach is based on the uncertainties derived from a deep
neural network in combination with Monte Carlo Dropout. Drifts are detected by
applying the ADWIN change detector on the stream of uncertainty values over time.
In contrast to most existing drift detection algorithms, our approach is able to detect
drift in both regression and classification settings. We have performed an extensive
evaluation on two synthetic as well as ten real-world concept drift data sets to

2The KDDCUP99 data set is not included in Figure 9.3 and 9.4 because deciles cannot be computed
due to the highly skewed distribution of entropy and confidence values.

178 Chapter 9 Handling by Model Uncertainty - Uncertainty Drift Detection

demonstrate the effectiveness of UDD for concept drift handling in comparison to
other state-of-the-art strategies.

In future work, we aim to improve the UDD method by including active learning
methods. Including only those instances with high uncertainty in the retraining set
rather than all recent instances could further improve the prediction performance.

9.5 Conclusion 179

Handling by Outlier Detection
- the Two-Step Prediction
Method1

10

10.1 Introduction

Due to the explosion of data in recent years, supervised machine learning plays an
important role in nearly all fields of business, ranging from marketing to scientific-,
health- and security-related applications (Chen et al., 2012). Many companies
rely on deployed machine learning models for increasing process efficiency or for
introducing innovative services (Schüritz & Satzger, 2016). Besides the mentioned
increased availability of data, this growth in popularity can also be explained by a
massive increase in computation power in recent years (Jordan & Mitchell, 2015).

However, there are also areas of application for supervised machine learning where
computational resources are strictly limited. This especially applies to machine
learning models in production systems. For instance, companies might generally
restrict the connection of sensible data and machine learning models to the in-
frastructure of cloud providers due to the fear of loosing data and corresponding
intellectual property (Zhang et al., 2010). In other cases, it might be just technically
unfeasible to connect specific parts or components to cloud services. In both cases, it
is necessary to rely on available local computing resources. Applications on mobile
devices are a typical example for this case (Oneto et al., 2015). Therefore, we regard
resource considerations as one constraint for motivating this work.

The second constraint relates to a machine learning model in operation which does
not receive any ground truth labels for the predictions that are issued (Raykar
et al., 2009; Yu et al., 2014). This problem needs to be considered in the context

1This chapter comprises an article that was published as: Baier, L., Kühl, N., & Schmitt, J. (2021).
Increasing Robustness for Machine Learning Services in Challenging Environments – Limited Resources
and No Label Feedback. Proceedings of SAI Intelligent Systems Conference (IntelliSys) [forthcoming].
Note: The abstract has been removed. Tables and figures were reformatted, and newly referenced
to fit the structure of the thesis. Chapter, section and research question numbering and respective
cross-references were modified. Formatting and reference style was adapted and references were
integrated into the overall references section of this thesis.

181

of data streams because basically all models which are deployed in productive
information systems receive input data as data streams and continuously issue
predictions over months or even years for those very data instances. Unfortunately,
data streams usually evolve over time leading to changes in the underlying data
patterns (Žliobaitė, 2010) which require the adequate adaption of a prediction
model (Baier, Kühl, et al., 2019). However, usual adaptation strategies for model
updates (Tsymbal, 2004) cannot be applied because no feedback with regard to
the prediction performance is received (Gama et al., 2014). Both constraints are
expressed in the central research question of the work at hand:

Research Question F
How to increase robustness for supervised machine learning services without
label feedback and limited infrastructure resources?

We introduce a novel prediction method artifact (“machine learning service”) which
addresses both mentioned constraints: limited computational sources and no avail-
ability of true labels after deployment. To achieve this, our artifact combines an
outlier detection with a robust machine learning model. We assess available outlier
detection models as well as prediction models with regard to their suitability based
on several criteria. Subsequently, we select appropriate models for our prediction
method. Our suggested method is evaluated based on a use case from a large
global automotive supplier. We show that we can increase prediction performance
significantly with our method compared to normal prediction models while at the
same time restricting necessary memory and computation time requirements. By the
introduction of the method, this work aims at contributing to increase the acceptance
of machine learning solutions for real-world applications. So far, many companies
are still skeptical about trusting deployed machine learning solutions for automated
decision-making in production environments (Zhou, 2017).

The remainder of this work is structured as follows: The upcoming Section 10.2
presents foundations on which we base our research. Section 10.3 introduces the
artifact requirements, while Section 10.4 gives an overview of different options to
fulfill these specified requirements. Section 10.5 describes the evaluation of our
approach with an industry use case. Section 10.6 discusses our results, describes
implications and outlines future research.

182 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

10.2 Foundations

To lay the necessary foundations for the remainder of this work, we first briefly
introduce machine learning followed by an overview on concept drift and outlier
detection.

10.2.1 Machine Learning

Traditionally, machine learning approaches are divided into supervised, unsupervised
as well as reinforcement learning (Alsheikh et al., 2014). Supervised machine
learning depends on labeled examples in the training data. In contrast, unsupervised
machine learning aims at detecting unknown relationships and patterns in the
data. In reinforcement learning, an agent learns to interact with its environment by
receiving specific rewards. We focus on supervised approaches, as most real-word
applications of machine learning are of supervised nature (Jordan & Mitchell, 2015;
Kotsiantis, 2007).

However, many machine learning models need to be operated in environments with
limited resources. For instance, the training process of machine learning models
with gradient-descent optimization has been analyzed to improve computational
efficiency (Gupta et al., 2015). Other approaches in literature aim to reduce the
computational requirements for calculating the actual prediction in operation, e.g.,
for the application of support vector machines for activity recognition (Anguita
et al., 2012) or for computer vision tasks in cars (Anguita et al., 2007). Specialized
distributed approaches have been developed for the training and deployment of
machine learning on network edges (Wang et al., 2018). A lot of research in
this context has been dedicated to the application of machine learning in wireless
sensor networks (An et al., 2018; Hu & Hao, 2012) where computations have to
be performed on small independent and distributed sensors (Alsheikh et al., 2014).
Additional challenges arise when machine learning models are deployed on local
and isolated computing units such as mobile devices. Challenges for mobile devices
are a high power consumption as well as limited computational power and memory
storage (Oneto et al., 2015).

10.2 Foundations 183

10.2.2 Concept Drift

Companies usually apply machine learning models to make predictions for specific
services on a stream of unseen incoming data. However, data tends to evolve
and change over time. Therefore, predictions issued by models which have been
trained on past data may become less accurate or opportunities for performance
improvements might be missed (Žliobaitė et al., 2016). In computer science, the
challenge of changing data streams and its implications for machine learning are
described with the term concept drift (Widmer & Kubat, 1996). A concept p(X, y)
is the joint probability distribution over a set of input features X and the target
variable y. The definition of concept drift refers to a change of a concept between
two time points t0 and t1 with pt0(X, y) 6= pt1(X, y) (Gama et al., 2014).

An example for an application with concept drift over time is a machine learning
service which monitors the output quality in a chemical production process and
predicts corresponding failures (Žliobaitė et al., 2016). Sensors connected to the
machine will generate the necessary data input. However, sensors wear out over time
leading to different data measurements. The previously deployed machine learning
model is not prepared for this drift as this data pattern has not been included in
the training data set. Thus, correct quality predictions are difficult to make in
the long run (Kadlec & Gabrys, 2011). Detecting concept drift usually relies on a
continuous evaluation of the prediction performance over time (Gama et al., 2014).
Less popular approaches focus on the computation of drift detection features on
the input data (Cavalcante et al., 2016). Examples for concept drift handling can
be found in various domains such as mobility Baier et al., 2020 or fraud detection
Dal Pozzolo et al., 2017.

10.2.3 Outlier Detection

Outliers are described as data instances that appear to be inconsistent with the
remaining data instances in the same sample (Barnett & Lewis, 1994). They are also
referred to as abnormalities or anomalies. The detection of outliers is an important
task in many different application scenarios. These range from fraud detection to
the detection of unauthorized intruders in computer networks up to fault diagnosis
in complex machine parts such as detecting aircraft engine rotation defects (Hodge
& Austin, 2004).

Different outlier detection methods are usually divided into unsupervised and super-
vised methods based on the availability of true labels with regard to the outlierness

184 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

of data instances (Aggarwal, 2015). In real-world settings, the detection of outliers
typically brings along many challenges (Hodge & Austin, 2004; Zimek et al., 2014).
For instance, data contains natural noise which is similar to actual outliers and
therefore it is difficult to distinguish between noise and outliers. Furthermore, true
outlier labels for data instances are rarely available and therefore complicate the
proper validation of different outlier detection methods (Chandola et al., 2007).
This fact is one of the reasons for the popularity of unsupervised approaches. Of
those, especially distance- or neighborhood-based techniques have gained a lot
of popularity because they are relatively parameter-free and easy to adapt (Orair
et al., 2010). However, the computational complexity during application is tremen-
dous. In contrast, statistical approaches allow for easier computation due to their
model-based structure, but they rely on an assumption regarding the underlying
data distribution which often does not hold true (Chandola et al., 2007). There are
numerous reviews of existing, mostly unsupervised, outlier detection methods (e.g.,
Chandola et al. (2007) and Hodge and Austin (2004)) which we use as input for the
development of our prediction method.

10.3 Problem Definition and Requirements

In this work, we consider a machine learning application with two specific problems.
First, no ground truth labels during deployment can be acquired and therefore
monitoring the prediction performance is impossible. This can happen for instance
when models are deployed to enhance the functionality of a small entity which is
integrated into a larger system (e.g., a large machine consisting of several different
components). Due to the embedding into the larger system, necessary sensors
cannot be installed and no ground truth labels can be acquired. Still, also in this
case, machine learning models are exposed to concept drift which needs to be
addressed. These facts are summarized in problem 1 (P1).

P1: No ground truth labels are available after deployment of the machine learning
model.

Second, the necessary computations for the execution of the prediction method
need to be performed on a local computing unit. Neither the integration of a more
powerful computing unit nor the connection of the prediction to cloud services are
feasible solutions. Therefore, only limited resources are available which is depicted
in problem 2 (P2), a typical problem in real-world applications of machine learning
(Malikopoulos et al., 2007; Vong et al., 2006; Xie et al., 2018).

10.3 Problem Definition and Requirements 185

P2: The prediction method needs to run on a local computing unit.

Based on the problem characteristics (P1, P2), we derive the following design
requirements (R) for the prediction method.

R1: The developed method must show robust behaviour to concept drift and
continuously deliver acceptable prediction performance. Ground truth labels for the
predictions issued by the method in operation are not accessible.

R2: The prediction method needs to operate with limited storage space for saving
necessary data (e.g., model weights and other parameters) as the storage space on
the local computing unit is limited (memory requirement).

R3: The computational complexity of the prediction method is constrained by the
computing power of the local computing unit. This requirement refers to the amount
of operations that need to be carried out for a prediction during operation and is
therefore closely related to time constraints for the computation of a prediction.

Fig. 10.1.: Operating principle of the prediction method.

The design of the prediction method is depicted in Figure 10.1. The individual
components are designed to ensure that the overall method aligns to the require-
ments (R1-R3). At first, streaming data (sensor measurements) is transferred to a
computing unit. As described above, no ground truth labels for any of the predictions
can be acquired. Therefore, it is impossible to continuously adapt the model to data
changes. Instead, we suggest to control the input data for the prediction model (step
1). An outlier detection is implemented before the prediction model which ensures
the proper validity of the new incoming data. Data validity implies that new data
is similar to the data that the prediction model has been trained on in the training
process. Data instances that exhibit unusual patterns compared to the training data
will be filtered out and no prediction for those data instances will be issued. In this
case, the whole system will rely on the previous prediction. With regard to time
series, this behavior is acceptable because data instances are highly auto-correlated,
e.g., we do not expect any discontinuities in the prediction target. In general, it

186 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

is preferable to receive a prediction for every new data instance. However, it is
better to receive no prediction than an entirely false prediction. Otherwise, the
control unit of the whole system will adapt its behavior based on this false prediction
and trigger corresponding actions which might have negative effects. Due to this
dependency, it is better to accept the limitation that predictions are only issued for
normal data instances. We prefer to skip adaptations of the whole system at some
time points instead of performing a false adaptation based on a false prediction with
unforeseeable consequences. In case the prediction method is constantly detecting
outliers, an alert will be created.

The second step in the prediction method is the application of the prediction model
(step 2). In case a data instance is not marked as an outlier, the relevant data is
transmitted to the prediction model. One evaluation criteria for the prediction model
needs to be the achieved prediction performance. Additionally, it is crucial that
the prediction model computes robust predictions which means that the prediction
performance does not change significantly over time.

According to R2 and R3, potential methods for step 1 and step 2 respectively need
to have low computational as well as memory requirements so that these can be
deployed on the local computing unit.

10.4 Design Options

In the following chapter, we introduce the different available methods which can be
implemented to build the two-step prediction method.

10.4.1 Step 1: Data Validity

The first step in the prediction method (Figure 10.1) needs to ensure the data
validity of the incoming data instances (R1). This means that the new incoming
data in operation must be similar to the training data. The objective of outlier
detection is the identification of data instances that are different to other data
instances. Therefore, outlier detection is a suitable approach to guarantee validity
of new data instances. Since no labelled data regarding the outlierness is available,
we rely on unsupervised models in the following. Unsupervised outlier detection
models can be differentiated into the following groups (Aggarwal, 2015): Extreme
value models, Clustering models, Distance-based models, Density-based models,
Probabilistic models and Information-theoretic models.

10.4 Design Options 187

Considering these groups of algorithms, we need to make a selection that is suitable
for the overall prediction method. Distance-based and density-based models require
the storage of all initial training instances for a proper functionality in practice. This
means that the whole initial training dataset needs to be stored on the computing
unit. Due to the memory and computational requirements (c.f. design requirement
R2 and R3 in Section 10.3), these groups of models are not feasible for the overall
approach. However, we will select one representative of those models as a benchmark
for the other selected models. Information-theoretic models inherently only allow
to indirectly compare the outlierness of different data instances which makes the
application difficult and also computationally expensive. Aggarwal (2015) suggests
that other models should be preferred if they can be applied. Consequently, we
constrain the selection of suitable outlier detection models to the groups of clustering
as well as distance-based, probabilistic and extreme values models. The individual
models will be evaluated in detail in the next section.

10.4.2 Step 2: Model Robustness

The second step in the proposed approach is the identification of a robust machine
learning model. It is desirable that the chosen prediction algorithm is robust to
changes in the input data and keeps the same prediction performance over time
(R1). This can be interpreted as a second safety measure in addition to the outlier
detection. It is crucial that the machine learning model is robust and issues ongoing
reliable predictions. For the selection of the prediction models, we choose the
available prediction model out of the following groups in scikit-learn (Pedregosa
et al., 2011): Generalized Linear Models, Kernel Ridge Regression, Support Vector
Regression, Stochastic Gradient Descent, Neural Network Regression, Ensemble
methods.

10.5 Evaluation

We evaluate the overall prediction method with data from a large global automotive
supplier. The objective is to optimize the performance of an integrated engine
part with a small computing unit within a vehicle. It is necessary to measure
the flow quantity of a liquid [mm3] as exactly as possible for an overall good
driving performance of the engine. The estimation is crucial to optimally align
the behaviour of other components in the vehicle. However, from a technical
perspective, it is difficult to install a sensor in the affected engine component for

188 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

the direct measurement of the liquid’s quantity. Furthermore, such a sensor is very
costly and economically not feasible. Therefore, surrounding sensors in other parts
of the vehicle are used as input to estimate the flow quantity. These consist of a
high frequency pressure sensor as well as a sensor in a feed pump which measures
the number of revolutions per minute. We apply a supervised machine learning
approach in order to predict the flow quantity.

After the engine component is built into the vehicle during production, it is impossi-
ble to measure the flow quantity (no ground truth labels). However, flow quantity
measurements can be derived on a specialized test bench which is used for research
and development activities. This gives us the opportunity to train and evaluate the
proposed prediction method. The test bench allows to simulate the real-life usage
of the corresponding vehicle. The final prediction method needs to exhibit good
performance but also at the same time high robustness to outliers. Furthermore,
model updates can only be performed when the vehicle is brought to the garage for
maintenance work. Therefore, a robust prediction model which does not require
regular adaptations needs to be implemented.

Restrictions with regard to the available infrastructure for computing the predictions
within the vehicle also need to be taken into account. Due to space limitations as
well as shock resistance requirements, the built-in computing unit is rather small.
This leads to two additional challenges: First, the computing power of the computing
unit is limited. Therefore, the computation of the prediction itself should not be
very complex since otherwise the computing unit will take too long to issue a
prediction. The same limitation applies to the outlier detection. However, this does
not restrict the initial training of the model which can be performed outside of the
local computing unit, e.g., on a large cluster. Second, there is only a limited amount
of storage space available within the computing unit. This restricts not only the size
of the prediction model but also leads to limitations for the outlier detection, e.g., it
is impossible to store a large data set of acceptable data instances on the computing
unit.

The data provided by the company is split into two data sets. Data set 1 consists
of data instances which are the result of a systematic testing of different operation
points which are occurring in real driving behavior of the vehicle. This data set
is therefore used as training and validation set in order to optimize the chosen
prediction method. In total, it consists of 9,992 data instances. Data set 2 consists
of a random sample of data instances with different operating modes and contains
13,354 data instances in total. This is used as a test set to examine the performance
of the chosen prediction method.

10.5 Evaluation 189

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time [t]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
pr

es
su

re

Fig. 10.2.: Normalized pressure trajectory.

Each data instance has 21 variables. One variable is the number of revolutions
of the feed pump. Additionally, there are 20 variables which are related to the
trajectory of the pressure values. A normalized pressure trajectory is depicted in
Figure 10.2. Every pressure trajectory is related to exactly one quantity flow which
is the prediction target.

10.5.1 Evaluation of Data Validity (Step 1)

The first step in the proposed prediction method is a dedicated outlier detection
approach. As explained in Section 10.4, we focus on the following classes of outlier
detection algorithms: Extreme values, clustering, distance-based and probabilistic
models. All outlier detection models require the definition of an outlier threshold
in order to identify outliers. In this work, the thresholds are derived from the
behavior of the outlier detection models on the training set. Thresholds are defined
by considering the 95%-quantile of the outlier distance measure on the training set
instances. This way, we also define some of the data instances in the training set as
outliers. We do not have any information regarding the real outlierness of the data
instances in the training set but we somehow need to define a threshold to identify
outliers in operation of the general prediction approach. Due to the potentially
critical impact of outliers on the behavior of the prediction model, we prefer to
falsely classify a few normal data instances as outliers compared to the probability
of missing real outliers.

For the extreme values model, we compute the data distribution over all data instances
in the training set for each input feature respectively. Subsequently, we derive the
thresholds for each input feature based on the training data. However, we need to
adjust the quantile value q for each input feature since an application of q = 0.95
leads to overly strict thresholds as 0.9521 = 0.341. Therefore, the quantile for

190 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

each input feature is updated to q = e
loge0.95

21 = 0.997. This value of q is evenly
distributed to low and high values for each input feature. All data instances which
have a measurement which is either higher or lower than one of the thresholds are
considered outliers.

From the clustering models, we apply the k-means algorithms with euclidean distance
on the training data in order to identify suitable clusters (Kanungo et al., 2002).
Parameter k is determined by applying the elbow criteria which leads to the selection
of k = 3. We then use this parameter to apply a clustering on the training data
with three clusters. Subsequently, for each of the clusters, the distance to the
corresponding cluster centroid for every data instance in the training set is computed.
We order these distances by size and determine the 95%-quantile of these distances
per cluster as a threshold.

K-Nearest-Neighbors (KNN) (Aggarwal, 2015) is chosen as representative from the
distance-based models since it is the most common used algorithm from this group.
We choose the value of k based on the size of the training set N . Therefore, k
is computed as follows: k =

√
N =

√
9992 ≈ 100. For each data instance in the

training set, the euclidean distance to its kth neighbor is computed. Those distances
are ordered by size and the corresponding 95%-quantile is derived as threshold.

With regard to the probabilistic models, we compute the Mahalanobis Distance (MD)
(De Maesschalck et al., 2000) which is basically defined by the covariance matrix of
the entire training data set. The MD between a data instance and the mean value
of all data instances can be understood as a metric for the outlierness of a data
instance. In comparison to the Euclidean Distance, the MD also takes into account
the covariance structure of the data and thereby normalizes the influence of each
input feature on the overall distance computation. If a specific threshold for the
MD is fixed in a two-dimensional space, we basically determine an ellipse around
normal data instances which allows to differentiate outliers from non-outliers. The
threshold value is based on the 95% - quantile of the MD in the training set. We call
this approach confidence ellipse in the following.

As a fifth outlier detection method, we combine clustering with probabilistic models.
Instead of fitting just one ellipse around the data instances in the training set, a
k-means clustering with k = 3 is performed. Afterwards, an ellipse is estimated
around each of the identified clusters. The threshold is computed based on the
training data. This approach is called clustering and confidence ellipses in the
following.

10.5 Evaluation 191

To evaluate the five outlier detection methods, we have defined two distinct evalu-
ation criteria: The first criterion is the amount of memory on the computing unit
which is necessary to enable the outlier detection method (R2). We approximate the
memory requirements by deriving how much Floating Point Numbers (FPN) need to
stored. The second criterion is the necessary computation time in operation (R3).
This refers to the calculations which need to be carried out in order to determine the
outlierness of a new data point. For the remainder of this work, we differentiate into
Simple Operations (SO) and Complex Operations (CO). Simple operations refer to
mathematical operations such as multiplications, additions or root calculations. On
the contrary, complex operations mean the computation of more sophisticated func-
tions such as tanh or logistic. The first two criteria refer to the limited computing
resources in our use case.

Unfortunately, it is impossible to evaluate the general performance of the various
outlier detection models at this point. In general, evaluation of outlier models are
based on some kind of ground truth. However, neither the company nor we possess
any ground truth labels with regard to the outlier detection and it is impossible
to automatically derive the labels from available data. One solution is the manual
labelling by a domain expert, however in our case with over 23,000 data instances,
this approach seems unfeasible. Apart from this approach, there exist no general
evaluation approach for outlier detection (Zimek et al., 2012). Therefore, we decide
to evaluate the performance of the outlier detection models by comparing the overall
prediction performance of various combinations of outlier detction and prediction
models. This is reflected in the results of section 10.5.3.

Tab. 10.1.: Evaluation of different outlier detection approaches.

Requirements
Outlier
detection

Memory Computation time in
operation

Extreme values ~ 42 FPN SO: ~ 80
CO: 0

Clustering ~ 50 – 200 FPN SO: ~ 100 – 300
CO: 0

K-nearest neighbors ~ 200.000 FPN SO: ~ 200.000 – 500.000
CO: 0

Confidence ellipse ~ 400 FPN SO: ~ 1.000
CO: 0

Clustering & confidence
ellipses ~ 1000 – 4000 FPN SO: ~ 1.100 – 1.300

CO: 0

192 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

The preliminary evaluation of the chosen outlier detection approaches is depicted
in Table 10.1. The first row shows the evaluation of the extreme values method
(Aggarwal, 2015). With regard to the storage space requirement, it is necessary to
save exactly two values per input feature (one lower and one upper threshold). This
results in 2 ∗ 21 = 42 FPN . The computation time in operation is determined by
comparing 21 values of a newly arriving data instance with the given maximum and
minimum thresholds resulting in 42 boolean expressions. Subsequently, the results
of each of these 42 boolean expressions need to be evaluated which results in 84
simple operations in total. For both, memory as well as computational requirements,
we have indicated approximate values since small changes in the parameter space
also lead to changes in these numbers. The memory requirements for kNN are
depicted in third row of the table. Since it is necessary to store the entire training set
in memory, we need to have enough storage space for 9, 992 ∗ 21 = 209, 832 FPN .
Regarding the computation time, for every data instance, it is necessary to compute
one subtraction as well as one square computation per input feature and one square
root operation per data instance: 9, 992 ∗ (21 ∗ 2 + 1) ≈ 430, 000.

The difference in memory requirements between the outlier detection methods and
kNN is significant. Even the most complex method (clustering with confidence
ellipses) requires only around one percent of the storage space of kNN . Among the
four remaining outlier detection methods, confidence ellipse as well as clustering
with confidence ellipses require the most memory and computation time.

Furthermore, we perform a sensitivity analysis of the outlier detection approach
with the creation of artificial outliers. Several types of artificial outliers are created
by shifting the minimum and the maximum value of the pressure trajectory as well
as by adding random noise and by introducing a phase shift. An example for an
artificial outlier with phase shift is depicted in Figure 10.3. This was evaluated
manually on single data instances in order to further assess the functionality of the
outlier detection model.

The left figure shows an original pressure trajectory (in blue) and one which is
shifted by six time units (in orange). The right figure shows the corresponding
development of the Mahalanobis distance (MD) with the amount of phase shift on
the x-axis. The red horizontal line marks the outlier threshold for the MD. The MD
rises significantly with the introduced phase shift. It is interesting to note that the
MD decreases again with a phase shift of 18 or 19. The shifted pressure trajectory
at this point is very similar again to the original trajectory since a phase shift of 20
refers to the exact same trajectory.

10.5 Evaluation 193

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time [t]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
pr

es
su

re

Original trajectory
New trajectory (shift=4)

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Phase shift

101

102

M
ah

al
an

ob
is

di
st

an
ce

MD distance
Outlier threshold

Fig. 10.3.: Sensitivity of the Mahalanobis distance regarding a phase shift.

10.5.2 Evaluation of Model Robustness (Step 2)

With the outlier detection of step 1 successfully evaluated, we now regard the
evaluation of the prediction model. In order to make a first selection of suitable
prediction algorithms, we conducted pretests with the groups of algorithm that we
introduced in Section 10.4. For every group, we implemented one prediction model
with the standard parameter configuration in scikit-learn (Pedregosa et al., 2011).
Due to the large number of available options for the generalized linear models,
we implemented two prediction models, namely linear regression and polynomial
regression (degree = 2). A random train-test split with 30% test data is performed on
the training data (data set 1) for the model evaluation. We apply the Mean Absolute
Percentage Error (MAPE) as evaluation metric because it is the common metric
for engineers involved in the use case and provides meaningful and interpretable
results (Armstrong & Collopy, 1992). Furthermore, MAPE is independent of scale
and therefore comparable among different data sets.

Tab. 10.2.: Results of pretest with various prediction models.

Prediction Model MAPE

Polynomial Regression 3.07%

Neural Network Regression 6.02%

Support Vector Regression 10.17%

Linear Regression 11.05%

Stochastic Gradient Descent Regression 12.80%

AdaBoost Regression 14.17%

Kernel Ridge Regression 15.67%

The results are depicted in Table 10.2. There are large performance differences
between the three best performing prediction models with polynomial regression

194 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

outperforming the other models by far. However, Neural Network (NN) and Support
Vector Regression (SVR) usually increase their performance significantly after pa-
rameter optimization. Therefore, we include polynomial regression, NN and SVR for
the next steps of a more detailed investigation.

Subsequently, we perform a grid search (Bergstra & Yoshua, 2012) with a 3-fold-
cross-validation (Golub et al., 1979) on the three prediction models. Since the
polynomial regression does not possess any parameters except the degree for the
polynomial transformation, we also evaluate the lambda parameter for the ridge
shrinkage method on the polynomial regression. The grid search is performed on
the entire training set (data set 1). Best parameter combinations for each prediction
model are shown in Table 10.3.

Tab. 10.3.: Parameter results of grid search.

SVR parameters

Par. Range Best

Kernel rbf, poly, linear, sigmoid rbf

C 1, 10, ..., 100.000 10.000

Gamma 0.0001, 0.001, ..., 10 0.1

Epsilon 2,3,...,7 3

NN parameters

Par. Range Best

Layers (2,), (4,), ... (40,),
(10,5,), (20,10), (40,20)

(32,)

Activation
function

logistic, tanh, relu tanh

Alpha 0.00001, 0.0001, ..., 10,
100

0.0001

Polynomial ridge regression
parameters

Par. Range Best
Lambda 0.00001, 0.00002,

..., 0.01, 0.02, ... 1
0.002

Degree 2, 3 2

For the evaluation of the different prediction models, several criteria need to be
considered. Similar to the evaluation of the outlier detection methods, it is necessary
to consider the memory requirements (R2) as well as the computation time in
operation (R3). Additionally, prediction performance (R1) is measured by applying
the prediction models on the test set (data set 2). Furthermore, the robustness of the
prediction model (R1) is an important evaluation criterion. We measure robustness
by randomly splitting the test set (N = 13, 354) in 10 batches of equal size and by
computing the prediction performance on each of those batches. Subsequently, the
range of the MAPE values between the different batches is assessed.

For each of the prediction model classes, we implement two instantiations with
different parameter settings. One instantiation refers to a simple model (fewer
parameters), whereas the other instantiation represents are more complex model
(more parameters). This approach allows to test the sensitivity between model
simplicity and prediction performance (Adler & Clark, 1991). As an example, we
implement a simple neural network with 4 neurons in the hidden layer and a more
complex one with 32 neurons which was the best number of neurons during grid
search. In total, 3 · 2 = 6 different prediction models are evaluated. Similar to
the evaluation of the outlier detection models, we give approximate values for the

10.5 Evaluation 195

memory and computation time requirements since those values heavily depend
on the parameter choice. However, the values in the table provide a pretty good
indication of the differences between various prediction models.

Tab. 10.4.: Evaluation of different prediction models.

Requirements
Prediction
model

Memory Computation time in
operation

Prediction
performance

(MAPE)
Robustness

(10 folds)

NN (1 hidden with n1
neurons) ~ 100 – 400 FPN SO: ~ 200 – 800

CO: ~ 4 – 20 4.51% [4.23% - 4.77%]

NN (1 hidden with n2
neurons) ~ 300 – 1.500 FPN SO: ~ 600 – 3.000

CO: ~ 15 – 60 5.05% [4.51% - 6.07%]

Simple SVR
(rbf-kernel) ~ 2.000 – 6.000 FPN SO: ~ 4.000 – 12.000

CO: ~ 100 – 300 3.54% [3.36% - 3.78%]

Complex SVR
(rbf-kernel)

~ 10.000 – 40.000
FPN

SO: ~ 20.000 – 80.000
CO: ~ 500 – 2.000 3.67% [3.47% - 4.00%]

Polynomial regression
with ridge (deg = 2) ~ 50 – 150 FPN SO: ~ 150 – 450

CO: 0 6.00% [5.30% - 7.03%]

Polynomial regression
(deg = 2) ~ 250 FPN SO: ~ 750

CO: 0 5.70% [4.90% - 6.37%]

The results are depicted in table Table 10.4. The simple neural network consists of
only 4 neurons in the hidden layer and the input vector has 21 features. Therefore,
we need to save 21 · 4 = 84 weights and 1 · 4 = 4 biases between the input and
the hidden layer as well as 4 weights and 1 bias between hidden layer and the
output layer. With regard to the computation time, it is necessary to perform one
multiplication and one addition per weight as well as one addition per bias leading
to ((21 + 1) · 4) · 2 + (4 + 1) · 2 = 186 SO. In each of the neurons, one tanh needs
to be evaluated resulting in 4 CO. The MAPE of 4.51% is indicated in the third
column and the range of the MAPE values among the different batches is shown in
the last column. The differences in memory requirements and computation time
between the prediction models are remarkable. Compared to the simple neural
network, the complex SVR is represented by 1.448 support vectors which results in
1.448 ∗ 22 + 1 = 31.857 FPN to store. With regard to the computational complexity,
due to the chosen rbf -kernel, it is necessary to compute 1.448 exponential functions
(CO) for every new data instance.

Compared to the prediction results in the pretest (c.f. Table 10.2 on data set 1 on
page 194), the prediction performance of the different prediction models seems
to be discouraging. This is especially true since a parameter optimization has
been carried out. Presumably, the test data (data set 2) which is used to compute
the MAPE values is more diverse and complex to predict than the training set.
This impression is also confirmed by the company which describes data set 2 as
randomly sampled whereas instances for data set 1 were systematically selected.

196 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

Considering the performance differences between groups of algorithms, SVR now
clearly outperforms its counterparts whereas Polynomial Regression which was the
best prediction model in the pretest performs worst. Probably, this behavior can be
explained by the fact that SVR contains more parameters which can be optimized
in a parameter optimization. Interestingly, the performance difference between
the simple and the complex model per prediction model class are rather small.
This indicates that also models with few parameters might be powerful enough
to generalize well in this use case. Regarding the robustness, the MAPE range for
a simple SVR is only 0.4% which indicates a rather robust prediction model. In
contrast, the performance of the polynomial regression fluctuates significantly with
1.7%.

10.5.3 Evaluation of Overall Prediction Method

As we evaluated the two main steps of the proposed method in an isolated way,
we now evaluate the performance of the overall approach with outlier detection
and a subsequent prediction model on the test set (data set 2). Table 10.5 displays
the MAPE values for each prediction model (in rows) in combination with each
of the chosen outlier detection models (in columns). The first row in the table
indicates the number of outliers which are identified in the test set by each of the
models. Clustering with confidence ellipse detects only 322 outliers, whereas kNN
flags nearly 1,300 instances as outliers. It is important to keep those numbers in
mind for the overall evaluation of different combinations. An approach which just
marks nearly all data instances as outliers will not be applied in practice.

Each prediction model in the table is described by three rows. The first row depicts
the prediction performance (MAPE) when no outliers are removed from the test data.
The second row refers to the prediction performance when the outliers identified by
the detection models are removed from the data set. The third row is introduced to
illustrate the effectiveness of the outlier detection models: In this case, we randomly
remove the same amount of data instances as indicated by the outlier detection
models and compute the MAPE based on the remaining data instances. To illustrate
this, we will consider the complex Neural Network in combination the extreme
values approach. The cell “All" is computed based on all 13, 354 data instances, the
cell “OutlierDet" is based on 13, 354 − 877 = 12, 477 data instances and the cell
“Random" is also based on 12, 477 instances but which are randomly selected from
the entire test set.

10.5 Evaluation 197

Tab. 10.5.: Performance of outlier detection in combination with prediction model (MAPE).

Extreme values Clustering kNN Ellipse Clustering &
ellipses

outliers 877 409 1294 330 322
Si

m
pl

e
N

N All 0.0451 0.0451 0.0451 0.0451 0.0451

OutlierDet 0.0375 0.0393 0.0419 0.0394 0.0393

Random 0.0447 0.0449 0.0450 0.0449 0.0449

C
om

pl
ex

 N
N All 0.0505 0.0505 0.0505 0.0505 0.0505

OutlierDet 0.0306 0.0312 0.0336 0.0313 0.0312

Random 0.0503 0.0506 0.0510 0.0506 0.0506

Si
m

pl
e

SV
R All 0.0354 0.0354 0.0354 0.0354 0.0354

OutlierDet 0.0315 0.0323 0.0346 0.0324 0.0321

Random 0.0352 0.0353 0.0354 0.0354 0.0354

C
om

pl
ex

 S
VR All 0.0367 0.0367 0.0367 0.0367 0.0367

OutlierDet 0.0309 0.0312 0.0335 0.0313 0.0312

Random 0.0366 0.0368 0.0369 0.0368 0.0368

R
id

ge
 R

eg All 0.0600 0.0600 0.0600 0.0600 0.0600

OutlierDet 0.0336 0.0352 0.0378 0.0353 0.0352

Random 0.0592 0.0593 0.0598 0.0593 0.0593

Po
ly

R
eg

All 0.0570 0.0570 0.0570 0.0570 0.0570

OutlierDet 0.0344 0.0359 0.0383 0.0361 0.0360

Random 0.0567 0.0570 0.0576 0.0569 0.0569

Considering the overall performance, all models improve their performance signifi-
cantly when the outlier detection is introduced, e.g., the MAPE of the complex neural
network improves from 5.05% to 3.06% in combination with the extreme values
approach. As expected, the MAPE for randomly selected data instances remains on
a similar level (5.03%).

Table 10.6 shows the 5 combinations of outlier detection and prediction model with
the lowest MAPE. Extreme values and clustering with confidence ellipses seem to
be promising approaches for the outlier detection. Complex neural network and
complex support vector regression perform best among all prediction models. With
all this information at hand (Table 10.1, Table 10.4, Table 10.5), an informed choice
about the best possible combination can be made. In case decision-makers focus
on the lowest overall MAPE, extreme values in combination with complex neural
network should be chosen. In case, it is important that not too many data instances
are considered outliers, clustering with confidence ellipses with for instance complex
support vector regression should be considered. Additionally, one can also consider

198 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

the memory as well as computation requirements of each combination for the
decision making process.

Tab. 10.6.: 5 combinations with the lowest MAPE.

Rank Outlier detection model Prediction model MAPE

1. Extreme values Complex NN 0.0306

2. Extreme values Complex SVR 0.0309

3. Clustering Complex NN 0.0312

4. Clustering & ellipses Complex SVR 0.0312

5. Clustering & ellipses Complex NN 0.0312

Figure 10.4 shows the distribution of MAPE (y-axis) with the liquid quantity (target)
on the x axis based on the computation of complex neural network with clustering
and confidence ellipses. Data instances which are marked in red are detected as
outliers, whereas data instances marked in blue are considered normal data. The
left plot shows that data instances with a high error are also detected as outliers. We
can exactly identify those data instances as outliers which also lead to high errors
during application of the prediction model. This clearly underlines the performance
of our prediction method. The right plot zooms in on the middle of the left plot. The
algorithm detects some outliers which have a faulty prediction, however there also
seem to be some normal data instances (with a low error) which are detected as
outliers. These data instances are especially located at the far right side of the plot.

0.2 0.4 0.6 0.8
Normalized quantity

400

200

0

200

400

Re
l.

er
ro

r [
%

]

Normal data
Outlier

0.2 0.4 0.6 0.8
Normalized quantity

20

15

10

5

0

5

10

15

20

Re
l.

er
ro

r [
%

]

Normal data
Outlier

Fig. 10.4.: Error plot with complex neural network.

In total, the outlier detection method only detects 2.4% (322/13354 = 0.024) of data
instances as outliers in the test set. The prediction model will not issue a prediction
in this case because this data instance has been marked as outlier beforehand. Other
parts of the vehicle can therefore not adapt their behavior because they do not receive
the necessary feedback. In this case, the system has to rely on previous predictions
and adjust accordingly. This solution is certainly not optimal, but definitely better

10.5 Evaluation 199

than adapting on a false prediction which might lead to devastating results. Usually,
sudden changes from one measurement to another are not observed in this system
and therefore change happens incrementally. This also allows to skip some required
predictions in between.

However, in case of real concept drift in the system which results in a persistent new
concept over time, the proposed prediction method will not be of use. Due to the
missing label feedback, the system will not be able to adapt to the new concept and
will therefore continuously classify new data instances as outliers. We can monitor
the percentage of outliers compared to all incoming data instances as a metric for
the sanity of the system. If an increase in the percentage of detected outliers is
observed, the driver will be notified with a request to bring the vehicle to the garage
where model updates can be performed.

10.6 Conclusion

This work introduces a method for designing robust machine learning models in local
environments without label feedback. Traditional concept drift adaption mechanisms
(Gama et al., 2014) cannot be applied in this case because they rely on feedback from
true labels. We propose a prediction method (machine learning service) combining
a dedicated outlier detection with a subsequent prediction model. Predictions are
only issued for data instances similar to the training data. Dissimilar data instances
are marked as outliers and no prediction is computed in this case reducing the
probability of receiving erroneous predictions. Infrastructure resources such as
limited computing power and storage space are also considered. We evaluate our
approach by applying it on a data set from a large global automotive supplier. We
show that the prediction performance based on our prediction approach is increased
significantly compared to an approach without outlier detection and at the same
time available memory and computation resources are sparsely applied.

Our contribution is twofold: First, we introduce a prediction method which combines
an outlier detection in combination with a robust prediction model to ensure the
proper functionality in local areas of application without label feedback. Second,
we develop a set of requirements for the evaluation of outlier detection and pre-
diction models for similar settings. For each requirement, we derive and develop
corresponding metrics and then apply these methods on our use case to demonstrate
the feasibility of the method.

200 Chapter 10 Handling by Outlier Detection - the Two-Step Prediction Method

Regarding the managerial implications, this work can be used as a guideline for
practitioners on how they can implement machine learning solutions in settings
with similar constraints. The developed method allows to assess and evaluate a
variety of different requirements relevant for prediction approaches implemented
in practice. Thereby, this work contributes to ensuring the correctness of machine
learning results in industry settings.

Our approach certainly has limitations. The prediction method discards data in-
stances classified as outliers and does not provide a prediction for those. In case of
many subsequent outliers, the system will therefore not receive any prediction and
will not be able to adapt appropriately. Additionally, we evaluated the approach only
with one data set. Even though this data set represents a realistic driving scenario,
it is still created on a test bench. Therefore, we cannot evaluate the prediction
method during unexpected situations that can arise in reality. Furthermore, it is
difficult to assess the performance of the outlier detection method since there are
no true labels with regard to the outlierness of data instances. In future work, we
aim at performing a field study with a vehicle participating in normal road traffic.
Additionally, the proposed approach should be evaluated in a different context in
order to prove its effectiveness.

The prediction method presented in this work can help to increase the acceptance of
machine learning in real-world contexts with the aim to effectively deploy models in
productive environments. So far, many companies are still skeptical about taking
automated decisions based on deployed machine learning solutions. This is due
to a fear of extreme decisions based on unusual input data. This work shows how
existing methods can be combined in order to increase the reliability of machine
learning solutions and therefore aims at increasing the practical relevance of this
powerful technique.

10.6 Conclusion 201

Part VI

Finale

Conclusion 11
The application and deployment of machine learning within information systems
offers huge potential for innovative products and services. Therefore, this thesis
analyzes the choices and steps required for introducing machine learning in an IS
context as well as the associated risks and challenges. In particular, the deployment
of such solutions still remains a difficult endeavor. In this context, especially changing
data—also called concept drift—and its impact on prediction quality is a significant
challenge preventing a more widespread use of this technology. Therefore, this thesis
aims to develop novel concept drift handling strategies for information systems
relying on machine learning. Overall, the thesis especially focuses on the challenges
of information systems in their real-world environments. We address this research
objective by answering five interrelated research questions.

11.1 Summary and Contributions

An increasing share of information systems applies machine learning to enhance
their functionality. Thereby, information systems can help in many different contexts
such as improving internal processes or creating entire new service offerings. Despite
the growing capabilities of machine learning, its introduction is also associated with
a set of challenges possibly affecting the benefits of information systems. To mitigate
these challenges, this thesis contributes on two levels: First, on a more general level,
we provide knowledge for the setup phase of such systems by describing necessary
choices for the application of machine learning as well as related challenges during
deployment. Furthermore, we also introduce a framework characterizing different
options for implementing concept drift handling solutions. Second, on a more
detailed level, we provide methods for specific problems in handling concept drift.

The D&M information systems success model (Delone & McLean, 2003) specifies
various factors influencing the net benefits of information systems. In the context
of machine learning-based information systems, especially information quality and
system quality are important factors. This is due to the probabilistic nature of
machine learning where predictions and recommendations are often only correct to

205

a certain extent. Information quality can be measured by considering the accuracy
and relevance of the recommendations or decisions provided by the information
system. In the context of machine learning-based information systems, these metrics
can be directly associated with the prediction quality of the underlying machine
learning model. Concept drift—if not addressed properly—can have a severe impact
on the accuracy of machine learning predictions as shown in many examples in
this thesis. Furthermore, system quality is an important success factor and can be
determined in terms of reliability and functionality of an information system. By
implementing appropriate solutions such as the methods introduced in Chapter 7-
10, users can increase the robustness and reliability of their information systems
continuously.

The contributions in this thesis can also be considered from a life cycle perspective
on machine learning-based information systems (Duarte & Costa, 2012). First, the
implementation process of such systems can be improved by taking the introduced
choices and challenges related to machine learning into account. Second, especially
maintenance activities to ensure the proper functionality over time can be facilitated.
By implementing appropriate detection methods (e.g., Uncertainty Drift Detection),
it is easier to identify the need for maintenance in specific parts of the information
system. When also implementing appropriate adaptation strategies (e.g., Error
Intersection Approach), machine learning-based information systems will require
less maintenance overall due to their self-adapting capabilities.

Within this thesis, we address five research questions with different research methods
ranging from literature reviews to interview studies combined with a qualitative
content analysis as well as a set of technical experiments. In the following, we
summarize, synthesize and discuss the contributions according to the research
questions introduced in Chapter 1, starting with the first research question.

Research Question 1 (RQ1)
Which choices are relevant in the application of supervised machine learning in
IS research?

We address the first research question by developing the supervised machine learning
reportcard which allows to comprehensively document a machine learning endeavor
in IS research. The reportcard is divided into three phases: model initiation, per-
formance estimation and model deployment. By applying the reportcard to a set of
high-quality IS articles, we reveal that current IS research documentation can be
improved. For instance, only a few research articles justify the chosen performance

206 Chapter 11 Conclusion

metric and compare the performance of their models with appropriate benchmarks.
The analyzed articles also provide little evidence regarding the choices during the
model deployment phase. Various reasons can be considered to explain this phe-
nomenon. In some cases, researchers might only want to prove the feasibility of an
approach utilizing supervised machine learning. If a project focuses on this, it is
not necessary to perform and therefore also describe related deployment activities.
Nevertheless, only a minority of all papers at least describe ideas about a possible
model deployment and corresponding challenges such as concept drift. This ob-
servation stands in contrast to the objective of IS to produce final, implementable
results with large implications for practice (Gholami et al., 2016). Therefore, it is
also possible that knowledge regarding deployment and the challenges associated
with it is limited. The detailed research results are presented in Chapter 3.

The application of machine learning in IS is complex and requires a multitude
of choices to be made. However, it seems that individual choices are associated
with different levels of difficulty with the deployment step being especially com-
plex. Therefore, we aim to better understand the necessary choices in the model
deployment phase and derive the prevailing challenges during this phase in practical
settings.

Research Question 2 (RQ2)
Which challenges arise regarding the deployment of supervised machine learn-
ing models?

We explore and answer the second research question from a practice perspective
in Chapter 4. To this end, we perform semi-structured interviews with 11 machine
learning practitioners from different domains. Based on our analysis, we can identify
six overarching clusters of challenges: data structure, implementation, infrastructure,
governance, customer relation and economic implications. Regarding deployment,
concept drift and data drift as well as the speed of new incoming instances are
the main challenges. Furthermore, the implementation of ongoing data and re-
sults validation methods is difficult. Lastly, there is no standardized deployment
infrastructure available, which often prevents scalability of deployed solutions.

The results show that there exist also a number of other challenges hindering more
widespread use of machine learning technology. The results reveal a wide set of
non-technical challenges such as appropriate expectation management as well as
results and customer communication. Furthermore, difficult data access and data
management processes can additionally complicate deployment projects.

11.1 Summary and Contributions 207

The results derived in Chapter 4 indicate that deploying machine learning models is
still a difficult process. In this context, data changes over time are one of the main
challenges since they can have a large impact on the correct operation of deployed
models. Therefore, we decide to better understand and analyze the impact of
concept drift on machine learning models as well as to investigate possible solutions
for this problem.

Research Question 3 (RQ3)
What are typical challenges for the application of concept drift handling algo-
rithms?

For answering RQ3, we apply different research methods—a technical experiment
and a literature review—which allows us to derive a broad overview on concept
drift handling implementation challenges. In Chapter 5, we report on a real-world
process mining use case. Specifically, we use machine learning techniques to improve
a procurement process by predicting the product delivery time, which allows for
optimizing production processes and, therefore, is associated with substantial cost
savings. This use case depicts the challenge of choosing the appropriate concept drift
handling strategy, as different strategies lead to different improvements in prediction
performance. Furthermore, this chapter also illustrates the difficulties of deciding
on the right number of data instances as well as which specific data instances to
select for retraining of the prediction model. Therefore, we propose and evaluate
three different selection strategies.

Additionally, this chapter provides more information about the nature of real-world
concept drifts. Our analysis shows that over the years, more and more process
steps of the procurement process have been automated (e.g., automated booking for
incoming products). This, in turn, decreases the average delivery time and thereby
might explain the decreasing prediction performance over time. However, due to
the IT structure within the company, the information about increasing automation
cannot be included in the prediction model. This is a very illustrative example of a
phenomenon called hidden context in concept drift research. It refers to a feature
which is strongly influencing the prediction quality but is impossible to include as
an input feature.

While Chapter 5 depicts challenges of concept drift handling from a technical per-
spective, the subsequent Chapter 6 investigates the problem from a more conceptual
perspective. Based on literature, we derive a framework describing different choices
during the implementation and operation of a machine learning service confronted

208 Chapter 11 Conclusion

with concept drift. The different categories can be divided into three parts: 1) setup
decisions, 2) algorithmic decisions, and 3) decisions during operation of machine
learning services. Based on our framework, we can show that during the setup of
such a service, different design characteristics and choices need to be considered,
e.g., what type of concept drift to expect. Furthermore, it is crucial to respect the
characteristics during operation. Depending on the use case, true labels might not
be available for concept drift detection or adaptation.

After its creation, we utilize the framework to classify existing solutions from litera-
ture and create a heatmap illustrating different research approaches. This analysis
reveals several challenging areas with little research so far: Only few concept drift
approaches for unstructured data have been introduced even though applications
with data like images or text gain more importance. Furthermore, we identify a
deficient amount of use cases working with regression tasks or analyzing the problem
of limited availability of true labels. These observations are also confirmed by other
research papers in the field. Therefore, our work regarding research questions 4 and
5 provides specific solutions for these topics.

Research Question 4 (RQ4)
How can concept drift in regression problems be handled?

In Chapter 7 and Chapter 8, we introduce two novel methods for detecting and
handling concept drift in regression setups with a special focus on time series
forecasting. Handling concept drift in regression tasks is special compared to
classification as predictions have continuous values and prediction errors are also
distributed differently. Therefore, standard drift detection algorithms are often not
applicable in this setup.

Chapter 7 introduces the Error Intersection Approach (EIA), a method for handling
sudden concept drift in time series forecasting. The general idea of EIA is to
switch between a simple and a complex prediction model for drift handling. The
complex model is able to accurately capture the general components of a time series
and, therefore, produces precise forecasts during periods with regular patterns.
However, in times of sudden change, the simple model is applied. It quickly adapts
to current changes and is able to generate correct predictions during periods of
unusual observations. The simple model is largely influenced by the autocorrelation
properties of a time series. Therefore, it is reasonable to assume that EIA performs
better if the autocorrelation with recent observations is higher. A switch between the
two models is triggered by a comparison of the error rates. If the error curves of the

11.1 Summary and Contributions 209

two models intersect, a change between models is initiated. Therefore, the method
always chooses the model which recently showed better prediction performance. In
summary, EIA is able to detect drift (the moment when the error curves intersect
indicates a drift) but also to adapt to new environments (by switching between the
two machine learning models).

We can show that EIA improves prediction performance significantly in a technical
experiment for predicting taxi ride demand in New York City. By analyzing days
with the highest prediction performance improvements, we can reveal that EIA is
especially helpful during days with weather irregularities or on national holidays.
However, we also identify other days where it is impossible to derive the drift cause.
In that case, more local events such as demonstrations might trigger concept drift.
This analysis also illustrates that EIA cannot only be applied for improving prediction
performance but also for analyzing past decisions of deployed models. This can
reveal which additional variables should be included in the modeling process.

In Chapter 8, we introduce the Switching Scheme as an alternative way for handling
concept drift in regression problems. In contrast to the previous method, it focuses on
handling slower, incremental concept drifts. To that end, it combines the adaptation
techniques of retraining from scratch and incremental updates for concept drift
adaptation. In the first phase after deployment, the Switching Scheme relies on
incremental updates for adaptation. Thus, the resulting model has access to recent
data instances during the update step as well as the initial training data during
the first training. Eventually, this model has access to an overall larger data set for
training compared to a single retraining, which increases its ability to generalize.
However, after a certain period of time, incremental updates are no longer sufficient
for adapting to novel concepts. In this case, the Switching Scheme changes its
adaptation method to retraining from scratch, which allows a stronger adaptation to
the current concepts.

The Switching Scheme is evaluated in a technical experiment on a data set regarding
taxi ride demand in New York City and allows for significant performance improve-
ments. Furthermore, we also test its ability to generalize on classification problems
by applying it on a flight records data set for predicting flight delays.

Research Question 5 (RQ5)
How can concept drift be handled in machine learning settings with limited
availability of true labels?

210 Chapter 11 Conclusion

Lastly, in Chapter 9 and Chapter 10, we introduce novel methods for handling
concept drift in deployment settings where no true labels are available for predictions
issued during operation. Many products or services that organizations want to
enhance by applying machine learning share this property of limited label availability.
A good example is quality control, where a company—after quality inspection by a
machine learning model—does not want to control every single part with a human
expert. However, most concept drift handling algorithms require true labels to work
properly. Therefore, novel algorithms are required for this special case.

In this context, Chapter 9 introduces Uncertainty Drift Detection (UDD), a novel
approach for detecting concept drift without the necessity to acquire true labels.
To this end, we use the uncertainty of a prediction model for drift detection. We
can show that UDD outperforms input data-based drift detection because those
methods detect any change in the input, irrespective of its effect on the machine
learning model. In contrast, UDD only detects drift when the machine learning
model is also affected by the data changes. For UDD, we apply a neural network for
computing predictions and derive uncertainty based on Monte Carlo Dropout. In a
technical experiment, we first evaluate UDD on two synthetic data sets where we can
clearly demonstrate its ability to differentiate between virtual and real concept drifts.
Second, we show the superior prediction performance of UDD compared to relevant
drift detection benchmarks based on a set of 8 classification and 2 regression data
sets.

While UDD follows the traditional approach of first detecting drift and then adapting
to it, Chapter 10 introduces the Two-Step Prediction Method which takes a different
perspective. Its objective is to provide a robust machine learning model for chal-
lenging environments. Challenging refers to the fact that no ground truth labels
are available, neither for concept drift detection nor for adaptation. Furthermore,
the Two-Step Prediction Method reduces the amount of required computational
resources. This is often necessary for situations where computations need to be
performed on a local computing unit. This limitation not only refers to the amount
of computing power but also to the amount of memory storage available.

Due to the lack of true labels, an adaptation of the prediction model is not pos-
sible. Therefore, we shift the objective of the Two-Step Prediction Method from
concept drift adaptation to preventing false predictions. To this end, we develop an
approach consisting of an outlier detection as well as a robust prediction method.
The general idea is that the outlier detection serves as a filter which prevents that
possibly wrong predictions are computed for unusual data instances. The Two-Step
Prediction Method is evaluated in a technical experiment with industry data from a

11.1 Summary and Contributions 211

large German OEM. Based on this method, we can demonstrate an increased predic-
tion performance while at the same time significantly reducing the computational
requirements.

This thesis describes various challenges for the application of machine learning-based
information systems with a special focus on the problem of changing data over time.
One limitation of current concept drift algorithms is the lack of evaluation with
real-word data. Therefore, a strong focus of this thesis lies on the evaluation of the
introduced methods with real-world data sets. We perform a variety of experiments
based on publicly available real-world data sets such as predicting taxi ride demand
in New York City, predicting delays of flights, detecting network intruders, and
predicting sensor values. Furthermore, we also utilize proprietary data sets where
we improve engine operations in a vehicle as well as optimize procurement processes.
By applying these methods to such a wide set of applications, we show their feasibility
and also illustrate the possible performance improvement.

The four introduced methods answering research question 4 and 5 (Chapter 7-10)
can be differentiated based on their characteristics regarding concept drift handling.
As described in Section 2.3.2, concept drift handling can be divided into two steps:
1) concept drift detection and 2) concept drift adaptation. Therefore, we classify the
introduced methods regarding those two steps. The resulting overview is presented
in Table 11.1, which reveals that we both contribute to concept drift detection as
well as adaptation.1

Tab. 11.1.: Classification of different methods regarding detection and adaptation.

Concept drift detection Concept drift adaptation

Error
Intersection
Approach

Detection by monitoring the
intersection of error curves

Adaptation by switching be-
tween simple and complex
model

Switching
Scheme

N/A (detection with estab-
lished drift detection meth-
ods)

Switching between incremen-
tal updates and retraining
from scratch

Uncertainty
Drift Detec-
tion

Detection by applying AD-
WIN on neural network un-
certainty

N/A (adaptation by retrain-
ing)

Two-Step
Prediction
Method

N/A (detection possible by
monitoring the frequency of
outliers)

N/A (no adaptation)

1If the contribution of a method does not cover one of the two steps, we mark the respective cell with
N/A.

212 Chapter 11 Conclusion

The Error Intersection Approach can be considered as both a detection approach as
well as an adaptation method. The Switching Scheme provides a novel way for the
adaptation of prediction models in case of concept drift. For the detection of concept
drift, however, it relies on existing methods. In contrast, Uncertainty Drift Detection
introduces a novel way for drift detection and relies on established methods for
adaptation. Due to the different nature of the objective, the Two-Step Prediction
Method can only be partially classified in Table 11.1. Drift detection is possible by
considering the frequency of detected outliers. However, we could not evaluate this
capability in our experiment. Furthermore, concept drift adaptation is impossible
due to the absence of true labels.

Regarding the positioning of our research in the overall field of concept drift re-
search, this thesis deals with two important areas where current research still lacks
sufficiently performing solutions: First, handling concept drift in regression problems
and second, concept drift handling with limited availability of true labels during
operation. Consequently, our contributions can also be categorized based on the
two dimensions, label availability and machine learning task. This categorization is
depicted in Figure 11.1.

Machine learning task

ClassificationRegression

La
be

l a
va

ila
bi

lit
y

N
o/

lim
ite

d
la

be
l

Fu
ll

la
be

l Error
Intersection

Approach

Time series Other

Switching Scheme

Uncertainty Drift Detection

Two-Step Prediction
method

Fig. 11.1.: Overview of methodological concept drift contributions.

The Error Intersection Approach requires full availability of true labels for computing
the error rate of the utilized machine learning models. For improvement of prediction
performance, the Error Intersection Approach exploits the autocorrelation property
of time series problems. The Switching Scheme also requires true labels during

11.1 Summary and Contributions 213

operation since it is built on established drift detection algorithms. However, it is
applicable in a broader context because it combines the more fundamental principles
of incremental updates and retraining which can be performed for both classification
and regression tasks.

In contrast to the previous two methods, the Uncertainty Drift Detection works with a
limited amount of true labels since this information is not required for drift detection.
Only in case of retraining, a small share of true labels needs to be provided. Since
prediction uncertainty can be computed for both classification and regression, this
method is also applicable to both tasks. Lastly, the Two-Step Prediction Method
does not require any true labels at all during deployment. Based on the optimized
underlying machine learning models, it is suitable for regression tasks only.

11.2 Practical Implications

In the following section, we reflect on the practical implications of our research.
Many companies and organizations consider machine learning as a promising new
technology to gain competitive advantages. This observation has triggered count-
less implementation projects to test the capabilities of machine learning in various
use cases. However, only a minority of these projects has been planned care-
fully and fulfills the necessary requirements for an appropriate deployment of the
resulting machine learning models (Alla & Adari, 2021). This thesis contains a mul-
titude of examples showing how a “static” deployed model—which is not regularly
adapted—completely loses its validity over time with significant drops of prediction
performance.

In this context, it is crucial to consider the economic value of keeping a good predic-
tion performance over time. In today’s web applications, a single deployed machine
learning model can optimize the experience for a large set of users. Therefore, a
slight performance increase can have far-reaching implications. If a model is de-
ployed for improving millions of purchase transactions, a small increase in prediction
performance can already imply an increase in revenue by millions. In other scenar-
ios such as quality control, the replacement of repetitive manual tasks might only
be feasible if the machine learning model is able to guarantee a stable prediction
performance above a certain threshold. This threshold can also be given externally,
e.g., by quality requirements defined in a customer contract. Therefore, appropriate
concept drift warning and adaption methods need to be implemented. Lastly, in use
cases such as optimizing complex supply chains, various machine learning models

214 Chapter 11 Conclusion

deployed by different providers might react and adapt to each other. Poor-quality
predictions by a single model can trigger a chain reaction of model failures with
consequences being much more dramatic (e.g., empty shelves in supermarkets)
compared to lost additional revenue.

Based on this observation, it is critical that design choices regarding the management
of models after deployment in general and concept drift in particular are considered
from the beginning of any machine learning project. However, our research in
the context of the Supervised Machine Learning Reportcard (Chapter 3) reveals
that widely used process models such as CRISP-DM (Wirth & Hipp, 2000) or the
Microsoft Team Data Science Process (Microsoft, 2020) provide little guidance for
the management of deployed solutions. Yet, we identify a variety of significant
challenges that only occur after deployment (e.g., concept drift) based on interviews
with machine learning practitioners (Chapter 4). Nowadays, these deployment
challenges are often neglected in many implementation projects, which is why most
projects never go beyond the prototype phase (Alla & Adari, 2021). Therefore,
it seems like a major design flaw of process models structuring machine learning
projects to not put more emphasis on the necessary steps after the deployment of a
model. Practitioners should carefully consider the identified challenges in Chapter 4
to get a realistic view on required steps after deployment. A few researchers are
already working on adapting existing process models for this problem, e.g., Žliobaitė
et al. (2016) suggest an adaptation of CRISP-DM with additional steps focusing on
monitoring, online evaluation and change detection. However, more research is
required to support machine learning users in implementing appropriate solutions.
In commercial solutions, related tasks regarding the appropriate management of
deployed machine learning models are often described with the term MLOps or
machine learning operations (Renggli et al., 2021).

By introducing novel methods for handling concept drift, this thesis provides solu-
tions for relevant practical applications such as regression tasks or scenarios where
the access to true labels is limited. In general, the methods presented in this thesis
can either be directly applied by practitioners or can offer inspiration how to build
drift detection strategies for their specific use cases. Interestingly, some of the
methods can also be combined to create novel artifacts (e.g., using the Uncertainty
Drift Detection for detection and Switching Scheme for adaptation). Irrespective
of the actual solution, we want to emphasize one important observation that we
made during our research: It is significantly better to have a very simple strategy
for concept drift handling in place than to have no adaptation strategy at all. This
statement especially applies to less experienced practitioners who find some of
the suggested solutions difficult to implement due to the required parameter op-

11.2 Practical Implications 215

timizations. The use case of predicting taxi demand is a good illustration of this
phenomenon (Chapter 8). With a simple strategy such as yearly retraining, predic-
tion performance can already be increased significantly compared to a static, no
adaptation strategy. Implementing the sophisticated Switching Scheme additionally
improves the prediction performance. However, the performance difference between
sophisticated and simple strategy is smaller compared to the difference between
simple strategy and no adaptation strategy at all.

The examples included in this thesis illustrate various types of concept drifts as well
as their effect on prediction performance in a broad range of application domains,
such as mobility, IT, manufacturing or automotive. Therefore, these examples clearly
show that the effect of concept drift is not limited to specific domains but rather
represents a general challenge of machine learning in any kind of application. This
finding should raise the awareness of machine learning practitioners to consider
concept drift and its implication in their specific application domain. Professional
providers of machine learning technology have already identified this need and are
developing appropriate tools, at least for monitoring deployed machine learning
models. For instance, Amazon, IBM and Microsoft (Amazon, 2021; IBM, 2021;
Microsoft, 2021) have recently introduced specific tools regarding model monitoring
in their cloud solutions for machine learning.

11.3 Limitations and Future Research

Despite its contributions, this thesis has certain limitations that at the same time
open avenues for future research. The limitations of each individual contribution
are already discussed in the respective chapters. Therefore, this section focuses
more on the general challenges and limitations that we encountered during our
work on handling concept drift. We believe that there are many interesting research
results already available. However, we have identified the following limitations as
interesting opportunities for future research.

First, the concept drift community is still lacking a larger set of real-world data
sets for evaluation and benchmarking of different methods. Currently, most of
the evaluation is performed with a few simple, simulated data sets which do not
accurately represent the complexity in practical settings. On the contrary, data sets
associated with real-world problems often have the problem that the exact timing of
concept drifts is unknown. Therefore, we argue for the provision of more real-world
data sets where detailed information about the given concept drifts is included.

216 Chapter 11 Conclusion

This could be achieved by an in-depth analysis of real use cases or by performing
experiments in the field where drift can be induced by changing specific features on
purpose (e.g., Souza et al. (2020)). For instance, such data sets could be produced
on test benches for specific machine parts by artificially changing the environment
(e.g., by changing temperature levels) in the context of predictive maintenance
solutions. Additionally, most concept drift handling algorithms are tested with well-
formatted structured data only. However, a lot of the recent progress in machine
learning and especially deep neural networks deals with unstructured data such as
image, audio or text data. Specific algorithms and evaluation data sets might be
required to properly document progress in this area.

Second, the availability of true labels remains a challenge for the deployment of
concept drift solutions. This especially applies to use cases dealing with unstructured
data (e.g., images) where true labels often can only be provided by domain experts.
We introduce some novel methods for the problem of missing true labels in this thesis,
but especially concept drift adaptation remains a difficult problem in this context.
Inspiration for possible solutions might be found in the literature regarding semi-
supervised learning, a machine learning approach to improve models by considering
both labeled and unlabeled data instances (Zhou & Belkin, 2014). Furthermore,
there are first attempts of researchers proposing unsupervised adaptation of machine
learning models (Perdomo et al., 2020). It remains to be seen how such approaches
perform when confronted with severe concept drifts associated with significant
changes in data distributions.

Third, the vast majority of concept drift research focuses on the supervised machine
learning paradigm. Nevertheless, unsupervised machine learning techniques such
as clustering or frequent itemset mining also play an important role for many
applications in organizations. For instance, a customer segmentation based on
clustering algorithms might evolve over time due to shifting preferences. This
example highlights the need for a larger number of proper detection and adaptation
algorithms for unsupervised problems as well. This also applies to reinforcement
learning, the third large group of machine learning algorithms. Despite an increased
general research focus on reinforcement learning, only few researchers analyze this
group of algorithms with respect to the effects of concept drift. Due to the iterative
nature of reinforcement learning, where agents receive different rewards based on
their decisions over time, algorithms in this group might be more suitable to adapt
to change. However, it remains an interesting research objective to investigate how
those agents can quickly adapt in case of sudden shocks and changes.

11.3 Limitations and Future Research 217

Fourth, concept drift handling algorithms need to be more transparent in their
decisions regarding detection and adaptation. Especially if fully automated decision
systems with self-adapting capabilities are deployed, organizations will demand a
detailed understanding of the system’s behavior. Therefore, additional methods for
the explanation of concept drifts are needed. This does not only refer to the timing
and extent of concept drift but probably most importantly to the underlying reasons.
Such explanations are especially important when the decision system is not only
evaluated regarding its prediction performance but also against other metrics. For
instance, legislation in different countries now requires that automated decisions
are explainable and do not discriminate against specific sub-groups of a population.
Therefore, more research is required regarding how to guarantee that machine
learning models deployed in concept drifting environments continuously comply
with fairness requirements.

Fifth, fully automated decision-making still requires a lot of development effort for
many tasks and might not even be desirable in specific situations. Often, successful
collaboration between automated systems and human experts results in overall
better task performance (Huang & Rust, 2018). Thus, concept drift detection and
adaptation provide fruitful research topics for implementing and designing appro-
priate human-computer collaboration (e.g., Vössing et al. (2019)). For instance, a
change detection algorithm with low sensitivity could be implemented, triggering
an alert for domain experts in case of slight changes. The expert can then perform
additional analyses and decide if and how to adapt the corresponding machine
learning model. Subsequently, the decision of the expert can also be integrated as
feedback into the drift detection system to improve detection accuracy, similar to
human-in-the-loop systems in supervised machine learning (Holzinger, 2016). Be-
sides better prediction performance, such collaboration can also increase employees’
trust in these systems as they get more accustomed to algorithmic suggestions and
decisions.

Sixth, setting up concept drift solutions will probably remain a manual process for
the foreseeable future. Therefore, a framework providing guidance for the selection
of an appropriate handling strategy represents a worthwhile research objective. As
input, characteristics of the data stream such as size, speed as well as application
domain could be given. Based on this information, the framework might suggest
appropriate components for implementing a holistic drift handling strategy.

The growing capabilities of machine learning technology will surely increase the
share of deployed models in practice. However, it is crucial that appropriate moni-
toring and adaptation tools be implemented. Otherwise, many deployment projects

218 Chapter 11 Conclusion

will be completed with disappointing results, potentially leading to another period of
AI winter where this technology is going to be viewed much more critically (Floridi,
2020). We believe that our research can help to avoid such a scenario and increase
robustness and performance of deployed machine learning-based information sys-
tems. In this way, we hope that this thesis provides a contribution to help this
promising technology to reach its full potential.

11.3 Limitations and Future Research 219

Bibliography

Abbasi, A., Albrecht, C., Vance, A., & Hansen, J. (2012). MetaFraud: A meta-learning
framework for detecting financial fraud. MIS Quarterly, 36(4), 1293–1327 (cit. on
p. 19).

Abdullah, H., Qasem, A., Mohammed, N., & Emad, M. (2011). A comparison study be-
tween data mining tools over some classification methods. International Journal of
Advanced Computer Science and Applications, Special Issue on Artificial Intelligence
(cit. on p. 52).

Acito, F., & Khatri, V. (2014). Business analytics: Why now and what next? Business Horizons,
57(5), 565–570 (cit. on p. 73).

Adam, M., Toutaoui, J., Pfeuffer, N., & Hinz, O. (2019). Investment decisions with robo-
advisors: The role of anthropomorphism and personalized anchors in recommenda-
tions. Proceedings of the European Conference on Information Systems (ECIS) (cit. on
p. 19).

Adler, P. S., & Clark, K. B. (1991). Behind the learning curve: A sketch of the learning process.
Management Science, 37(3), 267–281 (cit. on p. 195).

Ågerfalk, P. J. (2020). Artificial intelligence as digital agency. European Journal of Information
Systems, 29(1), 1–8 (cit. on p. 3).

Aggarwal, C. C. (2006). On biased reservoir sampling in the presence of stream evolution.
Proceedings of the International Conference on Very Large Data Bases (VLDB), 607–618
(cit. on p. 22).

Aggarwal, C. C. (2015). Data Mining. The Textbook. Springer International Publishing. (Cit.
on pp. 185, 187, 188, 191, 193).

Aggarwal, C. C., Philip, S. Y., Han, J., & Wang, J. (2003). A framework for clustering evolving
data streams. Proceedings of the International Conference on Very Large Data Bases
(VLDB) (cit. on pp. 23, 93, 107, 127, 163).

Aggarwal, C. C., & Zhai, C. (2012). A survey of text classification algorithms. In C. C.
Aggarwal & C. Zhai (Eds.), Mining text data (pp. 163–222). Springer US. (Cit. on
p. 52).

Agrawal, S., & Goyal, N. (2012). Analysis of Thompson sampling for the multi-armed bandit
problem. Proceedings of the Annual Conference on Learning Theory, 39.1–39.26 (cit.
on p. 25).

Agrawal, V., Panigrahi, B. K., & Subbarao, P. M. V. (2018). Increasing reliability of fault
detection systems for industrial applications. IEEE Intelligent Systems, 33(3), 28–39
(cit. on p. 112).

221

Akhtar, Z., Ahmed, A., Erdem, C. E., & Foresti, G. L. (2015). Adaptive facial recognition under
ageing effect. In A. Rattani, F. Roli, & E. Granger (Eds.), Adaptive Biometric Systems:
Recent Advances and Challenges (pp. 97–117). Springer International Publishing.
(Cit. on p. 38).

Alippi, C., & Roveri, M. (2008). Just-in-time adaptive classifiers—Part I: Detecting nonsta-
tionary changes. IEEE Transactions on Neural Networks, 19(7), 1145–1153 (cit. on
pp. 30, 32).

Alla, S., & Adari, S. K. (2021). What Is MLOps? Beginning MLOps with MLFlow: Deploy
models in AWS SageMaker, Google Cloud, and Microsoft Azure (pp. 79–124). Apress.
(Cit. on pp. 214, 215).

Alsheibani, S., Cheung, Y., & Messom, C. (2018). Artificial intelligence adoption: AI-readiness
at firm-level. Proceedings of the Pacific Asia Conference on Information Systems
(PACIS), 37 (cit. on p. 18).

Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. (2014). Machine learning in wireless sensor
networks: Algorithms, strategies, and applications. IEEE Communications Surveys
Tutorials, 16(4), 1996–2018 (cit. on pp. 130, 183).

Amazon. (2021). Amazon SageMaker Model Monitor. Retrieved January 15, 2021, from
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html. (Cit. on
p. 216)

Ambati, S. (2019). The power of open source AI. Retrieved January 14, 2021, from https:
//www.forbes.com/sites/insights-intelai/2019/05/22/the-power-of-open-source-
ai/?sh=35f12bb26300. (Cit. on p. 3)

Amrit, C., Wijnhoven, F., & Beckers, D. (2015). Information waste on the World Wide Web
and combating the clutter. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on p. 61).

An, X., Zhou, X., Lü, X., Lin, F., & Yang, L. (2018). Sample selected extreme learning machine
based intrusion detection in fog computing and MEC. Wireless Communications and
Mobile Computing, 2018 (cit. on p. 183).

Anand, S. S., & Büchner, A. G. (1998). Decision support using data mining. Financial Times
Management. (Cit. on p. 46).

Anderson, M., & Anderson, S. L. (2015). Toward ensuring ethical behavior from autonomous
systems: A case-supported principle-based paradigm. Industrial Robot: An Interna-
tional Journal, 42(4), 324–331 (cit. on p. 71).

Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown
change point. Econometrica: Journal of the Econometric Society, 61(4), 821–856
(cit. on p. 33).

Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2012). Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine. In J. Bravo, R. Hervás, & M. Rodríguez (Eds.), Ambient assisted living and
home care (pp. 216–223). Springer Berlin Heidelberg. (Cit. on p. 183).

222 Bibliography

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://www.forbes.com/sites/insights-intelai/2019/05/22/the-power-of-open-source-ai/?sh=35f12bb26300
https://www.forbes.com/sites/insights-intelai/2019/05/22/the-power-of-open-source-ai/?sh=35f12bb26300
https://www.forbes.com/sites/insights-intelai/2019/05/22/the-power-of-open-source-ai/?sh=35f12bb26300

Anguita, D., Ghio, A., Pischiutta, S., & Ridella, S. (2007). A hardware-friendly support vector
machine for embedded automotive applications. International Joint Conference on
Neural Networks (IJCNN), 1360–1364 (cit. on p. 183).

Antoch, J., Hanousek, J., Horváth, L., Hušková, M., & Wang, S. (2019). Structural breaks
in panel data: Large number of panels and short length time series. Econometric
Reviews, 38(7), 828–855 (cit. on p. 28).

Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting
methods: Empirical comparisons. International Journal of Forecasting, 8(1), 69–80
(cit. on p. 194).

Aue, A., & Horváth, L. (2013). Structural breaks in time series. Journal of Time Series Analysis,
34(1), 1–16 (cit. on p. 28).

Babcock, B., Datar, M., & Motwani, R. (2001). Sampling from a moving window over
streaming data. Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (cit.
on p. 23).

Bach, S. H., & Maloof, M. A. (2008). Paired learners for concept drift. Proceedings of IEEE
International Conference on Data Mining (ICDM), 23–32 (cit. on pp. 130, 135).

Baena-Garcia, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., & Morales-Bueno,
R. (2006). Early drift detection method. Fourth International Workshop on Knowledge
Discovery from Data Streams, 6, 77–86 (cit. on pp. 129, 168).

Baesens, B., Bapna, R., Marsden, J. R., Vanthienen, J., & Zhao, J. L. (2014). Transformational
issues of big data and analytics in networked business. MIS Quarterly, 38(2), 629–
631 (cit. on pp. 70, 72, 73).

Bahja, M. (2018). Identifying patient experience from online resources via sentiment analysis
and topic modelling approaches. Proceedings of the International Conference on
Information Systems (ICIS) (cit. on p. 20).

Bai, J. (1994). Least squares estimation of a shift in linear processes. Journal of Time Series
Analysis, 15(5), 453–472 (cit. on p. 33).

Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural
changes. Econometrica, 66(1), 47–78 (cit. on p. 33).

Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models.
Journal of Applied Econometrics, 18(1), 1–22 (cit. on p. 28).

Baier, L., Hofmann, M., Kühl, N., Mohr, M., & Satzger, G. (2020). Handling concept drifts in
regression problems–the error intersection approach. International Conference on
Wirtschaftsinformatik (cit. on pp. 160, 184).

Baier, L., Jöhren, F., & Seebacher, S. (2019). Challenges in the deployment and operation of
machine learning in practice. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on pp. 91, 143).

Baier, L., Kühl, N., & Satzger, G. (2019). How to cope with change?-preserving validity of
predictive services over time. Proceedings of the 52nd Hawaii International Conference
on System Sciences (HICSS) (cit. on pp. 54, 64, 72, 91, 96, 127, 147, 182).

Bibliography 223

Banko, M., & Brill, E. (2001). Scaling to very very large corpora for natural language disam-
biguation. Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics - ACL ’01 (cit. on p. 49).

Barbon Junior, S., Tavares, G. M., da Costa, V. G. T., Ceravolo, P., & Damiani, E. (2018). A
framework for human-in-the-loop monitoring of concept-drift detection in event log
stream. Companion Proceedings of the The Web Conference, 319–326 (cit. on p. 38).

Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data, John Wiley. New York (cit. on
p. 184).

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. NIPS Tutorial
(cit. on pp. 6, 50).

Barreno, M., Nelson, B., Joseph, A. D., & Tygar, J. D. (2010). The security of machine
learning. Machine Learning, 81(2), 121–148 (cit. on p. 143).

Baumann, A., Lessmann, S., Coussement, K., & Bock, K. D. (2015). Maximize what matters:
Predicting customer churn with decision-centric ensemble selection. Proceedings of
the European Conference on Information Systems (ECIS) (cit. on p. 19).

Bawack, R. E., Fosso Wamba, S., & Carillo, K. (2019). Artificial intelligence in practice:
Implications for IS research. Proceedings of the Americas Conference on Information
Systems (AMCIS) (cit. on p. 4).

Beluch, W. H., Genewein, T., Nürnberger, A., & Köhler, J. M. (2018). The power of ensembles
for active learning in image classification. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (cit. on p. 167).

Benlian, A., Klumpe, J., & Hinz, O. (2020). Mitigating the intrusive effects of smart home
assistants by using anthropomorphic design features: A multimethod investigation.
Information Systems Journal, 30(6), 1010–1042 (cit. on p. 19).

Berente, N., Gu, B., Recker, J., & Santhanam, R. (2019). Call for papers MISQ special issue
on managing AI. MIS Quarterly (cit. on pp. 4, 17, 18).

Bergstra, J., & Yoshua, B. (2012). Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13, 281–305 (cit. on p. 195).

Beyazit, E., Alagurajah, J., & Wu, X. (2019). Online learning from data streams with varying
feature spaces. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 3232–
3239 (cit. on pp. 24, 26).

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In L. Rutkowski,
M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, & J. M. Zurada (Eds.),
Artificial Intelligence and Soft Computing (pp. 715–725). Springer International
Publishing. (Cit. on pp. 35, 36).

Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing.
Proceedings of the 2007 SIAM International Conference on Data Mining, 443–448
(cit. on pp. 30, 31, 94, 129, 145, 163, 165, 168).

Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Machine learning for data streams:
With practical examples in MOA. MIT Press. (Cit. on pp. 21, 22).

224 Bibliography

Bifet, A., Holmes, G., Pfahringer, B., & Frank, E. (2010). Fast perceptron decision tree
learning from evolving data streams. Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 299–310 (cit. on p. 36).

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavaldà, R. (2009). New ensemble meth-
ods for evolving data streams. Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 139–148 (cit. on pp. 36, 37).

Bifet, A., Read, J., Pfahringer, B., Holmes, G., & Žliobaitė, I. (2013). CD-MOA: Change detec-
tion framework for massive online analysis. International Symposium on Intelligent
Data Analysis (cit. on p. 174).

Bifet, A., Read, J., Žliobaitė, I., Pfahringer, B., & Holmes, G. (2013). Pitfalls in benchmarking
data stream classification and how to avoid them. Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 465–479 (cit. on p. 36).

Black, M., & Hickey, R. (2002). Classification of customer call data in the presence of concept
drift and noise. In D. Bustard, W. Liu, & R. Sterritt (Eds.), Software 2002: Computing
in an imperfect world (pp. 74–87). Springer Berlin Heidelberg. (Cit. on p. 112).

Black, M., & Hickey, R. (2004). Detecting and adapting to concept drift in bioinformatics.
Knowledge Exploration in Life Science Informatics, 161–168 (cit. on pp. 112, 114,
118).

Blanc, S. M. (2016). Bias-Variance Aware Integration of Judgmental Forecasts and Statistical
Models (Doctoral dissertation). Karlsruher Institut für Technologie (KIT). (Cit. on
p. 52).

Blenk, A., Kalmbach, P., Kellerer, W., & Schmid, S. (2017). O’zapft is: Tap your network
algorithm’s big data! Proceedings of the Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, 19–24 (cit. on p. 70).

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty
in neural networks. International Conference on Machine Learning (ICML) (cit. on
p. 167).

Bose, R. P. C., Van Der Aalst, W., Žliobaitė, I., & Pechenizkiy, M. (2014). Dealing with concept
drifts in process mining. IEEE Transactions on Neural Networks and Learning Systems,
25(1), 154–171 (cit. on pp. 95, 112, 119).

Boutaba, R., Salahuddin, M., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., &
Caicedo, O. (2018). A comprehensive survey on machine learning for networking:
Evolution, applications and research opportunities. Journal of Internet Services and
Applications, 9(1), 16 (cit. on pp. 67, 69, 72, 73).

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological), 26(2), 211–243 (cit. on p. 100).

Brahma, A., Chatterjee, S., & Seal, K. C. (2020). Understanding cardiovascular disease pro-
gression behavior from patient cohort data using markov chain model. Proceedings
of the International Conference on Information Systems (ICIS) (cit. on p. 20).

Bretschneider, U., & Peters, R. (2016). Detecting cyberbullying in online communities.
Proceedings of the European Conference on Information Systems (ECIS) (cit. on p. 62).

Bibliography 225

Brodley, C. E., Rebbapragada, U., Small, K., & Wallace, B. (2012). Challenges and oppor-
tunities in applied machine learning. AI Magazine, 33(1), 11–24 (cit. on pp. 69,
70).

Brodley, C. E., & Smyth, P. (1995). The process of applying machine learning algorithms.
Proceedings of the ICML workshop on Applying Machine Learning in Practice (cit. on
p. 46).

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. arXiv preprint arXiv:2005.14165 (cit. on p. 3).

Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implica-
tions. Science, 358(6370), 1530–1534 (cit. on p. 3).

Brzezinski, D., & Stefanowski, J. (2014). Combining block-based and online methods in
learning ensembles from concept drifting data streams. Information Sciences, 265,
50–67 (cit. on p. 158).

Bughin, J., Hazan, E., Ramaswamy, S., Henke, N., Trench, M., Dahlstroem, P., Allas, T.,
& Chui, M. (2017). Artificial intelligence, the next digital frontier? McKinsey and
Company Global Institute, 47 (cit. on pp. 3, 4, 6).

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Pret-
tenhofer, P., Gramfort, A., Grobler, J., et al. (2013). API design for machine learning
software: Experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238
(cit. on p. 143).

Buxmann, P., Hess, T., & Thatcher, J. B. (2021). AI-based information systems. Business &
Information Systems Engineering, 63(1), 1–4 (cit. on p. 7).

Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data
mining: from concept to implementation. Prentice-Hall, Inc. (Cit. on p. 46).

Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new
perspective. Neurocomputing, 300, 70–79 (cit. on pp. 5, 67, 71).

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning
algorithms. International Conference on Machine Learning (ICML) (cit. on p. 51).

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. d. P., Basto, J. P., & Alcalá, S. G. (2019).
A systematic literature review of machine learning methods applied to predictive
maintenance. Computers & Industrial Engineering, 137, 106024 (cit. on p. 3).

Cattral, R., Oppacher, F., & Deugo, D. (2002). Evolutionary data mining with automatic rule
generalization. Recent Advances in Computers, Computing and Communications, 1(1),
296–300 (cit. on p. 37).

Cavalcante, R. C., Minku, L. L., & Oliveira, A. L. I. (2016). Fedd: Feature extraction for
explicit concept drift detection in time series. International Joint Conference on
Neural Networks (IJCNN), 740–747 (cit. on pp. 9, 35, 129, 184).

226 Bibliography

Cawley, G. C., & Talbot, N. L. C. (2010). On Over-fitting in Model Selection and Subsequent
Selection Bias in Performance Evaluation. Journal of Machine Learning Research, 11
(cit. on p. 53).

Ceci, M., Corizzo, R., Malerba, D., & Rashkovska, A. (2019). Spatial autocorrelation and
entropy for renewable energy forecasting. Data Mining and Knowledge Discovery,
33(3), 698–729 (cit. on p. 38).

Chandola, V., Banerjee, A., & Kumar, V. (2007). Outlier detection: A survey. ACM Computing
Surveys (cit. on p. 185).

Chatterjee, S., Byun, J., Dutta, K., Pedersen, R. U., Pottathil, A., & Xie, H. (2018). Designing
an Internet-of-Things (IoT) and sensor-based in-home monitoring system for assist-
ing diabetes patients: Iterative learning from two case studies. European Journal of
Information Systems, 27(6), 670–685 (cit. on p. 20).

Chatterjee, S., Saeedfar, P., Tofangchi, S., & Kolbe, L. M. (2018). Intelligent road mainte-
nance: A machine learning approach for surface defect detection. Proceedings of the
European Conference on Information Systems (ECIS) (cit. on pp. 20, 63).

Chawla, N. V. (2010). Data mining for imbalanced datasets: An overview. In O. Maimon &
L. Rokach (Eds.), Data Mining and Knowledge Discovery Handbook (pp. 875–886).
Springer US. (Cit. on p. 51).

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16,
321–357 (cit. on p. 51).

Chen, H., Chiang, R., & Storey, V. (2012). Business intelligence and analytics: From big data
to big impact. MIS Quarterly, 36(4), 1165–1188 (cit. on pp. 67, 91, 107, 127, 181).

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 785–794 (cit. on p. 141).

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics,
21(1), 1–13 (cit. on p. 174).

Ching, P. G. J. (2018). In AI we trust: Perceived value of advanced artificial intelligence in
services. PhD thesis, The University of Queensland (cit. on p. 91).

Chollet, F. (2018). Deep Learning with Python. Manning Publications. (Cit. on p. 61).

Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions.
Econometrica, 28(3), 591–605 (cit. on p. 32).

Cios, K. J., Teresinska, A., Konieczna, S., Potocka, J., & Sharma, S. (2000). Diagnosing
myocardial perfusion from PECT bull’s-eye maps-A knowledge discovery approach.
IEEE Engineering in Medicine and Biology Magazine, 19(4), 17–25 (cit. on p. 46).

Coiera, E., Ammenwerth, E., Georgiou, A., & Magrabi, F. (2018). Does health informatics
have a replication crisis? Journal of the American Medical Informatics Association,
25(8), 963–968 (cit. on p. 43).

Bibliography 227

Coussement, K., Lessmann, S., & Verstraeten, G. (2017). A comparative analysis of data
preparation algorithms for customer churn prediction: A case study in the telecom-
munication industry. Decision Support Systems, 95, 27–36 (cit. on p. 19).

Cramer, J., & Krueger, A. B. (2016). Disruptive change in the taxi business: The case of Uber.
American Economic Review, 106(5), 177–182 (cit. on pp. 132, 149).

Cui, G., Wong, M. L., & Wan, X. (2012). Cost-sensitive learning via priority sampling to
improve the return on marketing and CRM investment. Journal of Management
Information Systems, 29(1), 341–374 (cit. on p. 63).

Cummings, M. (2004). Automation bias in intelligent time critical decision support systems.
AIAA Intelligent Systems Technical Conference, 6313 (cit. on p. 160).

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2017). Credit card fraud
detection: A realistic modeling and a novel learning strategy. IEEE Transactions on
Neural Networks and Learning Systems, 29(8) (cit. on pp. 38, 184).

Dasu, T., Krishnan, S., Venkatasubramanian, S., & Yi, K. (2006). An information-theoretic
approach to detecting changes in multi-dimensional data streams. In Proc. Symp. on
the Interface of Statistics, Computing Science, and Applications (cit. on pp. 30, 31).

Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98–107
(cit. on pp. 67, 91, 107).

Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics,
1(2), 73–80 (cit. on p. 3).

De Caigny, A., Coussement, K., & de Bock, K. W. (2018). A new hybrid classification
algorithm for customer churn prediction based on logistic regression and decision
trees. European Journal of Operational Research, 269(2), 760–772 (cit. on p. 19).

De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International
Journal of Forecasting, 22(3), 443–473 (cit. on p. 146).

De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. (2000). The mahalanobis distance.
Chemometrics and Intelligent Laboratory Systems, 50(1), 1–18 (cit. on p. 191).

De Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008). On field calibration
of an electronic nose for benzene estimation in an urban pollution monitoring
scenario. Sensors and Actuators B: Chemical, 129(2), 750–757 (cit. on p. 173).

Deeplearning.AI. (2020). The batch, issue 83, november 18th 2020. Retrieved January 14,
2021, from https://blog.deeplearning.ai/blog/the-batch-bias-in-surprising-places-
retail-models-adjust-to-covid-faster-transformers-ai-patents-explode?. (Cit. on p. 7)

Delany, S. J., Cunningham, P., & Tsymbal, A. (2006). A comparison of ensemble and case-base
maintenance techniques for handling concept drift in spam filtering. Proceedings of
FLAIRS Conference, 340–345 (cit. on pp. 110, 112, 118).

Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information
systems success: A ten-year update. Journal of Management Information Systems,
19(4), 9–30 (cit. on pp. 5, 205).

228 Bibliography

https://blog.deeplearning.ai/blog/the-batch-bias-in-surprising-places-retail-models-adjust-to-covid-faster-transformers-ai-patents-explode?
https://blog.deeplearning.ai/blog/the-batch-bias-in-surprising-places-retail-models-adjust-to-covid-faster-transformers-ai-patents-explode?

Demetis, D., & Lee, A. S. (2018). When humans using the IT artifact becomes it using the
human artifact. Journal of the Association for Information Systems, 19(10), 929–952
(cit. on p. 18).

Demšar, J., & Bosnić, Z. (2018). Detecting concept drift in data streams using model
explanation. Expert Systems with Applications, 92, 546–559 (cit. on p. 39).

Demšar, J., Bosnić, Z., & Kononenko, I. (2014). Visualization and concept drift detection
using explanations of incremental models. Informatica, 38(4) (cit. on p. 38).

Der Kiureghian, A., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural
Safety (cit. on p. 166).

Dhar, V., Geva, T., Oestreicher-Singer, G., & Sundararajan, A. (2014). Prediction in economic
networks. Information Systems Research, 25(2), 264–284 (cit. on p. 50).

Di Francescomarino, C., Dumas, M., Maggi, F. M., & Teinemaa, I. (2017). Clustering-based
predictive process monitoring. IEEE Transactions on Services Computing, 12(6), 896–
909 (cit. on p. 94).

Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business
& Economic Statistics, 20(1), 134–144 (cit. on pp. 138, 156).

Dietterich, T. G., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured
machine learning: The next ten years. Machine Learning, 73(1), 3–23 (cit. on pp. 71,
72).

Ding, A. W., Li, S., & Chatterjee, P. (2015). Learning user real-time intent for optimal
dynamic web page transformation. Information Systems Research, 26(2), 339–359
(cit. on pp. 19, 61).

Ding, Y., & Li, X. (2005). Time weight collaborative filtering. Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, 485–492 (cit.
on p. 112).

Dinges, V., Urmetzer, F., Martinez, V., Zaki, M., & Neely, A. (2015). The future of servitiza-
tion: Technologies that will make a difference. Cambridge Service Alliance Executive
Briefing Paper (cit. on pp. 67, 107).

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary environ-
ments: A survey. IEEE Computational Intelligence Magazine, 10(4), 12–25 (cit. on
pp. 34, 35, 129).

Ditzler, G., & Polikar, R. (2011). Hellinger distance based drift detection for nonstationary
environments. 2011 IEEE Symposium on Computational Intelligence in Dynamic and
Uncertain Environments (CIDUE), 41–48 (cit. on p. 145).

Dodge, J., Gururangan, S., Card, D., Schwartz, R., & Smith, N. A. (2019). Show your work:
Improved reporting of experimental results. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (cit. on pp. 47, 49).

Domingos, P. (2012). A few useful things to know about machine learning. Communications
of the ACM, 55(10), 78–87 (cit. on pp. 56, 71, 73).

Bibliography 229

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 71–80
(cit. on p. 23).

Domingos, P., & Hulten, G. (2001). Catching up with the data: Research issues in mining
data streams. Workshop on Research Issues in Data Mining and Knowledge Discovery
(cit. on p. 21).

Dong, W., Liao, S., & Zhang, Z. (2018). Leveraging financial social media data for corporate
fraud detection. Journal of Management Information Systems, 35(2), 461–487 (cit.
on p. 19).

Dorner, V., & Alpers, G. W. (2017). Detecting panic potential in social media tweets. Proceed-
ings of the European Conference on Information Systems (ECIS) (cit. on p. 61).

Dos Reis, D. M., Flach, P., Matwin, S., & Batista, G. (2016). Fast unsupervised online drift
detection using incremental kolmogorov-smirnov test. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (cit. on
p. 166).

Duarte, A. I. M., & Costa, C. J. (2012). Information systems: Life cycle and success. Proceed-
ings of the Workshop on Information Systems and Design of Communication, 25–30
(cit. on pp. 6, 206).

Dufour, J.-M. (1982). Generalized chow tests for structural change: A coordinate-free
approach. International Economic Review, 23(3), 565–575 (cit. on p. 32).

Dumas, M., La Rosa, M., Mendling, J., Reijers, H. A., et al. (2013). Fundamentals of business
process management. Springer. (Cit. on p. 94).

Dunning, T., & Friedman, E. (2017). Machine learning logistics. O’Reilly Media, Inc. (Cit. on
pp. 130, 135).

Dyck, J. (2018). Machine learning for engineering. Proceedings of the 23rd Asia and South
Pacific Design Automation Conference, 422–427 (cit. on pp. 72, 73).

Dyer, K. B., Capo, R., & Polikar, R. (2014). Compose: A semisupervised learning framework
for initially labeled nonstationary streaming data. IEEE Transactions on Neural
Networks and Learning Systems, 25(1), 12–26 (cit. on p. 166).

Ekanayake, J., Tappolet, J., Gall, H. C., & Bernstein, A. (2009). Tracking concept drift of soft-
ware projects using defect prediction quality. Proceedings of 6th IEEE International
Working Conference on Mining Software Repositories, 51–60 (cit. on p. 112).

Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary
environments. IEEE Transactions on Neural Networks, 22(10), 1517–1531 (cit. on
pp. 36, 152, 174).

Enders, T., Wolff, C., & Satzger, G. (2020). Knowing what to share: Selective revealing in
open data. Proceedings of the European Conference on Information Systems (ECIS)
(cit. on p. 18).

230 Bibliography

Esswein, M., Mayer, J. H., Stoffel, S., & Quick, R. (2019). Predictive analytics—A modern
crystal ball? Answers from a cash flow case study. Proceedings of the European
Conference on Information Systems (ECIS) (cit. on pp. 144, 146).

Evermann, J., Rehse, J.-R., & Fettke, P. (2016). A deep learning approach for predicting pro-
cess behaviour at runtime. International Conference on Business Process Management,
327–338 (cit. on p. 19).

Fan, W., Huang, Y.-a., Wang, H., & Yu, P. S. (2004). Active mining of data streams. SIAM
SDM (cit. on p. 165).

Fanaee-T, H., & Gama, J. (2014). Event labeling combining ensemble detectors and back-
ground knowledge. Progress in Artificial Intelligence, 2(2), 113–127 (cit. on p. 173).

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34
(cit. on p. 46).

Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R., & Corchado, J. M. (2007). Applying
lazy learning algorithms to tackle concept drift in spam filtering. Expert Systems
with Applications, 33(1), 36–48 (cit. on pp. 110, 112, 120).

Ferguson, A. L. (2017). Machine learning and data science in soft materials engineering.
Journal of Physics: Condensed Matter, 30(4) (cit. on pp. 71, 73).

Fernald, J. G., Hall, R. E., Stock, J. H., & Watson, M. W. (2017). The disappointing recovery
of output after 2009 (tech. rep.). National Bureau of Economic Research. (Cit. on
p. 130).

Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., & Mueller, E. T. (2013). Watson: Beyond
jeopardy! Artificial Intelligence, 199, 93–105 (cit. on p. 3).

Feuerriegel, S., & Fehrer, R. (2016). Improving Decision Analytics with Deep Learning: the
Case of Financial Disclosures. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on p. 45).

Feuerriegel, S., Riedlinger, S., & Neumann, D. (2014). Predictive Analytics For Electricity
Prices Using Feed-Ins from Renewables. Proceedings of the European Conference on
Information Systems (ECIS) (cit. on p. 61).

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015).
Efficient and robust automated machine learning. Advances in Neural Information
Processing Systems, 2962–2970 (cit. on p. 54).

Fisher, R. A. (1936). The use of multiple measures in taxonomic problems. Annals of Eugenics,
7(2), 179–188 (cit. on pp. 57, 58).

Floridi, L. (2020). AI and its new winter: From myths to realities. Philosophy & Technology,
33(1), 1–3 (cit. on p. 219).

Forman, G. (2002). Incremental machine learning to reduce biochemistry lab costs in the
search for drug discovery. BIOKDD, 33–36 (cit. on p. 112).

Bibliography 231

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics,
19(1), 1–67 (cit. on p. 172).

Friedman, J. H. (1997). On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality.
Data Mining and Knowledge Discovery, 1(1), 55–77 (cit. on p. 53).

Fromm, H., Habryn, F., & Satzger, G. (2012). Service analytics: Leveraging data across
enterprise boundaries for competitive advantage. In U. Bäumer, P. Kreutter, & W.
Messner (Eds.), Globalization of professional services: Innovative strategies, successful
processes, inspired talent management, and first-hand experiences (pp. 139–149).
Springer Berlin Heidelberg. (Cit. on p. 109).

Fu, L.-M. (2003). Neural networks in computer intelligence. Tata McGraw-Hill Education.
(Cit. on p. 44).

Gaber, M. M. (2012). Advances in data stream mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(1), 79–85 (cit. on p. 23).

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: A review.
SIGMOD Rec., 34(2), 18–26 (cit. on pp. 21–23).

Gago, P., Silva, Á., & Santos, M. F. (2007). Adaptive decision support for intensive care.
Portuguese Conference on Artificial Intelligence, 415–425 (cit. on p. 112).

Gal, Y. (2016). Uncertainty in deep learning (Doctoral dissertation). University of Cambridge.
(Cit. on p. 166).

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. International Conference on Machine Learning
(ICML) (cit. on pp. 11, 164, 167, 169, 170).

Gama, J. (2012). A survey on learning from data streams: Current and future trends. Progress
in Artificial Intelligence, 1(1), 45–55 (cit. on pp. 21–23).

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection.
Brazilian symposium on artificial intelligence (cit. on pp. 30, 38, 54, 64, 163, 165,
168, 172).

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4), 1–37 (cit. on pp. 4,
7, 9, 27–29, 34–36, 72, 92–94, 108, 110, 112, 115, 118, 122, 128, 135, 145, 147,
149, 164, 165, 182, 184, 200).

Gao, J., Fan, W., Han, J., & Yu, P. S. (2007). A general framework for mining concept-drifting
data streams with skewed distributions. Proceedings of the 2007 SIAM International
Conference on Data Mining, 3–14 (cit. on p. 27).

García-Laencina, P., Figueiras-Vidal, A., & Sancho-Gomez, J.-L. (2008). Machine learning
techniques for solving classification problems with missing input data. Proceedings
of the 12th World Multi-Conference on Systems, Cybernetics and Informatics (cit. on
p. 69).

232 Bibliography

Geva, T., & Oestreicher-Singer, G. (2013). Do customers speak their minds? Using forums and
search for predicting sales. Proceedings of the International Conference on Information
Systems (ICIS) (cit. on pp. 61, 63, 64).

Gholami, R., Watson, R. T., Molla, A., Hasan, H., & Bjorn-Andersen, N. (2016). Information
systems solutions for environmental sustainability: How can we do more? Journal
of the Association for Information Systems, 17(8), 521 (cit. on pp. 64, 207).

Giacomini, R., & Rossi, B. (2009). Detecting and predicting forecast breakdowns. Review of
Economic Studies, 76(2), 669–705 (cit. on p. 111).

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018). Explaining
explanations: An overview of interpretability of machine learning. IEEE International
Conference on Data Science and Advanced Analytics (DSAA), 80–89 (cit. on p. 141).

Gimpel, H., Kleindienst, D., & Waldmann, D. (2018). The disclosure of private data: mea-
suring the privacy paradox in digital services. Electronic Markets, 28(4), 475–490
(cit. on p. 46).

Glynn, J., Perera, N., & Verma, R. (2007). Unit root tests and structural breaks: A survey
with applications. Revista de Métodos Cuantitativos para la Economia y la Empresa, 3
(cit. on p. 146).

Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2), 215–223 (cit. on pp. 53,
195).

Gonçalves, P. M., De Carvalho Santos, S. G., Barros, R. S., & Vieira, D. C. (2014). A com-
parative study on concept drift detectors. Expert Systems with Applications, 41(18)
(cit. on pp. 36, 37, 152).

Gong, J., Abhishek, V., & Li, B. (2018). Examining the impact of keyword ambiguity on
search advertising performance: A topic model approach. MIS Quarterly, 42(3)
(cit. on p. 45).

Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-
score, with implication for evaluation. European Conference on Information Retrieval,
345–359 (cit. on p. 52).

Graepel, T., Lauter, K., & Naehrig, M. (2012). ML confidential: Machine learning on encrypted
data. International Conference on Information Security and Cryptology, 1–21 (cit. on
p. 70).

Guajardo, J. A., Weber, R., & Miranda, J. (2010). A model updating strategy for predicting
time series with seasonal patterns. Applied Soft Computing Journal, 10(1), 276–283
(cit. on p. 128).

Günther, W. A., Mehrizi, M. H. R., Huysman, M., & Feldberg, F. (2017). Debating big
data: A literature review on realizing value from big data. The Journal of Strategic
Information Systems, 26(3), 191–209 (cit. on p. 18).

Guo, J., Zhang, W., Fan, W., & Li, W. (2018). Combining geographical and social influences
with deep learning for personalized point-of-interest recommendation. Journal of
Management Information Systems, 35(4), 1121–1153 (cit. on p. 19).

Bibliography 233

Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learning with
limited numerical precision. International Conference on Machine Learning, 1737–
1746 (cit. on p. 183).

Haldrup, N., Kruse, R., Teräsvirta, T., Varneskov, R. T., et al. (2013). Unit roots, non-
linearities and structural breaks. Handbook of Research Methods and Applications in
Empirical Finance. Cheltenham: Edward Elgar, 61–72 (cit. on pp. 33, 145).

Haley, P. J., & Soloway, D. (1992). Extrapolation limitations of multilayer feedforward neural
networks. International Joint Conference on Neural Networks (cit. on p. 166).

Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.
(2009). The WEKA data mining software: An update. SIGKDD Explorations, 11(1),
10–18 (cit. on p. 51).

Han, H., Otto, C., Liu, X., & Jain, A. K. (2015). Demographic estimation from face images:
Human vs. machine performance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(6), 1148–1161 (cit. on p. 45).

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. Morgan
Kaufmann, San Francisco, CA. (Cit. on pp. 109, 118).

Han, X., Wang, L., & Huang, H. (2017). Deep investment behavior profiling by recurrent
neural network in P2P lending. Proceedings of the International Conference on Infor-
mation Systems (ICIS) (cit. on pp. 63, 64).

Hansen, B. E. (2001). The new econometrics of structural change: Dating breaks in US
labour productivity. Journal of Economic Perspectives, 15(4), 117–128 (cit. on pp. 32,
33).

Harries, M., & Horn, K. (1995). Detecting concept drift in financial time series prediction
using symbolic machine learning. AI Conference (cit. on pp. 111, 112, 120).

Harries, M. (1999). Splice-2 comparative evaluation: Electricity pricing (Technical Report).
University of New South Wales. (Cit. on p. 37).

Harries, M. B., Sammut, C., & Horn, K. (1998). Extracting hidden context. Machine Learning,
32(2), 101–126 (cit. on p. 112).

Harrington, P. (2012). Machine learning in action. Manning Publications Co. (Cit. on pp. 9,
35).

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Overview of supervised learning. The
Elements of Statistical Learning (pp. 9–41). Springer. (Cit. on p. 51).

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy, M.,
Jia, B., Jia, Y., Kalro, A., et al. (2018). Applied machine learning at facebook:
A datacenter infrastructure perspective. IEEE International Symposium on High
Performance Computer Architecture (HPCA), 620–629 (cit. on pp. 67, 72).

He, H., & Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applications. John
Wiley & Sons. (Cit. on p. 50).

234 Bibliography

Heaven, W. D. (2020). Our weird behavior during the pandemic is messing with AI models.
Retrieved January 4, 2021, from https://www.technologyreview.com/2020/05/
11/1001563/covid-pandemic-broken-ai-machine-learning-amazon-retail-fraud-
humans-in-the-loop/. (Cit. on p. 7)

Heilig, L., Hofer, J., Lessmann, S., & Voc, S. (2016). Data-driven product returns prediction:
A cloud-based ensemble selection approach. Proceedings of the European Conference
on Information Systems (ECIS) (cit. on p. 45).

Heinrich, K., Zschech, P., Skouti, T., Griebenow, J., & Riechert, S. (2019). Demystifying
the black box: A classification scheme for interpretation and visualization of deep
intelligent systems. Proceedings of the Americas Conference on Information Systems
(AMCIS) (cit. on p. 20).

Heit, J., Liu, J., & Shah, M. (2016). An architecture for the deployment of statistical models
for the big data era. IEEE International Conference on Big Data (Big Data), 1377–1384
(cit. on pp. 72, 73).

Helfferich, C. (2011). Die Qualität qualitativer Daten. Springer. (Cit. on p. 74).

Hemmer, P., Kühl, N., & Schöffer, J. (2020). DEAL: Deep evidential active learning for image
classification. IEEE International Conference On Machine Learning And Applications
(cit. on pp. 166, 167).

Hennig-Thurau, T., Walsh, G., & Schrader, U. (2004). VHB-JOURQUAL: Ein Ranking von
betriebswirtschaftlich-relevanten Zeitschriften auf der Grundlage von Experten-
urteilen. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, 56(6), 520–
545 (cit. on p. 59).

Hernández, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., Chi-
narro, D., Gomez-Sanz, J. J., & Cook, D. (2013). A multi-agent system architecture
for smart grid management and forecasting of energy demand in virtual power
plants. IEEE Communications Magazine, 51(1), 106–113 (cit. on pp. 136, 153).

Hernández-Lobato, J. M., & Adams, R. (2015). Probabilistic backpropagation for scalable
learning of Bayesian neural networks. International Conference on Machine Learning
(ICML) (cit. on p. 167).

Hinder, F., & Hammer, B. (2020). Counterfactual explanations of concept drift. arXiv preprint
arXiv:2006.12822 (cit. on p. 39).

Hirt, R., Kühl, N., & Satzger, G. (2017). An end-to-end process model for supervised ma-
chine learning classification: from problem to deployment in information systems.
Proceedings of the International Conference on Design Science Research in Information
Systems and Technology (cit. on pp. 48, 107).

Ho, T. K., & Basu, M. (2002). Complexity measures of supervised classification problems.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 289–300
(cit. on p. 51).

Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2), 85–126 (cit. on pp. 184, 185).

Bibliography 235

https://www.technologyreview.com/2020/05/11/1001563/covid-pandemic-broken-ai-machine-learning-amazon-retail-fraud-humans-in-the-loop/
https://www.technologyreview.com/2020/05/11/1001563/covid-pandemic-broken-ai-machine-learning-amazon-retail-fraud-humans-in-the-loop/
https://www.technologyreview.com/2020/05/11/1001563/covid-pandemic-broken-ai-machine-learning-amazon-retail-fraud-humans-in-the-loop/

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301), 13–30 (cit. on p. 23).

Hoens, T. R., Polikar, R., & Chawla, N. V. (2012). Learning from streaming data with concept
drift and imbalance: An overview. Progress in Artificial Intelligence, 1(1), 89–101
(cit. on p. 37).

Hoffman, M., Bach, F., & Blei, D. (2010). Online learning for latent dirichlet allocation.
Advances in Neural Information Processing Systems, 23, 856–864 (cit. on p. 26).

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., & Wallach, H. (2019). Im-
proving fairness in machine learning systems: What do industry practitioners need?
Proceedings of the CHI Conference on Human Factors in Computing Systems (cit. on
p. 4).

Holzinger, A. (2016). Interactive machine learning for health informatics: When do we need
the human-in-the-loop? Brain Informatics, 3(2), 119–131 (cit. on pp. 18, 218).

Hu, F., & Hao, Q. (2012). Intelligent sensor networks: The integration of sensor networks,
signal processing and machine learning. CRC Press. (Cit. on p. 183).

Hu, H., Kantardzic, M., & Lyu, L. (2018). Detecting different types of concept drifts with
ensemble framework. IEEE International Conference on Machine Learning and Appli-
cations, 344–350 (cit. on p. 35).

Hu, H., Kantardzic, M., & Sethi, T. S. (2020). No free lunch theorem for concept drift
detection in streaming data classification: A review. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 10(2) (cit. on pp. 10, 32, 37).

Huang, J., Boh, W. F., & Goh, K. H. (2017). A temporal study of the effects of online opinions:
Information sources matter. Journal of Management Information Systems, 34(4),
1169–1202 (cit. on p. 59).

Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service
Research, 21(2), 155–172 (cit. on p. 218).

Huang, S., & Dong, Y. (2007). An active learning system for mining time-changing data
streams. Intelligent Data Analysis, 11(4), 401–419 (cit. on pp. 112, 121).

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (cit. on pp. 23, 37).

Hutson, M. (2018). Artificial intelligence faces reproducibility crisis. Science, 359(6377),
725–726 (cit. on pp. 8, 43, 47).

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.
(Cit. on p. 136).

IBM. (2021). IBM Watson OpenScale. Retrieved January 15, 2021, from https://www.ibm.
com/cloud/watson-openscale. (Cit. on p. 216)

236 Bibliography

https://www.ibm.com/cloud/watson-openscale
https://www.ibm.com/cloud/watson-openscale

Ikonomovska, E., Gama, J., & Džeroski, S. (2011). Learning model trees from evolving data
streams. Data Mining and Knowledge Discovery, 23(1), 128–168 (cit. on pp. 37, 144,
158).

Ivannikov, A., Pechenizkiy, M., Bakker, J., Leino, T., Jegoroff, M., Kärkkäinen, T., & Äyrämö, S.
(2009). Online mass flow prediction in cfb boilers with explicit detection of sudden
concept drift. SIGKDD Explor. Newsl., 11(2) (cit. on pp. 110, 112, 114, 118, 120,
129).

Ivanov, A., & Sharman, R. (2018). Impact of User-Generated Internet Content on Hospital
Reputational Dynamics. Journal of Management Information Systems, 35(4), 1277–
1300 (cit. on p. 59).

Iwashita, A. S., & Papa, J. P. (2019). An overview on concept drift learning. IEEE Access, 7,
1532–1547 (cit. on p. 35).

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical
learning. Springer. (Cit. on pp. 53, 63).

Janai, J., Güney, F., Behl, A., Geiger, A., et al. (2020). Computer vision for autonomous vehi-
cles: Problems, datasets and state of the art. Foundations and Trends® in Computer
Graphics and Vision, 12(1–3), 1–308 (cit. on p. 3).

Jaworski, M. (2018). Regression function and noise variance tracking methods for data
streams with concept drift. International Journal of Applied Mathematics and Com-
puter Science, 28(3), 559–567 (cit. on pp. 9, 35).

Jöhnk, J., Weißert, M., & Wyrtki, K. (2020). Ready or not, AI Comes—An interview study
of organizational AI readiness factors. Business & Information Systems Engineering
(cit. on pp. 3, 5, 8, 18).

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255–260 (cit. on pp. 4, 19, 45, 67, 71, 91, 109,
127, 181, 183).

Kadian, A., Singh, V., & Bhattacherjee, A. (2018). Detecting clickbait using user emotions and
behaviors on social media. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on p. 19).

Kadlec, P., & Gabrys, B. (2011). Local learning-based adaptive soft sensor for catalyst
activation prediction. AIChE Journal, 57(5), 1288–1301 (cit. on pp. 108, 112, 119,
144, 184).

Kahlen, M., Ketter, W., Lee, T., & Gupta, A. (2017). Optimal prepositioning and fleet sizing to
maximize profits for one-way transportation companies. Proceedings of International
Conference on Information Systems (ICIS) (cit. on pp. 131, 146).

Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal
of Parallel and Distributed Computing, 74(7) (cit. on p. 109).

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y.
(2002). An efficient k-means clustering algorithm: Analysis and implementation.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 24(7), 881–892 (cit. on
p. 191).

Bibliography 237

Keim, D., Kohlhammer, J., Ellis, G., & Mansmann, F. (2010). Mastering the information age
solving problems with visual analytics. Eurographics Association. (Cit. on p. 114).

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning
for computer vision? Proceedings of the Conference on Neural Information Processing
Systems (cit. on p. 168).

Kendall, M. G. (1948). Rank correlation methods. Griffin. (Cit. on p. 33).

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Discussion and
review on evolving data streams and concept drift adapting. Evolving systems, 9(1),
1–23 (cit. on p. 34).

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. Proceedings
of the International Conference on Very Large Data Bases (VLDB), 4, 180–191 (cit. on
p. 24).

Klinkenberg, R. (2005). Meta-learning, model selection, and example selection in machine
learning domains with concept drift. FGML (cit. on pp. 112, 120).

Knight, W. (2020). Even the best AI models are no match for the coronavirus. Retrieved
December 12, 2020, from https://www.wired.com/story/best-ai-models-no-match-
coronavirus/. (Cit. on p. 7)

Kocheturov, A., Pardalos, P. M., & Karakitsiou, A. (2019). Massive datasets and machine
learning for computational biomedicine: Trends and challenges. Annals of Operations
Research, 276(1), 5–34 (cit. on pp. 70, 71).

Koehn, D., Lessmann, S., & Schaal, M. (2020). Predicting online shopping behaviour from
clickstream data using deep learning. Expert Systems with Applications, 150 (cit. on
p. 19).

Koopman, P., & Wagner, M. (2017). Autonomous vehicle safety: An interdisciplinary chal-
lenge. IEEE Intelligent Transportation Systems Magazine, 9(1), 90–96 (cit. on pp. 72,
73).

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques.
Informatica, 31, 249–268 (cit. on pp. 51, 52, 56, 109, 183).

Kozlovskiy, I., Sodenkamp, M. A., Hopf, K., & Staake, T. (2016). Energy informatics for envi-
ronmental, economic and societal sustainability: A case of the large-scale detection
of households with old heating systems. Proceedings of the European Conference on
Information Systems (ECIS) (cit. on p. 63).

Krawczyk, B. (2017). Active and adaptive ensemble learning for online activity recognition
from data streams. Knowledge-Based Systems, 138, 69–78 (cit. on p. 112).

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017). Ensemble
learning for data stream analysis: A survey. Information Fusion, 37, 132–156 (cit. on
pp. 10, 21, 35–37, 120, 165, 168).

Kremser, T., Radszuwill, S., Schweizer, A., & Steffek, B. (2019). How do large stakes influence
bitcoin performance? Evidence from the Mt. Gox liquidation case. Proceedings of the
European Conference on Information Systems (ECIS) (cit. on pp. 33, 145).

238 Bibliography

https://www.wired.com/story/best-ai-models-no-match-coronavirus/
https://www.wired.com/story/best-ai-models-no-match-coronavirus/

Krippendorff, K. (2004). Content analysis: An introduction to its methodology (second edition).
Sage Publications. (Cit. on pp. 74, 75).

Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil spills
in satellite radar images. Machine Learning, 30(2), 195–215 (cit. on p. 114).

Kühl, N., Goutier, M., Hirt, R., & Satzger, G. (2019). Machine learning in artificial intelligence:
Towards a common understanding. Proceedings of the 52nd Hawaii International
Conference on System Sciences (cit. on pp. 17, 19, 91).

Kukar, M. (2003). Drifting concepts as hidden factors in clinical studies. In M. Dojat, E. T.
Keravnou, & P. Barahona (Eds.), Artificial Intelligence in Medicine (pp. 355–364).
Springer Berlin Heidelberg. (Cit. on p. 112).

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathe-
matical Statistics, 22(1), 79–86 (cit. on p. 31).

Kuncheva, L., & Žliobaite, I. (2009). On the window size for classification in changing
environments. Intelligent Data Analysis, 13(6), 861–872 (cit. on p. 128).

Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In F. Roli, J. Kittler,
& T. Windeatt (Eds.), Multiple Classifier Systems. Springer Berlin Heidelberg. (Cit. on
p. 35).

Kurgan, L., & Musilek, P. (2006). A survey of knowledge discovery and data mining process
models. The Knowledge Engineering Review, 21(1), 1 (cit. on p. 47).

Kurlej, B., & Wozniak, M. (2011). Active learning approach to concept drift problem. Logic
Journal of IGPL, 20(3) (cit. on pp. 112, 120).

Kurlej, B., & Woźniak, M. (2011). Learning curve in concept drift while using active learning
paradigm. In A. Bouchachia (Ed.), Adaptive and intelligent systems (pp. 98–106).
Springer Berlin Heidelberg. (Cit. on p. 112).

Kuusisto, F., Dutra, I., Elezaby, M., Mendonça, E. A., Shavlik, J., & Burnside, E. S. (2015).
Leveraging expert knowledge to improve machine-learned decision support systems.
AMIA Summits on Translational Science Proceedings (cit. on p. 122).

Laghmari, K., Marsala, C., & Ramdani, M. (2018). An adapted incremental graded multi-label
classification model for recommendation systems. Progress in Artificial Intelligence,
7(1), 15–29 (cit. on p. 112).

Lai, T. L. (1995). Sequential changepoint detection in quality control and dynamical systems.
Journal of the Royal Statistical Society: Series B (Methodological), 57(4), 613–644
(cit. on p. 33).

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. Proceedings of the Conference on Neural
Information Processing Systems (cit. on pp. 167, 178).

Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017). Time-series extreme event forecasting
with neural networks at uber. International Conference on Machine Learning (cit. on
p. 146).

Bibliography 239

Lash, M. T., & Zhao, K. (2016). Early predictions of movie success: The who, what, and
when of profitability. Journal of Management Information Systems, 33(3), 874–903
(cit. on p. 63).

Lebanon, G., & Zhao, Y. (2008). Local likelihood modeling of temporal text streams. Interna-
tional Conference on Machine Learning, 552–559 (cit. on pp. 112, 113).

Lee, P. (2016). Learning from Tay’s introduction. Retrieved December 12, 2020, from
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/#sm.
00000gjdpwwcfcus11t6oo6dw79gw. (Cit. on p. 7)

Lennerholt, C., van Laere, J., & Söderström, E. (2019). Data access and data quality chal-
lenges of self-service business intelligence. Proceedings of the European Conference
on Information Systems (ECIS) (cit. on p. 143).

Leung, M. K., Delong, A., Alipanahi, B., & Frey, B. J. (2016). Machine learning in genomic
medicine: A review of computational problems and data sets. Proceedings of the
IEEE, 104(1), 176–197 (cit. on p. 73).

Li, L., Goethals, F., Giangreco, A., & Baesens, B. (2013). Using social network data to predict
technology acceptance. Proceedings of the International Conference on Information
Systems (ICIS) (cit. on p. 63).

Li, W., Chen, H., & Nunamaker Jr, J. F. (2016). Identifying and profiling key sellers in
cyber carding community: AZSecure text mining system. Journal of Management
Information Systems, 33(4), 1059–1086 (cit. on p. 45).

Liao, L., Patterson, D. J., Fox, D., & Kautz, H. (2007). Learning and inferring transportation
routines. Artificial Intelligence, 171(5-6), 311–331 (cit. on p. 112).

Liao, S., Zhou, L., Di, X., Yuan, B., & Xiong, J. (2018). Large-scale short-term urban taxi
demand forecasting using deep learning. Asia and South Pacific Design Automation
Conference (ASP-DAC), 22, 428–433 (cit. on pp. 136, 141, 146, 148).

Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A symbolic representation of time se-
ries, with implications for streaming algorithms. Proceedings of the ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (cit. on p. 23).

Lindstrom, P., Mac Namee, B., & Delany, S. J. (2013). Drift detection using uncertainty
distribution divergence. Evolving Systems, 4(1), 13–25 (cit. on pp. 4, 10, 36, 37,
166).

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept
of interpretability is both important and slippery. Queue, 16(3), 31–57 (cit. on pp. 8,
20).

Lopes, N., & Ribeiro, B. (2017). Novel trends in scaling up machine learning algorithms. IEEE
International Conference on Machine Learning and Applications (ICMLA), 632–636
(cit. on pp. 70–72).

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2019). Learning under concept drift:
A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363
(cit. on pp. 4, 9, 10, 30, 35–38, 165).

240 Bibliography

https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/#sm.00000gjdpwwcfcus11t6oo6dw79gw
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/#sm.00000gjdpwwcfcus11t6oo6dw79gw

Luo, J., Pronobis, A., Caputo, B., & Jensfelt, P. (2007). Incremental learning for place
recognition in dynamic environments. IEEE/RSJ International Conference, 721–728
(cit. on p. 112).

Lüttenberg, H., Bartelheimer, C., & Beverungen, D. (2018). Designing predictive maintenance
for agricultural machines. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on pp. 5, 20).

Maaradji, A., Dumas, M., La Rosa, M., & Ostovar, A. (2017). Detecting sudden and gradual
drifts in business processes from execution traces. IEEE Transactions on Knowledge
and Data Engineering, 29(10), 2140–2154 (cit. on p. 95).

Maass, W., Parsons, J., Purao, S., Storey, V. C., & Woo, C. (2018). Data-driven meets theory-
driven research in the era of big data: Opportunities and challenges for information
systems research. Journal of the Association for Information Systems, 19(12), 1 (cit.
on p. 18).

Machado, N. L., & Ruiz, D. D. (2017). Customer: A novel customer churn prediction method
based on mobile application usage. International Wireless Communications and
Mobile Computing Conference (IWCMC), 2146–2151 (cit. on p. 38).

Maedche, A., Legner, C., Benlian, A., Berger, B., Gimpel, H., Hess, T., Hinz, O., Morana, S.,
& Söllner, M. (2019). AI-based digital assistants. Business & Information Systems
Engineering, 61(4), 535–544 (cit. on pp. 5, 18).

Malikopoulos, A. A., Papalambros, P. Y., & Assanis, D. N. (2007). A learning algorithm for
optimal internal combustion engine calibration in real time. ASME International
Design Engineering Technical Conferences, 91–100 (cit. on p. 185).

Malle, B., Kieseberg, P., & Holzinger, A. (2017). Do not disturb? Classifier behavior on
perturbed datasets. International Cross-Domain Conference for Machine Learning and
Knowledge Extraction, 155–173 (cit. on p. 71).

Manning, C. D., & Schütze, H. (2000). Foundations of Natural Language Processing. MIT
Press. (Cit. on p. 51).

Manoj Kumar, M. V., Thomas, L., & Annappa, B. (2015). Capturing the sudden concept drift
in process mining. CEUR Workshop Proceedings (cit. on pp. 94, 95).

Márquez-Chamorro, A. E., Resinas, M., & Ruiz-Cortes, A. (2017). Predictive monitoring
of business processes: A survey. IEEE Transactions on Services Computing, 11(6),
962–977 (cit. on p. 94).

Martens, D., & Provost, F. (2014). Explaining data-driven document classifications. MIS
Quarterly, 38(1), 73–100 (cit. on p. 45).

Masud, M. M., Chen, Q., Khan, L., Aggarwal, C. C., Gao, J., Han, J., Srivastava, A., & Oza,
N. C. (2013). Classification and adaptive novel class detection of feature-evolving
data streams. IEEE Transactions on Knowledge and Data Engineering, 25(7), 1484–
1497 (cit. on p. 24).

Masud, M. M., Woolam, C., Gao, J., Khan, L., Han, J., et al. (2012). Facing the reality
of data stream classification: Coping with scarcity of labeled data. Knowledge and
Information Systems, 33(1), 213–244 (cit. on p. 165).

Bibliography 241

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the
Dartmouth summer research project on artificial intelligence, August 31, 1955. AI
Magazine, 27(4), 12–12 (cit. on p. 17).

Mera, C., Orozco-Alzate, M., & Branch, J. (2019). Incremental learning of concept drift in
multiple instance learning for industrial visual inspection. Computers in Industry,
109, 153–164 (cit. on p. 38).

Meyer, G., Adomavicius, G., Johnson, P. E., Elidrisi, M., Rush, W. A., Sperl-Hillen, J. M., &
O’Connor, P. J. (2014). A machine learning approach to improving dynamic decision
making. Information Systems Research, 25(2), 239–263 (cit. on p. 18).

Microsoft. (2020). Microsoft Team Data Science Process Documentation. Retrieved August 5,
2020, from https://docs.microsoft.com/en-us/azure/machine-learning/team-data-
science-process/overview. (Cit. on pp. 46, 57, 215)

Microsoft. (2021). Collect data from models in production. Retrieved January 15, 2021,
from https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-
data-collection. (Cit. on p. 216)

Minku, L. L., White, A. P., & Yao, X. (2009). The impact of diversity on online ensemble
learning in the presence of concept drift. IEEE Transactions on Knowledge and Data
Engineering, 22(5), 730–742 (cit. on p. 35).

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E.,
Raji, I. D., & Gebru, T. (2019). Model cards for model reporting. Proceedings of the
Conference on Fairness, Accountability, and Transparency, 220–229 (cit. on p. 47).

Mittal, V., & Kashyap, I. (2018). An overview of real world applications with concept drifting
data streams. Proceedings of the International Conference on Internet of Things and
Connected Technologies (ICIoTCT) (cit. on p. 147).

Mohamad, S., Bouchachia, A., & Sayed-Mouchaweh, M. (2016). A bi-criteria active learning
algorithm for dynamic data streams. IEEE Transactions on Neural Networks and
Learning Systems (cit. on p. 112).

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2013). Foundations of machine learning.
Journal of Chemical Information and Modeling, 53(9), 1689–1699 (cit. on pp. 44,
45).

Mongan, J., Moy, L., & Kahn Jr, C. E. (2020). Checklist for Artificial Intelligence in Medical
Imaging (CLAIM): A guide for authors and reviewers. Radiology: Artificial Intelligence,
2(2) (cit. on pp. 47, 49).

Monroe, D. (2018). Chips for artificial intelligence. Communincations of the ACM, 61(4)
(cit. on p. 3).

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output
streaming framework. Journal of Machine Learning Research, 19(1) (cit. on pp. 99,
170, 172).

Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predict-
ing taxi–passenger demand using streaming data. IEEE Transactions on Intelligent
Transportation Systems, 14(3), 1393–1402 (cit. on p. 146).

242 Bibliography

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-data-collection
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-data-collection

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V., & Herrera, F. (2012). A
unifying view on dataset shift in classification. Pattern Recognition, 45(1), 521–530
(cit. on pp. 27, 164).

Moroshko, E., Vaits, N., & Crammer, K. (2015). Second-order non-stationary online learning
for regression. Journal of Machine Learning Research, 16, 1481–1517 (cit. on p. 25).

Mourão, F., Rocha, L., Araújo, R., Couto, T., Gonçalves, M., & Meira, W. (2008). Understand-
ing temporal aspects in document classification. Proceedings of the International
Conference on Web Search and Data Mining (cit. on p. 112).

Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Now Publishers Inc.
(Cit. on p. 23).

Nascimento, A. M., Meirelles, F. d. S., da Cunha, M. A. V., Scornavacca, E., & de Melo, V. V.
(2018). A literature analysis of research on artificial intelligence in management
information system (MIS). Proceedings of the American Conference on Information
Systems (AMCIS) (cit. on pp. 17, 19).

Neyman, J. (1934). On the two different aspects of the representative method: The method
of stratified sampling and the method of purposive selection. Journal of the Royal
Statistical Society, 97(4), 558–625 (cit. on p. 53).

Nguyen, H.-L., Woon, Y.-K., & Ng, W.-K. (2015). A survey on data stream clustering and
classification. Knowledge and Information Systems, 45(3), 535–569 (cit. on p. 37).

Nielsen, B., & Whitby, A. (2015). A joint chow test for structural instability. Econometrics,
3(1), 156–186 (cit. on p. 32).

Nishida, K., & Yamauchi, K. (2007). Detecting concept drift using statistical testing. Interna-
tional conference on discovery science, 264–269 (cit. on p. 145).

Nunes, I., & Jannach, D. (2017). A systematic review and taxonomy of explanations in deci-
sion support and recommender systems. User Modeling and User-Adapted Interaction,
27(3-5), 393–444 (cit. on p. 73).

Oh, C., & Sheng, O. (2011). Investigating predictive power of stock micro blog sentiment in
forecasting future stock price directional movement. Proceedings of the International
Conference on Information Systems (ICIS) (cit. on p. 61).

Öksüz, N., Shcherbatyi, I., Kowatsch, T., & Maass, W. (2018). A data-analytical system to
predict therapy success for obese children. Proceedings of the International Conference
on Information Systems (ICIS) (cit. on p. 20).

Olbrich, S., Frank, U., Gregor, S., Niederman, F., & Rowe, F. (2017). On the merits and limits
of replication and negation for IS research. AIS Transactions on Replication Research,
3(1), 1 (cit. on p. 43).

Olorisade, B. K., Brereton, P., & Andras, P. (2017). Reproducibility in machine learning-based
studies: An example of text mining. Reproducibility in Machine Learning Workshop,
International Conference on Machine Learning (cit. on p. 47).

Bibliography 243

Oneto, L., Ghio, A., Ridella, S., & Anguita, D. (2015). Learning resource-aware classifiers
for mobile devices: From regularization to energy efficiency. Neurocomputing, 169,
225–235 (cit. on pp. 128, 181, 183).

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D.,
Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J.,
Petrov, M., de Oliveira Pinto, H. P., Raiman, J., Salimans, T., . . . Zhang, S. (2019).
Dota 2 with large scale deep reinforcement learning. https://arxiv.org/abs/1912.
06680 (cit. on p. 3)

Oquendo, M. A., Baca-Garcia, E., Artes-Rodriguez, A., Perez-Cruz, F., Galfalvy, H. C., Blasco-
Fontecilla, H., Madigan, D., & Duan, N. (2012). Machine learning and data mining:
strategies for hypothesis generation. Molecular psychiatry, 17(10), 956 (cit. on
p. 50).

Orair, G. H., Teixeira, C. H., Meira Jr, W., Wang, Y., & Parthasarathy, S. (2010). Distance-
based outlier detection: Consolidation and renewed bearing. Proceedings of the VLDB
Endowment, 3(1-2), 1469–1480 (cit. on p. 185).

Oroszi, F., & Ruhland, J. (2010). An early warning system for hospital acquired pneumonia.
Proceedings of the European Conference on Information Systems (ECIS) (cit. on p. 45).

Ostovar, A., Leemans, S. J., & Rosa, M. L. (2020). Robust drift characterization from event
streams of business processes. ACM Transactions on Knowledge Discovery from Data
(TKDD), 14(3), 1–57 (cit. on p. 95).

Ostrom, A. L., Parasuraman, A., Bowen, D. E., Patrício, L., & Voss, C. A. (2015). Service
Research Priorities in a Rapidly Changing Context. Journal of Service Research, 18(2),
127–159 (cit. on p. 91).

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., et al. (2019). Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift. Proceedings of
the Conference on Neural Information Processing Systems (cit. on p. 167).

Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., & Aguilar, J. (2019). Towards the deploy-
ment of machine learning solutions in network traffic classification: A systematic
survey. IEEE Communications Surveys Tutorials, 21(2), 1988–2014 (cit. on p. 8).

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115 (cit. on
pp. 30, 94, 129, 165).

Pant, G., & Srinivasan, P. (2010). Predicting web page status. Information Systems Research,
21(2), 345–364 (cit. on pp. 45, 61).

Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., & Lekakos, G. (2018). Big data
and business analytics ecosystems: Paving the way towards digital transformation
and sustainable societies. Information Systems and e-Business Management, 16(3),
479–491 (cit. on p. 18).

Parker, C. (2012). Unexpected challenges in large scale machine learning. Proceedings of the
1st International Workshop on Big Data, Streams and Heterogeneous Source Mining:
Algorithms, Systems, Programming Models and Applications (cit. on p. 72).

244 Bibliography

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

Pawling, A., Chawla, N. V., & Madey, G. (2007). Anomaly detection in a mobile commu-
nication network. Computational and Mathematical Organization Theory, 13(4),
407–422 (cit. on pp. 110, 112, 120).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825–2830 (cit. on pp. 51, 58,
102, 188, 194).

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060),
1226–1227 (cit. on p. 46).

Perdomo, J. C., Zrnic, T., Mendler-Dünner, C., & Hardt, M. (2020). Performative prediction.
International Conference on Machine Learning (cit. on p. 217).

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social repre-
sentations. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 701–710 (cit. on p. 26).

Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econo-
metrica, 57(6), 1361–1401 (cit. on pp. 33, 130).

Perry, W. L. (2013). Predictive policing: The role of crime forecasting in law enforcement
operations. Rand Corporation. (Cit. on p. 111).

Pfahringer, B., Holmes, G., & Kirkby, R. (2007). New options for Hoeffding trees. In M. A.
Orgun & J. Thornton (Eds.), Ai 2007: Advances in artificial intelligence. Springer
Berlin Heidelberg. (Cit. on p. 97).

Pineau, J. (2020). The machine learning reproducibility checklist. Retrieved August 5, 2020,
from http ://www.cs .mcgill . ca/%7B~%7Djpineau/ReproducibilityChecklist -
v2.0.pdf. (Cit. on p. 47)

Polyzotis, N., Roy, S., Whang, S. E., & Zinkevich, M. (2017). Data management challenges in
production machine learning. Proceedings of the ACM International Conference on
Management of Data, 1723–1726 (cit. on pp. 71, 72).

Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data
analytics on firms’ high value business performance. Information Systems Frontiers,
20(2), 209–222 (cit. on p. 18).

Powers, D. (2011). Evaluation: From precision, recall and F-Measure To ROC, informedness,
markedness & correlation. Journal of Machine Learning Technologies, 2(1), 37–63
(cit. on p. 52).

Prado, M. D., Su, J., Saeed, R., Keller, L., Vallez, N., Anderson, A., Gregg, D., Benini, L.,
Llewellynn, T., Ouerhani, N., Dahyot, R., & Pazos, N. (2020). Bonseyes AI pipeline—
Bringing AI to you: End-to-end integration of data, algorithms, and deployment
Tools. ACM Transactions on Internet Things, 1(4) (cit. on p. 3).

Bibliography 245

http://www.cs.mcgill.ca/%7B~%7Djpineau/ReproducibilityChecklist-v2.0.pdf
http://www.cs.mcgill.ca/%7B~%7Djpineau/ReproducibilityChecklist-v2.0.pdf

Ptaszynski, M., Lempa, P., Masui, F., Kimura, Y., Rzepka, R., Araki, K., Wroczynski, M., &
Leliwa, G. (2019). Brute-force sentence pattern extortion from harmful messages for
cyberbullying detection. Journal of the Association for Information Systems, 20(8), 4
(cit. on p. 19).

Pumplun, L., Tauchert, C., & Heidt, M. (2019). A new organizational chassis for artificial
intelligence-exploring organizational readiness factors. Proceedings of the European
Conference on Information Systems (ECIS) (cit. on pp. 4, 18).

Qahtan, A. A., Alharbi, B., Wang, S., & Zhang, X. (2015). A PCA-based change detection
framework for multidimensional data streams: Change detection in multidimen-
sional data streams. Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 935–944 (cit. on pp. 30, 31).

Qiao, N. (2019). A systematic review on machine learning in sellar region diseases: quality
and reporting items. Endocrine connections, 8(7), 952–960 (cit. on pp. 47, 50).

Quanrud, K., & Khashabi, D. (2015). Online learning with adversarial delays. Proceedings of
the Conference on Neural Information Processing Systems, 1270–1278 (cit. on p. 25).

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2009). Dataset
shift in machine learning. The MIT Press. (Cit. on pp. 27, 164).

Raab, C., Heusinger, M., & Schleif, F.-M. (2020). Reactive soft prototype computing for
concept drift streams. Neurocomputing, 416, 340–351 (cit. on pp. 30, 31, 165, 168,
171).

Rädsch, T., Eckhardt, S., Leiser, F., Pandl, K. D., Thiebes, S., & Sunyaev, A. (2021). What
your radiologist might be missing: Using machine learning to identify mislabeled
instances of X-ray images. Proceedings of the 54th Hawaii International Conference
on System Sciences (HICSS) (cit. on p. 20).

Rahman, M. M., & Davis, D. N. (2013). Addressing the class imbalance problem in medical
datasets. International Journal of Machine Learning and Computing, 3(2), 224–228
(cit. on p. 51).

Ramamurthy, S., & Bhatnagar, R. (2007). Tracking recurrent concept drift in streaming data
using ensemble classifiers. IEEE International Conference on Machine Learning and
Applications (ICMLA), 404–409 (cit. on pp. 29, 37).

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey
on data preprocessing for data stream mining: Current status and future directions.
Neurocomputing, 239, 39–57 (cit. on pp. 21, 23).

Rätsch, G. (2004). A brief introduction into machine learning. Chaos Communication Congress
(cit. on p. 45).

Raykar, V. C., Yu, S., Zhao, L. H., Jerebko, A., Florin, C., Valadez, G. H., Bogoni, L., & Moy, L.
(2009). Supervised learning from multiple experts: Whom to trust when everyone
lies a bit. International Conference on Machine Learning, 889–896 (cit. on p. 181).

Raza, H., Prasad, G., & Li, Y. (2015). EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recognition, 48(3),
659–669 (cit. on pp. 30, 32).

246 Bibliography

Renggli, C., Rimanic, L., Gürel, N. M., Karlaš, B., Wu, W., & Zhang, C. (2021). A data
quality-driven view of MLOps. arXiv preprint arXiv:2102.07750 (cit. on p. 215).

Riekert, M., Leukel, J., & Klein, A. (2016). Online media sentiment: Understanding machine
learning-based classifiers. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on p. 63).

Riekert, M., Premm, M., Klein, A., Lyubomir Kirilov, Kenngott, H., Apitz, M., Wagner, M., &
Ternes, L. (2017). Predicting the duration of surgeries to improve process efficiency
in hospitals. Proceedings of the European Conference on Information Systems (ECIS)
(cit. on p. 61).

Rock, D. (2020). How managers can enable AI talent in organizations. MIT Sloan Management
Review. https://sloanreview.mit.edu/article/how-managers-can-enable-ai-talent-
in-organizations/ (cit. on p. 3)

Rosemann, M., & vom Brocke, J. (2015). The six core elements of business process man-
agement. In J. vom Brocke & M. Rosemann (Eds.), Handbook on Business Process
Management 1: Introduction, Methods, and Information Systems (pp. 105–122).
Springer Berlin Heidelberg. (Cit. on p. 92).

Roughgarden, T., & Schrijvers, O. (2017). Online prediction with selfish experts. Advances in
Neural Information Processing Systems, 1300–1310 (cit. on p. 26).

Roy, A. G., Conjeti, S., Navab, N., & Wachinger, C. (2018). Inherent brain segmentation
quality control from fully ConvNet Monte Carlo sampling. In A. F. Frangi, J. A.
Schnabel, C. Davatzikos, C. Alberola-López, & G. Fichtinger (Eds.), Medical Image
Computing and Computer Assisted Intervention – MICCAI. Springer International
Publishing. (Cit. on p. 168).

Ruano-Ordas, D., Fdez-Riverola, F., & Mendez, J. R. (2018). Concept drift in e-mail datasets:
An empirical study with practical implications. Information Sciences, 428, 120–135
(cit. on p. 38).

Rudin, C., & Wagstaff, K. (2014). Machine learning for science and society. Machine Learning,
95(1), 1–9 (cit. on pp. 67, 68, 73, 87).

Rupp, M., Gobre, V., Vazquez-mayagoitia, A., Tkatchenko, A., & Lilienfeld, O. A. V. (2013).
Machine learning of molecular electronic properties in chemical compound space.
New Journal of Physics, 15, 1–9 (cit. on p. 49).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale
visual recognition challenge. International Journal of Computer Vision, 115(3), 211–
252 (cit. on p. 3).

Russell, S., Dewey, D., & Tegmark, M. (2015). Research priorities for robust and beneficial
artificial intelligence. AI Magazine, 36(4), 105–114 (cit. on pp. 108, 117).

Rutkowski, L., Jaworski, M., & Duda, P. (2020). Basic concepts of data stream mining. Stream
Data Mining: Algorithms and Their Probabilistic Properties (pp. 13–33). Springer
International Publishing. (Cit. on pp. 21, 23, 24).

Bibliography 247

https://sloanreview.mit.edu/article/how-managers-can-enable-ai-talent-in-organizations/
https://sloanreview.mit.edu/article/how-managers-can-enable-ai-talent-in-organizations/

Rzepka, C., & Berger, B. (2018). User interaction with AI-enabled systems: A systematic
review of IS research. Proceedings of the International Conference on Information
Systems (ICIS) (cit. on p. 19).

Saadallah, A., Moreira-Matias, L., Sousa, R., Khiari, J., Jenelius, E., & Gama, J. (2020).
BRIGHT—Drift-aware demand predictions for taxi networks. IEEE Transactions on
Knowledge and Data Engineering, 32(2), 234–245 (cit. on p. 38).

Saidulu, D., & Sasikala, R. (2017). Machine learning and statistical approaches for big
data: Issues, challenges and research directions. International Journal of Applied
Engineering Research, 12(21), 11691–11699 (cit. on pp. 70–72).

Sarwate, A. D., & Chaudhuri, K. (2013). Signal processing and machine learning with
differential privacy: Algorithms and challenges for continuous data. IEEE Signal
Processing Magazine, 30(5), 86–94 (cit. on pp. 70, 71, 73).

Schelter, S., Biessmann, F., Januschowski, T., Salinas, D., Seufert, S., & Szarvas, G. (2018).
On challenges in machine learning model management. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering (cit. on pp. 4, 6, 8).

Schlimmer, J. C., & Granger, R. H. (1986). Incremental learning from noisy data. Machine
learning, 1(3), 317–354 (cit. on p. 37).

Schooler, J. W. (2014). Metascience could rescue the ‘replication crisis’. Nature, 515(7525),
9 (cit. on p. 43).

Schüritz, R., & Satzger, G. (2016). Patterns of data-infused business model innovation.
Proceedings of the IEEE Conference on Business Informatics (CBI) (cit. on pp. 5, 67,
91, 107, 113, 127, 181).

Schüritz, R., Seebacher, S., Satzger, G., & Schwarz, L. (2017). Datatization as the next fron-
tier of servitization: Understanding the challenges for transforming organizations.
Proceedings of the International Conference on Information Systems (ICIS) (cit. on
pp. 4, 143).

Schwaiger, J., Lang, M., Johannsen, F., & Leist, S. (2017). What does the customer want to
tell us? An automated classification approach for social media posts at small and
medium-sized enterprises. Proceedings of the European Conference on Information
Systems (ECIS) (cit. on p. 64).

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young,
M., Crespo, J.-F., & Dennison, D. (2015). Hidden technical debt in machine learning
systems. Advances in Neural Information Processing Systems, 2503–2511 (cit. on
p. 71).

Seeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G.-J., Elkins, A., Maier,
R., Merz, A. B., Oeste-Reiß, S., Randrup, N., Schwabe, G., & Söllner, M. (2020).
Machines as teammates: A research agenda on AI in team collaboration. Information
& Management, 57(2) (cit. on p. 18).

Seeliger, A., Nolle, T., & Mühlhäuser, M. (2017). Detecting concept drift in processes using
graph metrics on process graphs. Proceedings of the Conference on Subject-Oriented
Business Process Management, 1–10 (cit. on p. 38).

248 Bibliography

Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classifi-
cation uncertainty. Proceedings of the International Conference on Neural Information
Processing Systems (cit. on p. 167).

Sethi, T. S., & Kantardzic, M. (2015). Don’t pay for validation: Detecting drifts from unlabeled
data using margin density. Procedia Computer Science, 53, 103–112 (cit. on p. 166).

Sethi, T. S., & Kantardzic, M. (2017). On the reliable detection of concept drift from
streaming unlabeled data. Expert Systems with Applications, 82, 77–99 (cit. on
pp. 36, 37).

Shafique, M., Hafiz, R., Javed, M. U., Abbas, S., Sekanina, L., Vasicek, Z., & Mrazek, V. (2017).
Adaptive and energy-efficient architectures for machine learning: Challenges, op-
portunities, and research roadmap. IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 627–632 (cit. on pp. 71–73).

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations
and Trends in Machine Learning (cit. on pp. 24, 25, 163).

Sharp, J., & Babb, J. (2018). Is Information Systems late to the party? The current state of
DevOps research in the Association for Information Systems eLibrary. Proceedings of
the Americas Conference on Information Systems (AMCIS) (cit. on p. 46).

Shea, C., Page, A., & Mohsenin, T. (2018). SCALENet: A scalable low power accelerator for
real-time embedded deep neural networks. Proceedings of the 2018 on Great Lakes
Symposium on VLSI, 129–134 (cit. on p. 72).

Sheu, J.-J., Chu, K.-T., Li, N.-F., & Lee, C.-C. (2017). An efficient incremental learning
mechanism for tracking concept drift in spam filtering. PloS one, 12(2) (cit. on
p. 38).

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M.,
Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last, K. W., Norton,
A., Lister, T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C., & Golub,
T. R. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nature Medicine, 8(1), 68–74 (cit. on
p. 49).

Shmueli, & Koppius. (2011). Predictive analytics in information systems research. MIS
Quarterly, 35(3), 553–572 (cit. on pp. 18, 45, 47, 49, 143).

Silver, D. L. (2011). Machine lifelong learning: Challenges and benefits for artificial general
intelligence. International Conference on Artificial General Intelligence, 370–375 (cit.
on p. 71).

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den
Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go without
human knowledge. Nature, 550(7676), 354–359 (cit. on p. 3).

Soares, S. G., & Araújo, R. (2015). A dynamic and on-line ensemble regression for changing
environments. Expert Systems with Applications, 42(6), 2935–2948 (cit. on p. 130).

Bibliography 249

Soares, S. G., & Araújo, R. (2016). An adaptive ensemble of online extreme learning machines
with variable forgetting factor for dynamic system prediction. Neurocomputing, 171,
693–707 (cit. on p. 112).

Sobolewski, P., & Wozniak, M. (2013). Concept drift detection and model selection with
simulated recurrence and ensembles of statistical detectors. Journal of Universal
Computer Science, 19(4), 462–483 (cit. on p. 37).

Söllner, M., Hoffmann, A., & Leimeister, J. M. (2016). Why different trust relationships
matter for information systems users. European Journal of Information Systems,
25(3), 274–287 (cit. on p. 143).

Somasundaram, A., & Reddy, S. (2019). Parallel and incremental credit card fraud detec-
tion model to handle concept drift and data imbalance. Neural Computing and
Applications, 31(1), 3–14 (cit. on p. 38).

Sonali, P., & Kumar, D. N. (2013). Review of trend detection methods and their application
to detect temperature changes in India. Journal of Hydrology, 476, 212–227 (cit. on
pp. 33, 146, 152).

Song, Y., Lu, J., Lu, H., & Zhang, G. (2019). Fuzzy clustering-based adaptive regression for
drifting data streams. IEEE Transactions on Fuzzy Systems, 28(3), 544–557 (cit. on
pp. 35, 36).

Souza, V. M. A., dos Reis, D. M., Maletzke, A., & Batista, G. E. A. P. A. (2020). Challenges in
benchmarking stream learning algorithms with real-world data. Data Mining and
Knowledge Discovery, 34(6), 1805–1858 (cit. on pp. 36, 37, 169, 173, 217).

Spangler, W. E., Chung, H. M., & Gey, F. C. (2000). Data mining: A brief introduction to the
field and research community. Proceedings of the Americas Conference on Information
Systems (AMCIS) (cit. on pp. 73, 82).

Spuler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., & Ramos-Murguialday, A. (2015).
Comparing metrics to evaluate performance of regression methods for decoding
of neural signals. Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS, 1083–1086 (cit. on p. 52).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1) (cit. on p. 167).

Stange, M., & Funk, B. (2015). How much tracking is necessary - The learning curve in
Bayesian user journey analysis. Proceedings of the European Conference on Informa-
tion Systems (ECIS) (cit. on p. 63).

Staples, M., Zhu, L., & Grundy, J. (2016). Continuous validation for data analytics systems.
Proceedings of the International Conference on Software Engineering Companion, 769–
772 (cit. on pp. 71, 72).

Staudt, P., Träris, Y., Rausch, B., & Weinhardt, C. (2018). Predicting redispatch in the German
electricity market using information systems based on machine learning. Proceedings
of the International Conference on Information Systems (ICIS) (cit. on p. 20).

250 Bibliography

Stefanou, C. J. (2001). A framework for the ex-ante evaluation of ERP software. European
Journal of Information Systems, 10(4), 204–215 (cit. on p. 6).

Stein, N., Flath, C., & Boehm, C. (2018). Predictive analytics for application management
services. Proceedings of the European Conference on Information Systems (ECIS) (cit.
on pp. 19, 146).

Steins, K., Matinrad, N., & Granberg, T. (2019). Forecasting the demand for emergency
medical services. Proceedings of the 52nd Hawaii International Conference on System
Sciences (cit. on p. 146).

Steuer, D., Hutterer, V., Korevaar, P., & Fromm, H. (2018). A similarity-based approach for
the all-time demand prediction of new automotive spare parts. Proceedings of the
51st Hawaii International Conference on System Sciences (cit. on p. 146).

Stowers, K., Kasdaglis, N., Newton, O., Lakhmani, S., Wohleber, R., & Chen, J. (2016).
Intelligent agent transparency: The design and evaluation of an interface to facilitate
human and intelligent agent collaboration. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 60(1), 1706–1710 (cit. on p. 134).

Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-scale
classification. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 377–382 (cit. on p. 37).

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Mueller, K.-R.
(2020). Towards CRISP-ML (Q): A machine learning process model with quality
assurance methodology. arXiv preprint arXiv:2003.05155 (cit. on pp. 47, 64).

Sturm, B., & Sunyaev, A. (2019). A good beginning makes a good ending: Incipient sources
of knowledge in design science research. Proceedings of the International Conference
on Information Systems (ICIS) (cit. on p. 8).

Sun, J., Fujita, H., Chen, P., & Li, H. (2017). Dynamic financial distress prediction with
concept drift based on time weighting combined with Adaboost support vector
machine ensemble. Knowledge-Based Systems, 120, 4–14 (cit. on p. 130).

Sun, Y., Tang, K., Minku, L. L., Wang, S., & Yao, X. (2016). Online ensemble learning of data
streams with gradually evolved classes. IEEE Transactions on Knowledge and Data
Engineering (cit. on p. 112).

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., et al. (2020). Test-time training with
self-supervision for generalization under distribution shifts. International Conference
on Machine Learning (cit. on p. 166).

Sunyaev, A. (2020a). Design of good information systems architectures. Internet computing:
Principles of distributed systems and emerging internet-based technologies (pp. 51–81).
Springer International Publishing. (Cit. on p. 6).

Sunyaev, A. (2020b). Emerging technologies. Internet computing: Principles of distributed sys-
tems and emerging internet-based technologies (pp. 373–406). Springer International
Publishing. (Cit. on p. 3).

Bibliography 251

Suthaharan, S. (2014). Big data classification: Problems and challenges in network intrusion
prediction with machine learning. ACM SIGMETRICS Performance Evaluation Review,
41(4), 70–73 (cit. on p. 71).

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R.
(2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(cit. on p. 163).

Tackett, J. L., Brandes, C. M., King, K. M., & Markon, K. E. (2019). Psychology’s replication
crisis and clinical psychological science. Annual review of clinical psychology, 15,
579–604 (cit. on p. 43).

Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., & Stonebraker, M. (2003). Load
shedding in a data stream manager. Proceedings of the International Conference on
Very Large Data Bases (VLDB), 309–320 (cit. on p. 23).

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the
KDD CUP 99 data set. IEEE symposium on computational intelligence for security and
defense applications (cit. on p. 37).

Terveen, L. G. (1995). Overview of human-computer collaboration. Knowledge-Based Systems,
8(2-3), 67–81 (cit. on p. 18).

Thiebes, S., Lins, S., & Sunyaev, A. (2020). Trustworthy artificial intelligence. Electronic
Markets (cit. on p. 19).

Thrall, J. H., Li, X., Li, Q., Cruz, C., Do, S., Dreyer, K., & Brink, J. (2018). Artificial intelligence
and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria
for success. Journal of the American College of Radiology, 15(3), 504–508 (cit. on
p. 3).

Timmerman, Y., & Bronselaer, A. (2019). Measuring data quality in information systems
research. Decision Support Systems, 126 (cit. on p. 46).

TLC. (2019). Taxi and Limousine Commission (TLC) trip record data. Retrieved April 4,
2019, from https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. (Cit. on
pp. 132, 144, 147)

Tomin, N., Zhukov, A., Sidorov, D., Kurbatsky, V., Panasetsky, D., & Spiryaev, V. (2015).
Random forest based model for preventing large-scale emergencies in power systems.
International Journal of Artificial Intelligence, 13(1), 211–228 (cit. on p. 38).

Tripathi, M., & Kaur, I. (2018). Oil prices forecasting: A comparative analysis. Proceedings of
the International Conference on Information Systems (ICIS) (cit. on p. 20).

Tsymbal, A. (2004). The problem of concept drift: Definitions and related work (tech. rep.).
Computer Science Department, Trinity College Dublin. (Cit. on pp. 26, 29, 72, 91,
93, 107, 108, 110, 128, 133, 143, 145, 165, 182).

Tsymbal, A., Pechenizkiy, M., Cunningham, P., & Puuronen, S. (2008). Dynamic integration
of classifiers for handling concept drift. Information Fusion, 9(1), 56–68 (cit. on
p. 112).

252 Bibliography

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Tušar, T., Gantar, K., Koblar, V., Ženko, B., & Filipič, B. (2017). A study of overfitting in
optimization of a manufacturing quality control procedure. Applied Soft Computing,
59, 77–87 (cit. on p. 53).

Urbanke, P., Uhlig, A., & Kranz, J. (2017). A customized and interpretable deep neural
network for high-dimensional business data - Evidence from an e-commerce ap-
plication. Proceedings of the International Conference on Information Systems (ICIS)
(cit. on p. 63).

Van Der Aalst, W. (2011). Process Mining: Discovery, Conformance and Enhancement of
Business Processes (Vol. 2). Springer. (Cit. on p. 94).

Van Der Aalst, W., La Rosa, M., & Santoro, F. M. (2016). Business process management.
Business & Information Systems Engineering, 58(1) (cit. on p. 92).

Van Der Aalst, W., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., De Medeiros,
A. K. A., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An
industrial application. Information Systems, 32(5), 713–732 (cit. on p. 94).

Van Der Aalst, W., Schonenberg, M. H., & Song, M. (2011). Time prediction based on process
mining. Information Systems, 36(2), 450–475 (cit. on pp. 94, 95).

Van Der Aalst, W., & Weijters, A. (2004). Process mining: A research agenda. Computers in
Industry, 53(3), 231–244 (cit. on p. 94).

van der Aalst, W., Adriansyah, A., de Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T.,
Bose, J. C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J.,
Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni,
M., . . . Wynn, M. (2012). Process mining manifesto. In F. Daniel, K. Barkaoui, &
S. Dustdar (Eds.), Business Process Management Workshops (pp. 169–194). Springer
Berlin Heidelberg. (Cit. on pp. 92, 94, 95).

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and
seasonal changes in satellite image time series. Remote Sensing of Environment,
114(1), 106–115 (cit. on pp. 32, 130).

Verenich, I., Dumas, M., Rosa, M. L., Maggi, F. M., & Teinemaa, I. (2019). Survey and
cross-benchmark comparison of remaining time prediction methods in business
process monitoring. ACM Transactions on Intelligent Systems and Technology (TIST),
10(4), 1–34 (cit. on p. 94).

Vermorel, J., & Mohri, M. (2005). Multi-armed bandit algorithms and empirical evaluation.
European Conference on Machine Learning, 437–448 (cit. on p. 25).

VHB. (2012). VHB-JOURQUAL3. Retrieved June 1, 2019, from https://vhbonline.org/en/
service/jourqual/vhb-jourqual-3/. (Cit. on pp. 59, 65)

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W., Dudzik, A.,
Huang, A., Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss, M., Danihelka, I.,
Agapiou, J., Oh, J., Dalibard, V., Choi, D., Sifre, L., . . . Silver, D. (2019). AlphaStar:
Mastering the real-time strategy game StarCraft II. Retrieved January 4, 2021, from
https ://deepmind.com/blog/alphastar - mastering- real - time- strategy- game-
starcraft-ii/. (Cit. on p. 3)

Bibliography 253

https://vhbonline.org/en/service/jourqual/vhb-jourqual-3/
https://vhbonline.org/en/service/jourqual/vhb-jourqual-3/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Voets, M., Møllersen, K., & Bongo, L. A. (2018). Replication study: Development and
validation of deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. arXiv preprint arXiv:1803.04337 (cit. on p. 47).

Vong, C.-M., Wong, P.-K., & Li, Y.-P. (2006). Prediction of automotive engine power and
torque using least squares support vector machines and Bayesian inference. Engi-
neering Applications of Artificial Intelligence, 19(3), 277–287 (cit. on p. 185).

Vössing, M., Potthoff, F., Kühl, N., & Satzger, G. (2019). Designing useful transparency
to improve process performance—Evidence from an automated production line.
Proceedings of the European Conference on Information Systems (ECIS) (cit. on p. 218).

Vreeken, J., Van Leeuwen, M., & Siebes, A. (2007). Characterising the difference. Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
765–774 (cit. on p. 37).

Wagstaff, K. (2012). Machine learning that matters. Proceedings of the International Confer-
ence on Machine Learning, 1851–1856 (cit. on pp. 68, 73).

Walden, E., Cogo, G. S., Lucus, D. J., Moradiabadi, E., & Safi, R. (2018). Neural cor-
relates of multidimensional visualizations: An fMRI comparison of bubble and
three-dimensional surface graphs using evolutionary theory. MIS Quarterly, 42(4),
1097–1116 (cit. on p. 59).

Wang, D., Ram, P., Weidele, D. K. I., Liu, S., Muller, M., Weisz, J. D., Valente, A., Chaudhary,
A., Torres, D., Samulowitz, H., et al. (2020). AutoAI: Automating the end-to-end
AI lifecycle with humans-in-the-loop. Proceedings of the International Conference on
Intelligent User Interfaces Companion, 77–78 (cit. on p. 4).

Wang, R. Y., Kon, H. B., & Madnick, S. E. (1993). Data quality requirements analysis and
modeling. Proceedings of IEEE International Conference on Data Engineering, (April),
670–677 (cit. on p. 51).

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2018). When
edge meets learning: Adaptive control for resource-constrained distributed machine
learning. IEEE Conference on Computer Communications, 63–71 (cit. on p. 183).

Wang, T., Kannan, K. N., & Ulmer, J. R. (2013). The association between the disclosure and
the realization of information security risk factors. Information Systems Research,
24(2), 201–218 (cit. on p. 61).

Wang, W., Zhang, M., Chen, G., Jagadish, H., Ooi, B. C., & Tan, K.-L. (2016). Database meets
deep learning: Challenges and opportunities. ACM SIGMOD Record, 45(2), 17–22
(cit. on p. 71).

Wang, W., & Benbasat, I. (2005). Trust in and adoption of online recommendation agents.
Journal of the Association for Information Systems, 6(3), 72–101 (cit. on p. 143).

Wang, W., Li, B., & Luo, X. (2020). AI agents for sequential promotions: Combining deep
reinforcement learning and dynamic field experimentation. Proceedings of the Inter-
national Conference on Information Systems (ICIS) (cit. on p. 19).

254 Bibliography

Wang, X., Chen, W., Xia, J., Chen, Z., Xu, D., Wu, X., Xu, M., & Schreck, T. (2020). ConceptEx-
plorer: Visual analysis of concept drifts in multi-source time-series data. Proceedings
IEEE Conference on Visual Analytics Science and Technology (cit. on p. 39).

Wanner, J., Heinrich, K., Janiesch, C., & Zschech, P. (2020). How much AI do you require? De-
cision factors for adopting AI technology. Proceedings of the International Conference
on Information Systems (ICIS) (cit. on p. 20).

Wanner, J., Herm, L.-V., Heinrich, K., Janiesch, C., & Zschech, P. (2020). White, grey, black:
Effects of XAI augmentation on the confidence in AI-based decision support systems.
Proceedings of the International Conference on Information Systems (ICIS) (cit. on
p. 20).

Webb, G., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Characterizing concept
drift. Data Mining and Knowledge Discovery, 30(4), 964–994 (cit. on pp. 26, 29, 38,
93, 110, 128).

Webb, G., Lee, L. K., Goethals, B., & Petitjean, F. (2018). Analyzing concept drift and shift
from sample data. Data Mining and Knowledge Discovery, 32(5), 1179–1199 (cit. on
pp. 38, 39).

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a
literature review. MIS Quarterly, 26(2) (cit. on p. 69).

Weinhardt, C., Van der Aalst, W. M. P., & Hinz, O. (2019). Introducing registered reports to
the information systems community. Business & Information Systems Engineering,
61(4), 381–384 (cit. on p. 43).

Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynam-
ics. International Conference on Machine Learning (cit. on p. 167).

Werts, N., & Adya, M. (2000). Data mining in healthcare: Issues and a research agenda.
Proceedings of the Americas Conference on Information Systems (AMCIS) (cit. on
pp. 70, 73).

White, H., & Granger, C. W. (2011). Consideration of trends in time series. Journal of Time
Series Econometrics, 3(1) (cit. on p. 33).

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1), 69–101 (cit. on pp. 4, 27, 72, 92, 93, 110, 127,
145, 164, 184).

Widyantoro, D. H., & Yen, J. (2005). Relevant data expansion for learning concept drift from
sparsely labeled data. IEEE Transactions on Knowledge and Data Engineering, 17(3),
401–412 (cit. on p. 112).

Wilson, M. (2017). AI is inventing languages humans can’t understand. Should we stop it?
Retrieved February 9, 2021, from https://www.fastcompany.com/90132632/ai-is-
inventing-its-own-perfect-languages-should-we-let-it. (Cit. on p. 7)

Bibliography 255

https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it
https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it

Winkler-Schwartz, A., Bissonnette, V., Mirchi, N., Ponnudurai, N., Yilmaz, R., Ledwos,
N., Siyar, S., Azarnoush, H., Karlik, B., & Del Maestro, R. F. (2019). Artificial
intelligence in medical education: Best practices using machine learning to assess
surgical expertise in virtual reality simulation. Journal of Surgical Education, 76(6),
1681–1690 (cit. on pp. 47, 50).

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining.
Proceedings of the International Conference on the Practical Applications of Knowledge
Discovery and Data Mining, 29–39 (cit. on pp. 46, 50, 57, 69, 215).

Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann. (Cit. on p. 46).

Wodecki, A. (2019). Artificial Intelligence in Value Creation. Springer. (Cit. on p. 18).

Wu, X., Li, P., & Hu, X. (2012). Learning from concept drifting data streams with unlabeled
data. Neurocomputing, 92, 145–155 (cit. on p. 165).

Xiao, J., Xiao, Z., Wang, D., Bai, J., Havyarimana, V., & Zeng, F. (2019). Short-term traffic vol-
ume prediction by ensemble learning in concept drifting environments. Knowledge-
Based Systems, 164, 213–225 (cit. on pp. 130, 137).

Xie, J., & Zhang, B. (2018). Readmission risk prediction for patients with heterogeneous
hazard: A trajectory-aware deep learning approach. Proceedings of the International
Conference on Information Systems (ICIS) (cit. on p. 20).

Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K., & Naehrig, M. (2014). Crypto-
nets: Neural networks over encrypted data. arXiv preprint arXiv:1412.6181 (cit. on
pp. 70, 71).

Xie, Y., Kistner, A., & Bleile, T. (2018). Optimal Automated Calibration of Model-Based ECU-
Functions in Air System of Diesel Engines (tech. rep.). SAE Technical Paper. (Cit. on
p. 185).

Xu, J., Rahmatizadeh, R., Boloni, L., & Turgut, D. (2018). Real-time prediction of taxi demand
using recurrent neural networks. IEEE Transactions on Intelligent Transportation
Systems, 19(8), 2572–2581 (cit. on pp. 131, 141, 147).

Xu, Y., Xu, R., & Yan, W. (2017). Power plant performance modeling with concept drift.
International Joint Conference on Neural Networks (IJCNN), 2096–2103 (cit. on
p. 112).

Yang, W., Li, Z., Liu, M., Lu, Y., Cao, K., Maciejewski, R., & Liu, S. (2020). Diagnosing
concept drift with visual analytics. IEEE Conference on Visual Analytics Science and
Technology (cit. on p. 39).

Yeshchenko, A., Di Ciccio, C., Mendling, J., & Polyvyanyy, A. (2019). Comprehensive process
drift detection with visual analytics. International Conference on Conceptual Modeling,
119–135 (cit. on p. 95).

Ying, J. J.-C., Lin, B.-H., Tseng, V. S., & Hsieh, S.-Y. (2015). Transfer learning on high variety
domains for activity recognition. Proceedings of the ASE BigData & SocialInformatics
(cit. on p. 71).

256 Bibliography

Yu, H.-F., Jain, P., Kar, P., & Dhillon, I. (2014). Large-scale multi-label learning with missing
labels. International Conference on Machine Learning, 593–601 (cit. on p. 181).

Yu, S., & Abraham, Z. (2017). Concept drift detection with hierarchical hypothesis testing.
Proceedings of the SIAM International Conference on Data Mining, 768–776 (cit. on
pp. 30, 32).

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching,
S., Nykodym, T., Ogilvie, P., Parkhe, M., et al. (2018). Accelerating the machine
learning lifecycle with MLflow. IEEE Data Engineering Bulletin, 41(4), 39–45 (cit. on
p. 54).

Zeileis, A., Kleiber, C., Krämer, W., & Hornik, K. (2003). Testing and dating of structural
changes in practice. Computational Statistics & Data Analysis, 44(1-2), 109–123
(cit. on pp. 32, 33, 130, 146).

Zenisek, J., Holzinger, F., & Affenzeller, M. (2019). Machine learning based concept drift
detection for predictive maintenance. Computers & Industrial Engineering, 137 (cit.
on p. 38).

Zerlang, J. (2017). GDPR: A milestone in convergence for cyber-security and compliance.
Network Security, 2017(6), 8–11 (cit. on p. 123).

Zhang, J., Zheng, Y., & Qi, D. (2017). Deep spatio-temporal residual networks for citywide
crowd flows prediction. Proceedings of the AAAI Conference on Artificial Intelligence,
1655–1661 (cit. on pp. 131, 136).

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1), 7–18 (cit. on p. 181).

Zhang, Y., Fu, J., Yang, C., & Xiao, C. (2019). A local expansion propagation algorithm
for social link identification. Knowledge and Information Systems, 60(1), 545–568
(cit. on pp. 69–71).

Zhou, J., Khawaja, M. A., Li, Z., Sun, J., Wang, Y., & Chen, F. (2016). Making machine
learning useable by revealing internal states update—A transparent approach. Inter-
national Journal of Computational Science and Engineering, 13(4), 378–389 (cit. on
p. 70).

Zhou, J., Cheng, L., Bischof, W. F., et al. (2008). Prediction and change detection in sequential
data for interactive applications. Proceedings of the AAAI Conference on Artificial
Intelligence, 805–810 (cit. on pp. 112, 118).

Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data:
Opportunities and challenges. Neurocomputing, 237, 350–361 (cit. on p. 3).

Zhou, X., Shen, Y., Zhu, Y., & Huang, L. (2018). Predicting multi-step citywide passenger de-
mands using attention-based neural networks. Proceedings of the ACM International
Conference on Web Search and Data Mining, 736–744 (cit. on p. 148).

Zhou, X., & Belkin, M. (2014). Semi-supervised learning. Academic Press Library in Signal
Processing (pp. 1239–1269). Elsevier. (Cit. on p. 217).

Bibliography 257

Zhou, Z.-H. (2017). Machine learning challenges and impact: an interview with Thomas
Dietterich. National Science Review, 5(1), 54–58 (cit. on pp. 67, 71–73, 182).

Zhu, L., & Laptev, N. (2017). Deep and confident prediction for time series at Uber. IEEE
International Conference on Data Mining Workshops (ICDMW), 103–110 (cit. on
pp. 146, 152).

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using Gaussian
fields and harmonic functions. International Conference on Machine Learning (cit. on
p. 121).

Zimek, A., Campello, R. J., & Sander, J. (2014). Ensembles for unsupervised outlier detection:
Challenges and research questions. ACM SIGKDD Explorations Newsletter, 15(1),
11–22 (cit. on p. 185).

Zimek, A., Schubert, E., & Kriegel, H.-P. (2012). A survey on unsupervised outlier detection
in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 5(5), 363–387 (cit. on p. 192).

Zizzo, G., Hankin, C., Maffeis, S., & Jones, K. (2019). Intrusion detection for industrial
control systems: Evaluation analysis and adversarial attacks. arXiv preprint. https:
//arxiv.org/abs/1911.04278 (cit. on p. 38)

Žliobaitė, I. (2010). Learning under concept drift: An overview. arXiv preprint. http://arxiv.
org/abs/1010.4784 (cit. on pp. 29, 34, 93, 110, 114, 128, 145, 182)

Žliobaitė, I. (2013). How good is the electricity benchmark for evaluating concept drift
adaptation. arXiv preprint. https://arxiv.org/abs/1301.3524 (cit. on p. 37)

Žliobaitė, I., Bakker, J., & Pechenizkiy, M. (2012). Beating the baseline prediction in food
sales: How intelligent an intelligent predictor is? Expert Systems with Applications,
39(1), 806–815 (cit. on p. 35).

Žliobaitė, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active learning with drifting
streaming data. IEEE Transactions on Neural Networks and Learning Systems, 25(1),
27–39 (cit. on pp. 112, 113, 165).

Žliobaitė, I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift applications.
In N. Japkowicz & J. Stefanowski (Eds.), Big Data Analysis: New Algorithms for a
New Society (pp. 91–114). Springer International Publishing. (Cit. on pp. 4, 29, 34,
38, 97, 103, 108, 110, 112, 114, 120, 147, 184, 215).

Zur Muehlen, M., & Shapiro, R. (2015). Business process analytics. In J. vom Brocke & M.
Rosemann (Eds.), Handbook on Business Process Management 2: Strategic Alignment,
Governance, People and Culture (pp. 243–263). Springer Berlin Heidelberg. (Cit. on
p. 92).

258 Bibliography

https://arxiv.org/abs/1911.04278
https://arxiv.org/abs/1911.04278
http://arxiv.org/abs/1010.4784
http://arxiv.org/abs/1010.4784
https://arxiv.org/abs/1301.3524

List of Figures

1.1 D&M information systems success model, adapted from Delone and
McLean (2003, p. 24). 5

1.2 Lifecycle of information systems, adapted from Duarte and Costa
(2012, p. 27). 6

1.3 Overview of thesis content. 11
1.4 Structure of this thesis. 13
1.5 Overview of research methods and research questions. 16

2.1 Overview of solutions for machine learning in data streams. 22
2.2 Virtual and real concept drift, adapted from Gama et al. (2014). . . . 28
2.3 Overview of structural types of concept drift, adapted from Žliobaitė

(2010). 29
2.4 Adaptive learning strategies, adapted from Žliobaitė et al. (2016). . . 34

3.1 The spectrum of reproducibility; extended figure based on Peng (2011). 46
3.2 Overview of supervised machine learning steps. 49
3.3 Data sets for training, testing, and final deployment. 54
3.4 Overview of supervised machine learning steps and corresponding

problem characteristics and key choices. 55

4.1 Conceptual phase model for categories of challenges. 69
4.2 Challenges identified in literature. 70
4.3 Challenges identified in interviews as well as in literature. 76

5.1 Depiction of learning mode retraining. 96
5.2 Three different approaches for retraining of model. 98
5.3 Typical process variant for a P2P process. 99
5.4 Histogram of the throughput time [h]. 101
5.5 Accuracy of Naïve Bayes without retraining and no drift detection

method. 103
5.6 Rolling mean (window 1000) of feature automation. 103
5.7 Accuracy of Naïve Bayes with Page-Hinkley. 104

259

7.1 Model adaptation and drift detection options. 129
7.2 Overall NYC yellow cab and Uber demand per month. 133
7.3 Taxi demand during a blizzard on 2015-01-27. 133
7.4 Design approach of EIA. 136
7.5 Overview of applied drift-detector and model combinations in this

work and for future work. 137
7.6 Predictions of EIA during blizzard on 2015-01-27. 139

8.1 Taxi demand in NYC per month. 148
8.2 Explanation of switching scheme. 151
8.3 Quarterly rolling RMSE of static models. 154
8.4 Quarterly rolling SMAPE of static models. 155
8.5 Yearly average SMAPE of best strategies. 157

9.1 Partitioning of data stream. 171
9.2 Behaviour of UDD and KSWIN on synthetic Friedman data set. 175
9.3 Relationship between deciles of uncertainty and prediction performance. 177
9.4 Relationship between deciles of confidence and accuracy. 178

10.1 Operating principle of the prediction method. 186
10.2 Normalized pressure trajectory. 190
10.3 Sensitivity of the Mahalanobis distance regarding a phase shift. . . . 194
10.4 Error plot with complex neural network. 199

11.1 Overview of methodological concept drift contributions. 213

A.1 Behaviour of UDD and KSWIN on synthetic Mixed data set. 270

260 List of Figures

List of Tables

2.1 Different categories of drift detection algorithms and popular repre-
sentatives. 30

2.2 Popular synthetic and real-world data sets for concept drift evaluation. 37

3.1 Exemplary reportcard based on the Iris data set. Bold writing indicates
a problem characteristic or choice from the Reportcard. 58

3.2 Number of screened and relevant articles for each outlet from 2010 to
2018. 59

3.3 Amount of supervised machine learning articles in the outlets of MISQ,
ISR, JMIS, ICIS, and ECIS from 2010 to 2018. 60

3.4 Overview of Supervised Machine Learning Reportcard steps and their
documentation. 62

4.1 Industry overview of interviewees. 75

5.1 Overview of predictive features. 100
5.2 Overview of multi-class target variable. 101
5.3 Pretest with different models on subset of data. 102
5.4 Performance of drift detection strategies on process mining data set. 104
5.5 Performance of data selection strategies on process mining data set. . 105

6.1 Setup decisions for predictive service. 113
6.2 Algorithmic decisions for predictive service. 115
6.3 Operation of predictive service. 117
6.4 Heatmap of existing research classified into framework. 119
6.5 Different scenarios for label availability. 121

7.1 First results of EIA in comparison to benchmarks, based on RMSE and
SMAPE (the lower the better). 138

7.2 First results of EIA in comparison to benchmarks, based on RMSE and
SMAPE (the lower the better). 140

8.1 Overview on drift handling strategies. 149
8.2 Overall evaluation of static models. 153

261

8.3 Evaluation of periodic adaptation. 155
8.4 Evaluation of triggered adaptation. 156
8.5 Evaluation on flight records data set. 158

9.1 Evaluation on synthetic data sets. 175
9.2 RMSE (the lower the better) on regression benchmark data sets. Num-

ber of retrainings in brackets (the lower the less computationally
expensive). No Retraining depicts the lower-bound benchmark, while
KSWIN(unl.) and ADWIN represent the upper-bound performance
benchmark. 176

9.3 MCC (the higher the better) on classification benchmark data sets.
Number of retrainings in brackets (the lower the less computationally
expensive). No Retraining depicts the lower-bound benchmark, while
KSWIN(unl.) and ADWIN represent the upper-bound performance
benchmark. 176

10.1 Evaluation of different outlier detection approaches. 192
10.2 Results of pretest with various prediction models. 194
10.3 Parameter results of grid search. 195
10.4 Evaluation of different prediction models. 196
10.5 Performance of outlier detection in combination with prediction model

(MAPE). 198
10.6 5 combinations with the lowest MAPE. 199

11.1 Classification of different methods regarding detection and adaptation. 212

A.1 Lifecycle of Microsoft Team Data Science Process and equivalent of
Reportcard. 265

A.2 Steps of CRISP-DM and equivalent of Reportcard. 266
A.3 Overview of Supervised Machine Learning Reportcard steps, their

problem characteristics and choices as well as their documentation in
the journal publications analyzed. 267

A.4 Overview of Supervised Machine Learning Reportcard steps, their
problem characteristics and choices as well as their documentation in
the conference publications analyzed. 268

A.5 Neural network architecture for each data set. 269
A.6 Characteristics of used data sets. 269
A.7 Different values of α for UDD. 270

262 List of Tables

A.8 SMAPE (the lower the better) on regression benchmark data sets.
Number of retrainings in brackets (the lower the less computationally
expensive). No Retraining depicts the lower-bound benchmark, while
KSWIN(unl.) and ADWIN represent the upper-bound performance
benchmark. 270

A.9 F1-score∗ (the higher the better) on classification benchmark data sets.
Number of retrainings in brackets (the lower the less computationally
expensive). No Retraining depicts the lower-bound benchmark, while
KSWIN(unl.) and ADWIN represent the upper-bound performance
benchmark. 271

List of Tables 263

Appendix A
Appendix Chapter 3

Tab. A.1.: Lifecycle of Microsoft Team Data Science Process and equivalent of Reportcard.

MTDSP stages Related reportcard choices / characteristics
Business
understanding
Define objectives Model initiation – Problem statement
Identify data sources Model initiation – Data gathering
Data acquisition
and understanding
Ingest the data Model initiation – Data gathering

Explore the data
Model initiation – Data distribution,
Model initiation – Data quality

Set up a data pipeline n.a.
Modeling

Feature engineering
Model initiation – Data preprocessing methods,
Model initiation – Feature engineering and vectorizing

Model training
Model training – Algorithm,
Performance estimation – Data Splitting method,
Model testing – Performance metric

Suitability for
production

Model testing – Performance evaluation (benchmarks)

Deployment
Operationalize
a model

Model deployment

Customer
acceptance
System validation n.a.
Project hand-off n.a.

265

Tab. A.2.: Steps of CRISP-DM and equivalent of Reportcard.

CRISP DM phases and tasks Related reportcard choices / characteristics
Business understanding
Determine
business objectives

Model initation – Problem statement

Assess situation n.a.
Determine
data mining goals

Model initation – Problem statement

Produce project plan n.a.
Data understanding
Collect initial data Model initiation – Data gathering
Describe data Model initiation – Data distribution
Explore data Model initiation – Data distribution
Verify data quality Model initiation – Data quality
Data preparation
Select data Model initiation – Sampling
Clean data Model initiation – Data quality
Construct data Model initiation – Data preprocessing methods
Integrate data Model initiation – Data gathering

Format data
odel initiation –
Feature engineering and vectorizing

Modeling
Select Modeling Technique Model training – Algorithm
Generate Test Design Performance estimation – Data Splitting method

Build Model
Model training – Algorithm/
Performance Estimation – Parameter optimization

Assess Model Model testing – Performance metric
Evaluation

Evaluate results
Model testing –
Performance evaluation (benchmarks)

Review process n.a.
Determine next steps n.a.
Deployment
Plan deployment Model deployment – Data used
Plan monitoring
and maintenance

Model deployment –
Model validity (continuous improv./robustness)

Produce final report n.a.
Review project n.a.

266 Appendix A Appendix

Ta
b.

A
.3

.:
O

ve
rv

ie
w

of
Su

pe
rv

is
ed

M
ac

hi
ne

Le
ar

ni
ng

R
ep

or
tc

ar
d

st
ep

s,
th

ei
r

pr
ob

le
m

ch
ar

ac
te

ri
st

ic
s

an
d

ch
oi

ce
s

as
w

el
la

s
th

ei
r

do
cu

m
en

ta
ti

on
in

th
e

jo
ur

na
lp

ub
lic

at
io

ns
an

al
yz

ed
.

St
ep

Po
si

tiv
e

Ex
am

pl
e

10
0,

00
%

(3
5/

35
)

Ab
ba

si
et

 a
l.

20
12

88
,5

7%
(3

1/
35

)
Li

n
et

 a
l.

20
17

82
,8

6%
(2

9/
35

)
T.

 W
an

g
et

 a
l.

20
13

37
,1

4%
(1

3/
35

)
Sa

m
ta

ni
 e

t a
l.

20
17

37
,1

4%
(1

3/
35

)
D

on
g,

 L
ia

o,
 a

nd
 Z

ha
ng

 2
01

8

71
,4

3%
(2

5/
35

)
Pa

nt
 a

nd
 S

rin
iv

as
an

 2
01

3

62
,8

6%
(2

2/
35

)
Tw

ym
an

 e
t a

l.
20

15

Se
ar

ch
 S

pa
ce

8,
57

%
(3

/3
5)

M
ar

te
ns

 e
t a

l.
20

16

Se
ar

ch

Al
go

rit
hm

11
,4

3%
(4

/3
5)

M
ar

te
ns

 e
t a

l.
20

16

94
,2

9%
(3

3/
35

)
La

sh
 a

nd
 Z

ha
o

20
16

10
0,

00
%

(3
5/

35
)

W
. L

i,
Ch

en
, a

nd
 N

un
am

ak
er

 J
r 2

01
6

5,
71

%
(2

/3
5)

Ki
tc

he
ns

 e
t a

l.
20

18

42
,8

6%
(1

5/
35

)
Sh

i e
t a

l.
20

17

68
,5

7%
(2

4/
35

)
Cu

i,
W

on
g,

 a
nd

 W
an

 2
01

2

2,
86

%
(1

/3
5)

Ab
ba

si
et

 a
l.

20
18

Co
nt

in
uo

us

Im
pr

ov
em

en
t

2,
86

%
(1

/3
5)

Ab
ba

si
et

 a
l.

20
18

Ro
bu

st
ne

ss
8,

57
%

(3
/3

5)
M

o,
 S

ar
ka

r,
an

d
M

en
on

 2
01

8

Pe
rf

or
m

an
ce

 m
et

ric

(r
ea

so
ne

d)

Pe
rf

or
m

an
ce

 e
va

lu
at

io
n

In
di

ca
to

r

Model
initiation

Pr
ob

le
m

 st
at

em
en

t

D
at

a
ga

th
er

in
g

D
at

a
di

st
rib

ut
io

n

Sa
m

pl
in

g

D
at

a
qu

al
ity

D
at

a
pr

ep
ro

ce
ss

in
g

m
et

ho
ds

Fe
at

ur
e

en
gi

ne
er

in
g

an
d

ve
ct

or
iz

in
g

n
n
n

Model
deployment

D
at

a
us

ed

M
od

el

va
lid

ity

D
es

cr
ib

ed
 in

 a
rt

ic
le

s

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Performance
estimation

Pa
ra

m
et

er

O
pt

im
iz

at
io

n

D
at

a
sp

lit

Al
go

rit
hm

Sa
m

pl
in

g

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n

n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n

n
n

n
n
n
n
n

267

Ta
b.

A
.4

.:
O

ve
rv

ie
w

of
Su

pe
rv

is
ed

M
ac

hi
ne

Le
ar

ni
ng

R
ep

or
tc

ar
d

st
ep

s,
th

ei
r

pr
ob

le
m

ch
ar

ac
te

ri
st

ic
s

an
d

ch
oi

ce
s

as
w

el
la

s
th

ei
r

do
cu

m
en

ta
ti

on
in

th
e

co
nf

er
en

ce
pu

bl
ic

at
io

ns
an

al
yz

ed
.

St
ep

Po
si

tiv
e

Ex
am

pl
e

10
0,

00
%

(8
6/

86
)

Ko
w

at
sc

h
an

d
M

aa
ss

 2
01

8

87
,2

1%
(7

5/
86

)
Ra

m
 2

01
5

70
,9

3%
(6

1/
86

)
K.

-Y
. H

ua
ng

, N
am

bi
sa

n,
 a

nd
 U

zu
ne

r 2
01

0

5,
81

%
(5

/8
6)

St
an

ge
 a

nd
 F

un
k

20
15

80
,2

3%
(6

9/
86

)
Ri

ek
er

t e
t a

l.
20

17

77
,9

1%
(6

7/
86

)
Pr

öl
lo

ch
s,

Fe
ue

rr
ie

ge
l,

an
d

N
eu

m
an

n
20

15

79
,0

7%
(6

8/
86

)
Ba

um
an

n
et

 a
l.

20
15

Se
ar

ch
 S

pa
ce

13
,9

5%
(1

2/
86

)
Ta

ft
i a

nd
 G

al
 2

01
8

Se
ar

ch

Al
go

rit
hm

13
,9

5%
(1

2/
86

)
St

au
dt

, R
au

sc
h,

 a
nd

 W
ei

nh
ar

dt
 2

01
8

96
,5

1%
(8

3/
86

)
Ch

at
te

rje
e

et
 a

l.
20

18

10
0,

00
%

(8
6/

86
)

Tr
ip

at
hi

 a
nd

 K
au

r 2
01

8

6,
98

%
(6

/8
6)

Lü
tt

en
be

rg
, B

ar
te

lh
ei

m
er

, a
nd

 B
ev

er
un

ge
n

20
18

51
,1

6%
(4

4/
86

)
Bl

an
c

an
d

Se
tz

er
 2

01
5

40
,7

0%
(3

5/
86

)
G

ev
a

an
d

O
es

tr
ei

ch
er

-S
in

ge
r 2

01
3

1,
16

%
(1

/8
6)

La
in

g
an

d
Kü

hl
 2

01
8

Co
nt

in
uo

us

Im
pr

ov
em

en
t

1,
16

%
(1

/8
6)

Se
eb

ac
h,

 P
ah

lk
e,

 a
nd

 B
ec

k
20

11

Ro
bu

st
ne

ss
18

,6
0%

(1
6/

86
)

G
ob

y
et

 a
l.

20
16

Pe
rf

or
m

an
ce

 m
et

ric

(r
ea

so
ne

d)

Pe
rf

or
m

an
ce

 e
va

lu
at

io
n

In
di

ca
to

r

Model
initiation

Pr
ob

le
m

 st
at

em
en

t

D
at

a
ga

th
er

in
g

D
at

a
di

st
rib

ut
io

n

Sa
m

pl
in

g

D
at

a
qu

al
ity

D
at

a
pr

ep
ro

ce
ss

in
g

m
et

ho
ds

Fe
at

ur
e

en
gi

ne
er

in
g

an
d

ve
ct

or
iz

in
g

n
n
n
n

Model
deployment

D
at

a
us

ed

M
od

el

va
lid

ity

D
es

cr
ib

ed
 in

 a
rt

ic
le

s

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Performance
estimation

Pa
ra

m
et

er

O
pt

im
iz

at
io

n

D
at

a
sp

lit

Al
go

rit
hm

Sa
m

pl
in

g

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n

n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n n n
n
n
n
n
n
n
n
n
n

268 Appendix A Appendix

Appendix Chapter 10

Table A.5 explains details regarding the neural network architecture for each data
set. The column Network Structure indicates how many neurons per hidden layer
are applied. Column Dropout Rate contains the dropout rate for each dropout layer.
The last column # Forward Passes explains how many forward passes for MCD are
computed.

Tab. A.5.: Neural network architecture for each data set.

Data Set Network Structure Dropout Rate # Forward Passes

Air Quality (128, 64, 32, 16) (0.2, 0.2, 0.1, 0.1) 100
Bike Sharing (128, 64, 32, 16) (0.2, 0.2, 0.1, 0.1) 100

Insects Abrupt (128, 64, 32, 16, 8) (0.1, 0.1, 0.1, 0.1, 0.1) 50
Insects Inc (128, 64, 32, 16, 8) (0.1, 0.1, 0.1, 0.1, 0.1) 50
Insects IncAbr (32, 16, 8) (0.1, 0.1, 0.1) 50
Insects IncReo (128, 64, 32) (0.1, 0.1, 0.1) 50
KDDCUP99 (32, 16, 8) (0.1, 0.1, 0.1) 50
Gas Sensor (128, 64, 32, 16, 8) (0.2, 0.2, 0.2, 0.2, 0.2) 50
Electricity (32, 16, 8) (0.1, 0.1, 0.1) 50
Rialto Bridge (512, 512, 256, 32) (0.2, 0.2, 0.1, 0.1) 50

Tab. A.6.: Characteristics of used data sets.

Data Set Samples Features Target

Air Quality 9,357 8 continuous
Bike Sharing 17,379 12 continuous

Insects Abrupt 52,848 33 6 classes
Insects Inc 57,018 33 6 classes
Insects IncAbr 79,986 33 6 classes
Insects IncReo 79,986 33 6 classes
KDDCUP99 494,020 118 23 classes
Gas Sensor 13,910 128 6 classes
Electricity 45,312 8 2 classes
Rialto Bridge 82,500 27 10 classes

269

0 2500 5000 7500 10000 12500 15000 17500
Time

0.0

0.2

0.4

0.6

0.8

1.0

En
tro

py
 H

Uncertainty (rolling mean)
Real Drift
Virtual Drift
Detected Drift

UDD (3 Detections)

KSWIN (14 Detections)

Fig. A.1.: Behaviour of UDD and KSWIN on synthetic Mixed data set.

Tab. A.7.: Different values of α for UDD.

Data Set Parameter

Air Quality 10−5

Bike Sharing 10−27

Insects Abrupt 0.002
Insects Inc 0.1
Insects IncAbr 0.1
Insects IncReo 0.01
KDDCUP99 10−43

Gas Sensor 0.01
Electricity 10−9

Rialto Bridge 10−86

Tab. A.8.: SMAPE (the lower the better) on regression benchmark data sets. Number
of retrainings in brackets (the lower the less computationally expensive). No
Retraining depicts the lower-bound benchmark, while KSWIN(unl.) and ADWIN
represent the upper-bound performance benchmark.

Limited Label Avail. Unlimited Label Avail.
Data Set No Retr. Uninf. Equal D. KSWIN UDD KSWIN(unl.) ADWIN

Air Quality 12.46 (0) 10.14 (14) 8.84 (14) 10.56 (14) 8.96 (14) 10.33 (19) 10.68 (12)
Bike Sharing 71.88 (0) 62.76 (5) 56.94 (5) 61.04 (5) 55.49 (5) 46.67 (27) 54.74 (8)

270 Appendix A Appendix

Tab. A.9.: F1-score∗ (the higher the better) on classification benchmark data sets. Number
of retrainings in brackets (the lower the less computationally expensive). No
Retraining depicts the lower-bound benchmark, while KSWIN(unl.) and ADWIN
represent the upper-bound performance benchmark.

Limited Label Avail. Unlimited Label Avail.
Data Set No Retr. Uninf. Equal D. KSWIN UDD KSWIN(unl.) ADWIN

Insects Abrupt 0.498 (0) 0.514 (9) 0.514 (9) 0.507 (9) 0.564 (9) 0.575 (177) 0.555 (11)
Insects Inc 0.202 (0) 0.323 (4) 0.321 (4) 0.303 (4) 0.353 (4) 0.345 (27) 0.356 (3)
Insects IncAbr 0.331 (0) 0.519 (22) 0.522 (22) 0.512 (22) 0.567 (22) 0.542 (107) 0.561 (23)
Insects IncReo 0.219 (0) 0.301 (10) 0.302 (10) 0.265 (10) 0.311 (10) 0.329 (149) 0.336 (13)
KDDCUP99 0.136 (0) 0.188 (20) 0.176 (20) 0.148 (20) 0.258 (20) 0.354 (345) 0.411 (61)
Gas Sensor 0.287 (0) 0.533 (39) 0.537 (39) 0.365 (39) 0.546 (39) 0.504 (149) 0.537 (49)
Electricity 0.077 (0) 0.641 (13) 0.641 (13) 0.529 (13) 0.672 (13) 0.712 (269) 0.695 (45)
Rialto Bridge 0.580 (0) 0.601 (14) 0.604 (14) 0.622 (14) 0.625 (14) 0.625 (17) 0.640 (116)

∗F1-score for data sets with more than two classes is computed by macro averaging.

271

Declarations

Eidesstattliche Versicherung

gemäß §13 Absatz 2 Ziffer 3 der Promotionsordnung des Karlsruher Instituts für
Technologie für die KIT-Fakultät für Wirtschaftswissenschaften

1. Bei der eingereichten Dissertation zu dem Thema “Concept Drift Handling in
Information Systems: Preserving the Validity of Deployed Machine Learning Models”
handelt es sich um meine eigenständig erbrachte Leistung.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner
unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß
aus anderen Werken übernommene Inhalte als solche kenntlich gemacht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder
Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt.

4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich.

5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Fol-
gen einer unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir
bekannt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt
und nichts verschwiegen habe.

Karlsruhe, den 15.04.2021

Lucas Baier

	Titlepage
	Abstract
	Acknowledgement
	Contents
	I Fundamentals
	1 Introduction
	1.1 Motivation
	1.2 Research Design
	1.3 Structure of Work

	2 Related Work
	2.1 AI and Machine Learning in IS
	2.2 Learning in Dynamic Environments
	2.2.1 Machine Learning in Data Streams
	2.2.2 Online Learning

	2.3 Concept Drift
	2.3.1 Definition
	2.3.2 Concept Drift Handling
	2.3.3 Applications and Current Research

	II Choices and Challenges for Machine Learning Applications
	3 The Supervised Machine Learning Reportcard
	3.1 Introduction
	3.2 Fundamentals and Positioning
	3.3 Towards Rigorous Supervised Machine Learning Documentation
	3.3.1 Problem Characteristics and Key Choices of Supervised Machine Learning
	3.3.2 The Supervised Machine Learning Reportcard (SMLR)

	3.4 Empirical Study
	3.4.1 Methodology and Data Set
	3.4.2 Model Initiation
	3.4.3 Performance Estimation
	3.4.4 Model Deployment

	3.5 Conclusion

	4 Challenges in the Deployment of Machine Learning
	4.1 Introduction
	4.2 Related Work
	4.3 Research Methodology
	4.3.1 Sampling
	4.3.2 Data Collection and Analysis

	4.4 Results
	4.4.1 Pre-Deployment
	4.4.2 Deployment
	4.4.3 Non-Technical Challenges

	4.5 Discussion
	4.6 Conclusion and Outlook

	III Challenges for the Application of Concept Drift Handling
	5 Handling Concept Drift for Predictions in Business Process Mining
	5.1 Introduction
	5.2 Related Work
	5.2.1 Concept Drift
	5.2.2 Process Mining

	5.3 Data Selection for Retraining
	5.3.1 Learning Mode
	5.3.2 Data Selection for Retraining of the Machine Learning Model

	5.4 Use Case in Process Mining
	5.4.1 Data Analysis
	5.4.2 Evaluation of Prediction

	5.5 Conclusion

	6 Preserving Validity of Predictive Services over Time
	6.1 Introduction
	6.2 Foundations
	6.2.1 Machine Learning for Services
	6.2.2 Concept Drift
	6.2.3 Predictive Services

	6.3 Conceptual Framework
	6.3.1 Methodology
	6.3.2 Setup Decisions for Predictive Service
	6.3.3 Algorithmic Decisions
	6.3.4 Operation of Predictive Service
	6.3.5 Heatmap of Research Papers

	6.4 A Research Agenda for Preserving Validity of Predictive Services Over Time
	6.5 Conclusion

	IV Concept Drift Handling for Regression Problems
	7 Handling by Switching Models - the Error Intersection Approach
	7.1 Introduction and Related Work
	7.2 Use Case
	7.2.1 New York City Taxi Dataset
	7.2.2 Exemplary Drifts

	7.3 Design of the Error Intersection Approach
	7.4 First Evaluation
	7.5 Discussion
	7.6 Conclusion

	8 Handling by Switching Adaptation Mode - the Switching Scheme
	8.1 Introduction
	8.2 Related Work
	8.2.1 Concept Drift
	8.2.2 Demand Forecast
	8.2.3 Research Gap and Contribution

	8.3 Use Case
	8.4 Methodology for Handling Incremental Drift
	8.4.1 Adaptation Strategies
	8.4.2 Drift Detectors

	8.5 Evaluation
	8.5.1 Evaluation of Pre-Test
	8.5.2 Evaluation of Adaptation Strategies
	8.5.3 Robustness Check

	8.6 Conclusion

	V Concept Drift Handling with Limited Label Availability
	9 Handling by Model Uncertainty - Uncertainty Drift Detection
	9.1 Introduction
	9.2 Background and Related Work
	9.2.1 Dataset Shift and Concept Drift
	9.2.2 Handling Concept Drift
	9.2.3 Uncertainty in Neural Networks

	9.3 Methodology
	9.4 Experiments
	9.4.1 Experimental Setup
	9.4.2 Data Sets
	9.4.3 Performance Metrics
	9.4.4 Analysis on Synthetic Data Sets
	9.4.5 Experimental Results

	9.5 Conclusion

	10 Handling by Outlier Detection - the Two-Step Prediction Method
	10.1 Introduction
	10.2 Foundations
	10.2.1 Machine Learning
	10.2.2 Concept Drift
	10.2.3 Outlier Detection

	10.3 Problem Definition and Requirements
	10.4 Design Options
	10.4.1 Step 1: Data Validity
	10.4.2 Step 2: Model Robustness

	10.5 Evaluation
	10.5.1 Evaluation of Data Validity (Step 1)
	10.5.2 Evaluation of Model Robustness (Step 2)
	10.5.3 Evaluation of Overall Prediction Method

	10.6 Conclusion

	VI Finale
	11 Conclusion
	11.1 Summary and Contributions
	11.2 Practical Implications
	11.3 Limitations and Future Research

	Bibliography
	A Appendix
	Declarations

