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Abstract. The evaluation of snowpack models capable of
accounting for snow management in ski resorts is a ma-
jor step towards acceptance of such models in supporting
the daily decision-making process of snow production man-
agers. In the framework of the EU Horizon 2020 (H2020)
project PROSNOW, a service to enable real-time optimiza-
tion of grooming and snow-making in ski resorts was de-
veloped. We applied snow management strategies integrated
in the snowpack simulations of AMUNDSEN, Crocus, and
SNOWPACK-Alpine3D for nine PROSNOW ski resorts lo-
cated in the European Alps. We assessed the performance
of the snow simulations for five winter seasons (2015-2020)
using both ground-based data (GNSS-measured snow depth)
and spaceborne snow maps (Copernicus Sentinel-2). Partic-
ular attention has been devoted to characterizing the spatial
performance of the simulated piste snow management at a
resolution of 10 m. The simulated results showed a high over-
all accuracy of more than 80 % for snow-covered areas com-
pared to the Sentinel-2 data. Moreover, the correlation to the
ground observation data was high. Potential sources for lo-

cal differences in the snow depth between the simulations
and the measurements are mainly the impact of snow re-
distribution by skiers; compensation of uneven terrain when
grooming; or spontaneous local adaptions of the snow man-
agement, which were not reflected in the simulations. Sub-
dividing each individual ski resort into differently sized ski
resort reference units (SRUs) based on topography showed a
slight decrease in mean deviation. Although this work shows
plausible and robust results on the ski slope scale by all three
snowpack models, the accuracy of the results is mainly de-
pendent on the detailed representation of the real-world snow
management practices in the models. As snow management
assessment and prediction systems get integrated into the
workflow of resort managers, the formulation of snow man-
agement can be refined in the future.
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1 Introduction

The Alpine ski industry plays a central economic role in
many mountain regions and is important for regional de-
velopment. About 13.6 million people live in the European
Alpine region, with around 60 to 80 million tourists visiting
every year. The ski resorts generate a high turnover in the
winter tourism destinations (Vanat, 2020). However, a multi-
annual perspective shows a stagnation of skier visits and the
growing economic pressure on resorts, aggravated by the
threat of climate change and decrease in average snow condi-
tions as well as the consequences of the Covid-19 pandemic
since February 2020. The trend to early winter (October—
December) demand for perfect ski slopes is still increasing,
but climate change renders a reliable early ski slope prepa-
ration more and more challenging. This was particularly vis-
ible throughout most of the European Alps at the beginning
of the snow seasons 2014/2015 and 2015/2016, with strong
deficits in natural snow amounts and elevated temperature
conditions (NOAA, 2014, 2015) hampering the possibility
of producing machine-made snow. Ski resorts throughout the
world have become increasingly reliant on snow-making fa-
cilities to complement the natural snow cover. Over 90 % of
all large ski areas in the Alpine region use snow-making fa-
cilities. Regarding pistes covered with snow originating from
snow production, Italy (90 %) is in the lead, followed by Aus-
tria (70 %), Switzerland (45 %), France (35 %), and Germany
(25 %) (Lalli et al., 2019). The whole workflow of ski re-
sort management with modern slope preparation and main-
tenance, snow storage, and machine-made snow, however,
could increase in efficiency. Examples of potential savings
are related to both (i) an overproduction, which leads to a de-
layed melt-out in spring well after the closing of the season,
and (ii) too early snow-making production in autumn, when
the conditions can rapidly change and lead to the complete
melt of the produced snow, e.g., due to an early-season warm
spell. Based on a study by Koberl et al. (2021) the “uncer-
tainty surcharge” of snow produced due to imperfect knowl-
edge about upcoming weather and snow conditions paired
with high risk aversion is likely to represent a noticeable
share of total snow production and related water consump-
tion as well as of total snow management operating costs. De-
pending on the ski resort, operating managers expect that per-
fect knowledge would reduce the amount of technical snow
needed by 10 % to 45 %, the amount of water needed by 10 %
to 40 %, and total snow management operating costs by 5 %
to 20 %. Hence, there seems to be room for services that are
able to improve the ski resorts’ current ability to anticipate
weather and snow conditions.

Beyond the timescale of weather forecasts, which are gen-
erally reliable for a time frame of a few days, ski resort man-
agers have to rely on various and scattered sources of infor-
mation, hampering their ability to cope with highly variable
meteorological conditions. In the framework of the funded
European Union’s Horizon 2020 (H2020) project PROS-
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NOW (Morin et al., 2018), a demonstrator of a meteoro-
logical and climate prediction and snow management sys-
tem from a short-term forecast covering the first 4d to sev-
eral months ahead, specifically tailored to the needs of the
ski industry, was developed. Besides and within this project,
approaches for representing snow management in numeri-
cal snow cover models were developed (Hanzer et al., 2020;
Spandre et al., 2016) and integrated in the existing snow
cover models AMUNDSEN (Strasser, 2008; Strasser et al.,
2011; Hanzer et al., 2016), SNOWPACK-Alpine3D (Lehn-
ing et al., 2006; Bartelt and Lehning, 2002), and Crocus
(Vionnet et al., 2012; Lafaysse et al., 2017). Applying these
snowpack models capable of representing the effects of snow
management (grooming and snow-making), snow depth on
the slopes could be predicted in real time for short-term and
seasonal forecast mode for various ski resorts.

To increase the adaptation capacity of the skiing industry,
there is a great need to combine weather and climate fore-
casting, snow modeling, and observations and to promote
existing products to demonstrate their value for professional
decision-making. In this context, in situ observations as well
as optical and microwave remote sensing have proven to be
mature technologies (Sirguey et al., 2009; Dumont et al.,
2012; Biihler et al., 2015). For example, in terms of snow
coverage, remotely sensed data can provide twofold key in-
formation to the models. On the one hand, they can be used
to correctly initialize the state variables of the models. On the
other hand, they can be used to cross-compare the results of
the simulations and evaluate them (Mary et al., 2013; Notar-
nicola et al., 2013a, b). Since remotely sensed data mainly
provide binary information on snow presence or absence,
a complete model evaluation needs an additional compari-
son with measured in situ observations (Hanzer et al., 2016).
Nowadays it is increasingly common to employ advanced
snow depth monitoring systems such as the Global Naviga-
tion Satellite System (GNSS) equipped with grooming ma-
chines to track the snow depth on the ski slopes. Thereby, the
performances of the models can be evaluated by comparing
model outputs with the measured snow depth values. This
evaluation strategy has been shown by Hanzer et al. (2020)
for a single point on a slope for various ski resorts. In this
work, the performance of the snowpack models were cross-
compared with several snow depth measurements spatially
distributed with a resolution of 10 m over different ski slopes
for two winter seasons, i.e., 2016/17 (driest winter in recent
years) and 2017/18 (snow-rich winter throughout the entire
Alps).

The objective of this paper is to evaluate the accuracy of
the piste snow management module refined and implemented
in the framework of the H2020 PROSNOW project embed-
ded within several snowpack models to simulate snow man-
agement in general and for each individual PROSNOW ski
resort in high spatial resolution. In a first step, the results of
the snowpack simulations were compared both with remotely
sensed satellite snow cover maps and with snow depth mea-
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Table 1. Overview of the nine PROSNOW ski resorts, the period of available Sentinel-2 and measured GNSS snow depth data, and the used
snow management configurations for the simulations based on the paper by Hanzer et al. (2020).

Resort Country  Elevation range  Slope area  Sentinel-2 GNSS  Configurations™
(ma.s.l.) (ha)
Arosa Lenzerheide CH 12002865 384  2015-2020 2017-2020 2,23, 31
Colfosco IT 1531-2218 64 2015-2020 2016-2020 2,23
Garmisch Classic DE 708-2100 66 2015-2020 2017-2020 2,7
La Plagne FR 1250-3250 528  2015-2020 - 2,11
Les Saisies FR 1150-2069 214 2015-2020 2017-2020 2,11
Livigno IT 1816-2797 448  2015-2020 2017-2020 2,23, 31
Obergurgl AT 19302898 107 2015-2020 2017-2020 2,23
San Vigilio IT 1087-2274 119 2015-2020 2017-2020 2,23
Seefeld AT 1179-1251 79  2015-2020 2017-2018 2,23
* Hanzer et al. (2020)
practices and equipment. Figure 1 and Table 1 show the lo-
DE cations and key characteristics of the resorts.
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Figure 1. Locations of the PROSNOW ski resorts.

surements spatially distributed along the ski slopes acquired
with specific GNSS systems. The impact of elevation, slope,
and aspect as well as temporal aspects within a season or
amongst different years was evaluated. In the second step, the
simulation domain was spatially discretized into defined ski
resort reference units (SRUs) (Hanzer et al., 2020) to reduce
computational effort but still be able to achieve meaningful
results. In this case, each ski resort was divided into a number
of elevation bands with widths ranging from 50 to 400 m.

2 Study sites, models, and data
2.1 SKi resorts

Within the PROSNOW project we focused on the following
nine ski resorts, which are also all part of this study: Seefeld
(cross-country part) and Obergurgl in Austria; La Plagne and
Les Saisies in France; Garmisch Classic in Germany; Col-
fosco, San Vigilio, and Livigno in Italy; and Arosa Lenzer-
heide in Switzerland. This selection of ski resorts represents a
large diversity of geographical, climatical, and snow-making
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Snowpack simulations are performed with AMUNDSEN for
the Austrian and the Italian resorts (Colfosco, Obergurgl,
San Vigilio, and Seefeld), with Crocus for the French re-
sorts (La Plagne and Les Saisies) and with SNOWPACK-
Alpine3D for the remaining resorts in Switzerland, Germany,
and Italy (Arosa Lenzerheide, Garmisch Classic, and Livi-
gno). We used for each ski resort different settings for the
parameters concerning wet-bulb temperature, snow depth
threshold, timing, and density of grooming. A detailed de-
scription of the functionality and parameters of the snow-
making and grooming modules, which are used in all of the
snowpack models, is shown in the study by Hanzer et al.
(2020) and the applied configuration for each ski resort in
Table 1. The three snowpack models, AMUNDSEN, Crocus,
and SNOWPACK-Alpine3D, are well established and have
been widely applied in numerous studies throughout the past
decades (Essery et al., 2020; Krinner et al., 2018).

All three models require spatial input data for the snow
management simulations consisting of a digital elevation
model (DEM) covering the study sites, the locations of the
ski slopes, and the locations and types of the snow guns
(snow lances or snow fans — corresponding to different pro-
duction rates for given ambient conditions as defined in Ta-
ble 5 in Hanzer et al., 2020). The snow management con-
figurations employed for each ski resort are shown in Table 1
and are selected to be representative of the snow management
configuration of each ski resort based on individual discus-
sions with the ski resort managers. In general, the basis for
snow production relies on resource saving assumptions, the
features of the locally installed snow-making system, and the
opening and closing of each ski resort. The configurations
were selected for each ski resort as follows and are described
in more detail in Hanzer et al. (2020):

The Cryosphere, 15, 3949-3973, 2021
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— configuration 2: no snow production; simulations based
on a natural snow-only configuration, however with
grooming activity

— configuration 7: snow production with a minimum re-
quired snow water equivalent (SWE) of 150 kg m~2 us-
ing snow fans and a wet-bulb temperature of maximum
—4°C

— configuration 11: snow production with a minimum re-
quired SWE of 150kgm™2 using snow lances and a
wet-bulb temperature of maximum —4 °C

— configuration 23: snow production with a minimum re-
quired SWE of 250 kg m~2 using snow fans and a wet-
bulb temperature of maximum —4 °C

— configuration 31: snow production with a minimum re-
quired SWE of 250kgm™2 using snow lances and a
wet-bulb temperature of maximum —6 °C

Meteorological forcing data for the simulations are based on
measurements from automatic weather stations close to or
within the study sites and from the SAFRAN analysis for
Crocus model runs (Vernay et al., 2019), consisting of at least
hourly measurements of air temperature, precipitation, rela-
tive humidity, wind speed, and radiation. The generated out-
put data are rasterized snow depth files with a resolution of
10 m.

The models are equipped with a machine-made snow pro-
duction and grooming module, which can be used for the op-
erational applications. A set of core parameters can be used
for very detailed simulations of snow management practices
in single ski resorts. They take into account snow demand,
the meteorological conditions including information on wet-
bulb temperature and wind speed, and the ski resort infras-
tructure in terms of the amount of snow that can be produced
in a given time step at a certain location within the resort. For
the simulations it is assumed that for a given snow gun, all
of the produced snow is distributed immediately and evenly
over a predefined slope section. Additionally, the grooming
module allows the distinct properties of groomed snow on ski
slopes to be accounted for depending on the amount of snow
present and a defined grooming schedule. It assumes that
grooming has no effect on the distribution of snow, e.g., shift-
ing of snow from one place to another, but rather only com-
pacts it (Hanzer et al., 2020).

2.3 SKi resort reference unit - SRU

Real-time simulations with a very fine spatial resolution
(i.e., 10 m) require a very high computational demand, and
such fine spatial resolutions are also often not necessary for
the overall day-to-day resort management. Spatial cluster-
ing of slopes and slope sections is often sufficient for the
snow managers working in an operational mode. Therefore,
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we additionally discretized each ski resort in ski resort ref-
erence units (SRUs). In a post-processing step, we aggre-
gated the initial 10 m pixel size to larger areas. We defined
different SRU sizes of the individual pistes by slicing them
into the following elevation step ranges: 50, 100, 200, 300,
and 400 m. Local snow management plays a major role in
the SRU sizes as explained in more detail in Appendix Al.
This aggregation results in different numbers of SRUs for
each considered elevation range. Figure 2 exemplarily shows
a map for the western part of Arosa Lenzerheide with the
resulting elevation classes for the different SRU sizes. In ad-
dition, we evaluated the sensitivity of SRU size to the final
accuracy. More details about the SRU definition can be found
in Appendix Al and Table A2.

2.4 Sentinel-2 data

The model results for all ski resorts were compared with
remote sensing images; for this study, Sentinel-2 (S2) data
were used. The processing of the S2 snow-covered maps
was done in three main stages: (i) calibration to top-of-
the-atmosphere (ToA) reflectances; (ii) re-projection, resam-
pling, and co-registration with the model grid with a final
resolution of 10 m; and (iii) classification with a support vec-
tor machine (SVM) classifier trained with an active learning
procedure (Tuia et al., 2016). In particular, the classification
was devoted to both (i) detecting the clouds and (ii) detect-
ing the snow presence. This was done by exploiting the most
representative features for each of the two classification prob-
lems. In detail, we used all the spectral bands, the normal-
ized difference snow index (NDSI), and the normalized dif-
ference vegetation index (NDVI) for the cloud classification.
NDVI was calculated as the normalized difference between
near-infrared (NIR) and red bands, whereas NDSI was calcu-
lated between green and shortwave infrared (SWIR) bands.
Regarding the snow detection, we used the spectral bands,
NDSI, NDVI, and the illumination angle calculated from the
solar zenith and the solar azimuth angle (Riafio et al., 2003).

Since the S2 snow maps are compared to the snow sim-
ulations, particular attention was devoted to obtain accurate
results. For this purpose, three main steps were performed
to address the main problems related to snow classification
from optical images, which are the detection of (i) particular
cloud conditions; (i) the mixed snow pixels, i.e., pixels in
which classes other than the snow contribute to the observed
spectral response; and (iii) the snow under the canopy of the
forests.

First, we performed a visual analysis of all the S2 images
for excluding the scenes presenting complex cloud condi-
tions. In particular, semitransparent clouds, which are thin,
high-altitude clouds composed of ice crystals, were detected
from the S2 band acquired at 1.375 um. Interestingly, semi-
transparent clouds might not be visible in other spectral
bands, but they alter the spectral signatures, leading to un-
reliable results.

https://doi.org/10.5194/tc-15-3949-2021
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Figure 2. An example of a ski resort discretization into different SRU elevation bands: 50, 100, 200, 300, and 400 m. The figure shows the
western part of Arosa Lenzerheide. The different colors represent the different SRU areas.

The SVM classifier was trained in a way that a pixel with
at least 50 % snow coverage is classified as snow. This means
that, for example, during the snow-making production at the
beginning of the season, a pixel in which significant snow
production is ongoing is classified as snow even though not
all of the pixel area is covered with snow. Additionally, we
identify the shadowed areas from where the multispectral
sensor on board S2 is not able to record sufficient energy for
distinguishing between snow and snow-free areas. This hap-
pens when the sun is low at the horizon approximately from
mid-November to mid-February, and the terrain is extremely
steep. In all the other shadow cases, the SVM classifier was
trained to detect the snow presence. Hence, the output of the
procedure was a classified map with four classes, i.e., snow,
snow-free, shadows and clouds.

Since the detection of snow under forest canopy is a
challenging research topic from both the remote sensing
and modeling point of view, we conservatively masked out
forested areas for all the ski resorts based on the land cover

https://doi.org/10.5194/tc-15-3949-2021

classification provided by OpenStreetMap (OSM) (resolu-
tion of 30 m) (Schultz et al., 2017), rasterized to a resolution
of 10 m and manually refined for all ski resorts in such a way
that the ski slopes that were passing through forest but were
visible at the resolution of S2 were considered for the evalu-
ation. The masked layers include coniferous, deciduous, and
mixed forests and in some particular cases also scrubs and
heath. After this screening all the snow maps were consid-
ered reliable, and the scenes with a percentage lower than
50 % cloud were retained as sufficient information for the
cross-comparison.

A detailed overview of the number of available S2 scenes
for each year and ski resort is presented in Table Al and
Figs. Al and A2 in the Appendix. The number of S2 scenes
which were available for each ski resort within the winter
periods of 2015 to 2020 is in general high and ranges be-
tween 62 and 190 per ski resort. The differences in numbers
of available scenes were mainly affected by cloud coverage

The Cryosphere, 15, 3949-3973, 2021
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and the atmospheric condition to perform accurate classifica-
tion.

2.5 GNSS snow depth data

More and more ski resorts are relying on spatially dis-
tributed snow depth measurements performed with modern
Global Navigation Satellite System (GNSS) technology for
an efficient management of their slopes. This technique re-
lies on differential GNSS signals, comparing the snow-free
(i.e., zero snow depth) reference signal with those obtained
during the snow season to obtain snow depth. The sensors are
installed on top of the groomers, and thereafter snow depth
can be tracked as a positive side effect whilst grooming the
pistes. This technology ensures a snow depth measurement
accuracy down to the centimeter level and at a spatial resolu-
tion of 1 m, which also allows the tracking of snow redistri-
bution with the groomers.

For our study, rasterized data were provided by the compa-
nies SNOWsat and Leica Geosystems AG and were resam-
pled to a resolution of 10 m using the average value in order
to be directly comparable with the model outputs. The GNSS
snow depth data were available for all ski resorts except La
Plagne. We considered for the analysis the measurements
spanning from 1 December to 31 March with a daily tempo-
ral resolution when GNSS data were available. The data have
been preprocessed to eliminate outliers and to check their
consistency. Table 1 shows the available seasons of GNSS
snow depth measurements for all ski resorts.

3 Evaluation

In this section, we describe how we evaluate the snowpack
simulations carried out for the PROSNOW ski resorts. This
includes (i) the evaluation of snow-covered area and (ii) the
evaluation of simulated snow depth. In detail, the simulated
snow depth was compared with the GNSS-derived measure-
ments over a number of ski slopes, whereas the snow-covered
area is evaluated by comparing the model snow-covered area
with the S2 snow maps. The metrics used for assessing the
agreement between the simulations and S2 snow maps are
the confusion matrix and the snow persistence index defined
below.

The evaluation analysis for both snow depth and snow-
covered area was conducted by stratifying the data accord-
ing to temporal and topographical constraints. Moreover, a
differentiation was made between natural snow, i.e., snow
outside the pistes, and managed snow, i.e., snow inside the
pistes. In the following subsections more details on how the
evaluation metrics were calculated are presented.
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Table 2. Example of the confusion matrix used in the “Results”
section. The analysis was split into three periods: beginning (B:
October—November—December), middle (M: January—February),
and end (E: March—April-May) of the season. TP: true positive;
FP: false positive; FN: false negative; TN: true negative; OA: over-
all agreement.

Simulation

Snow Snow-free  OA (%)
) Snow TP kP
g (B,M,E) (B,M,E) OA (%)
=
Q FN TN (B,M, E)
0] _

Snow-free (B.M.E) (B.M.E)

3.1 Snow coverage — snow persistence (SP) and
confusion matrix (CM)

The latitude, longitude, and elevation of a ski resort have
a big impact on the timing of snow accumulation and
melt. Therefore, comparing snow patterns between regions is
challenging despite the widespread application of remotely
sensed methods for snow research. The snow persistence
(SP) is a snow metric that can be used to map snow zones
globally (Macander et al., 2015; Wayand et al., 2018; Vion-
net et al., 2020). It is calculated in this work as the num-
ber of snow-covered days divided by the number of valid
Sentinel-2 observations for the whole period (5 years). The
number of total observations can vary for each pixel since
cloudy or masked pixels are not considered for the compu-
tation. Hence, the same valid dates are considered for the
model. This approach has been used in a wide range of cli-
mates (Richer et al., 2013; Moore et al., 2015; Saavedra et al.,
2017) to identify transitions between rainfall and snowmelt
peak streamflow source regimes (Kampf and Lefsky, 2016)
and for predicting water yield (Saavedra et al., 2017; Ham-
mond et al., 2018).

Two SP indices were extracted considering both S2 snow
maps and model simulation. They were calculated pixel-wise
as the ratio between the number of snow-covered days de-
rived by S2 or from the model, divided by the total number
of S2 observations (snow or snow-free). The values of SP
were always between 0, i.e., always snow-free dates, and 1,
i.e., always snow-covered dates. If an S2 snow map pixel is
classified as a cloud the corresponding snow model output
is masked out, preserving the one-to-one correspondence be-
tween the two SP indices.

In addition to the SP index, for each ski resort a confu-
sion matrix was computed to assess the quality of the S2
and snowpack simulations. We refer to the confusion ma-
trix as modeled vs. observed variables. The confusion ma-
trix has the form indicated in Table 2 (TP: true positive,
i.e., both model and S2 labeled as snow; FP: false positive,
i.e., model labeled as snow, S2 as snow-free; FN: false neg-

https://doi.org/10.5194/tc-15-3949-2021
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ative, i.e., model labeled as snow-free, S2 as snow; and TN:
true negative, i.e., both model and S2 labeled as snow-free).
Therefore, TP and TN indicate that model and S2 data match
with each other, whereas FP and FN indicate that they do not
match.

We distinguish between natural snow and snow on the
slopes. Furthermore, the analysis was split into three peri-
ods: beginning (B: October—November—December), middle
(M: January—February), and end (E: March—April-May) of
the season. A pixel can be either true (snow in S2 data and
model, no snow in S2 data and model) or false (snow in S2
data and no snow in model, snow in model and no snow in
S2 data). With the accumulation of all pixels assigned to be
true, an overall agreement OA (%) was calculated for each
period and catchment:

B TP+ TN
" TP+FP+TN+FN’

OA ey
which describes how often the agreement between S2 and the
simulations was correct.

3.2 Snow depth - root mean square deviation (RMSD)
and mean deviation (MD)

The metrics used for this assessment are the mean devia-
tion (MD) and the root mean square deviation (RMSD) over
time for each ski resort. Regarding the snow-covered area
evaluation, the binarization of the simulated snow depth to
the snow-covered map was done by imposing a threshold of
0.05m; i.e., every value above this threshold was identified
as snow, while in contrast all the values below 0.05 m were
identified as snow-free. This threshold is in line with previ-
ous works (Notarnicola, 2020). In each defined SRU we ana-
lyzed the variations in terms of snow depth MD and RMSD.
The MD was used to relate between the modeled and mea-
sured snow depth on the slopes among years for the period
October to May. Measured snow depth data from all avail-
able years of observations (see Table 1) were used in order to
analyze the quality of the simulated snow management con-
figuration for each ski resort. This allowed better projection
of the uncertainty in the simulated snow management con-
figuration based upon the measured snow depth. RMSD and
MD per one time point are defined as

1 N . .\ 2
RMSD= | ;<5Dm(z> — SDs(i))

N

MD = %Z(SDm(i) —SDs (i), @)

i=1

where N is the number of valid pixels for a given date, SDy, is
the GNSS snow depth measured, and SDy is the snow depth
simulated by the model. Hence, the metrics were calculated
based on pixels and only on those pixels where GNSS mea-
surements were present; i.e., the number of considered pixels
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N can vary for each date. A negative MD value indicates an
overestimation, and a positive MD value indicates an under-
estimation of the snow persistence of the PROSNOW mod-
els.

4 Results

In this section, the simulated results for all ski resorts were
compared with the S2-measured snow cover and with the
GNSS-measured snow depth data on the ski slopes. Model
runs were performed for five winter seasons (2015-2020)
from 1 October until the end of May. The simulations were
carried out for all ski resorts using the default snow manage-
ment configurations accounting for both fan guns and lance
guns as well as different temperature thresholds and base-
layer production targets, given in Table 1. The configurations
were either assumed or provided by the person responsible
for snow-making at each ski resort.

4.1 Snow coverage

The S2 algorithm produced accurate snow maps with an
overall accuracy above 80 %, for both high-Alpine and
lower-lying mountainous regions and different stages of the
season like season start, mid-season, and end of season. A
first approach to assess the skills of the models using S2
maps as a reference was a confusion matrix. Table 3 presents
the results for each ski resort. Analyses were carried out for
solely regarding snow on the pistes and additionally also for
the complete ski resorts, including the off-piste areas. The
overall accuracy for natural snow (off-piste) is around 80 %.
Regarding the pistes, where we applied the snow manage-
ment, we could further increase the overall accuracy up to
85 %. Based on this we can conclude that the integration of
the snow management module in the snowpack models in-
creases the performance within the ski resorts, which is also
obvious in the early and late season, shown in the Appendix
(Figs. A2 and Al). The snow distribution was well simulated
at the beginning and end of the season, with an agreement
of over 79 %. However, a larger mismatch was observed for
San Vigilio with 69 % at the end of the season because of
the overestimation caused mainly by the ablation process in
the snow model. A higher agreement between the simulation
and the S2 data was observed when regarding the pistes only.
Compared to the analysis of the entire resort, including nat-
ural snow, the overall accuracy of pistes only was up to 8 %
higher. Only one resort (Garmisch Classic) showed a slightly
lower accuracy of 8 % on pistes as the majority of pistes are
situated in forested areas, where it is difficult to capture the
pistes via satellite images.

The snow coverage quality of the snowpack simulations
using the snow management modules was further assessed
using the S2 data and SP indices. The SP indices were cal-
culated for the simulations and S2 data, and the relative dif-
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Table 3. Confusion matrix for all ski resorts referring to snow on the pistes. The values in the parentheses are referring to natural snow. The

P. P. Ebner et al.: Prediction system for snow management

metrics in the square brackets also refer only to snow at the beginning, middle, and end of the season.

Model

Snow Snow-free OA (%)
Arosa Lenzerheide
E S 82 (77) 3(D)
T [71 (67): 99 (96); 76 (68)]  [2(2); 0 (0); 5 (3)] 92 (90)
=
Q 50) 10 (13) [85 (83); 99 (96); 93 (89)]
P Smowefree 315y 1 @y 2.®)) [14 (16); 0 (0); 17 (21)]
Colfosco
D 71 (63) 5(5)
= Snow
.QE) [46 (41); 100 (89); 71 (63)]  [1(5); 0 (4); 14 (8)] 94 (91)
k=
3 Snow-free 14) 23 (28) [98 (93); 100 (92); 85 (87)]

[1(2):0@#:1(5)]

[52 (52); 0 (3); 14 (24)]
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S Snow 71 (45) 1(6)

_E [78 (44); 87 (73); 59 (29)] [2(16); 0 (8); 1 (2)] 82 (84)

k=
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P Snowefree gy 13920 (1] [9.(33): 0.(10); 20 (58)]
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j Snow 89 (68) 1(3)

.QE) [87 (67); 97 (85); 88 (61)] [1(5);0(2);0(3)] 93 (89)
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=
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=
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? o Snowefree 60 (1) 1 )] [10 (9); 0 (0); 6 (11)]
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S Snow 80 (72) 6 (6)

g [51 (42); 100 (99); 92 (84)] [9 (10); 0 (0); 6 (6)] 94 (93)

=
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[1(2);0(1);0()]
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v
)
=
=

wQ
19,
=
5

2 S 61 (34) 12 (6)
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7 Snowefree 6 gy 2 21y: 1 (6)] [42 (62); 0 (13); 22 (63)]

Seefeld

Y Snow 51 (42) 3(6)
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=

3 Snow-free 6(5) 40 (47) [92 (92); 97 (91); 87 (86)]
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ferences are shown in Fig. 3. The green pixels indicated the
applied forest mask to minimize the underestimation of snow
detection by the S2 algorithm. Observed SP presented simi-
lar patterns for each ski resort, showing that snow persistence
patterns were primarily controlled by the elevation. High el-
evation corresponds to high SP values, whereas low SP val-
ues were found near the tree line and at lower elevations.
In addition, low SP values were also found near ridge lines,
exposed to wind, and influenced by lateral snow redistribu-
tion and snow accumulation. These effects were not captured
by the simulations. Further, the derived SP values were de-
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005092S
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Sentinel-2
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0009 S¢S

pendent upon the elevation and slope orientation, primarily
due to the impact of solar radiation on simulated snow abla-
tion. The biggest difference in the SP index between the S2
data and model was found in steep slopes, where the effect
of snow gliding (e.g., avalanches) is stronger.

The overall accuracy was mainly impacted by the eleva-
tion and slope. An interesting analysis was represented by the
trend of the overall accuracy over 100 m elevation classes,
5° slope classes, and 45° aspect classes (i.e., north, north-
east, east, southeast, south, southwest, west, northwest). This
analysis was carried out taking specifically only the snow on
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the pistes into account and is presented in Fig. 4 (left). The
agreement of the simulations with the S2 data increased with
increasing elevation by around 1 % per 100 m elevation class.
The overall accuracy over 5° slope classes is not affected by
the slope steepness, and the orientation of the slope towards
the sun showed no influence on the accuracy.

A closer look at the SP index showed an elevation depen-
dency, but a clear slope or aspect dependency is hard to de-
tect. A better accuracy is obtained at high altitudes due to the
fact that the ratio of snow cover area is near 1. Figure 4 (mid-
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000€£0S  00SHZ0S  0009/0S

00STZ0S

780000

dle) shows the difference between S2 and model SP index,
similar to Fig. 4 (left). Positive values indicated an underes-
timation of the model with respect to S2. Above 2000 m, the
MD SP index is close to zero, and the model results are con-
sistent with the S2 data. However, below 2000 m the MD in-
creases as most of the slopes are equipped with snow-making
facilities and are affected by local snow management adjust-
ments due to local snow and weather conditions.
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Figure 3. Snow persistence index difference between Sentinel-2 data and the model data (on the left) and SP indices for the simulation
and Sentinel-2 (on the right) for each ski resort: (a) Arosa Lenzerheide, (b) Colfosco, (¢) Garmisch Classic, (d) La Plagne, (e) Les Saisies,
(f) Livigno, (g) Obergurgl, (h) San Vigilio, and (i) Seefeld. The period 2015-2020 was considered, when valid Sentinel-2 data are available.

4.2 Snow depth

The simulated default snow management configurations re-
produced the actual conditions well at all ski resorts. Fig-
ure 5 shows the RMSD and the MD between the modeled
and GNSS-measured snow depth over time for each ski re-
sort and each season. Especially at the beginning of the sea-
son, the RMSD values between the simulated and the GNSS-
measured snow depth on the pistes were below 0.4 m on aver-
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age. However, the RMSD values slightly increased during the
season affected by daily adaption of the snow management
configurations due to the actual weather conditions. The
complexity of the snow management configuration increased
during the season, leading to an increase in the RMSD val-
ues at the end of the season. In general, the temporal evolu-
tion of the RMSD values shows almost no large peaks. The
large peak at Lenzerheide on 15 January 2019, occurred due
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and S2 data, (middle) mean deviation (MD) in snow persistence index between S2 data and simulation, and (right) mean deviation (MD)
value between the simulated and GNSS-measured snow depth data. All metrics are computed for snow on the pistes only.

to a heavy snowfall period, which led to an extraordinary
avalanche situation. As a result, a large part of the ski area
was closed, and many slopes were no longer groomed at this
date. This led to the strong increase in the RMSD values in
this season. In general, our models mainly overestimated the
snow depth, and the fluctuations increased during the season.
Regarding the degree of linear dependency of the simulated
and measured data, the MD as shown in Fig. 5 reaches more
than 0.5 m at some resorts, suggesting that more snow was
produced compared to the model. For several resorts an in-
crease in MD can be observed especially at the end of the
seasons.

Figure 4 (right) represents the MD trends between the
simulated and GNSS snow depth data for 100 m altitudinal
classes, 5° slope classes, and 45° aspect classes. For this
analysis, we considered RMSD values which refer to all the
pixels corresponding to a fixed elevation class, degree slope,
or degree aspect class, respectively, calculated over all the
available days. Overall, the MD values vary between —0.6
and 0.6 m. No systematic relationship can be seen between
the elevation and steepness of the pistes; the curves are highly
specific for each resort. However, regarding the elevation dis-
cretization, the MD values increase on average with increas-

The Cryosphere, 15, 3949-3973, 2021

ing elevation. An overall average MD trend on the 5° slope
classes is not found. Only for Arosa Lenzerheide, Garmisch
Classic, and Les Saisies was a decrease in MD values for
steeper slopes observed. The analysis of the 45° slope aspect
bands on the MD values shows that the accuracy decreases
for slopes oriented mainly towards the southwest. This is pri-
marily due to the impact of solar radiation on the snow abla-
tion.

4.3 SRU discretization

Discretizing the ski resorts in coarser clusters tends to mask
the variability in the error in terms of RMSD due to averaging
effects between the simulations and GNSS-measured snow
depth between 8 % and 45 % independent of the season and
cluster size (see Table A2). Therefore, it was not possible to
find an overall optimal SRU size regarding the RMSD values.
We also computed the MD of the errors calculated as the dif-
ference between the measured snow depth and the modeled
snow depth, shown in Fig. 6. The original pixel snow depth
is kept for the 10 m resolution, while a mean snow depth for
each SRU is calculated for the different SRU altitudinal band
classes. For the computation of the SRU snow depth, only
those pixels with valid GNSS measurements were considered

https://doi.org/10.5194/tc-15-3949-2021
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depth data which were available.

and taken into account (between 0 and 3.5 m). The MD and
the standard deviation of the error are then calculated by con-
sidering all the available measurements over time and space.
We propose here a differentiation for the 4 months Decem-
ber, January, February, and March in Fig. 6. Interestingly, the
mean and the deviation of the MD values widely differ for
single resorts.

In addition, we tested the spatial variability within the
pistes. For a visualization example presented in Fig. 7, we
chose a long piste ranging between 700 and 1700 ma.s.l.
within the Garmisch Classic ski resort for a date with max-
imal piste coverage. Figure 7 reports the simulated snow
depth and the GNSS measurements as well as the pixel-wise
difference for the original resolution at 10 m (on the left).
The same variables averaged over a possible SRU discretiza-
tion, in this specific case considering 100 m elevation bands,
are also reported in the same figure on the right. Regarding
the fine resolution of 10 m, it is obvious that the GNSS snow
depth data are much more variable in general and are espe-
cially available in the upper part of this piste due to the more
highly localized snow management than the simulations with
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the default configuration can provide and due to small-scale
topographic differences in some regions of the pistes. A good
agreement was found especially in the lower and middle parts
of this example slope, with slight under- and overestimations
of the simulated snow height. The picture would look similar
for all other pistes and resorts (not shown).

5 Discussion

This study presents a new high-resolution evaluation of
snowpack simulations including snow management modules
for mountain ski resorts to assess the quality of the simula-
tions. The simulated results showed a high overall accuracy
of more than 80 % compared to the Sentinel-2 data and a
root mean square error in the GNSS-measured snow depth
of below 0.6 m. The simulated results for all ski resorts are
plausible and robust on the ski slope scale.

The Cryosphere, 15, 3949-3973, 2021
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Figure 6. Overview of the root mean square deviation (RMSD; hollow symbols), mean deviation (MD; filled symbols), and standard deviation
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SRU resolution for the entire ski resort. The presented data are analyzed for the 4 months December, January, February, and March, when

GNSS data were available.

5.1 Snow coverage

For every ski resort, a large number of S2 images classified
with high accuracy were available to assess the quality of the
simulations in terms of snow coverage. More than 62 S2 im-
ages at each ski resort and even more than 150 for two resorts
were analyzed. The specific machine learning algorithm to
derive information with low uncertainty about the presence
or absence of snow from the Copernicus Sentinel-2 images
allows the generation of snow maps across the Alps with rel-
atively low manual effort. Additionally, the very detailed for-
est mask applied to the evaluation allowed us to simultane-
ously (i) avoid situations for which the information provided
by S2 is insufficient to produce accurate results and (ii) be
able to extract information about the snow cover for the pistes
crossing dense forests, as is often the case for Garmisch. This
allowed us to minimize the pixel loss due to canopy shading.
The highest pixel losses with respect to the total piste area
were in Arosa Lenzerheide (5.7 %) and Seefeld (5.5 %), fol-
lowed by Obergurgl (2.4 %), Livigno (0.2 %), and Colfosco
(0.2 %). For the other ski resorts it was zero.

The Cryosphere, 15, 3949-3973, 2021

The underestimation of the overall accuracy at the begin-
ning and the end of the seasons was due to the fact that some-
times the exact snowline in the S2 data was hard to detect.
Some snow lines were obscured by shadows, and they often
did not appear as continuous lines, which may slightly bias
our regional estimates, especially in areas which span differ-
ent land uses. Also white rock types or illuminated wet rocks
can lead to brighter pixels in the S2 data and to an underes-
timation of the overall accuracy. Because the spectral signal
of these pixels is similar to that of snow, the algorithm de-
tects an ice—snow boundary and classifies these pixels as part
of the snow lines. Since these patches were situated in ski
resorts in rocky areas, these misclassified pixels introduced
negative biases in the overall accuracy estimates, and they
were filtered out manually.

By inter-comparing the model simulations and the S2 im-
ages we encountered some recurrent errors. As described in
the previous section, on average the accuracy of the sim-
ulations is high, and the snow coverage simulated by the
PROSNOW models is consistent with observations. How-
ever, wrong discretization and/or missing meteorological in-
put and lack of snow managing or land use information were

https://doi.org/10.5194/tc-15-3949-2021
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which was filled with snow to level the piste. This led to a higher GNSS-measured snow depth compared to the simulations.

the main sources of errors. In particular, (1) ephemeral snow
(i.e., snow that lasts a few days either at the beginning or
at the end of the season) is difficult for the models to sim-
ulate correctly; (2) rain—snow transition (e.g., ensuing rapid
snowmelt inside the catchment) is difficult to simulate accu-
rately; (3) due to unknown snow-making strategies, which
are then not incorporated into the PROSNOW models, snow-
making at the beginning of the season and delayed and an-
ticipated snow melting at the end of the seasons are not cor-
rectly modeled over managed slopes; and (4) the heteroge-
neous landscape at 10 m resolution plays a role in the snow
accumulation and melting dynamics (e.g., towns, lakes, and
roads are visible and change the snow distribution). This
information is generally not addressed by the PROSNOW
models. These are just confirmations of the expected limita-
tions of the state-of-the-art snow cover models. However, for
the first time a systematic and extensive evaluation at high
model resolution was performed. The details of the analysis
with all the different recurrent errors encountered for each
ski resort are shown in Table A3 and can be used for future
studies. Note that the simulations presented here do not ben-
efit from snow depth measurements and water consumption
of snow-making, which are used, upon availability of the rel-
evant data, for real-time applications of the models for oper-
ating the PROSNOW service provision, thereby limiting the
impacts of some of the caveats identified above.

5.2 Snow depth

The GNSS data can only be used as ground observations with
some restrictions. There are several problems which might
affect the quality of the GNSS data: (i) the digital elevation
model (DEM) profile of all ski resorts is prone to change
every year due to earthwork and adaption of the slopes and
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is always considered correctly in the extraction of the snow
depth, and (ii) the inclination of the groomer has a large im-
pact on the GNSS-measured snow depth. For example if the
calculated snow depth is 0.5 m, the effect of 30 % inclination
would be 6 cm, which means that the calculated snow depth
would be 12 % higher than in reality. Furthermore, the work
of the groomers is not only to measure the local snow depth
but also to fill sinks, compensate humps, or level out the snow
production or redistribution by the skiers. This might lead to
very small-scale variances in the GNSS-derived snow depth
for pistes both with and without technical snow production,
whereas the model shows less pronounced variability. There-
fore, especially the small-scale deviations between the sim-
ulated and GNSS-measured snow depth are not well appli-
cable to reflect the model accuracy. The comparison rather
shows the degree to which the default snow management
configuration was applicable for the individual ski resorts. As
each ski resort spontaneously adapts its snow management
production due to changing weather and snow height con-
ditions, it is not possible to consider the spontaneous snow
management adjustments during the season in the simula-
tions. It does not make a big difference between pistes with
and without technical snow production even though the mod-
els do not explicitly simulate the snow redistribution. How-
ever, the RMSD between the modeled snow depth and GNSS
measurements over time for the ski resorts is in the uncer-
tainty range of the simulated configuration. Hanzer et al.
(2020) analyzed 10 different snow management configura-
tions, and an uncertainty range in snow depth of 20-50 cm
was observed. This shows that the default snow management
configuration leads, in general, to satisfactory simulation re-
sults for the individual ski resorts.

Some recurrent errors are encountered by inter-comparing
the model simulations and the GNSS-measured snow depth.
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The quality of the simulations is high, and they showed plau-
sible and robust results on the ski slope scale. However, there
are still sources of errors: (1) extreme snowfall situations,
(2) snow redistribution by the groomers, (3) rapid ablation
(e.g., south-, southwest-exposed pistes) due to high solar
radiation, (4) levering of the pistes to reduce the accident
risk of the skiers, (5) snow redistribution by the skiers, and
(6) systematic errors due to the wrong snow-making strat-
egy. These errors are already known, but it is too complex
and not straightforward to consider this in the simulations in
the current state. In detail, slightly different recurrent errors
are encountered for each ski resort by inter-comparing the
model simulations with GNSS-measured snow depth, which
is shown in Table A3.

5.3 SRU discretization

Scale and data aggregation has important effects on the sim-
ulations and interpretation of snow depth data, which is also
true for snow on pistes. Studies in different research fields
clearly demonstrate that spatial variability and statistics are
dependent on scale (Marceau, 1999; Wu, 1999; Wu et al.,
2000; Perveen and James, 2010). Our evaluation showed
that these scale dependencies in spatial variability and statis-
tics appear complex with nonlinear increases with increas-
ing grid-cell size. However a simple relationship between
variability and scale emerges upon closer inspection: aggre-
gating the 10 m simulated pixels to different SRU sizes led
to a decrease in the error compared to the GNSS measure-
ments due to averaging effects of the high spatial variability
in the GNSS snow depth data. The RMSD values decreased
between 8 % to 45 % regarding the SRU size using an altitu-
dinal band of 50 m; however this effect diminished by further
coarsening.

Nevertheless, the identification of guiding principles for
researchers to combine data and models at different spatial
and temporal scales and to extrapolate information between
scales still remains a challenge. By going from fine to coarse
scales, aggregation and generalization set in. The rate of in-
formation loss is influenced by small-scale spatial snow pro-
duction and grooming patterns. Heterogeneous snow produc-
tion for instance leads to more information loss than aggre-
gations at coarser scales. The small-scale spatial effects of
moving snow by the groomers or skiers, for instance, disap-
pears slowly with decreasing resolution, and those that are
dispersed are lost rapidly. This leads to an under- or overes-
timation of the simulated snow height. Therefore, a method-
ology needs to be developed to find out how much the loss of
information takes place. Multiscale analysis was necessary
to show that variability for different aggregation types of the
snow height is inherently different and that for each SRU this
can be different, as shown in Fig. 4.

However, we demonstrated a consistent evaluation proce-
dure for all the PROSNOW ski resorts that can be useful for
snowpack modelers and ski resort managers. An understand-
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ing of the nature of scaling effects is needed when spatial
or temporal scale is an independent variable. In landscapes
with homogeneous snow depths, where snow measurements
can be summed directly, such scale problems may not occur.
However, in snow-distributed landscapes like at ski resorts,
snow measurements obtained at fine scales often cannot be
summed directly to produce regional estimates. Therefore,
reasonable measures are not always given by weighted av-
erages because heterogeneity in snow production and distri-
bution may influence scaling processes in nonlinear ways.
In such cases, increasing the level of spatial heterogeneity
may also increase the difficulty of extrapolating information
across scales (Perveen and James, 2010).

5.4 Remote sensing and GNSS snow depth

The use of remote sensing and GNSS data allows an evalua-
tion procedure to be defined for the snowpack models and
helps to improve the resource management of the ski re-
sorts. The GNSS data provide means to collect accurate snow
depth points in the field for precise correction of the simu-
lated snow depths. Further, using snow depth measurements
over an entire season together with snowpack simulations is
a powerful tool in the long term. It allows the estimation of
the minimum snow depth required at various slope sections.
This ensures that slopes are optimally prepared and groomed
right up to the end of the season. The spatial remote sensing
images are needed to improve the simulated snow-covered
area, especially at the beginning or end of the season or for
lower-situated ski resorts, where natural snow precipitation
is low. Further, it allows the correction of the simulated abla-
tion process at the end of the season and the snow produced
at the beginning of the season. However, further studies to
determine whether the models can simulate snow depth with
sufficient accuracy to enable the resort mangers to maintain
the optimum and minimum viable snow depth in a more ef-
ficient way are needed and will be attempted in the future
(Koberl et al., 2021).

The combination of both techniques allows the evaluation
and initialization of the simulations: imagery can be used for
primary digitization of the snow cover where GNSS can be
used for in situ observation of the snow height for the sim-
ulations. A detailed analysis of the differences between the
two methods will allow us to make better decisions about
when and how much snow is distributed by both groomers
and skiers. Further, the effect of snow melting and snow re-
distribution by wind on the slopes can be extracted. This al-
lows us to improve the models. However, this is not easy to
extract and was not within the scope of this paper but should
be considered for further studies.
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6 Conclusions and outlook

The initiative for this study emerged within the H2020
PROSNOW project to evaluate the snow simulations over
the nine PROSNOW ski resorts by comparing model outputs
with local and remotely sensed measurements in terms of
snow coverage, persistence, and snow depth. The three snow-
pack models AMUNDSEN, Crocus, and SNOWPACK-
Alpine3D include all piste management modules and were
evaluated using both ground-based data (GNSS-measured
snow depth) and spaceborne Copernicus Sentinel-2-derived
snow maps. We evaluated five winter seasons (2015-2020)
from 1 October until the end of May and performed this
evaluation in a stratified manner in order to assess the per-
formance of the snow simulations under different conditions.
Particular attention has been devoted to characterizing the
spatial performance of the snowpack models with integrated
snow management modules. Our presented results show high
accuracy of the simulations, representing the “reality” well.

An inter-comparison of the three snowpack models ap-
plied to the same resort would be a logical next step from
the model development perspective. Differences in the simu-
lated results of the three models for a given ski resort would
be mainly due to the different implementations of the snow
management configurations into each model and due to the
different snowpack energy and mass balance approaches.
Such effects should have to be disentangled and discussed
accordingly to have a reasonable comparison. However, this
is not straightforward and is out of the scope of this pa-
per but should be considered for the future. Nevertheless,
this work showed that all three snowpack models applied for
piste management reproduced plausible and robust results on
the ski slope scale, and the overall accuracy of the results
is mainly dependent on the degree to which the real-world
snow management practices are integrated. Additionally, a
detailed analysis to show the accuracy of the GNSS system
installed on groomers to measure the snow depth is needed
to validate the system. Moreover, integrating a snow redis-
tribution model and an avalanche dynamics model into this
system would help to point out where the biggest differences
due to snow gliding or avalanches are between the Sentinel-2
data and the simulations. Further studies on the topographic
complexity of the snow-free terrain and the rather smooth
piste surface are needed to, for example, implement an in-
dex of surface smoothing compared to the bare ground. Fu-
ture studies investigating how skiers redistribute snow under
certain meteorological conditions in combination with topo-
graphic conditions (e.g., aspect, slope angle) would also help
to overcome further potential errors.
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Appendix A

A1l Further information on ski resort reference unit —
SRU

In our approach, the spatial representations of ski areas and
of the interpolated meteorological fields as well as the sim-
ulated snowpack information differ in their spatial represen-
tation: the geometry type used for the ski slope is a vector-
based polygon, whereas the input and output of the snowpack
models are based on a discrete approach, using regular grids
of points. The challenge for PROSNOW was to define an in-
termediary spatial object. This should be consistent with rep-
resentations balanced between the heterogeneity of meteoro-
logical conditions within ski slopes, the accuracy of snow-
pack models, and the computation resources and data vol-
ume required for a daily update. Also it should take into ac-
count the localization of the snowmaking facilities. The SRU,
standing for ski resort reference unit, aims at fulfilling all
of these requirements. It can be end-user-defined, including
specific needs of the ski resort, but it can also be processed
automatically by chaining several operations. We stored the
vectorial geographic information system (GIS) and attribute
data of all nine ski resorts in a PostgreSQL 10.7 database
management system (DBMS), and the crossing operations
between rasters and vectors were performed with Python 2.7
with the packages GDAL/OGR along with NumPy. For au-
tomatic processing of the SRUs we considered the following
steps:

1. The association of each snow gun with a single ski slope
is based on the spatial relation of the nearest neighbor
to the ski slope.

2. The slope area covered by snowmaking is calculated by
determination of the upper- and lower-altitude bounds
for each snow gun. Considering that the mean surface
covered by a single snow gun is approximately 1/3 ha,
we applied a procedural language (PL)/PostgreSQL
function to calculate the intersection between a slope
and incremental 5 m buffer around the snow gun point
until it reached at least 3000 m?. This buffer was then
crossed with the combined ASTER-SRTM DEM vl.1
made available by the European Copernicus organiza-
tion, and we kept the buffer’s altitude bounds, which
were then aggregated at the slope level to cover a con-
tinuous surface.

3. Once the snow type attribute (“grooming only” or “with
snowmaking”) is defined for every slope, the according
areas were then divided into smaller parts based on the
elevation resolution. The initial DEM topography was
reclassified with respect to the targeted SRU resolution.
A value in the according numeric series was assigned to
a pixel whose value is in the range of the target value of
approximately half the resolution (i.e., for 50 m resolu-
tion, the value 300 will be assigned for all DEM pixels
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Table Al. Total number of available Sentinel-2 data for each ski
resort.

Resort Sentinel-2
Arosa Lenzerheide 63
Colfosco 93
Garmisch Classic 97
La Plagne 72
Les Saisies 65
Livigno 62
Obergurgl 190
San Vigilio 104
Seefeld 164

whose value is more than or equal to 275 m and less
than 325 m and between 150 and 450 m for 300 m res-
olution). Contiguous pixels with the same values were
merged and polygonized.

4. As small SRUs might occur by applying the abovemen-
tioned steps, e.g., at the beginning or ending of single
pistes, we merged them in a post-processing step with
other small adjacent piste fragments having the same
snow type attribute. The final operation consisted of
filling the missing snow type attributes by calculating
the average area value for each polygon from the DEM
and its derivatives (slopes and aspects) and matching
the output from snow models (the snow type attributes
of value, average altitudes (min and max altitude too),
slopes, and aspects are also stored).
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Figure A1l. Overall agreement over time between simulation and S2 data for each ski resort for natural snow outside of the pistes. We
considered images ranging from the winter season 2015/16 to the winter season 2019/20, except for Livigno, where simulations are not
available for the first season 2015/16 due to gaps in the meteorological forcing data.
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Figure A2. Overall accuracy trends over time between simulation and S2 data for each ski resort for machine-made snow on the pistes.
We considered images ranging from the winter season 2015/16 to the winter season 2019/20, except for Livigno, where simulations are not
available for the first season 2015/16 due to gaps in the meteorological forcing data.
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Table A2. Effect of discretization of the simulated results (10 m x 10 m) into different SRU elevation bands: 50, 100, 200, 300, and 400 m.
The first line indicates the number of 10m x 10 m raster points for each ski resort. The calculated root mean square error (RMSD), mean
deviation (MD), and the standard deviation (SD) are between the GNSS-measured and simulated snow depth. GNSS data were not available
for La Plagne.

Resort SRU  Amount SRUs  Mean SRU size (m?) Slope average (°) MD RMSD SD
Arosa Lenzerheide - 38394 100 10.7 0.086 0.507  0.496
50 533 7215 17.8 0.117 0.403  0.382

100 312 12325 174 0.115 0.392 0.370

200 215 17878 16.9 0.107 0392 0.373

300 175 21968 17.3 0.117 0.394 0.371

400 151 25456 16.7 0.123 0.388 0.363

Colfosco - 6378 100 125 —-0.079 0.287 0.273
50 65 9832 143 —0.038 0.244 0.238

100 36 17731 13.7  —0.050 0234 0.225

200 26 24551 13.5 —0.045 0.233  0.240

300 22 29015 13.3  —0.033 0.236  0.231

400 19 33597 14.0 —0.057 0.253 0.244

Garmisch Classic - 15874 100 164 —0.077 0.380 0.393
50 172 9443 18.6 —0.074 0.284  0.268

100 90 18046 18.3 —0.084 0.285 0.266

200 58 28003 179 —0.088 0273  0.253

300 45 36093 163 —0.100 0.282 0.258

400 39 41645 16.0 —0.092 0.271  0.250

La Plagne - 52831 100 15.3 - - -
50 994 5376 16.9 - - -

100 644 8297 16.6 - - -

200 437 12228 159 - - -

300 366 14598 15.3 - - -

400 322 16592 14.8 - - -

Les Saisies - 17772 100 128  —0.163 0411 0.378
50 487 3647 126 —0.120 0319 0.295

100 316 5617 127 —0.113 0.310 0.288

200 240 7394 124 —0.130 0.298  0.268

300 213 8329 11.9 —-0.110 0.304 0.283

400 213 8336 114 —0.139 0.297 0.263

Livigno - 47947 100 13.1 0.382 0.736  0.625
50 493 9756 17.3 0.434 0.684 0.523

100 308 15595 16.6 0.439 0.654 0.480

200 216 22230 159 0.464 0.688  0.502

300 164 29263 16.2 0.470 0.656  0.452

400 143 33568 16.3 0.479 0.679 0475

Obergurgl - 10647 100 18.3 0.287 0.663  0.596
50 163 6551 21.5 0.336 0.517 0.392

100 102 10453 21.1 0.363 0.557 0422

200 66 16 161 21.2 0.370 0.522  0.367

300 58 18422 20.5 0.353 0.531 0.396

400 48 22151 20.7 0.315 0.430 0.362

San Vigilio - 12571 100 16.0 0.141 0.457 0419
50 121 10944 16.9 0.132 0.361 0.320

100 78 16968 16.4 0.149 0.370 0.323

200 50 26 460 16.1 0.128 0.337 0.295

300 44 30079 16.1 0.130 0.350 0.307

400 49 27000 154 0.096 0.325 0.292

Seefeld - 1427 100 58  -0.152 0.328 0.270
50 7 20537 104 —0.115 0.179  0.107

100 5 28918 9.8 —0.143 0.210 0.126

200 4 36 147 83 —0.112 0.179  0.105

300 4 36 147 83 —0.112 0.179  0.105

400 4 36 147 83 —0.112 0.179  0.105
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Table A3. Inter-comparing the model simulations with Sentinel-2 data and GNSS-measured snow depth for each ski resort.

Resort

Sentinel-2

GNSS

Arosa Lenzerheide

Slight overestimation of the snow line at the beginning
of the season.

Short intensive snowfall generated high disagreement.
Increasing error throughout the season, with an over-
estimation of the simulation.

Colfosco

Systematic error at the end of the seasons, leading to
an overestimation of the snow-covered area.

Good agreement throughout the winter, with slight
overestimation of the simulation. Southwest-exposed
slopes especially encountered an overestimation of
SNOw.

Garmisch Classic

Systematic errors at the beginning and end of the sea-
sons lead to an overestimation of the snow coverage
in these periods. However, it has to be noted that the
snow season is shorter than at the other ski resorts, and
large parts of the ski resort are covered by forest.

Good agreement throughout the winter, with under-
estimation of the simulations at the beginning and
overestimation at the end of the season. Northeast-
exposed slopes especially encountered an overestima-
tion of snow in general.

La Plagne

Systematic error at the end of the seasons, leading to
an overestimation of the results. North-exposed slopes
especially encountered an overestimation of the snow-
covered area.

Good agreement throughout the winter, with slight
overestimation of the simulation.

Les Saisies

Systematic error at the end of the seasons, leading to
an overestimation of the snow-covered area. South-
exposed slopes especially encountered an overestima-
tion of the snow.

No data available.

Livigno

Underestimation and overestimation of the snow-
covered area at the beginning and end of the season. In
addition, an underestimation of snow presence at the
valley floor was encountered.

Good agreement at the beginning but increasing error
during the season. Overestimation of the snow depth
throughout the winter for the simulations. Southwest-
exposed slopes especially encountered an overestima-
tion of the snow.

Obergurgl

Short intensive snowfall misclassification generated
high disagreement.

Good agreement at the beginning but increasing er-
ror during the season. Overestimation at the begin-
ning and slight underestimation of the snow depth at
the end of the season for the simulations. Southwest-
exposed slopes especially encountered an overestima-
tion of the snow.

San Vigilio

Systematic error at the end of the seasons, leading to
an underestimation of the snow-covered area. As it is
a low-altitude ski resort, there are also some errors in
the middle of the seasons.

Good agreement throughout the winter, with slight un-
derestimation of the simulation in the middle of the
season.

Seefeld

Systematic error at the beginning and end of the sea-
sons, leading to overestimation and underestimation
of the snow-covered area.

Good agreement throughout the winter, with slight un-
derestimation of the simulation in the middle of the
season.
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Figure A3. Comparison for 100 m elevation bands, 5° slope bands,
and 45° aspect bands for (left) overall accuracy between simulation
and S2 data and (right) mean deviation (MD) SP index between
simulation and S2 data. All the metrics are computed for natural
snow only.

https://doi.org/10.5194/tc-15-3949-2021

3971

The Cryosphere, 15, 3949-3973, 2021



3972

Code and data availability. Datasets related to this article can be
obtained at https://doi.org/10.5281/zenodo.4541353 (Ebner et al.,
2021) or by asking the authors directly.

We used SNOWPACK version 20181109.1697, Alpine 3D ver-
sion 20181116.472, SURFEX/Crocus version 8.1, and AMUND-
SEN version 1.2.

Author contributions. PPE, FK, VP, CM, and ML developed the
paper concept and methodology. PPE, FK, VP, CM, FH, CMC, HF,
FM, and OH contributed to the data collection, and VP, CM, and HF
processed these data with input from PPE and FK. The final figures
were produced by VP, and snowpack simulations were performed
by PPE, FK, FH, and CMC. US, SM, and ML supervised this work,
and SM acquired the funding. The draft was written by PPE, FK,
VP, CM, and ML, and all authors contributed to the refinement of
the paper scope and revised the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. PROSNOW is a project aiming at producing an
operational climate service in order to transfer it as a commercial
service.

Publisher’s note: Copernicus Publications remains neutral with
regard to jurisdictional claims in published maps and institutional
affiliations.

Acknowledgements. We thank our project partners and ski resorts
for many constructive discussions and providing data to improve
the manuscript.

Financial support. This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation program un-
der grant agreement no. 730203.

Review statement. This paper was edited by Masashi Niwano and
reviewed by Richard L. H. Essery, Paul A. B. Bartlett, and one
anonymous referee.

References

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the
Swiss avalanche warning, Cold Reg. Sci. Technol., 35, 3135—
3151, 2002.

Biihler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P.,
and Ginzler, C.: Snow depth mapping in high-alpine catch-
ments using digital photogrammetry, The Cryosphere, 9, 229—
243, https://doi.org/10.5194/tc-9-229-2015, 2015.

Dumont, M., Gardelle, J., Sirguey, P., Guillot, A., Six, D., Raba-
tel, A., and Arnaud, Y.: Linking glacier annual mass balance and

The Cryosphere, 15, 3949-3973, 2021

P. P. Ebner et al.: Prediction system for snow management

glacier albedo retrieved from MODIS data, The Cryosphere, 6,
1527-1539, https://doi.org/10.5194/tc-6-1527-2012, 2012.

Ebner, P. P., Koch, F., Premier, V., Marin, C., Hanzer, F., Carmag-
nola, C. M., Francois, H., Guinther, D., Monti, F., Hargoaa, O.,
Strasser, U., Morin, S., and Lehning, M.: Datasets for the publi-
cation “Evaluating a prediction system for snow management”,
Zenodo, https://doi.org/10.5281/zenodo.4541353, 2021.

Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-
Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang,
X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner,
G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C.,
Menard, C. B., Nasonova, O., Nitta, T., Pomeroy, J., Schidler, G.,
Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N.,
and Yuan, H.: Snow cover duration trends observed at sites and
predicted by multiple models, The Cryosphere, 14, 4687-4698,
https://doi.org/10.5194/tc-14-4687-2020, 2020.

Hammond, J., Saavedra, F., and Kampf, S.: How does snow persis-
tence relate to annual streamflow in mountain watersheds of the
Western U.S. with wet maritime and dry continental climates?,
Water Resour. Res., 54, 2605-2623, 2018.

Hanzer, F., Helfricht, K., Marke, T., and Strasser, U.: Multilevel spa-
tiotemporal validation of snow/ice mass balance and runoff mod-
eling in glacierized catchments, The Cryosphere, 10, 1859-1881,
https://doi.org/10.5194/tc-10-1859-2016, 2016.

Hanzer, F.,, Carmagnola, C. M., Ebner, P. P, Koch, F., Monti, F,,
Bavay, M., Bernhardt, M., Lafaysse, M., Lehning, M., Strasser,
U., Frangois, H., and Morin, S.: Simulation of snow management
in Alpine ski resorts using three different snow models, Cold
Reg. Sci. Technol., 172, 1-17, 2020.

Kampf, S. and Lefsky, M.: Transition of dominant peak flow source
from snowmelt to rainfall along the Colorado front range, histor-
ical patterns, trends, and lessons from the 2013 Colorado front
range floods, Water Resour. Res., 52, 407-422, 2016.

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S.,
Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Mé-
nard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G.,
Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin,
J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A.,
Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V.,
Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke,
T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano,
M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V.,
Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov,
D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.:
ESM-SnowMIP: assessing snow models and quantifying snow-
related climate feedbacks, Geosci. Model Dev., 11, 5027-5049,
https://doi.org/10.5194/gmd-11-5027-2018, 2018.

Koberl, J., Frangois, H., Cognard, J., Carmagnola, C., Prettenthaler,
F., Damm, A., and Morin, S.: The demand side of climate ser-
vices for real-time snow management in Alpine ski resorts: some
empirical insights and implications for climate services develop-
ment, Climate Services, 22, 1-11, 2021.

Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet,
V., and Morin, S.: A multiphysical ensemble system of nu-
merical snow modelling, The Cryosphere, 11, 1173-1198,
https://doi.org/10.5194/tc-11-1173-2017, 2017.

Lalli, N., Mueller, B., Trechsel, R., Remund, A., Lidrach,
P, Moerch, F., and Galliker, B.: Fakten und Zahlen zur
Schweizer Seilbahnbranche, Seilbahnen Schweiz (SBS), 22 pp.,

https://doi.org/10.5194/tc-15-3949-2021


https://doi.org/10.5281/zenodo.4541353
https://doi.org/10.5194/tc-9-229-2015
https://doi.org/10.5194/tc-6-1527-2012
https://doi.org/10.5281/zenodo.4541353
https://doi.org/10.5194/tc-14-4687-2020
https://doi.org/10.5194/tc-10-1859-2016
https://doi.org/10.5194/gmd-11-5027-2018
https://doi.org/10.5194/tc-11-1173-2017

P. P. Ebner et al.: Prediction system for snow management

available at: https://www.seilbahnen.org/de/Branche/Statistiken/
Fakten-Zahlen (last access: 15 July 2021), 2019.

Lehning, M., Volksch, L., Gustafsson, D., Nguyen, T., Stdhli, M.,
and Zappa, M.: ALPINE3D: A detailed model of mountain sur-
face processes and its application to snow hydrology, Hydrol.
Process., 20, 2111-2128, 2006.

Macander, M. J., Swingley, C. S., Joly, K., and Raynolds, M. K.:
Landsat-based snow persistence map for northwest Alaska, Re-
mote Sens. Environ., 163, 23-31, 2015.

Marceau, D.: The scale issue in social and natural sciences., Cana-
dian J. Remote Sens., 25, 347-356, 1999.

Mary, A., Dumont, M., Dedieu, J.-P., Durand, Y., Sirguey, P., Mil-
hem, H., Mestre, O., Negi, H. S., Kokhanovsky, A. A., Lafaysse,
M., and Morin, S.: Intercomparison of retrieval algorithms for
the specific surface area of snow from near-infrared satellite data
in mountainous terrain, and comparison with the output of a
semi-distributed snowpack model, The Cryosphere, 7, 741-761,
https://doi.org/10.5194/tc-7-741-2013, 2013.

Moore, C., Kampf, S., Stone, B., and Richer, E.: A GIS-based
method for defining snow zones, application to the western
United States, Geocarto Int., 30, 62-81, 2015.

Morin, S., Dubois, G., and the PROSNOW Consortium:
PROSNOW-Provision of a prediction system allowing for man-
agement and optimization of snow in Alpine ski resorts, Inter-
national Snow Science Workshop Proceedings 2018, Innsbruck,
Austria, 571-576, 2018.

NOAA: National Centers for Environmental Information, State of
the Climate: Global Climate Report for November 2014, avail-
able at: https://www.ncdc.noaa.gov/sotc/global/201411 (last ac-
cess: 20 January 2021), 2014.

NOAA: National Centers for Environmental Information, State of
the Climate: Global Climate Report for November 2015, avail-
able at: https://www.ncdc.noaa.gov/sotc/global/201511 (last ac-
cess: 20 January 2021), 2015.

Notarnicola, C.: Hotspots of snow cover changes in global mountain
regions over 2000-2018, Remote Sens. Environ., 243, 111781,
https://doi.org/10.1016/j.rse.2020.111781, 2020.

Notarnicola, C., Duguay, M., Moelg, B., Schellenberger, T., Tet-
zlaff, A., Monsorno, R., Costa, A., Steurer, C., and Zebisch, M.:
Snow cover maps from MODIS images at 250 m resolution. Part
1: Algorithm description, Remote Sens., 5, 110-126, 2013a.

Notarnicola, C., Duguay, M., Moelg, B., Schellenberger, T., Tet-
zlaff, A., Monsorno, R., Costa, A., Steurer, C., and Zebisch, M.:
Snow cover maps from MODIS images at 250 m resolution. Part
2: Validation, Remote Sens., 5, 1568-1587, 2013b.

Perveen, S. and James, L. A.: Multiscale Effects on Spatial Vari-
ability Metrics in Global Water Resources Data, Water Resour.
Manage., 24, 1903-1924, 2010.

Riafio, D., Chuvieco, E., Salas, J., and Aguado, I.: Assessment of
different topographic corrections in Landsat-TM data for map-
ping vegetation types (2003), IEEE T. Geosci. Remote, 41, 1056—
1061, 2003.

https://doi.org/10.5194/tc-15-3949-2021

3973

Richer, E., Kampf, S., Fassnacht, S., and Moore, C.: Spatiotemporal
index for analyzing controls on snow climatology: application in
the Colorado front range, Phys. Geogr., 34, 85-107, 2013.

Saavedra, F., Kampf, S., Fassnacht, S., and Sibold, J.: A snow cli-
matology of the Andes Mountains from MODIS snow cover data,
Int. J. Climatol., 37, 1526-1539, 2017.

Schultz, M., Voss, J., Auer, M., Carter, S., and Zipf, A.: Open land
cover from OpenStreetMap and remote sensing, Int. J. Appl.
Earth Obs., 63, 206-213, 2017.

Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the
seasonal snow cover with MODIS at 250 m spatial resolution in
the Southern Alps of New Zealand: methodology and accuracy
assessment, Remote Sens. Environ., 113, 160-181, 2009.

Spandre, P, Morin, S., Lafaysse, M., Lejeune, Y., Francois, H., and
George-Marcelpoil, E.: Integration of snow management pro-
cesses into a detailed snowpack model, Cold Reg. Sci. Technol.,
125, 48-64, 2016.

Strasser, U.: Modelling of the Mountain Snow Cover in the Bercht-
esgaden National Park, Technical Report Berchtesgaden Na-
tional Park, 2008.

Strasser, U., Warscher, M., and Liston, G.: Modeling snow-canopy
processes on an idealized mountain, J. Hydrometeorol., 12, 663—
677,2011.

Tuia, D., Persello, C., and Bruzzone, L.: Domain adaptation for the
classification of remote sensing data: An overview of recent ad-
vances, IEEE Geosci. Remote Sens. Mag., 4, 41-57, 2016.

Vanat, L.: International Report on Snow & Mountain Tourism-
Overview of the key industry figures for ski resorts, Geneva,
Switzerland, 2020.

Vernay, M., Lafaysse, M., Hagenmuller, P., Nheili, R., Verfailie, D.,
and Morin, S.: The S2M meteorological and snow cover reanal-
ysis in the French mountainous areas (1958—present) [Data set],
AERIS, https://doi.org/10.25326/37, 2019.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le
Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snow-
pack scheme Crocus and its implementation in SURFEX v7.2,
Geosci. Model Dev., 5, 773-791, https://doi.org/10.5194/gmd-5-
773-2012, 2012.

Vionnet, V., Marsh, C. B., Menounos, B., Gascoin, S., Wayand,
N. E., Shea, J., Mukherjee, K., and Pomeroy, J. W.: Multi-
scale snowdrift-permitting modelling of mountain snowpack,
The Cryosphere, 15, 743-769, https://doi.org/10.5194/tc-15-
743-2021, 2021.

Wayand, N. E., Marsh, C. B., Shea, J. M., and Pomeroy, J. W.: Glob-
ally scalable alpine snow metrics, Remote Sens. Environ., 213,
61-72, 2018.

Wau, J.: Hierarchy and scaling: extrapolating information along a
scaling ladder, Can. J. Remote Sens., 25, 367-380, 1999.

Wu, J., Jelinski, D., Luck, M., and Tueller, P.: Multiscale analysis
of landscape heterogeneity: scale variance and pattern metrics,
Geogr. Inf. Sci., 6, 6-19, 2000.

The Cryosphere, 15, 3949-3973, 2021


https://www.seilbahnen.org/de/Branche/Statistiken/Fakten-Zahlen
https://www.seilbahnen.org/de/Branche/Statistiken/Fakten-Zahlen
https://doi.org/10.5194/tc-7-741-2013
https://www.ncdc.noaa.gov/sotc/global/201411
https://www.ncdc.noaa.gov/sotc/global/201511
https://doi.org/10.1016/j.rse.2020.111781
https://doi.org/10.25326/37
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/tc-15-743-2021
https://doi.org/10.5194/tc-15-743-2021

	Abstract
	Introduction
	Study sites, models, and data
	Ski resorts
	Snowpack models
	Ski resort reference unit – SRU
	Sentinel-2 data
	GNSS snow depth data

	Evaluation
	Snow coverage – snow persistence (SP) and confusion matrix (CM)
	Snow depth – root mean square deviation (RMSD) and mean deviation (MD)

	Results
	Snow coverage
	Snow depth
	SRU discretization

	Discussion
	Snow coverage
	Snow depth
	SRU discretization
	Remote sensing and GNSS snow depth

	Conclusions and outlook
	Appendix A
	Appendix A1: Further information on ski resort reference unit – SRU

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

