
Article
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Abstract

In colorectal cancer, oncogenic mutations transform a hierarchically
organized and homeostatic epithelium into invasive cancer tissue
lacking visible organization. We sought to define transcriptional
states of colorectal cancer cells and signals controlling their develop-
ment by performing single-cell transcriptome analysis of tumors and
matched non-cancerous tissues of twelve colorectal cancer patients.
We defined patient-overarching colorectal cancer cell clusters char-
acterized by differential activities of oncogenic signaling pathways
such as mitogen-activated protein kinase and oncogenic traits such
as replication stress. RNA metabolic labeling and assessment of RNA
velocity in patient-derived organoids revealed developmental trajec-
tories of colorectal cancer cells organized along a mitogen-activated
protein kinase activity gradient. This was in contrast to normal colon
organoid cells developing along graded Wnt activity. Experimental
targeting of EGFR-BRAF-MEK in cancer organoids affected signaling
and gene expression contingent on predictive KRAS/BRAF mutations
and induced cell plasticity overriding default developmental trajec-
tories. Our results highlight directional cancer cell development as a
driver of non-genetic cancer cell heterogeneity and re-routing of
trajectories as a response to targeted therapy.
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Introduction

Healthy cells in the human body develop along trajectories

controlled by intrinsic and extrinsic signals to ensure tissue home-

ostasis. Cancer cells cannot maintain homeostasis, as oncogenic

mutations activate signaling pathways cell-intrinsically and render

cancer cells unresponsive to paracrine signals (Hanahan & Wein-

berg, 2011). Colorectal cancer (CRC) commonly initiates via muta-

tions activating Wnt/b-catenin signaling that maintains stem cells in

the normal colon epithelium (Fearon, 2011). Subsequent mutations

deregulate further signaling pathways such as RAS-RAF-MEK-ERK

(also known as mitogen-activated protein kinase; MAPK signaling)

providing pro-proliferative cues. Less frequently, CRC initiates via

BRAF mutations or from chronic inflammation (Lasry et al, 2016;

De Palma et al, 2019). Genetic CRC drivers have direct and indirect

effects on cancer cell development and the cellular composition of

CRC and its microenvironment.

There is substantial evidence for the existence of tumor cell

subpopulations and clonal architecture in CRC depending on genet-

ics, microenvironmental cues, and space constraints (Van Der Heij-

den et al, 2019). Cancer stem cells are defined by their capacity for

self-renewal and ability to initiate clonal outgrowth (Kreso & Dick,

2014). CRC cells with these characteristics have been distinguished

by surface proteins like CD133, EPHB2, or LGR5 (O’Brien et al,

2007; Ricci-Vitiani et al, 2007; Merlos-Su�arez et al, 2011). Likewise,

lineage tracing in CRC cancer models has revealed preferential

outgrowth of cancer cell subpopulations defined by expression of

genes such as LGR5 or IL17RB (Shimokawa et al, 2017; Goto et al,

2019) or by localization at the leading edge of the tumor (Lamprecht
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et al, 2017). Furthermore, CRC cells located at the invasive front

and expressing genes such as the matrix metalloproteinase gene

MMP7 contributed disproportionally to metastasis (Brabletz et al,

1999; Vermeulen et al, 2010). While these studies suggest that CRC

cells are heterogeneous and hierarchically organized, other studies

stress that developmental capacities of CRC cells are subject to a

high degree of plasticity. In particular, oncogenic mutations and

paracrine signals have been shown to trigger reversal of develop-

mental trajectories so that differentiated cells regain stem cell char-

acteristics (Buczacki et al, 2013; Schwitalla et al, 2013; Jadhav

et al, 2017).

Metastatic CRC is treated by chemotherapy and/or therapies

targeting MAPK signaling, depending on predictive mutation status.

Patients without RAS or RAF mutations profit from anti-EGFR anti-

body therapy (Karapetis et al, 2008; Van Cutsem et al, 2009), while

patients with BRAF-mutant CRC now receive first-line therapy

combinations of anti-EGFR antibodies and BRAF kinase inhibitors

(Corcoran et al, 2018). Recent studies suggest roles for cell plasticity

in therapy resistance. For instance, chemoresistance has been linked

to subpopulations of CRC cells expressing the transcription factor

ZEB2 (Francescangeli et al, 2020), and anti-EGFR therapy resistance

has been associated with rise of stem cell-like populations (Lupo

et al, 2020) and stromal remodeling (Woolston et al, 2019).

Taken together, emerging evidence suggests that hierarchically

organized tumor cell heterogeneity and cell plasticity play key roles

in CRC progression and therapy response. However, developmental

states of CRC cells are not well-defined, and it is not known whether

transcriptome states are graded along preferential developmental

trajectories. Here, we use single-cell RNA sequencing to identify

patient-overarching CRC cell states defined by strengths of onco-

genic signals and replicative responses. We use metabolic labeling

of RNA in CRC organoids to delineate CRC development and show

that CRC cell differentiation states, developmental trajectories, and

therapy-associated cell plasticity are informed by MAPK activity.

Results

CRC cells can assume patient-overarching states

To capture the diversity of CRC cell states compared to the normal

colon epithelium, we performed single-cell transcriptome analysis of

twelve previously untreated CRC patients undergoing primary

surgery (Fig 1A). We utilized tissue samples that included the inva-

sive tumor front and matched non-cancerous tissues (Appendix Fig

S1). Tumors encompassed stages pTis (Tumor in situ) to pT4, with

or without metastasis, and with various locations along the cephalo-

caudal axis of the colon (Table EV1). Genetic analysis revealed

mutational patterns characteristic for canonical CRC progression in

most tumors; however, tumors from patients P007, P014, P020, and

P026 contained the BRAFV600E mutation often associated with the

serrated progression pathway and tumor P008 was colitis-associated

(Tables EV1 and EV2). Eleven patients were diagnosed with

microsatellite-stable (MSS) CRC, while the tumor of patient P026

was microsatellite-instable (MSI). We produced transcriptome

libraries using a commercial droplet-based system and sequenced

the libraries to obtain transcriptomes covering 500–5,000 genes per

cell. Transcriptomes were clustered, and clusters were allocated to

epithelial, immune, or stromal subsets, using known marker genes

(Smillie et al, 2019) (Fig 1B, Appendix Fig S2, Table EV3), and more

than 30,000 epithelial cell transcriptomes were analyzed further.

Normal and tumor-derived epithelial cell transcriptomes of all

patients largely intermingled when visualized in a common Uniform

Manifold Approximation Projection (UMAP) employing ten princi-

pal components (McInnes et al, 2018), but partially separated when

using a higher number of 50 components for UMAP embedding

(Fig 1C). Separation by patient occurred particularly in areas

enriched for tumor-derived transcriptomes suggesting the existence

of patient-specific gene expression in cancer epithelium. In

summary, the UMAP embedding indicates that our single-cell data

are largely free from sample-specific bias, but instead reflect intrin-

sic differences between normal and tumor cell transcriptomes.

We used cell type-specific signatures and marker genes to anno-

tate the epithelial cell clusters (Smillie et al, 2019; Fig 1D and E;

Tables EV3 and EV4). In the normal epithelium, we identified stem

cells by markers such as LGR5 and OLFM4. Neighboring clusters

were annotated as enterocyte progenitors or mature enterocytes by

expression of absorptive lineage markers including KRT20 and

FABP1 (Appendix Fig S3, Table EV4). BEST4- and OTOP2-

expressing enterocytes formed a discrete cluster (Parikh et al,

2019). Further separate epithelial clusters were identified as imma-

ture and mature secretory goblet cells expressing MUC2 and TFF3,

and as tuft cells expressing TRPM5. Four clusters formed largely

from tumor cell transcriptomes, termed TC1-TC4. These clusters

were defined by high, but also unequal, levels of stem cell markers

such as OLFM4, CD44, and EPHB2 and DNA repair genes such as

XRCC2. MMP7 was among the few genes expressed exclusively in

cancer, but not in the normal epithelium (Appendix Fig S3). Clus-

ters populated by differentiated absorptive and secretory cells were

reduced in tumors, and profiles representing tuft cells and BEST4/

OTOP2-positive enterocytes were vastly underrepresented.

Microsatellite-stable CRC is defined by somatic copy number

aberrations (SCNAs). Thus, we next distinguished cancer from

normal epithelial transcriptomes derived from the tumor tissues by

inferring SCNAs. We identified clusters of SCN-aberrant epithelial

cells in ten out of twelve tumors (Figs 1F and Fig EV1A). Exome

sequencing of tumors P007, P008, and P009 validated SCNA calling

from transcriptomes, showing that the procedure is robust for our

single-cell data (Fig EV1B). P014 and P026 contained no cells with

overt SCNAs. This was expected for tumor P026, which is MSI, but

unexpected for P014, which was diagnosed as BRAF-mutant,

however MSS. In-depth analysis of patient-specific gene expression

patterns (Appendix Fig S4A) and protein distributions

(Appendix Fig S4B) revealed that patient-specific differences in

cancer cell transcriptomes are at least partly driven by individual

patterns of genomic gains and losses (Appendix Fig S4C–E).

More than 86% of the TC1-4 cells were called SCN-aberrant,

along with substantial fractions of cells defined as stem/transient-

amplifying (TA)-cell-like (36%) or immature goblet cells (22%,

Fig 1F and G, and Fig EV2 for data by patient, Table EV5). In

contrast, a large majority (95%) of mature absorptive enterocytes

and mature goblet cells derived from tumor samples were identified

as copy number normal and therefore likely stem from non-

cancerous tissue at the tumor margins. In summary, our analyses

define six main patient-overarching clusters of CRC cells: CRC cells

resembling normal stem/TA-cell-like cells, CRC cells resembling
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Figure 1. Generation of CRC single-cell RNA sequencing data and epithelial cell type census.

A Workflow of the Clinical Single Cell Sequencing pipeline. In short, CRC and adjacent non-tumor tissue were sampled from 12 patients. Single-cell RNA sequencing
data were generated using the 10× Genomics platform, as outlined in Materials and Methods. For histology, see Appendix Fig S1. For patient characteristics, see
Table EV1, for mutational data, see Table EV2.

B–D UMAPs of single-cell transcriptome data. (B) UMAPs of epithelial, immune, and stromal cell transcriptomes, color-coded by tissue origin as assessed by marker
genes. For marker genes, see Table EV3. (C) UMAPs of epithelial cell transcriptomes, color-coded by patient identity or tissue of origin, as indicated. (D) UMAPs of
epithelial cells, separated by tissue of origin (normal vs. tumor). Clusters are color-coded by cell identity, as inferred from marker genes as outlined in main text.
For epithelial cell cluster marker genes, see Table EV4.

E Relative fractions of epithelial cell states for all patients.
F Identification of copy number-aberrant versus normal epithelial cells in tumor tissue. To the left: Cell cluster dendrogram, color-coded by patient and by copy

number-associated clusters (n = 2 per patient, copy number normal cluster: gray; copy number-aberrant cluster: red). To the right: Localization of SCN-aberrant
cells in the UMAP (red).

G Relative fractions of epithelial cell states for SCN-normal versus SCN-aberrant cells for all patients. For fractions by patient and copy number status, see Fig EV2.
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immature goblet-like cells, and CRC cells in the TC1-4 clusters with

transcriptomes distinct from well-defined cell types of the normal

colon epithelium.

Epithelial tumor cell clusters differ by oncogenic traits
and signals

We next defined characteristics of the six CRC cell clusters by

computing relative strengths of transcriptional footprints related to

oncogenic signaling and cancer-associated functional traits, using

transcriptome data of all copy number-aberrant cells (Fig 2A and B).

TC1 and TC4 were significantly enriched for the expression of direct

MAPK/ERK targets (P = 0.004 and P = 0.006, FDR-corrected post

hoc Wilcox tests, respectively; Schubert et al, 2018), across all

tumors and in particular in P007. We furthermore found a strong

association of TC1 cells with the expression of hallmark signatures

related to DNA repair and the G2/M replication checkpoint across all

individual cancers (P = 1.4E-10; Liberzon et al, 2015). This indicates

that TC1 cluster cancer cells experience high levels of replication

stress, a therapy-relevant trait of many cancers, including CRC.

Indeed, TC1 cluster cells were exclusively assigned to the S or G2/M

cell cycle phases by gene expression (Fig 2C), in line with cells under

replication stress, as also seen by XRCC2 expression (Appendix Fig

S3). The DNA damage-associated protein PARP stained many nuclei

of the TC1-high CRC tissue P009 but not of TC1-low P008 (Fig 2D).

Cancer cells clustered in TC4 were characterized by expression of an

intestinal YAP target signature (P = 2.2E-8; Serra et al, 2019). YAP

transcriptional activity is linked to regenerative responses and tumor

progression (Zanconato et al, 2016). TC2 transcriptomes were signif-

icantly associated with high PI3K pathway activity (P = 8.9E-10),

related to control of metabolism and apoptosis. Wnt/b-catenin target

gene activity was high across all TC clusters, but stem/TA-cell-like

cancer cells showed stronger expression of a LGR5-ISC stem cell

signature that is Wnt-driven (Merlos-Su�arez et al, 2011; Mu~noz et al,

2012), but this association was not significant across the patients. In

summary, assessment of cell signaling signatures provides informa-

tion on pathway activities of epithelial cancer cell clusters and speci-

fic features of individual tumors. The analyses indicate that

assignment of cancer cell transcriptomes to the TC1-4 clusters

reflects, at least partially, differential states of oncogenic networks

and oncogene-induced functional traits.

We validated our model of six patient-overarching CRC cell states

using single-cell data from Belgian and Korean patient cohorts (Lee

et al, 2020; Qian et al, 2020). We could confirm a prevalence of

TC1-4, stem/TA-cell-like and goblet-cell-like transcriptomes in SCN-

aberrant cancer cells compared to SCN-normal and normal tissue

epithelial cells and verified differential signaling pathway activities

between the clusters (Fig EV3).

CRC developmental trajectories follow a MAPK gradient

Immunofluorescent staining of primary CRC sections with antibodies

directed against the stem cell marker OLFM4, the proliferationmarker

KI67, and the differentiation markers TFF3 and FABP1 revealed cell

heterogeneity, but not how cancer cells in the tissue are related to

each other (Fig EV4). To establish whether CRC cells are hierarchi-

cally organized, we established organoid lines of two tumor samples,

P009 and P013 (Fig 3A). Organoids matched the cancer tissue on a

mutational level (Table EV2). We cultured the cancer organoids,

termed P009T and P013T, as well as normal colon organoids, termed

NCO, in medium containing Wnt, R-Spondin, and EGF (WRE

medium) or alternatively in medium lacking Wnt and R-Spondin (E

medium). NCO organoids cultured in WRE medium showed graded

expression of the intestinal LGR5-ISC stem cell signature, while

expression of differentiation markers was graded in the opposite

direction (Fig 3B). LGR5-ISC signature activity was lost when NCO

organoids were cultured in E medium. In P009T and P013T CRC orga-

noids, LGR5-ISC signature activity was higher and independent of

Wnt/R-Spondin, while expression of differentiation signature genes

was much lower. Taken together, these expression patterns are in line

with Wnt-dependent stem cell maintenance in normal tissue, and

Wnt-independent stem cell maintenance and block of terminal dif-

ferentiation in cancer tissue with APC mutations. The data however

do not showwhether graded developmental trajectories exist in CRC.

We, therefore, metabolically labeled RNAs of the organoids by

4-thio-uridine (4sU), before dissociation and single-cell sequencing

(scSLAM-Seq; Fig 3C; Herzog et al, 2017; J€urges et al, 2018). This

allowed us to distinguish nascent labeled from older non-labeled

mRNA, to order cells along inferred latent time based on dynamic

RNA expression (Bergen et al, 2020), also known as RNA velocity

(Appendix Fig S5 for quality controls). When cultured in WRE

medium, developmental trajectories of normal NCO organoids initi-

ated in areas of maximal LGR5-ISC signature scores and terminated

in a region containing differentiated cells (Fig 3D). When cultured

without Wnt/R-Spondin in E medium, NCO normal colon organoids

lost uniform direction of RNA velocity. In contrast, the P009T and

P013T cancer organoids maintained strong transcriptional trajecto-

ries regardless of Wnt/R-Spondin in the medium.

We ordered organoid transcriptomes along latent time and

assessed strengths of oncogenic signals (Fig 3E). In line with the

key role of Wnt in stem cell maintenance, normal colon organoids

showed a gradient of Wnt/b-catenin target gene expression along

latent time when cultured in WRE medium. In contrast, both P009T

and P013T cancer organoids showed no graded Wnt/b-catenin-
related expression, but a clear gradient of MAPK target gene activity

along latent time in both medium conditions. TFF3, marking secre-

tory differentiation, was graded in CRC organoids along latent time,

but FABP1, marking absorptive differentiation in the normal colon,

was not (Fig 3F), in line with TFF3 marking differentiated goblet-

like CRC cells at the end of developmental trajectories. Proliferation

marker MKI67 was confined to the beginning of the latent time

trajectory of normal organoids in WRE medium and showed

extended gradients in CRC organoids. Both P009T and P013T orga-

noids displayed Wnt-dependent loss of MKI67 expression along

latent time and also Wnt-dependent MMP7 expression. In summary,

our metabolic RNA labeling experiments indicate decreasing MAPK

activity along CRC developmental trajectories and suggest a role for

Wnt as a paracrine signal influencing gene expression, such as

MMP7, in APC-deficient CRC cells.

MAPK target gene expression defines CRC differentiation states

As MAPK-related gene expression was associated with developmen-

tal trajectories in CRC organoids, we analyzed whether the previ-

ously defined states of primary CRC cells were organized along a

MAPK gradient in primary CRC. We assigned the SCN-aberrant
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primary cancer cell transcriptomes to 40 bins along a gradient of

diminishing LGR5-ISC gene signature activity or along decreasing

MAPK activity, and determined expression levels of the stem cell

markers LGR5 and EPHB2 (Merlos-Su�arez et al, 2011; Fig 4A). As

expected, ordering transcriptomes by LGR5-ISC signature strength

resulted in graded expression of LGR5 and EPHB2, and the signature

was especially suited for aggregating cells with high LGR5 expres-

sion. However, MAPK target gene signature strength performed

even better in sorting cells along a gradient of EPHB2 expression.

We conclude that expression patterns of known CRC cell hierarchy

markers agree with MAPK-driven development.

When ordering primary CRC transcriptomes along a gradient of

LGR5-ISC activity, a higher proportion of stem/TA-like tumor cells

aggregated at the high end of the gradient, whereas tumor cells

assigned as immature goblet cell-like accumulated in the lower end,

and TC1-4 cells displayed a broad distribution (Fig 4B). In contrast,

ordering of CRC cells by MAPK signature activity significantly

enriched TC1 and TC4 cells at the start of the gradient (P = 8.6E-23

and P = 7.6E-20, respectively, adjusted Pearson’s chi-squared p-

value), whereas stem/TA- and immature goblet cell-like cells

concentrated at the lower end (P = 1.3E-19 and P = 1.1E-8, respec-

tively), and these aggregate differences were also preserved as

graded cell state distributions along the MAPK axis in individual

patients (Fig 4C, Table EV6): P007 showed the highest MAPK activ-

ity, and the highest proportion of TC4 cells which clustered in the

MAPK-high bins. TC1 and TC4 cells had also the highest average

A

B

C D

Figure 2. CRC cell clusters are distinguished by signaling pathway activities.

A Transcriptional activity associated with key oncogenic traits and signals, by tumor-specific cell type and patient, as indicated. Red: high activity, blue: low activity.
Significance was assessed by Kruskal–Wallis test (FDR-corrected P < 0.05), followed by a post hoc analysis using a Wilcox test of each group against all other groups,
FDR-corrected significance levels are shown (*P < 0.05; **P < 0.01; ***P < 0.001).

B Visualization of signatures corresponding to oncogenic traits and signals in the tumor cell transcriptome UMAP.
C Cell cycle distribution of TC1-4 epithelial tumor cells, as inferred from single-cell transcriptomes.
D Immunofluorescence of DNA damage-associated nuclear protein PARP. Images show adjacent normal and tumor crypts of tissue P009T, marked by N and T,

respectively, and tumor tissue of patients P008 and P009, as indicated. Scale bar 100 µm. Significance was assessed by an unpaired t-test, after blinded analysis of 10
random images per tumor.
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MAPK activities in most other CRCs, including P008, P012, P013,

and P016. In contrast, stem-/TA-like tumor cells and immature

goblet-like CRC cells displayed relatively low expression of MAPK

targets in all tumors, particularly in P009, P012, P013 P017, P021,

P025, and P008, P017, respectively.

To experimentally determine whether the CRC cell states are

functionally linked to MAPK activity, we blocked MAPK signaling in

CRC organoids by the MEK1/2 inhibitor Selumetinib (AZD6244) or

by Selumetinib in combination with the EGFR inhibitor Sapatinib

(AZD8931) and analyzed singe-cell gene expression after 48 h

(Fig 4D). We found that cells showing a high TC1 signature were

diminished after MEK inhibition in P009T organoids, while the frac-

tion of cells with a high goblet-cell-like signature was increased.

Likewise, P013T organoid cells showed lower expression of the TC4

signature genes after MAPK blockade and higher expression of the

stem cell-related LGR5-ISC signature. These results suggest that CRC

cell states are MAPK-driven.

Targeted therapy alters cell signaling networks in CRC organoids

MAPK is a key target of CRC therapy, as blockade of EGFR is the

first-line therapy for patients with metastasized RAS/RAF-wild-type

CRC, and combined blockade of EGFR and BRAF is first-line therapy

for patients with advanced CRC containing oncogenic BRAF muta-

tions. We therefore asked whether targeted therapy is associated

with changes in CRC cell states and trajectories. In addition to the

RAS/RAF-wild-type organoid lines P009T and P013T, we employed

OT227 and OT302 organoids carrying KRASG13D and KRASG12D

mutations, respectively, and the BRAFV600E-mutant and APC-wt

lines B2040 and C2019 (for panel sequencing, see Table EV2). The

organoid lines exhibited different growth factor dependencies

(Appendix Fig S6), but were uniformly cultured in the presence of

EGF throughout the experiments for comparable results. As the

blockade of EGFR using the antibody cetuximab was not effective

in vitro as also observed by others (Sch€utte et al, 2017), we treated

the organoids with the EGFR inhibitor Sapatinib, the BRAF inhibitor

LGX818 (Encorafenib), the MEK inhibitor Selumetinib and combina-

tions for 48 h, before subjecting single-cell suspensions to CyTOF

and scSLAM-seq (Fig 5A, Appendix Fig S7 for summaries of CyTOF

data) to measure relative activities of signal transducers and related

transcriptional signatures, respectively (Fig 5B).

Inhibitor treatments had variable effects on the cell signaling

network between lines, but we observed communalities between

the lines with shared RAS/RAF mutational status (Fig 5C): In RAS/

RAF-wild-type lines, treatment with EGFR inhibitor reduced both

MEK and ERK phosphorylation. MEK inhibition decreased ERK

phosphorylation, but increased MEK phosphorylation via negative

feedback suppression (Fritsche-Guenther et al, 2011). BRAF inhibi-

tors raised levels of MEK and ERK phosphorylation, suggesting para-

doxical activation of RAF (Hatzivassiliou et al, 2010). In contrast,

the KRAS mutant lines OT227 and OT302 were largely unresponsive

to EGFR inhibition, while MEK inhibition caused strong upregula-

tion of MEK phosphorylation, and BRAF blockade strongly upregu-

lated both MEK and ERK phosphorylation. A similar response to

MEK inhibition was found in the BRAF-mutant lines C0219 and

B2040; however, in these lines BRAF inhibition alone or in combina-

tion with EGFR inhibition resulted in substantial loss of ERK phos-

phorylation.

Cell signaling changes translated into gene expression (Fig 5D),

as we found high correlation between ERK phosphorylation and

MAPK target gene activity (P < 0.0001, using linear models with

line-specific offsets; Fig 5E). Furthermore, across all CRC organoids,

we observed a positive correlation between p-ERK and KI67 protein

levels (P < 0.005) and a negative correlation between p-ERK and

cleaved Caspase3 (P < 0.005) and cleaved PARP levels, in line with

roles of MAPK in activation of proliferation and inhibition of apop-

tosis. Positive correlations also existed between p-ERK and YAP

(P < 0.0001), and between MAPK target expression and YAP target

expression (P < 0.0001). In contrast, MAPK target activity was nega-

tively correlated with Wnt target activity (and P < 0.05, respec-

tively; Fig 5E). A direct interaction between MAPK and YAP

signaling is supported by induction of transgenic BRAFV600E in a

mouse intestinal organoid model (Riemer et al, 2015), which

resulted not only in activation of the MAPK target gene signature,

but also in an even stronger activation of YAP target genes (Fig 5F).

Targeted therapy alters developmental trajectories of CRC
organoid cells

We traced developmental trajectories in the panel of six CRC orga-

noid lines by computing latent time from scSLAM data in the

absence of treatment (DMSO control condition; Fig 6A). In five out

of six organoids, cells at early latent time expressed significantly

higher levels of MAPK targets and TC1 and TC4 signatures, extend-

ing our previous results to lines with mutations in the MAPK path-

way. In contrast, cells at late latent time expressed the Goblet cell

▸Figure 3. RNA metabolic labeling defines tumor cell trajectories in patient-derived organoids.

A Phenotypes of patient-derived organoid lines P009T and P013T.
B UMAPs of organoid single-cell transcriptomes. Organoid lines and medium conditions as indicated. LGR5-ISC stem cell, enterocyte, and Goblet cell signatures are

visualized.
C Schematic representation of workflow to infer RNA dynamics (“RNA velocity”). In short, organoids were passaged and assigned to different medium conditions. After

three days, nascent RNA was metabolically labeled for 2 h using 4sU. Organoids were harvested, dissociated, and fixed. RNA in single cells was alkylated, and cells
were subjected to single-cell sequencing. Reads were assigned to nascent or old RNA status, depending on diagnostic T-C mutational status.

D Developmental trajectories inferred from RNA metabolic labeling. Bold and thin arrows indicate high versus low directionality of RNA velocity. Colors below RNA
velocity show latent time (yellow: early latent time; blue: late latent time).

E Activities of Wnt/b-catenin and MAPK target genes in organoid single-cell transcriptomes, ordered along latent time.
F Activities of TFF3, FABP1, MKI67, and MMP7 in organoid single-cell transcriptomes, ordered along latent time.

Data information: Color code for panels E and F: Red: high activity; blue: low activity.
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Figure 4. MAPK activity is linked to CRC cell differentiation states.

A Gene expression of LGR5 and EPHB2, along activity gradients of LGR5-ISC or MAPK target gene signatures.
B Cell state distribution of SCN-aberrant CRC cells along gradients of LGR5-ISC or MAPK transcriptional signatures, as in A.
C Cell state distribution of SCN-aberrant CRC tumor cells along MAPK signature activity, as in B, per tumor. Correlation between cell state distributions and MAPK

target gene was calculated using Pearson’s r. For correlations and significances, see Table EV6. Color code as in Fig 4B.
D UMAP representations of single-cell transcriptomes derived from P009T or P013T organoids, after MAPK blockade using MEK or combined MEK and EGFR inhibition.

Color codes are treatment conditions or expression strength of signature, as indicated. Dashed line in P013T UMAP roughly separates control (DMSO) and MEK/EGFR
inhibitor-treated cells.
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signature, indicating differentiation at trajectory endpoints (for

statistics on cell state signature distributions, see Table EV6). The

stem cell-related LGR5-ISC signature was not uniformly graded

along latent time. The outlier line OT227 did not show clear direc-

tionality of cell development.

Anti-MAPK therapies had broad consequences on gene expres-

sion, as quantified by hierarchical clustering of conditions based on

a similarity matrix of shared neighboring cells (Fig 6B and C). We

found that inhibition of EGFR, alone or in combination with BRAF

or MEK inhibition, was most effective in the induction of transcrip-

tome changes in the RAS/RAF-wild-type organoid lines P009T and

P013T. A combination of BRAF and EGFR inhibitors deregulated

transcriptomes effectively in the BRAF-mutant B2040 and C2019

organoids, while both inhibitors had smaller effects on their own.

As also observed for ERK phosphorylation (Fig 5C, above), these

data agree with clinical reality, where positive outcomes for EGFR

and combinatorial BRAF/EGFR inhibition are variable but limited to

patients with RAS/RAF-wild-type and BRAF-mutant CRC, respec-

tively. Effective anti-MAPK treatment contrasted with chemotherapy

in outcomes regarding transcriptome regulation and cell cycle distri-

bution in the organoids, indicating distinct mechanisms of action

(Appendix Fig S8).

Based on the above results, we concentrated on anti-EGFR, anti-

MEK, and combined anti-EGFR/BRAF inhibition for RAS/RAF-wild-

type, KRAS- and BRAF-mutant organoids, respectively, and

analyzed cell development and cell state prevalence for these

preferred inhibitor combinations. Averaging across all cells, the

MAPK-high TC1 and TC4 cell state signatures were downregulated

by the preferred treatments in all lines (Fig 6D). In P009T, P013T,

OT227, and B2040 organoid lines, the MAPK inhibitors induced

LGR5-ISC or stem cell cluster-related signatures, while OT302

showed stronger differentiation-related Goblet cell signature gene

expression (Fig 6F). To analyze whether gene expression changes

have a basis in directional cell development, we first compared

developmental trajectories, as visualized by dynamic velocities in

the UMAPs. Trajectories were re-routed to new endpoints in P013T,

OT302, and C2019 organoids under treatment and were induced in

the OT227 line that did not show directional development in the

absence of treatment (Fig 6E). Cells at the ends of trajectories

(marked in bold in Fig 6F) were distinguished from the bulk of cells

by lower differentiation-associated Goblet-like gene expression in

four out of six lines (P009T, P013T, OT302, and B2040), and the

same cells showed higher stem cell- and Wnt-associated LGR5-ISC

signature expression, or activation of Wnt targets or stem cell mark-

ers such as AXIN2 or LGR5 in some lines.

We analyzed cell state changes in detail in P013T organoids,

where EGFR inhibition induced divergent developmental trajectories

toward two distinct endpoints after 48 h of treatment (Figs 6E and

EV5). A common endpoint between control and EGFRi conditions

was characterized by goblet cell differentiation and the hallmark

apoptosis signature, whereas a new treatment-induced endpoint

was characterized by LGR5-ISC signature expression (Fig EV5A and

B). Accordingly, trajectories toward the latter endpoint showed de

novo expression of the Wnt targets AXIN2, LGR5, OLFM4 as indi-

cated by the dynamics in the phase plot after EGFR inhibition and

also by the more restricted fields of expression for the older non-

labeled as compared to the newer labeled RNAs (Fig EV5C and D).

These gene activity patterns are strong indications for the re-

routing of cell development under MAPK inhibition, away from

differentiation-associated developmental endpoints toward a state

high in expression of Wnt-driven stem cell gene expression. The

computational analyses agree with organoid culture phenotypes

showing slow outgrowth of resistant P013T colonies under long-

term EGFR treatment (Fig EV5E and F).

Discussion

Here, we provide a comprehensive analysis of patient-overarching

transcriptional states of CRC cells forming developmental trajecto-

ries. We find that cell hierarchies in CRC are organized along devel-

opmental trajectories following MAPK gradients. Our analyses

imply that CRC cells develop gradually and directional rather than

forming fixed cell populations in organoids and probably also in

patients. As cell state prevalence differed between patients, we

suggest that CRC cell trajectories are guided and constrained by indi-

vidual cancer characteristics such as paracrine signals from the

tumor microenvironment and patterns of oncogenic driver muta-

tions. Our experiments in organoids indicate that therapies targeting

the MAPK pathway reduce proliferation, but can also redirect devel-

opmental trajectories of CRC cells toward endpoints that are likely

associated with therapy resistance.

Previous single-cell studies defined features of the CRC immune

microenvironment (James et al, 2020; Lee et al, 2020; Qian et al,

2020; Zhang et al, 2020). However, no consensus exists on patient-

overarching features defining cells of the epithelial CRC

▸Figure 5. Anti-MAPK therapy affects signaling networks and transcriptomes contingent on predictive mutations in organoids.

A Workflow of the experimental therapy experiment. In short, organoids were treated for 48 h with inhibitors before disaggregation into single cells for CyTOF and
scRNA-seq analysis. For scRNA-seq, organoids were labeled for 2 h with 4sU.

B Schematic representation of signaling network and transcriptional signatures associated with phenotypes or signaling pathways, as indicated.
C Heatmap of key CyTOF data. Average activities of selected analytes are given as log fold change after normalization to DMSO control condition. Range of color scale

was adjusted for each analyte. For relative changes between all analytes, see Appendix Fig S7).
D Heatmap of signature gene expression, from scRNA-seq data. Average activities of selected gene signatures are given as log fold change after normalization to DMSO

control condition. Range of color scale was adjusted for each signature. DNA repair and Apoptosis are Broad Institute Hallmark signatures.
E Correlations between and within the CyTOF and scRNA-seq datasets. For each line, average protein analyte (CyTOF) or transcriptional signature (scRNA-seq) values

were plotted for all six experimental conditions. Graphs give trend line and confidence intervals.
F Upregulation of MAPK and YAP target genes in mouse intestinal organoids after induction of oncogenic BRAF. Wnt target genes are not significantly affected. For

experimental details, see Riemer et al (2015). Graph displays data points for signature gene expression values, mean and standard deviation. ****indicates P-value of
< 0.0001 in two-tailed paired t-test of gene expression ratios (luciferase control versus BRAF-induced). n.s.: not significant.
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compartment. Here, we define six transcriptome-based states of

CRC cells, termed stem/TA-like, goblet cell-like, and TC1-4, that

have differential activities of oncogenic pathways. Individual stem

cell markers such as OLFM4 or CD44 varied in expression between

the stem/TA-cell-like and TC1-4 clusters and were also found over-

expressed in clusters of colorectal polyp and cancer cell of another

study (preprint: Becker et al, 2021). Based on these transcriptional

patterns, it appears that no unique stem cell signature exists in CRC

and that Wnt, YAP, and MAPK activities together can maintain dif-

ferent cell states that may act as functional equivalents of stem cells

that can sustain cancer growth. The TC1-4 clusters were predomi-

nantly populated by copy number-aberrant cancer cells but also

contained some non-cancerous epithelial cells. We therefore

propose that, while oncogenic signals are main drivers of the TC1-4

transcriptional states, (tumor-)microenvironmental signals and cell-

intrinsic cues can result in normal epithelial cells to assume such

transcriptional states, too.

Like many current single-cell studies, our work is limited by

rather small patient and organoid cohorts. Furthermore, our analy-

ses focused on SCN-aberrant CRC cells, and therefore, the hetero-

geneity of SCN-stable CRC, in particular MSI tumors, is not covered.

Community efforts integrating multiple studies will be required to

provide a general framework of how genetic drivers and the

microenvironment interact to direct cell state prevalence, develop-

mental trajectories, and cell plasticity during tumor progression and

under therapy. Such analyses may result in a consensus structure

for single-cell CRC transcriptomes different from the six CRC cell

cluster model proposed here.

MAPK is a key pathway for targeted therapy, as many CRC

patients profit from anti-EGFR or anti-EGFR/anti-BRAF therapy

(Amado et al, 2008; Karapetis et al, 2008; Kopetz et al, 2019). By

and large, outcomes of our experimental inhibition of MAPK in

organoids agreed with known relationships between predictive

mutations and therapy sensitivity, as EGFR inhibition was only

effective in RAS/RAF-wild-type organoids, while a combination of

BRAF and EGFR inhibitors—but not each inhibitor alone—had

profound effects on development of BRAFV600E-mutant CRC orga-

noids. In addition, we show that graded MAPK-driven gene expres-

sion informs developmental trajectories, extending previous finding

of graded ERK activity in CRC organoids (Brandt et al, 2019). Our

analyses suggest that intrinsic resistance to anti-MAPK therapies

may rely on re-routing of developmental trajectories of CRC cells.

Indeed, the ability to reverse developmental trajectories in the

intestinal epithelium has been found before (Buczacki et al, 2013;

Schwitalla et al, 2013; Jadhav et al, 2017). Our study therefore adds

new aspects to current models of anti-MAPK therapy resistance

defined by cell plasticity (Misale et al, 2014; Woolston et al, 2019;

Lupo et al, 2020).

Our study suggests that multiple signaling pathways form a

therapy-relevant interconnected network of oncogenic signaling

pathways in CRC. For instance, we find that YAP and MAPK levels

are positively correlated on the protein activity and the transcrip-

tional response levels. YAP maintains regenerative responses and is

a key driver of CRC and other cancers (Zanconato et al, 2016). In

contrast, MAPK and Wnt signaling were negatively correlated. We

and others previously showed loss of Wnt-driven intestinal stem

cells by high MAPK levels provided by oncogenic BRAF (Riemer

et al, 2015; Tong et al, 2017). Here, we find that therapeutic inacti-

vation of MAPK can result in Wnt and LGR5-ISC signature reactiva-

tion in CRC, confirming two previous studies (Zhan et al, 2019;

Lupo et al, 2020). As both pathways, Wnt and MAPK, are generally

activated by oncogenic mutations in CRC, cross-inhibition between

the pathways would mean that therapeutical suppression of one

pathway results in oncogene-driven activation of the other, possibly

explaining why many therapeutic approaches to block MAPK

proved insufficient in the clinic. It will be an important goal for

future studies to identify combinations of actionable signals that can

be exploited for therapies resulting in uniform commitment of CRC

cells to differentiation-related and apoptotic endpoints instead of re-

routing subsets of cancer cells toward stem cell-like states.

Our study also identified further cancer traits in CRC cell clusters

with relevance to therapy. For instance, TC1 cells were defined by

high levels of replication stress, which can be functionally associ-

ated with high MAPK activity (Sheu et al, 2012; Klotz-Noack et al,

2020). Tumors with high TC1 cell content were strongly positive for

PARP, an important therapeutic target (Sun et al, 2020). It is of note

that the CMS subtyping system developed for bulk tissue CRC tran-

scriptomes (Guinney et al, 2015) could not distinguish the CRC cell

types that we identified here on the single-cell level, as most epithe-

lial cancer cells were assigned to CMS1 or CMS2 with the exception

of goblet-like CRC cells that can adopt CMS3 (Appendix Fig S9).

In addition to patient-overarching CRC cell traits, we also

observed patient-specific gene expression differences. Our integrated

analysis of single-cell transcriptomes and copy number gains and

losses indicated that patient-specific gene expression patterns were

significantly associated with copy number gains that we inferred

from transcriptomes and validated using exome sequencing of three

patients. On another level, we observed patient-specific gene

◀ Figure 6. Anti-MAPK therapy re-routes developmental trajectories in CRC organoids.

A Activities of gene expression signatures, as indicated, in single-cell transcriptomes from control (DMSO) condition CRC organoids, ordered along latent time.
Correlation between cell state distributions and latent time was calculated using Pearson’s r. For correlations and significances, see Table EV6. Color code red: high
activity; blue: low activity.

B UMAPs of organoid single-cell transcriptomes, color-coded by treatment conditions, as indicated.
C Dendrograms of transcriptome similarities across treatment conditions, per organoid line. Height of dendrogram is obtained by hierarchical clustering on the overlap

of KNN neighborhoods across conditions. Preferred treatment conditions are marked by asterisk.
D Heatmap of signature gene expression, from scRNA-seq data. Average activities of gene signatures are given as log fold change for preferred treatment condition,

after normalization to DMSO control condition. Range of color scale was adjusted for each signature.
E RNA velocity analysis of organoids under DMSO and preferred treatment conditions. Latent time is given as color code in the control (DMSO) condition UMAP,

dynamical velocities are displayed as arrows.
F Scaled signature expression and single gene expression moments per cell, under control (gray) and preferred treatment (color) conditions, as indicated. 10% of cells

populating the end of latent time are displayed in bold. It is of note that latent time is linear and thus cannot capture multiple populations located at developmental
end points. Densities at the sidelines display expression in all cells.
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expression patterns that translated into regional patterns of proteins,

as evidenced by the staining for MMP7 which was confined to the

invasive front of some tumors. Such patterns of gene activity and

protein translation indicate that tumor cell development is highly

plastic and partly regulated by immune and stromal cells in the

microenvironment. Thus, we expect that the intrinsic developmental

paths of CRC cells that we observe in organoid cultures are modu-

lated by extrinsic cues from the microenvironment in vivo. Future

studies using co-cultures of different tumor-associated cell types

could disentangle key paracrine relationships in cancer.

We analyzed here primary cancer epithelium and organoid tran-

scriptomes. Novel single-cell approaches, taking into account the

diversity of the tumor microenvironment in patient cohorts stratified

by treatment, complex cell culture models, the extension of single-

cell analyses to multi-omics, and the preservation of spatial informa-

tion at a cellular level, promise to identify cellular heterogeneity and

genetic diversity of cancer at even greater detail in the future. The

combination of such approaches has the potential to improve the

molecular understanding of cancer and therapy prediction for

patients (Rajewsky et al, 2020). Our work defining developmental

trajectories of CRC contributes to this goal.

Materials and Methods

Collection and single-cell RNA sequencing of clinical specimens

Fresh normal colon and colorectal cancer tissues were acquired

during the intraoperative pathologist’s examination at Charit�e

University Hospital Berlin. Tissues (approx. 0.1–0.4 g) were minced

using scalpels, processed using the Miltenyi Human Tumor Dissoci-

ation Kit (Miltenyi, #130-095-929) and a Miltenyi gentleMACS

Tissue Dissociator (Miltenyi, #130-096-427), using program

37C_h_TDK_1 for 30–45 min. For three tumors, we also used diges-

tion with the cold active protease from Bacillus licheniformis (Sigma

P5380) at approx. 6°C for 45 min. with frequent agitation, following

a published protocol (Adam et al, 2017) (Appendix Fig S10). Cell

suspensions were filtered using 100 µm filters, pelleted by centrifu-

gation, treated with 1 ml ACK erythrocyte lysis buffer, washed and

resuspended in ice-cold PBS, and filtered using 20 µm filters. Debris

was removed using the Debris Removal Solution (Miltenyi #130-

109-398). Cell suspensions were analyzed for cell viability > 75%

using LIVE/DEAD Fixable Dead Cell Stain Kit (488 nm; Thermo

Fisher) and a BD Accuri cytometer. 10,000 single cells were used for

single-cell library production, using the Chromium Single-Cell 3´

Reagent Kits v3 and the Chromium Controller (10× Genomics).

Libraries were sequenced on a HiSeq 4000 Sequencer (Illumina) at

200–400 mio. reads per library to a mean library saturation of

approx. 50%. This resulted in 35,000 to 120,000 reads per cell.

DNA sequencing

For panel sequencing, DNA was extracted from FFPE tumor tissue

using the Maxwell RSC DNA FFPE Kit (Promega) or the GeneRead

DNA FFPE kit (Qiagen) and sequenced using a CRC panel (Mamlouk

et al, 2017), and/or the Ion AmpliSeq Cancer Hotspot Panel (CHP)

v2 and an IonTorrent sequencer (Thermo Fisher). Variant calling

was performed using Sequence Pilot (Version 4.4.0, JSI Medical

Systems) or SoFIA (Mamlouk et al, 2017). For exome sequencing,

DNA was isolated from fresh-frozen tumor tissue using the DNeasy

Blood and Tissue Kit (Qiagen). Exomes were sequenced using the

AllExon Human SureSelect v7 Kit (Agilent).

Histology and immunostaining

3–5 µm tissue sections of formalin-fixed and paraffin-embedded

(FFPE) tissue were used. Immunostainings were performed on the

BenchMark XT immunostainer (Ventana Medical Systems), using

CC1 mild buffer or Ultra CC1 buffer (Ventana Medical Systems) for

30 min at 100°C, and using antibodies rabbit anti-TFF3 (1:250,

Abcam, ab108599), mouse anti-FABP1 (1:1,000, Abcam, ab7366),

rabbit anti-OLFM4 (1:100, Atlas Antibodies, HPA077718), mouse

anti-EPCAM (1:100, Thermo Scientific, MS-144-P1), rabbit anti-Ki67

(1:400, Abcam, ab16667), mouse anti-Ki67 (1:50, Dako, M7240),

rabbit anti-LYZ (1:1500, Abcam, ab108508), rabbit anti-EREG (1:50,

Thermo Fischer Scientific, PA5-24727), anti-PARP1, mouse anti-

MUC2 (1:50, Leica, NCL-MUC-2), mouse anti-CK17 (1:10, Dako,

M7046), and mouse anti-MMP7 (1:100, Thermo Fisher Scientific,

MA5-14215). Images were taken using AxioVert.A1 (Zeiss) or CQ1

(Yokogawa) microscopes or scanned using the Pannoramic SCAN

150 scanner (3DHISTECH).

Organoid culture and metabolic labeling

Tumor cells were washed in Advanced DMEM/F12 medium (Gibco),

embedded in Matrigel, and cultured in 24-well plates, as published

(Sato et al, 2011). Wnt3 and R-Spondin3 were prepared as condi-

tioned media (Sato et al, 2011). For testing of media conditions, orga-

noids were re-plated four days after disaggregation into a 96-well

plate and grown in the different media (no growth factors; +EGF;

+Wnt/R-Spondin/Noggin/EGF; +AZD8931, 100 nM). After 6 days,

cell viability was measured with Real-Time-Glo MT Cell Viability

Assay (Promega, G9712) and Cyto3D Live-Dead Assay Kit (The Well

Biocioscience, BM01). NCO, P009T, and P013T replicate cultures

were cultured in media with and without Wnt/R-Spondin, and

P009T, P013T, OT227, OT302, B2040, C2019 organoids were

cultured in standard media (Sato et al, 2011; Sch€utte et al, 2017)

with DMSO or were treated for 48 with 100 nM AZD8931 (Sapatinib),

100 nM LGX818 (Encorafenib) and/or 8 µM AZD6244 (Selumetinib),

5 µM 5-fluoro-uracil or 5 µM oxaliplatin. For single-cell sequencing,

organoids were dissociated completely using TrypLE and DNAseI,

and filtered via a 20 µm filter. For single-cell SLAM-seq, organoids

were metabolically labeled in culture using 200 µM 4-thio-uridine for

2 h (Herzog et al, 2017), harvested, disaggregated to single cells by

TrypLE, and fixed in fixation buffer (80% methanol/20% DPBS) at

≥ �20°C. Samples were warmed to room temperature and incubated

with 10 mM iodoacetamide. Alkylation was carried out overnight, in

the dark, with gentle rotation, followed by two washes with cold fixa-

tion buffer. Single-cell suspensions were rehydrated and incubated

10 min at room temperature in 100 mM DTT. Samples were resus-

pended in fixation buffer and conserved at�80°C.

Mass cytometry (CyTOF)

For CyTOF analysis, we used a panel of antibodies described in

Brandt et al, 2019, and measurements were performed essentially as
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in described in the same publication. In short, organoids were

harvested in PBS and digested to a single-cell solution in 1:1 Accu-

tase (BioLegend) and TrypLE (Gibco) with addition of 100 U/ml

Universal Nuclease (Thermo Scientific) at 37°C. Cells were counted,

and a maximum of 500,000 cells were stained with 5 µM Cell-ID

Cisplatin (Fluidigm) in PBS for 5 min at 37°C, washed in PBS, resus-

pended in medium and incubated for 30 min at 37°C, resuspended

in BSA/PBS solution, mixed 1:1.4 with Proteomics Stabilizer (Smart

Tube Inc.), and frozen at �80°C for storage.

For analysis, cells were thawed, mixed with Maxpar Cell Staining

Buffer (CSB, Fluidigm), labeled using the Cell-ID 20-Plex Pd Barcod-

ing Kit, and washed again in CSB, then in Barcode Perm Buffer (Flu-

idigm). After barcoding, cells were pooled and stained with a

surface antibody cocktail, as described previously (Brandt et al,

2019). Data were acquired on a Helios CyTOF system. Mass cytome-

try data were normalized using the Helios software, and bead-

related events were removed. Doublets were excluded by filtering

for DNA content (191Ir and 193Ir) vs. event length, and apoptotic

debris removed by a filter in the platin channel (195Pt). De-

convolution of the barcoded sample was performed using the CATA-

LYST R package version 1.5.3 (Chevrier et al, 2018).

Primary tissue single-cell RNA-seq data analysis

UMIs were quantified using cellranger 3.0.2 with reference tran-

scriptome GRCh38. Cell cycle was scored based on a list of cell

cycle-associated genes (Kowalczyk et al, 2015), and differences

between S and G2 M expression scores were linearly regressed out

per gene. For parameters and initial quality controls, see

Appendix Fig S2. Epithelium, stromal, and immune cells were iden-

tified by scoring cell type markers across Louvain clusters for each

sample (resolution = 1). Cell type markers used to score epithe-

lium, stromal, and immune cells were adapted from Smillie et al

(2019) and are listed in Table EV3. Sample-wise quality control

assessments and subsettings into main cell types are documented

at sys-bio.net/sccrc/. Normalized subsets were merged for each

main cell type of normal and tumor samples without further batch

correction.

SNN graph, Louvain clusters, and UMAP embeddings were

recomputed for each subset based on top ten components. Louvain

cluster-specific marker genes of merged normal and tumor samples

were used to identify sub-cell types among epithelial, stromal, and

immune subsets. Here, marker genes were determined with Seurat

(Stuart et al, 2019) at a minimum log fold change threshold of 0.25.

Gene expression sets were taken from the hallmark signature collec-

tion of the Broad institute (Liberzon et al, 2015), unless otherwise

referenced in the main text, and were scored as implemented in the

progeny R package and Seurat v3, respectively.

For copy number assessment, InferCNV v1.3.3 was used with

default parameters. Copy number-aberrant clones were cut at k = 2

in inferCNV dendrograms. Clone-wise SCNA scores were computed

by calculating the average standard deviation in inferCNV expres-

sion of all cells and divided by the average standard deviation in

inferCNV expression of all normal samples taken together. Clones

with a SCNA score greater than the highest observed score for

normal samples were considered copy number-aberrant.

For analysis of scRNA-seq validation datasets, we downloaded

publicly available data from the European Genome-phenome

Archive database (EGAS00001003779, EGAS00001003769) and

ArrayExpress (E-MTAB-8410, E-MTAB-8412; Lee et al, 2020; Qian

et al, 2020). We preprocessed data using the same pipeline as for

our primary tissue analysis, including copy number calling and

pathway activity scoring for the set of Belgian patients (KUL01-

KUL31). Additionally, we used the ingest function from scanpy to

perform linear domain adaptation for asymmetric data integration.

In short, ingest utilizes the PCA previously fitted onto our data to

transform the reference dataset into the same space. Within this

space, ingest can integrate the reference data into our UMAP coordi-

nate system (Fig EV3C) and assign reference cells into correspond-

ing cluster identities in the original dataset based on KNN classifiers

(Fig EV3D–F).

Organoid single-cell RNA-seq data analysis

Single-cell SLAM sequencing data were preprocessed using cell-

ranger v4.0, and labeled and unlabeled reads were counted using

the alignments (as BAM files), using a custom pipeline utilizing

Snakemake (Köster & Rahmann, 2012), SeqAn (Döring et al, 2008),

R. For each read, the numbers of T nucleotides and T-to-C conver-

sions were counted, leaving out positions with common SNPs (us-

ing the dbSNP build 151 as available as track from UCSC genome

browser). For each molecule as identified by cell barcode and UMI,

positions with discordant nucleotides were excluded. Subsequently,

molecules were counted as nascent RNA if they contained a T-to-C

conversion and old RNA otherwise.

scRNA-seq and scSLAM-seq data for organoids were analyzed

using scanpy (Wolf et al, 2018)and scvelo (Bergen et al, 2020). For

diffusion map analysis and RNA velocity, cells were first filtered by

the number of genes (between 2,000 and 5,000) and the percent

mitochondrial reads (between 0.075 and 0.2) and normalized, using

scvelo standard settings. Cell cycle was scored and regressed out as

for the primary cell data. UMAP embeddings were computed based

on a PCA on only the 2,000 most highly variable genes obtained

with scanpy. The similarity measure between conditions in Fig 6B

was defined by the average fraction of shared neighbors in a nearest

neighbor graph over all cells in the dataset, then performing hierar-

chical clustering on the resulting similarity matrix.

Moments were calculated on 30 principal components and 30

neighbors, separately per condition to avoid smoothing effects

between different conditions within the same dataset. Velocity was

calculated using the dynamical model from scvelo on 2,000 most

highly variable genes according to scanpy, which were then filtered

for at least 20 shared counts in both SLAM layers. Per gene, we

usually observed either induced or repressed expression dynamics

only. To resolve ambiguity in fitting kinetics to one-sided dynamics,

we modified the dynamical model from scvelo with an additional

regularization term for the experiments analyzing Wnt- versus

MAPK-driven velocity, penalizing the number of cells that are

assigned a higher latent time than a given root prior.

Ethics permission

All patients were aware of the planned research and agreed to the

use of tissue. Research was approved by vote EA4/164/19 of the

ethics commission of Charit�e—Universit€atsmedizin Berlin. Experi-

ments conformed to the WMA Declaration of Helsinki and to the
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principles set out in the Department of Health and Human Services

Belmont Report.

Statistical analysis

Statistical analyses of single-cell data were performed using non-

parametric Wilcox and Kruskal–Wallis tests, as indicated in main

text and figure legends. Cell state distribution statistics (Fig 4C)

were calculated using Pearson’s correlation coefficient (Pearson´s r),

and significance of correlations was assessed by t statistics

(Table EV6). Prevalence of deregulated genes in CNA genomic

regions was calculated using Bonferroni-corrected hypergeometric

distribution and human genome GRCh38 gene numbers per chromo-

some arm (Fig S4). PARP immunofluorescence (Fig 2D) and orga-

noid growth assays (Fig S6) were analyzed by unpaired t-tests. Bulk

tissue gene expression after transgene induction was analyzed by

ratio paired t-test (Fig 5F).

Data availability

Scripts for processing of patient tissue scRNA sequencing data are

available from https://github.com/molsysbio/sccrc. Scripts for

processing of organoid RNA velocity data are available from

https://github.com/molsysbio/sccrc_slamvelocity. The datasets

produced in this study are available in the following databases:

patient sequencing data GEO GSE166555 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE166555), organoid sequencing

data GEO GSE166556 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE166556). Processed count data are available from

https://sys-bio.net/sccrc.

Expanded View for this article is available online.
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