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Abstract

In this thesis, we investigate two paradigmatic lattice systems far from thermal equilibrium
by means of particle-based computer simulations. The first model we study mimics surface
growth through vacuum deposition techniques like physical vapor deposition and molecu-
lar beam epitaxy which are used for the industrial fabrication of thin films. A thorough
knowledge of the dynamical behavior of particles which are deposited during the growth
procedure is essential to optimize the quality of thin film semiconductor devices. The
second model that we investigate is a nonequilibrium spin system which we analyze at
criticality in order to deepen our understanding of nonequilibrium phase transitions.
Using kinetic Monte Carlo simulations, we investigate nonequilibrium surface growth in
a generic model with anisotropic interactions among spherically shaped particles. The
interaction anisotropy is characterized by a control parameter that measures the ratio of
interaction energy along the two lattice directions. The simplicity of the model allows to
systematically study the effect and interplay between interaction anisotropy, the binding
energy and the deposition rate on the shapes and the fractal dimension of clusters. We find
that the growing clusters exhibit power-law scaling with universal growth exponents. We
also identify a growth condition-dependent critical cluster length that indicates a transition
from one-dimensional to self-similar two-dimensional cluster growth. Moreover, the cluster
properties depend markedly on the critical cluster size in the isotropic reference system.
Further, we develop a model for surface growth with limited mobility of deposited particles.
Limited mobility models highly reduce the computational effort compared to simulation
setups that include diffusion processes for all adatoms in the topmost layer at any time of
the growth simulation. Our model is based on the stochastic transition rules of the Das
Sarma-Tamborena model but differs from the latter via a variable diffusion length which
mimics diffusional fluctuations. The analysis of surface morphologies reveals that diffu-
sional fluctuations, which are usually neglected in limited mobility models, are essential to
produce surface structures that are, at arbitrary growth conditions, indistinguishable from
those obtained from growth simulations with full diffusion models.
Another aspect of this thesis concerns the question of the applicability of machine learning
techniques in the field of nonequilibrium surface growth. In particular, we aim to obtain
the microscopic energy barriers, which determine the rates of the adatom diffusion pro-
cesses, from static snapshots of surface morphologies in the submonolayer growth regime.
To this end, we trained a convolutional neural network on clean and noisy snapshots by
means of supervised learning. We find that the convolutional neural network can predict
the values of the underlying diffusion and binding energies with high precision in a large
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parameter space.
Moreover, we study thermodynamic properties of surface growth by calculating the entropy
production rate of a growth model which includes deposition, diffusion and desorption
of particles. Our main result here is that the model in presence of a substrate is always
in thermal equilibrium when it is in the bound phase where the surface height fluctuates
around zero.
In addition to that, we study a nonequilibrium version of the q-state vector Potts model
which is driven out of equilibrium by coupling the spins to two heat baths at different
temperatures. We investigate the critical behavior at a second-order and an infinite-order
phase transition. For the second-order transition, we find that the universality class remains
the same as in equilibrium. Interestingly, the derivative of the entropy production rate rate
with respect to temperature diverges with a power-law at the critical point, but displays a
non-universal critical exponent. The latter depends on the temperature difference between
the heat baths, i.e., the strength of driving. For the infinite-order transition, the derivative
of the entropy production rate exhibits a maximum in the disordered phase, similar to the
specific heat. However, in contrast to the specific heat, the maximum of the derivative of
the entropy production rate grows with increasing temperature difference between the
heat baths.
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Zusammenfassung

In dieser Arbeit werden zwei paradigmatische Systeme mit diskretem Phasenraum mittels
teilchenbasierter Computersimulationen untersucht. Das erste Modell dient dem Zweck
das Nichtgleichgewichtswachstum kristalliner Dünnschichtstrukturen mittels Verfahren
der physikalischen Gasphasenabscheidung wie der Molekularstrahlepitaxie zu simulieren.
Eine Hauptanwendung dieses Verfahrens ist die Fertigung von monokristallinen Halbleiter-
strukturen mit herausragenden elektronischen und optischen Eigenschaften. Ein vertieftes
Verständnis des dynamischen und kollektiven Verhaltens der Atome und Moleküle welche
während des Wachstumsprozeses durch einen gerichteten Molekularstrahls auf ein Substrat
aufgedampft werden ist substantiell, um die bestmöegliche Qualität und Funktionalität zu
erzielen. Das zweite hier betrachtete Modell ist ein aus dem Gleichgewicht getriebenes
Spinsystem, welches wir in der Nähe des kritischen Punkts untersuchen. Dies dient dem
Zwecks unser grundlegendes Verständnis vom physikalischen Verhalten von Nichtgle-
ichgewichtssystemen an Phasenübergaengen zu vertiefen.
Mittels kinetischer Monte-Carlo Simulationen untersuchen wir zunächst das Oberflächen-
wachstumsverhalten in einem generischen Modellsystem in welchem sphärische, anisotrop
wechselwirkende Teilchen auf ein Substrat aufgedampt werden. Die Stärke der Wech-
selwirkungsanisotropie entlang der zwei Achsen des zweidimensionalen Substrates ist
der Kontrollparameter. Die Einfachheit des Modellsystems ermöglicht eine systematische
Untersuchung des Einflusses der Wechselbeziehung zwischen dem Grad der Anisotropie,
der Stärke der Bindungsenergie und dem Wert der Adsorptionsrate auf Form und fraktale
Dimension der entstehenden Cluster. Es stellt sich heraus, dass das Clusterwachstum einem
Potenzverhalten mit universellen Wachstumsexponenten genügt. Desweiteren haben wir
eine kritische Clusterlänge identifiziert. Diese gibt an ab welcher Länge das ursprünglich
eindimensionale Clusterwachstum in einen selbstähnlichen zweidimensionalen Wachs-
tumsmodus übergeht. Wir konnten nachweisen, dass die Wachstumseigenschaften der
Cluster insbesondere von der kritischen Clustergrösse des zugehörigen anisotropen Ref-
erenzsystems abhängen.
Desweiteren diskutieren wir in dieser Arbeit Wachstumsmodelle mit begrenzter Teilchenmo-
bilität der adsorbierten Teilchen, sogenannte “Limited-mobility”-Modelle. Solche Modelle
reduzieren den Rechenaufwand in erheblichem Maße gegenüber “full diffusion”-Modellen,
in welchen jedes Teilchen in der obersten Schicht des wachsenden Kristalls zu jedem
Zeitschritt einen Diffusionsprozess durchführen kann. Unser Modell unterliegt den Über-
gangsraten des Das Sarma-Tamborena-Modells, unterscheidet sich von diesem jedoch
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durch eine variable Diffusionslänge. Dadurch kann unser Modell Fluktuationen in der Dif-
fusionslänge von Adsorbaten, welche in stochastischen Wachstumsprozessen zwangsläufig
vorhanden sind, imitieren. Für gewöhnlich werden diese in “Limited-mobility”-Modellen
vernachlässigt. Es stellt sich jedoch heraus, dass diese essenziell sind um Oberflächen-
strukturen zu erzeugen die ununterscheidbar von jenen sind welche mittels “full diffusion”
Modellen erzeugt wurden.
Ein weiterer Aspekt dieser Arbeit betrifft die Anwendbarkeit und Nützlichkeit von Machine
Learning Algorithmen auf dem Gebiet des Oberflächenwachstums fern vom thermischen
Gleichgewicht. Ziel unserer Untersuchungen ist es die mikroskopischen Energiebarrieren,
welche die Diffusionsraten von Adatomen bestimmen, anhand von Bildern der gewachse-
nen Oberflächenstruktur zu bestimmen. Zu diesem Zweck haben wir ein “Convolutional
Neural Network” mittels überwachtem Lernen von unverrauschten und verrauschten
Bildern von Oberflächenstrukturen trainiert. Es zeigt sich, dass das trainierte neuronale
Netzwerk die zugrundeliegenden Diffusions- und Bindungsenergien sehr präzise bestim-
men kann. Wir hoffen, dass diese Strategie zukünftig genutzt werden kann um aus
experimentellen Bildern mikroskopische Energiebarrieren zu extrahieren.
Darüber analysieren wir in dieser Arbeit thermodynamische Eigenschaften von Wachs-
tumsprozessen. Diesbezüglich berechnen wir die Entropieproduktionsrate eines Wachs-
tumsmodells in welchem neben der Adsorption und Diffusion auch die Desorption von
Teilchen möglich ist. Dabei zeigt sich, dass das System in Anwesenheit eines starren
Substrats in der gebundenen Phase stets ein thermodynamisches Gleichgewicht erreicht. In
diesem Zustand fluktuiert die Oberfläche des Kristalls um den Nullpunkt. Zusätzlich haben
wir eine Variante des q-state Potts Modells untersucht welches durch Kopplung der Spins
an zwei Wärmebäder unterschiedlicher Temperaturen aus dem thermischen Gleichgewicht
getrieben wird. Wir haben das kritische Verhalten des Systems an Phasenübergängen
zweiter und unendlicher Ordnung untersucht. Es stellt sich heraus, dass das kritische
Verhalten an Übergängen zweiter Ordnung ununterscheidbar vom entsprechenden Gle-
ichgewichtssystem ist, sodass die Universalitätsklasse nicht von der eingeführten Tem-
peraturdifferenz geändert wird. Die Ableitung der Entropieproduktionsrate nach der
Temperatur weist am kritischen Punkt Potenzverhalten mit einem nicht universellen kri-
tischen Exponenten auf. Dieser hängt explizit von der Temperaturdifferenz der zwei
Wärmebäder ab. Am Phasenübergang unendlicher Ordnung zeigt die Änderung der En-
tropieproduktionsrate ein Maximum in der ungeordneten Phase in gleichem Maße wie
die spezifische Wärme. Im Gegensatz zu dieser wächst das Maximum der Änderung der
Entropieproduktionsrate mit steigender Temperaturdifferenz der zwei Wärmebäder.
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1Introduction

Order or disorder on the microscale make the same substance or material appear as a hard
solid, a flowing liquid or an airy gas. It is the structural arrangement of the microscopic
degrees of freedom that determines the physical state of matter and thereby also the
properties of any substance, material and technological device not only on the micro-
but also on the macroscale. Unraveling properties of the various phases of matter and
understanding the physical behavior of systems undergoing transitions between them is
one of the central research subjects of statistical physics. Examples include the classical
phases like gas, liquid, solid and plasma, as well as glassy, magnetic or liquid crystal
states together with low-temperature phases like the superfluid phase, Bose–Einstein and
Fermionic condensates [1–3]. Besides this classification, more specific details like the
precise crystal structure, the lattice constant as well as the question which elements and
molecules are involved further determine properties of the different phases of matter.
A thorough knowledge of the diverse properties of phases in equilibrium and out of
equilibrium is important in numerous research fields ranging from physics, chemistry,
biology, engineering and materials science up to the industrial sector. In this thesis, we
investigate the phase behavior of nonequilibrium spin systems and analyze their critical
properties in order to deepen our understanding of nonequilibrium phase transitions.
Moreover, this thesis is concerned with nonequilibrium surface growth phenomena. In
particular, we investigate the emergence of a solid phase via self-assembly of particles
in a discrete growth model that is tempted to mimic nonequilibrium surface growth
through vacuum deposition techniques like physical vapor deposition and molecular beam
epitaxy.

General remarks on phase transitions: As one part of this thesis is concerned with phase
transitions, let us introduce to this topic by shortly discussing a classical textbook example
which makes clear how material properties depend on the state of the microscopic degrees
of freedom. Figure 1.1 illustrates two different phases of the magnetic moments that can
be found in ferromagnetic materials like iron, cobalt, nickel and alloys or compounds
[4, 5]. At high temperatures, the spatially localized magnetic moments, i.e., the spins,
are (quasi) statistically independent from each other as thermal noise dominates over
their interaction forces. Accordingly, individual spins randomly occupy one of the two
possible spin configurations (they either point up or down, thus, they exhibit a discrete
symmetry). In this spin-disordered paramagnetic phase, the macroscopic magnetization is
zero. If the temperature, which acts as control parameter, is decreased below the material-
dependent, so-called Curie temperature, this symmetry gets spontaneously broken, as the
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Fig. 1.1: Illustration of a continuous (second-order) phase transition in a lattice-based spin model
where each spin is located at a fixed position. At temperatures T below the critical
temperature Tc, the spins point in the same direction. In this state, the system is said
to be in the spin-ordered ferromagnetic phase which is characterized by a measurable
magnetization. This is quantified by the magnetic order parameter which takes the value
1 in the ordered phase. As the temperature is increased above Tc, the order gets slowly
vanishes until it is completely destroyed by thermal fluctuations for T ≥ Tc. At Tc the
system undergoes a phase transition. The magnetization vanishes since the spins point
in random directions. The order parameter takes the value 0 in the spin-disordered
paramagnetic phase.

spins suddenly align parallel to each other as shown in Fig. 1.1. This symmetry breaking is
associated with the emergence of magnetic domains and a measurable magnetization. The
system is now in a spin-ordered ferromagnetic phase where (within magnetic domains)
the spins point, on average, in the same direction. From this specific example, we can see
a generic phenomenon, that is, various properties of the very same substance or material
can drastically change as it undergoes a transition from one phase of matter to another
as an appropriate control parameter is varied across a system-dependent critical point.
Of particular interest in this context is the behavior of systems in the vicinity of phase
transitions which crucially depends on the order of the phase transition [6, 7].

Fundamentals of nonequilibrium surface growth: Next to phase transitions, this thesis is
concerned with numerical investigations of growth phenomena, which represent examples
for the emergence of complex structures out of interacting simple agents. Each piece of
matter found in the solid state has originally been formed by accumulation of individ-
ual atoms and molecules via some sort of growth process. Crystal growth phenomena
represent an important research topic in statistical physics [8–13]. Growth processes are
omnipresent in nature and crucial for the industrial fabrication of thin film devices with
highly specialized properties [14–19]. For the fabrication of crystalline materials by means
of epitaxy techniques like physical and chemical vapor deposition [20–24], pulsed laser
deposition [25–27] or molecular beam epitaxy (MBE) [28, 29], it is important to achieve
a thorough understanding of the morphological evolution of the solid phase. The latter is
formed from a spatially confined lattice gas created through deposition of particles from
a beam that is directed onto a crystalline substrate. In particular, not only the specific
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Fig. 1.2: Illustration of a basic experimental setup for thin film growth via MBE which takes
place in an ultra-high vacuum chamber. After sublimation of solid materials in effusion
cells, a particle beam is directed onto a rotatable substrate which is kept at a constant
temperature. The thin film structure grows via adsorption of deposited particles. Once
adsorbed, particles diffuse on the substrate, participate in cluster nucleation events or
attach to existing clusters. These processes affect the morphology, and thus, the quality
of the growing thin film. A reflection high-energy electron diffraction gun is used to
monitor the thin film growth process.

geometrical arrangement and the sort of deposited atoms or molecules crucially determine
the properties of the growing crystal. Additionally, also the substrate temperature, the
adatom flux rate, the defect density and the nucleation density may have an impact on the
crystal morphology, and thereby affect the quality and functionality of nano-structured thin
film devices like solar cells [30–32], (organic) light-emitting diodes [33, 34], field-effect
transistors [35–37] or quantum wires and quantum dots [38–40].

During crystal growth by means of MBE, which we mimic in this thesis with a particle-
based model, solid atomic or molecular structures are heated in Knudsen effusion cells
under ultra-high vacuum conditions until they sublime. A simple experimental setup for
MBE growth is shown in Fig. 1.2. The evaporated particles form a beam which is directed
onto a solid substrate (that is kept at a fixed temperature) where they are adsorbed. From
a theoretical point of view, diffusion of individual adatoms on the crystalline substrate
is modeled via thermally activated Arrhenius-type hopping processes. The deposited
particles form a two-dimensional lattice gas from which the solid thin film emerges through
nucleation and growth of clusters via attachment of diffusing adatoms to boundary sites of
existing clusters. It is therefore essential to comprehend the mechanisms and microscopic
details of the lattice gas phase in order to control the morphological evolution of the
solid phase. In other words, MBE is a technique that involves two phases of matter which
exhibit drastically different properties. From the initial gas phase, a self-assembled solid
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phase emerges. Growth processes pose a challenging problem for statistical mechanics
and we are still far from a complete understanding. Since the emerging solid state can
be probed by scanning tunneling or atomic force microscopy, it is possible to validate
theoretical predictions of growth processes with experimental results at atomic resolution.
This allows to gain a deeper understanding of the actual mechanisms that control the
growth of crystalline materials [12, 41, 42].

The study of material properties like magnetization and the fabrication of thin films
by epitaxial growth are only two of many examples where a detailed knowledge of
phases and the behavior at transitions between them is essential. In epidemiology, the
percolation threshold (where a mathematical social network undergoes a transition from
an unconnected to a fully connected phase where all nodes of a graph are linked with each
other) is crucial for understanding the spreading of diseases on a regional, nationwide and
global scale [43–46]. From studying Susceptible-Infectious-Recovered (SIR) networks it
is known that the timing and magnitude of interventions within the unconnected phase
are essential to prevent the system from undergoing a transition to the connected phase,
where a network spanning cluster emerges that results in uncontrolled disease spreading.
Thus, knowing details of the phase behavior of social networks is crucial to understand
how different factors can help to mitigate the spreading of diseases like the ebola or the
SARS-CoV-2 virus [47–49]. Moreover, even in the context of living, biological matter,
concepts from statistical physics are applied to understand swarming and flocking of
bacteria, birds or fish that arises from collective behavior of energy consuming entities
[149, 190].

The examples just mentioned include equilibrium systems as well as nonequilibrium
systems. When it comes to a theoretical description of physical systems, this distinction
becomes very important because our physical understanding of nonequilibrium systems is
not as profound as it is for systems in a state of thermal equilibrium.

Fundamentals of statistical mechanics: For matter in thermal equilibrium, statistical
mechanics provides elaborated theoretical concepts that successfully explain the underlying
mechanisms which determine the properties of physical systems in various different
phases. In particular, it connects the underlying dynamical laws which govern the behavior
of individual constituents of matter on the microscale with thermodynamic laws that
provide phenomenological rules on the macroscale. In this regard, a key property of any
equilibrium systems is detailed balance, which poses a condition on state occupation and
transition probabilities, independent of the system’s microscopic details. Furthermore, also
the fluctuations of various quantities around the equilibrium point are known to fulfill
universally valid fluctuation theorems. This is discussed in the framework of stochastic
thermodynamics [50–52].
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Further, in thermal equilibrium fundamental connections between symmetries of the
principles that govern the collective behavior of the microscopic degrees of freedom and
the properties of different phases and phase transitions of the macroscopic system are
well known. A prominent example of such a connection is the Mermin-Wagner theorem.
It states that in one- and two-dimensional systems with short-range interactions and
continuous rotational symmetry of the microscopic degrees of freedom, long-range ordered
phases can not emerge in the presence of thermal fluctuations, i.e., at finite temperatures
[53–56] . Indeed, the validity of the Mermin-Wagner theorem has been experimentally
demonstrated for many one- and two-dimensional systems [57–60].

Moreover, the connection between the underlying symmetries and the collective behavior
of the microscopic degrees of freedom also plays a fundamental role in the characterization
of phase transitions. In general, phase transitions can be divided in two main classes [61–
65]. On the one hand, there are phase transitions where the state of the system changes
in a discontinuous way. On the other hand, there are transitions where the state changes
continuously. In this case, the correlation length of the microscopic degrees of freedom that
undergo a transition from one phase to another diverge at the critical point. For this second
type (which we will focus on in this thesis), the connection between underlying symmetries
and collective behavior is described within the framework of universality. The latter is
a further important concept provided by statistical mechanics that helps to deepen our
understanding of systems in the vicinity of critical points of continuous phase transitions.
It is based on the observation that large classes of systems share certain properties which
are independent of the microscopic details of the respective systems. More precisely,
different systems may behave identical regarding the scaling behavior of certain quantities
in the vicinity of a continuous phase transition. Thus they are said to belong to the same
universality class. In 1971 Kadanoff pointed out that “all phase transition problems can
be divided into a small number of different classes depending upon the dimensionality of the
system and the symmetries of the order state. Within each class, all phase transitions have
identical behavior in the critical region, only the names of the variables are changed." The
main ingredients that determine the universality class of a system are symmetries and
conservation laws. Additionally, detailed balance and fluctuation relations impose strong
constraints on equilibrium systems that enhance the robustness of universality classes.
The concept of universality is well established for equilibrium systems and various robust
universality classes have been discovered during the last decades [66–71]. In this regard,
especially worth mentioning due to it’s simplicity and widespread applicability is the Ising
universality class which, among other cases, describes the ferromagnetic transition in the
Ising model. In this thesis we analyze the q-state Potts model and a variant of the XY
model under equilibrium and nonequilibrium conditions to investigate how irreversibility
affects the critical behavior.

While the general connections between symmetries and the microscopic degrees of freedom
just mentioned are well understood and explain various natural occurring phenomena, we
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must acknowledge that they are based on the assumption of thermal equilibrium. However,
under real-world conditions, systems are in fact often found to be in nonequilibrium.
Nonequilibrium statistical mechanics deals with the properties of irreversible processes
where thermodynamic notions like entropy and temperature are not directly available.
Further, detailed balance is broken and the equilibrium fluctuation relations are not
guaranteed to hold. The lack of these constraints allows for more variability in the systems
dynamics and in the phase behavior [72–76]. An example for a nonequilbrium phase
transition is motility-induced phase separation between a dense and dilute fluid phase,
which occurs in two-dimensional active matter systems with continuous symmetry and
would hence not be allowed in thermal equilibrium as stated by the Mermin-Wagner
theorem. Further, the driving may, or may not, affect the corresponding critical exponents
[73–75]. Being in a nonequilibrium state gives rise to more freedom for the behavior in
the vicinity of phase transitions and may weaken the robustness of universality [73, 74].
However, there are also cases where driving a system out of thermal equilibrium does
not affect the critical behavior and does therefore not change the universality class of the
system [73, 74]. In fact, it is often a priori not clear which symmetries are affected by
driving a system out of thermal equilibrium. For example, it has recently been shown
that the motility-induced phase separation in the Vicsek Model lies in the equilibrium
Ising universality class with conservative Kawasaki spin dynamics [77]. This means that
the scaling properties of the collective behavior of active particles undergoing a gas-
liquid phase separation behave at criticality indistinguishably from the equilibrium Ising
model undergoing a transition from a spin-disordered paramagnetic to a spin-ordered
ferromagnetic phase.

Goals of this thesis: In this thesis, we aim to deepen the understanding of phases and
phase transitions under nonequilibrium conditions by studying suitable example systems.
In particular, we numerically investigate two, rather generic stochastic lattice-based systems
and address questions regarding the behavior of these systems far from thermal equilibrium.
The first model is a discrete growth model designed to mimic nonequilibrium surface
growth. More precisely, we study the homoepitaxial growth of stable crystal structures
from a lattice gas phase by means of kinetic Monte-Carlo simulations and address different
questions that will be outlined in the following. The second model is a nonequilibrium
variant of the q-state vector Potts spin model that is investigated at criticality. In the
following paragraphs, we will give a short overview of the specific models and the research
questions addressed. More detailed background information on the various topics is given
in the later chapters of this thesis.

The first question we address is the impact of anisotropic interactions on nonequilibrium
cluster growth. While tuning the properties of inorganic semiconductor devices is often
limited to doping [78–81], thin film devices made of conjugated organic molecules (COMs)
are much more variable compared to inorganic devices due to the nearly inexhaustible
number of synthesizeable conjugated systems [82–85]. COMs often exhibit a complex
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geometrical structure and an anisotropic interaction potential. The morphology of crystals
consisting of COMs is crucial for properties and the performance of organic thin film
devices since the electron transport and charge carrier mobility strongly depend on the
precise configuration of the molecules in the solid state [86–88]. Therefore, it is essential
to understand the nonequilibrium growth behavior of the emerging solid state consisting
of anisotropically interacting constituents. Computational studies have shown that it is
very challenging to simulate the growth process with elongated, anisotropically interacting
particles [89–94]. To nevertheless investigate the impact of anisotropic interactions on
nonequilibrium growth we use a most reduced setup. Specifically, by means of kinetic
Monte-Carlo simulations we study a growth model where the shape of deposited particles
is isotropic and only the interactions between them are anisotropic [95]. We aim to
understand the formation and properties of stable crystal structures.

Despite the enormous computational resources that are available, numerical growth studies
are often limited to relatively small system sizes and a rather low number of deposited
layers. Therefore, one is often operating in the transient regime where the surface
roughness has not yet reached a steady state. To deepen our fundamental understanding
of surface growth it is essential to unravel the universality class of nonequilibrium growth
processes. In order to obtain the critical exponents, one has to reach the saturation regime
of the surface roughness for systems with increasing sizes. However, the onset of saturation
scales with system size. This explains why particle-based simulations are computationally
expensive. To tackle this problem, we have constructed a model with limited particle
mobility which drastically reduces the simulation times compared to conventional full-
diffusion kinetic Monte-Carlo growth simulations [96]. In particular, the model mimics the
surface dynamics during growth in such a way that at each simulation step, one particle
gets adsorbed and performs exactly one diffusional move. Our model is based on the
stochastic transition rules of the Das Sarma-Tamborena model [97, 98] but differs from
the latter via a variable diffusion length which is chosen from a Gaussian distribution
to mimic diffusional fluctuations. The model is constructed to imitate low-temperature
surface growth by means of MBE. We compare the resulting surface morphologies in the
sub- and multilayer growth regime to those obtained from kinetic Monte-Carlo simulations,
and use the limited-mobility model to calculate the critical exponents. In particular, it
turns out that diffusional fluctuations, which are usually neglected in limited mobility
models, are essential to produce surface structures that are indistinguishable from those
obtained from simulations of full diffusion surface growth models.

Controlled growth of crystalline thin films from the gas phase of novel materials is a
crucial ingredient for device manufacturing and rapid prototyping of advanced materials.
However, it is challenging to achieve the desired material quality as device applications
have specific requirements regarding grain size and shape, defect densities, and film
roughness. On the atomic scale, thin film growth kinetics is governed by only a few
stochastic processes including the deposition of adatoms from the evaporator or from a
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chemical precursor gas, and diffusion of adatoms on the crystal surface. The complexity
of growth stems from the fact that diffusion of adatoms is not independent from each
other but highly correlated as they can form islands and crystal nuclei that hinder further
movement. Machine learning is playing an increasing role in the discovery of novel
materials [99–106] and may facilitate growth of highest quality crystals and thin films. In
this thesis, we study how neural networks can predict optimum processing parameters in
a multi-dimensional processing parameter space [107]. We perform kinetic Monte-Carlo
simulations of sub-monolayer growth to generate a training data set for a convolutional
neural network that consists of surface snapshots in the submonolayer growth regime. We
demonstrate that the convolutional neural network can predict the values of the underlying
energy barriers that determine the diffusion processes of the adatom lattice gas particles.
Moreover, the convolutional neural network can also make correct predictions of the
underlying energy barriers for images with noise and lower than atomic scale resolution.
We expect our machine learning method to be of use for fundamental studies of growth
kinetics and for a faster optimization of epitaxially grown materials.

Finally, we turn to a thermodynamic investigation of discrete systems far from thermal
equilibrium. In particular, we investigate the applicability of the entropy production as tool
to specifically characterize nonequilibrium phase transitions in the same manner as critical
quantities. As mentioned earlier, it is often not clear how driving a system out of thermal
equilibrium affects it’s critical behavior. Earlier research has shown that, in principle, it is
possible to typify nonequilibrium phase transitions in a similar way to equilibrium systems,
for instance, by the use of the same order parameter and the same critical quantities as in
equilibrium systems [73, 74]. However, such a classification often hides the irreversible
character of the dynamics as well as the impact on properties of the phase transition
[108–111]. This motivates us to consider the behavior of nonequilibrium measures at the
critical point, in addition to the usual critical quantities [112]. In particular, we consider
the behavior of the entropy production rate at criticality. This quantity is zero in the
equilibrium case and strictly positive in nonequilibrium systems where it directly quantifies
the distance from equilibrium. We first consider a simple one-dimensional growth model
with adsorption, diffusion and desorption of particles in presence of a hard substrate at
zero height. This allows us to define two phases, a bound phase where the interface is
pinned to the substrate and a growing phase where the crystal grows and the interface
thus detaches from the substrate. We study the behavior of the entropy production rate in
the bound phase, the growing phase and in the vicinity of the transition between these
two phases. Then, we turn away from surface growth and consider nonequilibrium phase
transitions in a spin system in detail. For this purpose, we study an Ising-like spin system
under nonequilibrium conditions. Specifically, by coupling a q-state vector Potts model to
two heat baths at different temperatures, we drive the system out of equilibrium and study
the effect of irreversible dynamics on the critical behavior.
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1.1 Outline of the thesis

We close this introduction by giving a brief overview of the structure of this thesis. The
first part of this thesis provides an introduction to the theoretical and methodological
background. In particular, Chapter 2 introduces the concepts of Markov chains, including
the technique of Monte-Carlo and event-driven kinetic Monte-Carlo simulations. There,
we also give the main details of the simulations and models used in this thesis. Chapter 3
introduces the fundamental concepts of stochastic thermodynamics for discrete systems.
We specifically focus on the formulation of the entropy production rate used later in
Chapter 8 and Chapter 9 where it’s applicability as tool to characterize phase transitions
is investigated. Chapter 4, which is the last part of the theoretical foundations, concerns
the introduction of critical behavior and universality. We will pay special attention to
the concept of universality in the context of both, phase transitions and surface growth.
The next part of this thesis presents our numerical results. We begin with discussing
the results for surface growth of particles with anisotropic interactions in Chapter 5. In
Chapter 6, we present the limited-mobility model with variable diffusion length where we
compare the morphology of grown structures with those obtained from full diffusion kinetic
Monte-Carlo simulations. Moreover, we determine the universality class of our simplified
growth model. In the following Chapter 7, we discuss the applicability of machine learning
methods to determine the microscopic energy barriers that determine the morphological
evolution during nonequilibrium surface growth. Finally, in Chapter 8 we turn to stochastic
thermodynamics of nonequilibrium surface growth. We calculate the entropy production
rate in a one-dimensional growth model which includes the processes of adsorption,
diffusion and desorption. In Chapter 9, we investigate the entropy production rate in the
vicinity of phase transitions in nonequilibrium spin systems. Finally, we end with Chapter
10 where we summarize our results and propose some ideas for future investigations.
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2Fundamentals of Markov chains and
simulation details

This chapter is concerned with Markov chains and simulation details of the lattice-based
models which are investigated in this thesis. After introducing the fundamentals of
discrete Markov chains and Markov chain Monte-Carlo methods, we discuss classical spin
systems and simulation details. In particular, we explain single particle and cluster Monte-
Carlo algorithms. The end of the chapter is concerned with surface growth simulations.
We explain coarse-graining in surface growth and the event-driven kinetic Monte-Carlo
simulation method.

2.1 Fundamentals of discrete Markov Chains

Markov chain representation of stochastic models: In a nutshell, Markov chains repre-
sent a class of stochastic models which describe a sequence of transitions (events) µ→ ν

between microstates, µ, ν, of the underlying (physical) model for which the probability
of each occurring event, i.e., the transition µ→ ν from µ to ν, depends only on the state,
µ, occupied in that precise instant of time when the transition event takes place. The
transition event µ→ ν is explicitly independent of the history of previously occupied states.
Therefore, the probability for state transitions µ → ν are events satisfying the Markov
property. Therefore, they are also referred to as “memoryless” processes since they do
not depend in any form on the past, i.e., the history of previously occupied states. There
exist many examples of real-world processes in physics, chemistry, biology economics and
finance or information and computer science where Markov chains are applied as statistical
models to mimic their dynamics [113–119]. In particular, all lattice-based stochastic mod-
els considered and investigated in this thesis have in common that they represent examples
of such history-independent Markov Chains whose dynamical evolution depends solely
on the currently occupied state µ, i.e., they have no memory of the past. Accordingly, any
form of time-delay, a feature of non-Markovian systems, is not of relevance in this thesis.
However, we want to point out that the investigation of non-Markovian systems with
time-delay is a timely topic in statistical physics [120–123]. For example, time-delay could
be included in the nonequilibrium Potts model which is investigated in in C. 9. Time-delay
is known to cause and stabilize periodic solutions [120, 124]. It would be interesting
to check whether a stable, periodically oscillating nonequilibrium phase emerges in the
Potts model in presence of time-delay. Moreover, it is well known that (lattice-based)
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spin systems are suitable to model social dynamics where time-delay plays an important
role [125–127]. So far, effects of time-delays in the dynamics of social systems have
hardly been analyzed and it would be interesting to study the effect of time-delay in this
context.

On the level of stochastic modeling, a Markov Chain can be described as a stochastic
sequence (also called stochastic path or trajectory)

X(N) = (X1 = µ,X2 = ν, ...,XN−1 = η,XN = γ), (2.1)

consisting of an, in principal, arbitrary number N of transitions between different mi-
crostates, µ, ν, η, γ ∈ Ω of the underlying stochastic system. Here, Ω is the countable
set of all possible microstates. This set is also called the probability state space of the
respective Markov Chain. At each time step t = 1, 2, ...N , the system state Xt is one
element from Ω, i.e., the system is occupying a state of the state space, Xt ∈ Ω. In
general, Ω can contain anything that may be the outcome of a random experiment. Per-
haps the simplest example for a Markov Chain is the repetitive tossing of a coin. In
this particular case, the probability state space, Ω = {H,T}, only contains head, H
and tail, T , i.e., the two sides of the coin form the probability state space Ω. An ex-
emplary stochastic path consisting of a random sequence of H and T may be given by
X(N = 5) = (X1 = T,X2 = H,X3 = H,X4 = T,X5 = H). This sequence begins in state
X1 = T and ends in X5 = H after the coin has been flipped N = 5 times in total. Playing
dice and counting the number of eyes after each throw or picking a random card from a
stack containing a certain number of cards are further examples of Markov chains which
exhibit a discrete and countable probability state space Ω. Throughout this chapter, we
use the notation Xt ∈ Ω in order to denote (micro)states of a stochastic system that the
system occupies at time steps t = 1, 2, ..., N during it’s dynamical evolution.

The Markov property: On a mathematical level, the just mentioned Markov property
states that the conditional probability to find a stochastic system at time step t+ 1 in state
Xt+1 only depends on the state Xt occupied at time step t and is thus totally independent
of all previously occupied states Xk (k = 1, 2, 3, ..., t− 1). Consequently, P(Xt+1) does not
depend on the history of the system, which means that for all t > 1, the Markov property
reads

P (Xt+1|Xt, Xt−1, ..., X1) = P (Xt+1|Xt) . (2.2)

This conditional probability corresponds to the transition rate for the state transition
Xt = µ→ Xt+1 = ν (here, we randomly picked the states µ, ν ∈ Ω in order to denote the
states the system is occupying at time t and t + 1). For stochastic systems obeying the
Markov property, this transition rate for the state transition µ→ ν can be written as

wνµ = P (Xt+1 = ν|Xt = µ) . (2.3)
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For Markov chains which exhibit a discrete and finite, i.e., countable, state space Ω, whose
dimension dim(Ω) = N corresponds to the total number N of states, one can introduce
the transition rate matrix W (often also referred to as infinitesimal generator matrix
or intensity matrix). The latter is a N × N matrix which contains the rates of all state
transitions wνµ that are possible in the respective stochastic system under consideration.
The diagonal elements wµµ of a transition rate matrix W are defined such that they contain
all possible transition from state µ to any other state ν of the system. In other words, they
correspond to the total outgoing rate to escape from state µ. This can be written as

wµµ = −
∑
ν 6=µ

wνµ. (2.4)

As a consequence, all rows of the transition rate matrix W sum up to zero, i.e.,
∑
ν wνµ = 0

for all states µ ∈ Ω of the system. This is a necessary conditions for a transition rate matrix.
Additionally, a properly defined transition rate matrix W requires that all transition rates
are non-negative, i.e., wνµ ≥ 0 for all µ 6= ν, and thus, −wµµ ≥ 0 holds for all diagonal
elements wµµ of W. In fact, negative transition rates would physically make no sense at
all. In this thesis, we only consider (physical) stochastic models with time-independent
transition rates, i.e., dwνµ/dt = 0 for all states µ, ν ∈ Ω. As a consequence, the transition
rate matrix is a time-independent, stationary matrix W(t) = W. Let us now define a
(probability) state vector of a (physical) stochastic system

P = [p(ω1), p(ω2), ..., p(ωN−1), p(ωN )] = [p1, p2, ..., pN−1, pN ]. (2.5)

This vector contains the normalized occupation probabilities
∑N
i=1 p(ωi) =

∑N
i=1 pi = 1 of

all discrete (micro)states ωi of the probability state space Ω = {ω1, ω2, ..., ωN }. Specifically,∑N
i=1 pi = 1 holds always, i.e., we assume probability conservation in all the systems

studied in this thesis. In order to simplify the notation, we here denote the states of the
system as ωi, or just i and the corresponding occupation probabilities as p(ωi) = pi. This
notation for states is interchangeable with the otherwise used notation µ, ν ∈ Ω which
is a convenient way to denote state transitions µ→ ν. the transition rate matrix W can
be used to model the dynamical evolution of time-independent Markov systems. The
time-evolution of any configuration P(t) of a stochastic system is determined by W via a
Markovian master equation (ME)

d
dtP(t) = Ṗ(t) = WP(t). (2.6)

If the system is prepared in a random initial configuration P(t = 0), it will relax towards the
steady state (stationary) distribution P = limt→∞P(t) of the system under the dynamics
governed by the transition rate matrix W. Accordingly, one gets WP = 0 if the generator
matrix W is applied to P. The steady state configuration P can simply be obtained by
diagonalizing the generator matrix W. Specifically, P corresponds to the left eigenvector v
of W belonging to the eigenvalue λ = 0 which fulfills Wv = λv = 0 [113, 114]. Coming
from the state vector P and taking a closer look at the occupation probability pµ of a
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specific state µ ∈ Ω, one finds that the time-dependent change of its occupation probability
is also governed by a Markovian ME of the form

ṗµ =
∑
ν

(pνwµν − pµwνµ) . (2.7)

Here, pνwµν corresponds to the total incoming flow into state µ from all states ν 6= µ with
wµν > 0, while pµwνµ is the total outgoing flow from state µ to any state ν 6= µ for which
wνµ > 0. In particular, if ṗµ = 0 for all states µ ∈ Ω, the system is in a stationary state
(SS) with time-independent state vector P which is characterized by ∂tP = Ṗ = 0. In the
following, we will shortly discuss ergodicity and then come to the conditions which must
be met for a Markovian system in order to reach a steady state.

Ergodicity in discrete systems: Next to being “memoryless”, ergodicity is another impor-
tant feature of the Markovian (equilibrium and nonequilibrium) systems that we analyze
in the context of this thesis. This is particularly relevant when it comes to the investigation
of entropy production in nonequilibrium systems as it is the case in C. 9 and C. 8. The
reason for this is that entropy production can only be properly defined if for any transition
(or event) µ → ν with transition rate wνµ > 0, also the backward transition ν → µ is
possible, i.e., is characterized by a non-vanishing transition rate wµν > 0. Ergodicity and
irreversibility are not the same thing, however, they are both important when it comes to
calculating the entropy production in stochastic systems, i.e., quantifying their distance
from thermal equilibrium. Therefore, we will briefly discuss necessary conditions that
need to be met in a Markovian system in order to be ergodic. In general, a Markov Chain
is said to be ergodic if all states µ, ν of Ω are aperiodic and positive recurrent [113, 114].
The period of a state µ is defined as the largest integer d fulfilling

d = gcd {n > 0 : P(Xt = µ|X0 = µ) > 0} , (2.8)

where gcd is the greatest common divisor. If d = 1, state µ is called aperiodic, whereas
states with d > 1 are denoted as periodic states. If all states µ ∈ Ω are aperiodic, then the
undrlying Markov Chain is aperiodic. In addition to aperiodicity, the property of recurrency
(or persistency) is an essential prerequisite for a Markov Chain to be ergodic. In this sense,
a state µ is recurrent, if along a stochastic path X(N) of length N the system that is found
in state µ at time step t, i.e., Xt = µ, will definitely return (with probability 1) to the very
same state µ at some later time. The step thit when the system first comes back to state µ
is called the hitting time. In other words, state µ is recurrent if it exhibits a finite hitting
time thit <∞. In other words, the system is able to explore the whole state (and phase)
space Ω such that transitions from any state µ to any other state ν take place through a
loop consisting of a finite number of state transitions. Consequently, not all states µ, ν
have to be directly connected via a single transition µ→ ν, i.e., wνµ = wµν = 0 is allowed,
but they merely have to be connected via some sequence X(N) = (X1 = µ, ...,XN = ν) of
finite length N <∞.
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Reversibility and detailed balance: Let us now discuss under which conditions a Markov
process is reversible or irreversible, which is closely connected to the question whether
the system is in thermal equilibrium or not. To this end, we consider the detailed balance
condition. This condition is of immediate importance to formulate a consistent framework
for nonequilibrium systems [50–52].

A Markov process is called reversible if it satisfies the detailed balance (DB) condition (also
called the detailed balance equation), which is defined as

pµwνµ = pνwµν , (2.9)

for all transitions between any pair of states, µ, ν ∈ Ω. Physically, Eq. (2.9) states that the
probability to change (per time step) from state µ to state ν (due to the transition µ→ ν)
and vice versa (due to the reversed process ν → µ) are equal. One can easily understand
why DB ensures reversibility of a Markovian system. If Eq. (2.9) holds, the forward state
transition, µ→ ν, and the corresponding backward transition, ν → µ, balance, and thus,
the system does not change with time, i.e., the probability state vector is time-independent
Ṗ = 0. Interestingly, it can be shown that this means that one can not decipher whether a
shown movie of a system fulfilling Eq. (2.9) is played forward or backwards [52, 128, 129].
In particular, Eq. (2.9) further implies that the flow of probability

Jν =
∑
µ∈Ω

pµwνµ − pνwµν (2.10)

nullifies for all states of the system. We note that DB implies that the system is in a steady
state, as readily follows by inserting Eq. (2.10) into the Master equation (2.7). If DB holds
for any state, the system is in thermal equilibrium. However, there is also the possibility
hat Jν 6= 0 for some states ν ∈ Ω. Under certain conditions the system may still be found
in a steady state, however, in a nonequilibrium one, i.e., in a nonequilibrium steady state
(NESS) [130–132].

It is often convenient to describe the system which is investigated in terms of a connec-
tivity graph consisting of nodes (which represent the states of the system) which can be
connected by a finite number of edges. Specifically, an edge connecting nodes, i.e. the
states of the system, µ and ν implies that a transition between these two states is possible.
If the edge is pointing from state µ to ν, i.e., µ→ ν, the transition rate is denoted as wνµ.
The backwards transition is denoted as wµν . If two states µ, ν are not directly connected,
i.e., a transition between these states is not possible, then we do not draw edges between
those nodes since wνµ = wµν = 0. If the system is ergodic, then any state can be reached
through a loop of multiple state transitions, even if some nodes are not connected by edges.
An example for a connectivity graph consisting of three nodes µ, ν, σ with corresponding
state transitions is shown in Fig. 2.1.
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Fig. 2.1: Connectivity graph for a small system consisting of three discrete states, µ, ν and σ.
Nodes, which represent the states of the system, are given by circles. The arrows which
connect the nodes are called edges and they represent transitions between nodes. The
transition rate for jumping from state µ to ν is denoted by wνµ. If wνµ > 0, then the
system can directly jump from node µ to ν. Otherwise, if wνµ = 0, the transition µ→ ν
is not possible. If wνµ > 0 and wµν > 0, the transition is reversible, whereas if wνµ > 0
and wµν = 0, the transition is irreversible.

To give an explicit example, the nodes in Fig. 2.1 could represent the microstates of the
spin models discussed in C 9. In that particular case, each node corresponds to a unique
arrangement of spins on a d-dimensional lattice of lateral length L, containing L2 spins
in total. Edges between pairs of nodes are present if node (state) ν can be reached from
node (state) µ (and/or vice versa) by changing the orientation, i.e., the state, of a single
spin on the lattice. Such a single spin-flip process occurs with transition rate wνµ (or wµν
for the backward process) whose precise value depends on details of the system. The
edges in the generic connectivity graph shown in Fig. 2.1 indicate that a direct transition
between the states which are connected by an edge is possible. Of course, the general
picture of the connectivity graph could also represent a different system. Important is just
that nodes represent the states of the system and edges correspond to direct transitions
between nodes.

2.2 Markov Chain Monte-Carlo methods

In order to simulate the dynamical evolution of Markovian systems, one typically uses
Markov chain Monte-Carlo (MCMC) methods. The latter represent popular methods to
obtain information about probability distributions without the need to know all mathemat-
ical details of the distribution. MCMC algorithms are appropriate to sample states, e.g.,
the microstates µ ∈ Ω of discrete models, from a probability distribution P (µ), taking into
account the Markov property. In particular, MCMC algorithms use continuous random vari-
ables to estimate properties of a certain distribution by examining random samples from
the distribution. Concerning physical systems, one constructs a Markov chain such that the
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probability pµ to sample configuration µ of the underlying model is given by the Boltzmann
distribution, i.e., pµ ∼ exp(Eµ/kbT ) (where Eµ is the energy of configuration/microstate
µ). The application of MCMCs to a physical system which is initially prepared in a random
state µ at the beginning of the simulation will lead to a relaxation of the system towards
its steady state probability distribution P (µ). There exist a variety of different MCMC
algorithms in the literature [115, 117, 133]. Details of the algorithms used to model the
dynamical evolution of spin systems are given in Sec. 2.3. Specifically, there we discuss
the two most commonly used MCMC algorithms for lattice spin systems. These are, the
Metropolis and the Glauber algorithm. Additionally, we shortly mention the Wolff and the
Swendsen-Wang algorithm as examples for cluster update algorithms. The advantage of
these algorithms is that they do not suffer from critical slowing down in the vicinity of
phase transitions [134–136]. Unlike the spin models, we are particularly interested in the
time-evolution of systems when it comes to investigating nonequilibrium surface growth.
To this end, we use the kinetic Monte-Carlo (KMC) method. This algorithm allows to
explicitly simulate the time evolution of stochastic processes. It is particularly useful when
it comes to simulating the dynamical evolution of growing surfaces. The KMC method is
introduced in Sec. 2.4.3.

2.3 Classical spin systems and simulation details

We begin the following section with a brief historical introduction to spin systems in the
context of physics and then discuss examples where else these simply models are applied
in order to describe collective phenomena. Moreover, we explain in detail the classical
spin systems which are used in this thesis and sketch their exact solutions. The end of
this section is concerned with numerical solutions of spin systems. Specifically, we discuss
the most suitable algorithms which are frequently used to model the dynamics of spin
systems.

2.3.1 Historical notes and fundamentals of spin systems

Spin systems and ferromagnetism on the microscale: Spin systems have been first in-
troduced as simple models to study magnetism in solids on a fundamental, microscopic
level. The latter represents a class of physical phenomena associated with electric charges
[2, 65, 137, 138]. It exists in various different forms, involving single-particle as well as
complex many-body effects. The spin systems considered in this thesis are simple mathe-
matical models whose original purpose was to explain the phenomenon of ferromagnetism
in solids. This form of magnetism is the strongest and most common manifestation of
magnetism that we encounter in everyday life. The characteristic feature of ferromagnetic
materials is the presence of an intrinsic magnetic field if the ambient temperature T is
below some critical, material-specific value Tc (also known as Curie temperature). If the
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temperature is increased above Tc, the internal magnetic field vanishes and the material
behaves like a paramagnet as it was first discovered by Pierre Curie in 1895 [139]. This
means that there occurs a transition from a magnetized phase to an unmagnetized phase
at the critical temperature Tc which goes along with some dramatic internal changes of
properties. It was a long-standing problem what exactly is happening inside a ferromag-
netic substance on the microscale and how the change of system properties at Tc can be
physically and mathematically described. This question is directed related to the topic of
critical phenomena and universality which we discuss in C. 4.

It is well-established that any form of magnetism is a pure quantum mechanical effect
as stated by the Bohr–van Leeuwen theorem [138, 140, 141]. The thermal average
magnetization of an isolated system, i.e., no external fields are applied and rotations of
the system are forbidden, vanishes when only tools from classical and statistical mechanics
are applied. In this sense, ferromagnetism arises due to two fundamental quantum
mechanical principles: First, it requires the concept of the quantum mechanical spin, a
form of angular momentum which is carried by elementary particles that is responsible for
their intrinsic magnetic dipole moment. Second, it is due to the Pauli exclusion principle
[2, 138, 142] which states that in any atom it is not allowed for two or more fermions,
i.e., spin 1/2-particles, to have a set of identical quantum numbers. In other words, this
means that it is forbidden for more than one fermion to occupy the same quantum state.
Using these two concepts one can explain the emergence of ferromagnetism in certain
materials. An essential prerequisite for ferromagnetism in solids are atoms with unpaired
electrons such that their electron magnetic moments do not cancel out. As a consequence,
such atoms carry a magnetic moment which can be interpreted as tiny magnet. The fact
that crystalline materials are characterized by an ordered arrangement of atoms, ions
or molecules, justifies the simplified mathematical perception of treating the magnetic
moments as vectors on discrete positions of a rigid lattice. These spatially localized spins
can point in a uniform direction mediated by the so-called exchange interaction [143, 144].
The latter is a quantum mechanical effect that explains the reduction of the potential
energy of a spin ordered state in solids compared to a spin disordered state and it is
responsible for the emergence of ferromagnetism in certain substances like iron, cobalt
and nickel.

As suggested by Dirac [144], the critical features of the exchange interaction can be
mimicked on a coarse-grained level by considering neighboring fermions as simply having
their spin momenta coupled by a potential J in such a way that the exchange interaction
Hamiltonian between two neighboring spins si and sj which are located at discrete and
equidistant lattice positions i and j can be written as −2Jsisj . This simple representation
of magnetic systems has made a major contribution to understand ferromagnetism on a
fundamental level. It also played a central role for the general theoretical understanding of
phase transitions, critical behavior and universality are important topics within this thesis,
especially concerning the content of C. 4, C. 9 and C. 6. Moreover, it served as inspiration
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to introduce similar lattice models which are convenient to represent different physical
systems outside the context of magnetism. For example, similar models are applied in
the context of sociophysics where they are used model opinion formation, i.e., complex
collective phenomena in societies [145]. An exemplary system is the majority vote model
which has been intensively studied in the last two decades and is still investigated in various
forms [146, 147]. Moreover, simple lattice-based spin systems are also applied in active
matter physics. In this context, there exist models which describe the collective motion of
swarms. Interestingly, despite their simplicity, they show the emergent phenomenon of
motility induced phase separation [65, 148, 149]. Also in the context of surface growth,
lattice-based models which are similar to the early spin systems are nowadays used to
model the dynamical evolution of a growing surface. In particular, using lattice-based
models, this is investigated in C. 5, C. 6, C. 7 and C. 8.

Mathematical representation of classical lattice-based spin models: So far we intro-
duced the most simple form of interaction between spins, which is given by ∼ Jsisj ,
but did not further specify any properties of this kind of interaction. The latter strongly
depends on the question of whether one considers a classical or a quantum mechanical
system. Without exception, solely classical systems are considered in this thesis. As a
consequence, we restrict ourselves to a classical representation of spins si as specified
further below in this section. A spin is represented by a n-dimensional vector that is inter-
acting with neighboring spins, i.e., neighboring n-dimensional vectors, through a coupling
constant of strength J . The sign of this coupling constant determines the ground-state
spin configuration which corresponds to the configuration that minimizes the potential
energy, E = 〈H〉, of a system consisting of many interacting spins (where H is the Hamil-
tonian of the system). If the exchange constant is positive, J > 0, coupled spins prefer
to align parallel to each other and thereby minimize E. In this case, spins are said to
be ferromagnetically coupled and the ground state corresponds to a configuration where
all spins si point in the same spatial direction. Conversely, if J < 0, interacting spins
are antiferromagnetically coupled and they favor to align anti-parallel to each other in
order to minimize the potential energy E of the system. Considering a many-body system
consisting of spins si and sj which are located on equidistant positions i, j of a discrete
d-dimensional lattice of not further specified geometry leads us to the following general
Hamiltonian for classical spin systems with nearest-neighbor interactions

H = 1
2(−2J

∑
〈ij〉

sisj) +
∑
i

hisi = −J
∑
〈ij〉

sisj +
∑
i

hisi. (2.11)

In this equation, the pre-factor 1/2 accounts for double counting in the sum that runs
over all spatially neighboring spins si and sj , as indicted by 〈ij〉. This means that spins
only interact with each other if they are spatially adjacent on the lattice. The second term
models an externally applied magnetic field of strength hi which acts locally on each lattice
site i. This field may be random on all sites i, oscillating with a certain frequency or equal
and constant on all lattice sites. Again, we did not specify any properties of the spins si and
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sj and we also did not give any details concerning their geometrical arrangement. Basically,
we only wrote down the simplest form of a Hamiltonian which accounts for interacting
n-dimensional spins si and sj on a lattice of some dimension d and geometry. We restrict
ourselves to d ≤ 3 and n ≤ 3. To avoid misunderstandings, we again want to point out that
d refers to the spatial dimension of the lattice on which the spins si are located, whereas
n, which is also called the order-parameter symmetry number, corresponds to the spatial
dimension of the spins.

Let us now discuss the structure of the spins si in more detail. Without any exception,
spins in this thesis are represented by n-dimensional unit vectors in the real coordinate
space, si ∈ Rn, with

∑
n |sni | = 1. Accordingly, spins with n = 1 can only take the values,

si = 1 and si = −1, i.e., they can solely point parallel or antiparallel along the x-axis,
which is the only axis of the one-dimensional coordinate space R1 = (x). Nevertheless,
such one-dimensional spins can be arranged on a lattice with d ≥ 1. For example, they
can be arranged on square, hexagonal, triangular (d = 2) or cubic lattices (d = 3). The
lattice dimension d and geometry can have an enormous impact on the collective ordering
dynamics of the system and its critical behavior in the vicinity of phase transitions as
discussed in detail in C 4.

In the literature, there exist many different variants of classical (as well as quantum
mechanical ) spin systems which are distinguished from each other by the sign and
range of the coupling constant J , e.g., also non-adjacent spins can be coupled (with the
same or a different coupling strength), their lattice geometry, d, and the spin dimension
n. Additionally, their exist one further important attribute that can strongly affect the
collective ordering behavior and the scaling properties of the system. This additional
attribute corresponds to the parameter q which determines the rotational degrees of
freedom of spins in the coordinate space Rn. The question is whether the n-dimensional
spins are allowed to rotate continuously, and thus can point in any direction within the
given space, Rn, or if they are restricted to a limited number of discrete directions. This
is regulated by the parameter q, which is an integer that sets the number of possible
states, i.e., orientations, a single spin si can take in its n-dimensional coordinate space.
Specifically, for n = 2 (we only consider n = 1 and n = 2), the parameter q determines the
allowed, uniformly distributed angles

θi = (2πa)/q, (2.12)

the spins can take within the unit circle. In this equation, a ∈ [0, q − 1] is an integer with
maximum value a = q − 1 which determines the pointing direction, i.e., the angle θi,
of a spin si that is located at lattice position i. The possible spin orientations for some
exemplary values of q (where n = 2) are shown in Fig. 2.2.
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Fig. 2.2: Illustration of the possible spin configurations si, i.e., the allowed orientations of spins
θi = (2πa)/q (where a ∈ [0, q − 1] is an integer with maximum value q − 1) with spin
dimension n = 2 for three values of q indicated by three different colors. The spins can be
found in each of the q uniformly distributed states within the unit circle in the x−y plane.
Specifically, this means that the length of spins is unity in any o the q configurations.

For the trivial example n = 1, one finds that q can not be chosen freely and q = 2 is the
maximum value. Consequently, for q = 2, only the states parallel, si = 1, and anti-parallel,
si = −1, to the x-axis are possible. This setup is known as the Ising Model which will
be discussed in detail in Sec. (2.3.2). More complex are the cases n ≥ 2 where q can be
any positive integer. For example, if one considers n = 2, it is possible to take q = 2 and
thereby recover the Ising model. However, also q > 2 is possible because spins are also
allowed to point along the y-axis. For the case n = 2 and q →∞, the spins are represented
by two-dimensional unit vectors, si = (x, y), which can rotate freely within the x−y-plane,
i.e., θ ∈ (0, 2π]. This setup is known as the classical XY model and will be discussed in the
next section Sec. 2.3.2. Just for completeness we mention the scenarios n = 0 and n = 3
which correspond to the self-avoiding random walk [150] and the classical Heisenberg
model [151], respectively. Though they are important and have been intensively studied,
they are not investigated in this thesis.

In summary, the coupling constant J , the lattice dimension d, the spin dimension n,
the external field h and the number of possible (discrete) spin configurations q together
with the geometry of the lattice form a fundamental set of parameters (J, d, n, h, q) that
determines various properties of spin models, their critical behavior and the corresponding
universality class (see C. 4 and C. 9). However, we want to point out that their exist much
more adjusting screws which can affect the collective behavior of many-body spin systems.
For example, some sites i could be empty as it is the case in the dilute Ising model [152],
the strength J of the coupling constant can be non-uniform (e.g., the directed Ising model
[153]) or the spins may be coupld to several heat baths at different temperatures. The
last two examples are investigated in this thesis in C. 9 and in the outlook. Moreover, also
the choice of the spin-update algorithm plays a crucial role for the dynamical evolution of
the system. Usually, one uses MCMC algorithms to model the dynamics of lattice-based
spin systems [115]. The latter being a class of algorithms which sample states from an
appropriate probability distribution as discussed in Sec. 2.3.3. By constructing a Markov
chain that has the desired distribution as its equilibrium distribution, one can obtain a
sample of the distribution by recording states from the chain via an appropriate algorithm.
Two of the most frequently used MCMC methods are the Metropolis algorithm and the
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Glauber dynamics. They are distinguished from each other by the acceptance rate for
spin flips as shown in more detail in Sec. 2.3.3. In order to model the dynamics of a
spin system by one of these two algorithms, it is crucial to couple the spins to a heat bath
at temperature T . This temperature acts as control parameter. The temperature T has
an impact on the acceptance probability of spin flips and thereby controls the degree of
spin order in the system. Heat baths which are kept at a temperature T are essential
constituents for the dynamics of many-body spin systems. They will be discussed in some
more detail in Sec. (2.3.2).

2.3.2 Classical lattice-based spin models

In this section we discuss the very basics of the microscopic details of the lattice-based spin
models which are investigated in this thesis. The models are distinguished from each other
by the order-parameter symmetry number n and the parameter q which determines the
number of directions in which the spins can point. We limit ourselves to n = 1 and n = 2
and only consider one-dimensional (d = 1) and two-dimensional (d = 2) square lattices.

The Ising model: The Ising model was first introduced by Lenz in 1920 [154, 155] based
on the assumption that the elementary magnetic moments, i.e. the spins si, in solids do
not freely rotate in space, but instead only change their direction by turning around by
180◦, a process which is also referred to as Umklapp Prozess. This means that spins, which
are located on discrete lattice positions i, can only be found in one of two distinct states,
si ∈ [−1, 1], corresponding to one configuration pointing parallel along the x-axis and one
pointing antiparallel along x. In line with the categorization of spin systems as discussed
above in Sec. 2.3.1, the Ising model is a spin system with n = 1, q = 2, and consequently,
θi = 0 or θi = π. Since n = 1 for the Ising model, we can replace the vector notation for
the spins si ≡ si and write the Hamiltonian of the system with nearest-neighbor coupling
as

H = −J
∑
〈ij〉

sisj +
∑
i

hisi. (2.13)

In this equation, the sums run over all lattice sites, J represents the coupling constant
between nearest-neighbor (NN) spins si and sj which mimics the mutual interaction and
hi models an externally applied transversal magnetic field as in the general Hamiltonian
which we introduced in Eq. (2.11). For ferromagnetic coupling, J = 1, the ground-state
configuration corresponds to a maximally ordered state, i.e., all spins point in the same
direction (i.e., all spins point either up, si = 1 or down, si = −1) and consequently,
the order parameter, i.e., the magnetization m = |1/Ld

∑
i si| ( where d refers to the

spatial dimension of the lattice), is maximized, m = 1. Since the spins are coupled to
a heat bath at temperature T , thermal fluctuations can destroy the spin ordered state.
These fluctuations are responsible for a phase transition to an unmagnetized state, m = 0,
if the temperature T is increased above the critical temperature Tc which, for the two-
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dimensional Ising model on a square lattice, is given by Tc = 2.269. In the following
we discuss the one- and two-dimensional Ising model in more detail. Specifically, we
sketch the analytical calculation to determine the critical temperature Tc where the system
undergoes an order-disorder phase transition and thereby show that the one-dimensional
version of the model does not have a spin ordered phase.

The one-dimensional Ising model: The Ising model in one spatial dimension, d = 1,
with nearest-neighbor coupling and periodic boundary conditions (PBC) was first solved
analytically by Ising in 1925 [156]. In this lattice dimension, the system is also referred
to as Ising chain. It does not exhibit a stable spin ordered phase. Thus, it does not
exhibit a order-disorder phase transition upon lowering the temperature T . In other
words, there is no critical temperature Tc. Despite the apparent simplicity of spin models,
analytic solutions are often involved or even impossible to obtain. Therefore, we here
use the opportunity to sketch the general solution of the exactly solvable Ising model
(where an uniform transverse field hi 6= 0 may be present) via the transfer matrix method
[155, 157, 158]. To this end, let us consider a one-dimensional lattice configuration
consisting of L equidistant sites i which are occupied by spins, si ∈ [−1, 1]. Due to the
imposed PBC, sL+1 = s1. Since we consider a canonical ensemble, the probability to find
the system, which is kept at temperature T , in microstate µ with energy Eµ is given by the
Boltzmann-Gibbs measure

pµ(T ) = 1
Z

exp (−Eµ/T ) , (2.14)

where Z =
∑
µ exp (−Eµ/T ) is the canonical partition function which normalizes the

Boltzmann distribution. In particular, Z is important because it relates the microscopic
properties of the system (that constitute the energyEµ of each microstate µ) to macroscopic
thermodynamic quantities like the Helmholtz free energy

F = − 1
L
kbT ln(Z). (2.15)

The partition function of the one-dimensional Ising model (i.e., the Ising chain) with
inverse temperature β = 1/T reads

Z =
∑
µ

exp (−βEµ) =
∑
{si}

exp [−βE (s1, s2, ...sL−1, sL)] , (2.16)

where
∑
{si} =

∑1
s1=−1

∑1
s2=−1 ...

∑1
sL=−1 means that the sum in Eq. (2.16) runs over

all 2L microstates, i.e., all possible configurations of spins on the lattice. Note that each
individual configuration (s1, s2, ..., sL−1, sL) of spins simply corresponds to exactly one
microstate µ of the system which is assigned the energy E(s1, s2, ..., sL−1, sL) = Eµ. The
energy of the bond between si and si+1 reads

E(si, si+1) = Jsisi+1 + h

2 (si + si+1) . (2.17)
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Consequently, the energy of a particular microstate µ corresponds to Eµ = E(s1, s2) +
E(s2, s3)+...+E(sL−1, sL)+E(sL, s1). In the next step we have to rewrite the Hamiltonian
as sum over bonds and factor the Boltzmann weights to pairwise factors

Z =
∑
s1

∑
s2

...
∑
sL−1

∑
sL

L∏
i=1

exp
{
β

[
Jsisi+1 + h

2 (si + si+1)
]

︸ ︷︷ ︸
E(si,si+1)

}
. (2.18)

At this point, we introduce the transfer matrix elements for spatially neighboring spins si
and si+1

tsi,si+1 = exp [βE(si, si+1)] = exp
{
β

[
Jsisi+1 + h

2 (si + si+1)
]}

. (2.19)

Specifically, since for the Ising model both spins, si and si+1 can be found in state si = 1
or si = −1, there are the following four two spin configurations: (1.) si = si+1 = 1, (2.)
si = si+1 = −1, (3.) si = 1, si+1 = −1, (4.) si = −1, si+1 = 1. As a consequence, the
transfer matrix tsi,si+1 is a 2× 2 matrix containing these four configurations,

tsisi+1 =
(
t1,1 t1,−1

t−1,1 t−1,−1

)
=
(

exp [βE(1, 1)] exp [βE(1,−1)]
exp [βE(−1, 1)] exp [βE(−1,−1)]

)
.

At this point, we can rewrite the partion function and express it in terms of transfer
matrices

Z =
∑
s1

∑
s2

...
∑
sL

ts1s2ts2s3 ...tsL−1sL
tsLs1 . (2.20)

A close inspection of this equation and the corresponding transfer matrices reveals that for
each bond between neighboring spins si and si+1, two transfer matrices share one index.
This can be seen by considering ts1s2 and ts2s3 . Here, the second spin, s2, is shared since
it is part of both transfer matrices. Thus, the sum over s2 in the expression for Z can be
rewritten as multiplication

∑
s2

ts1s2ts2s3 = (t · t)s1s3 = t2
s1s3 . (2.21)

As we see, the second index, s2, vanishes if we perform the corresponding sum over this
site. By repeating this procedure for all sums in Eq. (2.20), we arrive at

∑
s1

(t · t · t · ... · t · t)s1s1 =
∑
s1

(tL)s1s1 ≡ Tr[tL]. (2.22)

The partition function Z can be written as the trace of ts1s1 to the power of the number of
bonds which is equal to L, the number of spins. This rewriting procedure of Z is useful
since we now can apply basic linear algebra to simplify the trace in Eq. (2.22). After
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diagonalizing the transfer matrix, t = S−1ΛS, we can make use of the cyclic property of
the trace,

Z = Tr[tL] = Tr[S−1ΛSS−1ΛS...S−1ΛS] = Tr[S−1ΛLS] = Tr[ΛN ] = λL1 + λL2 . (2.23)

Thereby, we end up with a simple expression for the partition function Z which reveals
that it can be expressed by the two eigenvalues λ1 ≥ λ2. These eigenvalues satisfy the
characteristic equation

λ2 − Tr[t]λ+ Det[t] = 0 (2.24)

of the transfer matrix t. Finally, this brings us to the following solution for the two
eigenvalues,

λ1,2 = exp(βJ)
[
cosh(βh)±

√
sinh (βh) + exp (−4βJ)

]
. (2.25)

By going to the thermodynamic limit, i.e. L → ∞, and making use of λ1 ≥ λ2, we can
approximately express the partition function Z according to

limL→∞Z ≈ λL1 = exp(LβJ)
[
cosh(βh) +

√
sinh (βh) + exp (−4βJ)

]L
, (2.26)

which is the final form of the partition function. Equation (2.26) can be used to calculate
various quantities. For example the free energy F of the system is given by

F = −J − kT ln
[
cosh(βh) +

√
sinh (βh) + exp (−4βJ)

]
. (2.27)

From the free energy, the ensemble average absolute magnetization m of the system can
be calculated according to

m = −∂F
∂h

= sinh(βh)√
sinh2(βh) + exp(−4βJ)

. (2.28)

By switching off the external field, h→ 0, the spontaneous magnetization vanishes, i.e.,
m → 0. This means that there is no stable ferromagnetic phase in the system when
there is no external field applied. As a consequence, there is no phase transition in the
one-dimensional version of the Ising model in absence of an externally applied transverse
magnetic field.

The two-dimensional Ising model: Here, we shortly sketch the solution of the two-
dimensional Ising model based on the transfer matrix method [157, 159, 160] which
was already used to solve the one-dimensional version in the previous paragraph. In
contrast to the Ising chain, the model with nearest-neighbor coupling in two spatial
dimensions, d = 2, exhibits a stable ferromagnetic phase at low temperatures even in the
absence of an external magnetic field h. Considering a square lattice of lateral length L,
the two-dimensional Ising model can be interpreted as succession of L one-dimensional
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rows of length L. Each row r = 1, 2, ..., L has the same 2L configurations as the one-
dimensional Ising chain of length L. The spin configuration of row r can be written
as φr = (s1, s2, ..., sL−1, sL). The next step is to write transfer matrices for neighboring
rows. This is a quite cumbersome procedure which we will not show here. As for the
one-dimensional case, the partition function becomes a consecutive product of transfer
matrices. Finally, in the limit L→∞, the partition function of the two-dimensional Ising
model with h = 0 can be written as

lim
L→∞

= ln [2cosh (2βJ)] + 1
2π

∫ π

0
dϑln

[1
2

(
1 +

√
1− κ2sin2(ϑ)

)]
, (2.29)

where θ = (2sinh(2βJ))/(cosh(2βJ)). The ferromagnetic phase emerges as T is decreased
below the critical temperature Tc. The critical temperature can be expressed in closed
form according to Onsager’s solution of the model [160]

Tc = 2J
ln(1 +

√
2)
. (2.30)

In numerical simulations of the Ising model, the order-disorder phase transition corre-
sponds to the crossing point of the fourth-order Binder cumulant U4 for different system
sizes L (see Sec. 2.3.3 for details where U4 for system sizes from L = 16 to L = 32 is
plotted together with exact value Tc = 2.269). At the critical point Tc, the system under-
goes a continuous (second-order) phase transition. The model shows critical behavior in
the vicinity of Tc and the corresponding critical exponents represent the equilibrium Ising
universality class. The latter is characterized by the following set of critical exponents (see
C 4 for details), α = 0, β = 1/2, γ = 1, δ = 3, η = 0, ν = 1/2. Interestingly, many physically
very different systems show the exact same scaling behavior around continuous phase
transitions as the Ising model. If an external field is applied, the character of the transition
can change from second- to first-order [157]. We do not consider the model in presence of
an external field, and thus, are always concerned with continuous phase transitions in the
two-dimensional Ising model.

The q-state vector-Potts model: Here, we introduce the generalization of the Ising model
which allows for more than two states per spin. Specifically, the q-state vector Potts
model (which is also known as clock model or planar Potts model [157, 161, 162]) is
characterized by n = 2 and q ≥ 2. As discussed earlier in this section, for n = 2, spins si
are two-dimensional objects that can take q different values, i.e., orientations distributed
uniformly about the unit circle, at equidistant angles θi. Using the angles θi instead of
two-dimensional unit vectors allows to write the Hamiltonian of the q-state vector Potts
model with nearest-neighbor interaction of spins and an externally applied magnetic field
as

H = −J
∑
〈ij〉

cos (θi − θj) +
∑
i

hicos(θi). (2.31)
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At this point we want to point out that the q-state vector Potts model should not be
confused with the standard Potts model [162]. The latter is a simpler version where
coupled spins only interact with each other if they point in the same direction, i.e., when
they take the same angle θi = θj . For the standard Potts model, the Hamiltonian reads,
H = −J

∑
〈ij〉 δ(si, sj), with δ(si, sj) being the Kronecker delta. Throughout this thesis we

only consider the q-state vector Potts model defined in Eq. (2.31), even if we call it Potts
model. Clearly, for q = 2, the model corresponds to the Ising model, while for q = 3 it is
equivalent to the just mentioned standard Potts model [162]. Only for q > 3, the q-state
vector Potts model is not equivalent to other spin models.

Despite its simplicity, the q-state vector Potts model shows diversified critical behavior.
On a two-dimensional square-lattice, the number of phase transitions, their order and
the corresponding universality class depend on q. While for q ≤ 4, the model with h = 0
exhibits a single continuous (second-order) phase transition from a paramagnetic (PM) to
a spin-ordered ferromagnetic phase (FM), the nature of the transition completely changes
when q ≥ 5. In this case, the model exhibits two BKT-like (BKT stands for Berezinskii-
Kosterlitz-Thouless) phase transition [57]. Upon lowering the temperature T in the PM
phase, the system undergoes an infinite-order phase transition to a quasi long-range
ordered (QLRO) BKT phase at the critical temperature Tc1 [57, 162]. By further lowering
T , the system undergoes a second BKT-like transition from the QLRO to a ferromagnetically
ordered phase at Tc2. Interestingly, while the temperature Tc1 of the first phase transition
from the FM to the QLRO phase is independent of the value of q, the critical temperature
of the second transition from the QLRO to the FM phase decreases as the value of q is
increased, until in the limit q →∞, the second transition vanishes. In this case the system,
i.e., the XY model, only exhibits a single infinite-order transition from a PM to a QLRO
phase at Tc = 0.8816(5) [163, 164]. The lack of a stable ferromagnetic phase for q →∞
is due to the Mermin-Wagner theorem which states that continuous symmetries (like the
continuous spin symmetry in the xy-plane for q →∞) can not be spontaneously broken at
finite temperatures in systems with short-range interactions and d ≤ 2.

The classical XY model: The classical XY model is the limiting case of the aforementioned
q-state vector Potts model with q →∞. This means that, in contrast to cases where q is
finite, the XY model exhibits continuous spin-symmetry, i.e., spins can continuously point
in any direction on the unit circle, i.e., θi ∈ [0, 2π]. Therefore, the partition function of the
model reads

Z =
∏
n=1

∫ π

−π
dθnexp

β∑
〈ij〉

cos(θi − θj)

 . (2.32)

Different from the solution of discrete spin models, the transfer matrix method is inappro-
priate for the XY model since for continuous spin symmetry, the transfer matrix dimension
would go to infinity. However, at low temperatures, i.e., in the T -regime where one expects
neighboring spins to point in rather similar directions, the cosine in Eq. (2.32) is ≈ 1, and
can thus be expanded. Thereby, the cosine gets simplified if we neglect all orders higher
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than two in the expansion. This simplification of the Hamiltonian is known as spin-wave
approximation [157, 162]. It allows us to express the Hamiltonian of the XY model as

H = −β
∑
〈ij〉

[
1− (θi − θj)2

2

]
. (2.33)

Taking this equation and making use of the fact that constant parts do cancel when
expectation values are calculated, the partition function in spin-wave approximation can
be written as

Z =
∏
n=1

∫ π

−π
dθnexp

−β2 ∑〈ij〉(θi − θj)2

 . (2.34)

At low temperatures, i.e., large values of β, the integral boundaries can in good ap-
proximation extended to infinity. In this case, the partition function becomes Gaussian
[162],

Z =
∏
n=1

∫ ∞
−∞

dθnexp

−β2 ∑〈ij〉(θi − θj)2

 . (2.35)

By using the generating functional together with the two-dimensional lattice Green func-
tion,

G(r) = 1
(2π)2

∫ π

−π
dk

exp(ikr)∑2
a=1 4[1− cos(ka)]

, (2.36)

it can be shown [162] that the x-component of the magnetization, mx, of the XY model
depends on the Green function G(0),

mx = 1
L

∑
i

cos (θi) = 〈cos (θi)〉 = Re〈exp (iθi)〉 = Re
[
exp

(
−2G(0)

β

)]
. (2.37)

Since the integral G(0) diverges, the magnetization vanishes, i.e., mx → 0. This is in
accordance with the Mermin-Wagner theorem. In fact, the magnetization remains zero
irrespective of the temperature or the strength of the coupling constant J . In higher spatial
dimensions, i.e., d > 2, the lattice Green function does not diverge, and thus, a stable
ferromagnetic phase emerges at low temperatures T . Therefore, the three-dimensional XY
model does exhibit a PM to FM phase transition [71, 162].

Even though there is no net magnetization in the XY model for d = 1 and d = 2, it can be
shown that another type of phase transition is present in the two-dimensional XY model.
Despite the fact that m = 0 for any value of T , there exists a critical point Tc which divides
the system into a high-temperature phase T > Tc where correlations decay exponentially
fast and a low-temperature phase T < Tc where correlations show a power-law decay
[57, 162]. The transition from power-law to exponential decay corresponds to an infinite-
order BKT phase transition. Above Tc, unbound vortices and antivortices freely move
in the system. At the critical point Tc, a phase emerges which is characterized by the
formation of vortex-antivortex pairs. Within this phase, correlations show a power-law
decay [57, 162]. At this point, we do not go deeper into the theoretical foundations of this
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type of phase transition. Specifically, we are interested in the behavior of the specific heat
cv and the entropy production rate per spin π in the vicinity of the infinite-order BKT-like
phase transition in the XY model under nonequilibrium conditions. We show results for cv
and π in C. 9.

2.3.3 Algorithms to model the dynamics of spin systems

In the following we will discuss details of the most commonly used MCMC algorithms to
model the dynamical evolution of spin systems. The algorithms are defined such that in
each step of the simulation, a random spin si (or a cluster containing multiple spins) is
chosen and an attempt to change it’s orientation is made. Such a spin (or cluster) flip
corresponds to a state transition µ → ν from microstate µ to ν with µ, ν ∈ Ω. The task
of the underlying MCMC algorithm is to repeat this procedure and in each step either
accept or decline the attempted state transition µ → ν. Whether the flip is accepted or
declined depends on the rate wνµ of the transition which crucially depends on details of
the Hamiltonian, i.e., details of the spin model, and the underlying MCMC algorithm. Each
algorithm has it’s own strengths and weaknesses. Thus, different algorithms are best suited
for different tasks. In the following we discuss the Metropolis and the Glauber algorithm
which are the two most prominent local MCMC algorithms used to model the dynamics
of discrete spin systems. Additionally, we shortly mention cluster algorithms where in
each step a whole cluster of spins is flipped instead of a single spin si. Concerning cluster
algorithms we shortly mention and explain the single cluster Wolff algorithm [165] and
the multi cluster Swendsen-Wang algorithm [166].

The Metropolis algorithm: Even though the Metropolis algorithm was introduced almost
70 years ago in 1953 [167, 168], it is still a standard MCMC used to sample states of
stochastic systems exhibintg a discrete state space Ω. This algorithm has proven to be
particularly useful to model the dynamics of spin systems. In order to calculate the value
of the transition rate wνµ for flipping a spin at site i from si to s

′
i, one first picks a random

lattice site i and calculates the energy difference ∆Eνµ = Eµ−Eν between the microstate ν
which is occupied after the potential spin flip and the initial state µ the system is occupying
before the spin si on site i changed it’s orientation to s

′
i. The possible values of ∆Eνµ

depend on the local field of the surrounding spins and, if applied, on an external field
h which can point in a certain direction. Of course, the external field could also rotate,
periodically switch it’s orientation or take a random value on each lattice site i. In other
words, ∆Eνµ depends on details of the system, e.g., the value and range of the coupling
constant J , the number of configurations per spin, q, as well as the lattice geometry and
it’s dimension d. For a system in contact with a heat bath at temperature T , the transition
rate, i.e., the acceptance probability, for a spin flip si → s

′
i according to the Metropolis

algorithm is given by
wνµ = min [1, exp(−∆Eνµ/kbT )] . (2.38)
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Here, kb is the Boltzmann constant which we always set to unity, kb = 1. According to the
form of this equation, the transition rate is a number between 0 and 1, i.e., wνµ ∈ [0, 1].
Therefore, the transition rate corresponds to an acceptance probability pa of the attempted
spin flip. Equation (2.38) tells us that whenever the energy of the system is reduced by an
attempted spin flip, i.e., if ∆Eνµ ≤ 0, the transition from µ to ν is conduced with probability
pa = 1 and the spin flips from si to its new configuration s

′
i. On the contrary, if ∆Eνµ > 0,

one draws a random number r ∈ [0, 1], which is uniformly distributed in the given interval,
and compares this number with wνµ = exp (−∆Eνµ/T ). If r < exp (−∆Eνµ/T ), the
flip is accepted despite the fact that it leads to an increase of the total energy of the
system. In contrast, if r > exp (−∆Eνµ/T ), the spin flip attempt is rejected and the system
remains in state µ, i.e., spin si keeps it’s orientation. According to the dependency of
wνµ on the energy difference ∆Eνµ, the probability to accept an energetically unfavorable
configuration decays exponentially with increasing ∆Eνµ. The probability pa for accepting
spin flips as function of ∆Eνµ is plotted in Fig. 2.3 for the Metropolis and the Glauber
algorithm at different temperatures T . No matter whether the spin flip is accepted or
rejected, the procedure of attempting spin flips is repeated many times until the system,
depending on the details, eventually reaches, a steady state which may be a state of
thermal equilibrium or a NESS.

The Glauber algorithm: In the same manner as for the Metropolis algorithm, the here
discussed Glauber dynamics (which is identical to the heat bath dynamics algorithm)
corresponds to a MCMC method which, in the case of spin systems, models the dynamical
evolution of non-conservative flips of single spins, si → s

′
i. The difference to the Metropolis

algorithm lies in the functional form of the transition rate, i.e., the spin flip acceptance
probability pa. Specifically, according to the Glauber algorithm [169], the transition rate
for µ→ ν depends on the energy difference ∆Eνµ between state µ and ν in the following
way

wνµ = exp (−∆Eνµ/T )
1 + exp (−∆Eνµ/T ) = 1

2

[
1− sitanh

(∆Eνµ
T

)]
. (2.39)

According to Eq. (2.39), not only state transitions µ → ν which lead to an increase of
the system’s internal energy, i.e. ∆Eνµ > 0, may be rejected, but also state transitions
which lead to a reduction of a system’s internal energy, i.e., ∆Eνµ < 0, are not always
accepted. This is in stark contrast to the Metropolis rule for which all spin flips with which
lead to ∆Eνµ ≤ 0 are accepted. To make this explicit, let us compare the Metropolis
with the Glauber transition rate for the case ∆Eνµ = 0. Following the transition rate of
Eq. (2.38), the spin flip is definitely executed, i.e., wνµ = 1, whereas according to Eq.
(2.39), the transition rate is wνµ = 0.5. Figure 2.3 visualizes the difference in the spin
flip acceptance ratio ∆pa = ∆wνµ as function of ∆Eνµ between the Metropolis and the
Glauber spin flip algorithm for different temperatures T . As can clearly be seen, both
algorithms lead to almost identical transition rates for ∆Eνµ ≤ 5 and ∆Eνµ ≥ 2 but
become significantly different in the interval 5 < ∆Eνµ < 2. The difference in the spin flip
transition rates, ∆wνµ = wmetropolisνµ − wglauberνµ between the Metropolis and the Glauber
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algorithm as function of ∆Eνµ is further plotted in Fig. 2.3. There, one clearly sees
how ∆pa increases as ∆Eνµ approaches zero coming from negative values. At ∆Eνµ the
difference of the acceptance ratio peaks at ∆pa = 0.5. From there, it quickly decreases and
approaches zero for ∆Eνµ > 2.

Fig. 2.3: (a) Plot of the spin slip acceptance probability pa as function of the change of energy
∆Eνµ for four different values of the heat bath temperature T according to the Metropolis
and Glauber transition rates as defined in Eq. (2.39) and Eq. (2.38). (b) Shows the
difference ∆pa = |pGlaubera − pMetropolis

a | in the spin flip acceptance probability following
the Glauber and the Metropolis rule for the same temperatures as used in (a).

It is well established that the Metropolis algorithm is best suited for spin systems with
small q, while the Glauber dynamics work better for large q. In this thesis, we solely work
with the Glauber algorithm because we mostly work with systems (the q-state vector Potts
model and the XY mode ) which have q ≥ 4. However, it is a topic for future research
to investigate if the entropy production rate per spin, π, depends on the choice of the
algorithm. To this end, it could be interesting to compare π and dπ/dT in the vicinity of
the order-disorder phase transition. The main question here is whether the power-law
behavior, i.e., the critical exponent ζ of the derivative of the entropy production rate,
dπ/dT , depends on the choice of the MCMC algorithm.

Cluster algorithm: Simulations of spin models by means of local (single spin-flip) update
MCMC algorithms like the Metropolis or Glauber algorithm suffer from critical slowing
down near the critical point Tc. Especially for large system sizes L, this issue makes it
computationally very challenging to overcome the transient regime. Thus, it can be very
time consuming to reach the steady state. In contrast, cluster algorithms do not suffer
from critical slowing down. Therefore, they are convenient to model the dynamics of large
spin systems in the vicinity of order-disorder phase transitions. In contrast to the (local)
single-spin flip Metropolis and Glauber algorithm, cluster algorithms are distinguished
from the former by flipping multiple spins, i.e., cluster of spins, in one iteration step. In
the following we shortly sketch the Wolff (single cluster) [165]. Furthermore, there is also
the Swendsen-Wang multi cluster algorithm [166] which we do not explain here. Similar
to the Wolff algorithm, the Swendsen-Wang algorithm does counteract the divergence of
auto-correlation times close to the critical point. Accordingly, this algorithm does also
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Fig. 2.4: (a) and (b) show the ensemble average absolute magnetization m for the Ising model
(q = 2) and the 4-state vector Potts model as function of T from L = 8 to L = 32. (c) and
(d) show the fourth-order Binder cumulant U4 for q = 2 (Ising) and q = 4. The black
lines indicate the corresponding critical temperature Tc.

Fig. 2.5: (a) and (b) show the specific heat cv for the Ising model (q = 2) and the 4-state vector
Potts model as function of T from L = 8 to L = 32. (c) and (d) show the magnetic
suszeptibility χ for q = 2 (Ising) and q = 4. The black lines indicate the corresponding
critical temperature Tc.
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Fig. 2.6: (a) shows the ensemble average absolute magnetization m for the XY model (q →∞).
(b) shows the fourth-order Binder cumulant U4. In (c) the specific heat is plotted and (d)
shows the magnetic susceptibility χ The black lines indicate the corresponding critical
temperature Tc of the XY model.

not suffer from critical slowing down near Tc. According to the Wolff algorithm, the
construction of a cluster works as follows. One starts by chosing a random spin si and
iteratively adds neighboring spins sj with probability p = 1− exp(1− 2/T ) to the cluster if
they are in the same spin configuration, i.e., if si = sj . The state of the cluster is called a.
After this, one calculates the energy inside, Ein, and outside, Eout, the cluster. Additionally,
the number of same, ns, and different, nd, links across the cluster boundary are calculated.
From this, one can calculate the probability P (a→ b) that each spin inside the cluster flips
si → −si. When the cluster is flipped, it is found in state b. The probability for a cluster
flip is given by

P (a→ b) = min
[

exp (nd/T ) exp (−ns/T ) (1− p)nd

(1− p)nsexp (−nd/T ) exp (ns/T )

]
(2.40)

Regardless of whether the cluster flip attempt is conducted or not, the procedure is repeated
by constructing a new cluster, starting again with a randomly chosen spin si.

In C. 9 we calculate the entropy production rate per spin, π for the q-state Potts and the XY
model using the Glauber algorithm. Concerning this thermodynamically important quantity,
it is a priori not clear whether the choice of the spin-update algorithm has an effect on
the entropy production rate π. Therefore it may be interesting for future investigations
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to analyze and compare results for π obtained from simulations with different MCMC
algorithms. Since the Glauber and Metropolis acceptance probabilities are different from
each other as shown in Fig. 2.3, one might expect a different behavior of π when using
the Metropolis instead od the Glauber algorithm. In this sense, it would be interesting
to investigate whether the power-law behavior of π which we found for the q-state Potts
model by using the Glauber algorithm (see C. 9) gets altered if one uses the Metropolis
algorithm or a a non-local cluster update algorithm instead.

Calculating the expectation value and the variance of observables: Concerning simula-
tions by means of MCMC algorithms, the expectation value 〈O〉 of some quantity/observable
O (e.g., the mean energy per spin, 〈E〉 or the ensemble average absolute magnetization
|〈m〉| can be estimated as arithmetic mean according to

〈O〉 =
∑
µ

Oµpµ ≈ O = 1
N

∑
k

Ok. (2.41)

Here, Oµ is the value of the quantity O in microstate µ and pµ is the normalized probability
to find the system in state µ. This can be approximated by averaging over the microstates
Ok which are sampled via the underlying MCMC algorithm. The first sum runs over all
microstates µ ∈ Ω, whereas the second sum runs over all states k which are sampled
during a simulation consisting of N sweeps/iterations. Specifically, Ok is the value of
quantityO in one of the microstates in Ω which the system is occupying in the k-th iteration
step of the Markov chain. The variance σ2

O of the quantity O can be expressed in terms
of the individual measurements Ok of O during the sampling procedure via the MCMC
algorithm,

σ2
O = 〈|O − 〈O〉|2〉 = 〈O2〉 − 〈O〉2. (2.42)

Using the explicit expression for O according to Eq. (2.41), the variance of O can be
expressed as

σ2
O = 〈O2〉 − 〈O〉2 = 1

N2

∑
k

(
〈O2

k〉 − 〈Ok〉2
)

+ 1
N2

∑
k 6=m

(〈OkOm〉 − 〈Ok〉〈Om〉) (2.43)

Here, we have separated the variance in diagonal and off-diagonal terms. The off-diagonal
term encodes the temporal correlations between measurements at different times (i.e.,
different iteration steps/sweeps) k and m.Thus, it vanishes for data that is completely
uncorrelated. For correlated data, the second term in Eq. (2.43) does not vanish. if we
make use of the symmetry k ↔ m, we can rewrite the sum in Eq. (2.43) from the original
form

∑L
k 6=m and end up with a new form corresponding to 2

∑N
k

∑N
m=k+1. By taking this

rewritten sum and making use of the time-translation invariance of σ2
O in equilibrium, we

arrive at

σ2
O = 1

N

[
σ2
O + 2

N∑
k=1

(〈O1O1+k〉 − 〈O1〉〈O1+k〉)
(

1− k

N

)]
. (2.44)
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This expression shows us how the variance σ2
O calculated along a stochastic path of length

N is related to the exact value of the equilibrium variance σ2
O. By introducing a normalized

auto-correlation function

A(k) = 〈O1O1+k〉 − 〈O1〉〈O1+k〉
σ2
O

lim
k→∞

a · exp
(
− k

τOexp

)
(2.45)

and the integrated auto correlation time

τO = 1
2 +

N∑
k

A(k)
(

1− k

N

)
, (2.46)

we can express the variance of O along a stochastic path of length N as

σ2
O = 2

N
σ2
OτO. (2.47)

This expression directly tells us that one has to make sure that N � τO, in order to obtain
meaningful results for σ2

O in numerical simulations. In that case, the autocorrelation
function A(k) is already exponentially small before the correction term (1− k/N) in Eq.
(2.46) becomes large enough to be relevant. Therefore, it is important to make sure
that the system has spend enough time in the steady state before one starts to measure
observables, especially in regions very close to critical points. Moreover, due to the
existence of temporal correlations in measurements of O in MC simulations, the statistical
error εO =

√
σ2
O =

√
σ2
O/Neff [with Neff = N/(2τO)] of O is enhanced by a factor

√
2τO.

Therefore, only every ∼ 2τO MC sweeps/iterations, measurements of observables O are
nearly uncorrelated. This makes clear why the length N of a stochastic path along which
O is calculated has to be large in MC simulations in order to obtain a meaningful, i.e.,
uncorrelated, average and variance. Again, this is of particular importance if we sample
states close to the critical point. Concerning the numerical calculation the variance, one
has to take care not to underestimate it. From he standard estimator for the variance
which is given by

σ̂2
O = O2 −O2 = 1/N

N∑
k=1

(
Ok −O

)2
, (2.48)

we find for the expectation value of the variance obtained from averaging over many
stochastic paths〈σ̂2〉 = 〈O2 −O2〉 = σ2

O + σ2
O. This can be rewritten by using Eq. (2.47)

〈σ̂2
O〉 = σ2

O

(
1− 2τO

N

)
= σ2

O

(
1− 1

Neff

)
. (2.49)

This shows that the ensemble average estimator 〈σ̂2
O〉 underestimates σ2

O by a factor
∼ σ2

O/Neff . For infinitely long samples the estimator becomes exact, i.e., 〈σ̂2
O〉 = σ2

O for
N →∞. When using local spin update MCMCs like the Metropolis or Glauber algorithm,
τO strongly depends on the system size L. Therefore, N has to be chosen large enough
because otherwise, finite-size effects alter the calculated variance of physical observables.
This is of great importance for calculations of the suszeptibility χ and the specific heat cv.
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The latter quantities are defined as the variance of the magnetization m and the energy
E per spin. Making sure that results are not affected by finite size effects is of particular
importance if we are interested in the scaling behavior of peak values of quantities which
are calculated as the variance of some observable O. In Fig. 4.1, Fig. 2.5 and Fig. 2.6,
we plot χ = Ld/T

(
〈m2〉 − 〈m〉2

)
(with m being the magnetization m = 1/Ld

∑
i si) and

cv = Ld/T 2 (〈E2〉 − 〈E〉2
)

(with E being the energy per spin) for the 2- and 4-state vector
Potts and the XY model. Also in C. 9 we calculate the power-law behavior of cv in order to
determine the universality class of a nonequilibrium Potts model. For all simulation results
shown in this thesis we made sure that the data is not affected by measurement errors.

2.4 Nonequilibrium surface growth and simulation
details

In this section, we discuss the most established simulation technique that is used to
mimic nonequilibrium surface growth via vapor deposition techniques like molecular beam
epitaxy. To this end, we explain the surface processes that occur during nonequilibrium
growth. A detailed knowledge of these microscopic processes is of particular importance
for numerical simulations of surface growth. By means of a reasonable coarse-graining
procedure one separates the unimportant from the crucial microscopic processes which
determine the morphological evolution of the growing surface. Following this, we will
give a detailed explanation of the event-driven KMC algorithm which is the state-of-the-art
method to model surface growth on substrates in the micrometer range.

2.4.1 Numerical simulations of nonequilibrium surface growth

Since we assume a discrete lattice in surface growth simulations, one could, in principle,
simply solve the corresponding Master equation to obtain the occupation probabilities of all
lattice configurations, i.e., microstates µ ∈ Ω of the system. Due to the fact that the height
of each lattice site is unlimited, the dimension of the phase space Ω is infinite. Therefore,
it is, irrespective of the system size, impossible to numerically set up the transition rate
matrix. To overcome this problem, one usually employs event-driven KMC simulations to
model nonequilibrium surface growth. A detailed explanation of the algorithm will be
given in the next section.

2.4.2 Coarse-graining in surface growth simulations

In order to simulate surface growth by mimicking the experimental vapor deposition
techniques discussed earlier in this section, it is in fact sufficient to consider only a handful
of the many microscopic processes that take place on the surface during growth. The

36 Chapter 2 Fundamentals of Markov chains and simulation details



Fig. 2.7: Illustration of the coarse-graining procedure conventionally used to model particle
diffusion on the potential energy landscape of a solid surface. First, one replaces the PES
with a discrete lattice where each of the equidistant lattice sites represents a local energy
minimum of the PES. By neglecting thermal fluctuations of the lattice, we end up with a
setup where particles perform activated diffusion processes between neighboring sites of
a discrete lattice. The original version of the figure is from [170].

challenge is to make out the ones which are crucial for the morphological evolution. While
atoms in a crystal vibrate with frequencies f on the picosecond time scale, i.e., f ∼ 10−12

1/s, the time that passes in between two consecutive hopping events of an adatom on
a solid substrate which jumps from one energetic minima to a neighboring one can be
several orders of magnitude longer. Therefore, it requires simulations up to seconds or
minutes in order to reasonably model the growth dynamics of an ever increasing ensemble
of particles which diffuse on a solid substrate after deposition and thereby form stable
clusters. Since the hopping of adatoms on the solid substrate is obviously important
for the morphological evolution of a growing surface, diffusion is definitely one of the
key processes that have to be included in particle-based simulations of nonequilibrium
surface growth. In contrast, considering the aforementioned atomic lattice vibrations
would needlessly increase the computational effort without noticeably affecting the surface
structure. Therefore, a full description of atomic vibrations of the solid surface can be
neglected in surface growth simulations without hesitation. Usually, they are included as
a temperature-dependent constant pre-factor of the Arrhenius-type hopping processes of
adatoms as discussed below in this section. The conventional coarse-graining strategy one
usually follows in order to simplify the dynamics of hundreds and thousands of individual
adatoms which diffuse on a solid surface during growth is illustrated in Fig.2.7. In fact,
for surface growth simulations on a strongly coarse-grained, it is sufficient to include the
following three processes: I. deposition, i.e., adsorption of particles on the surface, II
adatom diffusion and III. desorption, i.e., evaporation of adatoms from the surface back
to the gas phase which is above the growing solid. How these processes are modeled in
KMC simulations will be explained in the following.
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The potential energy surface, fluctuations and the Markov property: After deposition,
particles get adsorbed on the potential energy surface (PES), i.e., the potential energy
landscape of the growing crystals surface. There, they perform Arrhenius-type activated
hopping processes between neighboring local minima of the PES. More precisely, adatoms
fluctuate around local minima due to thermal noise and eventually escape it in order to
fluctuate in a neighboring minimum. One can assume that the more time an adatom
spends in one local energetic minimum of the PES, the more it forgets about the path
that brought it there. Therefore, it is reasonable to assume that each possible way to
escape a minimum becomes completely independent of the history of previously occupied
minima. In other words, all state transitions µ→ ν of the whole system (due to hopping
of individual particles from one minimum to a neighboring one) from state, i.e., lattice
configuration, µ to state ν obey the Markov property which is defined in Eq. (2.2).

The lattice approximation of the PES: We assume perfect crystalline surfaces which is a
well-established simplification of the PES in simulations of surface growth [9, 170, 171].
Hence, it is reasonable to map the individual minima of the PES onto a suitable periodic
arrangement of potential wells. This is exemplary shown in Fig. 2.7 where the minima of
the underlying PES are mapped onto a square lattice. Consequently, the diffusion processes
of adatoms can be modeled as hopping between neighboring sites of such an perfectly
periodic lattice (i.e., particles hop between the coarse-grained translationally invariant
minima of the potential wells). In the simplest setup, the rate constants for hopping of
an adatom from lattice site a = (i, j) to a neighboring site b depend on the number n of
lateral neighbors of the particle on site a only. This is due to the fact that we ignore any
memory effects as discussed in the previous paragraph. Due to the translational invariance
of the coarse-grained PES, adatoms which are located on different lattice sites escape
their energetic minima with the same rate constant if they have the to overcome the same
activation energy EA (see Fig. 2.8). The value of EA only depends on a few details like
the number of neighbors a particle has on site a. This means that, depending on the
lattice geometry, we only have to consider a limited number of distinct rate constants for
adatom hopping in a surface growth model. In the following we derive the activation
energy-dependent Arrhenius-type expressions of the rate constants for adatom hopping
between neighboring potential wells of the PES.

Hopping rate constants from transition state theory: Algorithms to model nonequilib-
rium surface growth require rate constants for all considered elementary processes as
input parameters. Commonly, the rate constants for adatom hopping are obtained by
means of Transition State Theory (TST) [172, 173]. In this regard, the transition rates
for adatom hopping between neighboring potential wells are expressed through the ratio
T/Pa of the transition current T and the probability Pa of finding an adsorbed particle
in minimum, i.e., on lattice site, a of the PES (note that the potential wells of the PES
are periodically arranged on a discrete lattice and a corresponds to a discrete lattice
position). In the following we shortly sketch how one obtains the transition rate constants
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for adatom hopping on a perfectly periodic PES from a potential well located at a to a
neighboring potential well at b across a saddle point s from TST (see Fig. 2.8 for an
exemplary illustration of this situation on a one-dimensional substrate). To this end, one
first has to simplify the situation. For example, one assumes that the transition current
T of paths will only flow from a to b and not backwards. Furthermore it is assumed that
the transition is a classical event, i.e., tunneling between the two potential wells a and
b is forbidden. After applying these simplifications, TST provides simple Arrhenius-like
expressions for the hopping rate constants Dab for hopping between neighboring potential
wells a and b across a saddle point s. The latter equation is also known as Eyring-Polanyi
equation [174, 175] which is given by

DTST
ab = Zvib

TS
Zvib

a

kbT

h
exp

(
− EA
kbT

)
= k0

kbT

h
exp

(
− EA
kbT

)
. (2.50)

In this equation, T is the temperature, h represents the Planck constant and Zvib
TS represents

the partition function at the transition state, i.e., at the saddle point s, and Zvib
a represents

the partition function at the initial state a. The activation barrier for the hopping process
from potential well a to b is given by EA = Es − Ea, where Es is the energy at the saddle
point s as illustrated in Fig. 2.8. This shows that the energy barrier for hopping from
a to b does not depend on the potential energy Eb of the final state, i.e., the potential
well at lattice position b. The value of EA is directly available from information of the
underlying PES. In fact, it can be obtained from first-principles, semilocal DFT calculations
[176–180]). For simplicity we ignore entropic corrections to the energy barrier EA and
furthermore, do not consider zero-point vibrational energy corrections which means that
we set k0 = 1. Consequently, we have the prefactor ν0 = kbT

h ∼ 10−12 which is of the
order of lattice vibrations in the temperature regime relevant for surface growth, which is
100 . T . 1000 K. After these simplifications the situation we are actually considering for
adatom diffusion in surface growth simulations corresponds to the one which is shown on
the right hand side of Fig. 2.8. Particle hopping is now simply an Arrhenius-type processes
with activation energy-dependent rate Dab ∼ exp(−EA).

Composition of the activation energy barrier for surface diffusion: On the typical
coarse-graining level used for large-scale growth simulations, the activation energy EA
that has to be overcome in order to perform a hopping process of a particle from lattice
site a to b consists of up to three individual energy contributions

EA = ED + nEB + sabES . (2.51)

More precisely, the value of EA of a particle on a depends on the diffusion barrier ED,
which we assume to take the same value on all lattice sites of the crystalline surface, the
number n of lateral bonds of strength EB and an additional step-edge barrier ES . The
value of ED is of the order of the adsorption energy, i.e., the Van Der Waals energy between
a physisorbed adatom and the surface onto which it is deposited. Therefore, the value of
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Fig. 2.8: Illustration of a state transition of a particle which is initially located at the minimum of
a potential well a of the PES. The latter is coarse-grained as periodic array of potential
wells whose depth depends on the activation energy EA. In order to hop to the minimum
of a neighboring potential well b, the particle at a has to cross the transition state s.
To this end, it has to overcome the energy barrier EA = Es − Ea. in KMC simulations
this situation is further coarse-grained. Instead of modeling potential wells, one simply
uses a discrete lattice and allows the particle to hop from site lattice site a to b with an
activation energy-dependent Arrhenius type hopping rate Dab(T ).

ED depends on the material details of the substrate and the deposited particles. If during
the hopping process a→ b an adatom hops across a step-edge, i.e., if it performs an out-of-
plane diffusion process to another layer, it has to overcome a region with a lower number
of nearest neighbors where it is weaker bound to it’s neighbors. This effect is modeled
by an additional energy barrier, ES , which is referred to as Ehrlich-Schwoebel barrier
[181, 182]. If adatom hopping is in-plane, the Ehrlich-Schwoebel barrier is irrelevant,
i.e., sab = 0, whereas it has to be considered for out-of-plane hopping processes, sab = 1.
Due to the Ehrlich-Schwoebel barrier, adatoms located at the boundary of clusters have a
higher chance to get reflected than actually hopping down the step-edge. Therefore, they
spend more time on top of clusters than they would without the barrier. Consequently, the
step-edge barrier promotes the formation of clusters on top of existing clusters, and thus,
the Ehrlich-Schwoebel barrier can be responsible for a high surface roughness. Adatom
diffusion is modeled as Arrhenius-type processes with hopping rates given by

D = ν0exp (−EA/kbT ) . (2.52)

Here, the attempt-frequence ν = kbT/h which is of the order of lattice vibrations is chosen
in accordance with simulation studies of surface growth phenomena.

Composition of the activation energy barrier for adatom desorption: Deposited par-
ticles can not only diffuse on the surface by performing activated hopping processes.
Alternatively, they may also desorb from it again and thereby become part of the gas phase
again. The activation energy for desorption from the surface EDESA = EDES + nEB is
usually higher as compared to the value of EA for surface diffusion. This is because the
physiosorbed particles have to fully overcome the attractive Van der Waals force between
adatom and the substrate. This can be modeled by simply assuming the desorption energy
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EDES to be larger than the energy barrier for free diffusion, i.e., EDES > ED. In the
KMC simulations in C. 5, C. 6 and C. 7 we assume to value of EDES to be so large that
desorption can be fully neglected on the time scale of the simulations. Consequently,
deposited particles do not desorb from the surface during the simulation. We only consider
adatom desorption processes in the context of a thermodynamic analysis of surface growth
in C. 8. The Arrhenius-type rates for desorption of adatoms from the surface are given
by

q = ν0exp
(
−EDESA /kbT

)
. (2.53)

Here, the prefactor ν0 is the same as for surface diffusion processes discussed earlier in
this paragraph.

The rate for adatom deposition on the surface: In contrast to adatom diffusion and
desorption, deposition of particles on the surface is not modeled as an activated process.
In order to include particle deposition in our simulations, we simply use a fixed deposition
rate F . The value of the latter defines the number of particles deposited per second on
the surface per lattice site. This means that the rate F for particle deposition is equal
on all lattice sites of the simulation box. The rate F is defined such that it is effectively
independent of the depth of the potential wells of the lattice, i.e., it is independent of
the underlying PES. In experiments, not all deposited particles do successfully adsorb
on the surface. A certain percentage of adsorption attempts fail. We circumvent this by
assuming an effective deposition rate F that accounts for failed adsorption events simply
by assuming a value for F that is lower compared to deposition rates in experiments where
adsorption might fail. Therefore, when particle deposition is chosen, the particle will
definitely be deposited on the surface.

2.4.3 The event-driven kinetic Monte-Carlo (KMC) method

From Monte-Carlo to kinetic Monte-Carlo: Within the Monte-Carlo Markov Chain meth-
ods we used to model the dynamics of spin systems (discussed in Sec. 2.3 and applied in C.
9), one compares the energy Eµof the system before with the energy Eν after the transition
from configuration, i.e., (micro)state, µ to ν. Conventional Monte-Carlo algorithms are
distinguished from each other by the dependency of the acceptance probability pµν on
the energy difference ∆Eνµ = Eµ −Eν between the initial and final configuration. More
precisely, state transitions µ→ ν are accepted with probability pνµ ∈ [0, 1] which is deter-
mined by the Boltzmann distribution for the energy difference ∆Eµν [see Eq. (2.38) for
the Metropolis and Eq. (2.39) for the Glauber transition probability]. Accordingly, Monte-
Carlo algorithms sample configurations µ, ν ∈ Ω from the probability state space Ω based
on the Boltzmann weight of the states in Ω. To be more precise, the Metropolis and Glauber
algorithm perform an importance-weighted sampling of Ω. In this regard, the importance
of a state µ is measured via it’s relative occupation probability pµ = (1/Z)exp (−Eµ/T ).
The Metropolis and Glauber algorithms contain purely thermodynamic, but no dynamic
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Fig. 2.9: Embedding of different simulation methods and theories according to the time- and
length scales of physical processes where they can be applied. To model electronic
processes, one usually performs Density functional theory (DFT) calculations, whereas
Molecular dynamics (MD) simulations are used to model atomistic processes. The
kinetic Monte-Carlo (KMC) method is appropriate to model mesoscale processes like the
deposition and diffusion of individual nano- to micrometer-sized particles on surfaces.
To model processes on even large length scales, one often neglects microscopic details
and follows a continuum approach.Pictures of the simulation methods are taken from
[170], [190] and [191]

information of the system. This is due to the fact that their transition probabilities pνµ are
determined by ∆Eνµ only, such that kinetic effects are completely neglected. Different
from the Metropolis and Glauber algorithm, the dynamical Monte-Carlo method, nowadays
simply referred to as kinetic Monte Carlo (KMC) [183–187] method, actually simulates
the time-evolution of a pre-defined set of processes, including activated processes which
require to overcome an energy barrier EA in order to be executed. This is of particular
importance for systems which include various different processes at multiple time and
length scales. Every numerical method is best suited for a certain length and time-scale
range. The strength of the KMC method is the simulation of processes on the mesoscale,
i.e., events occurring on the length- and time scale of micrometers and microseconds. The
embedding of the KMC method in comparison to other approaches is illustrated in Fig. 2.9
The KMC method has proven to be of enormous practical use in the context of surface
growth simulations. There exist numerous examples where it has been shown that KMC
simulations can correctly model the growth of materials [188, 189].

The event-driven kinetic Monte-Carlo algorithm for surface growth: Figure 2.10 shows
an exemplary surface configuration of a system where the process rates of some particles
are highlighted. Since we use a lattice approximation to model the underlying PES, we can
simply compute the rate constants for any allowed state transition µ→ ν via adsorption,
desorption or diffusion and save them in a so-called rate catalog (see Fig. 2.10). In
each iteration step of the KMC simulation, the current lattice configuration is examined
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and all possible processes together with their rate constants are extracted from the rate
catalog and a single process is chosen and executed. Specifically, a random lattice site
where the chosen process can be executed is picked and the event (adsorption, diffusion or
desorption) is performed. Then, the rate catalog is updated and the procedure is repeated
many iterations until the simulation time reaches the pre-defined maximum simulation
time. In the following, we discuss in detail how the KMC algorithm works. During the KMC
simulation, particles can be adsorbed on randomly chosen lattice sites with an (effective)
adsorption (or deposition) rate F which is expressed in deposited monolayer (ML) per
second (ML/s). If L is the lateral size of the system, then one monolayer corresponds to
L2 particles. Accordingly, a deposition rate of F = 1 ML/s corresponds to a simulation
setup where, on average, L2 particles are deposited on the surface per second. The value
of F is assumed to be constant throughout the entire simulation. Additionally, we assume
the deposition rate to be equal on all lattice sites. The adsorption process of a particle
is followed by thermally activated diffusion (or hopping) processes to nearest-neighbor
lattice sites. Following the Clarke-Vvedensky bond-counting Ansatz [192], the thermally
activated Arrhenius-like hopping rates from site a to b are given by

D(T ) = ν0exp(−EA/kT ), (2.54)

with activation energy EA = ED + nEB + sabES . If desorption of particles is allowed in
the simulation, we also assume Arrhenius-like rates with activation energy EDESA (see
Sec. 2.4.2 for details). A typical KMC simulation consists of a large number of iterations
p. In each iteration step, a particle either performs a hopping process to a neighboring
lattice site, a new particle gets adsorbed or one of the particles desorbs from the surface.
The simulation starts at t0 = 0. After p iteration steps, the time is updated stochastically
according to

tp+1 = tp + τ. (2.55)

Here, tp is the simulation time after p iteration steps and τ corresponds to the time
increment that is added to tp in the (p+ 1)-th iteration step of the simulation. The latter is
defined as

τ = − ln(X)
rall

. (2.56)

In this equation, X ∈ (0, 1) is a random number chosen uniformly from the given interval,
and

rall =
L2∑
a

nmax∑
b

Dab

+Dd
a + F

 (2.57)

is the sum of the rates corresponding to all possible state transitions from the current
configuration of the system, µ to any configuration ν that can be reached via adsorption,
diffusion or desorption of a single particle. Specifically, rall includes the deposition rate F
per lattice site (each layer has L2 sites) and all diffusion rates Dab and desorption rates
Dd

a of particles in the topmost layer of the lattice. The integer nmax corresponds to the
maximum number of lateral bonds of a particle. This number depends on the geometry of
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Fig. 2.10: Illustration of a growing two-dimensional surface simulated via the event-driven KMC
algorithm. Some events that can occur on the surface are highlighted by different colors.
Particles are deposited with constant rate F on the substrate. After deposition, they
can diffuse by hopping between neighboring lattice sites a and b with rates D(T )ab
that depend on the local environment of the particle on site a. Instead, particles can
also desorb from the surface. The sum of all possible events that can be selected at
the current configuration of the system are saved in a normalized rate catalog. The
event that takes the largest share has the highest probability to be selected in the next
iteration step.

the lattice. For example, a square lattice is characterized by nmax = 4, whereas nmax = 6
on a hexagonal lattice.
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3Stochastic thermodynamics for
discrete Markov chains

After introducing the basic properties of Markov chains, we will in this chapter turn to
the thermodynamic properties of discrete Markovian systems with finite probability state
space Ω. Specifically, we will utilize a framework from the new, emerging field of stochastic
thermodynamics [50–52, 193–197], which aims at a generalization of thermodynamic laws
to the microscopic scale and to nonequilibrium processes. Before we do this, it is helpful to
first recall the fundamental laws of classical, macroscopic thermodynamics [198]. These
laws express universally valid empirical facts for a huge class of macroscopic systems,
i.e., on length scales where the randomness due to quantum and thermal fluctuations
is negligible, like on the length scale of a industrial heat engine. At this scale, the
thermodynamic limit applies, i.e., Ω→∞. Furthermore, the fundamental laws of classical
thermodynamics allow to define various quantities that are relevant and practical for a
meaningful interpretation of physical systems. Besides the phenomenological laws of
thermodynamics, we will briefly recall the interpretations of the relevant quantities from
the viewpoint of statistical mechanics.

3.1 Laws of classical macroscopic thermodynamics

The zeroth law of thermodynamics: If two systems, A and B, are both in thermal contact
with each other, and in a state of thermal equilibrium with a third system C, then there is no
net heat flow Q̇ between A and C, nor between B and C (i.e., Q̇ = 0). Moreover, also system
A and B are in thermal equilibrium with each other, and consequently, there is also no net
heat flow Q̇ between system A and system B.

This law of thermodynamics provides an intuitive foundation for temperature as an empir-
ical parameter in thermodynamic physical systems and establishes thermal equilibrium
as an equivalence relationship [199, 200]. Specifically, the zeroth law provides a relation
between the temperatures of multiple systems, each of which in a state fo thermal equilib-
rium with their respective surrounding. More precisely, if two systems which are in contact
with thermometers that read the same temperature T are brought in thermal contact,
then there is no heat flow between these two systems. As a consequence, temperature is
identified as the indicator of thermal equilibrium.
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If system A is at temperature TA, while B is at temperature TB, and TA 6= TB (and A

and B are brought in thermal contact), then the joint system is not in a state of thermal
equilibrium. There will be a net heat flow between system A and B until a state of thermal
equilibrium is reached, i.e., until both systems have the same temperature. Specifically,
the net heat flow is such that it flows from the hotter to the colder system until TA = TB.
Note that this only holds if both systems are not externally driven. External driving is able
to maintain the temperature difference between A and B and thus, can be responsible for
the situation that the joint system does never reach a state of thermal equilibrium (which
is only reached if TA = TB), but will instead always be out of equilibrium and exhibit a
net heat flow.

From the viewpoint of statistical mechanics, the temperature of a system is connected to
the mean velocity of the involved particles. This connection is, for example, formally seen
in the equipartition theorem

mv2

2 = 3
2kBT (3.1)

for an ideal gas in a three-dimensional box which relates the temperature of the system to
the average kinetic energy per particle in the box. For a system in thermal equilibrium,
the energy is shared equally among all of its different forms. for example, considering a
molecule, then the average kinetic energy per degree of freedom in translational motion
should be equal to that in rotational motion.

The first law of thermodynamics: Energy can not be created or destroyed, but only converted
in different forms of energy.

This fundamental law describes the general validity of the conservation of energy in physi-
cal systems and processes. [200, 201] More rigorously, the first law of thermodynamics
outlines the general relation between a systems internal energy, U , and work W and
heat Q. The law states that there exist only two different forms by which it is possible
to transfer energy from or to a physical system in order to change the internal energy U .
Mathematically, this can be formulated as follows

dU = Q−W. (3.2)

Accordingly, the change ∆U of a sytems internal energy U is equal to the energy transferred
from or to the system in form of heat Q dissipated into the heat bath minus the energy that
is transferred to or from the system in the form of (chemical or mechanical) work which is
supplied by an external system. The precise form of Q and W depends on details of the
system. For example, Q could be the heat dissipated due to friction and W may be the
work which is performed by changing the position of a piston which regulates the volume
that is available for a gas. An alternative formulation the first law of thermodynamics
is the statement that perpetual motion machines of the first kind are impossible. In
statistical mechanics one considers for any system the statistical distribution across the
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ensemble Ω of N (micro)states. Each state µ ∈ Ω is associated with an energy Eµ and
an occupation probability pµ. The internal energy at a given time corresponds to the the
sum of all microstate energies weighted by the respective probability of occurrence, i.e.,
U =

∑
µEµpµ = 〈Eµ〉.

The second law of thermodynamics: The total entropy of an isolated system never decreases
over time, ∆S ≥ 0.

In the framework of phenomenological, macroscopic thermodynamics, entropy is an
extensive (i.e., system size proportional) state function that can be assigned to any system
and which can increase or stay constant over time, but has other than that no direct
physical interpretation. Nevertheless, it is of fundamental importance as it signals whether
a system is in thermal equilibrium, where ∆S = 0, or not (∆S > 0). Moreover, it is
important to calculate the thermodynamic properties, for example, of a cyclic operating
heat engine [200, 202].

Let us, as a little example, consider a cyclic operating heat engine. If one supplies amount
of heat QH coming from a heat bath (reservoir) which is kept at temperature TH to the
heat engine, QH can not be fully converted into work W , even if all processes of the cycle
are reversible. In that case, an idealized cyclic operating reversible heat engine, i.e., a
Carnot heat engine, reaches the exact same initial state with the same internal energy U
again after performing one thermodynamic cycle. Specifically, the system is supplied with
an amount of heat QH from a hot reservoir (heat bath) at TH which is used to perform
work W . According to Carnot’s theorem, there exist no heat engine operating between
two heat reservoirs (at TH and TC with TH > TC) which is more efficient than a Carnot
engine operating between the same reservoirs. The efficiency of such a Carnot engine,
which is given by ηc = W/QH = 1−TC/TH , is the theoretical maximum efficiency for heat
engines. As a consequence, QC = QH −W is the minimum amount of heat that can not
be used to perform useful work, and therefore, W = QH −QC is the maximum amount
of work that can be performed. In such an idealized system, the amount of dissipated
heat Qd vanishes. The fact that any real processes produce friction and/or sound means
that they are not reversible, and consequently, perfect heat engines (e.g., the Carnot heat
engine) with Qd = 0 do not exist in the real world. In other words, for any real heat
engine, W = QH −QC −Qd is the work that can be performed. Therefore, the efficiency
of a heat engine which exhibits irreversible processes is always smaller than the Carnot
efficiency, η < ηc. One feature of reversible cyclic processes is that a state function S, which
is called entropy, remains constant after each performed cycle, i.e. ∆S = 0, while for any
irreversible processes ∆S > 0. More precisely, entropy represents the inevitable partial
loss of an engine’s ability to convert heat energy into work. We will discuss entropy and
especially entropy production in more detail in the paragraph.
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Statistical mechanics directly relates the entropy to the number of accessible microstates µ
of a system with probability state space Ω. Specifically, the entropy by Shannon reads

S = −
∑
µ∈Ω

pµln (pµ) . (3.3)

For a reversible process, this definition of the entropy turns out to be equivalent to the
representation of the change of entropy due to heat transfer in fully reversible classical
thermodynamics, dS = δQ/T , where Q is the (reversible) transferred heat. This can be
proven based on the probability density of (micro)states of the generalized Boltzmann
distribution and the identification of the thermodynamic internal energy U as the ensemble
average as introduced above. However, this is not the case for irreversible processes which
will be analyzed on a microscopic level in the following.

The third law of thermodynamics: The entropy S of a physical system approaches a
constant value as the system’s temperature T tends to absolute zero, T → 0.

As the temperature of a heat bath approaches absolute zero, T → 0, the entropy of a system
that is in contact with this heat bath approaches a constant value [200, 203]. From the
viewpoint of statistical mechanics, this law directly follows from the following argument.
Typically there exist one unique state α ∈ Ω, i.e., the ground state, with minimum energy
Eα (or there exists a group of degenerate ground states with identical energy). At T → 0,
the system will solely be found in this state, pα = 1. Consequently follows from equation
Eq. (3.3) that the entropy of the system vanishes in this limit.

3.2 Stochastic thermodynamics

So far, we have shortly discussed the fundamental laws of classical thermodynamics which
are based on empirical facts of thermodynamic properties of macroscopic systems. While
these laws universally apply to various systems and, according to statistical mechanics,
even have connections to the microscopic dynamics, they leave two major problems
open, which will both be relevant for the systems considered in this thesis. First, these
laws do not imply any concrete predictions and statements about systems that are far
from thermal equilibrium. For example, the aforementioned heat engine is idealized
to be quasistatically driven, i.e., in thermal equilibrium at each instance in time. Such
an idealization completely fails when we aim to understand, e.g., growth processes or
nonequilibrium spin systems (see C. 9) from a thermodynamic viewpoint. In fact, most
systems in nature are not in thermal equilibrium [51, 52, 204].

Moreover, the fundamental laws apply only to systems on the macroscopic scale, where the
thermodynamic limit Ω→∞ is appropriate, and thus, thermal (and quantum) fluctuations
are averaged out. We will directly consider systems on the fluctuating scale in this thesis.
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For example, we investigate entropy fluctuations during surface growth and consider these
fluctuations in a nonequilibrium Potts and XY model (see C. 9). Recent research aims
for a theoretical description of thermodynamic properties of systems on the fluctuating
scale and without explicitly relying on equilibrium assumptions. Here, a new theory gains
relevance, that is, stochastic thermodynamics [50, 52, 193, 194]. In the following, we will
outline the main ideas and introduce various quantities which we will later apply to our
systems

We will in the following consider a closed Markovian system, i.e., there is no particle
exchange with the environment, in contact with a heat bath at a fixed temperature T .
The system can exchange energy with this heat bath, which is assumed to be big enough
in order to always be in equilibrium. However, several definitions can be gernealized to
situations where the system is in contact with multiple heat baths as it is the case for the
nonequilibrium Potts and XY model which are discussed in C. 9.

3.2.1 Defintion of heat, work and internal energy on the
microscale

During a transition µ→ ν between two microstates µ, ν, the amount of heat, Q, transferred
between a system and the connected heat bath, is directly related to the transition rates
by

Q := T ln

(
wνµ
wµν

)
. (3.4)

Thus, the amount of heat exchanged with the heat bath during a transition µ→ ν depends
on the question how high the rate of this transition was, as opposed to the respective
backward transition. Note that this definition is independent of the question whether the
system is in equilibrium, or not.

Next to the exchanged heat, we have to correctly identify work W ((which can be con-
trolled at the macroscopic level) on the microscale. In particular, work on the microscale
corresponds to moving an occupied energy level Eµ of the system. For example, this can
be realized by applying an external field to a spin system or changing the volume of a box
that contains gas particles. Therefore the contribution to changing the energy of a system
coming from work can be written as

W =
∑
µ

Ėµpµ. (3.5)

Here, Ėµ corresponds to the change of energy of microstate µ. Next to work, there is also
chemical work Wc which corresponds to changes in ṗµ due to particle exchange with the
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environment. The heat flux Q̇ due to state transitions µ → ν (which also changes pµ)
together the contribution from Wc can be written as [196, 197]

Q̇+Wc =
∑
µ

Eµṗµ. (3.6)

In this thesis we do not consider particle exchange with the environment, i.e., Wc = 0 (we
only work with the canonical ensemble). As a consequence, Q̇ =

∑
µEµṗµ. We further

assume that no work is applied to the systems considered in this thesis. Specifically, we
consider the nonequilibrium Potts and XY model without external field. However, we
want to point out that it would be interesting to study thermodynamic properties of these
models in presence of systematically varied external fields. For example, the external field
can be interpreted as a signal and the system as a sensor that follows this signal [205].
This setup would allow for an informational theoretic interpretation of the model.

As opposed to the definition of the internal energy from statistical mechanics given above
(i.e,. U =

∑
µEµpµ = 〈Eµ〉), we now define the internal energy at a given time as the

energy of the currently occupied microstate as we are explicitly interested in energy
fluctuations. Thus,

U = Eµ (3.7)

Clearly, taking the ensemble average, we recover the previous definition from statistical
mechanics. Since we assume that no work is applied to the system, the first law of
thermodynamics generalized to the level of each individual (random) transition µ→ ν,
simply states

Eν − Eµ = Q. (3.8)

The heat exchanged between system and bath because of a single transition µ→ ν equals
the change in internal energy [52]. Specifically, the log-ratio of the forward and backward
rate is equal to minus the energy difference ∆Eνµ divided by the temperature T of the
heat bath. The energy difference ∆Eνµ between which the system jumps corresponds
to minus the heat flowing into or from the heat bath, ∆Eνµ = −Q. If ∆Eνµ > 0, heat
extracted from the bath, while if ∆Eνµ < 0, it flows from the system to the bath.

To connect these abstract definitions from stochastic thermodynamics with something
well known from statistical mechanics, let us consider as a concrete example the thermal
equilibrium case. Statistical mechanics tells us that the thermal equilibrium state of our
closed system in contact with single heat bath, is a canonical ensemble where the occupation
probabilities pµ for all microstates µ ∈ Ω follow the Boltzmann distribution

pµ = exp[−(Eµ − F )/T ] = 1
Z

exp(−Eµ/T ). (3.9)

Here, F correspond to the Helmholtz free energy from which ones gets the canonical
partition function Z = exp(−F/T ) =

∑
µ exp(−Eµ/T ). Furthermore, Eµ is the energy
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of microstate µ whose precise value depends on details of the interactions among the
constituents of the respective physical system. For example, Eµ could be determined by
the interaction potential among particles in a box or by interactions between spins which
are located on equidistant positions on a lattice, as we will discus in detail in C. 9. Further,
we know that DB [see Eq. (2.9)] holds in equilibrium, thus

Q

T
= ln

(
wνµ
wµν

)
= ln

(
pν
pµ

)
. (3.10)

Now, inserting the Boltzmann distribution, we find

Q

T
= ln

(
wνµ
wµν

)
= ln

(
pν
pµ

)
= ln

(
Z

Z
exp[−(Eν + Eµ)/T ]

)
= −∆Eνµ

T
. (3.11)

Thus, the first law on the fluctuating scale, is readily implied in the Boltzmann distributions,
showing the consistency of the here employed definitions. On average, the internal energy
is conserved in thermal equilibrium, and the heat flow is on average expected to vanish.
In the following, we will discuss this in more detail.

3.2.2 Entropy production in discrete Markovian systems

A key quantity that distinguishes systems out of thermal equilibrium from those in equilib-
rium is the constant net production of entropy. In order to define the total production of
entropy in discrete Markovian systems with finite probability state space Ω, we need to
consider both, the entropy change in the system and the entropy which is exported to the
environment.

Let us first recall the time-dependent Shannon entropy from statistical mechanics [206]
S(t) = −

∑
µ pµ(t)ln(pµ(t)) (see Eq. (3.3)). Corresponding to this definition, one defines

in stochastic thermodynamics, the fluctuating Shannon entropy

Ssys(t) = −ln[pµ(t)] (3.12)

which depends on the probability of the currently occupied state. This entropy explicitly
depends on the state of the system, i.e., the probability distribution, and we will hence
call it system entropy. In the ensemble average, we recover the previous definition [see
Eq. (3.3)], 〈Ssys〉 = S. From Eq. (3.12) one immediately obtains the change of Shannon
entropy during a single transition µ→ ν

∆Ssys = ln
(
pµ
pν

)
. (3.13)
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The change of system entropy is only one part of the change of the total entropy Stot due
to the transition µ→ ν. The other contribution to the change of the medium entropy due
to the amount of heat [see Eq. (3.4)] which is extracted from or given to the heat bath

∆Sm = −Q
T

= ln

(
wνµ
wµν

)
. (3.14)

By combining these two entropy changes, one obtains the total entropy production along
the (random) transition µ→ ν.

∆Stot = ∆Sm + ∆Ssys = ln

(
wνµ
wµν

)
+ ln

(
pµ
pν

)
= ln

(
wνµpµ
wµνpν

)
. (3.15)

Thus, the total entropy production is given by the log-ratio of the transition probability to
observe the forward divided by the backward transition.

Thermal equilibrium and nonequilibrium steady states: The definition of the total en-
tropy production [see Eq. (3.15)] directly depends on the transition rates and occupation
probabilities. There is a very apparent connection between this definition and the afore-
mentioned concept of detailed balance [see Eq. (2.9)]. Specifically, if DB is fulfilled,
∆Stot ≡ 0 which is readily given by substituting Eq. (2.9) into Eq. (3.15). Then, the
system is reversible, or in other words, it is in thermal equilibrium. Note that the entropy
contributions may still fluctuate, but around zero average values, 〈Q̇〉 = 0.

Let us now consider a system for which DB is broken for at least one pair of states µ, ν ∈ Ω,
i.e., at least one process is irreversible, pµwνµ 6= pνwµν . In that case,

Jνµ = pµwνµ − pνwµν 6= 0. (3.16)

The system is said to violate DB and is consequently driven out of equilibrium. In this
case, the occupation probabilities of states in a canonical ensemble do not necessarily
have to follow the Boltzmann distribution anymore. However, under certain conditions,
the system may still be found in a (nonequilibrium) stationary state (NESS) with time-
independent state vector Ṗ = 0. In contrast to the equilibrium case of a SS, such a NESS is
characterized by non-vanishing probability flows (currents) between certain pairs of states
(due to broken DB) which, in total, cancel each other out such that there is no net current
in the whole system. The latter is a requirement for a nonequilibrium system in order
to maintain a stationary state. To this end, let us shortly review how one can crate such
stationary nonequilibrium states in physical systems and discuss some simple examples.
NESS can be maintained by constantly driving the system. To give an example of a discrete
driven system, let us think of an Ising model in contact with two heat baths at T1 and T2.
The fixed temperature difference ∆T = |T1− T2| among the sublattices leads to a constant
heat flux Q̇ > 0 from the hotter to the colder reservoir. The system is constantly driven
out of equilibrium. We will discuss this example in C. 9 In the following, we show how
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heat Q, entropy S and entropy production π = Ṡ are related to the transition rates wνµ of
processes µ→ ν.

Entropy production in discrete Markov chains: Now we extend the previous definitions
for single transitions to entire trajectories. If we consider a stochastic path X(N) of length
N , the change of the medium entropy along this trajectory is given by

∆Sm =
N∑
i=2

ln

(
wωiωi−1

wωi−1ωi

)
. (3.17)

The change of system entropy along the path X(N) is given by

∆Ssys =
N∑
i=2

ln
(
pωi−1(i− 1)
pωi(i)

)
= ln

(
pω1(1)
pωN (N)

)
, (3.18)

where pωi(i) is the probability to find the system in state ωi at the i-th step of the trajectory.
Thus, in sharp contrast to the medium entropy, the change of system entropy only depends
on the initial state ω1 and the final state ωN of the trajectory, but not on the intermediate
states ω2, ω3, ..., ωN−2, ωN−1. One consequence of this observation is that the system
entropy change will generally not grow with N , whereas the amount of heat will, in
general, increase with the length N of the observed trajectory as long as the trajectory
is not taken from an equilibrium system (for which ∆Sm = 0 holds for N → ∞). For
example, in a NESS, the mean medium entropy production ∆Sm grows linearly with
N . This, in turn, means that the contribution of the system entropy to the total entropy
production ∆Stot along very long trajectories vanishes, and consequently, one finds

lim
N→∞

∆Stot = ∆Sm. (3.19)

We will exploit this simplification later, when we numerically determine the fluctuations of
the total entropy production in a NESS. This will be done in C. 9 for a q-state Potts model
in contact with two heat baths and in C. 8 where we investigate entropy production in the
context of nonequilibrium surface growth. As shown there, ∆Stot ≈ ∆Sm is already valid
for numerically manageable path lengths N .

The ensemble average entropy production rate in a NESS: Based on the so far introduced
changes of entropy along a stochastic path consisting of N state transitions ωi−1 → ωi, we
will now formally introduce the entropy production rate as a measurable quantity which
quantifies the distance from equilibrium in systems maintaining a NESS. As will be shown
in C. 9, this quantity (and it’s derivative with respect to the control parameter) exhibits
characteristic behavior in the vicinity of nonequilibrium phase transitions.

Starting from the definition of the Shannon entropy [see Eq. (3.3)], we can formulate an
expression for the time-dependent change of entropy that one the one hand, originates
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from the total system internal production of entropy and, on the other hand, by the
exchange of entropy with the environment

∂tS(t) = Ṡsys(t) = Π(t)− Φ(t). (3.20)

Here, Π(t) corresponds to the total system internal production of entropy, whereas φ(t)
is the production of entropy due to the exchange of entropy with the environment (the
heat bath). In order to formulate explicit expressions for Π(t) and φ(t), we recall the two
constituents of the total change of entropy, ∆Ssys and ∆Sm. These two contributions vary
discontinuously for a particular stochastic path X(N). However, their expectation values
vary smoothly according to

Ṡsys(t) := d
dt
〈Ssys(t)〉 =

∑
µ,ν

ln
(
pµ(t)
pν(t)

)
pµwνµ (3.21)

Φ(t) = Ṡm(t) := d
dt
〈Sm(t)〉 =

∑
µ,ν

ln

(
wνµ
wµν

)
pµwνµ, (3.22)

where 〈Ssys(t)〉 and 〈Sm(t)〉 denote the ensemble average of the change of system entropy
and medium entropy, respectively. Taken together, the total (ensemble average) change of
entropy per time, i.e. Ṡsys(t) + Ṡm(t), reads

Π(t) = Ṡtot(t) := d
dt〈Stot(t)〉 =

∑
µ,ν

ln

(
pµwνµ
pνwµν

)
pµwνµ. (3.23)

This equation can be rewritten as

Π(t) = 1
2
∑
µ,ν

[pµ(t)wνµ(t)− pν(t)wµν(t)] ln

(
pµ(t)wνµ(t)
pν(t)wµν(t)

)
, (3.24)

which corresponds to the formula for the total entropy production rate according to
Schnakenberg [207]. This equation obeys the thermodynamically expected properties:
Π(t) nullifies in thermal equilibrium (whre DB is fulfilled), and is strictly positive otherwise
(if DB is broken), in accordance with the second law of thermodynamics. For systems in a
NESS, the time-dependencies of the occupation probabilities and the transition rates vanish,
and cconsequently, also the time-dependencies of the entropy production rates vanish, i.e.
Ṡsys(t) = Ṡsys, Π(t) = Π and Φ(t) = Φ. Moreover, in a NESS, the system entropy (i.e.,
the Shannon entropy) remains constant, Ṡsys = 0, and therefore, 0 = Π− Φ. From this,
one immediately sees that in this case, the total entropy production rate corresponds the
medium entropy production rate, Π = Φ. As a consequence, it is sufficient to calculate Φ
in order to get the total entropy production rate. As the system is expected to be ergodi in
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the steady state, this can be done by calculating the change of medium entropy along an
infinitely long trajectory

1
2
∑
µ,ν

[pµ(t)wνµ(t)− pν(t)wµν(t)] ln

(
pµ(t)wνµ(t)
pν(t)wµν(t)

)
= lim

N→∞

1
N

N∑
i=2

ln

(
wωi−ωi−1

wωi−1−ωi

)
.

(3.25)
Alternatively, for a system in a NESS one can compute Φ = Π numerically by averaging
over many transitions µ→ ν from the current state µ of the Markov chain in the steady
state. In spin systems with discrete spin orientations like the vector Potts model with finite
q, state transitions µ → ν correspond to the flipping of a randomly chosen spin on the
lattice. If we recall the definition of the medium entropy production rate [see Eq. ( 3.22)],
it becomes clear that Φ can be written as an average over all lattice sites of the system

Φ = Π =
∑
i

∑
ν

〈wiνµln

(
wiνµ
wiµν

)
. (3.26)

Here, the first sum runs over all lattice sites i of the system and the second sum runs over
all final states ν that can be reached by flipping the spin on lattice site i with transition
rate wiνµ. We will make use of the fact that Π = Φ for systems in a NESS and calculate the
total entropy production rate numerically by either using Eq. (3.26) or by simple tracking
the change of medium entropy along stochastic paths of length N . As will be shown in C
9 and C 8, it is often sufficient to take rather small path lengths. Specifically, in C. 8 we
compare the exact value of the total entropy production rate according to Eq. (3.23) with
the numerically calculated rate for a one-dimensional growing interface. In particular, we
find perfect agreement between the exact and the numerical value of Π for various growth
conditions (i.e., deposition rate, temperature and binding energy) even for N � 100. The
same is true for the Potts model in contact with two heat baths.

3.3 Fluctuation theorems

Fluctuation theorems (FT) represent one of the few exact relations which are valid for
any nonequilibrium system in a NESS [193, 208]. These relations led to fundamental
breakthroughs in our understanding of how irreversibility in systems emerges from re-
versible dynamics. Concerning the entropy, there exists a relation which sets a restriction
to the probability distribution of the total entropy change ∆Stot(N) along a stochastic path
X(N) of length N . Specifically, the FT states that, in any nonequilibrium system, the ratio
between the probability P(X) ∈ [0, 1] that the total entropy increases by ∆Stot(N) = X

along X(N) is exponentially more likely than the probability P(−X) to decrease the total
entropy by −∆Stot(N) = −X [52, 194]

P[∆Stot(N) = X]
P[∆Stot(N) = −X] = exp (X) . (3.27)
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By taking the logarithm, this equation can be rewritten as

ln
( P[∆Stot(N) = X]
P[∆Stot(N) = −X]

)
= X. (3.28)

In other words, the FT expresses that violations of the second law of thermodynamics
become exponentially less likely as function of the change of total entropy ∆Stot. This
becomes clear if we rewrite Eq. (3.27) as

P[∆Stot(N) = −X] = P[∆Stot(N) = X]
exp (X) . (3.29)

From this equation one immediately sees that for ∆Stot(N) → ∞, the probability to
destroy this amount of entropy vanishes, i.e., limX→∞ P [∆Stot(N) = −X]→ 0. It can be
mathematically proven that according to the FT, the ensemble average entropy production
is always non-negative for any trajectory length N , i.e., 〈∆Stot(N)〉 ≥ 0 holds in any
physical system [51, 52]. This so-called second law inequality is in accordance with the
(classical) second law of macroscopic thermodynamics which states that in a physical
process, the entropy can never decrease.

In the limit N → ∞, also the change of medium entropy, ∆Sm, fulfills a fluctuation
relation

ln
( P[∆Sm(N) = X]
P[∆Sm(N) = −X]

)
= X. (3.30)

This relation directly follows from Eq. (3.27) in the limit of infinitely long observation
times, i.e. N →∞. For individual paths X(N), the system entropy fluctuations vanish for
individual paths such that 〈∆Ssys〉 = 0. However, [Eq. (3.30)] can be approximately valid
also for finite N . In particular, the smaller the probability state space Ω of a system, the
shorter the trajectories need to be to fulfill almost perfectly the fluctuation theorem for the
medium entropy.
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4Critical phenomena and universality
of phase transitions and surface
growth

This chapter is concerned with phase transitions and universal behavior of systems at
criticality. We will introduce the concepts of first-, second- and infinite-order phase
transitions. Further, we discuss universal behavior at criticality and introduce the finite-
size scaling technique which allows to numerically determine critical exponents. Towards
the end of this chapter, we will turn to the critical behavior and universality of surface
growth. In this context, we will further discuss the dynamical scaling relation.

4.1 Fundamentals of critical phenomena

When a physical system approaches a critical point where it undergoes a (continuous)
transition from one phase A to another phase B, anomalous behavior can occur not
only in various dynamic properties, but also in the static ones. This affects the overall
physical behavior of systems in the vicinity of phase transitions. Extraordinary physical
properties of systems in the vicinity of critical points are comprehensively discussed within
the framework of critical phenomena [6, 7, 63, 73, 209]. The latter serves as a general
framework to systematically study the physical behavior of systems at criticality where
thermodynamic properties become non-analytic. More precisely, a critical point is defined
as the critical value qc of an appropriate control parameter q (e.g., the temperature T , the
density ρ or the pressure p) at which a phase A and a further phase B of a pure stable
substance become identical. To give an example, let us consider the behavior of water
around it’s critical point which is at Tc = 647.096 K, ρc = 322 kg/m3, pc = 220, 64 bar. The
physical properties of the liquid and the vapor phase of water change dramatically as the
critical point is approached. In fact, both phases, i.e., the liquid and vapor phase, become
more similar. Under normal conditions, liquid water is nearly incompressible, it has a
low thermal expansion coefficient and, at the same time, a high dielectric constant. Near
the critical point, these properties change into the exact opposite. There, water becomes
suddenly compressible, thermally expandable and is characterized by a low dielectric
constant [1, 210, 211]. Such a dramatic change of properties at criticality is not limited to
physically complex systems like water. In fact, also the simple stochastic models considered
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in this thesis, i.e., the spin and surface growth models studied in C. 5 - C. 8, exhibit
noticeable behavior in the vicinity of phase transitions.

Within the framework of critical phenomena it is systematically investigated how the
properties of systems change as the system is brought closer to the critical point [6,
7, 63, 209]. In general, this includes the investigation of generic properties such as
scaling relations among different quantities. One example is the hyperscaling relation
which is discussed further below in this chapter. Furthermore, the power-law divergence
of certain system-specific and system-unspecific quantities are investigated within this
context. Conventionally, one analyzes the scaling behavior of the correlation length ξ,
the specific heat Cv and the magnetic susceptibility χ as the system is brought closer to
the critical point qc where it undergoes a transition from some phase A to another phase
B. In many systems, the quantities just mentioned exhibit power-law behavior around
qc. Therefore, they can often be categorized into universality classes according to their
corresponding power-law exponents, i.e., critical exponents, which describe the power-law
scaling of these quantities in the vicinity of critical points.

The framework of universality classes is well established for equilibrium systems. Concern-
ing phase transitions, nonequilibrium statistical physics is concerned with the question
whether the scaling behavior, i.e., the critical exponents, of the aforementioned quantities
are altered if a system is driven out of thermal equilibrium [73–75]. In this context,
there are two main questions. First, one is interested in how the critical behavior of
nonequilibrium systems is different from their equilibrium counterparts. Specifically, this
includes analyzing and comparing the critical exponents of systems under equilibrium
and nonequilibrium conditions. In this thesis, we address this topic based on the example
of a nonequilibrium version of the Potts model and the classical XY model in C. 9. In
particular, we find that the specific heat Cv scales with the same critical exponents as Cv in
the equilibrium version of the vector Potts model. On the other hand, there is the question
whether nonequilibrium systems exhibit characteristic behavior at criticality that generally
distinguishes them from equilibrium systems. In this regard, the entropy production
rate Π [see Eq. (3.23) in Sec. 3.2] is a promising tool to characterize nonequilibrium
phase transitions [109, 112, 205]. The latter quantity is exactly zero for equilibrium
systems (Π = 0) and always positive (Π > 0) in nonequilibrium systems. It is there-
fore appealing to investigate whether the entropy production rate exhibits characteristic
scaling behavior in the vicinity of critical points. In particular, this concerns the scaling
behavior of Π in the vicinity of phase (continuous) transitions. We calculate the entropy
production rate in a nonequilibrium vector Potts model in the vicinity of the continuous
phase transition in C. 9 and, additionally, round the critical point of the (infinite-order)
Berezinskii-Kosterlitz-Thouless phase transition in a nonequilibrium version of the classical
XY.
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4.2 Classification of phase transitions

Before we come to the discussion of critical exponents and universal behavior at criticality,
we first summarize the fundamentals of phase transitions. The critical point qc of a system
is characterized by the vanishing of an appropriate order parameter Ψ. The latter is a
measure for some symmetry of a system which allows to distinguish between an ordered
phase with broken symmetry and a disordered phase where the respective symmetry
is present. The order parameter describes the physical quantity (observable) which is
responsible for breaking of the respective symmetry under consideration. More precisely,
the order parameter vanishes for q ≥ qc, i.e., Ψ = 0 in the disordered phase and is greater
zero for q < qc, i.e., Ψ > 0 in the ordered phase where the symmetry is broken. Therefore,
phase transitions are accompanied by the phenomenon of spontaneous symmetry breaking.
This is at least the case for first- and second-order phase transitions according to Landau
theory of phase transitions[212]. It is well known that the Landau free energy in the
vicinity of a critical point is determined by symmetries only. This sort of universality is very
useful since it means that the way a thermodynamic system behaves close to qc does not
depend on the microscopic details. In fact, the behavior of a system is sort of universal
around the critical point. The idea is to expanded the free energy F (Ψ, q) in form of a
power series up to sixth order in the order parameter Ψ

F (Ψ, q) ≈ f0(q) + a0(q − qc)Ψ2 + 1
2b0(q)Ψ4 + 1

3c0(q)Ψ6, (4.1)

where f0(q) describes dependency of F (Ψ, q) on the order parameter q in the regime
q > qc close to phase transition. The other parameters will become important when we
discuss first- and second-order phase transitions in more detail. As the critical point is
approached, certain properties of the system change. Depending on how they change, one
distinguishes between different types of phase transitions. It is common practice to divide
phase transitions into two broad categories, (discontinuous) first-order transitions on
the one hand and (continuous) second-order transitions on the other hand. Additionally,
there exist infinite-order transition which, in contrast to the two other types, are never
associated with spontaneous symmetry breaking [57]. The nonequilibrium Potts model
which is investigated in C. 9 exhibits, depending on the number of possible configurations
per spin, all three types of phase transitions. We study second and infinite order transitions
of this Potts model under nonequilibrium conditions in C. 9.

4.2.1 First-order phase transitions

A phase transition is said to be of first-order if the internal energy of the system changes
discontinuously as the appropriate control parameter q approaches the critical value
qc where the system undergoes a transition from some phase A to another phase B

[7, 63, 209]. The characteristic feature of such a first-order transition is the release or
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absorption (depending on whether the transition is from phase A to phase B or vice versa)
of latent heat QL = q∆S. The latter is the amount of exchanged heat that is required
to drive the system across the phase transition at constant temperature. At a first-order
transition a system remains in phase A until the critical value qc of the control parameter
is reached from above, q > qc. Then, it jumps discontinuously to phase B and thereby
dissipates or absorbs QL. The Landau theory can be used to study first-order transitions by
considering the expansion of the free energy up to sixth-order. By setting a0 > 0, b0 < 0
and c0 > 0 in Eq. (4.1), there will be a first-order phase transition in the system. Since
the entropy is given by S(T ) = −dF (Ψ)/dq, the exchanged latent heat can be calculated
[212, 213]. One major feature of first-order phase transitions is hysteresis. This implies
that the state of a system depends on it’s own history. If one drives a system, which is
initially in state a and phase A (at qa < qc), across qc to a state b in phase B (with qb > qc),
the system will not come back to the very same state a if one decreases q to qa again.
Instead, the system will be found in some state c. Particularly, the area of the thereby
formed hysteresis loop is a measure for the amount of energy that has been exchanged
(dissipated or absorbed) during the first-order phase transition. This phenomenon can
be induced by considering inertia in simple models like the majority vote model [214].
In the case of spin systems the paramagnetic to ferromagnetic phase transition can be of
first-order if an magnetic field is applied. The transition can also become first order due to
system internal properties.

4.2.2 Second-order phase transitions

In contrast to first-order transitions, there is no latent heat at second-order phase tran-
sitions, i.e., QL = 0 and therefore ∆S = 0. Accordingly, the internal energy of a system
around a second-order phase transition changes continuously as function of q. By con-
sidering a series of F (Ψ, q) up to fourth order with b0 > 0, one observes a continuous
phase transition at qc where a0 changes it’s sign. The specific heat Cv = −q∂2F (Ψ, q)/∂q2

diverges at qc. This means that there is a discontinuity in Cv at qc which is related to the
discontinuity in the second derivative of the free energy F (Ψ, q). This is a characteristic
feature for second-order phase transitions. Furthermore, the susceptibility χ diverges
and systems which undergo a continuous transition have an infinite correlation length at
criticality. Additionally, they show a power law decay of correlations near the critical point
qc. Therefore, one can categorize systems exhibiting second-order phase transitions into
different universality classes according to the power-law exponents of the specific heat Cv,
the susceptibility χ, the order parameter Ψ and the correlation length ξ in the vicinity of qc.
This is discussed in Sec. 4.3. Important examples for materials undergoing second-order
transitions are ferromagnets, superfluids, and superconductors [1, 7, 209].
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4.2.3 Infinite-order phase transitions

There also exist phase transitions where the first appearance of a divergence occurs in some
higher derivative of the free energy with respect to q. At an infinite-order phase transition,
a divergence of the derivatives of the free energy with respect to q does not occur at all. The
most prominent type of infinite-order phase transition is the so-called Berezinskii-Kosterlitz-
Thouless (BKT) transition which received media attention after Thouless, Kosterlitz and
Haldane were awarded with the Nobel Prize for Physics in 2016 [57, 215–217]. The
transition is found exclusively in two-dimensional systems. Examples include Josephson
junction arrays, thin disordered superconducting granular films and two-dimensional
superconductors [218]. The most simple theoretical model of a system exhibiting a BKT
transition is the classical XY which is investigated in C. 9. Specifically, there we compare
the thermodynamic properties of the equilibrium model with a nonequilibrium version
around the BKT transition. Another peculiarity of the BKT transition is the fact that it is
not associated with symmetry breaking. In the case of a paramagnetic to ferromagnetic
phase transition (which can be first- or second-order), the rotational symmetry of the
spin-disordered paramagnetic phase is broken in the long-range ordered ferromagnetic
phase where all spins point in a unique direction. In contrast, the BKT transition (in
the two-dimensional classical XY model) is between a phase with unpaired vortices and
anti-vortices at high temperatures (with exponentially decaying spin-spin correlations)
to a quasi long-range ordered phase with bound vortex-antivortex pairs (with power-law
decaying spin-spin correlations) below the critical value of q, i.e., the critical temperature
Tc. It can be shown that the free energy F (Ψ, q) of the phase with bound vortex-antivortex
pairs has a lower free energy, which favors the formation of the BKT phase [57]. The reason
why the classical XY model in two dimensions does not have a ferromagnetic phase is due
to the Mermin-Wagner theorem [53, 55, 219] which states that continuous symmetries
(here the continuous spin symmetry in the XY model) can not be spontaneously broken at
finite temperatures T in systems with d ≤ 2 and short-range interactions. Moreover, it is
not known that the specific heat Cv in the vicinity of the transition does not exhibiting any
noticeable behavior. In fact, there is only a non-divergent peak above Tc which does not
show a power-law increases as function of system size L.

4.3 Universality of phase transitions

4.3.1 Critical exponents and power-law behavior

Critical exponents: Systems can be classified according to the scaling behavior of system-
specific quantities as the critical points, qc is approached. For spin systems, q corresponds
to the heat bath temperature T , whereas for surface growth, the control parameter is given
by the particle deposition rate F . As mentioned above in this section, physical quantities,
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i.e., observables O often exhibit power-law behavior at criticality. One can classify this
behavior by using critical exponents [6, 7, 63]. The latter describe the power-law behavior
of certain observables O around qc. More precisely, critical exponents describe the behavior
of quantities near continuous phase transitions, i.e., second-order phase transitions.

Control parameter and power-law behavior: We want to describe the behavior of a
physical observable O in terms of a power law around qc. To this end, we use introduce
the reduced control parameter

τ =
∣∣∣∣q − qcqc

∣∣∣∣ =
∣∣∣∣1− q

qc

∣∣∣∣ . (4.2)

The parameter τ vanishes at the critical point, i.e., τ = 0 at q = qc, and increases linearly
with distance |q − qc| from the critical point. Proceeding from τ , we now define a critical
exponent k according to

k := lim
τ→0

ln|O(τ)|
ln|τ |

. (4.3)

Here, O(τ) corresponds to the functional behavior of O with respect to τ , i.e., as function
of the distance from the critical point. From this generic definition, we immediately arrive
at the desired power-law behavior in the vicinity of qc. In the regime of small values of the
reduced control parameter, i.e., for τ → 0, which is close to qc, we get

O(τ) ∝ τk, (4.4)

which is the asymptotic behavior of the functional form of the observable O. The func-
tional form of different observables O(τ) shows different scaling behavior, i.e., they are
characterized by other values of the power-law exponent k. The most generic observables
for spin systems which show noticeable power-law behavior in the vicinity of qc include the
magnetization (which acts as order parameter in spin systems, i.e., Ψ = |m|) m(τ) ∼ τβ,
the spin-spin correlation length ξ(τ) ∼ τ−ν , the magnetic susceptibility χ(τ) ∼ τ−γ , the
specific heat Cv(τ) ∼ τ−α and, if present, the scaling of the magnetization as function of
an external field, m ∼ h1/δ. The values of the thereby defined set of critical exponents
α, β, γ, δ, ν enables a systematic classification of different systems into universality classes.
The exponents can be obtained either via analytical calculations or numerically by means
of Monte-Carlo simulations. For an analytical determination of the critical exponents, one
often performs mean-field type calculations within the framework of the Landau theory
[212, 213, 220]. However, mean-field theory neglects the effects of thermal fluctuations.
As an extension, the Ginzburg-Landau theory can be used to calculate the corrections to
the Landau theory by taking into account the effects of thermal noise [221–224].

Universal behavior and universality classes: In general, a universality class is defined
as collection of models sharing a single scale invariant limit under the process of renor-
malization group flow [225–227]. While all models within a specific universality class
may differ dramatically at finite scales, their behavior becomes increasingly similar as the
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limit scale of large systems is approached. This means that, irrespective of microscopic
details, their critical behavior on the macroscale is significantly similar. In fact, certain
properties of systems near critical points are identical for various physically completely
different systems. For example, the scaling of the specific heat Cv as function of τ near the
liquid-gas transition has the same behavior as Cv at the paramagnetic to ferromagnetic
phase transition in magnetic materials and mathematical spin systems. Another example
concerns suspensions of active, i.e., self-propelled, particles which undergo a gas-liquid
phase separation, known as motility-induced phase separation [148, 149]. Such active
suspensions are characterized by the same set of critical exponents as the classical Ising
model with Kawasaki spin exchange dynamics at the paramagnetic to ferromagnetic phase
transition. In particular, systems sharing the same set (α, β, γ, δ) of critical exponents
fall in the same universality class, even though they seem to have physically nothing in
common. It is generally believed, though not formally proven, that the values of the critical
exponents are universal and depend only on some rather general features. Concerning
spin systems, these general features include the dimension d and the geometry of the
lattice, the range l of spin-spin interaction and the spin dimension n. This implies that
changing the interaction strength J in an Ising or Potts model only results in a shift of
the critical temperature Tc, but does not affect the scaling behavior of any observable O
around Tc. As shown in numerous analytical, numerical and experimental studies, there
truly exist only a handful distinct sets for the critical exponents and many physical systems
at criticality are characterized by one of them [7, 63, 73, 74, 209].

Universal behavior at nonequilibrium phase transitions:While critical exponents and
universal behavior are well understood for systems in thermodynamic equilibrium, general
properties of nonequilibrium systems at criticality are less clear [73–75]. Nonetheless, it
has been shown that most of the fundamental concepts valid for equilibrium systems like
power-law scaling and universality, also apply under nonequilibrium conditions. However
it is a priori not clear whether the critical exponents, and thus, the universality class of a
system remains unaltered if it is driven out of thermal equilibrium. As shortly mentioned
earlier in this chapter, we show in C. 9 for a q-state vector Potts model in a nonequilibrium
stationary state that the critical exponents are not affected by driving. In fact, they are
identical to the exponents of the equilibrium version of the model. We investigate the
behavior of the entropy production rate per spin, π which exhibits characteristic scaling
behavior near Tc. Specifically, the derivative of π with respect to T , i.e., dπ/dT , diverges
at the critical point. This resembles the behavior of the specific heat Cv for τ → 0 at
continuous phase transitions. Furthermore, dπ/dT shows (non-universal) power-law
scaling with an exponent whose value depends on the strength of driving, i.e., the distance
from equilibrium. It is a topic for future research in this field to investigate the usefulness
and universality of the entropy production at criticality.
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4.3.2 The finite-size scaling method

Due to the fact that the linear system size L in numerical simulation studies is always
finite, i.e., L <∞, the correlation length ξ may become of the order of L but can never
exceed the limited size of the simulation box. Therefore, ξ can not diverge in a strictly
mathematical sense in computer simulations with finite system size L (where ξmax = L).
This means that ξ →∞ is not possible in numerical simulation studies. This implies for
divergences in other quantities O, like the specific heat Cv or the susceptibility χ, that, at
criticality, their divergent behavior is also affected by finite system sizes L in simulations.
However, the scaling law O(τ) ∼ τk, which we introduced in Sec. 4.3, assumes a true
divergence of correlations, i.e., ξ →∞, at the critical point. Therefore, one has to replace
the scaling laws for specific observables O. This is done by proposing a finite-size scaling
(FSS) ansatz to compensate for the system size limitation [228, 229]. In the previous
paragraph we showed that the divergence of the correlation length (which is connected
to the critical exponent ν) close to the critical point scales ξ ∼ τ−ν for an infinitely large
system. We therefore argue that the system with finite L has a pseudocritical point at
qc(L). The shift of the critical point is consistent with the law

|qc − qc(L)| ∼ L−1/ν , (4.5)

where qc is the exact critical point for the infinitely large system. Accordingly, the power-
law scaling of observables O, i.e., the scaling laws, have to be rewritten because the
critical exponents are affected by the finite system size. For example, the finite peak
χmax(L) of the susceptibility (which would diverge in an infinitely large system) at the
pseudocritical point qc(L) scales χmax(L) ∼ |qc− qc(L)|−γ ∼ Lγ/ν . By tracking the position
qc(L) of χmax(L) for increasing system sizes L and fitting a power-law to the location of
the pseudocritical point qc(L), we can estimate the true critical point, and thus, determine
ν according to

qc(L) = qc − aL−1/ν , (4.6)

where a is a constant. Thus, by performing a finite-size scaling analysis for the scaling
of the pseudocritical point of the susceptibility, we directly obtain ν. Further, by tracking
the scaling of the peak height which scales χmax(L) ∼ |qc − qc(L)|−γ ∼ Lγ/ν , we obtain
γ because we already now ν from the scaling of qc(L). Therefore, we obtain two critical
exponents, ν and γ, from the FSS analysis of the susceptibility. This procedure can be
repeated for Cv in order to obtain α. However, the FSS has to be very precise because α is
usually much smaller than γ for many universality classes.
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4.4 Universality in nonequilibrium surface growth

So far, we discussed universal behavior in systems regarding their physical properties in
the vicinity of (continuous) phase transitions. The values of the corresponding critical
exponents allow us to define universality classes according to the power-law behavior
of quantities close to criticality. In the following we investigate the stochastic motion of
interfaces, i.e., lines and surfaces and explain what universality means in this context.
More specifically, we study the dynamics of driven interfaces which are subjected to white
noise. Here, the most important quantity is the interface width W (L, t), i.e., the root mean
square value of the height fluctuations as defined in Eq. (6.8). In particular, the width
of an interface is a measure of the transverse correlations in the direction of growth [9].
Concerning the surface growth models investigated in this thesis, i.e., the full diffusion
KMC model and the DT model with diffusional fluctuations, see C. 9, 5 6 and C. 7, the
interface, which separates the growing solid crystal from the overlying gas phase, is flat at
the beginning of each simulation run. This means that the height h is set to h = 0 at all
lattice positions. Thus, the width of the interface, W (L, 0) = 0, is zero at the beginning of
the simulation, t = 0. As particle deposition sets in, the interface gets rougher with time.
As a consequence, the width of the interface increases. In particular, the incoming flux of
particles is both, the driving mechanism for the surface growth process and, at the same
time, the source for white noise [9, 13, 230]. The reason for the latter is that we treat
deposition such that it is completely uncorrelated in space and time.

For an infinitely large system, i.e., L → ∞, the roughness of the interface diverges,
W (L, t) → ∞ if online particle deposition (and/or evaporation events) are considered.
This means that the width of the interface would increase ∼ tβ as long as their is an
persistent incoming flux of particles. In that case, the interface is said to be delocalized
because it continuously deviates from the initial flat structure. However, models studied
in the context of surface growth include more processes and rules than just the random
deposition (and/or evaporation) of particles. In fact, what is observed in experiments and
simulation studies, where the system size L is finite, is a saturation of W (L, t) at a finite,
system size-dependent value Wsat(L). This means that in systems of finite size L, the
interface width gets localized at some point. As a consequence, the roughness depends on
the length scale on which one views the system [9]. Specifically, one finds that the larger
the system, the higher the surface roughness. The saturation of the roughness is directly
related to the correlation length ξ [9, 231]. Similar to what we have discussed in the
paragraph above, the correlation length in finite systems can never exceed the system size,
i.e., ξ = L is it’s maximum value. It is not clear what the microscopic origin of correlations
among different lattice sites is. Nevertheless, let us shortly describe, based on the example
of random deposition (RD) and ballistic deposition (BD) [232–234], how neighboring sites
know of each other, i.e., how they become correlated and how this correlation spreads.
At the beginning of the growth process, individual lattice sites do not communicate with
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each other, i.e., they are completely uncorrelated. in RD, individual lattice sites do not
communicate with each other at any time of the simulation. Therefore, the correlation
length is zero. This is the reason why the interface width does not saturate in this model,
but keeps growing with W (L, t) ∼ t1/2. In BD neighboring lattice sites do communicate
with each other. The incoming particles stick to the first site which is a nearest-neighbor
of the crystal. Thereby, the crystal grows laterally, and, as a consequence, also the height
fluctuations will spread laterally in the system. Even though the crystal growth process is
local, the information about the height of each site is spread globally through the system
due to the specific sticking rules for arriving particles. Specifically, the typical distance over
which lattice sites know about each other is the correlation length ξ. As growth proceeds,
the correlation length increases and so does the roughness. As soon as ξ becomes of the
order of the system size L, the whole interface is correlated. At this point, the interface
width can not further increase and it saturates at a system size-dependent value Wsat(L).
The system size dependency of Wsat(L) is due to the fact that ξ is limited by finite system
sizes, ξ ∼ L. In different systems, the sticking rules for arriving particles are different, and
therefore, the correlation length grows differently with time, i.e., it scales with a different
exponent. In particular, the scaling of the correlation length depends on the microscopic
details and transition rules of the respective growth model. Indeed, different models show
a different scaling of Wsat(L) with system size L and a different scaling of W (L, t) ∼ tβ in
the transient regime before the interface width has reached it’s maximum value Wsat(L).
Additionally, the time tx when the saturation value is reached depends also on the system
size. Specifically, it shows a power-law increase as the system size is increased, i.e. tx ∼ Lz.
This scaling of the interface width suggests that growing interfaces are self-affine fractal
structures, i.e., they are statistically indistinguishable from each other under a suitable
anisotropic rescaling of space and time. We will come to this point later when we relate
discrete growth models to certain continuum equations which describe the evolution of
the surface height in the thermodynamic limit, L→∞.

4.4.1 The dynamical scaling relation for the interface width

To understand what universality in the context of interface growth means, we focus on
properties of the surface roughness W (L, t). As particle deposition onto a flat interface
sets in, the roughness initially shows a power-law increase with time

W (L, t) ∼ tβ (4.7)

in the transient regime where the correlation length ξ increases with scaling exponent β.
Interestingly, the scaling of W (L, t) can be related to diffusion processes. If we consider
the uniformly distributed, uncorrelated random deposition of particles on a surface, the
roughness increases as W (L), t ∼ t1/2, which is exactly the scaling of the root of the
mean-squared displacement of a Brownian particle performing an unbiased random walk,√
〈|x(t)− x0|2〉 ∼ t1/2. Therefore, the trajectory of a random walk is statistically equivalent
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Fig. 4.1: Illustration of random and ballistic deposition of particles on a one-dimensional substrate.
During the process of random deposition, particles are deposited on a randomly chosen
lattice site i. This results always in an increase hi → hi + 1 on that site, irrespective of
the configuration on neighboring lattice sites. This is shown by the brighter particles
which indicate the final position of deposited particles. Concerning ballistic deposition,
the height configurations of neighboring columns of site i affect the deposition on site i.
If hi−1 > hi or hi+1 > hi, deposited particles stick at the height of neighboring columns.
Thereby, lateral correlations spread through the system.

to the long-time height profile if β = 1/2. If some sort of correlations between lattice sites
are introduced, the roughness scales with β 6= 1/2, i.e., it behaves like the trajectory of
a particle exhibiting anomalous diffusion [230]. At a system size-dependent crossover
time

tx ∼ Lz, (4.8)

the system leaves the transient and enters the asymptotic regime where the roughness
saturates at Wsat(L) because ξ has reached the system size, i.e. ξ = L. At this point, ξ
can not further increase. The interface is now completely correlated and the system has
reached a nonequilibrium steady state which is signaled by the fact that the probability
distribution of the roughness is now time-independent. Additionally, the saturation value
of the roughness scales with system size according to

Wsat(L) ∼ Lα. (4.9)

In particular, a system with α > 1 is called super rough. We now have a set of three scaling
exponents, α, β, z which are related to each other via the scaling law

z = α

β
. (4.10)

In particular, this scaling law is valid for any growth process for which the interface width
obeys the dynamical scaling relation [9, 232]

W (L, t) ∼ Lαf
(
t

Lz

)
, (4.11)
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where f(t/Lz) is a scaling function [9, 235]. This relation, which is also known as
the Family-Vicsek scaling relation, allows to check whether an evolving interface obeys
dynamical scaling and, is thus, a self-affine object. If it does obey Eq. (4.11), one gets
statistically similar interface profiles under an appropriate rescaling of space and time.
Because the roughness depends on t through the function f(t/Lz), we require that t→ bzt

if we rescale space according to x→ bx, i.e., L→ bL, such that the ratio (t/Lz) remains
unchanged under the scaling transformation of space. Due to the rescaling of space, we
also get Wsat(L) → bαWsat(L) for the rescaled interface width. On the other hand, the
roughness is linear in h. Therefore, the height must be rescaled as h→ bαh. In summary,
the scaling relations for space, time and height are given by

x→ bx (4.12a)

t→ bzt (4.12b)

h→ bαh. (4.12c)

If an interface is invariant under this rescaling, it is self-affine and can be characterized by
the fixed set (α, β, z) of corresponding scaling exponents. This set of scaling exponents
allows to classify the phenomenon of surface growth into different universality classes
in the exact same manner as it is done for the systems undergoing continuous phase
transitions. If different surface growth systems are characterized by the same set (α, β, z),
their interfaces are statistically identical and can not be distinguishes from each other
under rescaling with these exponents. Then, these systems are said to belong to the same
universality class. To give an example, the above mentioned random deposition model
represents a trivial universality class (because there are no correlations in the system)
characterized by (α = ∞, β = 1/2, z = ∞). Thus, if some system exhibits this set of
exponents it is said to belong to the random deposition universality class. In the following
we will discuss the most important universality classes and corresponding stochastic
differential equations (which describe the surface height evolution in the hydrodynamic
limit, L→∞) in the context of surface growth. Specifically, we will relate lattice models
to their continuum counterparts based on the values of the corresponding set (α, β, z) of
critical exponents.

4.4.2 Lattice models for surface growth and stochastic equations

While surface growth can be easily investigated by means of numerical simulations of
discrete lattice models, continuum models are better suited for an analytical treatment.
As discussed above, the set of critical exponents (α, β, z) is independent of the particular
system under study. In fact, the values of these exponents depend only on fundamental
symmetries of the elementary processes that take place on the surface of the system during
growth [9, 236]. In particular, solely in the context of continuum theories we can fully
understand the strength of the concept of universality classes which allows us to isolate
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Universality class Stochastic partial differential equation
Random deposition (RD): ∂th(x, t) = φ(x, t)
Edwards-Willkinson (EW): ∂th(x, t) = ν∇2h(x, t) + φ(x, t)
Kardar-Parisi-Zhang (KPZ): ∂th(x, t) = ν∇2h(x, t) + λ

2 [∇h(x, t)]2 + φ(x, t)
Mullins-Herring (MH): ∂th(x, t) = ν4∇4h(x, t) + φ(x, t)
Villain-Lai-Das-Sarma (VLDS): ∂th(x, t) = ν4∇4h(x, t) + λ4∇2 [∇h(x, t)]2 + φ(x, t)

Tab. 4.1: Stochastic partial differential equations of the most important universality classes in
the context of nonequilibrium surface growth in one spatial dimension, d = 1, i.e., for
substrates along the x-direction. In all equations, φ(x, t) represents nonconservative
Gaussian white noise, i.e., 〈φ(x, t)φ(x′

, t
′) = 2Dδd(x − x

′)δ(t − t
′), where d is the

dimension of the lattice.

Universality class α β z

Random deposition (RD): ∞ 1/2 ∞
Edwards-Willkinson (EW): 1/2 1/4 2
Kardar-Parisi-Zhang (KPZ): 1/2 1/3 3/2
Mullins-Herring (MH): 3/2 3/8 4
Villain-Lai-Das-Sarma (VLDS): 1 1/3 3

Tab. 4.2: Critical exponents of the most important universality classes in the context of surface
growth in one spatial dimension, d = 1

the irrelevant from the relevant physical processes that truly play a role for shaping the
observed surface morphologies in nonequilibrium growth processes.

The most important stochastic PDEs (modeled with a co-moving frame such that the
increase of surface height due to the flux F of incoming particles can be neglected) which
each represent an individual universality class include: Random deposition (RD), the
Edwards-Willkinson (EW) equation [237], (c) the Kardar-Parisi-Zhang (KPZ) equation
[238], the Mullins-Herring equation [239, 240] and (e) the Villain-Lai-Das-Sarma equation
[236]. For the sake of clarity, we list these equations in table 4.1. All these equations
represent a unique universality class and exhibit an individual set of critical exponents.
In all the equations listed in table 4.1, φ(x, t) is non-conservative Gaussian white noise,
i.e., 〈φ(x, t)φ(x′ , t′) = 2Dδd(x − x′)δ(t − t′), where d is the system dimension, i.e., the
spatial dimension of the lattice onto which particles are deposited. The equations can be
constructed based on symmetry principles. In order to extract the unique set of critical
exponents for each of these equations, one can solve them or apply symmetry arguments
[9]. The critical exponents of the above mentioned continuum models for one spatial
dimension, d = 1, are given in table 4.2.

Various real growth processes can be described by these equations. For example, the
KPZ equation describes growing turbulence of a liquid crystal [241–243], the height
fluctuations of the surface of growing bacteria colonies [244], slow combustion of paper
[245] and the interface profile of (coffee) stains that are left by a drying liquid drop
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containing ellipsoidal particles [246]. The EW equation describes surface growth with a
high mobility of adatoms [247], whereas the VLDS equation represents the continuum
limit of low-temperature MBE growth [236].
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5Nonequilibrium surface growth with
anisotropic interactions

We use event-driven kinetic Monte-Carlo simulations to investigate the early stage of
non-equilibrium surface growth in a generic model with a simple form of anisotropic
interactions among the adsorbed particles. Specifically, we deposit isotropically shaped
particles on a square lattice where they perform activated hopping processes to neighboring
lattice sites. The interaction anisotropy between neighboring particles is characterized by
a control parameter η which measures the ratio of interaction energy along the two lattice
directions. We systematically study the impact of the interaction energy EB, the control
parameter η and the flux rate F on the shape and the fractal dimension Df of clusters in
the pre-coalescence regime. At finite particle flux, i.e., deposition rate, F we observe the
emergence of rod-like and needle-shaped clusters whose aspect ratio R depends on the
value of η, EB and F . In the regime of strong interaction anisotropy, the cluster aspect
ratio shows power-law scaling as function of particle flux, R ∼ F−α. Furthermore, the
evolution of the cluster length and width also exhibit power-law scaling with universal
growth exponents for all values of F . We identify a critical cluster length Lc that signals
a transition from one-dimensional to self-similar two-dimensional cluster growth. The
cluster properties depend sensitively on the critical cluster size i∗ of the isotropically
interacting reference system. Additionally, we compare the KMC results to those of an
anisotropic EDEN model and find good agreement regarding cluster properties.

5.1 Anisotropic interactions in surface growth

During the nonequilibrium growth process, particles are adsorbed on an initially empty
square lattice with an effective adsorption rate F given in monolayer per minute (ML/min).
After adsorption on site a, they perform activated Arrhenius-type hopping processes
a → b to a randomly chosen nearest-neighbor lattice site b. The hopping rates Dab ∼
exp(−EA/T ) depends on the activation energy barrier EA which involves the three con-
tributions introduced in Eq. (2.51) in Sec. 2.4.2. In a system with isotropic interactions,
the contribution to EA from the interaction to neighboring particles is simply given by
nEB, where EB is the energy per bond and n the number of bonds. Here we consider
anisotropic nearest-neighbor interactions where not only the number n of in-plane bonds,
but also their configuration matters. To this end, we define the interaction anisotropy
parameter η ∈ [0, 1] which changes the nearest-neighbor interaction energy of in-plane
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bonds along the y-axis, EyB = ηEB, relative to that along the x-axis, ExB = EB. Thereby,
we model a generic feature of anisotropic interactions. The latter are essentially om-
nipresent not only for conjugated organic molecules, but also for some atomic systems
[248–250]. Specifically, our model breaks the global interaction symmetry. In experiments,
this situation could be realized by applying an external field which leads to a favored
direction for particle-particle bonds. This is similar to symmetry breaking in an Ising
model with an external magnetic field where the direction of the field leads to a favored
orientation of spins. One important peculiarity of our system is the fact that the particle
shape remains isotropic. This allows us to study the impact of anisotropy in the interactions
alone, without accounting for steric effects. Clearly, the latter effects are ubiquitous in
a lot of realistic anisotropic systems such as films of organic molecules. However, from
the simulation perspective, anisotropic particle shapes lead to additional complications
such as blocked pathways for hopping processes, overhangs of adsorbed particles and the
difficult question how the out-of-plane diffusion of anisotropically shaped particles should
be treated [92, 93, 176, 177, 251]. We consider the present simplified model as a first step
to the overall goal to better understand the effect of anisotropic interparticle interactions
under non-equilibrium growth conditions.

Possible real systems exhibiting features of our model could be organic oligomers on
the (1010) surface of a ZnO semiconductor. The surface generates an electric field that
induces dipole moments in the adsorbed molecules along the field direction [178], yielding
anisotropic dipolar interactions. Anisotropic dipolar interactions occur between partially
fluorinated organic molecule such as di-fluorinated para-sexiphenyl (6P-F2) [252]. By
Setting η = −1/8, one can mimics the interaction of parallel aligned neighboring dipoles
in our model. The situation with η < 1 describes systems where a lattice direction of
preferred particle attachment exists as it is the case for the growth of elongated and
needle-shaped Zn crystals on isotropic surfaces [250] and the growth of Ag clusters on fcc
metal (110) surfaces [248, 249]. In principal, both of these systems can be considered
with our model.

5.1.1 The KMC model with anisotropic interactions

An exemplary lattice configuration of our model is shown in Fig. 5.1. The total interaction
energy of a particle reads (nx + ηny)EB, where nx is the number of lateral neighbors
along the x-direction and ny represents the number of neighbors in y-direction. For
η = 1, the model reduces to the isotropic case where the total interaction energy is given
by (nx + ny)EB = nEB. In contrast, η < 1 represents the situation with anisotropic
interactions among the adsorbed particles. Specifically, decreasing η leads to an increase
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Fig. 5.1: Illustration of our KMC model to study nonequilibrium cluster formation and lateral
growth in presence of anisotropic interactions. The in-plane interaction between particles
on neighboring lattice sites in x-direction is denoted by ExB = EB. The parameter η
controls the degree of interaction anisotropy. Interactions are isotropic for η = 1.For
η < 1, the interaction energy EyB = ηEB of bonds in y-direction is lowered relative to
EB .

of the interaction anisotropy. The resulting expression for the hopping rate from site a to b
is given according to the Clarke-Vvedensky bond-counting Ansatz [192],

Dab = ν0 exp
(
− EA
kbT

)
= ν0 exp

(
−ED + (nx + ηny)EB + sabES

kbT

)
. (5.1)

We use the attempt frequency ν0 = 2kBT/h, where kb is the Boltzmann’s constant, T the
substrate temperature and h the Planck constant. The first term of the activation energy
EA represents the in-plane diffusion barrier ED. The second one, (nx + ηny)EB , describes
the contribution to EA that stems from in-plane interparticle bonds and the third term
represent the out-of-plane diffusion barrier, i.e., ES corresponds to the Ehrlich-Schwoebel
barrier. The latter leads to a reduced rate for diffusion processes across step-edges (where
sab = 1) by a factor α = exp[−ES/(kbT )]. The case sab = 0 corresponds to pure in-plane
diffusion of adatoms. The KMC algorithm is explained in Sec. 2.4.3.

For all simulations in this section we use ED = 0.5 eV because this value is a good
approximation for various real systems involving organic molecules like C60 or atoms
like Ag or Pt [171, 253]. We fix the out-of-plane diffusion barrier to ES = 0.1 eV for
the same reason. The adsorption rate is varied between F = 1 ML/min and F = 100
ML/min, while the temperature is kept at T = 313 K. The latter value is a commonly
used temperature in experimental growth studies with organic molecules [171, 254]. If
not stated otherwise, the coverage is fixed to θ = 0.05. We chose such a low coverage to
make sure that coalescence of clusters has not yet set in. The simulations are performed
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with different values of EB and η. Thereby, we study the interplay between EB and η

concerning properties of growing clusters in the sub-monolayer growth regime in presence
of anisotropic interactions among adsorbed particles.

5.1.2 The Eden model with anisotropic intractions

The KMC algorithm mimics the kinetically driven growth of thin films based on deposition
of particles and Arrhenius-type activation energy-dependent hopping processes. One goal
here is to compare the KMC results of cluster growth with those from an anisotropic
stochastic Eden growth model. The latter is more elementary in the sense that it simulates
cluster growth by attachment of particles to existing clusters solely based on attachment
probabilities. Thereby one fully neglects the computationally costly hopping processes
that usually dominate in KMC simulations, especially under realistic growth conditions
[232, 255, 256]. The Eden models thus allows to to investigate to which extend diffusion
processes are relevant for the emerging morphology of clusters.

The isotropic Eden model: Within the Eden model, a cluster on the two-dimensional
lattice space L2 is defined as a finite subset C ∈ L2 of connected, occupied lattice sites.
At the boundary of such a cluster, unoccupied sites ∂C that have at least one occupied
neighboring site

∂C = {j ∈ Z2 C : ∃i ∈ C → ‖i− j‖ = 1}, (5.2)

represent the full set of growth sites which have a non-zero probability to be occupied
in an iteration step of the cluster growth procedure. On a square lattice there exist
four different types of nodes ∂kC where k = 1,2,3,4. Here, k represents the number of
occupied neighbor sites. Therefore, the total boundary of a cluster is simply given by
∂C = ∂1C ∪ ∂2C ∪ ∂3C ∪ ∂4C.

The cluster at the beginning of the simulation, t0 = 0, is a fixed connected set C0 ⊂ Z2.
In our case, the cluster at t0 consists of a single occupied site in the middle of the square
lattice. Thus, there exist four growth sites in the first iteration step. In each iteration step,
tn → tn+1, one of the growth sites ∂C is occupied. Thereby, the cluster grows by one lattice
site, Cn → Cn+1, and the cluster boundary ∂C changes. Specifically, the probability pa for
particle attachment at boundary site a depends on the number nb of occupied neighbor
sites b

pi =
∑
〈ab〉

nb. (5.3)

Here, nb = 1 if the neighboring site is occupied and nb = 0 if the neighboring site is empty.
The sum 〈ab〉 is taken over all nearest-neighbors b of site a. Therefore, only lattice sites a
with at least one neighboring cluster site have a non-zero probability pa to be occupied in
an iteration step of the cluster growth process.
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The anisotropic Eden model: In order to introduce anisotropic interactions to the Eden
model, we split the occupation probability pa for lattice site a into two parts corresponding
to the x- and y-direction, respectively. We impose an imbalance between these two
directions. The anisotropy parameter ξ determines the reduced probability for particles to
attach along the y-direction of a cluster [257]

pa = pxa + pya =
∑
〈abx〉

nb + ξ
∑
〈aby〉

nb. (5.4)

Here, 〈abx〉 denotes neighbors along the x-direction and 〈aby〉 along the y-direction.
Consequently, if na = nb and ξ < 1, one gets py

a < px
a. We normalize all probabilities

p̃a = pa/
∑L2

b=1 pb such that
∑
p̃a = 1. All values p̃a are saved in a rate catalog. The actual

simulation procedure to model the growth of clusters is as follows. In each iteration step,
we pick a uniformly distributed random number r ∈ [0, 1] and choose the site a from the
rate catalog which is closest to r to be occupied in this iteration step. The attachment
anisotropy in the stochastic Eden model mimics the interaction anisotropy in the KMC
simulations. Specifically, it results in the formation of elongated clusters for ξ < 1 [257].
We use different values for ξ to study the effect of anisotropic interactions on shape clusters
in the early stage of thin film growth. The resulting clusters are compared to clusters from
the kMC simulations to check whether our minimal model without particle diffusion is
able to produce clusters with the same properties.

5.2 Target quantities

Spatial extension of clusters: To study how anisotropic interactions among neighboring
particles affect the shape of growing clusters, we calculate the average length L of clusters,
i.e., their spatial extension in x-direction, as function of the size S of clusters. The latter is
the number of particles a cluster consists of. Further, we calculate the spatial extension
in y-direction, i.e. the width W of clusters. From this we get the aspect ratio R = L/W

which we calculate for different cluster sizes S as function of the anisotropy parameter
η ∈ [0, 1]. We average the results over at least 1000 individual clusters for each value of S,
EB and η. Further, we calculate the cluster size distribution P (S) and the cluster length
distribution P (L) in order to analyze not only average quantities, but also fluctuations of
the cluster shapes.

Fractal dimension of clusters: An additional measure for the cluster morphology is the
mass fractal dimension Df . The latter describes the scaling of the cluster size S (or mass
M which would be given by M = Sm, where m is the mass of a single particle) with the
radius of gyration according to [65, 258–260]

S = k0(Rg/a)Df . (5.5)
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In this equation, the value of the constant pre-factor k0 (which is of order unity) depends
on the cluster shape [258, 259]. Further, Rg is the radius of gyration and a represents the
particle radius which we set to a = 1. We determine Df (as function of interaction energy
EB and anisotropy parameter η) via the inertia tensor which, for a cluster formed in the
x-y plane and consisting of S particles, is given by [258, 261, 262]

T =
S∑
i=1


y2
i −xiyi 0

−xiyi x2
i 0

0 0 x2
i + y2

i

 (5.6)

The eigenvalues ei (i = 1, 2, 3) of T, sorted according to their size (e1 ≥ e2 ≥ e3), define
the square of the principal radii of gyration according to R2

i = ei/S. Thus, R1 ≥ R2 ≥ R3.
From the quantities Ri, the radius of gyration (given in lattice sites) follows as

Rg =
√

1
2(R2

1 +R2
2 +R2

3). (5.7)

The precise value of the cluster shape-dependent pre-factor k0 (which accounts for the
shape anisotropy of clusters, i.e., their elongation) depends on the ratio of the largest over
the smallest squares of principle radii of gyration, that is, A13 = R2

1/R
2
3 [258, 263, 264].

Density of clusters: A further important quantity is the density of clusters, ρN = N/L2.
Here, N is the number of "stable“ clusters on a square lattice consisting of L2 sites. We
calculate the cluster density for different values of the interaction energy EB and the
anisotropy parameter η. Clusters are considered as stable when they rather grow during
the simulation by subsequent attachment of particle than dissolve into individual particles
again. The latter are called unstable clusters. The distinction between these two types of
clusters is typically based on the critical cluster size i∗. The latter defines the largest size of
unstable clusters such that clusters of size S ≤ i∗ dissolve while clusters of size S > i∗ grow.
In the early stage of nonequilibrium surface growth, the number of stable clusters, and
thus, the cluster density ρN increases until it saturates at a parameter setting-dependent
value ρcN . This maximum value of the cluster density is referred to as the critical cluster
density ρcN . According to a rate equation approach [42, 265], ρcN is connected to the
critical cluster size i∗ via the scaling relation

ρcN ∼ (D0(T )/F )−χ. (5.8)

Here, χ = i∗/(i∗ + 2) and D0(T ) = ν0exp(−ED/kbT ) corresponds to the rate for free
particle diffusion on a substrate at temperature T and F is the deposition rate. We are
particularly interested in the critical cluster size i∗ of the systems with isotropic interactions
(η = 1) for different values of the interaction energy EB. We take these isotropic systems
as reference systems since the precise value of i∗ in the isotropic systems has a characteristic
impact on the cluster shape properties in presence anisotropic interactions, i.e., when
η < 1.
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The critical cluster size and reversible versus irreversible cluster growth: The general
procedure to determine i∗ in the isotropically interacting reference systems is as follows.
First, ρcN is calculated for different values of Γ = D0(T )/F by varying the temperature T .
We then choose i∗ such that the scaling according to E. (5.8) follows the scaling of the
critical cluster density ρcN from KMC simulations. When i∗ = 1 (χ = 1/3), already dimers
represent stable clusters which do not decay. In this case, the critical cluster density scales
as ρcN ∼ Γ−1/3. In other words, the case i∗ = 1 corresponds to irreversible attachment,
where particles become immediately immobilized for the rest of the growth process once
they form at least one in-plane bond to a neighboring particle. In contrast to this, when
i∗ > 1, particle attachment is reversible in the sense that particles may detach from clusters,
further diffuse on the surface until they attach again to the same or some other cluster on
the lattice. In this case χ < 1/3, and consequently, ρcN scales differently compared to the
situation where i∗ = 1. A major problem with this procedure is that we need to perform
simulations at various different values of Γ to obtain the best fit for the scaling of ρcN that
determines i∗ when T , or F are varied. However, often we are interested only in whether
cluster growth is reversible or irreversible at a specific value of Γ.

As an estimate to decide whether cluster growth is reversible or not, we calculate the
sum of all hopping events at all time steps t0, t1, t2, .., tf−1, tf [with tn+1 = tn + τ , see Eq.
(2.55)] of the KMC simulations. In this time series t0 = 0 corresponds to the empty lattice
at the start of a simulation, while tf corresponds to the simulation time at the end of the
simulation when the final coverage of θ = 0.05 has been reached. In each iteration step
tn → tn+1 where a particle performs a hopping event, we distinguish between free particle
hopping (i.e., hopping when n = 0) with rate Dab ∼ exp(−ED/kbT ) (denoted as r0) and
hopping processes of particles which have at least one in-plane bond (n > 0) with rate
Dab ∼ exp(−(ED + nEB)/kbT ) (denoted as r>0). We then calculate the sum R0 of all
hopping events r0 with n = 0 and the sum R>0 of all hopping events r>0 of particles with
n > 0 during the entire simulation run. Specifically, R0 and R>0 are defined as

R0 =
tf∑
t=t0

r0(t), r0(t) =

1, n = 0

0, n > 0
(5.9)

R>0 =
tf∑
t=t0

r>0(t), r>0(t) =

1, n > 0

0, n = 0.
(5.10)

Here, n is the number of in-plane bonds of the particle that performed a hopping process
at time tn. From these two sums, we calculate the quantity

ω1 = R>0
R0

. (5.11)

This quantity measures the ratio between the total number of hopping events of free
particles and the total number of hopping events of particles with in-plane bonds. If
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Fig. 5.2: Exemplary surface configurations at coverage θ = 0.05, T = 313 K, F = 1 ML/min. In (a)
and (b) the interaction energy is EB = 0.2 eV. In (a), interactions are isotropic (η = 1),
while in (b) they are strongly anisotropic (η = 0.1). The configurations in (c) and (d) are
obtained from simulations with the same parameters but with higher interaction energy,
EB = 0.7 eV.

cluster growth is irreversible (i∗ = 1), no detachment events occur. Thus, R>0 = 0 and
consequently ω1 = 0. In contrast, non-zero values of ω1 (R>0 > 0) indicate the presence
of detachment events or, in turn, reversible cluster growth (i∗ > 1). This method does not
allow a precise determination of the exact of value of i∗, but it is sufficient to distinguish
between the cases i∗ = 1 and i∗ > 1. We will use the quantity ω1 to differentiate between
irreversible or reversible cluster growth conditions in the isotropically interacting reference
systems, i.e., the systems where η = 1.

5.3 Results

In the following, we present KMC simulation results of the nonequilibrium surface growth
model with anisotropic interactions. Here, interaction energies ranging from EB = 0.1
eV to EB = 3.0 eV and interaction anisotropies η ∈ [0, 1] are used. We first focus on
EB = 0.2 eV and EB = 0.7 eV together with η = 1 (isotropic interactions) and η = 0.1
(strongly anisotropic interactions). We chose these two values of EB because with isotropic
interactions, EB = 0.7 eV represents a reference system with i∗ = 1, whereas at EB = 0.2
eV, the critical cluster size i∗ = 2 according to the power-law behavior of ρcN . Therefore,
with η = 1, T = 313 K and F = 1 ML/min, these two values of EB exemplary represent a
setup of the model where cluster growth is irreversible and reversible.
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Fig. 5.3: Fractal dimension Df of clusters for different values of the interaction energy EB as
function of the interaction anisotropy parameter η. The solid line corresponds to the
dimension of compact two-dimensional objects, Df = 2, while the dotted line represents
the fractal dimension of DLA clusters in two dimensions, Df = 1.71.

5.3.1 Spatial configurations and cluster shapes

Spatial configurations and fractal dimension of clusters: As a starting point, we present
surface snapshots in the sub-monolayer growth regime at θ = 0.05 ML for EB = 0.2 [Fig.
5.2 (a) and (b)] and EB = 0.7 [Fig. 5.2 (c) and (d)] eV for isotropic (η = 1) and strongly
anisotropic (η = 0.1) growth conditions at T = 313 K and F = 1 ML/min. While at η = 1
the clusters have compact shapes for EB = 0.2 eV, they are strongly ramified for the much
stronger interaction energy EB = 0.7 eV. This can be explained via the corresponding
values of i∗. At EB = 0.2 eV, i∗ = 2 (χ = 1/2). This implies reversible particle attachment,
i.e., particles with only one lateral bond may detach from clusters in order to attach to
cluster boundary sites with a higher coordination number. This leads to compact clusters
with Df ≈ 2 as shown in Fig. 5.3 where Df versus η is plotted for different values of EB.
We observe that, at EB = 0.2 eV, Df is not affected by anisotropic interactions and remains
close to Df ≈ 2 for all values of η. In contrast, at EB = 0.7 eV, particle attachment is
irreversible, i∗ = 1 (χ = 1/3). This leads to ramified cluster shapes and already one lateral
bond is enough to suppress detachment. Specifically, we find that, at isotropic growth
conditions, the fractal dimension in this case is Df ≈ 1.7 (as it is also the case for EB = 0.3
eV and EB = 0.5 eV). The latter value is close to the fractal dimension of clusters grown
by diffusion-limited aggregation (DLA), Df = 1.71. [266–270].

We observe that strong interaction anisotropy leads to a visible elongation of clusters in
x-direction (i.e., the direction of strong in-plane interaction energy) for both considered
values of EB. Moreover, one clearly sees in Fig. 5.2 that clusters at EB = 0.7 eV are
stronger elongated and have a smaller width W compared to clusters at EB = 0.2 eV.
This suggests a stronger impact of interaction anisotropy on cluster shapes at higher
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EB. Further, strong interaction anisotropy removes the ramified structure of clusters at
EB = 0.7 eV, yielding elongated but compact clusters with smooth boundaries. This is
confirmed in Fig. 5.3 where one sees that upon decreasing η from 1, Df (at EB = 0.7
eV) remains unaffected up to η = 0.4. However, for η < 0.4, the fractal dimension
steadily increases until it approaches Df ≈ 2 for η → 0. Further below in this section we
give an explanation for the EB-dependent value of η where Df starts to increase from
Df ≈ 1.7. The emergence of elongated clusters reveals an imbalance between attachment
and detachment rates of bonds in x- and y-direction, respectively. This is understandable
from the fact that, for η < 1, the hopping rate Dab [see Eq. (2.51)] of particles with a bond
in y-direction only is higher compared to particles with a bond in x-direction because at
η < 1, ηEB = EyB < ExB.

In summary, we find that as η is decreased from 1, clusters become elongated for any
value of the interaction energy EB. At sufficiently large interaction energy (EB ≤ 0.3
eV), one obtains DLA clusters at isotropic growth conditions. At EB ≤ 0.2 eV, Df ≈ 2
holds for any value of η. Different from that, at EB ≥ 0.3 eV, the fractal dimension reveals
a pronounced increase from Df ≈ 1.7 (corresponding to the DLA universality class) to
Df ≈ 2 as η → 0.

Distributions of the cluster size and length: There is not only an impact of interaction
anisotropy on the distributions of the length L and width W of clusters, but also on their
sizes S as shown in Fig. 5.4. For η = 1 and EB = 0.2 eV, S is equally distributed around the
mean value S ≈ 30. The peak vanishes at η < 0.4 and P (S) becomes flat for S ≥ 20. Then,
P (S) peaks at S < 5. This reflects a mixture of a few large and many very small clusters on
the substrate. Thus, the presence of interaction anisotropy leads to a completely different
composition of cluster sizes on the lattice compared to the isotropic case. The detachment
rate of particles with bonds in y-direction increases as η is decreased. Consequently, less
stable clusters are formed on the substrate at θ = 0.05 only a few clusters have reached
the critical cluster size to become stable. The situation is different at EB = 0.7 eV where
upon decreasing η from η = 1 to η = 0.4 does not affect P (S). Only for η < 0.4, the peak
of P (S) shifts from S ≈ 25 to S ≈ 20 which reflects only a marginal change in the cluster
size distribution. Further, P (S) becomes narrower and clusters of size S > 40 vanish. The
majority of clusters still has an intermediate size of S ≈ 20. This value is quite similar to
the cluster size at isotropic growth conditions.
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Fig. 5.4: Distribution P (S) of the cluster size S at interaction energy EB = 0.2 eV (a) and EB = 0.7
eV (b) and various values of the anisotropy parameter η ranging from isotropic conditions
(η = 1) to η = 0 (no interaction energy for bonds along the y-direction). Here and in the
following figures, temperature T and adsorption rate F are chosen as in Fig. 5.2.
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B

Fig. 5.5: Distribution P (L) of the cluster length L at EB = 0.2 eV (a) and EB = 0.7 eV (b) and
various values of the anisotropy parameter η ranging from isotropic to totally anisotropic
(η = 0) interactions.

Additionally, the normalized cluster length distribution P (L) is shown in Fig. 5.5. At
EB = 0.2 eV, the peak in P (L) is shifted to larger values of L and is slightly broadening as
η is decreased from 1. This reflects the cluster elongation process which continues until
η = 0.4. For η < 0.4, i.e., stronger interaction anisotropy, we observe a peak at very small
L, consistent with the results in Fig. 5.4. At EB = 0.7 eV, the P (L) is not affected as η is
decreased from 1 to η = 0.4. Only if η < 0.4 the peak in P (L) is shifted towards larger
lengths L and P (L) broadens.

Average shapes of clusters: Let us now focus in more detail on the response of average
cluster shapes upon different strengths of the interaction anisotropy. To this end we
present in Fig. 5.6 average cluster shapes for S = 40 at EB = 0.2 [see Fig. 5.6(a)-(c)]
and EB = 0.7 eV [see Fig. 5.6(d)-(f)] for three different values of η. As expected, for
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Fig. 5.6: Average shapes of clusters of size S = 40 for different values of η and EB . The two values
for EB considered are EB = 0.2 eV (a)-(c) and EB = 0.7 eV (d)-(f). The parameter η is
reduced from isotropic interactions (η = 1) to 0.7, and 0.1.

η = 1 the average shape is isotropic at both interaction energies. By decreasing η from 1 at
EB = 0.2 eV, the average clusters become immediately elongated along the direction of
stronger interaction energy. Thus, already relatively weak interaction anisotropy (η = 0.7)
leads to anisotropic cluster shapes. We conclude that at EB = 0.2 eV there is a gradual
cluster shape transformation as function of decreasing η. For strong interaction anisotropy,
such as η = 0.1, we observe strongly elongated clusters whose average shape [see Fig.
5.6(c)] matches quite good with the individual clusters of a random growth simulation
as shown in Fig. 5.2(b). At EB = 0.7 eV we encounter a different behavior of the
cluster shape transformation. First, decreasing η from 1 to η = 0.4 has essentially no
impact on the initially isotropic shape. Second, at η = 0.1, the clusters are much stronger
elongated compared to the case EB = 0.2 eV. This is in good agreement with the spatial
configurations shown in Fig. 2(b) and (d). We conclude that there are two types of the
cluster shape transformation, that is, gradual (EB = 0.2 eV) versus sharp (EB = 0.7 eV).

To further illustrate that the type of the cluster shape transformation depends on the
interaction energy EB, we plot the average length L and width W of clusters of size
S = 40 as function of η in Fig. 5.7. We observe, consistent with anisotropic cluster growth,
an immediate splitting of L and W at EB = 0.2 eV which means that L and W grow
at different rates. The smooth behavior of the splitting of L and W as function of η at
EB = 0.2 eV confirms a gradual cluster shape transformation. In contrast, decreasing η
from 1 at EB = 0.7 eV leaves L and W identical up to η = 0.4. Only for η < 0.4 we observe
a splitting, which, in agreement with the results shown in Fig. 5.2 and Fig. 5.6, is much
stronger pronounced compared to EB = 0.2 eV. Therefore the cluster shape transformation
is sharp at values of EB where growth is irreversible at η = 1.

82 Chapter 5 Nonequilibrium surface growth with anisotropic interactions



B

B

B

B

Fig. 5.7: Evolution of the cluster length L and width W at EB = 0.2 eV and EB = 0.7 eV as
function of η. The considered clusters are of size S = 40. The evolution of L and W as η
is decreased from 1 confirms the gradual shape transformation at EB = 0.2 eV and the
sharp shape transition at EB = 0.7 eV.

Energy considerations of compact equilibrium clusters: Let us now discuss these results
from the perspective of a simple model based on energy minimization. Indeed, for growth
conditions close to equilibrium, one would expect that the cluster shapes are simply related
to the total energy cost Ebb to form a compact cluster. For a compact cluster of size
S = LW (with length L and width W ), the value of Ebb is determined by the total number
of cluster boundary sites which corresponds to the energy of all broken bonds

Ebb = 2WEB + 2LηEB. (5.12)

For a compact cluster of size S, the width is given by W = S/L. This allows us to rewrite
Eq. (5.12) as

Ebb = 2EB(S/L+ ηL), (5.13)

From this we find that Ebb reaches the minimum value when the cluster length fulfills

L(S, η) =
√
S/η. (5.14)

This equation provides an estimate for the cluster length evolution in presence of anisotropic
interactions at growth conditions where particle detachment is possible (i.e., i∗ > 1) such
that clusters can obtain the equilibrium shape. We find that Eq. (5.14) indeed nearly
perfectly describes L at small adsorption rates F (F = 1 ML/min in Fig. 5.8) and low
interaction energies EB, i.e., under conditions where detachment is possible.

This is shown in Fig. 5.8 where the cluster length L40 (of clusters of size S = 40) as
function of η is plotted for different values of EB at F = 1 ML/min. Consider, as an
example, the value EB = 0.15 eV. Here, the rate for breaking lateral bonds (of particles
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Fig. 5.8: Length L40 of clusters of size S = 40 as function of the interaction anisotropy parameter η
for different interaction energies EB at F = 1 ML/min. The solid black line corresponds
to the length L(S, η) =

√
S/η for growth close to equilibrium [see Eq. (5.14)].

with one nearest-neighbor) is high enough in both lattice directions such that clusters
retain a compact shape. Consequently, L40 follows closely to the length predicted by Eq.
(5.14) in the range 0.1 ≤ η ≤ 1.0 (see the black line in Fig. 5.8). In contrast, at EB = 0.3
eV, clusters (at η = 1) are ramified, Df ≈ 1.7 (see Fig. 5.3), which means that they do not
exhibit the compact equilibrium shape. As a consequence, we observe large deviations
from the equilibrium length predicted by Eq. (5.14). Taken together, these results show
that energetic arguments to describe the cluster shapes only hold at growth conditions
where particle detachment (i.e., i∗ > 1) is possible for any value of η.

5.3.2 One-dimensional vs. two-dimensional cluster growth

Evolution of the average cluster length: Let us now focus on the dynamical evolution of
cluster shapes during the growth process. Figure 5.9 shows the average cluster length
L(S) as function of S for EB = 0.2 eV and EB = 0.7 eV and different values of η. At
EB = 0.2 eV and isotropic interactions, L(S) approximately follows the prediction from
energy arguments [see Eq. (5.14)], i.e. L =

√
S. In contrast, at EB = 0.7 eV and

η = 1, we observe significant deviations because clusters are ramified and do not exhibit
the compact equilibrium shape [see Fig. 5.2(c)]. If η < 1, we observe an immediate
effect on L(S) at EB = 0.2 eV. This is consistent with the results presented above and it
confirms a gradual cluster shape transformation. In contrast, at EB = 0.7 eV, L(S) remains
unaltered for η ≥ 0.4. This confirms again that at high interaction energy weak interaction
anisotropy has far less impact on the cluster shape than at low interaction energies. As η
is decreased, one observes a transition to a linear relation L(S) = S (see the dotted line
in Fig. 5.9) for small cluster sizes S. The line L(S) = S represents maximally elongated,
one-dimensional clusters which grow in the direction of the strong bonds only. This refer
to this growth mode as one-dimensional growth. At EB = 0.7 eV and η = 0.1, L(S) growth
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Fig. 5.9: Average cluster length L(S) as function of the cluster size S for interaction energy
EB = 0.2 eV (a) and EB = 0.7 eV (b) and different values of η. The solid line represents
L(S) =

√
S, while the dotted line corresponds to L(S) = S.

is one-dimensional up to S ≈ 30. In contrast, at EB = 0.2 eV and η = 0.1, L(S) begins to
deviate from L(S) = S already at S ≈ 10. Therefore, one-dimensional cluster growth is
more robust at high interaction energy.

We conclude that in presence of strong anisotropic interactions, the initial stage of cluster
growth appears to be one-dimensional. This growth mode breaks down at a specific cluster
length Lc (or size) which depends on EB and η. Specifically, Lc is defined as the length
where |L(S)− S| ≥ 1 sets in as cluster growth proceeds. The value of Lc increases with
increasing EB, resulting in stronger elongated clusters at high interaction energy

The breakdown of the one-dimensional cluster growth mode: In Fig. 5.10, Lc(η) as
function of η is plotted for different values of EB. Irrespective of EB, Lc(η) increases
as η is decreased from 1 and converges to a finite value in the limit η → 0. Specifically,
in the range EB ≥ 0.3 eV, Lc converges to similar values Lc(0) = L0

c ≈ 35. In contrast,
at EB < 0.3 eV, L0

c depends on EB, e.g. L0
c ≈ 25 at EB = 0.2 eV and L0

c ≈ 18 at
EB = 0.15 eV. Further, we observe that, at EB ≤ 0.3 eV, the increase of Lc as function of η
is smooth and sets in already at weak interaction anisotropy. In contrast, at EB > 0.3 eV,
Lc remains essentially unaffected by weak interaction anisotropy. Figure 5.10 also shows
Lc(η) resulting from energy considerations (see Eq. (5.14)). We observe that this function
yields a reliable estimate for small values of EB (consistent with the discussion of L40 in
Fig. 5.8).
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Fig. 5.10: Critical length Lc(η) for various values of EB as function of η. For comparison, we have
included the corresponding critical length from equilibrium energy considerations [see
Eq. (5.14)].

Transition to two-dimensional self-similar cluster growth: To better characterize the
growth mode that follows the one-dimensional cluster growth, we calculate the average
aspect ratio R(S) = L(S)/W (S), where W (S) is the cluster width. An aspect ratio R

that remains constant as function of S implies self-similar cluster growth. This means
that L(S) and W (S) increase at constant rates. Fig. 5.11 (a) shows R(S) for η ≤ 0.4
and different values of EB. After a linear increase, corresponding to one-dimensional
cluster growth, the aspect ratio R(S) reaches a plateau and remains constant as S further
increases. We call this saturation value Rsat. A saturation value Rsat = 1 would correspond
to isotropic self-similar growth without preferred growth direction, i.e., L(S) = W (S). For
Rsat > 1, clusters are elongated, i.e., L(S) > W (S), but growth is still self-similar. Such a
plateau exists for all considered combinations of EB and η. Only the actual value of Rsat

and the cluster size S, where the plateau is reached, depends on the values of EB and
η. In addition, Rsat is plotted for various values of EB as function of η in Fig. 5.11(b).
For EB ≥ 0.3 eV, Rsat converges to similar values as η → 0. The onset of anisotropic
self-similar growth is shifted to smaller values of η as EB is increased. Furthermore, we
observe that for EB < 0.3 eV, Rsat is lower compared to the value of Rsat we found for
EB ≥ 0.3 eV.

5.3.3 The role of the critical cluster size i∗

A major observation in presence of anisotropic interactions is the existence of two types of
cluster shape transformation as discussed above. It turns out that this can be explained
by properties of the isotropic reference systems (η = 1). To this end, we take a closer
look at the critical cluster size i∗ at η = 1 as function of EB. For this purpose, the critical
cluster density ρcN is plotted as function of EB at η = 1 in Fig. 5.12. We recall that
ρcN ∼ (D0(T )/F )−χ [with χ = i∗/(i∗ + 2)]. As can be seen in Fig. 5.12, ρcN increases as
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Fig. 5.11: (a) Evolution of the average aspect ratio R(S) = L(S)/W (S) as function of cluster
size S at EB = 0.2 eV (greens) and EB = 0.7 eV (blues) at different values of η. The
black dotted line corresponds to R(S) = S. (b) Saturation value Rsat(η) for various
interaction energies EB
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B

Fig. 5.12: Critical cluster density ρcN for different values of EB in the (isotropic, i.e., η = 1)
reference system. The inset shows the detachment ratio ω1 as function of EB .

EB is increased from EB = 0.1 eV to EB = 0.3 eV, but saturates for EB > 0.3 eV. Since
we do not change the temperature T and adsorption rate F , it follows from the known
scaling of ρcN [271–274] that i∗ has to be identical for EB > 0.3 eV. Therefore, the critical
cluster size i∗ = 1 in this regim where bonds are irreversible.

This is confirmed by the analysis of ω1(EB) [see Eq. (5.11)] at η = 1 (see the inset of Fig.
5.12). We find, ω1 = 0 for EB > 0.3 eV, which means absence of particle detachment (i.e.,
bonds are irreversible). In other words, already dimers form stable clusters and i∗ = 1. As
EB is decreased, ω1 becomes nonzero, which means that bonds become reversible (i.e.,
particles can break bonds and detach from clusters). Consequently, one enters the regime
where i∗ > 1. We conclude that, coming from high interaction energies, there is a transition
from irreversible to reversible bonds at EB ≈ 0.3 eV. This observation allows to explain
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the type and the onset of the cluster shape transformation in presence of anisotropic
interactions. In particular, we can distinguish between three different scenarios.

• EB > 0.3 eV and η = 1: In this case, bonds are irreversible in both lattice directions. As
a consequence, cluster growth is isotropic for any EB > 0.3 eV (see inset of Fig. 5.11 at
η = 1 where Rsat = 1 at η = 1 is shown).

• EB > 0.3 eV and η < 1: In this situation, bonds in x-direction are irreversible. As long as
EyB = ηEB > 0.3, also bonds in y-direction are irreversible. Therefore, cluster growth is
isotropic even for η < 1 (as long as EyB > 0.3 eV). However, as soon as EyB = ηEB < 0.3,
bonds in y-direction become reversible while bonds in x-direction remain irreversible. As a
consequence, anisotropic cluster growth sets. For example, at EB = 0.5 eV, we find the
onset of the transformation at η = 0.6, which corresponds to EyB = 0.3 eV. The same holds
at EB = 1.0 eV, where we find the onset at η = 0.3, which again corresponds to EyB = 0.3
eV. This explains, depending on EB, the sharp cluster shape transformation and the precise
value η where it sets in.

• EB < 0.3 eV and η ≤ 1: Here, bonds in both, x- and y-direction are reversible. At η = 1,
isotropic, compact clusters grow because there is no imbalance between the bond strengths,
i.e., ExB = EyB. In contrast to the scenario above, clusters become elongated for any η < 1
because growth is reversible for any η. Even though bonds in x-direction are reversible, the
detachment rate for bonds in y-direction is higher at η < 1. Therefore, clusters growth
is anisotropic with growth preferred in x-direction. The cluster shape transformation
is gradual because we are always in the regime where bonds are reversible. Moreover,
we can also explain why both, Lc and Rsat converge to similar values for EB ≥ 0.3 as
η → 0 (see Fig. 5.10 and Fig. 5.11). In this case, EyB = 0. Therefore, all setups with
η = 0 are identical in the sense that bonds in x-direction are irreversible while bonds in
y-direction are not present at all. The hopping rate for particles with lateral neighbors in
y-direction only is the same as for free particles, Dab ∼ exp (−ED/kbT ). At η = 0 their is
no contribution to the activation energy barrier EA from bonds y-direction. Consequently,
Lc(0) and Rsat(0) are essentially identical for EB ≥ 0.3 eV.

5.3.4 The impact of the adsorption rate F on cluster properties

So far, we have focused on the interplay between the interaction energy EB and the
interaction anisotropy η at fixed deposition rate, F = 1 ML/min. Usually, the values of
EB and η are fixed in experimental studies. The parameter which can be precisely varied
in experiments (next to the temperature T ) is the adsorption rate F . This parameter
has indeed a profound impact since it determines not only the cluster shape and density,
ρN ∼ 1/F , but also the thin film morphology in the multilayer growth regime as it is
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Fig. 5.13: Double logarithmic plot of the average aspect ratio 〈R〉 at θ = 0.1 and EB = 0.5 eV as
function of adsorption rate F in the regime of strong interaction anisotropy.

well known for atomic systems [275–279]. Motivated by this, we study the impact of the
adsorption rate F in presence of anisotropic interactions between adsorbed particles.

First, we consider the scaling of the average aspect ratio 〈R〉 as function of F in the regime
of strong interaction anisotropy, η ≤ 0.3 at θ = 0.1. Second, we focus on the evolution
of the average cluster length 〈L〉 and width 〈W 〉 as function of θ in the pre-coalescence
regime.

We observe that 〈R〉 exhibits power-law scaling, 〈R〉 ∼ F−α, with α ≈ 0.3. This is shown in
Fig. 5.13 where 〈R〉 is plotted as function of F at EB = 0.5 eV and η ≤ 0.3 eV. Interestingly,
the scaling exponent α ≈ 0.3 is constant for η ≤ 0.3 at all analyzed interaction energies
from EB = 0.2 eV to EB = 0.7 eV.

The evolution of 〈L〉 as function of θ at EB = 0.5 eV and η = 0.3 for different values of F is
plotted in Fig. 5.14(a). We observe power-law scaling of 〈L〉 with exponent gL. The latter
exponents is nearly constant for all considered values of the adsorption rate F . We further
found that the power-law scaling holds for any value of the interaction energy in the range
from EB = 0.2 eV to EB = 0.7 eV. Figure 5.14(b) reveals that gL increases from gL = 0.5
to gL ≈ 0.75 as η is decreased from η = 0.6 to η = 0. However, gL remains constant for
different adsorption rates F . Different from the behavior of gL, the power-law exponent
gW which describes the cluster width evolution decreases for decreasing η. Again, gW is
nearl constant for all values of F as shown in Fig. 5.14(c). Moreover, we find that, as long
as cluster growth is isotropic, the scaling exponents are given by gL ≈ gW ≈ 0.5. These
values are consistent with those observed during domain growth in the random-field Ising
model with isotropic interactions (RFIM-DI) [280] and the Axial Next-Nearest-Neighbor
Ising Model (ANNNI) [281]. When anisotropic interactions are introduced in the RFIM-DI
and the ANNNI, the scaling exponents become different along the x- and y-direction,
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Fig. 5.14: (a) Double logarithmic plot of the average cluster length 〈L〉 as function of θ for various
adsorption rates F at EB = 0.5 eV and η = 1. (b) Cluster length scaling exponent gl
and (c) cluster width scaling exponent gw as function of η.

respectively. In our model we also find different exponents for the two lattice directions
when cluster growth becomes anisotropic. This indicates an interesting similarity between
our nonequilibrium growth model and Ising type models.

5.3.5 Comparison with the anisotropic stochastic Eden growth
model

We have simulated anisotropic cluster growth by means of an event-driven KMC algorithm
where various microscopic procsses like adsorption, nucleation, attachment, detachment
and diffusion processes of individual particles on the substrate are fully included. Now, we
consider the much simpler anisotropic Eden model for cluster growth, where anisotropy of
lateral bonds is taken into account by an imbalance of attachment probabilities as described
by Eq. (5.4). One main difference to the KMC model is that diffusion processes are
absent. In the Eden model, cluster growth is determined by the attachment probabilities
of boundary sites only. Our key question here is whether this minimal growth model
contains sufficient information to reproduce the clusters obtained via the KMC algorithm
at anisotropic growth conditions.
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Fig. 5.15: Comparison of the cluster length evolution between clusters obtained from kinetic
Monte-Carlo simulations (at EB = 0.2 eV and different values of η) with clusters ob-
tained from the stochastic Eden model at different ratios ξ of the attachment probability
in x- and y-direction, respectively.

To this end, we plot in Fig. 5.15 the cluster length L(S) obtained from KMC simulations
at EB = 0.2 eV together results from the Eden model. Moreover (as confirmed by Fig.
5.8), the cluster shape at EB = 0.2 eV is close to the equilibrium shape for any η, and
the Eden model with anisotropic interactions is supposed to describe equilibrium clusters.
The good agreement between KMC and the Eden model for the isotropic case, i.e., at
η = ξ = 1, is expected since there is no imbalance between attachment and detachment
rates in both lattice directions. Interestingly, the cluster length evolution in both models
also match perfectly in presence of anisotropic interactions. The anisotropy parameter
ξ [see Eq. (5.4)] has been used as fitting parameter to reproduce the KMC results. The
Eden model does not only correctly describe the cluster length evolution L(S), but also
gives the correct critical lengths Lc and aspect ratio Rsat in the self-similar growth regime
as shown in Fig. 5.16(a) and Fig. 5.16(b). However, the anisotropic Eden model can
not reproduce clusters at interaction energies EB where cluster shapes deviate from the
equilibrium shape (see L40 at EB = 0.3 eV in Fig. 5.8).

The good agreement between clusters obtained from the KMC and the Eden model shows
that isotropic diffusion of free particles is not critical for the cluster formation process in
presence of anisotropic interactions. This however, is only the case for growth conditions
close to thermal equilibrium. Only then one operates in the regime where detachment of
particles from clusters is possible, i.e., i∗ > 1. However, we expect that a more detailed
analysis of the attachment and detachment rates will generally (also for the case i∗ = 1)
help to better understand the resulting cluster shapes under nonequilibrium growth
conditions in presence of anisotropic interactions. This could be done by means of a rate
equation approach of the nucleation kinetics.
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Fig. 5.16: Saturation value of the aspect ratio Rsat and (b) the critical length Lc of clusters
obtained from kinetic Monte-Carlo simulations and the Eden model. The in-plane
interaction energy in kMC simulations is EB = 0.2 eV. The anisotropy parameter
η ∈ [0, 1] and ξ is modified such that it fits the kMC results.

5.4 Conclusion and outlook

We have studied the effect of anisotropic interactions on cluster growth in the sub-
monolayer growth regime by means of KMC simulations. As expected, anisotropic in-
teractions lead to elongated, rod-like and needle-shaped compact clusters with fractal
dimension Df ≈ 2. It turns out that energetic arguments to describe cluster shapes can
only be applied at low adsorption rates and low interaction energies. Furthermore, from
cluster size distributions we find that clusters become smaller as the anisotropy is increased.
This effect is stronger for low interaction energies.

A detailed analysis of cluster shapes as function of the strength of anisotropy reveals
two different types of cluster shape transformation. For low interaction energies, the
transformation from isotropic to elongated clusters is gradual, whereas it is sharp at high
interaction energies. For strong interaction anisotropy, growing clusters are initially one-
dimensional, i.e., particles attach only along the direction of strong bonds. This growth
mode breaks down at a critical cluster length. From analyzing the aspect ratio we identify
the subsequent self-similar growth mode.

We observe that the critical cluster density and the detachment ratio in the isotropic
reference system are helpful to explain the properties of the cluster shape transformation
in presence of anisotropic interactions. Furthermore, considering the isotropic reference
systems also explains the value of the anisotropy parameter at which the cluster shape
transformation sets in.
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Furthermore, we investigated the impact of the adsorption rate on cluster shape properties.
It turns out that the average aspect ratio as function of the adsorption rate displays power
law scaling in the regime of strong interaction anisotropy. In particular, the corresponding
scaling exponent does not depend on the value of the anisotropy parameter. Also, the
evolution of the average cluster length and width as function of coverage exhibit power-
law scaling. The corresponding scaling exponents depend only weakly on the adsorption
rate.

Additionally, we have employed an anisotropic version of the Eden model for cluster
growth. In this context, we used the anisotropy parameter as a fitting parameter. The latter
controls the attachment probabilities of particles on cluster boundary sites. As we have
shown, the Eden model can reproduce some main features of cluster growth in our KMC
model. In particular, we find good agreement between both models regarding the cluster
length evolution, the critical length and the saturation value of the aspect ratio where
growth becomes self-similar. The good agreement between the KMC simulations and the
Eden model suggest that attachment (rather than diffusion) is the dominant mechanism
that determines cluster shapes. Therefore it may be interesting to further investigate
attachment and detachment rates to better understand cluster shape transformations in
presence of anisotropic interactions .

The KMC model can be extended in several directions. For example, appropriately setting
the values of the anisotropy parameter, our model could be used to study the experimentally
relevant growth of elongated Zn clusters on isotropic surfaces [250]. Further, one could
study the effect of dipole-dipole interactions in systems that have already been studied
experimentally [178, 252]. Additionally, it would be interesting to investigate the surface
structure in the multilayer growth regime.
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6Nonequilibrium surface growth with
limited particle mobility

In this chapter we discuss a variety of simulation methods that can be used to model
nonequilibrium surface growth. We will focus on limited mobility models and introduce
a variant that exhibits a variable diffusion length. The model can realistically mimic
low-temperature surface growth by means of molecular beam epitaxy. This is confirmed
by comparing results obtained from our model with conventional kinetic Monte-Carlo
simulations on one- and two-dimensional substrates for various growth conditions.

6.1 Approaches to model nonequilibrium surface
growth

There are various conceptually different simulation strategies to model the morphologies
observed in nonequilibrium surface growth experiments by means of vapor deposition
methods. Popular approaches include the level-set method [282, 283], geometry-based
approaches [284], molecular dynamics simulations [285–289] and numerical solutions of
stochastic equations governing the evolution of the surface height [290–293]. One further,
very popular simulation strategy is to employ lattice models which are based on activation
energy-dependent hopping rates for all particles in the topmost layer. These models
are often referred to as ”full diffusion” or Arrhenius-type models (see C. 2.4) [8, 90–
93, 95, 96, 107, 253, 294–296]. The KMC method is useful to simulate full diffusion
models in order to better understand the evolution of the surface morphology in molecular
beam epitaxy (MBE) experiments on the microscale. In parallel, simplified approaches
such as limited mobility (LM) models have been studied in order to make out the essential
microscopic processes which determine the morphologies observed in growth experiments
[96, 236, 297–301]. In these models, particles perform a single diffusion step directly
after deposition. We introduce an extended LM model to better understand the impact
of adatom diffusion on the surface morphology. Our model is an extended version of the
stochastic Das Sarma-Tamborena (DT) [97, 98, 236] model which differs from the latter
via a variable diffusion length. We find that LM models can reproduce results from KMC
simulations only if fluctuations are added to the diffusion length of adatoms. We propose
to add fluctuations by choosing the diffusion length for each adsorbed particle from a
Gaussian distribution. The variance of the distribution serves as a fitting parameter which
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allows to control the strength of fluctuations. We show that the diffusional fluctuations
have a huge impact not only on cluster properties during submonolayer growth, but also
on the surface profile in the multilayer growth regime. The analysis of morphologies on
one- and two-dimensional substrates during sub- and multilayer growth shows that the
LM model can produce structures that are indistinguishable from those obtained through
KMC simulations.

6.2 Motivation to use limited mobility models

Even though the KMC method can nowadays handle growth simulations on large lattices
at high values of the growth parameter

R = D0(T )/F, (6.1)

they still require a significant amount of computation time to reach the multilayer growth
regime. This is mainly due to the computational effort required to simulate the trajectories
of freely diffusing particles, without making much progress in the actual time evolution of
the system. To speed up the simulations, multiscale approaches, where the fastest dynam-
ical process involved (i.e., free lateral diffusion) is described in an averaged mean-field
manner or by an appropriate diffusion equation, have been introduced and investigated in
detail [302–306].

As an alternative to these approaches, one can coarse-grain the diffusion processes in
surface growth simulations on discrete lattices by imposing a limited mobility for deposited
particles. There exist many lattice-based growth models which pick up on this idea and
many variants of these so-called LM models have been intensively investigated in the
past [98, 236, 247, 297, 299, 307, 308]. Due to their simplicity, they are especially
suitable to investigate the high coverage regime in growth simulations. Specifically, one
can investigate scaling properties, study kinetic surface roughening and morphological
properties as well as details like crossover and long-lived transient effects in nonequilibrium
surface growth [297, 299, 308, 309]. In LM models, the process rates used in KMC
simulations are replaced by a certain set of stochastic rules for particle movements. The
latter depend on the local spatial environment of lattice position where particles are
adsorbed. Importantly, the deposited particles only perform one single movement that
depends on the specific rules of the underlying LM model. Well-known examples of LM
models with surface diffusion include the Family (F) model [310], the Wolf-Villain (WV)
model [247, 307] and the model of Das Sarma and Tamborenea (DT) [97, 98].

We introduce an extended version of the just mentioned DT model since the latter is
particularly suitable to describe low temperature MBE growth where particle detachment
from clusters can essentially be neglected. In the original version of the DT model [97],
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deposited particles only explore their immediate environment. Specifically, they are only
allowed to hop to a lattice site adjacent to the site where they have been deposited. This
means that particles have a diffusion length of l = 1 (in units of the lattice constant which
we set to unity). However, under realistic conditions for surface growth by means of
vapor deposition techniques, the average diffusion length l is usually larger, i.e., l > 1.
Concerning LM models, this situation has been investigated in different variants [308, 311–
313]. Studying the case l > 1 generally requires various fitting parameters in the LM
model to match the results of corresponding KMC simulations [312, 313] or real growth
experiments. We employ a LM model with fitting parameters which are based on physical
quantities only. Therefore, we have to find a prescription of how to determine l to
reproduce results of KMC simulations at a given value of the growth parameter R [see
Eq. (6.1)]. More specifically, we seek a mapping procedure between full diffusion KMC
simulations and our limited mobility model such that surface structures from the LM model
are indistinguishable to those obtained from full diffusion KMC simulations (and therefore
also identical to low temperature MBE growth) at any value ofR. If this is possible, it would
mean that we can significantly reduce the computational effort to simulate surface growth.
We then can use the LM model for simulations at growth conditions and system sizes that
are typically hard to achieve via full diffusion KMC simulations, especially when one has to
average over many realizations. It would allow us to study the asymptotic regime where
we expect to observe scaling behavior of the growing surface. In particular, one could
extract the corresponding critical exponents describing the scaling of the surface roughness
[232, 310] without being limited by finite-size effects or computational manipulations
like the noise reduction technique (NRT) [297, 299, 301, 314, 315]. Our second main
goal is to investigate how the strength of fluctuations in l alters the resulting surface
morphologies, as compared to conventional LM models where the diffusion length of all
particles is fixed to a constant value. These conventional LM models fail to reproduce
KMC results at all stages of surface growth. However, as will be shown in the following, a
fluctuating diffusion length solves this problem and allows to correctly mimic full diffusion
KMC simulations from the sub- to the multilayer growth regime.

6.3 A limited mobility model with distributed diffusion
length

In the following we introduce our LM model which is a variant of the model by Das Sarma
and Tamborenea (DT model) [97, 98]. In the latter, the diffusion length is restricted to
one, i.e., l = 1. In contrast, we consider the case l ≥ 1 [308, 312, 313] and, additionally,
consider l as a fluctuating quantity. Specifically, the values of l are chosen from a Gaussian
distribution where the variance σ2 controls the strength of diffusional fluctuations.
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To clarify our approach, we first summarize the algorithm of the original DT model in one
dimension. In each iteration step, a particle gets adsorbed at a randomly chosen lattice
site i ∈ [1, L]. It sticks there permanently if it has at least one in-plane bond, i.e., if n ≥ 1.
Otherwise, if n = 0, the particle is allowed to hop either to the left site, j = i− 1, or to the
right site, j = i+ 1, if one of these sites provides at least one bond. If both sites provide
at least one bond, either j = i+ 1 or j = i− 1 is chosen randomly and the particle hops
to this site and sticks there for the rest of the simulation. If none of the neighboring sites
provides lateral bonds, i.e., n = 0, the particle will remain at the initial adsorption site
i. In-plane bonds for a particle at site i are present if hi + 1 ≤ hj (j = i ± 1). If the site
provides exactly one in-plane bond, i.e., if n = 1, it is called kink site, while a site that
provides two such bonds, i.e., n = 2, is called a valley site. Since already one in-plane
bond is enough to suppress particle diffusion, the DT model represents a minimal model
for nonequilibrium surface growth at low T .

We extend the DT model by allowing adsorbed particles to diffuse not only to adjacent
sites, but also to sites which are farther away from the deposition site i. In other words,
we consider the case l ≥ 1. In general, nonequilibrium surface growth is dominated
by stochastic processes involving fluctuations not only in the deposition, but also in the
diffusive motion of the particles. By setting a constant diffusion length l in LM models, this
fundamental aspect is totally neglected. Our strategy to add fluctuations to the diffusion
processes is as follows. Instead of assuming a fixed diffusion length l for all particles, we
choose l individually for each particle from a Gaussian distribution

P (l | ln, σ2) = 1√
2πσ2

exp

[
−(l − ln)2

2σ2

]
. (6.2)

Here, ln is the mean value of the diffusion length (which we determine via KMC simu-
lations) and the variance σ2 represents the control parameter. The latter allows to vary
the strength of diffusional fluctuations of deposited particles. Our LM in one dimension is
illustrated in Fig. 6.1. Our model can be simply generalized to two dimensions. In that
case, care has to be taken since there may exist multiple appropriate final sites at the same
distance from the adsorption site and one has to define rules which of the possible final
sites is chosen.

We perform simulations of our model on one- and quadratic two-dimensional substrates
(d = 1, 2) with discrete, equidistant positions i, j = 1, 2, ..., L. The corresponding local
surface heights in one-dimension are given by the integers hi and by hij in two dimensions
(i.e., hi = 0 corresponds to an empty site). We apply periodic boundary conditions and
the solid-on-solid condition. The latter forbids vacancies and overhanging particles. As a
consequence, the spatially averaged surface height of a one-dimensional lattice at time t is
given by

〈h(t)〉 = 1
L

L∑
i=1

hi(t) = Ft. (6.3)
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Fig. 6.1: Illustration of particle deposition and surface relaxation in the system (in one dimension)
that is used to simulate low temperature MBE growth. The quantities F and D0(T )
refer to the KMC simulation, while the Gaussian distribution P (l|ln, σ2) for the diffusion
length l is characteristic for the LM model with diffusional fluctuations whose strength is
controlled via the variance σ2.

Here, the expression Ft corresponds to the number of deposited particles. Generalization
to the two-dimensional case is straightforward. The product Ft is henceforth referred
to as coverage θ = Ft. Therefore, time-dependent quantities can also be expressed as
function of θ. Throughout this work, we characterize growth conditions via the free
diffusion to adsorption ratio R of full diffusion KMC simulations as defined in Eq. (6.1). To
relate our LM model with the full diffusion model, we seek a set (l, σ2) such that surface
morphologies generated by the LM model are indistinguishable from KMC results at growth
conditions characterized by R. Specifically, to connect both models we have to identify a
suitable set (l, σ2) for any value of R.

6.4 Connecting the full diffusion KMC with the LM
model

Details of the KMC simulations: In the following we compare results of our LM model
with results from full diffusion KMC simulations. To this end, we shortly summarize
details of the KMC setup (see Sec. 2.4.3). For all simulations, we use ED = 0.5 eV and
fix the binding energy to EB = 1.0 eV to make sure that detachment of particles from
clusters is not possible. Therefore, we always simulate in the regime of irreversible growth.
The temperature is fixed to T = 273 K. For simplicity, we do not consider an additional
Ehrlich-Schwoebel barrier for inter-layer diffusion processes across step-edges, i.e. ES = 0
eV [181, 182, 316]. In principal, such a barrier could be included in our LM model. This
may be a topic for future investigations in this direction. In order to realize different
growth conditions expressed via the growth parameter R, we use the deposition rate F as
a variable.
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It is well established that surface morphologies observed in vapor deposition experiments,
and thus, also in KMC simulations, depend on the growth parameter R [see Eq. (6.1)].
We aim to directly connect full diffusion KMC simulations with our LM model. To compare
the resulting morphologies in the submonolayer regime, we calculate the total number
of clusters on the lattice, N(θ), and the cluster size distribution, P (S), at various values
of the growth parameters R. In the multilayer regime, we compare layer coverages θk
[with k being the layer index, see Eq. (6.14)], compute the global interface width W (L, θ)
and perform a scaling analysis. Moreover, we consider the height-height autocorrelation
function Γ(r, θ) [where r = |i− j|, see Eq. (6.18)] to extract a correlation length ξ0 that
allows to characterize mounded surface profiles. If all these measured quantities match in
both models for all values of the growth parameter R, we conclude that our LM model
correctly mimics the emerging surface structures from full diffusion KMC simulations.

First, we have to find a consistent relation between the growth parameter R in the KMC
model and the diffusion length l and the variance σ2 in the LM model such that the
morphologies generated by both models are indistinguishable. Second, we investigate the
general effect of the variance σ2 in our LM model on the morphological evolution of the
surface in the sub- and multilayer growth regime

Diffusion properties - Nucleation length and the geometrical cluster distance: We calcu-
late via full diffusion KMC simulations the mean-squared displacement (MSD) of adsorbed
particles as function of time t̃ they spend on the lattice. The MSD is defined as

MSD(t̃) = 〈
(
i(t̃)− i(0)

)2〉. (6.4)

Here, i(t̃) ∈ [1, L] represents the discrete position of the particle on the lattice at time t̃,
and i(0) is the site where the particle has been initially adsorbed at t̃ = 0. Further, 〈...〉 is an
average over many realizations. Depending on the growth conditions, MSD(t̃) saturates
at a characteristic time t̃S and corresponding value MSDS = MSD(t̃S). Saturation of the
MSD reflects the immobilization of particles induced by the formation of bonds. In each
simulation run, only the first deposited particle is tracked because this particle is expected
to travel the maximum distance at the given value of the growth parameter R. We average
MSD(t̃) over at least (105) realizations for each considered value of R.

Based on the saturation value MSDS , we define the nucleation length of adsorbed particles
according to

ln(R) =
√
MSDS(R). (6.5)

An additional (and experimentally accessible) measure for the length a particle travels
until getting immobilized, is the geometrical cluster distance. For a d-dimensional lattice,
this quantity is given by

dg(R) =
(

Ld

Nmax(R)

)1/d

. (6.6)

100 Chapter 6 Nonequilibrium surface growth with limited particle mobility



Fig. 6.2: KMC results for the nucleation length ln [see Eq. (6.5)] of particles adsorbed at the very
early stage of submonolayer growth, and the geometrical distance dg [see Eq. (6.6)]
between clusters, as function of R. The dashed black line describes the dependency ∼ Rγ ,
with γ = 1/4 (d = 1), while the dash-dotted line follows ∼ R1/6 (d = 2).

Here, Nmax(R) is the maximum number of clusters in the first layer during submonolayer
growth and L is the linear size of the lattice. For a one-dimensional lattice with irreversible
cluster growth, Nmax ∼ R−1/4 [317, 318], whereas Nmax ∼ R−1/3 for irreversible growth
in two dimensions [319].

We now check whether ln and dg might serve as appropriate choice for the diffusion
length l in our LM model. To this end, we plot ln along with dg as function of R (in the
experimentally relevant regime) in Fig. 6.2. For values R < 103, adsorption dominates and
particles only marginally diffuse. In this regime, we observe an increase of ln with R, while
dg remains nearly constant. As soon as we enter the regime R ≥ 103, particle diffusion
becomes the dominant process and we identify the characteristic scaling ln ≈ dg ∼ R1/4,
because dg ∼ 1/Nmax and Nmax ∼ R−1/4 when d = 1. For d = 2 we find dg ∼ R1/6, since
dg ∼ (1/Nmax)1/2 and Nmax ∼ R−1/3. The intriguing result is that ln follows the same
scaling and takes (approximately) the same values as dg for R ≥ 103. This means that it is
sufficient to calculate Nmax (which can be experimentally determined from AFM or STM
snapshots) in order to determine the diffusion length ln together with the geometrical
cluster distance dg.

Based on these findings, we henceforth take the nucleation length ln (or, equivalently, dg
for R ≥ 103) as an estimate for the diffusion length l in the LM model. In the following,
we analyze corresponding numerical results in detail where we particularly focus on the
effect of diffusional fluctuations which we control via σ2.
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R l Nmax KMC Nmax LM, σ2 = 0 ε in %
1.5× 102 3 403.85 403.21 0.16
4.0× 102 5 333.72 332.56 0.35
1.3× 103 8 272.54 252.55 7.33
4.0× 103 12 220.08 186.29 15.35
4.0× 104 23 134.84 105.36 21.86
8.0× 104 30 116.76 86.99 25.50
4.0× 105 46 80.69 59.61 26.13
4.0× 106 85 32.55 21.61 33.61

Tab. 6.1: Maximum number of clusters Nmax and the relative error ε (in %) in Nmax during
submonolayer growth in the LM model without fluctuations in l comparison to KMC
simulations at various values of the growth parameter R (in d = 1).

6.5 Results in one spatial dimension

The submonolayer growth regime: Let us now investigate whether the LM model with
mean diffusion length l = ln(R) and variance σ2 can indeed reproduce morphologies in
the submonolayer regime (θ < 1) that are equivalent to those obtained from full diffusion
KMC simulations at arbitrary values of R. Here we focus on the one-dimensional case. To
compare the two models quantitatively, we calculate the number of clusters in the first
layer, N(θ), as well as the corresponding distribution P (S) of clusters of size S. Since
detachment of particles from cluster boundary sites is neglected, already dimers represent
stable clusters. We thus distinguish between clusters N (of size 2 ≤ S ≤ L) and monomers
n.

Number of clusters in the first layer: The evolution of N(θ) for various values of the
growth parameter R is shown in Fig. 6.3. We focus on clusters in the first layer and
monitor them up to a final coverage of θ = 2.5. We find good agreement between the
KMC (solid lines) and the LM model with constant l, i.e., with σ2 = 0 (dashed lines) at
the lowest value of R considered, R = 4× 102 (corresponding to l = 5 in the LM model).
In particular, the location and value of the maximum cluster density, Nmax, are matching
perfectly. However, for larger values of R, we find pronounced deviations. Particularly
striking are the discrepancies in Nmax and the emergence of a plateau in N(θ) within the
LM model in comparison to KMC simulations at R ≥ 103. Therefore, at growth conditions
where diffusion dominates, the LM model with constant diffusion length for all particles
fails to correctly reproduce the KMC results. To quantify the mismatch between the KMC
model and the LM model in absence of diffusional fluctuations, i.e., at σ2 = 0, we show
in table 6.1 the values of Nmax and the relative error ε for various growth conditions
expressed via R and the corresponding values of l.

Furthermore, Fig. 6.3 also shows that deviations in N(θ) between the two models become
much smaller when fluctuations in l are added, i.e., σ2 > 0. This is done by choosing
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Fig. 6.3: Comparison of N(θ) in the KMC model for various values of R (solid lines) with the LM
model where l = ln(R) is used. The dashed lines represent results of the LM model with
σ2 = 0, while the dots correspond to N(θ) with optimal values of σ2.

the value of σ2 appropriately for a given value of l (symbols in Fig. 6.3 represent the LM
model with th optimal values of σ2). To this end, we consider the difference between the
maximum number of clusters

∆Nmax = NKMC
max (R)−NLM

max(l, σ2) (6.7)

in the KMC and the LM model, respectively. Results for ∆Nmax as function of σ2 for
various growth conditions are shown in Fig. 6.4. One observes that ∆Nmax is positive for
small values of σ2, reflecting that the LM model with negligible diffusional fluctuations
underestimates the values of Nmax from KMC simulations. As the strength of fluctuations
is increased, ∆Nmax decreases until it crosses the black dashed line corresponding to
∆Nmax = 0. The value of σ2 for which ∆Nmax = 0 is referred to as optimal σ2. The
inset of Fig. 6.4 shows the optimal value of σ2 as function of l. These optimal values
are used in Fig. 6.3 to match the KMC results. Upon increasing σ2 above the optimal
value, ∆Nmax takes negative values. This means that the number of clusters in the LM
model overshoots Nmax from KMC simulations. Taken together, Fig. 6.4 illustrates the
importance of diffusional fluctuations in the LM model. However, it also tells that their
strength has to be chosen carefully.

It is established that for d = 1, the asymptotic scaling of Nmax as function of θ follows
N ∼ θ1/4 [306, 320]. The results in Fig. 6.5 reveal that the LM model obeys this scaling
only with optimal σ2. Additionally, we observe unexpectedly good agreement with KMC
results concerning the number of monomers on the lattixe n as function of θ, provided
that the optimal σ2 is taken. Even though the values of n obtained from KMC and LM do
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Fig. 6.4: The quantity ∆Nmax [see Eq. (12)] as function of the variance σ2 in the LM model
for various values of the mean diffusion length ln(R) = l. The black dashed line
indicates ∆Nmax = 0. The inset shows the optimal values of σ2 as function of l fulfilling
∆Nmax = 0.

not perfectly match, the scaling n ∼ θ−r, with r ≈ 0.64 is quite similar [306]. Please note
that mean-field considerations predicts r = 0.5 [320] and the difference in r (between
simulations and mean-field theory) is because our value for R in Fig. 6.5 is chosen too
small to resemble the mean-field resuld. However, r ≈ 0.64 was also found in [306]. This
is rather surprising since we do not explicitly model the particle diffusion and thus can
a priori not expect such a resemblance. In contrast, the LM model with fixed diffusion
length, i.e., σ2 = 0, gives a wrong scaling for both, the number of clusters N and the
number of monomers n.

Cluster size distributions in the first layer: Let us now consider the cluster size distribu-
tion P (S) in the LM model for two representative values of the mean diffusion length,
l = 12 and l = 24 (see Fig. 6). Here, we aim to explore the effect of fluctuations in l on
P (S) in the submonolayer regime on a qualitative level (see [317, 321] for a detailed
scaling analysis of cluster size distributions). For both values of l, we observe a shift
of the maximum of P (S) towards smaller cluster sizes as the value of σ2 is increased.
Additionally, there emerges a left shoulder that indeed resembles the correct form of P (S)
for small cluster sizes S in the pre-coalescence regime [13, 322]. At σ2 = 0, the shoulder
is absent for l = 24, and too small for l = 12. Using the earlier obtained optimal values
for σ2 (see Fig. 6.4), we find good agreement between P (S) obtained from the LM and
the KMC model, respectively. As σ2 is increased above the optimal σ2, the maximum of
P (S) is shifted to even smaller values of S until the left shoulder vanishes. Then, P (S)
becomes a monotonically decreasing function of S. The dependency of P (S) on σ2 shows
that diffusional fluctuations are essential to retain the correct form of P (S) in systems that
model nonequilibrium surface growth with limited particle mobility.
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Fig. 6.5: Number of clusters N and monomers n as function of coverage θ on a lattice of size
L = 16384 for the KMC model and the LM model with corresponding diffusion length
and different values of the variance σ2. The solid black line follows ∼ θ1/4, while the
dashed black line scales according to ∼ θ−r, with r ≈ 0.64 [306, 320].

Finally, we shortly summarize our reasoning for the observed discrepancies in N(θ) and
P (S) between the KMC and the LM model without fluctuations in l for R > 4 × 102

(l > 5) and thereby justify our LM model with diffusional fluctations. Nonequilibrium
surface growth is dominated by stochastic processes that involve fluctuations not only in
the deposition, but also in the diffusive motion of the adsorbed particles. By setting a
constant diffusion length l in the LM model, this fundamental aspect of stochastic systems
is fully neglected. As a consequence, we obtain less clusters which are, moreover, too
regular in size as opposed to the clusters from KMC simulations, where the stochastic
nature of diffusion is naturally included (see Fig. 6.3, 6.5, 6.6). While diffusional
fluctuations seem to be negligible at R ≤ 4 × 102 (l ≤ 5), they become significant for
growth conditions where diffusion dominates, R > 103 (l > 5). Therefore, to realistically
model nonequilibrium surface growth in LM models at large values of R, one has to
consider diffusional fluctuations. The way we have chosen to include them is to pick the
diffusion length for each deposited particle from a Gaussian distribution P (l|ln, σ2) where
the variance σ2 controls the strength of fluctuations around the mean diffusion length l.

The multilayer growth regime: It is crucial to check whether our LM model can also
correctly describe the multilayer growth regime. Here, the main quantity of interest
concerning the surface morphology is the global interface width [9, 238, 310, 323, 324],
which is defined as the root of the integrated mean square fluctuations of the local surface
height at coverage θ. In continuous form, the global interface width in one dimension
reads

W (L, θ) =

√
1
L

∫ L

0
(h(x, θ)− 〈h(θ))〉2 dx. (6.8)
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Fig. 6.6: Comparison of the cluster size distribution P (S) during submonolayer growth at θ = 0.5
for (a) l = 12, (b) l = 24 and various values of the variance σ2 that controls the strength
of diffusional fluctuations.

Here, h(x, θ) is the local surface height at position x (or i in discrete form) and coverage θ,
L is the size of the substrate, and

〈h(θ)〉 = 1
L

∫ L

0
h(x, θ) dx (6.9)

represents the average surface height of the growing film. Thus, W (L, θ) is a measure of
the surface roughness. Further, studying W (L, θ) allows to explore whether the dynamics
of the growing surface exhibits universal scaling behavior and can thus be assigned to one
of the established universality classes in nonequilibrium surface growth [9, 97, 98, 236,
238, 242, 322, 325–327]. More precisely, investigating W (L, θ) helps to identify whether
the local surface height evolves (in the hydrodynamic limit) according to the functional
form

∂θh(x, θ) = F [∇nh(x, θ)], (6.10)

where F is a characteristic functional involving gradient terms. Thus, examining W (L, θ)
can contribute to a deeper understanding of the interface dynamics during nonequilibrium
surface growth and may thus help to establish improved control strategies for epitaxially
fabricated devices.

In general, the global interface width is expected to follow the Family-Vicsek scaling
relation [9, 232, 310]

W (L, θ) ∼ θβf
(
L

θ1/z

)
, (6.11)

where β and z are the growth and dynamic exponent, respectively. Further, f(u) is a
scaling function that obeys

f(u) ∼

u
α u� 1

const. u� 1,
(6.12)
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which involves the global roughness exponent α = βz that depends on the two independent
exponents β and z. The set of these three critical exponents (α, β, z) determines the
universality class of the growth process under study as explained in detail in C. 4

The growth exponent β can be extracted from the short-time behavior of the interface
width which is known [9, 232] to scale as W (L, θ) ∼ θβ for coverages θ < θ∗ [with θ∗

being the crossover coverage at which W (L, θ) reaches a saturation value Wsat(L)]. To
obtain the exponents α and z, it is necessary to reach the asymptotic regime, θ ≥ θ∗. Since
the crossover coverage θ∗ scales with system size L according to [9, 232]

θ∗ ∼ Lz, (6.13)

it is very difficult to determine α and z for large L in simulations. This is due to the required
computation time to reach Wsat(L), especially when α > 1 and z > 2 [299, 301, 308].

Evolution of layer coverages: In order to compare both models the initial stage of
multilayer growth, we compute the coverage evolution in the first ten layers. In the
following, layer coverages are denoted by θk, with k being the layer index. Layer coverages
are defined as

θk = 1
L

L∑
i=1

Θ(|hi − k|), (6.14)

with the Heaviside step function Θ(X) that obeys Θ(X) = 0 for X < 0 and Θ(X) = 1 for
X ≥ 0. We note that θk is different from the quantity θ, since the latter describes the total
coverage.

Results for θk (for k = 1 to k = 10) are shown in Fig. 6.7 for two different values of R
and corresponding distributions P (l | ln, σ2). For both considered growth conditions we
find perfect agreement between the layer coverage evolution in both models. To show
that this agreement holds at any value of R, we plot in Fig. 6.7(c) the evolution of θ10(θ)
for various values of R and corresponding P (l | ln, σ2). Again, we find nearly perfect
agreement between the corresponding results from both models. Thus, we conclude that
the LM model with optimal σ2 yields a very good description of the KMC model during the
early stage of multilayer growth.

Roughness and scaling in the multilayer growth regime: Let us now study the regime
of many deposited layers of particles (up to θ = 106) by investigating the global interface
width W (L, θ) [see Eq. (6.8)]. The evolution of W (L, θ) for different system sizes L and
four exemplary values of R and corresponding distributions P (l | ln, σ2) is shown in Fig.
6.8. Results for W (L, θ) from KMC simulations are given by symbols, whereas results from
the LM model are represented by solid lines.
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Fig. 6.7: (a) Evolution of the coverage in the first ten layers in the KMC model at R = 102 and
l = 5 (σ2 = 0.1) in the LM model. (b) The same at R = 4× 104 in the KMC model and
l = 24 (σ2 = 7.0) in the LM model. (c) Coverage evolution of the tenth layer at various
growth conditions in both models. Solid lines represent KMC simulations, dotted lines
are results from the LM model (with optimal variance σ2).

According to the Family-Vicsek scaling relation [9, 232], W (L, θ) initially shows power-law
scaling, W (L, θ) ∼ θβ. From the KMC data we identify β ≈ 1/3 for all considered values
of R. The reason why β does not depend on R is because it does not affect the symmetry
properties of the system [326, 328, 329]. The growth exponent β ≈ 1/3 also correctly
describes the roughening in the LM model. Interestingly, not only the scaling exponent
β ≈ 1/3 is the same in both models, but also the actual values of W (L, θ) for all considered
growth conditions and system sizes L [see Fig. 6.9(c)].

After the crossover from the transient to the asymptotic growth regimeregime at θ∗, the
interface width saturates. Independent of the value of R and P (l | ln, σ2), the saturation
coverage scales θ∗ ∼ L3. Again, the scaling exponents are very similar in both models
for all considered growth conditions [See Fig. 6.9(d)]. Additionally, we observe that the
saturation values scale Wsat(L) ∼ L1 [See Fig. 6.9(b)]. Thus, the roughness exponent
α ≈ 1 is the same in both models for all considered growth conditions.
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Fig. 6.8: Global interface width W (L, θ) as function of coverage θ for four different values of R in
the KMC model (symbols) and corresponding diffusion length l in the LM model (solid
lines) with optimal values for σ2 for system sizes from L = 64 to L = 256.

Fig. 6.9: (a) Scaling of the saturation roughness Wsat as function of system size L for two values
of R in the KMC model and the corresponding values of l and σ2 in the LM model (dotted
black line ∼ L1). (b) Roughness exponent α, (c) growth exponent β and (d) dynamic
exponent z for various growth conditions in both models. The lines in (b)-(d) represent
the values of α, β, z according to the VLDS universality class in one dimension.
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Fig. 6.10: Relative error ε(Wsat) of the saturation roughness Wsat(L) in the LM model compared
to KMC simulations. Results for ε(Wsat) without fluctuations in the diffusion length l
(i.e., σ2 = 0) are given by hexagons, while ε(Wsat) with optimal σ2 are represented by
triangles.

We identify the following critical exponents in our simulations: α ≈ 1, β ≈ 1/3, z ≈ 3. As
known from simulations and analytical calculations of the DT model (with l = 1), this set
of critical exponents corresponds to the Villain-Lai-Das Sarma (VLDS) universality class
in one dimension [98, 236, 330]. The corresponding evolution equation for the surface
height in the hydrodynamic limit is given by

∂th(x, t) = −ν4∂
4
xh(x, t) + λ4[∂2

xh(x, t)]2 + φ. (6.15)

Here, h(x, t) is the surface height at position x at time t, ν4 and λ4 are constants, and φ is
a Gaussian white noise, representing the randomness of the particle deposition process.
Thus, Eq. (6.15) is a stochastic, nonlinear partial differential equation. Note that for λ4 = 0
the equation reduces to the linear Mullins-Herring (MH) equation (characterized by the
following critical exponents, in one dimension: α = 3/2, β = 3/8, z = 4) [239, 240]. The
non-linear equation, λ4 6= 0, is known to have the same symmetry as several discrete lattice
models (including the DT model) [97, 98] which are frequently used to model surface
growth. Thus, these discrete lattice models have the same set of critical exponents as the
nonlinear equation Eq. (6.15). As a consequence, Eq. (6.15) describes the dynamical
evolution of the surface height in the continuum limit.

To demonstrate the importance of diffusional fluctuations in the multilayer regime, we show
in Fig. 6.10 the relative error ε(Wsat) = |Wsat(L)LM −Wsat(L)KMC |/Wsat(L)KMC × 100
of Wsat(L) for the LM model with σ2 = 0 and the version with optimal σ2. We find that,
as L is increased, ε(Wsat) diminishes with optimal σ2, while ε(Wsat) ≥ 40% in absence of
diffusional fluctuations, i.e., when σ2 = 0.
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Interface profiles and the effect of diffusional fluctuations: As known from experiments
[331–333] and KMC simulations [9, 13, 334, 335], the surface of a growing thin film
becomes smoother as the value of R is increased. We systematically study this smoothing
of the surface and the thus resulting decrease of the surface roughness in the LM model by
plotting Wsat versus l for different system sizes L in Fig. 6.11(a). We find that Wsat(L, l)
obeys a power-law, Wsat(L, l) ∼ l−φ, with scaling exponent φ ≈ 3/2. The value of
the latter exponent is independent of L. In KMC simulations, the saturation roughness
decreases according to Wsat(L,R) ∼ R−δ, with δ ≈ 1/2 [see Fig. 6.11(b)]. To confirm the
correctness of the scaling exponents φ and δ, we define a rescaled saturation roughness
for both models. The rescaled saturation roughness for the LM model reads

WRE
sat = Wsat(L, l)/(Lαl−φ). (6.16)

For the full diffusion KMC model the rescaled saturation roughness is given by

WRE
sat = Wsat(L,R)/(LαR−δ). (6.17)

Results for WRE
sat are shown in Fig. 6.11(c). We find that WRE

sat as function of l in the LM
model is indeed a constant. The same holds for KMC simulations where WRE

sat is plotted as
function of ln(R).

Growth instabilities can induce the formation of mound-like patterns. It is well accepted
that the original DT model displays the formation quasiregular mounds [299, 300, 308,
309, 336–338]. To investigate how diffusional fluctuations alter this characteristic feature,
we show exemplary interface profiles for two diffusion lengths l and different values of σ2

in Fig. 6.12(a) - (f) [please note that h(x) = hi− hmin, where hmin is the minimum height
in the depicted profiles]. We observe that as σ2 is increased from zero, the characteristic
mound size decreases, while the number of mounds increases. Further, individual mounds
appear to be sharper and steeper. As a consequence, the overall interface looks rougher
and does indeed yield a higher value of the interface width.

To analyze in detail how the value of σ2 modifies the interface height profile, we calculate
a characteristic length ξ0 that contains information regarding the characteristic mound
size [313, 338]. This quantity is defined as the first zero of the height-height correlation
function

Γ(r, θ) = 〈h̃i(θ)h̃i+r(θ)〉
〈h̃i(θ)2〉

, (6.18)

with h̃i(θ) = hi(θ) − 〈h(θ)〉. Calculating Γ(r)/Γ(0) reveals that with increasing σ2,
Γ(r)/Γ(0) decays faster to zero as function of the distance r = |i − (i + r)| from ref-
erence site i. Accordingly, the value of ξ0 decreases [see Fig. 6.12(g) and (h) where
Γ(r)/Γ(0) crosses zero at smaller values of r when σ2 is increased]. This goes along with a
decrease of the characteristic mound size.
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Fig. 6.11: (a) Scaling of the saturation roughness Wsat(l) in the LM model as function of the
average diffusion length l with optimal values for σ2 for different system sizes L. The
black dotted line follows ∼ l−3/2. (b) Scaling of Wsat(R) as function of the growth
parameter R. The black dotted line follows ∼ R−1/2. (c) Rescaled saturation roughness
WRE
sat in the LM model and corresponding KMC simulations.

To demonstrate the equality of the morphologies generated by both models, we compare
Γ(r)/Γ(0) obtained from the KMC and the LM model at θ = 104 in Fig. 6.13. For both
considered growth conditions [l = 5 and l = 12, Fig. 6.13(c) additionally shows ξ0 for
l = 20], we observe good agreement between KMC and the LM model when the optimal
values of σ2 are used.

6.6 Results in two spatial dimensions

So far we investigated the LM model in one dimension. From an application-oriented point
of view it is clear that the case of two spatial dimensions is more relevant. Here, we show
by exemplary calculations that the mapping strategies developed for the one-dimensional
case can simply be transferred to other spatial dimensions. To relate the values of R
in KMC simulations to the parameters l and σ2 in the LM model for d = 2, one can
straightforwardly follow the one-dimensional case. However, the decision for the final
attachment site has to be carefully considered, since in two dimensions more than two
lattice sites at the same distance from the adsorption site can provide at least one lateral
bond. As a first step, we decided to select the cluster boundary site for attachment that
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Fig. 6.12: (a) - (f) Height profiles in the LM model at θ = 106 for two representative values of l
and different values of the variance σ2 at coverage θ = 106 in systems of size L = 4096.
(g) Height-height correlation function Γ(r)/Γ(0) for the depicted system settings with
l = 5 and different values of σ2 at θ = 104. (h) The same as in (g) for l = 10.

Fig. 6.13: (a) Height-height correlation function Γ(r)/Γ(0) for KMC simulations at R = 4× 102

together with results of the LM model at l = 5 and various values of the variance σ2. (b)
The same as in (a) for R = 4× 103 and l = 12. (c) Correlation length ξ0 for different
combinations of l and σ2 (lines with symbols) together with corresponding values of ξ0
from KMC simulations (dashed lines). Stars in (c) represent the optimal values of σ2.
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Fig. 6.14: Nmax in the submonolayer growth regime on two dimensional substrates of lateral size
L = 200 for various growth conditions in the KMC and the LM model, respectively. The
black dotted line follows ∼ R−1/3.

is closest to the initial adsorption site. In case that their exist multiple sites at the same
distance, we randomly choose one of them. However, we want to emphasize that different
variants for choosing the final site are possible. This is of great importance for growth
conditions where edge-diffusion and bond breaking is possible.

The submonolayer growth regime: To demonstrate that our approach also works on
two-dimensional lattices, we show in Fig. 6.14 Nmax in the submonolayer growth regime
as function of R and corresponding P (l|ln, σ2) (with optimal σ2). The results for Nmax

reflect a good agreement between both models for all considered growth conditions. In
particular, Nmax decays identically in both models as the values of R and l (together with
the optimal σ2) are increased.

By analyzing P (S), we observe, analogous to the one-dimensional scenario (see Fig. 6.6),
a shift of the peak of P (S) towards smaller values of S as the strength of diffusional
fluctuations is increased (see Fig. 6.15). Again, this results in the emergence of a left
shoulder in P (S) as observed earlier for d = 1. If the variance σ2 takes too large values,
the distributions P (S) become monotonically decreasing functions of S. This behavior is
clearly unphysical. For l = 10, this is seen already at σ2 = 5, while for l = 30 it only occurs
for σ2 > 10. Therefore, also for d = 2, the value of σ2 has to be chosen carefully.

The multilayer growth regime: To compare both models on two-dimensional lattices in
the multilayer regime, we show exemplary lattice structures in Fig. 6.16 for two values
of R and corresponding optimal distributions P (l|ln, σ2). While the lattice structures at
R = 4× 102 look indistinguishable [see Fig. 6.16(a) and (b)], we find visible deviations at
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Fig. 6.15: Cluster size distribution P (S) during submonolayer growth at θ = 0.3 on two dimen-
sional substrates of lateral size L = 200 for two values of l and various strengths of
diffusional fluctuations controlled via σ2 in the LM model.

R = 2× 104 [see Fig. 6.16(d) and (e)]. These discrepancies may be resolved by using a
different variant for choosing the final attachment site as discussed earlier in this section.
Despite the spatial deviations, the functions Γ(r)/Γ(0) for R = 4× 102 and R = 2× 104]
reveal a good agreement between both models concerning height-height correlations and
the correlation length ξ0. Both of these quantities are very sensitive to changes in l and σ2,
as shown in Fig. 6.12 and Fig. 6.13 for the one-dimensional case.

6.7 Conclusions and Outlook

In this work, we have introduced an extended limited mobility (LM) model for nonequi-
librium surface growth, which is capable of predicting low temperature MBE growth for
arbitrary values of the growth parameter R. Compared to earlier versions of the LM model,
particularly the DT model, our extension concerns the diffusion length l which we treat as
a variable parameter whose value for each deposited particle is chosen from a Gaussian
distribution.

To relate our LM model to another standard model for surface growth, namely KMC,
we proposed to set the mean value of l equal to the nucleation length ln resulting from
short KMC simulations for the particle displacements. We tested this ansatz by comparing
LM and KMC results for the cluster evolution during sub- and multilayer growth. While
the LM model with fixed l works well at small values of the growth parameter R, this
is not the case at larger R. As a next step, we therefore included fluctuations to the
diffusion length of particles in the LM model in order to model diffusional fluctuations.
Specifically, we employed a Gaussian distribution where the mean diffusion length l is
given by the nucleation length extracted from KMC, whereas the variance σ2 is fitted to
match the maximum number of clusters Nmax in KMC simulations during growth in the
submonolayer regime. For each considered value of l we have identified the variance σ2
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Fig. 6.16: (a) Exemplary lattice structures (of size 100× 100 from lattice with L = 200) from KMC
simulations with R = 4 × 102 (a) and R = 2 × 104 (d) at θ = 50 along with results
obtained from the LM model with l = 4 and σ2 = 1.1 (b) l = 11 and σ2 = 2.8 (e) at
the same coverage, θ = 50. (c) and (f) depict Γ(r)/Γ(0) for both considered growth
conditions in the KMC and the LM model, respectively.

that leads to NKMC
max − NLM

max ≈ 0. Using these optimal values of σ2 also lead to nearly
identical cluster size distributions P (S).

Turning towards multilayer growth, we compared layer coverages for different growth
conditions and found excellent agreement between both models. Moreover, we analyzed
in detail the global interface width for different system sizes up to coverages deep in the
regime of saturated surface roughness. Not only is transient regime of the global interface
width identical in both models, but also the crossover coverage where saturation is reached.
Additionally, we showed that by using our LM model with variable diffusion length, also
the values of the saturation roughness match in both models for all considered system
sizes and growth conditions. A scaling analysis revealed that the LM model belongs to the
VLDS universality class for arbitrary diffusion lengths. We also observed that the variance
σ2 can strongly alter the interface height profile in the high coverage regime. As the value
of σ2 is increased, we observed less and, at the same time, steeper mounds. Moreover, we
found good agreement concerning height-height correlations in both models using the
optimal values of σ2 in both, one- and two-dimensional systems.
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The present model can be extended in various directions. First of all, it is possible to modify
the model such that it also mimics MBE growth at high temperatures where detachment
of particles is present. This may be achieved by using a mixture of the transition rules of
the DT and the Wolf-Villain model [247, 307] with a variable, distributed diffusion length.
Concerning the two-dimensional scenario, it would be very interesting to investigate how
different variants for the rules regarding the final attachment site of deposited particles
affects the cluster shape properties and the overall growth behavior. This is especially
important when moving towards higher temperatures or lower binding energies, where
clusters are usually compact rather than ramified.

Second, the effect of an additional energy barrier for interlayer diffusion processes across
step-edges, usually referred to as Ehrlich-Schwoebel barrier, can be included to account for
growth instabilities. Normally, in presence of such a barrier, KMC simulations are slowed
down due to the sampling of diffusion trajectories of free particles on top of clusters that
are reflected at the cluster edge due to the additional energy-barrier for crossing step-edges.
A physically reasonable treatment of an Ehrlich-Schwoebel barrier in our LM model would
lead to a further computational speedup compared to KMC simulations.

Finally, we want to point out that, especially concerning growth conditions where the
critical cluster size takes large values, there exist alternative numerical techniques beyond
the lattice-based models with limited particle mobility that can be further advanced to
realistically model this specific growth regime. Examples include level-set [283] and
geometry-based [284] models.
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7Applying machine learning to
nonequilibrium surface growth

In recent years, machine learning (ML) has become an important part in the discovery of
novel materials [100, 101, 103, 106, 339, 340]. In future investigations, ML approaches
may also facilitate the industrial fabrication, i.e., the nonequilibrium growth process, of
high quality crystals and thin films. In the following, we demonstrate that a convolutional
neural network (CNN), which is trained on labeled data, can unravel the microscopic
details of single particle diffusion processes during thin film growth. Diffusion processes of
particles on the surface play an important in thin film growth role since they heavily affect
the morphology, and thus, also the quality of crystalline materials fabricated by means of
vapor deposition techniques [9, 13, 23]. In this chapter, we perform KMC simulations of
sub-monolayer surface growth to generate a training and validation data set for a CNN. We
show that the CNN, which was trained under supervised learning, can predict the lateral
binding energy EB and the diffusion barrier ED, and thus, the single particle process
rates from a single snapshot of the surface morphology with an accuracy. Additionally, we
further demonstrate that the CNN can also correctly predict the underlying values of ED
and EB from images with noise and lower than atomic scale resolution. We show that the
prediction performance of network is not much affected by noise. The latter is inevitable
in experimental atomic force microscopy (AFM) or scanning tunneling microscopy (STM)
images of thin film surfaces. This paves the way to apply the on noisy numerical data
trained CNN to experimental data in order to unravel the microscopic energy barriers of
materials under experimental conditions from snapshots of the surface configurations.

7.1 Fundamentals of convolutional neural networks

Over the last decade, ML based approaches have been applied in various disciplines
including finance, biology, chemistry, materials science, mathematics and physics and
may support fundamental research in these fields [100, 101, 103, 105, 106, 341–344].
Focusing on physics, various ML techniques have been successfully applied in materials
science, many-body quantum matter, statistical physics, particle physics, cosmology and
quantum computing [341, 345–351]. For example, CNNs have proven to identify different
phases of matter and, moreover, have shown to detect phase transitions in different
classical and quantum condensed-matter systems. Especially deep learning methods have
an enormous potential for applications in various disciplines [352, 353]. Recently, deep
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learning had been combined with statistical mechanics to develop Boltzmann Generators
that are trained on a given energy function and capable to generate unbiased one-shot
equilibrium samples of representative condensed matter systems and proteins [354]. These
are just a few of the many examples that show the great potential of ML applications in
the field of physics.

In the following we will give a short introduction to the basics of CNNs. We will discuss the
general structure of a CNN and explain how input data is processed through the network.
Moreover, we shortly sketch the learning process of a CNN by which it improves it’s
prediction performance. Details of the functioning of neural networks are well explained
in the book by Bishop [355] and the recently published book by Goodfellow [356].
Moreover, recent review articles summarize the current standing of ML applications in
physics [341, 357].

The convolution operation: CNNs represent a specialized class of neural networks. In
particular, they are suitable for processing input data that exhibits a known, discrete,
grid-like topology. Therefore, they are especially appropriate to process input data in the
form of pixel images. Of fundamental importance for the functioning of a CNN is the
convolution operation. In general, the convolution of some real-valued functions I(t) and
K(t) is defined as the integral of the product of these two functions where one, say K(t), is
reversed and shifted, K(τ − t). Then, the convolution of I(t) and K(τ − t) can be written
as

(I ∗K)(t) =
∫ t=∞

t=−∞
I(t)K(τ − t)dt. (7.1)

If we only allow integer values for the index t, we can define the discrete convolution of
the functions I(t) and K(t),

(I ∗K)(t) =
t=∞∑
t=−∞

I(t)K(τ − t). (7.2)

Since we want to feed our CNN with two-dimensional input data, we have to add another
argument. A discrete convolutions in two dimensions with arguments t and k (where κ is
used to denote shifts in k) are given by

(I ∗K)(t, k) =
t=∞∑
t=−∞

k=∞∑
k=−∞

I(t, k)K(τ − t, κ− k). (7.3)

In particular, the first argument, i.e., the function I(t, k), can be interpreted as the input,
whereas the second function K(τ − t, κ− k) represents the filter kernel that slides across
the convolutional layer and thereby performs the integration, i.e., the sum in Eq. 7.3.
Often the output of such a convolution is referred to as feature map. Processing of data
through a CNN occurs via discrete convolutions between the input data and the filter
kernel. This is exemplary shown in Fig. 7.1, where we illustrate for a random cutout of a
two-dimensional convolutional layer the convolution with a 2× 2 filter kernel that is used
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to process the input data further to an activation function (in general, a sigmoid function
or a rectifying linear unit) whose output corresponds to the activity of the neurons in the
next convolutional layer. In fact, a discrete convolution simply corresponds to a matrix
multiplication. We explicitly show the convolution of the input with the filter kernel for
the first three operations in the first and second line of the random input data in Fig. 7.1.
The brightness of the neurons labeled from A to T corresponds to their activity a ∈ [0, 1],
where a = 0 corresponds to black and a = 1 to white.

Fig. 7.1: Illustration of a two-dimensional convolution operation on the example of a 5× 5 pixel
input data and a 2× 2 pixel filter kernel. A discrete convolution is performed for each
position of the filter kernel in order to generate the output which is partly shown for 6
convolutions., i.e., positions of the filter kernel. matrix

Basic architecture and data processing in a CNN: In general, the structure of a convo-
lutional layer consists of three distinct parts, i.e., there are three steps that have to be
executed in order to transfer the data from one convolutional layer to the next convolu-
tional layer. In the first step, one performs several convolutions of the input with the filter
kernel in parallel to produce a set of linear activations as illustrated in Fig. 7.1. More
precisely, at each position of the filter kernel, a convolution is performed. This means that
each pixel value of the convolution layer is multiplied with the value at the respective
position in the filter matrix. One simply calculates the sum of all multiplications between
the layer and the filter kernel. These dot products between the weights of the filter kernel
and the inputs are integrated across channels as the filter slides across the convolutional
layer. In the second stage, each of these linear activations which we just obtained from
the convolution is used as input for a nonlinear activation function. In early studies, the
sigmoid function

σ(a) = 1
1 + exp(−a) (7.4)

was often used for this task, but it has been widely replaced by the rectified linear activation
(ReLU) which is defined as

R(a) = max(0, a). (7.5)

Specifically, the ReLU activation function tackles the problem of vanishing gradients that
may occur when the sigmoid function is used [352, 355, 356]. This step of the data

7.1 Fundamentals of convolutional neural networks 121



Fig. 7.2: Comparison the max pooling with the average pooling operation based on a two-
dimensional convolutional layer of size 4× 4 with random entries. The pooling operation
in both cases is such that the size of the layer is reduced to 2 × 2 pixels. The different
colors indicate the neurons which are grouped for the pooling operation. By using max
pooling, the largest entry is used for the down-scaled layer, whereas for average pooling,
the average value, i.e., activity, of the involved neurons is taken.

processing, where the output of the convolution is used as input for the activation function
is often called detector step. In the last step, one often applies a pooling operation as
exemplary illustrated in Fig. 7.2 where the processes of max pooling and average pooling
are shown for an example with random data. Specifically, the process of pooling can, to
some extend, help to make the output approximately invariant to small translations of the
input data. It may thereby improve the statistical efficiency of the network [352, 356]. In
this context invariant means that most of the pooled output values do not change upon
small translations of the input. Moreover, the size of the input images often has to be
reduced to a single-valued number. To this end, pooling is used to reduce the size of the
convolutional layer in a CNN, i.e., the number of neurons in the next layer. Pooling thereby
compresses the information content to a smaller scale [352, 356]. However, pooling can
be an aggressive step that may heavily affect the transferred information. The trend in
recent fundamental studies of neural networks is to decrease the filter size or to completely
abandon the pooling process [352, 355, 356]. Within the CNN we use to predict the
energy barriers involved in surface growth in Sec. 7.2, we use the max pooling operation.
After the input data has been processed through a certain number of convolution and
pooling layer, it will further be transferred to a few dense, i.e., fully connected, layer before
the final output is calculated. These fully connected layer are identical to simple multilayer
perceptron (MLP) networks which are used to learn for the respective classification or
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regression task [358]. In contrast, the preceding convolutional layer extract the relevant
features for the MLP. This means that the data from the last convolutional layer has to
be flattened as it is transferred to the first fully connected layer. To this end, one simply
reshapes the two-dimensional convolutional layer and transforms it into a one-dimensional
layer, i.e., transforms the matrix into a vector. From this, the processing of the data to
the final output is identical to the functioning of a standard MLP network [358]. In short,
a standard CNN consists of three different types of layer. There is an alternating set of
convolutional and pooling layer which are followed by some fully connected layer. Each of
these three different layer types performs a different task on the data and is characterized
by different layer-specific parameters that are optimized during the training process.

Basic learning mechanism of a CNN: Similar to the learning of weights in conventional
MLPs, learning within the part of a neural network where we have convolutional layer
is such that the network learns the most optimal filter kernels for recognizing specific
objects and pattern it identifies in the input data [352, 355, 356]. To this end, the
CNN learns multiple filters in each layer of the network. More precisely, each filter
kernel learns to identify a specific pattern, or feature of the input data. That’s why the
collections of many parallel filters are called stacks of the respective feature or activation
maps [352, 355, 356]. Deep neural networks are usually trained by using the stochastic
gradient descent optimization algorithm [359]. In this context, the learning rate is
an important hyper-parameter that controls how much the weights of the model are
changed in each training step in response to the estimation error. The learning rate has
to be chosen carefully because too small values may result in a time consuming training
process. Moreover, the network could get stuck without further improving it’s performance
[355, 356]. In case the learning rate is chosen too large, the network may learn a sub-
optimal set of weights too quickly and the total training process might furthermore be
completely unstable. The learning rate is one of the most important hyper-parameter
when it comes to the configuration of neural networks. The predictions of the network
in supervised learning are connected with a loss function that plays an important part
in the training process. In most cases, one uses a cross-entropy loss function. Since all
weights of all the filter kernel contribute to the activity of neurons in all the following
layer, any change of the networks weights will affect the output. Thus, all these changes
contribute to the final loss. In our case, where the CNN learns to predict the values of the
diffusion energy ED and the binding energy EB, the network simply attempts to change
the weights such that the difference between the predictions of ED and EB are as close
as possible to the true, labeled values of ED and EB that were used in the corresponding
KMC simulation from which the shown surface configuration snapshot originates.

7.1 Fundamentals of convolutional neural networks 123



7.2 Unraveling the energetics of nonequilibrium
surface growth via machine learning

In the following, details of the KMC simulation setup that was used to generate the training
and validation data set are discussed. We explain how the surface snapshots are modified
in order to make them comparable to real AFM or STM surface snapshots. Then, we
shortly discuss the structure of the CNN that wa used for training and validation. At the
end, we present results of the networks performance on predicting the diffusion energy
ED and the binding energy B from noise-free and noisy surface snapshots obtained from
KMC simulations.

7.2.1 Simulation details and data set generation

In the following, we discuss details of the training data and validation data sets and explain
specific details of the CNN that we use to determine the values of the diffusion energy
ED and the binding energy EB from snapshots of sub-monolayer surface growth on a
square lattice at fixed temperature T and a constant particle deposition rate F . We explain
in detail how we visually modify the surface snapshots generated by KMC simulations
in order to make them comparable to the appearance of real experimental atomic force
microscopy images of sub-monolayer thin film morphologies generated by vapor deposition
techniques.

Generation of the training and validation data set: The surface configurations we use
for training and validation of the CNN are obtained from event-driven KMC simulations
according to the algorithm which is explained in detail in Sec. 2.4.3. Within the KMC
simulations, nucleation and the subsequent cluster growth occur via the two stochastic
processes of adatom deposition and surface diffusion. To this end, coarse-grained particles,
i.e., we fully neglect internal rotational and vibrational degrees of freedom, are deposited
with an effective rate F = 0.166(7) ML/s on randomly chosen sites a = (m,n) of a
discrete square lattice of lateral length L, where m,n ∈ [1, L]. We apply periodic boundary
conditions and the solid-on-solid condition which forbids vacancies and overhanging
particles. The surface coverage θ corresponds to the number of deposited particles divided
by L2. In our KMC simulations, growth proceeds at a constant speed via θ = ft, with
t being the simulation time. After deposition on the substrate, which is kept at a fixed
temperature of T = 313 K, adatoms explore the potential energy surface of the substrate via
stochastic Arrhenius-type hopping processes a→ b. The local energetic environment of a
particle at site a determines the activation energy EA it has to overcome in order to perform
a diffusion processes to a neighboring lattice site b with corresponding diffusion rate
Dab(T ) = [(2kbT )/h] exp [−EA/(kbT )] as explained in detail in Sec. 2.4.2. In accordance
with KMC simulations performed in C. 5, C. 6 and C. 8, the activation energy consists of
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up to three individual energy barriers, EA = ED + nEB + SabES (see Sec. 2.4.2). The
three barriers ED, EB and EB in interplay with the effective deposition rate F and the
substrate temperature T , eventually determine the resulting surface morphology of the
growing thin film. In all simulations which are used for training and validation of the
CNN, the value of the Ehrlich-Schwoebel interlayer diffusion barrier is fixed to ES = 0.1
eV. We chose this value because it is in the typical range of the interlayer diffusion barrier
of many materials [171, 188]. Furthermore, the value is chosen such that at θ = 0.15,
i.e., the coverage of the surface snapshots for training and validation, stable clusters in
the second layer are not present. In fact, the exact value of ES is not critical for the
morphology, because we investigate the low coverage sub-monolayer regime, θ = 0.15. At
this point we want to note that the CNN used to determine the values of ED and EB could
in principal also be used to determine the value of ES . To this end, one should fix ED and
EB and train the network on data where the value of ES is varied in a certain parameter
range. In contrast to ES , the values of the diffusion and the binding energy are varied.
Specifically, ED ∈ [0.4, 0.4125, . . . , 0.5375, 0.55] and EB ∈ [0.1, 0.10625, . . . , 0.39375, 0.4].
As a consequence, there are 13 individual values for ED and 49 for EB such that there
are 13 × 49 = 637 combinations for ED and EB in the training and validation data set.
The distribution of diffusion rates Dab(T ) at substrate temperature T = 313 K for particles
with up to n = 4 bonds of strength EB is plotted in Fig. 7.3.

Fig. 7.3: Heatmaps for the diffusion rates Dab(T ) as function of the diffusion energy ED and the
binding energy EB for particle with different numbers n of lateral bonds at substrate
temperature T = 313 K. The attempt frequency of diffusion processes Dab(T ) is given by
(2kbT )/h.

As can be seen there, the rate for particle diffusion ranges from Dab(T ) ∼ 10−22 up to
Dab(T ) ∼ 105, and thus, spans across around ∼ 25 orders of magnitude. Exemplary
lattice configurations for some combinations of ED and EB at ES = 0.1 eV, T = 313 K
and F = 0.0166(7) monolayer/s at coverage θ = 0.15 are shown in Fig. 7.4. The size
of the snapshots is 100 × 200 lattice sites which roughly corresponds to an image size
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of 50× 100 nm for typical lattice constants in thin film growth experiments. The shown
surface configurations reveal a wide range of island (cluster) sizes, island densities and
island shapes. One can clearly see that for the smallest values of ED and EB, one gets
very few, almost quadratic islands, whereas for the highest values of ED and EB, there
are many small, rather dendritic clusters on the substrate. For increasing values of ED,
molecular diffusion is hindered and adatoms are less likely to diffuse the average distance
to reach an existing nucleus. It is more likely that they form new clusters with freshly
deposited particles. As a consequence, more islands nucleate on the substrate compared
to lower values of ED where the average traveled distance per particle is usually larger.
Similarly, an increase in EB leads to an increased number of nucleation events, and thus,
results in a higher island density compared to simulation runs with lower values of the
binding energy EB. Different combinations of ED and EB then result in varying island
shapes ranging from compact rounded to rectangular and dendritic islands with fractal
dimensions from Df ≈ 1.71 (diffusion-limited aggregation cluster) to Df = 2.0 (compact
cluster). However, if we compare snapshots with rather similar energy barriers, differences
in the surface morphology are not visible to the eye. However, as will be shown in the
following, CNNs detect the nonetheless existing differences in the cluster morphologies of
configurations simulated with very similar values for ED and EB and are able to determine
the values of the energy barriers with high precision.

Fig. 7.4: Surface morphologies obtained from KMC simulations of submonolayer growth for
different values of ED and EB at fixed adatom deposition rate F = 0.0167 monolayer/s,
temperature T = 313, and coverage θ = 0.15, result in a wide range of island sizes, island
densities and compact or dendritic island shapes. The images shown have added noise
and smoothing, i.e., lowered resolution, to mimic surface images obtained from scanning
probe microscopy experiments. The scale corresponds to 100× 200 lattice sites, that is
roughly 50× 100 nm for typical lattice constants in growth experiments.

Adding noise and Gaussian blur to surface snapshots: In order to mimic the noise that
is omnipresent in real AFM and STM snapshots, we alter the surface configurations by
adding various amounts of random noise and applying Gaussian smoothing. In particular,
we use salt and pepper noise together with Gaussian blur. The salt and pepper noise
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flips a certain percentage of pixels. Thereby, it generates noise by randomly adding and
removing adatoms to the system when empty or filled lattice sites are flipped. Moreover,
it creates holes within islands. Through the generation of a random number of adatoms
in every image, we reduce correlations in the adatom density of snapshots which are
generated by randomly shifting or rotating a snapshot from the same KMC run. Depending
on the specific experimental technique used to generate surface snapshots, other noise
variants such as background noise, or line-scan artefacts as found in scanning probe
microscopy images may be added to the training data set to make the snapshots as
realistic as possible. Since we do not focus on mimicking the peculiarities of specific
experimental techniques, we did not add such specific noise terms. However, we want to
point out that this, in principle, is no problem. After adding noise to the KMC results, a
Gaussian smoothing filter was applied to simulate a limited, sub-atomic resolution that
some experimental techniques may have. The Gaussian smoothing was implemented in
Python using multidimensional image processing (scipy.ndimage) with the gaussianf ilter
function. This function performs a convolution of the image with a Gaussian kernel whose
standard deviation is varied between 0 and 20 pixels, corresponding to blurring of 0 to 20
lattice constants. We use Gaussian smoothing with different standard deviations of the
Gaussian filter kernel. For example, the images shown in Fig. 7.4 contain 5% salt and
pepper noise and smoothing with a two-dimensional Gaussian with one pixel (i.e., one
lattice constant) standard deviation, i.e. σ2 = 1.

Details of the data sets: We carried out multiple realizations (on average we performed
∼ 10 realizations) for each of the 637 ED-EB-pairs and let the simulations run on square
lattices of lateral length L = 200 sites until a coverage of θ = 0.15 is reached. This means
that the unaltered, raw surface images obtained from KMC simulations consist o40000
pixels and contain 6000 particles. In total, we performed ∼ 6000 individual KMC runs at
identical growth conditions, i.e., the same temperature T = 313 K and the same deposition
rate F = 0.0166(7) monolayer/s (which corresponds to F = 1 monolayer per minute).
We made sure that the data sets for training and validation are strictly separated from
each other, irrespective of the data augmentation that is applied in the form of rotations
and random lateral shifts of the snapshots. We use 5 to 6 individual realizations of each
ED-EB combination for the training process. In order to increase the size of the data sets,
we rotate each picked configuration by a random multiple of 90◦. Further, we shift the
whole configuration either in the x- or the y-direction by a random number of lattice sites.
This not only increases the size of the data sets, but also leads to a higher variability of the
training and validation sets. Salt and pepper noise empties and fills a fixed percentage
of lattice sites. However, which sites are flipped from empty to filled and vice versa is
completely random in each configuration. This further increases the variability of our data
sets. For grayscale images, the pixel value is a single number that represents it’s brightness.
We use the byte image pixel format where the number on each lattice site of the surface
configuration is an integer in the range of values from 0 to 255. Typically zero represents
a black and 255 a white pixel. Therefore, empty lattice sites are represented in white,
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whereas particles in the topmost layer of the respective surface image are given in black.
The color of all lattice sites with a height in between 0 and the maximum height is given
by a height-dependent shade of gray. For simplicity, we rescale the grayscale axis between
0 and 1 such that 0 corresponds to black and 1 represents white pixels.

7.2.2 Details of the convolutional neural network

Architecture and details of the CNN: In order to predict the diffusion energy ED and
the binding energy EB from static atomic-scale snapshots of sub-monolayer surface con-
figurations, we use a well-established CNN architecture that has proven to perform well
for image recognition and classification tasks [360]. The structure of the sequential CNN
from the first convolutional layer that takes the two-dimensional data as input, i.e., the
sub-monolayer surface configurations, up to the single-valued output, i.e., the predicted
diffusion energy ED and binding energy EB, is illustrated in Fig. 7.5. We use a standard
two-dimensional deep CNN which is a smaller version of the standard VGG16 CNN [360]
(from the Visual Geometry Group at Oxford University) which we implemented in Tensor-
Flow [361]. Our neural network consists of a sequence of 13 convolutional layer which
are followed by three fully connected layers of decreasing size from 2048, to 1024 and 32
up to the final output that is the guess for the diffusion energy ED and the binding energy
EB.

In Fig. 7.5 (a) we show a exemplary conventional fitting procedure that can be applied
in order to extract energy barriers from surface growth experiments and compare the
workflow with our proposed method which involves ML techniques. Our proposed method
can determine the atomistic energy parameters ED (diffusion barrier) and EB (binding
energy) from a single image of a thin film in the sub-monolayer growth regime. We use a
deep learning CNN architecture which is illustrated in In Fig. 7.5 (b). The architecture of
the CNN is similar to the VGG16 network [360]. Convolutional layers Conv11 to Conv53

use a 3x3 pixel filter kernel and the number of filters increases from 16 to 128 in deeper
layers.

The filter kernel is fixed to a very small receptive field of size of 3× 3 pixel in all layers
of the network from the first layer Conv_1 up to the deepest convolutional layer Conv_5.
The size of the first convolutional layer Conv1_1 that takes the surface configurations is of
size 200× 200 and contains 16 filters of size 3× 3. Layer Conv1_2 has the same size and
uses an identical number of filter. Following the two first convolutional layer, we use max
pooling in order to minimize over-fitting and to reduce the dimensionality, i.e., the number
of parameters. This process reduces the computational cost. The size of the following two
convolutional layer Conv2_1 and Conv2_2 is 100× 100. We use the same filter kernel size
and increase the number of filters to 32. Again, after the input data has been processed
through these two layer, we again use max pooling and transfer the data to convolutional

128 Chapter 7 Applying machine learning to nonequilibrium surface growth



layer Conv3_1 which is of size 50 × 50. Here, and also in Conv3_2 and Conv3_3, the
number of filters is set to 64. Again, max pooling is applied as the data is transfered to
Conv4_1, Conv4_2 and Conv4_3 which are all of size 50 × 50. All of them exhibit 128
filters. The same is true for layer Conv5_1, Conv5_2 and Conv5_3. After them, we again
apply max pooling and we flatten the data which is transfered to a fully connected layer of
lateral size 2048. Our CNN determines the values of ED and EB with a higher precision
compared to other conventional neural network architectures we tested. These include
a VGG19 CNN [360] and an AlexNet inspired CNN [362]). In particular, comparing our
CNN with the AlexNet inspired network (which is not as deep as our VGG16-type CNN)
showed larger prediction errors in ED and EB.
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Fig. 7.5: (a) Comparison of a conventional fitting procedure to extract energy barriers from surface
growth experiments (top) with our proposed method of applying a ML techniques in order
to predict energy barriers (bottom). (b) Image recognition can determine the atomistic
energy parameters ED (diffusion barrier) and EB (binding energy) from a single image of
a thin film in the submonolayer growth regime. We use a deep learning CNN architecture
very similar to the VGG16 network [360]. Convolutional layers Conv1_1 to Conv5_3 use
a 3 × 3 pixel filter kernel and the number of filters increases from 16 to 128 in deeper
layers.

7.2.3 The two-step training process

First training step using noise free input data: The CNN is trained in two stages using
only surface configurations from the KMC training data set. We leave the validation data
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set for performance checks of our network. In the first stage, we trained the CNN for a
total number of 500 epochs (where we use ∼ 55000 augmented images per epoch) on
noise-free, full-resolution data. This means that each of the input surface images contains
40000 pixel. Each batch was augmented via rotations of all snapshots by a random multiple
of 90◦ and lateral shifts of by a random number of pixels in the x- and y direction. Due to
the applied periodic boundary conditions in the KMC simulations, such random shifts of
the configurations result in surface snapshots which are not altered by any border effects.
The with noise-free trained CNN achieved a mean absolute percentage errors of 0.8% in
ED and 4.0% in EB without showing any signs of overfitting. Using the investigate toolkit
for interpretable machine learning [363], we found that the rim of islands is important for
predictions but sometimes also individual pixels representing unbound, freely diffusing
adatoms had a significant role. As individual adatoms are very difficult to observe in
experiments at higher temperatures (due to their high mobility), predictions based on
properties of the adatom densities are undesirable. Consequently, we introduced (salt and
pepper) noise terms that stochastically added and removed adatoms in the surface images
we used in a second training step.

Second training step using noisy and blurred input data: We performed a second
training step with noisy and blurred images. The salt and pepper noise was added in
order to reduce correlation effects due to free adatoms on the substrate which may affect
the prediction performance of the CNN. Further, we mimicked experimental conditions
by adding salt and pepper noise together with Gaussian blur to the surface snapshots to
investigate whether the CNN is, in principle, still able to make predictions for images
with noise and limited lateral resolution. The latter modifications resemble the quality of
experimental STM or AFM snapshots of surface configurations. The percentage of pixels
affected by salt and pepper noise and the standard deviation σ2 of the Gaussian blur were
randomly set in each image augmentation procedure. The training with noisy and blurred
input data was continued for another 500 epochs resulting in a validation performance of
1% error in predictions of the diffusion barrier ED and an error of 4.5% in the predictions
for the binding energy EB. As one would expect, the CNN that is trained on a wide range
of clean and noisy images performs slightly worse on clean snapshots only compared to
the CNN that was trained on clean data only. While the CNN used here is trained to accept
a wide range of noise levels and resolution settings, for a given experiment even higher
CNN performance may be achieved by training with synthetic data for the specific noise
and resolution of the experiment. In the context of this work, our training procedure
however enables direct comparisons of the performance of one CNN with different noise
and resolution settings.
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7.2.4 Energy barrier prediction performance

Prediction performance on noise-free data: After the two-step training process, we
tested the prediction performance of the CNN with a separated validation data set that
contains surface snapshots from ∼ 1800 individual KMC simulations. These simulations
were performed at the same growth conditions that we used to generate the training data
set, i.e., T = 313 K and F = 0.0166(6) monolayer/s. We made sure that the individual
KMC realizations of the validation set were not part of the training data set. The validation
process to test the performance of the CNN is as follows. For each presented surface
snapshot with labeled true values for ED and EB that were used in the corresponding
KMC simulation, the trained CNN makes a prediction for the values of these two energy
barriers. Specifically, for each shown surface image, the network gives a prediction for
both energy barriers simultaneously.
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Fig. 7.6: (a) The CNN determination of the diffusion barrier ED. The estimates of the CNN follow
closely the true ED values (predictions: blue dots, mean value: black line, true values:
diagonal dashed line). (b) Heatmap of the absolute prediction error of ED which is low
across the whole parameter range with a mean deviation of 4.5 meV.

Predictions of the network based on surface snapshots for the diffusion energy ED together
with the true values of the corresponding KMC simulations are shown in Fig. 7.6. As
can clearly be seen, the individual predictions for the diffusion barrier ED (blue dots) as
function of the true barrier ED show good agreement over the whole parameter range
from ED = 0.4 to ED = 0.55 eV. For none of the ED values used in KMC simulations we
find noticeable deviations between the predictions by the CNN and the true value. Most
of the predicted values for ED are very close to the true ED values. If the CNN makes
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prediction errors, the deviations for predictions of ED from the true ED values are nearly
uniformly distributed. In fact, the CNN slightly underestimates and, in equal measure,
overestimates the true ED values without showing any systematic error in one of the two
directions.
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Fig. 7.7: (a) The CNN determination of the binding energy EB . The estimates of the CNN follow
closely the true EB values (predictions: blue dots, mean value: black line, true values:
diagonal dashed line). (b) Heatmap of the absolute prediction error of EB which is 9.1
meV across the whole parameter range. As can clearly be seen, the EB predictions have
larger errors for large true EB and ED values where fractal islands become very small
and nearly indistinguishable.

Specifically, the average predictions of the diffusion barrier ED (see the solid black line)
in Fig. 7.6 (a) are very close to the true values of ED which are shown by the dashed
black line. To better understand the deviations of ED predictions over the whole ED-EB
parameter space, we show in Fig. 7.6 (b) the absolute error of ED predictions in meV as
function of true ED and true EB values. We find that the error of ED predictions is fairly
low across the whole parameter space with a mean prediction error of 4.5 meV. Similarly,
also the CNN predictions for EB works well as can be seen in Fig. 7.7 (a). One clearly
sees that the CNN predictions of EB do not exhibit a s systematic error. The blue dots
which represent the predictions of EB are evenly distributed above and below the true
bindings energies of the corresponding KMC simulations. The mean prediction value of
EB (see the solid black line) follows closely the true binding energies EB (see the dashed
black line). With 9.1 meV, the average prediction error EB is quite low and actually even
lower across most parts of the whole parameter range as can be seen in Fig. 7.7 (b).
However, some deviations occur for large values of ED and EB as can be seen in the upper
right corner in Fig. 7.7 (b). In this parameter region, the CNN does not correctly predict
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the corresponding EB values but tends to predict a median value for the binding energy.
This is also indicated by a flattening of the average EB prediction in Fig. 7.7 (a) where
we see that the slope of the solid black line decreases for EB ≥ 0.35 eV. This may be a
consequence of a low variation in island densities and island shapes in this parameter
range where it is harder for the CNN to distinguish dendritic and compact island shapes
from each other for very small islands. Another reason for the constantly high prediction
error for KMC simulations with large ED and EB values could be that at the chosen growth
conditions, we simply encounter the situation that cluster growth is fully irreversible.
This means that particles can not detach from islands again, i.e., one lateral bond of
strength EB is sufficient to fully suppress diffusion. In this case, the fractal dimension of
islands is given by Df ≈ 1.71, which is the result for island growth by diffusion limited
aggregation [268, 270]. If additionally the island density nx saturates, then there are
no visible differences between different surface snapshots from KMC simulations where
ED ≥ 0.5 and EB ≥ 0.35. In summary, the prediction of the diffusion barrier ED and
the binding energy EB works very well over almost the entire ED-EB parameter space.
Only for the largest values of ED and EB at the chosen growth conditions with T = 313
K and F = 0.0166(7) monolayer/s, the surface configurations become indistinguishable
from each other and the CNN fails to correctly predict the diffusion and binding energy. In
a next step, we investigate the prediction performance of the CNN when imperfect, i.e.,
noisy and blurred data is used for validation.

Prediction performance on noisy and blurred data: We also studied the prediction
accuracy of the CNN with imperfect data where salt and pepper noise together with
Gaussian smoothing was applied to the surface snapshots in order to mimic random noise
and a limited resolution such that they look more similar to experimental surface images.
The goal of this investigation is find out whether the determination of microscopic energy
parameters from images may, in principle, be applicable also to imperfect experimental
STM or AFM images of thin films in the sub-monolayer growth regime. We expect the
CNN to perform worse on noisy data as compared to noise-free data. Therefore, the
prediction accuracy of the network on noise-free data serves as reference for the tests
on noisy and blurred snapshots. To this end, we use the coefficient of determination R2

[364] which is defined as 100% for perfectly accurate predictions, i.e., predictions with the
same accuracy as on noise-free data and 0% when the prediction accuracy corresponds to
the null hypothesis. The null hypothesis corresponds to estimating the mid-range values
of the parameter space of the investigated diffusion and binding energies. This means
that the latter corresponds to estimating the diffusion barriers as ED = 0.475 eV and the
binding energy as EB = 0.25 eV. The R2 measure of the accuracy is better suited than the
absolute error, because, depending on the strength of noise and blur, the CNN tends to
make wrong predictions close to the null hypothesis. Therefore, by plotting R2 as function
of the noise level, we can clearly determine the critical noise and blur strength where
the prediction accuracy of the CNN breaks down. For all investigated strengths of noise
an blur, the values for R2 have been calculated for data across the full range of ED and
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EB values in order to render the performance over the whole parameter space. In Fig.
7.8, we plot the coefficient of determination R2 for both, ED and EB as function of noise
strength given in % of randomly flipped spins. The image series above the graph serves
as exemplary illustrations how increasing noise strength impacts an individual example
images of the surface configuration. The results show a surprisingly high tolerance of the
CNN performance to the noise strength. Even for 60% of the pixels replaced by noise, the
CNN still exhibits an R2 value above 90% for ED and EB . For > 60% of random pixel flips,
the values of R2 for ED and EB quickly drop to zero with the same slope.
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Fig. 7.8: Dependency of the prediction quality of ED and EB on images with salt and pepper
noise based on the coefficient of determination R2. The coefficient exhibits a surprising
tolerance to random salt and pepper noise, as up to 60% of the pixels can be replaced
with random values before predictions of the underlying energy barriers get significantly
worse. The image series above the graphs serves to illustrate how an increasing level of
noise impacts a single example image consisting of 200× 200 pixels.

Concerning the reduction of the image resolution, we observe similar behavior of the
corresponding coefficient of determination R2 for ED and EB. As can be seen in Fig. 7.9,
images with lower than atomic resolution still can be used for meaningful predictions of the
microscopic energy parameters ED and EB (The image series above the graph illustrates
how decreasing the image resolution impact an exemplary surface configuration). The
image resolution has been degraded by smoothing through convolution via a 2-dimensional
Gaussian. One clearly sees that if the standard deviation σ2 of the corresponding Gaussian
is chosen to be three pixels, which roughly corresponds to an image resolution of three
lattice constants, the R2 value for ED and EB is above 90%. This means that for image
resolutions in the range of experimental AFM or STM snapshots, the prediction accuracy of
the CNN is not much affected as compared to the accuracy for perfect, noise-free data. For
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σ2 > 3, the prediction accuracy for EB quickly drops and approaches the null hypothesis
for σ2 ≥ 10. In contrast, R2 for ED remains above 90% for σ2 ≤ 5. As the standard
deviation of the corresponding Gaussian is further increased, also R2 of ED approaches
the null hypothesis which corresponds to a random guess of the CNN.
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Fig. 7.9: Dependency of the prediction quality of ED and EB on images with with degraded
resolution based on the coefficient of determination R2. The coefficient reveals that a
downgrading the resolution by merging of 3− 5 pixels (or lattice constants) still yields an
acceptable prediction quality. The image series above the graphs serves to illustrate how
decreasing the image resolution impacts a single example image consisting of 100× 100
lattice sites.

For both, noise and blur, the predictions of ED are less sensitive to image degradation than
the prediction of EB. The reason for this may be because EB predictions depend more
strongly on fine detail of island shapes. The latter get easily shadowed by noise blurred
with degraded image resolution. We note that the same CNN was used for all predictions
with or without noise and with degraded or perfect resolution. In principle, we expect that
a CNN which is trained for specific noise levels or a fixed image resolution can outperform
the more general CNN that we used here. Indeed, for applying a CNN to experimental
data, the KMC training images should be modified such that they resemble as closely as
possible the experimental resolution and noise types present in the STM or AFM images
for which we want to use the CNN to determine the underlying values of the microscopic
energy barriers ED and EB.
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7.3 Future machine learning-based investigations

The results presented in this chapter demonstrate how artificial intelligence methods
can help to unravel microscopic details of nonequilibrium surface processes. Our ML-
based approach of using a single image to extract the energy barriers involved in its
formation is quintessentially different from well-established procedures which require
information from several iteratively repeated laboratory experiment series at different
growth conditions, e.g. different temperatures T and adatom deposition rates F . The
physical information that is gained from such measurement series allows to calculate
mesoscopic parameters, such as the island density nx, from which the value of ED can be
determined under certain conditions using scaling relations based on classical nucleation
theory [9, 13]. However, there is no easy way to determine from the experiment both, the
diffusion barrier ED and the binding energy EB that cause the observed morphologies.
Alternatively, the experimentally obtained value of nx can be used to start an elaborate
fitting procedure employing KMC simulations to find the energy barriers that lead to
island densities matching the experiment. The present approach significantly facilitates
the problem: It only requires a single image of the surface morphology at fixed growth
conditions (defined by surface temperature T , deposition rate F and coverage θ) in
combination with an appropriately trained CNN to determine both, the values of ED and
EB. We have demonstrated that this analysis works very well in terms of prediction of
energy barriers, even in presence of strong noise and highly reduced resolution of the
images. Therefore, we are confident that a single STM or AFM image obtained in a real
growth experiment would be sufficient to estimate the values of ED and EB , provided that
the CNN was trained by appropriate KMC simulations.

Our method requires many KMC simulation runs, as simulations with different energy
barriers must be performed over a range of values typical for the class of materials under
study. Preliminary investigations with a training data set containing only 10% of the images
used here indicate that the CNN is, to some extent, capable of interpolating in between
ED and EB values of KMC simulations. Thus, a sparser sampling of the ED - EB space
seems sufficient, which could substantially reduce KMC simulation time as compared to
the present analysis. This potential reduction of computational effort is a topic of further
studies.

Once the values of ED and EB of a material are calibrated at the growth conditions
at hand via the KMC-trained CNN, one can once again employ KMC simulations to
predict the surface morphology at a different deposition rate F , temperature T or sub-
monolayer coverage θ (as compared to the training growth conditions). Of course, such
an investigation foots on the implicit assumption that the obtained energy barriers are
transferable between, e.g., different temperatures or deposition rates. Given that the energy
barriers in KMC are essentially effective, i.e., coarse-grained, quantities, the assumption
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of transferability can indeed be an issue as in any coarse-grained theoretical approach.
Whether the energy barriers can be transferred should therefore either be tested by
comparison of KMC results and experiments at different growth conditions or the suitability
of a KMC model for the material class under study must be previously established. Even
though the precise ED and EB values may depend on the type of KMC algorithm and
the choice of attempt frequencies, the above procedure of training and predicting with a
certain KMC model will be self-consistent. Taken together, predicting the deposition rate
and temperature dependency of growth enables data-driven materials research as costly
experimental growth parameter searches can be guided through faster KMC simulations.
This becomes even more important as the dimensionality of the growth parameter space is
extended beyond substrate temperature and adatom deposition rate.

We would like to mention that our method can be extended to different lattice symmetries,
e.g., hexagonal, triangular or rectangular substrates, and, in principle, also to other particle
shapes, e.g., elongated organic molecules. In the latter case, the underlying KMC algorithm
clearly has to include additional processes (and thus, energy barriers) related to internal
and orientational degrees of freedom. While the intentionally simple model used in this
work may be sufficiently precise for a self-consistent description and prediction of energy
barriers in many atomic systems, we are aware that even in these seemingly simple cases,
additional microscopic processes such as diffusion along step-edges, particle exchange
or the presence of grain boundaries can impact the resulting surface morphology. The
presence of these processes may be identified in Molecular Dynamics simulations or studies
based on Density Functional Theory. For example, additional surface processes have been
included in KMC simulations of atomic systems such as Pt on Pt(111) [188] or C60 on C60

[171, 365] to refine the morphology predictions for these systems. For future research, it
would be very interesting to investigate whether a CNN can precisely predict the energy
barriers and rates of simulation setups that include more surface processes and energy
parameters.

We also want to point out that the approach presented here can be extended to predict
the Ehrlich-Schwoebel barrier. Indeed, we have performed first tests by training a CNN
with images at higher coverages θ, where second layer nucleation has already set in. The
results show that, after determining ED and EB at a sub-monolayer coverage of θ = 0.15,
the value of the interlayer diffusion barrier EES can be predicted from a second image of
the surface at a coverage of θ = 0.5 with high accuracy that is comparable to the results for
ED and EB . Future work may investigate whether all three parameters can be predicted at
the same time from a single image in a coverage regime where stable islands in the second
layer are present. In conclusion, ML techniques such as CNNs represent a significant
untapped potential for advanced data analysis in surface science and material engineering.
This holds, in particular, for complex non-equilibrium processes such as nucleation and
crystal growth where various microscopic processes with different activation energies
strongly influence the resulting morphologies. Here, a nearly instantaneous method
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to extract the underlying kinetics and energetics of a growth process seems especially
valuable. Encapsulating the knowledge about a wide range of energy parameters and
possible surface morphologies in a CNN enables a novel and direct analysis of microscope
images that circumvents the need for iteratively fitting KMC simulations to data at different
growth conditions. Therefore, in light of the demonstrated tolerance of the CNN to noise
and lower resolution images, we expect the here presented approach to be very applicable
to experiments and to speed up the optimization of growth conditions for defect-free
materials. This is particularly needed at the moment, as ML algorithms also suggest an
ever-increasing number of candidate materials that have to be grown and tested. Finally,
we want to note that the method of using image recognition to predict nanoscale processes
from microscopic morphology can potentially be extended beyond growth studies to
research fields such as catalysis at surfaces.
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8Stochastic Thermodynamics for
discrete systems I: Nonequilibrium
surface growth

In this chapter we study the entropy production rate of a free and a bound one-dimensional
(restricted) solid on solid (RSOS) and unrestricted interface growth model consisting of
L lattice sites. We have introduced the relevant concepts of the theoretical formalism
of stochastic thermodynamics in C. 3. Here, we investigate how the presence of surface
diffusion processes and the value of the maximum height difference, i.e., the height
restriction, between neighboring lattice sites affects the entropy production rate. The
model which we introduce in the following includes particle deposition at a constant rate
and Arrhenius-type desorption and surface diffusion processes. First, we study the entropy
production in the state of a free interface where the crystal can also dissolve. Second, we
study the entropy production rate in presence of a hard wall which forbids evaporation.

8.1 Surface growth including deposition, diffusion and
desorption processes

Importance of desorption processes in surface growth simulations: Evaporation events
are often neglected in particle-based surface growth simulations. For practical rea-
sons, one often assumes an effective adsorption (deposition) rate F = fads − qeff

[171, 188, 366, 367], where qeff is the effective rate of particle desorption, i.e., the
rate of evaporation events where particles detach from the surface. This may drastically
reduce the computational demand of growth simulations without affecting the emerging
surface morphologies [171, 188, 367]. While ignoring evaporation events may be un-
problematic for studies focusing on morphological properties, it causes a problem for a
thermodynamic investigation of surface growth. According to the definition of the entropy
production rate by Schnakenberg [207], the backwards rate of any possible state transition
µ→ ν with rate wνµ has to be to be positive, i.e., when wνµ>0, then wµν > 0 must hold.
This means that particle adsorption processes have to be reversible, i.e., desorption of
particles from the surface must be considered. The reason for this is that otherwise, the
change of medium entropy for a state transition µ→ ν, i.e., ∆Sm = ln (wνµ/wµν), could
not be calculated if wµν = 0. Let us consider a concrete example in the context of surface
growth simulations. If the forward process corresponds to particle deposition, wνµ = F ,
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then wµν = q > 0 must hold. Here, F is the rate for adsorption of a particle and q the rate
for desorption of the same particle. If q = 0, we could not calculate ∆Sm for a deposition
event.

In the following, we introduce a surface growth model including evaporation of particles.
Further, we explain the dynamics of the model in presence of a hard-wall at zero height.
Then, we exactly calculate the entropy production rate in small systems in presence of
a height restriction and compare the results to numerical calculations of π. Further, we
investigate the impact of surface diffusion on the thermodynamic properties of the free
and the bound system.

Surface growth with adsorption, desorption and diffusion: The model with periodic
boundary conditions is defined on a one-dimensional line segnet of length L. The height
on each lattice site i ∈ [1, L] is denoted by hi. In absence of a hard wall, the heights can
take positive as well as negative values, i.e. hi > 0, hi < 0 and hi = 0 is allowed. At
the beginning of each simulation run, the height is set to zero on all lattice sites i, i.e.,
h = 1/L

∑
i hi = 0. Particles are deposited with constant deposition (flux) rate F which

takes the same value on all lattice sites. In particular, F acts as control parameter of the
system. Desorption of particles from the surface is modeled as activated process with
Arrhenius-type rates according to Eq. (2.53),

qn = C0 exp [−(EDES + nEB)] . (8.1)

Here, C0 is a variable attempt frequency which acts as an additional control parameter
next to F . As in conventional growth simulations, EA = EDES + nEB, where EDES
is the desorption energy barrier, EB the in-plane bond energy and n the number of in-
plane bonds a particle has to break in order to evaporate. We arrive at this form by
setting the Boltzmann constant and the temperature to unity, i.e., kb = 1 and T = 1.
Further, we set EDES = 0 and EB = 1. Therefore, if C0 = 1, we get q0 = 1 for the
desorption rate of free particles which do not have lateral nearest-neighbors and thus,
no in-plane bonds. The desorption rate for particles with one bond is then given by
q1 = exp(−1) = 0.36787(9) and the rate for desorption of particles with two in-plane
bonds reads q2 = exp(−2) = 0.13533(5). Similar, diffusion rates are given by

Dn = d0 exp [−(ED + nEB)] . (8.2)

In this equation, the attempt frequency for particle diffusion is given by d0 and ED = 0
corresponds to the diffusion barrier which, analog to EDES , we neglect. Therefore, for
C0 = d0 = 1, the diffusion rates are identical to the desorption rates. We set ED = EDES =
0 because then, we can control the ratio of diffusion over desorption via the ratio d0/C0.
Further, this setup allows us to separately investigate the effect of a varying the adsorption
rate via changing F and varying the desorption rate simply by tuning the ratio F/C0.
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The model without surface diffusion, i.e., with d0 = 0, is known to belong to the KPZ
universality class [373]. Therefore, investigating the entropy production rate in this model
means that one analyzes thermodynamic properties of a growth model that is part of the
non-linear KPZ universality class [238] (see Sec. 4.4.2). As surface diffusion is introduced
by setting d0 > 0, symmetry properties of the model change and the system is then part of
the EW universality class (see Sec. 4.4.2) for linear surface growth [9, 247]. Therefore,
by investigating π in the model with d0 > 0, one analyzes thermodynamic properties of a
growth model belonging to universality class different from KPZ. No the question arises
whether the belonging universality class has an impact on the thermodynamic properties.
To some extent we touch this topic by comparing the entropy production rate in the model
with d0 = 0 to the setup with d0 > 0.

Height restriction and effective surface tension: An analytical treatment of the entropy
production rate in the model is possible if we impose a height restriction between neigh-
boring sites hi and hi+1, i.e.,

|hi − hi+1| ≤ H. (8.3)

Here, H is the maximum height difference which is allowed between neighboring lattice
sites. Due to a finite height restriction H < ∞, the state space Ω of the model is finite
which makes an exact treatment of the model possible. In general, lattice models obeying
Eq. (8.3) are called restricted solid on solid (RSOS) models. Various RSOS surface growth
models have been studied in the literature [314, 369–372]. Surprisingly, they do not
distort the physics of their unrestricted counterparts where no height restriction is applied,
i.e., when H =∞. In fact, the height restriction introduces an effective surface tension
[9, 314, 370, 373]. Concerning the continuum KPZ equation, the height restriction affects
the value of the pre-factor λ in the term ∼ λ[∇h(x, t)]2.

We calculate the entropy production rate per spin, π, exactly in the system with H = 1 and
small values of L and perform numerical simulations for different values of H and L in
order to investigate the impact of a height restriction on the entropy production rate of the
model. In presence of the strongest height restriction H = 1, it is convenient to describe
the interface configuration in terms of charges,

si := hi+1 − hi ∈ [−1, 0, 1]. (8.4)

Here, si = 1 corresponds to a positive charge, si = −1 to a negative charge and si = 0
to a neutral charge. The mapping and all state transitions of the model with H = 1 and
L = 3 onto charges si is shown in Fig. 8.1. Generally, the phase space dimension scales
∼ (2H + 1)L. However, since the sum of all charges in each configuration has to sum up
to zero,

∑
i si = 0, the actual phase space dimension is much smaller. In fact, for L = 3

and H = 1, only 7 individual charge configurations are allowed. In particular, the charge
representation cancels out the height-dependency of individual lattice configurations. This
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Fig. 8.1: Visualization of all 7 lattice configurations and all possible transitions between states via
deposition with constant rate F , evaporation with rates qn and diffusion with rates dn in
the system with L = 3 and H = 1. The Arrhenius-type evaporation and diffusion rates
depend on the number n of bonds that have to be broken in order to evaporate or diffuse.

enables to calculate the occupation probabilities of each state in the charge representation
via an exact diagonalization of the transition rate matrix W.

The entropy production rate in surface growth: In order to calculate the entropy produc-
tion rate in the surface growth model in a NESS numerically, one can simply use calculate
the ensemble average according to Eq. (3.26) or calculate the change of medium entropy
along individual stochastic paths by following Eq. (3.17). Analytically, the most direct way
to calculate π is to diagonalize the transition rate matrix W. This gives us the probability
state vector P which contains the occupation probabilities pµ, pν of all states µ, ν ∈ Ω.
From this we get the exact result for π by using Eq. (3.23). The problem is that the
dimension of Ω scales ∼ (2H + 1)L. Consequently, an exact treatment is limited to small
system sizes L and small values of H.

Entropy production in charge representation without surface diffusion: In the model
with H = 1 and L = 3, there are only 7 possible surface configurations which, in the charge
representation (s1, s1, s2), are given by (0, 0, 0), (−1, 0, 1), (1,−1, 0), (0, 1,−1), (1, 0,−1),
(−1, 1, 0) and (0,−1, 1) as shown in Fig. 8.1. The occupation probability of a state (lattice
configuration) is denoted as ps1s2s3 All possible transitions µ→ ν between configurations
due to deposition and desorption of a single particle are illustrated in Fig. 8.1. Since
we only have 7 states and do know all transition rates wνµ between these states, we can
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directly use Eq. (3.22) to calculate the medium entropy production rate which, in a NESS,
equals the total entropy production rate,

Π =
(

3F lnF
q0

+ 3q2 lnq2
F

)
p000 +

(
q0lnq0

F
+ 2F F

q1

)
(p−101 + p1−10 + p01−1)

+
(
F lnF

q2
+ 2q1lnq1

F

)
(p10−1 + p−1110 + p0−11) . (8.5)

The occupation probabilities ps1s2s3 can be obtained from the transition rate matrix W
which, in this particular case, is a 7× 7 matrix containg all transition rates between the
states. The transition rate matrix for the system with L = 3 and H = 1 is given by

W =



φ2 F F F q0 q0 q0

q0 φ0 D0 D0 0 F F

q0 D0 φ1 D0 F 0 F

q0 D0 D0 φ0 F F 0
F 0 q1 q1 φ1 D1 D1

F q1 0 q1 D1 φ1 D1

F q1 q1 0 D1 D1 φ1


, (8.6)

with φ2 = −3F − 3q2, φ0 = −q0 − 2F − 2D0, and φ1 = −2q1 − F − 2D1. Interestingly, the
phase space can be further reduced by grouping translational invariant states. For example,
(−1, 0, 1), (1,−1, 0) and (0, 1,−1) are only lateral shifts of the same configuration. This is
also true for (1, 0,−1), (−1, 1, 0) and (0,−1, 1). Therefore, the dimension of the state space
for L = 3 and H = 1 can be reduced to dim (Ω) = 3. For L = 4 and H = 1, there are 19
lattice configurations. By make use of the translational invariance of states, it is possible to
reduce the number of configurations to 6 unique charge representations. Especially when
it comes to diagonalizing W, one can go to larger system sizes L if one makes use of the
translational invariance of lattice configurations. In the following sections, we show exact
results for the entropy production rate as function of F for some values of the evaporation
constant C0 and the diffusion constant d0 and compare them with numerical results from
Monte-Carlo simulations according to Eq. (3.17).

8.1.1 Entropy production without surface diffusion

Unbound interface growth: We first consider the entropy production rate in the unbound
model where the heights of the initially flat interface, i.e. hi = 0 at t = 0 for all lattice sites
i, can also become negative, hi < 0. The interface growth velocity is given by v = h/t,
where h is the average heigt h = 1/Lsumihi and t the time. If an unbound interface
grows, it’s height increases with time and consequently, the velocity is positive, v > 0. If
the interface declines, the velocity is negative, v < 0, and if the keeps it’s height, i.e., if
it fluctuates around h = 0 (which is the case when deposition and evaporation events
balance out), then the velocity vanishes, v = 0.
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Fig. 8.2: (a) Entropy production rate π per lattice site (for free surface growth without a hard wall
at h = 0) as function of deposition rate F for system size L = 4, height restriction H = 1
and three values of the desorption constant c0. Symbols show results from Monte-Carlo
simulations and solid lines represent exact results according to Eq. 3.23 with the same
parameters. (b) shows the same for L = 8.

Exact and numerical results for the entropy production rate per lattice site π = Π/L for
two system sizes and three different values of the evaporation constant C0 for an unbound
interface without diffusion, d0 = 0, and H = 1 are shown in Fig. 8.2. Numerical data
from MC simulations is given by symbols and exact results are represented by solid lines.
We find perfect agreement between the numerical and exact results for both considered
system sizes and all three values of C0. For small values of F , the entropy production
rate π is a decreasing function of F . At a value F0 which increases with increasing C0,
the entropy production rate vanishes, π = 0. This means that the system is in thermal
equilibrium. In this case, deposition and evaporation events cancel out. For F > F0, the
entropy production rate, π, persistently increases for all values of C0.

To interpret these three regimes of π (π decreasing for F < F0, π = 0 at F0 and increasing
π for F > F0), let us consider Fig. 8.3 where π is plotted together with the interface
velocity v for C0 = 0.7 and C0 = 1.3. We clearly see that in the regime F < F0 (where π is
decreasing as function of F ), the interface velocity is negative, v < 0. Consequently, the
crystal is dissolving, i.e., it’s height decreases with time. This means that more particles
evaporate than particles are deposited. As F approaches F0 from below, the velocity
decreases and approaches v = 0. In the paragraph above, we defined F0 as the deposition
rate where π = 0. We observe that the velocity is zero at exactly this value F0 for both
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Fig. 8.3: (a) Entropy production rate π per lattice site (for free surface growth without a hard
wall at h = 0) and the interface velocity v as function of deposition rate F for system
size L = 3, height restriction H = 1 and C0 = 0.7. The blue region shows the region
where the interface is declining, i.e., it’s height decreases, whereas gray marks the region
where the interface grows, i.e., it’s height increases. The solid black line is located at the
equilibrium point F0 where π = v = 0 holds. (b) shows the same for C0 = 1.3.

shown values of C0 (we checked that this holds for any value of C0). This means that the
interface is in thermal equilibrium exactly at the point where it is not moving, i.e., where it
is fluctuating around h = 0, and thus, not moving. Therefore, at F0, we have a fluctuating
interface which is in thermal equilibrium, whereas for F 6= F0, the fluctuating interface is
in a nonequilibrium state. As we enter the regime F > F0, the velocity of the interface
is positive. This means that the interface is growing, i.e., more particles are deposited
than particles do evaporate. As the interface grows, π increases with increasing F . We can
conclude that the interface is producing entropy whenever it is growing or declining. Only
exactly at F0 it’s velocity vanishes and the interface is in a state of thermal equilibrium at
which π = v = 0 holds.

In order to investigate how the entropy production rate is affected by finite-size effects, we
plot π (with C0 = 0.7, C0 = 1.0 and C0 = 1.3) obtained from numerical simulations for
system sizes ranging from L = 3 to L = 32 in Fig. 8.4. We see that the smallest system
sizes overestimate the entropy production rate. However, already for L = 8, the calculated
entropy production rate π is close to the value for L = 32. This means that we do not need
to consider very large systems in order to obtain meaningful, i.e., converged results for π.
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Fig. 8.4: (a) Entropy production rate π per lattice site as function of deposition rate F with height
restriction H = 1 and C0 = 0.7 for system sizes ranging from L = 4 to L = 32. (b) and
(c) show the same for C0 = 1.0 and C0 = 1.3.

Finite-size effects seem to only play a minor role when it comes to calculating the entropy
production rate in discrete one-dimensional surface growth models.

So far we considered unbound interface growth without diffusion only with the strongest
height restriction H = 1. For H > 1, the phase space dimension drastically increases
and goes to infinity for the unrestricted model H →∞. In order to investigate how the
height restriction affects the entropy production rate as compared to the unrestricted case,
H =∞, we show results for π as function of F for different values of H in Fig. 8.5. There,
we see that the entropy production of restricted interfaces is always lower as compared
to π of the unrestricted version. The difference between the system with H = 1 and the
unrestricted one is quite large. Interestingly, already with H = 3, the function π(F ) follows
quite closely the entropy production rate in the unrestricted model for both shown values
of C0.

Interface growth in presence of a hard wall: The growth conditions change dramatically
if we introduce a hard wall at h = 0. Such a boundary represents an inert substrate which
can not dissolve during the growth process. The wall forbids evaporation on lattice sites if
hi = 0. Therefore, the interface velocity can not become negative, i.e., v ≥ 0. At growth
conditions where, without the wall, the crystal would have a negative velocity v < 0, the
interface is bound to the hard wall, i.e., the substrate, and v = 0. Particles are deposited
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Fig. 8.5: (a) Entropy production rate π per lattice site as function of deposition rate F for system
size L = 3 with C0 = 0.7 and different values of the height restriction from H = 1 to
H =∞ (corresponding to unrestricted growth). (b) shows the same for L = 16. (c) and
(d) show the same as (a) and (b) but with C0 = 1.0.

on the substrate but they evaporate again before they can form stable clusters. At a critical
value Fc, deposition dominates over evaporation and the interface begins to grow when
F > Fc exactly as in the case without a hard wall. Then, the interface is unbound and the
hard wall becomes irrelevant for the growth process.

Previous studies have indicated that an interface in the bound phase can produce more
entropy than the model with the same parameter setting without a hard wall [374].
However, the rates for evaporation that were used are not appropriate to describe surface
growth by means of vapor deposition techniques. Specifically, the rates used in [374] are
not activation energy-dependent process rates. In contrast, we here use activation energy-
dependent Arrhenius-type rates for evaporation (and diffusion) and find that the entropy
production of the system is always exactly zero, π = 0, in the bound phase, irrespective
of the parameter settings. This means that the system in the bound phase is in thermal
equilibrium as can be seen in Fig. 8.6. In the bound phase, both, the velocity and the
entropy production rate vanish, π = v = 0. For F > Fc (Fc is indicated by the solid black
line which separates the blue and grey region which correspond to the bound and growing
phase) we observe that v > 0 and π > 0. This again shows that the interface velocity is
coupled to the entropy production rate, i.e., π = 0⇔ v = 0 and π > 0⇔ v 6= 0.
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Fig. 8.6: (a) Entropy production rate π per lattice site and interface velocity v as function of
deposition rate F in presence of a hard wall at h = 0 which mimics a solid substrate.
The system size is L = 32, the height restriction is H = 1 and the desorption constant
is set to C0 = 0.7. The region where the interface is bound to the substrate is shown in
blue, whereas the region where the interface grows is given in gray. The critical value Fc
where the interface detaches from the hard wall is given by the solid black line. (b) and
(c) show the same for C0 = 1.0 and C0 = 1.3.

8.1.2 Entropy production with surface diffusion

Unbound interface growth : In order to study the impact of surface diffusion (which
changes the universality class of the system from KPZ to EW [9]) on the entropy production
rate of the interface, we show results for π as function of F for different values of the
diffusion constant d0 at C0 = 0.7, C0 = 1.0 and C0 = 1.3 in Fig. 8.7. As can be seen,
the behavior of π is qualitatively the same if surface diffusion is present. In fact, surface
diffusion only has an quantitative effect on π. The interesting point here is that also in
presence of surface diffusion, there exist a unique point F0 where the system is in thermal
equilibrium, π = 0. It seems like only the value of F0, where π = 0, is shifted towards
larger values as d0 is increased from zero, i.e., as surface diffusion is switched on. We also
checked that the velocity of the interface vanishes at the equilibrium point, i.e., v = 0 at
F0 for all values of d0.

Interface growth in presence of a hard wall: For the model without surface diffusion,
i.e., with d0 = 0, we found that the system in the bound phase is always in thermal
equilibrium, π = 0. In this paragraph we aim to find out whether surface diffusion may
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Fig. 8.7: (a) Entropy production rate π per lattice site (for free surface growth without a hard wall
at h = 0) in presence of surface diffusion of particles as function of deposition rate F for
system size L = 16, without height restriction, H =∞, and C0 = 0.7. The value of the
diffusion constant ranges from d0 = 0.0C0 (no diffusion) up to d0 = 100.0co. (b) and (c)
shows the same for C0 = 1.0 and C0 = 1.3.

Fig. 8.8: (a) Entropy production rate π per lattice site with surface diffusion of particles as function
of deposition rate F in presence of a hard wall at h = 0. The system size is L = 32, the
height restriction H =∞ and the desorption constant is set to C0 = 0.7. The diffusion
constant is given by d0 = 1.5C0. (b) and (c) show the same for C0 = 1.0 and C0 = 1.3.

drive the system out of equilibrium in the bound phase. To this end, we plot results for
the entropy production rate π as function of F in presence of surface diffusion in Fig. 8.8.
We see that also in presence of surface diffusion, i.e., when d0 > 0, the interface remains
in a state of thermal equilibrium in the bound phase. Therefore, Arrhenius-type surface
diffusion processes of adatoms do not drive the system in a nonequilibrium state in the
bound phase. Therefore, it seems like the condition π = 0⇔ v = 0 generally holds when
diffusion and evaporation are treated as activated Arrhenius-type processes, irrespective of
the parameter settings.

8.2 Conclusion and outlook

We have investigated the entropy production rate of a one-dimensional interface growth
model which includes particle deposition and Arrhenius-type surface diffusion and evap-
oration processes for individual particles. We found that π always vanishes when the
velocity of the interface is zero, i.e., when the system is in equilibrium where the interface
fluctuates around zero height. This is true for the free, as well as for the bound interface.
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Whenever v 6= 0, the interface produces entropy. In presence of surface diffusion, we only
observe quantitatively changes of π.

Concerning further investigations in this direction, it would be interesting to analyze the
entropy production rate in the two-dimensional version of the model. The latter is a more
realistic representation of growth by vapor deposition techniques. Moreover, it would
be interesting to study the model with two species of particles (denotes as A and B)
which are characterized by different binding energies. For example, one could investigate
the cases EAAB = EBBB 6= EABB or EAAB 6= EBBB 6= EABB . It is a priori not clear whether
this setup is a nonequilibrium system in the bound phase. If this is the case, the system
would undergo a nonequilibrium phase transition from a bound to a growing phase at
Fc. Investigating the behavior of π in the vicinity of nonequilibrium phase transitions is
a timely topic [109, 111, 112] to which we contributed by investigating the power-law
behavior of π in a nonequilibrium Potts model in C. 9.
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9Stochastic Thermodynamics for
discrete systems II: Nonequilibrium
spin systems

In this chapter we show results of a thermodynamic investigation of the nonequilibrium
q-state vector Potts model (see Sec. 2.3.2). In particular, we analyze the model in the
vicinity of the order–disorder phase transition which is either second- or infinite order,
depending on q, the number of possible configurations per spin. We calculate the critical
properties of the model and investigate the total entropy production rate Π.

9.1 The nonequilibrium q-state vector Potts model

The Hamiltonian of the q-state vector Potts model (also known as the q-state clock model)
with nearest-neighbor spin interactions on a discrete lattice] is defined in Eq. (2.31).
For the investigation of the nonequilibrium (two-temperature) q-state vector Potts model
we use nearest-neighbor interactions and set J = 1, i.e., we ferromagnetically couple
interacting spins si, sj , and we do not apply an external magnetic field, h = 0. If all spins
si of the system are exposed to a single heat bath at temperature T , the system (that is
initially prepared in a configuration with random spin orientations) eventually reaches a
state of thermal equilibrium and thus, does not produce any form of entropy, Π = Φ = 0
(see Sec. 3.2.2 for a definition of entropy production). In contrast to this setup, we drive
the Potts model into a nonequilibrium steady state by coupling the spins si to two different
heat baths Tk (k = 1, 2) which are kept at temperatures T1 and T2. With this setup, the
system is out of equilibrium whenever T1 6= T2, i.e., when there is a temperature gradient
∆T = |T1−T2| among the sublattices. Then, there is a constant heat flux Q̇ from the hotter
to the colder heat reservoir that goes along with a constant rate of entropy production,
Π > 0 (see Sec. 3.2.2). Our setup splits the system into two sublattices, L1 and L2, each
containing all spins connected to the bath at T1 or T2, respectively. As a consequence, all
nearest-neighbors of a spin si are coupled to the respective other heat bath, yielding a
checkerboard configuration as illustrated in Fig. 9.1. Interestingly, with this setup, the
system reaches a NESS where Π = Φ > 0 holds. In the following, we fix T2, but vary T1

and calculate all observables as function of the mean temperature

T = (T1 + T2)/2. (9.1)
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We consider square lattices in two dimensions with a total number of L2 spins, where
L the lateral extension of the system which we refer to as the “system size". In order to
study the dynamical evolution of the system in presence of thermal noise, we perform
Monte-Carlo simulations with single spin-flip Glauber dynamics (see 2.39). The difference
to the conventional Potts model with only one coupled heat bath, is that the rate wiνµ(k) for
a transition of a randomly chosen spin si from state µ (before the spin flip) to ν (after the
spin flip) depends on the temperature Tk of the heat bath the considered spin is coupled to.
As a consequence, the transition rates between neighboring spins si, sj (which are coupled
to different heat baths) are different, even in the case that the energy change ∆Eνµ due to
the flipping of either si or sj is the same. Regarding the number of configurations per spin,
we limit ourselves to q = 4, i.e., the Ashkin-Teller model and q →∞, i.e., the XY model.

Fig. 9.1: Illustration of a 4×4 cutout of the q-state vector Potts model on a two-dimensional square
lattice with periodic boundary conditions. The spins are coupled to heat baths at two
different temperatures T1 and T2, here indicated by the colors red and blue, respectively,
with a checkerboard arrangement. Black lines represent the nearest-neighbor interactions
of strength J = 1, while red and blue lines highlight the two sublattices L1 and L2
formed by the coupling to heat two baths which are kept different temperatures, i.e.,
T1 6= T2. As a consequence, there is a temperature gradient ∆T = |T1 − T2| among the
two sublattices L1 and L2 which results in a heat flux Q̇ from the hotter to the colder
heat bath.

The two-temperature Ashkin Teller model (q = 4): For, q = 4 the model shows a
second-order phase transition from a PM to a FM phase similar to the Ising model, yet
with different characteristics, i.e., different critical exponents [162]. The question is
whether the exponents of the model with q = 4 get altered or remain unchanged when a
temperature difference (T1 6= T2) among the two sublattices is introduced, i.e., when the
system is driven out of equilibrium. Furthermore, it is of interest to study the behavior of
the total entropy production rate Π in the vicinity of the PM to FM phase transition to see
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whether Π shows noticeable behavior, i.e., power-law scaling, around the critical point. If
this is the case, the next step would be to investigate if this scaling is universal or not.

The two-temperature XY model (q →∞): In contrast, in the two-dimensional XY model,
there exists no long-range ordered FM phase at finite temperatures as stated by the
Mermin-Wagner theorem [53–55, 219]. Instead, the sytem undergoes an infinite-order
BKT transition from a PM to a BKT phase as the temperature is reduced below Tc. In
contrast to the model with q = 4, the specific heat Cv in the XY model does not peak in the
vicinity of the critical temperature Tc = TBKT ≈ 0.892880(6) [57, 163]. As a consequence,
there is no peak value in Cv around Tc that shows a logarithmic divergence as function
of system size L. A characteristic, but nonuniversal feature of the two-dimensional XY
model is the presence of a pronounced, asymmetric peak of Cv above the critical point,
i.e. at T ≈ 1.1 > Tc, which is found in both, numerical simulations as well as analytical
calculations [57, 162]. The occurrence of this maximum above Tc is usually attributed to
a rapid increase of entropy due to the unbinding of vortex-antivortex pairs. It is somewhat
extraordinary that this peak in Cv is well separated from the asymptotic critical region of
the phase transition where the unbinding of cortex-antivortex pairs happens. In particular,
the maximum occurs in a temperature region where the correlation length is still very
large [57, 162]. It is therefore of particular interest to study the behavior of the entropy
production around the critical point TBKT as well as around the temperature where Cv
peaks, which is at T ≈ 1.15TBKT .

Entropy production in the nonequilibrium q-state vector Potts model: As discussed in
C 2, a key quantity that distinguishes systems out of thermal equilibrium from those in
equilibrium is the constant net production of entropy (3.20). For the vector Potts model
in thermal equilibrium, the detailed balance (DB) condition, wνµ(k)pµ = wµν(k)pν , holds
for all µ and ν. Specifically, wνµ(k) refers to the transition rate due to the flipping of
a spin which is in contact with a heatbath which is kept at Tk (k = 1, 2). When DB is
violated, there are non-vanishing local probability flows between certain microstates, i.e.,
wνµpµ − wµνpν 6= 0. As a consequence, the system constantly produces entropy Π(t) > 0
(3.23), which is the case whenever ∆T > 0. Since we only consider the system after it
has reached a NESS, Π = Φ holds. Then, we can use (3.22) to calculate the total entropy
production rate. In particular, (3.22) can be computed numerically by averaging over
many transitions µ→ ν from the current state µ, i.e., the current spin configuration of the
lattice. In spin systems with discrete spin orientations like the vector Potts model with
finite q, state transitions µ→ ν correspond to the flipping of a randomly chosen spin si on
lattice site i. Thus, the sum in (3.22) can be written as an average over all lattice sites as
shown in (3.26). Specifically, wνµ(k)i corresponds to the Glauber-type flipping rate of the
spin σi on lattice site i (which is connected to the heat bath at Tk). The steady exchange
of entropy with the environment results from the net heat flux Q̇ from the hotter to the
colder sublattice. We here employ the sign convention Q̇ > 0 for the heat flow from hot to
cold.

9.1 The nonequilibrium q-state vector Potts model 153



Due to energy conservation (and because no external fields, forces or further gradients
act on the system), all of the three relevant heat flows transport the same amount of
energy per timestep: the flow from the hotter heat bath T1 (here we assume for a moment
T1 > T2) to the corresponding sublattice L1, the flow from L1 to L2, and the heat flow
from L2 to the cold bath at T2 (or everything reversed, if T2 > T1). This amounts to an
overall entropy flow to the environment of

Φ = |(Q̇/T2)− (Q̇/T1)| = Q̇ |T2 − T1|/(T1T2). (9.2)

A problem with (3.26) is that it can not be used to calculate Π in systems with continuous
degrees of freedom, as it is the case for the vector Potts model with q → ∞, i.e., the
XY model. As an alternative, we can calculate the entropy production rate by following
individual stochastic trajectories consisting of consecutively executed state transitions
ωn−1 → ωn between microstates as the system dynamically evolves via the reorientation
of single spins si → s

′
i [50, 52]. To this end, we use (3.17) to calculate the change of

medium entropy along a stochastic path X(N) consisting of N steps, each connected
with a transition rate, wωnωn−1(k)i for the forward process and a rate wωn−1ωn(k)i or the
corresponding backward process s

′
i → si . Note that each individual state that is part of

the trajectory simply corresponds to one of the microstates of the system, ωn ∈ Ω, i.e., to
one of the possible spin configurations on the two-dimensional L× L lattice. Specifically,
the total number of distinct spin configurations on the lattice, i.e., the dimension of the
probability state space, is given by dim(Ω) = qL

2
. Since we are considering the system in

a NESS, the total change of entropy along an individual stochastic path consisting of N
transitions is given by (3.17). In the limit of infinitely long trajectories, N →∞, (3.17)
divided by the length N of the trajectory becomes identical to the ensemble averaged
medium entropy production rate Φ due to the ergodicity of the system. In a steady state
this is further identical to the total entropy production rate Π. Due to the fact that for q ≥ 3
the state space grows faster than an exponential, one might think that extremely long
trajectories are required to get a meaningful result for the entropy prouction rate. However,
as will be shown in the results section, already for, N = 1, one gets convincing results,
even in the limit q →∞. However, one needs good statistics, i.e., many trajectories, for a
precise measurement of Π and Φ. Therefore, the length of the trajectories is irrelevant if
we just want to calculate the entropy production rate. Therefore, it is advisable to take
many short trajectories in order to minimize the computational effort to calculate Π.

In addition, we also use (3.17) to obtain distributions P [∆φ(N = 100)] for the 4-state
model as well as the version with q →∞. Such distributions of the change of the medium
entropy along paths of length N = 100 are plotted und discussed in the results section.

Measurement details and parameter settings: In the present study, simulations of the
vector Potts model with nearest-neighbor interactions are performed on square lattices
with lateral extension ranging from L = 16 to L = 96. This means that we consider
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L2 = 256 up to L2 = 9216 spins per simulation. Before calculating any physical quantity,
we first let the system in each individual simulation run evolve for 5× 104 Monte Carlo
steps (MCS) [where one MCS consists of L2 spin flip attempts with spin-flip rates wiµν
according to Eq. (3)] to assure that the system has reached a steady state. We then let each
system further evolve up to a maximum of 106 MCS and use (depending on the system
size L) between 100 and 1000 realizations for each parameter setting (i.e., combination of
T1 and T2) in order to guarantee the convergence of average quantities.

In order to quantify the phase behavior of the system, we calculate the magnetic order
parameter

m = 1
L2

√√√√(∑
i

cos θi

)2

+
(∑

i

sin θi

)2

. (9.3)

The value of m ∈ [0, 1] is a measure for the spin ordering in the system. For perfect order,
m = 1, while in a completely disordered system, m = 0. We also define the magnetic order
parameters for the two sublattices L1 and L2

mk = 1
2L2

√√√√√∑
i∈Lk

cos θi

2

+

∑
i∈Lk

sin θi

2

, (9.4)

where the index k = 1, 2 denotes the respective sublattice.

To precisely determine the value of the critical temperature Tc where the phase transition
(from the PM to FM or from PM to the BKT phase) sets in, we compute the fourth-order
Binder cumulant [228] of the magnetic order parameter m

U4 = 1− 〈m4〉
3〈m2〉2

, (9.5)

which is universal at criticality. The critical value Tc of the control parameter is given by
the intersection point of U4 for different lateral sizes L of the system. The Binder cumulant
for a specific sublattice Lk is accordingly given by

Uk4 = 1− 〈m4
k〉

3〈m2
k〉2

. (9.6)

In addition, we calculate the specific heat per lattice site which is given by

Cv = 1
T 2

[
〈E2〉 − 〈E〉2

]
, (9.7)

what can also be expresses as d〈E〉/dT . Here, 〈E〉 corresponds to the average energy per
spin due to the interaction with it’s nearest neighbors. Specifically, the average energy
for a spin si is given 〈E〉 = 〈−J

∑
〈ij〉 sj〉. The specific heat is known to exhibit power-law

scaling (with an universal scaling exponent α, at least in the equilibrium version of the
model for which ∆T = 0) as the critical temperature Tc is approached from the PM
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disordered phase. Additionally, Cv peaks at Tc where its maximum shows power-law
scaling as function of L which is often universal [63, 73, 75, 375].

The average EP rate per spin, π = Π/L2, is calculated according to (3.26) for the 4-state
vector Potts model, while (3.17) is used in the case of the XY model (q → ∞) where
the spin orientation is continuous. However, π can also be obtained from (3.17) for the
4-state model. In both cases, we check whether the change of π, with respect to the control
parameter T , dπ/dT , shows universal features (similar to the specific heat Cv) regarding
its scaling behavior as function of system size L around the critical point Tc of the phase
transition.

Distributions P (φ) of the change of entropy φ = ∆φ(N) for trajectories of length N = 100
are obtained via (3.17) for q = 4 and q →∞. To be exact, we calculate φ for the whole
lattice and the individual sublattices L1 and L2, respectively. This is done by defining
trajectories that only account for the change of medium entropy induced by state transitions
due to a reorientation of spins which are connected to the respective heat bath Tk (k =
1,2), i.e., spins which are part of either sublattice L1 or L2. The distributions P (φ) are
obtained from at least 107 individual trajectories from simulations in the steady state.

9.2 Results

In the following, we present a numerical investigation of the nonequilibrium q-state vector
Potts model with discrete (q = 4) and continuous (q →∞) spin symmetry. In both cases,
we find that the nonequilibrium model exhibits the same type of phase transition as in the
equilibrium case. We therefore focus for q = 4 on the transition from the spin-disordered
PM to the (long-range) spin-ordered FM phase (second-order phase transition), whereas
for q →∞ we analyze the BKT-like transition from the disordered PM to the quasi long-
range ordered BKT phase (infinite-order phase transition). In both cases the transitions
are continuous in the order parameter. To characterize the critical behavior, we study
the specific heat, Cv, and the total entropy production rate per spin, π, and compare the
results in the vicinity of the respective critical point Tc for both kinds of nonequilibrium
phase transition with their equilibrium counterparts.

9.2.1 Nonequilibrium phase transition in the discrete q-state
vector Potts model with q = 4

Before we numerically investigate the phase transition of our nonequilibrium spin model
by means of MC simualtions with Glauber dynamics, let us briefly review some important
properties of the equilibrium version of the 4-state vector Potts model. It is well known
[162, 163, 376–378] that the equilibrium model exhibits a second-order phase transition
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at T eqc = 1.13. This value corresponds to half the exactly known critical temperature of
the classical Ising model (T eqc = 2.26) which is characterized by q = 2, and thus, exhibits
up-down symmetry. Moreover, the critical exponents of the equilibrium 4-state version are
different from the equilibrium Ising model [162].

Behavior of the ensemble-averaged magnetization: To begin with the analysis of the
nonequilibrium model, we consider the behavior of the ensemble-averaged magnetization
m (9.3), which serves as a global order parameter. Figure 9.2 displays m as function of
the mean temperature T for four different (fixed) values of T2 and various system sizes
ranging from L = 16 to L = 96. The most prominent observation is that while decreasing
the mean temperature from high values, the order parameter increases and eventually
approaches its maximum value, m = 1 (reflecting perfect spin order). This implies the
existence of a stable FM phase at low bath temperatures, although the system is clearly
out of equilibrium, i.e, ∆T > 0.

Fig. 9.2: (a) The ensemble-averaged magnetization m vs. mean temperature T = (T1 + T2)/2
in the q-state vector Potts model with q = 4, for system sizes ranging from L = 16 to
L = 96 (different colors and symbols indicate different system sizes) and fixed value for
the temperature T2 in each panel. Accordingly, the mean temperature T is changed by
varying the temperature of the first heat bath T1. (b) The magnetization m in the model
with q = 4 as function of T for L = 24 and L = 64 and different fixed values of T2 ranging
from T2 = 0.3 to T2 = 1.5. The solid gray lines correspond to the mean magnetization m
in the equilibrium model where T = T1 = T2, i.e., ∆T = 0. The dashed vertical lines in
both panels indicate the critical temperature T eqc = 1.13 of the equilibrium model.

Figure 9.2(a) indicates that the nonequilibrium phase transition occurs at a temperature
Tc which is comparable to the one of the equilibirum model, T eqc = 1.13. However, a
closer inspection reveals that the precise value of Tc depends on the fixed temperature
T2 in such a way that Tc becomes smaller as T2 is shifted away from the critical value
T eqc of the equilibrium model. This conspicuousness is further confirmed by Fig. 9.2(b),
where (for L = 24 and L = 64) m is plotted as function of T for different fixed values of
T2. Remarkably, the shift of the temperature region (compared to the equilibrium model)
where m as function of T increases to large values (indicating the emergence of spin
order in the system) is found to be equally large for both system sizes L. This, in turn,
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signals that the temperature shift of the curves is not a finite size effect (which would
vanish for L → ∞), but an actual property of this nonequilibrium q-state vector Potts
model. A further interesting observation from Fig. 9.2(b) is that the nonequilibrium q-state
vector Potts model studied here displays an ordered phase, even if one of the heat bath’s
temperatures is higher than the critical temperature T eqc of the corresponding equilibrium
model. Even for T2 = 1.3 and T2 = 1.5 the mean magnetization signals the existence of an
ordered phase. However, the critical mean temperature Tc is always below the equilibrium
value, as we will show in the following.

Fig. 9.3: (a) Binder cumulant U4 in the q-state vector Potts model with q = 4 and system sizes
ranging from L = 16 to L = 96. The intersection point of different lines (i.e., different
system sizes L) marks the value of the critical temperature Tc. Specifically, at T2 = 0.3
we find Tc = 0.997(4), while at T2 = 0.5 the lines intersect at Tc = 1.075(8). (b) Binder
cumulant of the two sublattices L1 and L2 with q = 4 for T2 = 0.3 and T1 ranging from
T1 = 1.5 to T1 = 1.9 (i.e., T ranges from 0.9 to 1.1) for L = 24 to L = 48. The vertical
dashed black lines mark the critical value Tc where the Binder cumulant intersects. As can
be seen, the transition occurs in both sublattices,L1, L2 , at the same mean temperature
Tc which means that there is one critical mean temperature Tc at which the system
as a whole undergoes the order-disorder phase transition. (c) Phase diagram of the
nonequilibrium q-state vector Potts model with q = 4 showing the boundary (circles)
between the FM ordered (indicated by the blue shaded region) and the PM disordered
phase (white region) as function of T1 and T2. The critical temperatures have been
obtained from the crossing of the Binder cumulant for different system sizes L at the
respective combinations of T1 and T2. The solid black line represents the equilibrium
case (T1 = T2) for which T eqc = 1.13. The dashed line marks the region for which
T = (T1 + T2)/2 = T eqc holds.
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Determination of the critical temperature and the nonequilibrium phase diagram: To
precisely analyze the dependency of Tc on T2 and T1, we compute the Binder cumulant
U4 as function of T for different values of L [see (9.5) and (9.6)]. Figure 9.3(a) shows
the crossing of the respective Binder cumulant lines for two exemplary temperatures T2,
clearly confirming the aforementioned shift of Tc towards smaller values compared to the
equilibrium critical temperature T eqc .

Since the spins si on the square lattice are coupled to two different heat baths which are
kept at T1 and T2, one might expect differences in the phase behavior of the two sublattices
L1 and L2. However, as one can see in Fig. 9.3(b), the Binder cumulants for different
values of L intersect at the same temperature Tc in both sublattices. This shows that the
transition from the paramagnetic to the ferromagnetic phase occurs collectively in the
entire system at the same critical temperature Tc.

For an overview of the critical temperatures in the plane spanned by T1 and T2, we now
take a look at the nonequilibrium phase diagram plotted in Fig. 9.3(c). The diagonal (black
solid) line where T1 = T2 corresponds to the equilibrium model. For the nonequilibrium
system (T1 6= T2), Tc depends on T1 and T2 approximately linearly in the vicinity of
equilibrium (T1 ≈ T2) but the dependency becomes strongly nonlinear when T1 � T2 or
T2 � T1 (i.e., when ∆T becomes large). This is clearly seen when one compares the actual
phase boundary with the dashed curve corresponding to the line along which T = T eqc
holds, i.e., T2 = 2T eqc − T1. One can further see that when T1 = T2 (i.e., in the equilibrium
model), the phase transition occurs at the highest mean temperature T eqc . As soon as there
is a temperature difference ∆T > 0 between the two sublattices, the nonequilibrium phase
transitions occur at a lower critical temperature, which deviates from T eqc the more as the
difference ∆T = |T1 − T2| between T1 and T2 increases. Moreover, there exists a new type
of critical temperature T ∗c = 1.700(2) with the following property: If one sublattice has a
temperature higher than T ∗c , global order is destroyed, irrespective of the temperature of
the other sublattice. As consequence, there is no phase transition in the model whenever
one of the sublattices is kept at a temperature Tk > T ∗c .

Physically, one may understand the phase behavior in the following manner. When heating
the system up in the presence of a temperature difference ∆T between the sublattices,
disorder is favored already at lower system-averaged temperatures T , showing that a
smaller amount of thermal noise destroys the long-range order. Consistent with our
physical intuition, a breaking of the translational symmetry (by the temperature difference
between the sublattices) reduces the stability of long-range order. Note that this is in sharp
contrast to the situation where an homogeneous external magnetic field acts on the system
(breaking the up-down symmetry) which increases the stability of long-range ordering.
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9.2.2 Critical behavior of specific heat

After the determination of Tc and its dependency on the temperatures of the two heat baths,
we now turn to the investigation of the thermodynamic properties of our nonequilibrium
spin model in the vicinity of the nonequilibrium order-disorder phase transition. To
this end, we first calculate the specific heat Cv [see Eq. (9.7)] as function of the mean
temperature T for different values of L and T2. This quantity is commonly considered in
order to characterize second-order phase transitions. As can be seen in Fig. 9.4(a), Cv
peaks at a temperature very close to the values of Tc that we have previously determined
via the Binder cumulant (recall Fig. 9.3).

Fig. 9.4: (a) The specific heat Cv vs. T for T2 = 0.3 and T2 = 0.5 and system sizes ranging from
L = 16 up to L = 96. The dashed lines indicate the value of Tc obtained from the crossing
of the Binder cumulant U4. (b) Power-law scaling of the specific heat Cv vs. the reduced
temperature τ = |1 − T/Tc| in the disordered (paramagnetic) phase for fixed T2 and
system sizes ranging from L = 16 up to L = 96 indicated by different colors and symbols.
For both values of T2 the dashed black line follows ∼ 2/3.

For both depicted values of T2, the precise location of the peak depends on L in such a way
that as the system size is increased, the temperature where the peak is located decreases
and approaches Tc. We suspect that the peak is exactly at Tc in the limit L→∞, as it is
well-known for the equilibrium version of this model. In thermal equilibrium, the specific
heat of the model is further known to show universal (power-law) scaling behavior with
respect to the reduced temperature τ , i.e.,

Cν ∼ |1− T/Tc|−α = τ−α, (9.8)

with α = 2/3 in the disordered phase [162]. Interestingly, we find that the nonequilibrium
model also displays a power-law divergence of Cv. Moreover, the critical exponent α is the
same as in equilibrium, irrespective of the value of the temperature gradient ∆T = |T2−T1|
among the two heat baths (as long as T1 ≤ T ∗c and T2 ≤ T ∗c ). This is exemplarily illustrated
for T2 = 0.3 and T2 = 0.5 in Fig. 9.4(b), where Cv is plotted for different system sizes
(from L = 16 to L = 96) as function of the reduced temperature τ = |1− T/Tc| together
with straight (black dashed) lines (with slope −2/3). We checked the scaling behavior for
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various additional values of T2 ≤ T ∗c and found that all of them show a power-law scaling
with α = 2/3, demonstrating the robustness of the critical exponent under nonequilibrium
conditions. To analyze the critical behavior based on our numerical data in detail, we
employ the finite-size scaling technique. To this end, we consider the positions of the
peaks of Cν , which give an approximation for the critical temperature as function of the
system size L. For the equilibrium 4-state vector Potts model on a square lattice, this
quantity scales as ∼ L−ν , with the corresponding critical exponent ν = 2/3 [379]. Also
for the nonequilibrium model we obtain ν = 2/3 for all values of T2, consistent with the
well-known scaling law νd = 2 − α [380] (where d = 2 is the spatial dimension of the
lattice). This consistency check confirms the correctness of our numerically determined
critical exponents for the nonequilibrium 4-state vector Potts model.

9.2.3 Critical behavior of total entropy production

Let us now consider the behavior of the total entropy production which is a direct measure
for irreversibility of our model in the sense that it quantifies the distance from equilibrium.
To start with, we find that the total EPR per spin is always positive, π > 0, whenever
T1 6= T2. Moreover, π is a convex function of the mean temperature T with a minimum at
the equilibrium point T = T1 = T2, where π = 0 [consistent with Eq. (3.23)]. This can be
seen in Fig. 9.5(a), which depicts π vs. T for an exemplary system setting with T2 = 1.5
and L = 32 around the equilibrium mean temperature T = T1 = T2 = 1.5.

Fig. 9.5: (a) The total entropy production rate per spin, π, as function of the mean temperature T
for fixed T2 = 1.5 and system size L = 32 in the q-state vector Potts model with q = 4.
The solid black line corresponds to the equilibrium point where T1 = T2, i.e., where
∆T = 0, and the dashed black line marks the critical temperature Tc of the continuous
nonequilibrium transition from the paramagnetic to ferromagnetic phase. (b) Heatmap
of the total entropy prouction rate per spin, π on a lattice of size L = 32 for temperatures
of the two sublattices ranging from T1 = T2 = 0.1 up to T1 = T2 = 2.0.

Depending on whether T2 is higher or lower than T eqc , the phase transition of the nonequi-
librium model lies below or above that minimum (where π = 0) (which is always located
at T = T1 = T2, i.e., at the equilibrium point where ∆T = 0). In other words, if T2 > Tc,
which is the situation considered in Fig. 9.5(a), the nonequilibrium phase transition occurs
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Fig. 9.6: Distribution P (φ) of the stochastic medium entropy φ = ∆φ(N) that is produced in the
system along individual stochastic trajectories of length N = 100 in the 4-state vector
Potts model. The panels of (a) show P (φ) in the vicinity of the phase transition [which
is at T = Tc = 0.997(4)] for a system with L = 64, at T1 = 1.7 and T2 = 0.3 (here
∆T = 1.4). The top panel shows the distribution of the whole system. The middle panel
shows the distribution of the medium entropy production of the spins which belong to
the sublattice L1, whereas the panel at the bottom shows the distribution P (φ) for L2.
(b) Depicts the corresponding distributions in the PM disordered phase, at T = 1.3 > Tc,
specifically at T1 = 2.3 and T2 = 0.3 (here ∆T = 2.0).

at the left hand side of the minimum, whereas if T2 < Tc, the transition occurs at the right
hand side of it. Interestingly, we observe that π as function of T shows a bump around the
value of the critical temperature Tc = 1.11 [see Fig. 9.3(c)]. In that sense, the function
π(T ) itself already signals the occurence of the phase transition. How exactly π indicates
the phase transition will be investigated further below in this section.

The dependency of entropy production rate per spin on the temperatures of the two heat
baths is plotted in Fig. 9.5(b), which shows π for different combinations of T1 and T2

ranging from 0.1 up to 2.0. As expected, π = 0 whenever T1 = T2 [i.e., no temperature
gradient ∆T is present and detailed balance is fulfilled, see Eq. (3.23)]. In contrast to this,
there is always a positive rate of entropy production (π > 0) when T1 6= T2, consistent
with the special case considered in Fig. 9.5(a). As the gradient ∆T increases, the entropy
production rate increases roughly π ∼ ∆T 2, no matter whether the system is in the
disordered PM or the ordered FM phase.

To resolve the change of medium entropy along individual stochastic trajectories, φ =
∆Sm(N = 100), we analyzed distributions of the medium entropy production P (φ).
Figure 9.6 displays numerical results for P (φ) at the critical temperature Tc [Fig. 9.6(a)]
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and above Tc [Fig. 9.6(b)], for trajectories of length N = 100 [recall Eq. (3.17) for the
calculation of the medium entropy production along a stochastic path of length N]. We
consider both, the distribution of the entire system as a whole (top panels), and the separate
distributions obtained by restricting our observation to one of the two sublattices, L1 or L2,
only (middle and bottom panels, respectively). For example, the middle panels show the
histograms of all detected values of the medium entropy change φ from spins that belong to
the sublattice L1. Overall, the main characteristics seem to be quite similar for the system
at and above the phase transition [compare (a) and (b)]. Let us now take a closer look at
the different distributions. Remarkably, in both cases, P (φ) for the whole lattice exhibits a
multi-peaked structure [see top panels in Fig. 9.6]. When inspecting the corresponding
sublattice distributions of φ, we notice that the multi-peak structure of the whole system
appears to arise as a combination of both sublattices. This is reasonable, as the stochastic
trajectories of the whole system expectantly include both, many contributions from the
hotter sublattice (where spin flips si → s

′
i happen more frequently because the transition

rate wνµ for a spin flip with the same ∆Eνµ is higher in the subsystem which is in contact
with the hotter heat bath), and some seldom contributions from the colder sublattice in
which spin flips si → s

′
i are more seldom. In fact, the multi-peaked structure looks like a

convolution of the distributions from the belonging sublattices L1,L2. Further, we notice
that P (φ) of the individual sublattices have smooth single-peaked shapes. Furthermore, all
distributions are discrete, reflecting that the number of possible transitions (and thus, the
possible φ values) is finite, because of the discreteness of the underlying spin dynamics.
For the colder sublattice, L2, the medium entropy production, φ, only takes a particularly
small number of values. This is due to the fact that at low bath temperatures, the sublattice
only explores a small part of the phase space, and hence, the number of distinct state
transitions is small. As a consequence, changes of the medium entropy along stochastic
paths of length N = 100 are limited to a rather small number of possible values φ. In
contrast to this, for the hotter sublattice, L1, we notice that the maxima and mean values
of P (φ) lie at φ < 0 [in both cases, (a) and (b)]. This alone would violate the second-law
of thermodynamics since it implies a negative mean entropy production rate. However, in
its usual form, Φ = Π ≥ 0, the second law only applies to the entire system which consists
of the two sublattices L1 and L2 joined together. In fact, the negative mean value simply
reflects the situation that heat flows from the hotter to the colder heat bath. Overall, the
entropy is increased over time in the whole system, i.e., π ≥ 0 for all values of ∆T .

Next, we study the system size dependency of the total entropy production rate per spin,
π, around the critical point Tc of the phase transition. To this end, we consider a system
where T2 is fixed to a value below T eqc [see the left panel of Fig. 9.7(a)], and another
one where T2 > T eqc [see the right panel of Fig. 9.7(a) which is essentially an enlarged
version of Fig. 9.5(a) for different L close to Tc]. Both parts of Fig. 9.7(a) indicate that π
is identical for all system sizes for T values far away from Tc, i.e., all lines collapse on a
single curves when T � Tc or T � Tc. In contrast, the lines begin to split up in the vicinity
of Tc. This means that, around the phase transition π suddenly becomes dependent on
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the system size L. This resembles the behavior of the specific heat [recall Fig. 9.4]. One
can further observe the emergence of a shoulder around Tc which gets more pronounced
while increasing L. It is, however, noteworthy that we do not observe the formation of a
saddlepoint or even non-monotonous behavior for all considered system sizes, i.e., until
the value L = 96.

Fig. 9.7: (a) The entropy production rate per spin, π, as function of the mean temperature T
for fixed T2 and system sizes ranging from L = 16 to L = 96. In the left panel, the
temperature of sublattice L2 is fixed to T2 = 0.3 which is below the critical temperature
T eqc of the equilibrium model, while in the right panel, the temperature of L2 is T2 = 1.5,
which is above T eqc [see also Fig. 9.5(a)]. The black dashed lines mark the critical
temperature Tc. (b) Derivative dπ/dT of the entropy production rate per spin as function
of the mean temperature T for different fixed values of T2 ranging from T2 = 0.3 up to
T2 = 1.13 = T eqc and system sizes ranging from L = 16 to L = 96. The black dashed lines
mark the critical temperature Tc.

In order to study the behavior around the critical point, we inspect the derivative of the
entropy production rate per spin, dπ/dT , for various values of T2 as shown in Fig. 9.7(b).
Interestingly, dπ/dT peaks around the mean temperature of the phase transition. An
exception is the case T2 = T eqc where the total entropy production naturally vanishes
because at this point, the system is in thermal equilibrium, i.e., ∆T = 0. Thus, detailed
balance is fulfilled and consequently, dπ/dT = 0 for all system sizes L. This is the reason
why the derivative of π with respect to T does not peak and split up at Tc. In fact, dπ/dT is
identical for all system sizes L. Interestingly, the temperature where the peak of dπ/dT is
located decreases as does the peak of the specific heat. This further resembles the behavior
of Cv in the vicinity of the critical point. Moreover, one observes a dependency of the
maximum of dπ/dT on the value of T2 which (for fixed L) decreases as T2 approaches
T eqc .
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Fig. 9.8: (a) Power-law scaling of the derivative of the entropy production rate as function of the
reduced temperature τ = |1 − T/Tc| for two values of T2 (T2 = 0.3 and T2 = 0.2) and
system sizes ranging from L = 16 to L = 96. The black dashed line in the left panel
follows ∼ −0.175(11), while in the right panel it follows ∼ −0.145(15). (b) Maximum of
the derivative of the entropy production rate as function of system size L. The left panel
shows the scaling of dπ/dTmax at T2 = 0.3 for system sizes from L = 16 up to L = 96.
The black dashed lines scales ∼ 0.245. In the right panel the same is plotted for T2 = 0.5
and the black dashed line follows ∼ 0.205.

To analyze the nonequilibrium phase transitions in more detail, we perform a finite-size
scaling analysis of π, similar to our investigation of the specific heat (see Fig. 9.4). We
aim to stress that the application of a finite-size scaling analysis to the entropy production
at a nonequilibrium transition is, to our knowledge, novel. In fact, there are no studies
so far where the attempt is made to assign a critical exponent to the entropy production
by investigating it’s scaling behavior around Tc. To this end, we first study the scaling
behavior of dπ/dT in the disordered phase as function of the reduced temperature τ .
Second, we consider the peak height of dπ/dT as function of the system size L. As can be
seen in Fig. 9.8(a), dπ/dT shows power-law behavior ∼ τ ζ with an exponent ζ, whose
precise value depends on the distance from equilibrium at the phase transition (i.e., on
the value of ∆T = |T2 − T1|). Specifically, we detect power-law behavior of dπ/dT for
all considered values of T2 with a decreasing value for ζ as T2 approaches T eqc , where it
nullifies. For T2 = 0.3 [see the left panel in Fig. 9.8(a)] the exponent reads ζ = 0.175(11),
while for T2 = 0.5 [see the right panel in Fig. 9.8(a)] ζ = 0.145(15) (see the dashed
black lines). While the power-law behavior resembles that of the specific heat, there is a
marked difference in the sense that the exponent ζ is not constant (such as the exponent
α of Cv), but depends on ∆T . This means that ζ is not universal but depends on the
distance from equilibrium. In addition, we analyze the scaling behavior of the maximum
of dπ/dT as the system size L is increased and show results for T2 = 0.3 and T2 = 0.5 in
Fig. 9.8(b). According to the finite-size scaling theory for equilibrium systems [228], all
divergent quantities scale as ∼ La/ν , where a is the critical exponent of the power-law
decay of that very quantity. Thus, we test whether the maximum of dπ/dT scales as
∼ Lζ/ν , with ν = 2/3. From our numerical data, we find dπ/dTmax ∼ L0.245 for T2 = 0.3
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and dπ/dTmax ∼ L0.205 for T2 = 0.5 which is indeed in good agreement with ζ = 0.175(11)
(T2 = 0.3) and ζ = 0.145(15) (T2 = 0.5) as obtained in Fig. 9.8(a). The fulfillment of
the finite-size scaling relation shows indeed that the derivative of the entropy production
rate behaves as a diverging quantity as the critical point Tc of the nonequilibrium phase
transition is approached. It further demonstrates that the finite-size scaling theory is
applicable to the entropy production rate, despite the dependency of the critical exponent
ζ on the temperature gradient ∆T between the two sublattices L1 and L2.

9.2.4 BKT-like phase transition in the continuous q-state vector
Potts model with q →∞

Fig. 9.9: (a) Entropy production rate per spin π of the nonequilibrium q-state vector Potts model
with q →∞ (XY model) as function of the mean temperature T for system sizes ranging
from L = 16 to L = 64 with T2 = 0.3 and T2 = 0.5. (b) Heatmap of π in the XY model on
a lattice of size L = 32 for temperatures of the two sublattices ranging from T1 = T2 = 0.1
up to T1 = 2.0 and T2 = 2.5. (c) Derivative of the entropy production rate per spin,
dπ/dT in the XY model on a lattice of size L = 32.

Now we turn to the investigation of the nonequilibrium q-state vector Potts model with
q →∞ (also known as the XY model), where the spins can freely rotate in the x− y plane,
i.e., all spin orientations si ∈ [0, 2π] are allowed. As a consequence of the continuous
spin symmetry and the two-dimensional character of the system, there exists no long-
range ordered phase at finite temperatures as stated by the Mermin-Wagner theorem
[53–55, 219]. Instead, a quasi-long range ordered phase, the BKT phase, occurs at low
bath temperatures T < Tc. While the infinite-order transition between the disordered
paramagnetic and the quasi long-range ordered BKT phase is quite well understood in
the equilbrium model [57, 162], nonequilibrium BKT phase transitions are in general less
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understood. In particular, the question of how the entropy production rate behaves at this
transition has, to the best of our knowledge, not been considered in earlier literature. In
the previous discussion of the case q = 4, we have seen that the derivative of the total
entropy production rate per spin shows critical behavior which partially resembles the
behavior of the specific heat. Let us now see if this analogy carries over to the infinite-
order BKT transition, which has very different overall characteristics and, in particular, is
not accompanied with a divergence of Cv at the critical temperature which is given by
T eqc = 0.892880(6) in the equilibrium XY model [57, 163, 164, 381–383]. In Fig. 9.9(a),
we show results for π at T2 = 0.3 and T2 = 0.5 for system sizes ranging from L = 16
up to L = 64. As indicated there, the π does not split with respect to L in the vicinity
of the phase transition. Instead, π is apparently size-independent in the whole depicted
temperature range which includes the BKT transition. From this we conclude that there is
no system size dependency of π at all. In order to visualize the entropy production rate for
different combinations of T1 and T2, we plot π in the T1 − T2 plane in Fig. 9.9(b) together
with the derivative of π with respect to temperature, dπ/dT in Fig. 9.9(c) for system size
L = 32.

Fig. 9.10: (a) Specific heat Cv of the nonequilibrium vector Potts model with q →∞ (XY model)
as function of the mean temperature T for T2 = 0.5 and system sizes ranging from
L = 16 to L = 64. (b) shows the derivative, dπ/dT , of the EP rate as function T for the
same system sizes and T2 = 0.3, while T2 = 0.5 in (c).

Additionally, the specific heat Cv for T2 = 0.5 and dπ/dT for T2 = 0.3 and T2 = 0.5 are
plotted in Fig. 9.10. In contrast to the PM to FM transition of the 4-state vector Potts model,
Cv in the nonequilibrium XY model does not show any feature like a divergence at criticality.
In particular, it only shows a peak around T = 1.1, as does the equilibrium XY model
[162, 163], which is above Tc. Specifically, the value of T where the peak in Cv is observed
in our nonequilibrium model is identical to the equilibrium value. Interestingly, also the
derivative of the entropy production rate with respect to the mean temperature, dπ/dT ,
does not peak in the vicinity of the critical point. Similar to the specific heat, dπ/dT also
shows the peak around T = 1.1 which does not depend on L, i.e., the maximum of dπ/dT
does not diverge, but remains constant for all considered system sizes L. However, we
observe that the maximum of dπ/dT depends on the temperature difference ∆T between
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the two sublattices L1 and L2 in the vicinity of the peak as confirmed by comparing
Fig. 9.10(b) with Fig. 9.10(c), where one observes that the maximum value of dπ/dT at
T2 = 0.3 is at around (dπ/dT )max ≈ 0.30 which is larger compared to T2 = 0.5 where it is
at around (dπ/dT )max ≈ 0.15.

Fig. 9.11: Distribution P (φ) of the medium entropy φ = ∆Sm(N) that is produced in the system
along stochastic trajectories of length N = 100 in the XY model (where q →∞). The
top panel in (a) shows P (φ) below the critical point in the BKT phase (i.e., in the quasi
long-range ordered BKT phase) for a system with L = 64 at T1 = 0.7 and T2 = 0.3.
The middle panel in (a) shows P (φ) for L1 and the one at the bottom of (a) for L2. (b)
shows the same in the PM disordered phase with for T1 = 1.9 and T2 = 0.3.

Just as for the q-state vector Potts model with q = 4, we investigate the distribution P (φ)
of entropy φ = ∆Sm(N) that is produced along stochastic trajectories of length N = 100.
To this end, we plot P (φ) for a system of size L = 64 in the quasi long-range ordered
BKT phase at T = 0.5 with T1 = 0.7 and T2 = 0.3 (i.e., ∆T = 0.4) in the top panel of
Fig. 9.11(a). The distribution for the whole system seems to be symmetric around the
peak position of P (φ) which is located in the positive range, φ > 0 in accordance with the
second law of thermodynamics. In contrast, P (φ) for subsystem L1 peaks in the negative
range, and P (φ) for subsystem L2 peaks at a positive value of φ. This difference in the peak
positions just reflects the expected entropy flow from the hot to the cold reservoir exactly
like in the case of the model with discrete spin symmetry. Additionally, one observes
different skew directions for P (φ) in the two subsystems. P (φ) for subsystem L1 is slightly
right-skewed, while P (φ) in L2 is a left-skewed distribution. This effect becomes more
pronounced for the system in the disordered PM phase [see Fig. 9.11(b)] where one clearly
observes that P (φ) is skewed in both sublattices L1 and L2. Since the distribution for L2 is
stronger skewed, the distribution for the whole system is also left-skewed. However, the
effect there is weaker because the contribution of L1.
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9.3 Conclusions and Outlook

In summary, we have analyzed the behavior of various critical quantities and that of the
total entropy production rate per spin around the critical point in a nonequilibrium q-state
vector Potts model with discrete spin symmetry (i.e., with q = 4) as well as with continuous
spin symmetry (i.e., with q → ∞). The nonequilibrium character results from coupling
the spins to two heat baths at different temperatures, T1 and T2. Based on this generic
nonequilibrium model, we address several questions: Does the type of phase transition,
i.e., it’s order, and the corresponding critical exponents change by driving the system
away from equilibrium? Does the entropy production exhibit universal behavior in the
vicinity of a continuous phase transition? To be more precisely, is is possible to assign the
entropy production a critical exponent which is constant, irrespective of the strength of the
driving, i.e., the temperature difference ∆T among the two heat bath temperatures? What
exactly happens to the entropy production rate in the vicinity of an a infinite-order phase
transition? Does it show noticeable behavior which could allow to classify nonequilibrium
systems which undergo an infinite-order phase transition?

To answer these questions, we have first investigated the model with q = 4 in the vicinity
of the second–order PM to FM phase transition. We found that the critical temperature
Tc of the transition decreases as the temperature difference ∆T between the two heat
baths T1 and T2 increases. Moreover, the behavior of the specific heat Cv resembles that
of the equilibrium model, i.e., it shows power-law divergence with a critical exponent
that is independent of the temperature difference ∆T . Interestingly, the derivative of the
entropy production rate with respect to the mean temperature behaves, to some extent,
similar. It also shows power-law divergence. However, the value of the scaling exponents
does explicitly depend on the ∆T and is thus non-universal. Concerning the model with
q →∞, the specific heat as well as the derivative of the entropy production rate do not
show any noticeable behavior around the infinite–order transition from the PM to the quasi
long-range ordered BKT phase. Instead, both quantites have a finite peak at a temperature
above the critical temperature, i.e., in the PM disordered phase. As the temperature
difference between the heat baths is increased, the maximum value of the derivative of the
entropy production rate becomes more pronounced. In total, our results provide evidence
that the derivative of the entropy production rate behaves like a critical quantity, but, as
we report here, is non-universal regarding it’s power-law scaling behavior.

Finally, we aim at pointing out possible perspectives for future work in this direction,
starting with some questions directly following from the results presented here. For
the sake of generality one should study and compare the behavior of the specific heat
with the entropy production rate in other lattice dimensions d and for different lattice
topologies. In this sense, the cases d = 1 and d = 3 are especially interesting. While
equilibrium spin systems in one spatial dimension do not show a phase transition, their
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nonequilibrium versions might undergo a order-disorder transition. It would be interesting
to study and compare the power-law behavior of the entropy production with the specific
heat for the two temperature q-state vector Potts model also in one and three spatial
dimensions. According to the Mermin-Wagner theorem the XY model with d = 2 does
not exhibit a stable ferromagnetic phase. In contrast, the version with d = 3 exhibits
spontaneous magnetization and shows a PM to FM transition. It would be interesting
to study the critical behavior of the entropy production in this model which exhibits
continuous symmetry. Further, although the BKT phase transition is not accompanied by a
divergence of thermodynamic quantities, in equilibrium, it still obeys characteristic scaling
dimensions [73, 74]. A more detailed analysis of this transition in the nonequilbrium
model, and, specifically, with respect to the derivative of the entropy production rate,
represents an interesting objective for future research in this direction. From a theoretical
point of view, it would moreover be worth to think about the connection between entropy
production and specific heat, which seem to behave analogously around criticality, on a
fundamental level.

Furthermore, an interesting novel perspective on the nonequilibrium model considered
here is the reinterpretation as a model with non-reciprocal coupling between interacing
isothermal spins. To be more specific, a vector-Potts model where interacting spins are
coupled among each other with two distinct coupling constants (J1 = J/T1 and J2 = J/T2)
and uniform temperature follows the exact same equations of motions as our model (with
two temperatures and identical coupling constants J). This provides a connection to spin
models on directed graphs [153, 384–388], and to the topic of non-reciprocal interactions,
which is currently a focus in nonequilibrium statistical mechanics [389–391]. It would be
interesting to compare the thermodynamic properties of spin systems subjected to different
driving mechanisms, e.g., non-reciprocal couplings, temperature gradients, external fields
and colored noise.
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10Concluding remarks and future
directions

In this thesis we have performed particle-based computer simulations to study the collective
behavior of two prototypical discrete systems. Due to their simplicity, these systems are
particular suitable to study physical behavior under nonequilibrium conditions on a
fundamental level. First, we have investigated a growth model that mimics the self-
assembly of crystalline structures under nonequilibrium growth conditions. Second, we
have studied nonequilibrium phase transitions by means of a driven q-state vector Potts
model.

First, we have investigated the impact of anisotropic interactions on nonequilibrium
surface growth in a model which assumes a spherical shape of deposited particles. The
strength of anisotropic interactions is regulated by a control parameter that measures
the ratio of interaction energy along the two lattice directions of a square substrate. Our
results reveal that anisotropic interactions can lead to compact, non-spherical, elongated
cluster shapes under growth conditions where clusters would be dendritic for isotropic
interactions. We have shown this explicitly by calculating the aspect ratio and the fractal
cluster dimension. The cluster size distributions reveal that clusters become on average
smaller as the interaction anisotropy is increased. Moreover, as the interaction anisotropy
gets stronger, there exist two types of cluster shape transformation. On the one hand, the
transformation from isotropic to elongated clusters is gradual at low interaction energies.
On the other hand, it is sharp at high values of the interaction energy. For strong interaction
anisotropy, clusters grow initially one-dimensionally until this growth mode breaks down at
a critical length. Further, we have investigated the effect of the adsorption rate. We found
that the average cluster aspect ratio as function of adsorption rate displays power-law
scaling in the regime of strong interaction anisotropy. This is also true for the evolution of
the average cluster length and width. We have also employed an anisotropic Eden model
with a fitting parameter that controls the attachment probabilities along the two lattice
directions. This model, which completely neglects diffusion of particles on the substrate,
reproduces the main features of the cluster growth observed in the kinetic Monte-Carlo
simulations.

A natural extension of our studies so far would be the investigation of our model in the
multilayer growth regime. In this sense, it would be interesting to study the scaling
behavior of the surface roughness in order to find out whether the model exhibits universal
behavior. Conjugated organic molecules which are used for the industrial fabrication
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of thin film devices often exhibit dipole moments. Using our model, one could study
the impact of long-range dipole-dipole interactions between deposited particles on the
emerging surface morphologies. Further, it is possible to investigate the effect of dipolar
interactions between particles and the substrate on the growth behavior.

Second, we have introduced a limited mobility model with variable diffusion length. The
model is tempted to model low-temperature surface growth by means of molecular beam
epitaxy. In particular, the diffusion length of each deposited particle is chosen from a
Gaussian distribution. The mean value of the distribution corresponds to the average
nucleation length obtained from “material-dependent full diffusion" kinetic Monte-Carlo
simulations which include diffusion rates for all particles in the topmost layer at any time
step of the simulation. The variance of the distribution allows to control the strength
of fluctuations in the diffusion length. Our model is capable to correctly mimic low-
temperature surface growth through kinetic Monte-Carlo simulations for arbitrary values
of the growth parameter. The latter corresponds to the free diffusion to deposition ratio.
For all growth parameters in the "full diffusion" model, we found a corresponding variance
of the distribution in the limited mobility model such that the resulting morphologies
obtained from both models are nearly indistinguishable from each other. In particular, the
cluster size distributions in the submonolayer growth regime match very well. Turning
towards multilayer growth, we compared layer coverages for different growth conditions
and found excellent agreement between both models. Moreover, we analyzed in detail the
global interface width and found perfect agreement between both models in the transient
regime where the roughness increases. Furthermore, also the crossover coverage where
saturation of the roughness is reached matches perfectly. Additionally, we showed that also
the values of the saturation roughness in both models match perfectly for all considered
system sizes and values of the growth parameter. A scaling analysis revealed that our model
belongs to the Villain-Lai-Das Sarma universality class. We also found good agreement of
the height-height correlations in both models. First results on two-dimensional substrates
reveal a good agreement between "full diffusion" kinetic Monte-Carlo simulations and our
model in the submonolayer and the multilayer growth regime.

There are various possible extensions of our limited mobility model. For example, one could
modify the model such that it also reproduces surface growth at high temperatures where
detachment of particles is present. One way to realize this is to use the transition rules
of the Wolf-Villain model [247] with a variable, distributed diffusion length. For growth
on two-dimensional substrates, it would be interesting to study the effect of different
variants for the attachment rules on the cluster shapes and the surface roughness. In order
to account for growth instabilities, one could include an Ehrlich-Schwoebel barrier for
interlayer diffusion processes. Kinetic Monte-Carlo simulations are usually slowed down
in presence of such a barrier because particles that freely diffuse on top of clusters are
reflected at the cluster edge. A physically reasonable treatment of an interlayer diffusion
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barrier in our model would lead to a further computational speedup compared to "full
diffusion" growth simulations.

Third, we investigated the applicability of machine learning techniques in the field of
nonequilibrium surface growth. The goal of our study was to unravel the microscopic
energetic details that govern the morphological evolution of thin films grown by vapor
deposition techniques. Our machine learning-based approach is quintessentially differ-
ent from well-established procedures which normally require information from several
iteratively repeated laboratory experiment series at different growth conditions, e.g. differ-
ent temperatures and adatom deposition rates. In order to circumvent such a laborious
procedure, we have used a VGG16-type convolutional neural network with the aim to
determine the energy barriers of the underlying diffusion and binding events from images
of corresponding surface configurations. To this end, we have trained the neural network
via supervised learning with snapshots of surface configurations obtained from kinetic
Monte-Carlo simulations in the submonolayer growth regime. In particular, the training
process involved around 80000 images from simulation runs with more than 600 different
combinations of the binding and diffusion energy barriers. We used clean and noisy images
for the training process. The latter were manipulated by adding salt and pepper noise and
applying a Gaussian smoothing filter to mimic a lower than atomic resolution. This has
been done to make the snapshots more comparable to images of surface configurations
obtained from atomic force microscopy or scanning tunneling microscopy. It turned out
that the prediction performance of the convolutional neural network is very good across
the whole space of diffusion and binding energies for both, clean and noisy data.

The main goal of future investigations in this direction is the determination of the diffusion
and binding energy from experimental data. In this regard, we ask the question whether
a on numerical data trained convolutional neural network can determine the underlying
energy barriers from atomic force microscopy or scanning tunneling microscopy images of
surface configurations. This could be tested by using surface snapshots of microscopically
well understood systems for which the energy barriers have been precisely determined
in various elaborate experimental studies. Examples include the homoepitaxial growth
of platinum on platinum(111) [188] and the growth of the fullerence C60 on C60 [171,
365].

In the last part of this thesis we have investigated thermodynamic properties of a simple
model for surface growth including a constant deposition rate and Arrhenius-type rates for
diffusion and desorption of particles. We have focused on the entropy production rate as
function of the deposition rate and found that it is always positive for conditions where
the crystal either grows or shrinks. Only when deposition and evaporation events balance
out, i.e., when the height of the crystal remains constant, the entropy production rate
vanishes even though there is a constant flux of incoming particles. Moreover, we found
that in presence of a hard wall, i.e., a inert substrate at zero height, the system in the
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bound phase is always in a state of thermal equilibrium. As the deposition rate is increased
above a critical value, the crystal begins to grow. It turned out that the entropy production
rate does not exhibit noticeable behavior at the transition from the bound to the growing
phase.

We have also studied the critical behavior of a nonequilibrium q-state vector Potts model
and here again paid special attention to the entropy production rate. The model is driven
out of thermal equilibrium because the spins are coupled to two heat baths which are
kept at different temperatures T1 and T2. Using this generic setup, we investigated the
type of phase transition and the critical exponents. For q = 4, i.e., discrete spin symmetry,
the model exhibits a single second-order phase transition. We found that the critical
temperature decreases as the temperature difference between the two heat baths increases.
Moreover, the behavior of the specific heat resembles that of the equilibrium model, i.e.,
it shows power-law divergence. The corresponding critical exponent is independent of
the temperature difference. The derivative of the entropy production rate with respect to
temperature behaves, to some extent, similar. It also shows power-law divergence, but
the value of the scaling exponent depends on the temperature difference of the heat baths
and is thus non-universal. Concerning the model with continuous spin symmetry, i.e., for
q →∞, the specific heat as well as the derivative of the entropy production rate do not
show noticeable behavior around the infinite-order transition. Instead, both quantities
have a finite peak at a temperature above the critical temperature. As the temperature
difference between the heat baths increases, the maximum value of the derivative of the
entropy production rate becomes more pronounced. In total, our results provide evidence
that the derivative of the entropy production behaves like a critical quantity, but, as we
report here, is non-universal.

Finally, we aim at pointing out perspectives for future work in this direction. For the
sake of generality one should study and compare the behavior of the specific heat with
the entropy production rate in other dimensions and for different lattice topologies.
Further, a more detailed analysis of infinite-order phase transitions under nonequilibrium
conditions represents an interesting objective for future research. It would moreover
be worth to think about the fundamental connection between entropy production and
specific heat, which seem to behave analogously around criticality. Furthermore, another
interesting perspective is the reinterpretation of the here considered Potts model as a
system non-reciprocal coupling between interacting isothermal spins. To be more specific,
a vector-Potts model where neighboring spins are coupled with two distinct coupling
constants J1 = J/T1 and J2 = J/T2 and uniform temperature follows the exact same
equations of motions as our model. This provides a connection to spin models on directed
graphs [385, 386], and to the topic of non-reciprocal interactions, which is currently a
focus in nonequilibrium statistical mechanics [389–391].
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