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Abstract

In this thesis, we consider compressible fluid models that describe both viscous
and inviscid fluids. For inviscid fluids, we consider the barotropic Euler system and
the complete Euler system, where the term complete indicates that we incorporate
the laws of thermodynamics including the balance of total energy in the system. In
the context of viscous fluids we consider the Navier–Stokes system, where the viscous
stress tensor is a linear function of the velocity gradient.

We are interested in the concept of generalized solutions as there are several
limitations in the classical existence theory. Various notions of generalized solutions,
namely weak solutions, measure-valued solutions, dissipative solutions have been
presented in this thesis. To make these generalized solutions compatible with the
classical notion we invoke a, generalized weak-strong uniqueness principle. The
principle asserts that the generalized and strong solutions emanating from same
initial data must coincide as long as the strong solution exists.

We study the weak-strong uniqueness problem for the compressible Navier–Stokes
system with a general barotropic pressure law. Our results include the case of a
hard-sphere pressure law of Van der Waals type with a non-monotone perturbation
and a Lipschitz perturbation of a monotone pressure law. Moreover, we consider
a renormalized dissipative measure-valued (rDMV) solution of the same system
with compactly supported perturbation of monotone pressure law and obtain the
generalized weak-strong uniqueness property of this rDMV solution. The relative
energy is used as the main tool to prove these results. We emphasize the choice
of non-monotone pressure laws, since most previous results consider a monotone
pressure law. The viscous term plays an important role in obtaining a weak- strong
uniqueness and a generalized weak-strong uniqueness result.

Next, we study the low Mach number limit for a scaled barotropic Euler system
and identify its limit as an incompressible Euler system. We also consider the singular
limits for a scaled barotropic Euler system modeling a rotating, compressible, and
inviscid fluid where the characteristic numbers (the Mach number, the Rossby number
and the Froude number) have different scaling with respect to a small parameter ϵ.
The fluid is confined to an infinite slab and the limit behavior (ϵ→ 0) is identified
as incompressible planar flow, depending on the relation between the characteristic
numbers. For well–prepared initial data, convergence is shown in the time interval
where the strong solution of the target system exists, while for the primitive system
a class of generalized dissipative solutions is considered. Since the existence of a
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weak solution for an inviscid compressible fluid is not available for a general initial
data, it is convenient to consider a generalized solution. The choice of a dissipative
solution ensures a certain stability of the target system. In the literature, most of the
results are for viscous fluids by considering both strong solutions and weak solutions,
although there are several limitations for the strong solutions. Again, we use the
relative energy to obtain the desired results.

Finally, we prove that if a weak limit of a consistent approximation scheme of
the complete Euler system in the full space Rd, d = 2, 3, is a weak solution of the
system, then the approximate solutions eventually converge strongly, or at least
almost everywhere, under minimal assumptions on the initial data of the approximate
solutions. The class of consistent approximate solutions is quite general and includes
the vanishing viscosity and heat conductivity limit. In particular, the approximate
solutions may not satisfy the minimal principle for entropy. Since both the barotropic
Euler system and the complete Euler system are ill-posed in the class of weak solutions,
our results ensure that the limit of consistent approximations can be a good selection
criterion for a physically relevant solution.



Zusammenfassung

In der vorliegenden Arbeit betrachten wir Modelle für sowohl viskose als auch
nichtviskose kompressible Fluide. Für den Fall der nichtviskosen Fluide betrachten
wir das System der barotropen Euler-Gleichungen und der vollständigen Euler-
Gleichungen, wobei Letzteres bedeutet, dass die Hauptsätze der Thermodynamik
(inklusive der Erhaltung der Gesamtenergie) im System beinhaltet sind. Im Kontext
der viskosen Fluide betrachten wir das System der Navier-Stokes-Gleichungen, in
dem der viskose Spannungstensor linear vom Geschwindigkeitsgradienten abhängt.

Da die klassische Existenztheorie gewisse Limitierungen hat, betrachten wir
verallgemeinerte Lösungskonzepte, nämlich schwache, maßwertige und dissipative
Lösungen. Um sicherzustellen, dass diese verallgemeinerten Lösungen kompatibel mit
klassischen Lösungen sind, fordern wir das Prinzip der sogenannten verallgemeinerten
schwach-starken Einzigkeit. Dieses Prinzip stellt sicher, dass die verallgemeinerte und
die starke Lösung zum selben Anfangswert übereinstimmen, sofern Letzere existiert.

Wir untersuchen die schwach-starke Einzigkeit für das System der kompressiblen
Navier-Stokes-Gleichungen mit einer allgemeinen barotropen Druck-Dichte-Relation.
Unsere Resultate beinhalten den Fall eines Harte-Kugeln-Modells vom Van-der-Waals
Typ für die Druck-Dichte-Relation mit einer nichtmonotonen und einer Lipschitz-
stetigen Störung einer monotonen Druck-Dichte-Relation. Außerdem betrachten
wir eine renormalisierte dissipative maßwertige (rDMV) Lösung desselben Systems
mit einer Störung der monotonen Druck-Dichte-Relation mit kompaktem Träger
und erhalten die verallgemeinerte schwach-starke Einzigkeit dieser rDMV Lösung.
Das Hauptwerkzeug für den Beweis dieser Resultate ist dabei die relative Energie.
Wir weisen nochmal darauf hin, dass in dieser Arbeit nichtmonotone Druck-Dichte-
Relationen betrachtet werden, da die meisten bisherigen Resultate nur monotone
Druck-Dichte-Relationen betrachten. Der viskose Term spielt dabei eine wichtige
Rolle, um die schwach-starke und die verallgemeinerte schwach-starke Einzigkeit zu
erhalten.

Weiterhin untersuchen wir den Grenzwert für verschwindende Mach-Zahlen eines
Systems von skalierten barotropen Euler-Gleichungen und identifizieren den Grenzw-
ert als ein System von inkompressiblen Euler-Gleichungen. Wir betrachten außerdem
singuläre Grenzwerte für ein System von skalierten barotropen Euler-Gleichungen,
das ein rotierendes, kompressibles und nichtviskoses Fluid modelliert, wobei die
Kennzahlen (die Mach-Zahl, die Rossby-Zahl und die Froude-Zahl) unterschiedlich
mit einem kleinen Parameter ϵ skalieren. Das Fluid ist begrenzt auf eine unendliche

iii



iv

Platte und das Grenzwertverhalten für ϵ → 0 wird, abhängig von der Beziehung
der Kennzahlen, als inkompressible ebene Strömung identifiziert. Für wohlgestellte
Anfangsdaten wird die Konvergenz auf dem Existenzintervall der starken Lösung des
Zielsystems gezeigt, wobei eine Klasse von verallgemeinerten dissipativen Lösungen
für das Ausgangssystem betrachtet wird, da Existenz von schwachen Lösungen für
ein nichtviskoses kompressibles Fluid für allgemeine Anfangsdaten nicht bekannt ist.
Die Wahl der dissipativen Lösung sichert gewisse Stabilitätseigenschaften des Zielsys-
tems. In der Literatur werden in den meisten Resultaten für viskose Fluide sowohl
starke als auch schwache Lösungen betrachtet, obwohl es für starke Lösungen einige
Einschränkungen gibt. Wir verwenden wieder die relative Energie als Hauptwerkzeug,
um die gewünschten Resultate zu beweisen.

Schließlich zeigen wir, dass, falls der schwache Grenzwert einer konsistenten
Approximation des Systems der vollständigen Euler-Gleichungen im ganzen Raum
Rd, d = 2, 3, eine schwache Lösung dieses Systems ist, die Näherungslösungen sogar
stark oder zumindest fast überall konvergieren, wobei nur minimale Annahmen an
die Anfangsdaten der Näherungslösungen gestellt werden müssen. Die Klasse der
konsistenten Näherungslösungen ist ziemlich allgemein und beinhaltet den Grenzwert
für verschwindende Viskosität und Wärmeleitung. Insbesondere kann es sein, dass die
Näherungslösungen nicht das Prinzip der minimalen Entropieproduktion erfüllen. Da
sowohl das System der barotropen Euler-Gleichungen als auch das System der voll-
ständigen Euler-Gleichungen nicht wohlgestellt in der Klasse der schwachen Lösungen
ist, sorgen unsere Ergebnisse dafür, dass der Grenzwert der Näherungslösungen ein
gutes Auswahlkriterium für eine physikalisch relevante Lösung sein kann.
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Notation

The symbols N, Z, Q and R stand for the set of all natural numbers, integers,
rational numbers and real numbers, respectively. In this thesis the space dimension is
denoted by d ∈ N (typically d = 2 or d = 3 in the case of fluid mechanics applications).
The Euclidean norm in

Rd =
{︂
x = (x1, ...., xd) = (xi)

d
i=1 |xi ∈ R, ∀i = 1, · · · , d, d ∈ N

}︂
is denoted by x ↦→ |x| and the corresponding inner product by (x, y) ↦→ x · y.

The space Rd×d denotes the set of real matrices of order d× d. I stands for the
identity matrix. Rd×d

sym denotes the set of symmetric matrices, i.e. A = AT , where

A = (aij)
d
i,j=1 and AT = (aji)

d
i,j=1. For A

(︂
= (aij)

d
i,j=1

)︂
∈ Rd×d we consider the

symmetric part and the traceless part of A as

D(A) =
A+ AT

2
, and D0(A) =

A+ AT

2
− 1

d
Tr(A) I,

respectively, where Tr(A) =
d∑︁

i=1
aii.

A space periodic domain Ω ⊂ Rd, is usually identified with the flat torus Td, and
is given by

Td =
(︁
[−1, 1]|{−1,1}

)︁d
.

For the sake of simplicity, we consider the length of the period as 2.
For any multi-index α = (α1, ..., αd) ∈ Nd we denote its length by |α| = α1+ · · ·αd.

For any function f we define ∂αf = ∂α1
x1

· · · ∂αd
xd
f as soon as this partial derivative (in

a classical or in a weak sense) exists.
For any open set Ω ⊂ Rd, Ω stands for the closure of Ω in Rd and Γ or ∂Ω denotes

the boundary of Ω. Let m ∈ N, C(Ω;Rm) is the space of continuous functions from
Ω to Rm. For a bounded set Ω, the space C(Ω;Rm) is a Banach space with norm

∥f∥C(Ω;Rm) = sup
x∈Ω

|f(x)|.

We denote C(Ω;Rm) as the space of continuous functions on Ω. For m = 1, we say
that they are scalar-valued functions and the space of continuous functions is denoted
by C(Ω) and C(Ω), respectively. When m > 1, we call them vector-valued functions.
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xii Notation

We refer to the space Cb(Ω) as the space of bounded continuous scalar-valued
functions on Ω. This is a Banach space with the supremum norm. If Ω is a bounded
subset of Rd then C(Ω) coincides with Cb(Ω). They differ if we consider Ω as an
unbounded domain of Rd. The space Cc(Ω) denotes the space of continuous functions
on Ω with compact support, where support of a function f is defined as

supp(f) = closure of {x ∈ Ω | f(x) ̸= 0}.

The space C0(Rd) is the closure under the supremum norm of compactly supported,
continuous functions on Rd, i.e., the set of continuous functions on Rd which vanish
at infinity. Similarly, for an unbounded domain Ω we can define the space C0(Ω).

Ck(Ω;Rm) is the space functions on Ω such that for f ∈ Ck(Ω;Rm) implies ∂αf
exists for |α| ≤ k. Ck(Ω;Rm) is the space of functions in Ck(Ω;Rm) which together
with all derivatives possesses continuous extensions to Ω.

The symbol C0,α(Ω;Rm), with 0 < α ≤ 1, denotes the space of α−Hölder
continuous functions with the seminorm

∥f∥C0,α(Ω;Rm) = sup
x,y∈Ω
x ̸=y

|f(x)− f(y)|
|x− y|α

, for f ∈ C0,α(Ω;Rm).

In the case α = 1, this is the set of Lipschitz continuous functions with seminorm

Lip(f) = sup
x,y∈Ω
x̸=y

|f(x)− f(y)|
|x− y|

, for f ∈ C0,1(Ω;Rm).

Similarly, the set Ck,α(Ω;Rm), k ∈ N with 0 < α ≤ 1, of functions in Ck(Ω;Rd) and
kth order partial derivatives are in C0,α(Ω;Rm).

We denote
C∞(Ω;Rm) = ∩∞

k=0C
k(Ω;Rm)

and
C∞(Ω;Rm) = ∩∞

k=0C
k(Ω;Rm).

D(Ω;Rm) is the subspace of C∞(Ω;Rm) with compact support in Ω. Instead of
D(Ω;Rm) we sometimes use the notation C∞

c (Ω;Rm). For m = 1, we denote Ck(Ω),
Ck(Ω), C∞(Ω), C∞(Ω) and D(Ω) respectively. Instead of vector-valued functions
one can also consider matrix-valued functions.

D(Ω) is a topological vector space, the topology is defined as the inductive
limit topology of Ck

c (Ω). D′(Ω) is the collection of all continuous linear maps T ,
T : D(Ω) → R. This is called the space of distributions.

Let us introduce some vector and matrix operations. For two vectors u = (ui)
d
i=1

and v = (vi)
d
i=1 scalar product (u · v), tensor product(u ⊗ v) in Rd and cross

product(u× v) in R3 are defined as

u · v =

d∑︂
i=1

uivi, u⊗ v = (uivj)
d
i,j=1 ,

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) .



xiii

For d = 2, we have u× v = (0, 0, u1v2 − u2v1).
Scalar product of two matrices A

(︂
= (aij)

d
i,j=1

)︂
and B

(︂
= (bij)

d
i,j=1

)︂
is given by

A : B =
d∑︂

i,j=1

aijbij .

We say that a matrix is positive semidefinite or nonnegative definite (A ≥ 0) if
for all ξ ∈ Rd, A : (ξ ⊗ ξ) ≥ 0 holds. It is positive definite if for all ξ( ̸= 0) ∈ Rd,
A : (ξ ⊗ ξ) > 0 holds .

Here we introduce some standard differential operators that we use throughout
the thesis.

• The gradient of a scalar-valued map f : Ω(⊂ Rd) → R and of a map u
(︁
= (ui)

d
i=1

)︁
:

Ω(⊂ Rd) → Rd is defined as

∇xf = (∂xif)
d
i=1 , ∇xu =

(︁
∂xjui

)︁d
i,j=1

.

• The divergence of a vector field u on Ω and a matrix field A on Ω is defined as

divxu =
d∑︂

i=1

∂xiui and divxA = ((divxA)i)
d
i=1 with (divxA)i =

d∑︂
j=1

∂xjaij .

• The curl of a vector field v defined as Curl(v) = ∇xv −∇T
xv.

• The Laplacian is defined as ∆x ≡ divx∇x .

• For two vectors u and v we define a operator as (v · ∇x)u =

(︄
d∑︁

j=1
vj∂xjui

)︄d

i=1

.

This operator appears in the convective term in fluid models written in the Eulerian
setting.

A function e : Rd → R is convex if

e(λx+ (1− λ)y) ≤ λe(x) + (1− λ)e(y),

for all λ ∈ [0, 1] and x,y ∈ Rd. It is also possible to define a convex function ranging
in extended real line R∪ {∞}. We say that a vector z ∈ Rd is a subgradient of e at x
if it satisfies

e(y) ≥ e(x) + z · (y − x).

We denote subdifferential of e at x as ∂e(x) and it is defined as

∂e(x) = {z | z is subgradient of e at x}.

Throughout the thesis we use the symbol C for a generic constant, in general it is
positive. Furthermore, the symbol C(λ) denotes that the constant C is dependent on
parameter λ.



xiv Notation

In a few cases, we use the notation uϵ → u as ϵ→ 0, that is, we consider ϵ ≈ 1
n for

n ∈ N and the sequence vn(= u 1
n
) → u as n→ ∞, in a suitable sense of convergence.

For Ω ⊂ Rd, we denote 1Ω as

1Ω =

{︄
1, x ∈ Ω,

0, otherwise.

It is called the characteristics function of Ω.



Introduction

The aim of this thesis is to study various compressible fluid models from fluid
mechanics. These models are given by systems of partial differential equations.
The incompressible inviscid fluids were first described by L. Euler in 1755 and the
incompressible viscous fluid flows were described by Navier in 1822-1827, followed
by Poisson(1831) and Stokes(1845), see [22]. In the last two centuries, a significant
development has been observed for these fluid models.

In the context of simplified barotropic fluid models, the Euler system describes
fluid flow in terms of density(ϱ), velocity(u) and pressure (p). These are functions of
time t and space x. The relation between pressure and density is given by an equation
of state. The initial time is fixed at t = 0. For T > 0 and Ω ⊂ Rd with d = 2, 3 the
evolution of the variables (ϱ,u) in the time-space cylinder (0, T )× Ω is described as:

∂tϱ+ divx(ϱu) = 0, (0.0.1)
∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ) = 0. (0.0.2)

The equation (0.0.1) is the conservation of mass and (0.0.2) describes the conservation
of momentum. The momentum is denoted by m = ϱu. Since both equations are first
order in time, an initial condition is given by

ϱ(0, x) = ϱ0(x), (ϱu)(0, x) = (ϱu)0(x) for x ∈ Ω.

In general the initial density ϱ0 is non-negative. Let us make the choice of the space
Ω a little more precise. It can be considered as the full domain Rd, a bounded domain,
an exterior domain, an infinite slab Rd−1× (0, 1) or a periodic domain Td. Depending
on the domain, an appropriate boundary condition or far field condition or both is
necessary. If the pressure depends only on the density, it is called barotropic pressure.

In a more physically relevant scenario, the pressure depends not only on the
density but also on the temperature (ϑ). The first law of thermodynamics suggests
that we consider another equation, namely the total energy balance. Here density,
momentum/velocity and temperature are considered as independent variables and
the system is given by

∂tϱ+ divx(ϱu) = 0,

∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ, ϑ) = 0,

∂t

(︃
1

2
ϱ|u|2 + ϱe(ϱ, ϑ)

)︃
+ divx

(︃(︃
1

2
ϱ|u|2 + ϱe(ϱ, ϑ) + p(ϱ, ϑ)

)︃
u

)︃
= 0,

xv
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where e denotes the specific internal energy. Moreover, p(ϱ, ϑ) and e(ϱ, ϑ) are
interrelated. The second law of thermodynamics introduces the entropy(s). Then the
relation between the specific internal energy, the pressure and the entropy is given by
the Gibbs relation, i.e.,

Ds(ϱ, ϑ) = De(ϱ, ϑ) + p(ϱ, ϑ)D

(︃
1

ϱ

)︃
,

where D stands for the total derivative with respect to ϱ, ϑ.
This helps us to replace the energy balance with the entropy balance. A well-

known equation of state is the Boyle–Mariotte equation of state. The relation between
the internal energy, the temperature and the pressure is given by e = cvϑ and p = ϱϑ.
Considering (ϱ,m, s) as state variables, we describe the complete Euler system as

∂tϱ+ divx(ϱu) = 0,

∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ, s) = 0,

∂t(ϱs) + divx(sm) = 0.

In the context of viscous barotropic fluids, the Navier–Stokes system in the time
space cylinder (0, T )× Ω reads

∂tϱ+ divx(ϱu) = 0, (0.0.3)
∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ) = divx(S(∇xu)). (0.0.4)

Here S is called the viscous stress tensor. Suitable initial conditions, boundary
conditions and far field conditions must also be included for the Navier–Stokes system.
Similarly, one can include other laws of thermodynamics, Fourier’s law of heat
conduction, and the Gibbs relation to consider a more general system of equations,
namely the Navier-Stokes-Fourier system.

Very often the term Euler system or Navier–Stokes system is used to describe an
incompressible fluid. Since this thesis is mainly concerned with compressible fluids,
we use the term the Euler system or the Navier-Stokes system to refer to the systems
for compressible fluids and explicitly state if we refer to incompressible fluids. We
will not discuss much about incompressible flows, an interested reader may consult
the well-known monographs [116], [38], [83], [95], [112], [14], to name a few.

0.1 An overview of solvability

In the study of systems describing compressible fluids, the first stumbling block
is to provide a suitable notion of solution. The classical approach to solving the
corresponding initial (boundary) value problems is to find a solution that satisfies
the system in pointwise sense. This is called a classical or strong solution of the
system. In order to satisfy a system in a pointwise sense, some differentiability of the
state variables is required. The existence of a global in time solution for a nonlinear
system is not always possible. There are explicit examples of singularities (shocks)
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for the Euler system, while the Navier–Stokes admits global in time solutions at
least for small initial data. The strong solutions are unique in the time interval of
their existence. The absence of a global existence of the strong solution leads to the
consideration of a weak solution. In this case, we replace the equations by a set of
integral identities. In Chapter 2 we discuss in detail the weak formulation of various
systems.

For general initial data, the existence of a global in time weak solution for the
compressible Navier–Stokes system has been proved, although there is a certain
restriction on the pressure-density relation. Unfortunately, the uniqueness of the
solution in this class of solution(s) is still open. The situation is even more delicate in
the context of the Euler system. The problem of existence of global in time physically
admissible weak solutions for general initial data is still open. Although for some
initial data the existence of a weak solution has been proved, there are examples of
infinitely many (wild) solutions. Also, in numerical analysis, it is quite difficult to
prove the convergence of ‘suitable’ numerical schemes of these systems to a weak
solution.

A new concept of generalized solutions, namely measure-valued or dissipative
solutions, is introduced for these systems. There are two properties which justify the
concept of generalized solutions:

• Compatibility: A sufficiently smooth generalized solution will be a classical
solution.

• Weak-Strong uniqueness: Given the same initial data, a weak solution will
coincide with the strong or classical solution if the latter exists.

The term ‘weak-strong uniqueness’ can be somewhat ambiguous; in principle, it refers
only to weak solutions. However, we use weak-strong uniqueness as a general concept
that also refers to more general solutions (measure-valued, dissipative) and not only
to the weak ( distributional ) solutions. From now on, we consider weak-strong
uniqueness to deal with weak solutions, and generalized weak-strong uniqueness when
we consider measure-valued or dissipative solutions.

There are many results concerning the mathematical theory of the Euler system,
as well as the complete Euler system. It is well known that the initial value problem
is well posed locally in time in the class of smooth solutions, see for example the
monograph of Majda [97], Schochet [110] or the recent monograph of Benzoni–Gavage
and Serre [12]. Since our interest lies in weak or dissipative solutions of the system, we
relax the entropy balance to the inequality that is a physically relevant admissibility
criterion for weak solutions. The adaptation of the method of convex integration in
the context of incompressible fluids by De Lellis and Székelyhidi [40] leads to the
ill-posedness of several problems in fluid mechanics, also in the class of compressible
barotropic fluids, see Chiodaroli and Kreml [36], Chiodaroli, De Lellis and Kreml [33]
and Chiodaroli et al.[37]. The result of Chiodaroli, Feireisl and Kreml [35] shows that
the initial-boundary value problem for the complete Euler system admits infinitely
many weak solutions on a given time interval (0, T ) for a large class of initial data.
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In [61], Feireisl et al. show that the complete Euler system is ill-posed and these
solutions satisfy the entropy inequality. Chiodaroli, Feireisl and Flandoli [34] obtain
a similar result for the complete Euler system driven by multiplicative white noise.
Most of these results, based on the application of the method of convex integration,
are non–constructive and exploit the fact that the constraints imposed by the Euler
system on the class of weak solutions admit oscillations.

In the articles of Alibert and Bouchitté [4], Gwiazda, Świerczewska-Gwaizda and
Wiedemann [86], Březina and Feireisl [20], Březina [24], Basarić [11], Feireisl and
Lukáčová-Medvidová [65], we observe the development of the theory on measure-
valued solutions for various models describing compressible inviscid fluids, mainly
using Young measures. Recently, Feireisl, Lukáčová-Medvidová and Mizerová [66]
and Breit, Feireisl and Hofmanová [16] give a new definition for compressible Euler
system, termed as dissipative solution without involving Young measures.

Addressing the Navier–Stokes system, the existence of a local strong solution
was proved in the following articles for different space dimensions: Shelukhin and
Khazikov [90], Matsumura and Nishida [100]. For small initial data, global in time
existence is also studied by Valli and Zajaczkowski [118], Matsumura and Nishida
[100] etc. The existence of a global in time weak solution has been proved, see
Antontsev et al. [5], P.-L. Lions [96], Feireisl [50], Feireisl and Novotný [72]. The
problem of uniqueness for weak solutions is still open. Conditional uniqueness is
provided by Sun, Wang and Zhang [115].

The measure-valued solution of the Navier–Stokes system was introduced by
Feireisl et al. [56] using the Young measure. For the Navier–Stokes–Fourier system,
the measure-valued solution was defined by Brezina, Feireisl and Novotný [27]. The
notion of dissipative solutions is also available for more general viscous stress tensors,
see Abbatiello, Feireisl and Novotný [2].

Another important application of measure-valued solutions is their identification
as limits of numerical schemes. Together with the existing generalized weak-strong
uniqueness principle in the class of measure-valued solutions, one can show that
numerical solutions converge strongly to a strong solution of the system as long as
the latter exists, see [80], [65], [71]. We use the relative energy method to prove
weak-strong uniqueness, which we will describe in detail in the following chapters.

0.2 Scaled system: Asymptotic analysis

Compressible fluids describe a wide range of possible models in meteorology,
geophysics and astrophysics, ranging from sound waves to cyclone waves to models of
gaseous stars. Therefore, to gain a deeper understanding of the system, it is important
to write it in a dimensionless form. It allows us to compare the relative influence of
the different terms that appear in the equations. One can explicitly determine the
parameters by scaling the equations, in other words by choosing the system of reference
units accordingly. The behavior of the system depends on these parameters, which are
called characteristic numbers. When these characteristic numbers vanish or become
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infinite, the study of the system is called asymptotic analysis or singular limit of the
system. Classical textbooks and research monographs are mainly concerned with the
way in which the scaling arguments can be used together with other characteristic
properties of the data to obtain, usually in a very formal way, a simplified system,
see [125]. We refer the reader to the survey by Klein [92] for a thorough discussion of
singular limits and the applications of scaling in numerical analysis.

By introducing reference density, velocity, length, time, and other quantities,
and by suitably changing the variables, one can describe a set of characteristic
numbers which are dimensionless. Including these numbers, the compressible Euler
and Navier–Stokes system with source term f can be written as

Sr ∂tϱ+ divx(ϱu) = 0, (0.2.1)

Sr ∂t(ϱu) + divx(ϱu⊗ u) +
1

Ma2
∇xp(ϱ) =

1

Fr2
ϱf , (0.2.2)

and

Sr ∂tϱ+ divx(ϱu) = 0, (0.2.3)

Sr ∂t(ϱu) + divx(ϱu⊗ u) +
1

Ma2
∇xp(ϱ) =

1

Re
divx(S(∇xu)) +

1

Fr2
ϱf , (0.2.4)

with the Strouhal number(Sr), Mach number(Ma), Froude number(Fr) and Reynolds
number(Re). These characteristic numbers have the following meaning:

• A low Strouhal number corresponds to the longtime behavior of a system. In our
application we set it as the unity.

• A low Mach number limit is characteristic for the nearly incompressible regime, the
density of the fluid becomes constant and the fluid behaves as an incompressible
one.

• A high Reynolds number limit corresponds to a small viscous effect that eventually
leads to some turbulent phenomena in the fluid.

• In the consideration of f as a gravitational force, the Froude number measures the
importance of the stratification of the fluid.

Further if we assume rotating fluids, the Rossby number(Ro) will be introduced where
a large Rossby number indicates a fast rotation of the fluid. In general, we refer to
the system with characteristic numbers as primitive system and after performing the
limit, we refer to the obtained system as the target system.

The classical approach to a singular limit problem is to consider a strong or
classical solutions of the primitive system. In this approach there are results by Ebin
[45], Kleinermann and Majda [91], Schochet [110], and many others. They consider
the low Mach number limit of a compressible fluid. For rotating fluids there are
results of Babin, Mahalov and Nicolaenko [6, 7] and Chemin et al. [32]. Here, the
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main and highly non-trivial issue is to ensure that the lifespan of the strong solutions
is bounded below away from zero uniformly with respect to the singular parameter.

Another approach is based on the theory of generalized solution. As mentioned
earlier, in Navier–Stokes and Euler systems there is a global time generalized solution.
If the initial data are chosen correctly, convergence can be shown, provided that
the target system admits a smooth solution. In the case of second approach, most
of the results dealing with weak solutions have been studied for the compressible
Navier–Stokes system with additional consideration of a high Reynolds number
limit. The singular limit results for the Navier-Stokes-Fourier are available in Feireisl
and Novotný [72]. We also refer the reader to the survey by Masmoudi [99] for a
comparative study of the two approaches. We deal with the generalized solution
approach in Chapter 4.

0.3 Relative energy or entropy

The concept of the relative energy is based on the following mathematical obser-
vation of a convex function:
Suppose e : Rd → [0,∞) is a strictly convex function. We observe that a function

E(u |v) = e(u)− e(v)− z · (u− v)

is always non-negative for any z ∈ ∂e(v) with the distance property i.e., E(u |v) = 0
if and only if u = v. This introduces the Brégman divergence, see [15], [113].

The concept of relative energy or relative entropy was introduced by Dafermos [39]
in the context of hyperbolic conservation laws to study the weak-strong uniqueness
property. Later it was used for various systems in fluid dynamics.

If we assume u is a weak or generalized solution and v is a strong solution, then
E(u |v) stands for the distance. It is enough to prove E = 0 to ensure that the weak
and strong solutions are the same, i.e., the weak-strong uniqueness property holds.

If a system has a convex energy or entropy, then one can define an appropriate
relative entropy. Since our main focus is on evolution problems, it is important to
study the time evolution of d

dt E(u |v). Formally we have

d
dt
E(u |v) = DuE(u |v) · ∂tu.

This shows that we have to use the term DuE(u|v) as a test function for the evolution
equation of u. Unfortunately, this is not always available for weak solutions, as it
requires a high regularity of the weak solution u. This somehow motivates to consider
a system with dissipative energy estimate for weak solutions, i.e.,

de(u)

dt
≤ −f(u),

for some real valued non-negative function f .
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Our goal is to obtain an estimate of the type

d
dt
E(u |v) ≤ CE(u |v),

for any t in the time interval (0, T ) and some positive constant C. Using a Grönwall
type argument, we conclude that the relative energy vanishes provided E(u|v)(0) = 0.

The relative energy also has an application in singular limit problems. We consider
a scaled problem with a characteristic number of order ϵ > 0 and for each ϵ > 0 denote
a solution of the primitive system by uϵ. Let v be the solution of the target system.
The relative energy Eϵ(uϵ |v) measures the distance between them. Furthermore, we
establish convergence when this error Eϵ(uϵ |v) goes to zero for ϵ → 0. Clearly a
lot of hypotheses are required to obtain these kind of results, which we describe in
Chapter 4.

Other than these applications, the relative energy plays important role in stability
analysis and characterization of steady solutions.

0.4 Structure of the thesis

In Chapter 1 we discuss some preliminaries that we will use in the next chapters.
The basic time dependent function spaces are discussed in this chapter along with
weak and weak-(*) convergence in these spaces. The concept of Young measures also
plays a crucial role in our discussions and main results. Therefore, some important
results on Young measures are given in this chapter.

Chapter 2 is dedicated to the derivation and weak formulation of the system.
We collect the available definitions of various systems describing a compressible
fluid. We also present the similarities and differences of considering the problem
in different domains. Furthermore, we try to explain the importance of generalized
(measure-valued and dissipative) solutions and consider them as the weak limit of the
weak solutions in certain cases.

Chapter 3 is devoted exclusively to the compressible Navier–Stokes system with
general barotropic pressure laws. We consider a general non-monotone pressure-
density relation. We also consider a singular non-monotone pressure. We prove the
generalized weak-strong uniqueness property. The relative energy or entropy is the
main tool used here.

In Chapter 4, we consider a scaled Euler system. We consider a general scaling
and observe that the target system describes an incompressible flow in the regime of
low Mach numbers. The effect of different characteristic numbers is explained in this
case. We use relative energy as a main tool. Here we use generalized solutions of the
primitive system to identify the limit. This reflects the stability of the target system.

Finally, in Chapter 5 we discuss the convergence of approximation schemes of
the complete Euler system in the domain Rd. We define an approximation scheme
which we call consistent approximation scheme. We will prove that these approximate
solutions either converge strongly (at least almost everywhere) to a weak solution of
the complete Euler system, or the limit is not a weak solution of the system at all.
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This reflects a way to consider ‘good’ weak solutions, from the vanishing viscosity
limit of a viscous system (e.g. Navier–Stokes–Fourier system).

The thesis is based on the following articles and preprints:

• N. Chaudhuri, On weak-strong uniqueness for compressible Navier–Stokes
system with general pressure laws, [29]

• N. Chaudhuri, On weak (measure-valued)-strong uniqueness for compressible
Navier–Stokes system with non-monotone pressure law, [31].

• N. Chaudhuri, Multiple scales and singular limits of perfect fluids, [28].

• N. Chaudhuri, Limit of a consistent approximation to the complete compressible
Euler System, [30].



Chapter 1

Mathematical preliminaries

1.1 Function spaces

In the section on notation we introduce the spaces of continuous and differentiable
functions. Here we are mainly concerned with measurable and integrable functions,
in general they are described as Lebesgue spaces. The reader is advised to consult
basic books on measure theory for a detailed discussion, Rudin [108], Folland [82],
Evans and Gariepy [48] to name a few.

For any subset Ω of Rd we consider the Lebesgue measure space (Ω,M,L). For
any integrable function f over this measure space we use the simple notation

´
Ω fdx,

instead of the appropriate notation
´
Ω fdL.

Lp space:

Let 1 ≤ p <∞ and Ω ⊂ Rd, we define the space Lp(Ω) as

Lp(Ω) =

{︃
f : Ω → R | f is Lebesgue measurable and

ˆ
Ω
|f(x)|pdx <∞

}︃
.

We define the space L∞(Ω) as

L∞(Ω) = {f : Ω → R | f is Lebesgue measurable and ess supx∈Ω|f(x)| <∞}.

For 1 ≤ p < ∞, Lp(Ω) with norm ∥f∥Lp

(︂
= (
´
Ω |f(x)|pdx)

1
p

)︂
is a Banach space.

Similarly, L∞(Ω) with norm ∥f∥L∞(= ess supx∈Ω(|f(x)|)) is also a Banach space.
For 1 ≤ p <∞, the dual of the space Lp(Ω) is the space Lq(Ω), where 1

p + 1
q = 1,

with the duality pairing

⟨f, g⟩Lp,Lq : =

ˆ
Ω
fg dx, for f ∈ Lp(Ω) and q ∈ Lq(Ω).

This is not true for p = ∞, we only have L1(Ω) is a subset of the dual of L∞(Ω).
Analogously, for vector-valued and matrix-valued functions, we denote them as

Lp(Ω,Rm) and Lp(Ω;Rm×m), respectively, for m > 1.

1
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We note that the space Lp + Lr(Ω) is a Banach space with norm

∥f∥ = inf {∥g∥Lp + ∥h∥Lr | f = g + h ∈ Lp + Lr(Ω)} ,

for 1 ≤ p < r ≤ ∞.

Sobolev spaces:

In 1930’s Sobolev introduces these spaces using the concept of weak derivatives.
In modern analysis, Sobolev spaces are considered as one of the important tools.
Here we give some important properties of these spaces, a detailed discussion and
application can be found in Brezis [21], Adams [3], Evans [47].

Let k > 0 be an integer and let 1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) is defined
as

W k,p(Ω) = {u ∈ Lp(Ω) | for all multi-index α with |α| ≤ k,

weak derivative ∂αu exists and ∂αu ∈ Lp(Ω)},

endowed with the norm

∥u∥Wk,p =

⎛⎝∑︂
|α|≤k

ˆ
Ω
|∂αu|p

⎞⎠ 1
p

=

⎛⎝∑︂
|α|≤k

∥∂αu∥pLp

⎞⎠ 1
p

, for 1 ≤ p <∞

and

∥u∥Wk,∞ =
∑︂
|α|≤k

∥∂αu∥L∞ , for p = ∞.

We further denote the space W 1,p
0 (Ω) as the closure of C∞

c (Ω) with respect to W 1.p-
norm. In Sobolev spaces, the boundary of a domain plays a crucial role in some
consideration.

Domain of class Cm: We first consider the following subspaces of Rd:

Rd
+ =

{︂
x = (x′, xd)| x′ ∈ Rd−1, xd > 0

}︂
, H =

{︁
(x′, xd)| |x′| < 1, |xd| < 1

}︁
,

H+ = H ∩ Rd
+ and H0 = {(x′, 0)| |x′| < 1}.

We say that an open set Ω is of class Cm, m ≥ 1 being an integer, if for every x ∈ ∂Ω
there exists a neighborhood U of x in Rd and a bijection H : H → U such that

H ∈ Cm(H), H−1 ∈ Cm(U), H(H+) = U ∩ Ω, H(H0) = U ∩ ∂Ω (1.1.1)

We also use the term Ω is with Cm boundary. It is of C∞ if it is of class Cm for all
m. Moreover, instead of Cm, if the function H is Lipschitz, i.e., C0,1, then we say Ω
with Lipschitz boundary ∂Ω.

Next we state the Sobolev embedding theorem from Adams [3, Theorem 5.4].
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Theorem 1.1.1. Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary.
Consider W k,p(Ω) with 1 ≤ p < ∞, k ≥ 0 and u ∈ W k,p(Ω). Then the following
holds:

• If d > kp,

W k,p(Ω) ⊂ Lq(Ω)

for all q ∈ [1, p∗], where 1
p∗ = 1

p −
k
d this embedding is continuous and thus we have

∥u∥Lq(Ω) ≤ C(k, p, d)∥u∥Wk,p(Ω).

• If d = kp,

W k,p(Ω) ⊂ Lq(Ω)

for all q ∈ [p,∞), this embedding is continuous and thus we have

∥u∥Lq(Ω) ≤ C(k, p, d)∥u∥Wk,p(Ω).

• If d < kp,

W k,p(Ω) ⊂ Cm,σ(Ω)

m = [k − d
p ], σ = {k − d

p}, this embedding is continuous and thus we have

∥u∥Ck,σ ≤ C(k, p, d)∥u∥Hs .

Remark 1.1.2. For any x ∈ R, [x] and {x} denote the integral part and fractional
part of a real number. The same theorem holds for domain Ω = Td. If Ω = Rd, we
refer a similar result in Brezis [21, Corollary 9.13].

Remark 1.1.3. Let Ω ⊂ Rd be a bounded domain. For 1 < p < ∞, We denote
W−1,q(Ω) is the dual of W 1,p

0 (Ω), where 1
p + 1

q = 1.

Homogeneous Sobolev space:

Let Ω(⊂ Rd) be an unbounded domain. It is easy to verify that the sets C∞
c (Ω)

and C∞
c (Ω) endowed with the norm

|u|1,q := ∥∇xu∥Lq(Ω)

are normed linear spaces.

Definition 1.1.4. We define the homogeneous Sobolev space as

D1,q
0 = C∞

c (Ω)
|·|1,q

,

D1,q = C∞
c (Ω)

|·|1,q
,

(1.1.2)

where the sign “overline with norm” denotes the completion with respect to the norm.

Remark 1.1.5. If Ω is a bounded domain, D1,q
0 (Ω) coincides with W 1,q

0 (Ω). The
definition of D1,q(Ω) as a Banach makes no sense for a bounded domain Ω. The
spaces D1,q(Rd) and D1,q

0 (Rd) are the same.
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1.1.1 Important inequalities of function spaces

Here we give some important inequalities related to function spaces.

Young’s inequality:

This inequality is used quite frequently in the functional analysis. A standard
version is available in [14, Proposition II.2.16]. Here we give a generalized form of it.

Proposition 1.1.6. Let ai ≥ 0 for i = 1, . . . ,m and pi ≥ 1 for i = 1, · · · ,m such

that
m∑︁
i=1

1
pi

= 1. Then for ϵi > 0 for i = 1, · · · , (m−1) there exists c(ϵ1, · · · , ϵm−1) > 0

such that
m∏︂
i=1

ai ≤ ϵ1a
p1
1 + · · ·+ ϵm−1a

pm−1

m−1 + c(ϵ1, · · · , ϵm−1)a
pm
m .

Grönwall’s inequality:

The following lemma is a very useful ingredient for the study of time-dependent
partial differential equations, in particular to obtain a priori estimates, in our case
the estimation of the relative energy.

Lemma 1.1.7. Let T > 0 and y ∈ L∞(0, T ), a non negative function g ∈ L1(0, T )
and y0 ∈ R such that

y(τ) ≤ y0 +

ˆ τ

0
y(t)g(t), for a.e. τ ∈ (0, T ).

Then we have

y(τ) ≤ y0 exp

(︃ˆ τ

0
g(t) dt

)︃
for a.e. τ ∈ (0, T ).

See [14, Lemma II.4.10] for a complete proof.

Poincaré type inequality:

Poincaré type inequalities provide an estimate of the Lp-norm of a Sobolev function
by the Lp-norms of its derivative.

Theorem 1.1.8 (Poincaré’s inequality, [21, Corollary 9.19]). Let Ω(⊂ Rd) be a
bounded Lipschitz domain and 1 ≤ p <∞. Then there exists C(p, d,Ω) such that

∥u∥Lp(Ω) ≤ ∥∇u∥Lp(Ω), ∀u ∈W 1,p
0 (Ω). (1.1.3)

Remark 1.1.9. Poincaré’s inequality remains true if Ω has finite measure and also if
Ω has a bounded projection on an axis. We observe that the above inequality is not
true in the bounded domain Ω for functions in W 1,p(Ω). A simple counterexample
can be established by considering u = 1 in Ω.
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Therefore, we give a general version of the Poincaré inequality.

Theorem 1.1.10 (Poincaré–Wirtinger’s inequality, [21, Chapter 9]). Let Ω be a
bounded domain with Lipschitz boundary and 1 ≤ p <∞. Then there exists C such
that

∥u− ū∥Lp(Ω) ≤ ∥∇u∥Lp(Ω), ∀u ∈W 1,p(Ω), where ū =
1

L(Ω)

ˆ
Ω
u dx. (1.1.4)

Korn type inequalities:

Korn’s inequality plays an important role in the theory of linear elasticity. It is
also of great importance in the analysis of viscous fluids. The standard formulation
of Korn’s inequality provides a bound on the Lp-norm of the gradient of a vector
field by the Lp-norm of its symmetric part. Following [72, Section 11.10] we state the
theorems.

Theorem 1.1.11. Let 1 < p <∞.

1. There exists a positive constant C = c(p, d) such that

∥∇xv∥Lp(Rd;Rd×d) ≤ C
(︂
∥∇xv +∇T

xv∥Lp(Rd;Rd×d)

)︂
for any v ∈W 1,p(Rd;Rd).

2. Let Ω ⊂ Rd be bounded Lipschitz domain. There exists a positive constant c =
c(p, d) such that

∥∇xv∥Lp(Ω;Rd×d) ≤ C
(︂
∥∇xv +∇T

xv∥Lp(Ω;Rd×d)

)︂
for any v ∈W 1,p

0 (Ω;Rd).

3. Let Ω ⊂ Rd be bounded Lipschitz domain. There exists a positive constant c =
c(p, d) such that

∥v∥W 1,p(Ω;Rd×d) ≤ C

(︃
∥∇xv +∇T

xv∥Lp(Ω;Rd×d) +

ˆ
Ω
|v| dx

)︃
for any v ∈W 1,p(Ω;Rd).

Our main goal is to apply these inequalities to compressible viscous fluids. For
this application it is useful to replace the symmetric gradient in the previous theorem
by its traceless part. The result is given in the following theorem.

Theorem 1.1.12. Let 1 < p <∞ and d ≥ 2.
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1. There exists a positive constant C = C(p, d) such that

∥∇xv∥Lp(Rd;Rd×d) ≤ C

(︄⃦⃦⃦⃦
∇xv +∇T

xv − 2

d
divxvI

⃦⃦⃦⃦
Lp(Rd;Rd×d)

)︄

for any v ∈W 1,p(Rd;Rd).

2. Let Ω ⊂ Rd be bounded Lipschitz domain. There exists a positive constant c =
c(p, d) such that

∥∇xv∥Lp(Ω;Rd×d) ≤ C

(︄⃦⃦⃦⃦
∇xv +∇T

xv − 2

d
divxvI

⃦⃦⃦⃦
Lp(Rd;Rd×d)

)︄

for any v ∈W 1,p
0 (Ω;Rd).

3. Let Ω ⊂ Rd be bounded Lipschitz. There exists a positive constant c = c(p, d) such
that

∥v∥W 1,p(Ω;Rd×d) ≤ C

(︄⃦⃦⃦⃦
∇xv +∇T

xv − 2

d
divxvI

⃦⃦⃦⃦
Lp(Rd;Rd×d)

+

ˆ
Ω
|v| dx

)︄

for any v ∈W 1,p(Ω;Rd).

Generalized Korn-Poincaré inequality

We conclude this part with a further generalization and combination of the
Poincaré and Korn inequality, see [72, Section 11.10].

Theorem 1.1.13. Let 1 < p <∞, M0 > 0, K > 0, γ > 1 and d > 2. Let Ω ⊂ Rd be
a bounded Lipschitz domain. There exists a positive constant C = C(p, d,M0,K, γ)
such that

∥v∥W 1,p(Ω;Rd×d) ≤ C

(︄⃦⃦⃦⃦
∇xv +∇T

xv − 2

d
divxvI

⃦⃦⃦⃦
Lp(Rd;Rd×d)

+

ˆ
Ω
r|v| dx

)︄

for any v ∈W 1,p(Ω;Rd) and any non negative scalar valued function r such that

0 < M0 ≤
ˆ
Ω
r dx,

ˆ
Ω
rγ dx ≤ K.

1.1.2 Weak and Weak-(*) convergence

In a general Banach or Hilbert space, the notion of weak and weak-(*) convergence
has been developed. We mainly follow Brezis [21] to state the following compactness
result:
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Theorem 1.1.14 (Banach-Alaoglu-Bourbaki, [21, Theorem 3.16]). Let X be a Banach
space, B ⊂ X be the unit ball in Xand B∗ ⊂ X∗ also be a unit ball in X∗. Then B∗

is always weak-(*)ly compact. If X is reflexive, B is weakly compact.

Let Ω ⊂ Rd be a domain. For 1 < p < ∞, in Lp(Ω) every uniformly bounded
sequence {fn}n∈N has a weakly convergent subsequence. In the case of L∞(Ω) any
uniformly bounded sequence poses a weak-(*)ly convergent subsequence. By saying
uniformly bounded we mean

∥fn∥Lp(Ω) ≤ C,

where C is independent of n and 1 < p ≤ ∞. In the context of L1(Ω), the condition
is a bit delicate. Here we state the following theorem:

Theorem 1.1.15. Let {fn}n∈N be uniformly bounded in L1(Ω). Then the following
statements are equivalent:

1. The sequence {fn}n∈N contains a subsequence that converges weakly in L1(Ω).

2. For all ϵ > 0, there exists δ > 0 such that
ˆ
M

|fn| dx < ϵ

whenever L(M) < δ, for M ⊂ Ω. Here L is the Lebesgue measure of Rd.

The condition (2.) is called equi-integrability criterion for weak convergence in L1.

Remark 1.1.16. There are several other equivalent statements of the theorem 1.1.15,
see [72, Theorem 10].

1.2 Spaces involving time

We are interested in time-dependent problems. Therefore, we introduce the spaces
of time-dependent functions ranging in a Banach space. There are several ways
to define the integrabality in these spaces namely Bochner integral, Petis inegral,
Dunford integral etc. Here we stay with the Bochner integral. We follow the textbook
Yoshida [122].

Let X be a Banach space. For T > 0, we consider the map f : [0, T ] → X.

• A function s : [0, T ] → X is called simple if it has the form

s(t) = Σm
i=1χEi(t)ui, t ∈ [0, T ],

where for each i = 1, · · · ,m, Ei is Lebesgue measurable subset of [0, T ] and ui ∈ X.

• A function f : [0, T ] → X is strongly measurable if there exists a sequence of simple
functions {sk}k∈N with sk : [0, T ] → X such that sk(t) → f(t), for a.e. t ∈ [0, T ]
as k → ∞.
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• A function f : [0, T ] → X is weakly measurable if for each u∗ ∈ X∗, the mapping
t ↦→ ⟨f(t), u∗⟩X,X∗ is Lebesgue measurable.

• A function f : [0, T ] → X is separably valued if there exists N ⊂ [0, T ] with
µ(N) = 0, such that the set {f(t) | t ∈ [0, T ]−N} is separable.

Remark 1.2.1. Let X∗ be the dual space of X. A function f : [0, T ] → X∗ is
weak-(*)ly measurable if for each u ∈ X, the mapping t ↦→ ⟨u, f(t)⟩X,X∗ is Lebesgue
measurable.

We consider the following Banach spaces:

• Lp(0, T ;X) =

{︃
u : [0, T ] → X | u is a strongly measurable function

and
ˆ T

0
∥u(t)∥pXdt <∞

}︃
,

equipped with norm ∥u∥Lp(0,T ;X) = (
´ T
0 ∥u(t)∥pX)

1
p , for 1 ≤ p <∞.

• L∞(0, T ;X) =

{︃
u : [0, T ] → X | u is a strongly measurable function

and ess supt∈[0,T ]∥u(t)∥X <∞
}︃
,

equipped with norm ∥u∥L∞(0,T ;X) = ess supt∈[0,T ]∥u(t)∥X .

• C([0, T ];X) =

{︃
u : [0, T ] → X continuous function | max

t∈[0,T ]
∥u(t)∥X <∞

}︃
,

equipped with norm ∥u∥C([0,T ];X) = max
t∈[0,T ]

∥u(t)∥X .

Analogously, we define the following spaces:

• For 1 ≤ p <∞,

Lp
weak(0, T ;X) =

{︃
u : [0, T ] → X | u is weakly measurable function,

t ↦→ ∥u(t)∥X is measurable and
ˆ T

0
∥u(t)∥pXdt <∞

}︃
,

equipped with norm ∥u∥Lp(0,T ;X) =
(︂´ T

0 ∥u(t)∥pX
)︂ 1

p .

In the case p = ∞, we replace the condition
´ T
0 ∥u(t)∥pXdt <∞ by

ess sup
t∈[0,T ]

∥u(t)∥X <∞,

and ∥u∥L∞(0,T ;X) = ess supt∈[0,T ]∥u(t)∥X .
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• For 1 ≤ p <∞,

Lp
weak-(*)(0, T ;X

∗) =

{︃
u : [0, T ] → X∗| u is weak-(*)ly measurable function,

t ↦→ ∥u(t)∥X∗ is measurable and
ˆ T

0
∥u(t)∥pX∗dt <∞

}︃
,

equipped with norm ∥u∥Lp(0,T ;X∗) =
(︂´ T

0 ∥u(t)∥pX∗

)︂ 1
p . Similarly for p = ∞, we

replace the condition
´ T
0 ∥u(t)∥pX∗dt <∞ by

ess sup
t∈[0,T ]

∥u(t)∥X∗ <∞,

and ∥u∥L∞(0,T ;X∗) = ess supt∈[0,T ]∥u(t)∥X∗ .

We state the following theorem from Pedregal [107, Theorem 6.14]:

Theorem 1.2.2. Let X be a separable Banach space and 1 ≤ p <∞. Then

[Lp(0, T ;X)]∗ = Lq
weak-(*)(0, T ;X

∗) with
1

p
+

1

q
= 1

with the duality

⟨f, g⟩ =
ˆ T

0
⟨f(t), g(t)⟩ dt .

We also define weak and weak-(*) continuous time-dependent function spaces in
the following way:

• We say a function f : (0, T ) → X is weak continuous if for all ψ ∈ X∗, the map
t ↦→ ⟨f(t), ψ⟩X,X∗ is continuous and the space of all such functions is denoted by
Cweak([0, T ];X).

• Similarly, we say that a function f : (0, T ) → X∗ is weak-(*) continuous if for all
ϕ ∈ X, the map t ↦→ ⟨ϕ, f(t)⟩X,X∗ is continuous and the space of all such functions
is denoted by Cweak-(*)([0, T ];X

∗).

We end this section with this lemma.

Lemma 1.2.3. Let f, g ∈ L∞(0, T ;X∗) such that
ˆ T

0
⟨ϕ, f(t)⟩X,X∗η′(t) dt =

ˆ T

0
⟨ϕ, g(t)⟩X,X∗η(t) dt , ∀ϕ ∈ X and η ∈ C∞

c (0, T ).

Then, f ∈ Cweak-(*)([0, T ];X
∗).

Proof. It is enough to prove that the map t ↦→ ⟨ϕ, f(t)⟩X,X∗ is absolutely continuous
in [0, T ] for every ϕ ∈ X.

There is a similar lemma for weak continuous functions.
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1.3 Young measure and related results

For any space X, a standard measure space is denoted by the triplet (X,µ,X ).
In the case of X = Ω ⊂ Rd we consider L as the standard Lebesgue measure on Ω.

1.3.1 Borel and Radon measure

Let Q be a locally compact Hausdorff metric space.

• The symbol B(Q) stands for the space of signed Borel measures on Q. The symbol
B+(Q) denotes the cone of non-negative Borel measures on Q.

• We say a Borel measure is finite if µ ∈ B(Q) such that µ(Q) < ∞. Moreover a
Borel measure is locally finite if µ ∈ B(Q) such that µ(K) < ∞ for all compact
subset K of Q

• The symbol B(Q;Rd) means for ζ = {ζi}di=1 ∈ B(Q;Rd), ζi ∈ B(Q), ∀i = 1, 2, · · · , d,
and the notation B(Q;Rd×d) stands for ζ = {ζi,j}di,j=1 ∈ B(Q;Rd×d), ζi,j ∈ B(Q),
∀i, j = 1, 2, · · · , d.

Now we state an important theorem that characterizes a positive linear function on
Cc(Q). Since we are interested in Rd, we consider Q = Ω ⊂ Rd, a Borel set.

Theorem 1.3.1 (Riesz Representation,[108, Theorem 2.14]). Let f be a non-negative
linear functional defined on the space Cc(Ω). Then there exists a σ-algebra of measur-
able sets containing all Borel sets and a unique non-negative measure on µf ∈ B+(Ω)
such that

⟨f, ϕ⟩ =
ˆ
Ω
ϕdµf , for any ϕ ∈ Cc(Ω).

Moreover, the measure µf has the following properties,

1. µf (K) <∞ for any compact subset K ⊂ Ω.

2. For any open set E ⊂ Ω it holds

µf (E) = sup{µf (K)|K ⊂ E}.

3. For any Borel set V it satisfies

µf (V ) = inf{µf (E)|V ⊂ E, E open }.

4. If E is µf measurable, µf (E) = 0, A ⊂ E, then A is µf measurable.

We say a Borel measure is a Radon measure if it satisfies properties the first three
properties in (1.3.1). Therefore, we can say that µf is a positive Radon measure.
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• We denote the symbol M (Ω) stands for the space of signed Radon measures on Ω.
The symbol M(Ω) denotes the set of finite Radon measures on Ω, i.e.,

µ ∈ M(Ω) implies µ ∈ M (Ω) with µ(Ω) <∞.

The notation Mloc(Ω) stands for the set of locally finite Radon measure, i.e.,

µ ∈ M(Ω) implies µ ∈ M (Ω) and µ is locally finite.

• Moreover, M+(Ω) is the cone of positive finite Radon measures.

• We also define M(Ω;Rd) and M(Ω;Rd×d) for vector-valued and matrix-valued
finite Radon measures.

• The space M+(Ω;Rd×d) denotes the set of positive semi-definite matrix-valued
finite Radon measures, i.e., D ∈ M+(Ω;Rd×d) implies for all ξ ∈ Rd, D : (ξ ⊗ ξ) ∈
M+(Ω).

• The symbol P(Ω) indicates the space of probability measures, i.e., for ν ∈ P(Ω) ⊂
M+(Ω) we have ν(Ω) = 1.

There is another way to define Radon measures, using the duality of continuous
function spaces, see [98, Chapter 1]. The two definitions are equivalent, which helps
us to make the following observations:

• For Ω ⊂ Rd, a Borel set, we have [C0(Ω)]
∗ = M(Ω) with the duality pairing

⟨µ, f⟩M(Ω),C0(Ω) =

ˆ
Ω
fdµ.

In particular, we obtain [C0(Rd)]∗ = M(Rd).

• Further if we consider a bounded Borel set Ω, then we observe [C(Ω)]∗ = M(Ω)
with duality pairing

⟨µ, f⟩M(Ω),C(Ω) =

ˆ
Ω
fdµ.

• If µ ∈ [Cc(Ω)]
∗ then µ ∈ M (Ω) and µ is locally finite.

• If µ ∈M+(Ω), i.e., µ ≥ 0, then we have ⟨µ, f⟩M(Ω),C0(Ω) ≥ 0 for any f ≥ 0.

Remark 1.3.2. From the above discussion and the Theorem 1.2.2, we have[︁
L1(0, T ;C0(Ω))

]︁∗
= L∞

weak-(*)(0, T ;M(Ω)).

In particular, we obtain[︂
L1(0, T ;C0(Rd))

]︂∗
= L∞

weak-(*)(0, T ;M(Rd)).

Also, for a bounded Borel set Ω ⊂ Rd, we get[︁
L1(0, T ;C(Ω))

]︁∗
= L∞

weak-(*)(0, T ;M(Ω)).
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Jensen’s inequality

The standard form of the inequality is given by.

Lemma 1.3.3. If µ is a probability measure on Ω and g is a µ−measurable map.
Then

E

(︃ˆ
Ω
gdµ

)︃
≤
ˆ
Ω
E(g)dµ,

for any real valued convex function E.

1.3.2 Definition of Young measure

The theory of Young measure has several applications in various fields of mathe-
matical analysis. It was introduced by L. C. Young, see [123]. The main development
of this theory is related to the calculus of variations. Later many applications were
found in various contexts of differential equations. There are several articles and
monographs on the study of the Young measure and its application, to name a few,
see Ball [9], Ball and Murat [10], Pedregal [107], Málek et al. [98].

Let k,m ∈ N and Q ⊂ Rm be an open set. Consider a sequence {Un}n∈N
of measurable functions with Un : Q → Rk. We identify Un(y) ≈ δUn(y), where
δU ∈ P(Rk) denotes the Dirac measure in Rk supported at U. It helps us to interpret
Un as

Un : Q ↦→ δUn(y) ∈ P(Rk).

It is easy to verify that
Un ∈ L∞

weak-(*)
(︁
Q;P(Rk)

)︁
.

We have L∞
weak-(*)

(︁
Q;M(Rk)

)︁
= [L1

(︁
Q;C0(Rk)

)︁
]∗ and L1

(︁
Q;C0(Rk)

)︁
is separable.

This implies that there exists a subsequence (not relabeled) such that

Un → V weak-(*)ly in L∞
weak-(*)

(︁
Q;M(Rk)

)︁
.

This limit quantity V is called a Young measure associated with or generated by the
sequence Un. It is interpreted as a parameterized family of Borel measures {Vy}y∈Q.
The definition of weak-(*) convergence implies
ˆ
Q
ϕ(y)b(Un(y)) dy →

ˆ
Q
ϕ(y)

⟨︂
Vy; b(Ũ)

⟩︂
dy for any ϕ ∈ L1(Q) and b ∈ Cb(Rk),

where ⟨︂
Vy; b(Ũ)

⟩︂
=

ˆ
Rk

b(Ũ)dVy(Ũ).

As a trivial consequence, we get

Vy ∈ M+(Rk) for a.e. y ∈ Q with ∥Vy∥M(Rk) ≤ 1.
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1.3.3 Fundamental theorems of Young measure

Next we state the fundamental theorem for Young measure from Feireisl et al.
[67, Proposition 5.1].

Theorem 1.3.4 (Fundamental theorem). Let Q(⊂ Rm) be a domain for m ≥ 1
and {Un}n∈N be a sequence such that Un : Q→ Rk with

Un ∈ L1(Q;Rk), ∥Un∥L1(Q) ≤ C uniformly for n→ ∞. (1.3.1)

Then there exists a subsequence {Unk
}k∈N and a parameterized family of probability

measures {Yy}y∈Q with

Vy ∈ P(Rk) for a.e. y ∈ Q, and V ∈ L∞
weak-(*)

(︁
Q;M(Rk)

)︁
such that ˆ

Q
ϕ(y)b(Unk

(y)) dy →
ˆ
Q
ϕ(y)

⟨︂
Vy; b(Ũ)

⟩︂
dy

for any ϕ ∈ L1(Q) and b ∈ Cb(Rk) for a.e. y ∈ Q. The symbol
⟨︂
Vy; b(Ũ)

⟩︂
is given

by ⟨︂
Vy; b(Ũ)

⟩︂
:=

ˆ
Rk

b(λ)dVy(λ).

Remark 1.3.5. It is convenient to introduce the following notation:⟨︂
V; b(Ũ)

⟩︂
:=
{︂
y ↦→

⟨︂
Vy; b(Ũ)

⟩︂}︂
.

Also, we denote the barycenter of the Young measure by
⟨︂
V; Ũ

⟩︂
, it is given as⟨︂

V; Ũ
⟩︂
:=
{︂
y ↦→

⟨︂
Vy; Ũ

⟩︂}︂
Remark 1.3.6. Note that the condition (1.3.1) can be replaced by a weaker assump-
tion

Un is measurable,
ˆ
Q
h(Un) dy ≤ C uniformly for n→ ∞,

where h(ξ) → ∞ for ξ → ∞.

Remark 1.3.7. Instead of L1, the Theorem 1.3.4 holds if

Un ∈ Lp(Q;Rk), ∥Un∥Lp(Q) ≤ C uniformly for n→ ∞, (1.3.2)

for any 1 ≤ p ≤ ∞.

We give another form of the fundamental theorem due to Pedregal [107, Theorem
6.2]. Let Q ⊂ Rd, a function ψ(x, λ) : Q × Rd → R ∪ {∞} is called Carathéodary
function if it measurable in x and continuous in λ. The theorem states as follows:
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Theorem 1.3.8. Let Q ⊂ Rd be a measurable set and let Un : Q→ Rk be measurable
functions such that

sup
n

ˆ
Q
g(Un) dx <∞,

where g : [0,∞) → [0,∞] is a continuous, non-decreasing function such that
lim
t→∞

g(t) = ∞. There exists a subsequence, not relabeled, and a family of probability
measures, ν = {νx}x∈Q depends measurably on x, with the property whenever the
sequence {ψ(x,Un(x))}n∈N is weakly convergent to ψ̄ in L1(Q) for any Carathéodary
function ψ, the weak limit is the (measurable) function

ψ̄(x) =

ˆ
Rk

ψ(x, λ)dνx(λ).

Remark 1.3.9. From the above discussion, it is clear that the Young measure helps
us to give a representation of the weak or weak-(*) limit of a sequence with a nonlinear
composition.

We note that the Theorem 1.3.4 does not identify the limit for b ∈ C(Rk) unless
there is a further information about the convergence of the sequence b(Un). Here
we give the next proposition that states the properties of the Young measure of
composition.

Proposition 1.3.10. Let Q ⊂ Rm be a domain and let {Un}n∈N be a sequence such
that Un : Q→ Rk and let b ∈ C(Rk) such that

Un ∈ L1(Q;Rk), ∥Un∥L1(Q;Rk) ≤ C, ∥b(Un)∥L1(Q;Rk) ≤ C uniformly for n→ ∞.

Additionally, we assume that {Un}n∈N generates a Young measure {Vy}y∈Q. Then⟨︂
Vy; b(Ũ)

⟩︂
is finite for a.e. y ∈ Q, and y ∈ Q ↦→

⟨︂
Vy; b(Ũ)

⟩︂
∈ L1(Q).

We recall a standard notation for the approximation of a function by a sequence
of non-decreasing functions. Let b : Rk → [0,∞) be a function. We use the notation
bj ↗ b to describe that there exists a sequence of functions {bj}j∈N such that
0 ≤ bj ≤ bj+1 ≤ b for all j ∈ N and bj(x) → b(x) for a.e. x ∈ Rk as j → ∞.

Proof. Let b ∈ C(Rk). It suffices to prove for b ≥ 0 since we can write b = b+ − b−

with b+, b− ≥ 0. We consider a sequence bj ∈ Cb(Rk) such that 0 ≤ bj ↗ b.
Using the monotone convergence theorem[108, Chapter 3], we obtain⟨︂

Vy; bj(Ũ)
⟩︂
↗
⟨︂
Vy; b(Ũ)

⟩︂
∈ [0,∞] for a.e. y ∈ Q.

On the other hand, the Theorem 1.3.4 helps us to get
ˆ
B
bj(Un) dy →

ˆ
B

⟨︂
Vy; bj(Ũ)

⟩︂
dy as n→ ∞,
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for a bounded Borel subset B ⊂ Q. Thus we have

sup
n

∥b(Un)∥L1(Q;Rk) ≥ lim
j

ˆ
B
bj(Un) dy =

ˆ
B

⟨︂
Vy; bj(Ũ)

⟩︂
dy.

From this we concludeˆ
B

⟨︂
Vy; b(Ũ)

⟩︂
dy ≤ sup

n
∥b(Un)∥L1(Q;Rk) ≤ C, (1.3.3)

for any bounded Borel set B. It ends the proof of the proposition.

Corollary 1.3.11. We know L1(Ω) is continuously embedded in M(Ω). Thus we
have

b(Un) → b(U) weak-(*)ly in M(Ω).

If b ≥ 0 and all the hypothesis of the Proposition 1.3.10 holds true, then from (1.3.3)
we have

b(U) ≥
⟨︂
V; b(Ũ)

⟩︂
,

in the sense of measure.

In later chapters we will note that we need to consider nonlinearities b that are
not continuous. To do so, we give the definition of lower semicontinuous functions:

Definition 1.3.12. A function ϕ : Ω(⊂ Rd) → R ∪ {∞} is said to be lower semi-
continuous(l.s.c) if for every λ ∈ R the set {x ∈ Ω | ϕ(x) ≤ λ} is closed.

The proposition (1.3.10) can be extended for a bounded below l.s.c function
b : Rk → R∪{∞}. The key observation is the availability of a suitable approximation
of bounded below lower semicontinuous function by bounded continuous increasing
functions, i.e., there exists bj ↗ b and bj ∈ Cb(Rk) (Baire’s theorem, see [8]). An
elegant construction of such a bounded continuous sequence of functions bj can be
found in [108, Chapter 2, Exercise 22].

Corollary 1.3.13. Let Q ⊂ Rm be a domain,{Un}n∈N be a sequence such that
Un : Q→ Rk. We have the following assumption

Un ∈ L1(Q;Rk), ∥Un∥L1(Q;Rk) ≤ C, ∥b(Un)∥L1(Q;Rk) ≤ C uniformly for n→ ∞,

for a l.s.c function b : Rk → [0,∞]. Additionally, we assume that {Un}n∈N generates
a Young measure {Vy}y∈Q. Then⟨︂

Vy; b(Ũ)
⟩︂

is finite for a.e. y ∈ Q, and y ∈ Q ↦→
⟨︂
Vy; b(Ũ)

⟩︂
∈ L1(Q)

and b(U) ≥
⟨︂
V; b(Ũ)

⟩︂
.

Here we give a result that allows us to compare the oscillation defect measure for
two different nonlinearities. This result is a generalization of the result obtained by
Feireisl et al. in [56, Lemma 2.1].
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Lemma 1.3.14. Let Un : Q(⊂ Rd) → Rk, E : Rk → [0,∞] be a lower semi-
continuous function and G : Rk → Rn be a continuous function with the following
properties:

1. {Un}n∈N is a family of measurable functions, such that

∥Un∥L1(Q;Rk) ≤ C, and
ˆ
Q
E(Un) dy ≤ C uniformly for n. (1.3.4)

2. The functions E and G satisfy

lim sup
|U|→∞

|G(U)| < lim inf
|U|→∞

E(U). (1.3.5)

Then

E(U)−
⟨︂
νy;E(˜︁U)

⟩︂
≥
⃓⃓⃓
G(U)−

⟨︂
νy;G(˜︁U)

⟩︂⃓⃓⃓
. (1.3.6)

Remark 1.3.15. Here E(U) ∈ M+(Q) and G(U) ∈ M(Q;Rn) are the correspond-
ing weak-(*) limits and ν denotes the Young measure generated by {Un}. The
inequality (1.3.6) should be understood as

E(U)−
⟨︂
V;E(˜︁U)

⟩︂
−
(︂
G(U)−

⟨︂
V;G(˜︁U)

⟩︂)︂
· ξ ≥ 0

for any ξ ∈ Rn, |ξ| = 1.

Proof. The result was proved for continuous functions E, G, see [56, Lemma 2.1]. To
extend it to the class of lower semi-continuous functions like E, we first observe that
there is a sequence of continuous functions Fj ∈ C(Rk) such that

0 ≤ Fj ≤ E, Fj ↗ E.

In view of (1.3.5), there exists R > 0 such that

|G(U)| < E(U) whenever |U| > R.

Consider a function

T : C∞(Rm), 0 ≤ T ≤ 1, T (U) = 0 for |U| ≤ R, T (U) = 1 for |U| ≥ R+ 1.

Finally, we construct a sequence

Ej(U) = T (U)max{|G(U)|;Fj(U)}.

We have

0 ≤ Ej(U) ≤ E(U), Ej(U) ≥ |G(U)| for all |U| ≥ R+ 1.
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Applying the lemma [56, Lemma 2.1] we get

Ej(U)−
⟨︂
νy;Ej(˜︁U)

⟩︂
≥
⃓⃓⃓
G(U)−

⟨︂
νy;G(˜︁U)

⟩︂⃓⃓⃓
for any j. Thus the proof reduces to showing

Ej(U)−
⟨︂
νy;Ej(˜︁U)

⟩︂
≤ E(U)−

⟨︂
νy;E(˜︁U)

⟩︂
,

or, in other words, to showing

H(U)−
⟨︂
νy;H(˜︁U)

⟩︂
≥ 0 whenever H : Rm → [0,∞] is an l.s.c function.

Repeating the above arguments, we construct a sequence

0 ≤ Hj ≤ H of bounded continuous functions, Hj ↗ H.

Consequently,

0 ≤ H(U)−Hj(U) = H(U)−
⟨︂
νy;Hj(˜︁U)

⟩︂
→ H(U)−

⟨︂
νy;H(˜︁U)

⟩︂
as j → ∞.

Remark 1.3.16. The condition (1.3.4) can be replaced with the following assumption,

E(U) ≥ |U| as |U| → ∞ and
ˆ
Q
E(Un) dy ≤ C uniformly for n. (1.3.7)

Our next goal is to state a similar result for time-dependent functions.

Proposition 1.3.17. Let T > 0 and Un ∈ L∞(0, T ;L1(Q)) be a sequence such that
Un : (0, T )×Q→ Rk and let b ∈ C(Rk) with

∥Un∥L∞(0,T ;L1(Q)) ≤ C, ∥b(Un)∥L∞(0,T ;L1(Q)) ≤ C uniformly for n→ ∞.

Additionally, we assume that {Un}n∈N generates a Young measure {Vt,x}(t,x)∈(0,T )×Q

and
b(Un) → b(U) weak-(*)ly in L∞(0, T ;M(Ω)).

Then ⟨︂
Vt,x; b(Ũ)

⟩︂
is finite for a.e. (t, x) ∈ (0, T )×Q,

and (t, x) ∈ (0, T )×Q ↦→
⟨︂
Vt,x; b(Ũ)

⟩︂
∈ L∞(0, T ;L1(Q)).
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Proof. Without loss of generality we assume b ≥ 0 and the existence of bj as in
proof of the Theorem 1.3.10. We observe L∞(0, T ;L1(Q)) ⊂ L1((0, T ) ×Q). As a
consequence of the Theorem 1.3.10 we obtain

⟨︂
V; b(Ũ)

⟩︂
∈ L1((0, T )×Q). Thus we

observe
t ↦→
ˆ
Q

⟨︂
Vt,x; b(Ũ)

⟩︂
dx ∈ L1(0, T ).

Using monotone convergence theorem we conclude for a.e. t ∈ (0, T )

ˆ
B

⟨︂
Vt,x; b(Ũ)

⟩︂
dx = lim

j→∞

ˆ
B

⟨︂
Vt,x; bj(Ũ)

⟩︂
dx, (1.3.8)

for a bounded Borel set B ⊂ Q. We also have
ˆ
B
bj(Un)(t) dx n→∞−−−→

ˆ
B

⟨︂
Vt,x; bj(Ũ)

⟩︂
dx, (1.3.9)

for a.e. t ∈ (0, T ). From (1.3.8) and (1.3.9), we conclude that

ess sup
(0,T )

ˆ
B

⟨︂
Vt,x; b(Ũ)

⟩︂
dx ≤ ess sup

(0,T )

ˆ
B
b(Un) dx ≤ C, (1.3.10)

for any bounded Borel subset B. It is easy to prove that

t ↦→
ˆ
Q

⟨︂
Vt,x; b(Ũ)

⟩︂
η(x) dx is measurable, (1.3.11)

for η ∈ L∞(Q). Therefore, we have t ↦→
⟨︂
Vt,x; b(Ũ)

⟩︂
is weakly measurable. Since

L1(Q) is separable thus the map is strongly measurable. This concludes our desired
result.

Remark 1.3.18. In the Proposition 1.3.10 and 1.3.17, we can replace the space
L1(Q) by L1

loc(Q).

Remark 1.3.19. The proposition 1.3.17 can be extended for a bounded below l.s.c
function b : Rk → R ∪ {∞}.

1.3.4 Defect measure and its properties

From our earlier observation for a sequence Un with the property

∥Un∥L1(Q;Rk) ≤ C, ∥b(Un)∥L1(Q;Rk) ≤ C uniformly for n→ ∞, (1.3.12)

for b ∈ C(Rk). Let {Vy}y∈Q be the associated Young measure. Then we have

• b(Un) → b(U) weak-(*)ly in M(Q).

•
⟨︂
Vy; b(Ũ)

⟩︂
is finite for a.e. y ∈ Q, and y ∈ Q ↦→

⟨︂
Vy; b(Ũ)

⟩︂
∈ L1(Q).
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• y ∈ Q ↦→
⟨︂
Vy; Ũ

⟩︂
∈ L1(Q) and b ∈ C(Rk) imply y ∈ Q ↦→ b(

⟨︂
Vy; Ũ

⟩︂
) is

measurable.

Therefore, we introduce the defect measures:

• Concentration Defect:

Rcd = b(U)−
⟨︂
Vy; b(Ũ)

⟩︂
∈ M(Q).

• Oscillation defect:

Rod =
⟨︂
Vy; b(Ũ)

⟩︂
− b

(︂⟨︂
Vy; Ũ

⟩︂)︂
is a measurable map on Q.

• Total defect:
R = Rcd +Rod.

Let us consider b : Rk → [0,∞], a convex l.s.c function and {Un} satisfies (1.3.12).
Then we have

b
(︂⟨︂

Vy; Ũ
⟩︂)︂

≤
⟨︂
Vy; b(Ũ)

⟩︂
as a direct consequence of Jensen’s inequality and b ̸≡ ∞. This leads us to conclude

• Rcd ∈ M+(Q).

• Rod ∈ L1(Q) and Rod ≥ 0 for a.e. y ∈ Q.

Now we focus on the time-dependent functions. Let us assume ∥Un∥L∞(0,T ;L1(Q))

with ∥b(Un)∥L∞(0,T ;L1(Q)) ≤ C uniformly for n→ ∞ and b ∈ C(Rk).
We recall that L∞

weak-(*)(0, T ;M(Rd)) is the dual of L1(0, T ;C0(Rd)). Then, the
first observation is

b(Un) → b(U) weak-(*)ly in L∞
weak-(*)(0, T ;M(Rd)).

Proposition 1.3.17 gives us (t, x) ∈ Q ↦→
⟨︂
Vt,x; b(Ũ)

⟩︂
∈ L∞(0, T ;L1(Q)). This

implies the following results:

• Concentration defect:

Rcd = b(U)−
⟨︂
Vt,x; b(Ũ)

⟩︂
∈ L∞

weak-(*)(0, T ;M(Rd)).

• Oscillation defect:

Rod =
⟨︂
Vt,x; b(Ũ)

⟩︂
− b

(︂⟨︂
Vt,x; Ũ

⟩︂)︂
is a measurable map on (0, T )×Q.

If we consider b : Rk → [0,∞] a convex l.s.c then we conclude

• Rcd ∈ L∞
weak-(*)(0, T ;M(Rd)),

• Rod ∈ L∞(0, T ;L1(Rd)) and Rod ≥ 0 for a.e. (t, x) ∈ (0, T )×Q.
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Consequence of vanishing concentration defect

We state a result related to a defect measure D ∈ M+(Rd;Rd×d
sym). For D ∈

M+(Rd;Rd×d
sym) means D ∈ M+(Rd;Rd×d) and D(x) is symmetric for each x ∈ Rd.

Feireisl and Hofmanová proved the following proposition in [58, Section 4.2].

Proposition 1.3.20. Let D ∈ M+(Rd;Rd×d
sym) satisfy

ˆ
Rd

∇xφφφ : dD = 0 for any φφφ ∈ C1
c (Rd;Rd),

Then D = 0.

Remark 1.3.21. The result is not true if D ∈ M+(Ω;Rd×d
sym) if Ω is a bounded

domain. A modified version in a bounded domain is available in [57].

The key ingredient of the proof of Proposition 1.3.20 is the consideration of the
sequence of cut off function {χn}n∈N such that

χn ∈ C∞
c (Rd), 0 ≤ χn ≤ 1, χn(x) = 1 for |x| ≤ n, χn(x) = 0 for |x| ≥ 2n,

|∇xχn| ≤
2

n
uniformly as n→ ∞.

(1.3.13)

This helps us to conclude that
ˆ
Rd

∇xφφφ : dD = 0 for any φφφ ∈ C1(Rd;Rd) with ∇xφφφ ∈ L∞(Rd;Rd×d).

Here we state a corollary of the above proposition and the proof of the corollary lies
in the similar lines of the above proposition.

Corollary 1.3.22. Let D = {Dij}di,j=1 ∈ L∞
weak-(*)(0, T ;M(Rd;Rd×d)) be such that

ˆ T

0

ˆ
Rd

∇xϕ : dD dt = 0

for any ϕ ∈ D((0, T )× Rd;Rd).
Then, for any ψ ∈ C∞

c (0, T ;C1(Rd;Rd)), ∇xψ ∈ C∞
c (0, T ;L∞(Rd;Rd×d)), we have

ˆ T

0

ˆ
Rd

∇xψ : dD dt = 0.

1.3.5 Convergence results

It is well known fact that the Young measure captures oscillation. We state the
lemma from [98, Chapter 3].

Lemma 1.3.23. Let 1 < p ≤ ∞ and {vn}n∈N with vn : Rd → Rm. Further {vn}n∈N
is bounded uniformly in Lp

loc(R
d, ;Rm) and generates a Young measure ν.



1.3. Young measure and related results 21

• If vn → v weakly in Lp(Rd;Rm) for 1 < p < ∞ or weak-(*)ly in L∞(Rd;Rm).
Then we have v = ⟨νy; ṽ⟩ for a.e. y.

• Further it holds that vn → v strongly in Lp(Rd;Rm) if and only if ν reduces to a
Dirac measure i.e.

νy = δv(y) for a.e. y ∈ Rd.

The next result is for the critical case of L1. We recall the definition of convergence
in measure.

Definition 1.3.24. Let un : Ω(⊂ Rd) → Rk be a sequence of measurable functions.
We say un converges in measure to u if for every ϵ > 0,

lim
n→∞

L ({x ∈ Ω | |un(x)− u(x)| ≥ ϵ}) = 0.

Lemma 1.3.25. We consider a sequence {vn}n∈N, vn : Rd → Rm such that {vn}n∈N
is bounded in L1

loc(R
d;Rm) and generates a Young measure ν. Suppose v(y) = ⟨νy; ṽ⟩

is the barycenter of the Young measure and νy = δv(y) for a.e. y ∈ Rd, then
vn → v in measure.

Proof. Consider 0 < ϵ < 1 and Mϵ = {y ∈ Rd||vn(y)− v(y)| ≥ ϵ}. We obtain

L(Mϵ) ≤
1

ϵ

ˆ
Rd

min{1, |vn(y)− v(y)|} dy.

Let us choose a bounded Carathéodary function ϕ(λ, y) = min{1, |λ− v(y)|}. From
the fundamental theorem of Young measure 1.3.8 we getˆ

Rd

ϕ(un(y), y) dy →
ˆ
Rd

(︃ˆ
Rm

ϕ(λ, y)dνy(λ)
)︃

dy as n→ ∞.

Using the fact that the Young measure is a Dirac mass, it holds

lim
n→∞

L(Mϵ) ≤ lim
n→∞

1

ϵ

ˆ
Rd

ϕ(x,v(y)) dy = 0.

This concludes that vn → v in measure.

Lemma 1.3.26. Let Q ⊂ Rd be a bounded domain, and let {vn}∞n=1 be sequence of
vector–valued functions,

vn : Q→ Rk,

ˆ
Q
|vn| ≤ C uniformly for n→ ∞,

generating a Young measure νy ∈ P [Rk], y ∈ Q. Suppose that

E(vn) → ⟨νy;E(˜︁v)⟩ weak-(*)ly in M(Q), ⟨νy;E(˜︁v)⟩ ∈ L1(Q),

where E : Rd → [0,∞] is an l.s.c. function.
Then

E(vn) → ⟨νy;E(˜︁v)⟩ weakly in L1(Q).

Proof. Enough to prove the equi-integrability of {E(vn)}n∈N. A detailed proof is in
[67, Lemma 5.1].
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1.3.6 Inequalities involving Young measure

Generalized Korn-Poincaré inequality for Young measure

Theorem 1.3.27. Let {vn}n∈N be a uniformly bounded in L2(0, T ;W 1,2
0 (Ω)). Let V

be an Young measure generated by {vn,D(∇xvn)}. For ũ ∈ L2(0, T ;H1
0 (Ω;Rd)), the

following inequality is true:

ˆ τ

0

ˆ
Ω

⟨︁
Vt,x; |ṽ − ũ|2

⟩︁
dx dt ≤ C

ˆ τ

0

ˆ
Ω

⟨︂
Vt,x; |D0(˜︂Dv)− D0(∇xũ)|2

⟩︂
dx dt .

(1.3.14)

Remark 1.3.28. Here we consider vn and ∇xvn as two different variable and V is
a Young measure generated by {vn,D(∇xvn)}n∈N. For a continuous bounded map
f : Rd × Rd×d

sym → R, we denote the weak-(*) limit of f(vn,D(∇xvn)) by f̄ and

f̄ =
⟨︂
Vt,x; f(ṽ,˜︂Dv).

⟩︂
The proof is available in Březina, Feireisl and Novotný [27, Lemma 2.2].

Theorem 1.3.29. Let {vn}n∈N be a uniformly bounded in L2(0, T ;W 1,2(Ω)) and
{ϱn}n∈N be uniformly bounded in L∞(0, T ;Lγ(Ω)), for γ > 1. Moreover, we assume
that for each n ∈ N, ϱn satisfies

´
Ω ϱn =M0,n > 0 for a.e. t ∈ (0, T ).

Let V be a Young measure generated by {ϱn,vn,D(∇xvn)}n∈N. Then for any
ũ ∈ L2(0, T ;W 1,2

0 (Ω;Rd)), the following inequality holds:

ˆ τ

0

ˆ
Ω

⟨︁
Vt,x; |ṽ − ũ|2

⟩︁
dx dt ≤ C

(︃ ˆ τ

0

ˆ
Ω

⟨︂
Vt,x; |D0(˜︂Dv)− D0(∇xũ)|2

⟩︂
dx dt

+

ˆ τ

0

ˆ
Ω

⟨︁
Vt,x; ϱ̃|ṽ − ũ|2

⟩︁
dx dt

)︃
.

(1.3.15)

Proof. The first observation is vn − ũ ∈ L2(0, T ;W 1,2(Ω;Rd)). Thus, using the
generalized Korn-Poincaré inequality (1.1.13), we obtain

ˆ τ

0

ˆ
Ω
|vn − ũ|2 dx dt

≤ C

(︃ˆ τ

0

ˆ
Ω
D0(∇x(vn − ũ)) : D0(∇x(vn − ũ)) dx dt +

ˆ τ

0

ˆ
Ω
ϱn|vn − ũ|2 dx dt

)︃
.

Since V is the Young measure generated by {ϱn,un,D(∇xun)}, we obtain our desired
inequality.



1.3. Young measure and related results 23

Sharp form of Jensen’s inequality

We already have Jensen’s inequality in Lemma 1.3.3, a sharp form of it is also
available. We state it in the following lemma.

Lemma 1.3.30. Suppose that E : Rd → [0,∞] is an l.s.c. convex function satisfying:

• E is strictly convex on its domain of positivity, meaning for any y1, y2 ∈ Rm

such that 0 < E(y1) <∞, E(y2) <∞, y1 ̸= y2, we have

E

(︃
y1 + y2

2

)︃
<

1

2
E(y1) +

1

2
E(y2).

• If y ∈ ∂Dom[E], then either E(y) = ∞ or E(y) = 0, in other words,

E(y) = 0 whenever y ∈ Dom[E] ∩ ∂Dom[E].

Let ν ∈ P [Rd] be a (Borel) probability measure with finite first moment satisfying

E(⟨ν; ˜︁y⟩) = ⟨ν;E(˜︁y)⟩ <∞.

Then (i) either

ν = δY , Y = ⟨ν; ˜︁y⟩ ∈ Dom[E], E(Y ) > 0,

(ii) or
supp[ν] ⊂

{︂
y ∈ Rm

⃓⃓⃓
E(y) = 0

}︂
.

The proof of the above lemma is available at [57, Lemma 3.1].
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Chapter 2

Fluid models and generalized
solutions

2.1 Continuum fluid models

A fluid consists of a large number of molecules in motion without having a precise
shape at rest (unlike a solid). One way to describe it is to write down equations of
motion for each particle by considering their interactions (collisions, characterized by
the mean free path). This approach leads to the study of the kinetic theory of fluids
and statistical mechanics in general.

If the mean density of the fluid is not too small (i.e., if the characteristic lengths
of the problem are large compared to the mean free path of the particles), then
the fluid can be considered as a continuous medium. In this thesis, our goal is to
discuss a phenomenological theory of fluid dynamics based on observable macroscopic
quantities such as density, velocity, internal energy, and so on. These depend on the
spatial reference coordinate x ∈ Rd, and, since we are interested in fluids in motion,
on time t ∈ R. We say that the description of the continuous medium is valid, if
there exists a non-negative function (t, x) ↦→ ϱ(t, x) such that the mass contained in
any finite volume ω ⊂ Rd at any time t can be expressed as follows

Mass in ω at time t =
ˆ
ω
ϱ(t, x) dx.

This function ϱ is called the density of the fluid.
The motion of fluid particles is determined by the velocity field u(t, x) ∈ Rd. Let

ω be the volume space occupied by the fluid at the initial time. The trajectory of the
set ω is given by

X(t, ω), t ≥ 0, where ∂tX(t, x) = u(t,X(t, x)), X(0, x) = x, x ∈ ω.

The individual trajectories t ↦→ X(t, x) are called streamlines. We note that the
streamlines are well defined and bijective if the velocity u enjoys certain regularity,

25
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i.e.,

for any interval I ⊂ (0,∞), ∇xu ∈ L∞(I;L∞
loc(Rd;Rd×d)).

Eulerian and Lagrangian description

Let ω be the volume of space occupied by the fluid at the initial time. Given a
velocity field u that generates a family of streamlines X = X(t, x) in the physical
space Ω ⊂ Rd, a quantity Q can be expressed in terms of the Eulerian variables as

Q = QE(t, x), t ∈ I, x ∈ X(t, ω),

or, in terms of the Lagrangian variables as

Q = QL(t, Y ), t ∈ I, Y ∈ ω,

where QL(t, Y ) = QE(t,X(t, Y )) or QL(t,X
−1(t, x)) = QE(t, x) provided the stream-

lines are bijective. In particular, the time derivative in the Lagrangian setting is
equivalent to the material derivative in the Eulerian description:

∂tQL(t, Y ) = ∂tQE(t,X(t, x)) + u(t,X(t, x)) · ∇xQE(t,X(t, x)).

Although it seems that the Lagrangian description is simpler, the invertibility of the
mapping X is the main problem, since the regularity of ∇xv is not always available.
Therefore, in this thesis we stick to the Eulerian description of the fluid.

2.1.1 Balance laws

In the introduction we mentioned some systems of partial differential equations
describing fluid flows. The formulation of these equations follows from the fundamental
laws of physics in the form of balance laws. The time evolution of any macroscopic
quantity (D) is determined by its volume density d = d(t, x), flux F = F(t, x) and
source term σ = σ(t, x). Given an arbitrary time interval [t1, t2] and an arbitrary
volume element ω ⊂ Ω, the corresponding balance law can be written as:[︃ˆ

ω
d(t, x) dx

]︃t=t2

t=t1

= −
ˆ t2

t1

ˆ
∂ω

F(t, x) · n dSx dt +
ˆ t2

t1

ˆ
ω
σ(t, x) dx dt , (2.1.1)

where n is the outer normal vector to ∂ω and Sx is the surface measure on ∂ω.
The balance law (2.1.1) states that the total amount of quantity D in volume ω
is proportional to the amount acting through the boundary ∂ω and the amount
contributed by the source term. In the absence of the source term, the relation (2.1.1)
represents a conservation law. We note that the balance law written in this form
(2.1.1) requires very little regularity of variables:

1. the (local) integrability of the variables d,F and σ,
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2. the existence of the normal trace of the field [d, f ] in the time-space cylinder
(t1, t2)× ω.

Note that for simplicity we assume that d and σ are scalar-valued and the correspond-
ing flux is vector-valued. We can consider a more generalized form by considering a
vector-valued quantity d, a vector-valued source term σσσ and a matrix-valued flux F.
Then the balance law is[︃ˆ

ω
d(t, x) dx

]︃t=t2

t=t1

= −
ˆ t2

t1

ˆ
∂ω

F(t, x) · n dSx dt +
ˆ t2

t1

ˆ
ω
σσσ(t, x) dx dt . (2.1.2)

Assuming that all quantities written in equation (2.1.1) are smooth enough, we divide
the equation by (t2 − t1), and consider the limit t2 → t1 to obtain

d
dt

ˆ
ω
d(t, x) dx+

ˆ
∂ω

F(t, x) · n dSx =

ˆ
ω
σ(t, x) dx,

for any t ∈ [t1, t2]. Then the Gauss-Green theorem yieldsˆ
ω
[∂td(t, x) + divxF(t, x)] dx =

ˆ
ω
σ(t, x) dx.

Since ω ⊂ Ω is arbitrary, we conclude that for any (t, x) ∈ (0, T )× Ω the following
holds

∂td+ divxF = σ. (2.1.3)

We call (2.1.3) as a strong or differential form of the balance law (2.1.1). Similarly,
the vector-valued version of a balance law is

∂td+ divxF = σσσ.

Assuming that d and F are weakly differentiable, we derive the following from (2.1.1):
ˆ t2

t1

ˆ
Ω
d(t, x)∂tϕ(t, x) dx dt +

ˆ t2

t1

ˆ
Ω
F · ∇xϕ(t, x) dx dt

= −
ˆ t2

t1

ˆ
Ω
σ(t, x)ϕ(t, x) dx dt ,

(2.1.4)

where ϕ ∈ C1
c ((t1, t2)×Ω) and ϕ is called a test function. For a simpler consideration,

assume that Ω has a Lipschitz boundary. This version of the balance law is called
as the weak form of balance law. Similarly, we have a corresponding vector-valued
version. It reads as followsˆ t2

t1

ˆ
Ω
d(t, x) · ∂tϕϕϕ(t, x) dx dt +

ˆ t2

t1

ˆ
Ω
F : ∇xϕϕϕ(t, x) dx dt

= −
ˆ t2

t1

ˆ
Ω
σσσ(t, x) · ϕϕϕ(t, x) dx dt ,

(2.1.5)

where ϕϕϕ ∈ C1
c ((t1, t2)× Ω;Rd).
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Initial and boundary condition

As mentioned in the introduction, the physical problems are supplemented with
initial states, for d ∈ C([0, T )× Ω) we write

d(0, ·) = d0 (2.1.6)

where d0 is given. Unfortunately, when considering the weak form of the balance law,
the pointwise values are not clear. Therefore, we need to find a suitable explanation
for them. In this case, the following proposition helps us.

Proposition 2.1.1. Let Ω ⊂ Rd be a domain. We assume that d ∈ L∞(0, T ;L1(Ω)),
F ∈ L1((0, T )× Ω;Rd) and s ∈ L1((0, T )× Ω) solves the weak form of balance law
(2.1.4). Then

d ∈ Cweak-(*)([0, T ];M(Ω))

and {︃
t ↦→
ˆ
Ω
d(t, x)ψ(t, x) dx

}︃
∈ C[0, T ] for any ψ ∈ Cc(Ω).

Remark 2.1.2. Thus for any d0 ∈ L1(Ω), the initial data is satisfied in the following
sense

lim
t→0

ˆ
Ω
d(t, x)ψ(x) dx =

ˆ
Ω
d0(x)ψ(x) dx.

For d0 ∈ M(Ω) we can define in a similar way by substituting the duality bracket(︁
⟨· , ·⟩M(Ω),Cc(Ω)

)︁
for the integral. Proposition 2.1.1 is related to the Lemma 1.2.3.

Suppose a boundary condition is given by the normal component of the flux F on
∂Ω as

F · n = Fbd,

where n is the outer normal vector to ∂Ω. It is well defined for a smooth function F.
In weak formulation it can be included in the equation (2.1.4) asˆ t2

t1

ˆ
Ω
d(t, x)∂tϕ(t, x) dx dt +

ˆ t2

t1

ˆ
Ω
F · ∇xϕ(t, x) dx dt

=

ˆ t2

t1

ˆ
∂Ω

Fbdϕ(t, x)dSx dt +
ˆ t2

t1

ˆ
Ω
σ(t, x)ϕ(t, x) dx dt ,

(2.1.7)

where ϕ ∈ C1
c ((t1, t2)× Ω).

Finally, we summarize the above discussion and give the weak form of balance
law as[︃ˆ

Ω
d(t, x)ϕ(t, x) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
d(t, x)∂tϕ(t, x) dx dt

+

ˆ τ

0

ˆ
Ω
F · ∇xϕ(t, x) dx dt −

ˆ τ

0

ˆ
∂Ω

Fbdϕ(t, x)dSx dt

+

ˆ τ

0

ˆ
Ω
σ(t, x)ϕ(t, x) dx dt ,
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where ϕ ∈ C1
c ([0, T )× Ω).

2.1.2 Balance laws in fluid dynamics

To obtain the basic equations in fluid dynamics, we first choose the basic principles
such as conservation of mass, conservation of momentum, and conservation of energy.
Then we find the interrelations between the unknown variables such as density,
velocity, momentum, temperature, internal energy, entropy, etc. Finally, depending
on the domain, the initial, boundary and far field conditions are included to complete
the formulation.

Conservation of mass

The distribution of mass is given by the mass densityϱ(t, x). The conservation of
mass is expressed as

∂tϱ+ divx(ϱu) = 0, (2.1.8)

where u(t, x) is a vector field representing the velocity of the fluid. The equation is
also called equation of continuity or continuity equation. For a bounded domain, if
we include the impermeability boundary condition on ∂Ω, i.e.

u · n = 0 on ∂Ω, (2.1.9)

the suitable weak form of the balance law is as follows:
ˆ τ

0

ˆ
Ω

[︁
ϱ∂tϕ+ ϱu · ∇xϕ

]︁
dx dt =

[︃ˆ
Ω
ϱ(t, x)ϕ(t, ·) dx,

]︃t=τ

t=0

(2.1.10)

for any τ ∈ (0, T ) and ϕ ∈ C1
c ([0, T ) × Ω). The equation remains the same if we

consider Ω as a flat torus Td instead of a bounded domain. We note that (2.1.10)
also holds for ϕ ∈ C1([0, T )× Ω) if we assume (2.1.9). Thus, if we substitute ϕ ≡ 1
in a bounded domain with impermeability condition or in a flat torus, we obtain the
total mass conservation [︃ˆ

Ω
ϱ(t, x) dx

]︃t=τ

t=0

= 0, (2.1.11)

for any τ ∈ (0, T ). The situation is delicate for an unbounded domain or the full
domain Rd. We have to impose certain limits of density and velocity as |x| → ∞.
One can consider a condition like

ϱ→ ϱ̄ and u → 0 as |x| → ∞,

or, |ϱ− ϱ̄| → 0 and u → 0 as |x| → ∞, (2.1.12)

where ϱ̄ > 0. The above condition is termed as a far field condition.
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In a physically relevant scenario, density should be considered as a positive
or non-negative function. It is clear from Proposition 2.1.1 that we need only
ϱ ∈ L∞(0, T ;L1(Ω)) and ϱu ∈ L1((0, T )×Ω) to make sense of (2.1.10). Unfortunately,
this is not enough to conclude the strict positivity of ϱ, even if we assume ϱ0 > 0.
For ϱ0 > 0, DiPerna and Lions [42] show that the density is strictly positive if the
velocity u satisfies the following condition

∥divxu∥L1(0,T ;L∞(Ω)) <∞.

We rewrite the equation(2.1.8) in terms of density ϱ and momentum m(= ϱu) as

∂tϱ+ divxm = 0. (2.1.13)

The weak form of it can be considered accordingly.

Renormalized continuity equation

The hyperbolic system of conservation laws is not well posed in the class of weak
solutions, since it develops discontinuities(Shock). To identify physically admissible
solutions in addition to weak solutions, a set of inequalities (entropy inequality) must
be added. These solutions are called entropy solution, see [98, Chapter 2].

For a transport equation such as the continuity equation, DiPerna and Lions
[42] adapt the concept of entropy solution, in the form of renormalized equation of
continuity. The renormalized equation of continuity is obtained by multiplying the
equation of continuity by a smooth function b′(ϱ) with b ∈ C1(0,∞), b is bounded in
[0,∞) and b(0) = 0, i.e.

∂t(b(ϱ)) + divx(b(ϱ)u) = (b(ϱ)− ϱb′(ϱ))divxu. (2.1.14)

A similar weak formulation is also possible by multiplication with appropriate test
functions. Moreover, if ϱ and u solves the equation of continuity in distributional
sense and, ϱ ∈ L2(0, T ;L2(Ω)) and u ∈ L2(0, T ;W 1,2(Ω;Rd)), then then satisfy
the renormalized equation of continuity in the sense of distribution, see Feireisl [50,
Section 4.1] for further generalizations.

Conservation of momentum

We include Newton’s second law to write the conservation of momentum as

∂t(ϱu) + divx(ϱu⊗ u) = divxT+ ϱf , (2.1.15)

where T is the Cauchy stress tensor and f is an external force.
We rewrite the above equation by considering the momentum m as

∂tm + divx
(︃

m ⊗ m
ϱ

)︃
= divxT+ ϱf . (2.1.16)
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We note that it is reasonable to consider 1ϱ>0
m⊗m

ϱ instead of m⊗m
ϱ as the term is

not well defined for ϱ = 0. This term divx
(︂
1ϱ>0

m⊗m
ϱ

)︂
or divx (ϱu⊗ u) is called the

convective term.
By Stokes law, we consider the Cauchy stress tensor as

T = S− pI, (2.1.17)

where S is the viscous stress tensor and p is a scalar field called pressure.

Remark 2.1.3. Note that in the case of a perfect(inviscid) fluid, we consider S ≡ 0.

We rewrite the equation (2.1.15) as

∂t(ϱu) + divx(ϱu⊗ u) +∇xp = divxS+ ϱf .

A weak formulation of this equation is as follows[︃ ˆ
Ω
ϱu(t, ·) ·φφφ(t, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
(ϱu · ∂tφφφ+ ϱu⊗ u : ∇xφφφ+ pdivxφφφ− S : ∇xφφφ− ϱf ·φφφ) dx dt ,

(2.1.18)

for any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T ]× Ω;Rd) .

In the context of a perfect fluid (S = 0) that satisfies the impermeability boundary
condition (2.1.9), the set of admissible test functions extends to

C1([0, T ]× Ω;Rd) with φφφ · n = 0 on ∂Ω. (2.1.19)

For a viscous fluid (S ̸= 0) the weak formulation (2.1.18) is compatible with the
complete slip or Navier Slip boundary condition, i.e.

u · n = 0 and [S · n]tan = 0 on ∂Ω, (2.1.20)

where [S ·n]tan = 0 on ∂Ω means that the tangential component of the normal viscous
stress vanishes at the boundary.

Further we observe that the following weak formulation:[︃ ˆ
Ω
ϱu(t, ·) ·φφφ(t, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
(ϱu · ∂tφφφ+ ϱu⊗ u : ∇xφφφ+ pdivxφφφ− S : ∇xφφφ− ϱf ·φφφ) dx dt ,

(2.1.21)

for any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T ]×Ω;Rd) corresponds to the no-slip boundary

condition, i.e.

u = 0 on ∂Ω. (2.1.22)
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Conservation of energy

The first law of thermodynamics requires that total energy be conserved. The
total energy is a scalar function e = e(t, x). Multiplying the momentum equation
by u, gives the expression for the kinetic energy ekin. Since ekin = 1

2ϱ|u|
2, the time

evolution is obtained as

∂tekin + divx(ekinu)− divx(Su) = −S : ∇xu+ pdivxu+ ϱf · u.

Thus, the internal energy eint(= ϱe) should satisfy

∂teint + divx(eintu) + divxq = S : ∇xu− pdivxu,

where q is the diffusive internal energy flux and e is specific internal energy. In a
bounded domain, we assume that the system is thermally insulated. i.e.

q · n = 0 on ∂Ω.

Together, we have the energy balance for the total energy e = ekin + eint as

∂te + divx((e + p)u) + divx(q− Su) = ϱf · u. (2.1.23)

Similarly, we obtain the weak form of the energy balance by multiplying the above
equation by test functions.

If f = 0, then in a bounded domain with suitable boundary conditions, we observe
the energy balance: [︃ˆ

Ω
e(t, x) dx

]︃t=τ

t=0

= 0, (2.1.24)

for any τ ∈ (0, T ).

Constitutive relation

We can clearly see that so far we have more unknowns compared to the number of
equations, so the system is not closed. The thermodynamic variables are interrelated
by various constitutive equations. Here we consider a few of them.

• Perfect gas equation of state: We introduce the absolute temperature ϑ. The
equation of state is given by the Boyle-Mariotte law, i.e.

e = cvϑ, cv =
1

γ − 1
, where γ > 1 is the adiabatic constant. (2.1.25)

The relation between pressure p and absolute temperature ϑ is

p = ϱϑ.

As a simple consequence of it, we have

(γ − 1)ϱe = p.
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• Fourier’s law of heat conduction: Similarly, a simplest possible choice for heat
conduction is given by

q = −κ∇xϑ, (2.1.26)

where κ is the heat conductivity coefficient.

• Viscous stress: In general, the viscous stress is a function of the velocity gradient
∇xu and the temperature ϑ. It is given by the Newton’s rheological law as

S(∇xu) = µ(ϑ)

(︃
∇xu+∇T

xu

2
− 1

d
(divxu)I

)︃
+ λ(ϑ)(divxu)I, (2.1.27)

where µ and λ are positive and termed as the shear and bulk viscosity coefficients,
respectively.

Entropy balance

Invoking the second law of thermodynamics we introduce the entropy s = s(t, x).
For the Boyle-Mariotte equation of state, the entropy with respect to the standard
variables has the form

s(ϱ, ϑ) = log(ϑcv)− log(ϱ).

For smooth solutions, the entropy equations (2.4.4) can be derived directly from the
existing field equations. It is as follows

∂t(ϱs) + divx(ϱsu) + divx
q

ϑ
=

1

ϑ

(︃
S : ∇xu− q · ∇xϑ

ϑ

)︃
. (2.1.28)

Note that Fourier’s law and the structural assumption about the viscous stress tensor
S help us to conclude that the right hand side of the above equation is non-negative,
which is necessary for any physically relevant process.

Furthermore, we note that the state variables satisfy the Gibbs relation:

ϑDs(ϱ, ϑ) = De(ϱ, ϑ) + p(ϱ, ϑ)D

(︃
1

ϱ

)︃
.

Remark 2.1.4. In a more general setup, one can choose any equation of state
compatible with the Gibbs relation instead of the Boyle-Mariotte equation of state.

Remark 2.1.5. In the class of smooth solutions, the energy balance, the internal
energy balance and the entropy balance are same.

Summarizing the above discussion we get the system

∂tϱ+ divx(ϱu) = 0,

∂t(ϱu) + divx(ϱu⊗ u) = divxT+ ϱf ,

∂t(ϱs) + divx(ϱsu) + divx
q

ϑ
=

1

ϑ

(︃
S : ∇xu− q · ∇xϑ

ϑ

)︃
.

(2.1.29)

The above system is called the Navier–Stokes–Fourier system with the Boyle-Mariotte
equation of state, where S and q follow (2.1.27) and (2.1.26) respectively.
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2.1.3 Perfect fluid: Euler system

In the context of the perfect fluid, we have q = 0 and S = 0. Then the total
energy balance is

∂te + divx
(︃
(e + p)

m

ϱ

)︃
= f ·m.

Moreover, we obtain the entropy equation in the following form:

∂t(ϱs) + divx(sm) = 0. (2.1.30)

So we rewrite the system as

∂tϱ+ divx(m) = 0,

∂t(ϱu) + divx
(︃
1{ϱ>0}

m⊗m

ϱ

)︃
+∇xp = ϱf ,

∂t(ϱs) + divx(sm) = 0.

(2.1.31)

Considering an appropriate equation of state, we call this system as complete Euler
system.

The absence of the viscous term in the energy balance means that there is no a
priori estimate for the velocity gradient. A weak formulation of the system is based
on the energy inequality [︃ˆ

Ω
e(t) dx

]︃t=τ

t=0

≤ 0,

for τ ∈ (0, T ). Also, in the weak formulation we can relax the entropy balance and
provide the entropy inequality, i.e.

∂t(ϱs) + divx(sm) ≥ 0. (2.1.32)

We introduce the total entropy S by S = ϱs and reformulate (2.1.32) as

∂tS + divx
(︃
1{ϱ>0}S

m

ϱ

)︃
≥ 0.

We recall that the total energy e of the fluid

e =
1

2

|m|2

ϱ
+ ϱe,

consists of the kinetic energy 1
2
|m|2
ϱ and the internal energy ϱe. If we consider m = ϱu,

then we find that the map (ϱ,u) ↦→ 1
2ϱ|u|

2 is not convex, although it is continuous
for ϱ ≥ 0. On the other hand, we have the observation that the map (ϱ,m) ↦→ 1

2
|m|2
ϱ

is convex for ϱ > 0. So, in the context of the energy inequality, it is better to think
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of the kinetic energy in terms of ϱ,m so that we can use the properties of a convex
function if needed.

The total entropy S helps us to rewrite the pressure p and the specific internal
energy e in terms of ϱ and S as

p = p(ϱ, S) = ϱγ exp

(︃
S

cvϱ

)︃
, e = e(ϱ, S) =

1

γ − 1
ϱγ−1 exp

(︃
S

cvϱ

)︃
.

The advantage of the above way of writing is that (ϱ, S) ↦→ ϱγ exp

(︃
S
cvϱ

)︃
is a strictly

convex function for ϱ > 0, see Breit et al. [16, Lemma 3.1]. This leads to a possible
energy extension in Rd+2 :

(ϱ,m, S) ↦→ e(ϱ,m, S) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
|m|2
ϱ + cvϱ

γ exp

(︃
S
cvϱ

)︃
, if ϱ > 0,

0, if ϱ = m = 0, S ≤ 0,

∞, otherwise

(2.1.33)

We conclude that the map (ϱ,m, S) ↦→ e(ϱ,m, S) is a convex l.s.c. function and it is
strictly convex in the domain of positivity, that is, at the points, where it is finite
and positive.

Perfect fluid following barotropic pressure

Our next consideration is the Euler system with barotropic pressure, i.e. the
pressure depends only on the density. Here we consider the pressure

p(ϱ) = aϱγ , γ ≥ 1, a > 0,

where γ is called the adiabatic constant.
In this case, we observe that the internal energy satisfies

∂teint + divx(eintu) = −p(ϱ)divxu,

We define a pressure potential (P ) as

P (ϱ) = ϱ

ˆ ϱ

1

p(z)

z2
dz. (2.1.34)

The pressure p and the pressure potential P satisfy the relation

ϱP ′(ϱ)− P (ϱ) = p(ϱ).

Thus, if we substitute P for b in the renormalized continuity equation (2.1.14), we get

∂tP (ϱ) + divx(P (ϱ)u) = −p(ϱ)divxu.
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Therefore, the total energy e of the fluid is given by

e =
1

2

|m|2

ϱ
+ P (ϱ).

This shows that the internal energy in the case of a barotropic fluid is represented by
the pressure potential.

Remark 2.1.6. If γ > 1, we can consider a pressure potential as

P (ϱ) =
a

γ − 1
ϱγ .

2.1.4 Viscous fluid: Compressible Navier–Stokes system

We have discussed the Navier–Stokes–Fourier system (2.1.29) describing a heat
conductive viscous fluid. Now we assume the barotropic pressure law, i.e. p = p(ϱ),
and then refer to the system as the Navier-Stokes system. Here S(∇xu) is Newtonian
stress tensor defined by

S(∇xu) = µ

(︃
∇xu+∇T

xu

2
− 1

d
(divxu)I

)︃
+ λ(divxu)I,

where µ > 0 and λ ≥ 0 are constant. We define the pressure potential in a similar
way as in (2.1.34). We consider a bounded domain Ω with Lipschitz boundary and
impermeability boundary condition (2.1.9). Then we integrate the energy equation
in space and get

d
dt

ˆ
Ω
E(t) dx+

ˆ
Ω
S(∇xu) : ∇xu dx =

ˆ
Ω
ϱf · u dx,

with the total energy

E(t) =

ˆ
Ω

(︃
1

2
ϱ|u|2 + P (ϱ)

)︃
(t) dx.

If we assume f = 0, we find that in this case the total energy is a non-increasing
function of t. Once ∇xu ≠ 0, the total energy is not conserved. In the context of
this simplified model, the resulting temperature changes and their influence on fluid
motion are not considered, so that an exact energy balance is not possible. Instead,
we will focus on the energy inequality for weak solutions.

Pressure Laws

In this thesis we are concerned with various barotropic pressure laws. In the
introduction we mention some of them.
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Isentropic equation of state: The pressure p and the density ϱ of the fluid are
interrelated by :

p(ϱ) = aϱγ , with γ ≥ 1, a > 0. (2.1.35)

In a perturbation of the above setting, the pressure p and the density ϱ of the fluid
are related by :

p(ϱ) = aϱγ + q(ϱ), with γ ≥ 1, a > 0 and q ∈ C[0,∞). (2.1.36)

Instead of considering aϱγ , we can consider a more general barotropic equation of
state

p = p(ϱ), p ∈ C1[0,∞), p(0) = 0, p′ > 0, in (0,∞),

and lim inf
ϱ→∞

p(ϱ)

ϱγ
> 0 with γ ≥ 1,

(2.1.37)

and its non-monotone counterpart as

p(ϱ) = h(ϱ) + q(ϱ), with, q ∈ C[0,∞) such that p > 0

h ∈ C1[0,∞), h(0) = 0, h′ > 0, in (0,∞), and lim inf
ϱ→∞

h(ϱ)

ϱγ
> 0 with γ ≥ 1.

(2.1.38)

In both (2.1.36) and (2.1.38) cases, we focus on two possibilities of q :

• q ∈ C0,1[0,∞) i.e. q is globally Lipschitz,

• q ∈ C1
c (0,∞), i.e. q is compactly supported.

Singular pressure law: Finally, we consider a singular pressure law, where the
pressure p and the density ϱ of the fluid are interrelated by a hard-sphere equation of
state in the interval [0, ϱ̄):

p ∈ C1[0, ϱ̄), p(0) = 0, p′ > 0 on (0, ϱ̄), lim
ϱ→ϱ̄

p(ϱ) = +∞. (2.1.39)

This is also known as hard-sphere pressure law. The pressure law (2.1.39) is motivated
by two famous models for viscous fluids, namely Van Der Waal’s equation of state
and hard-sphere law, modeled by Carnahan-Sterling. Van Der Waal’s equation is
given by

p(ϱ) = C
p̄(ϱ)

ϱ̄− ϱ
,

where p̄ is an arbitrary polynomial and ϱ̄, C are positive constants. In general, it
describes a non-monotone pressure-density relation. The Carnahan-Sterling model
reflects the hard-sphere model and is given by

p(ϱ) = C
p̃(ϱ)

(ϱ̄− ϱ)3
,
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with a polynomial p̃ and positive constants ϱ̄, C . We therefore consider the non-
monotone counterpart of (2.1.39) as

p ∈ C1[0, ϱ̄), p(ϱ) = h(ϱ) + q(ϱ), h(0) = 0,

h
′
> 0 on (0, ϱ̄), lim

ϱ→ϱ̄
h(ϱ) = +∞, q ∈ C1

c (0, ϱ̄).
(2.1.40)

Pressure Potential

In general we define pressure potential (P ) as

P (ϱ) = ϱ

ˆ ϱ

1

p(z)

z2
dz. (2.1.41)

As a trivial consequence of above we obtain

ϱP
′
(ϱ)− P (ϱ) = p(ϱ) and ϱP

′′
(ϱ) = p′(ϱ) for ϱ > 0, (2.1.42)

Remark 2.1.7. We notice that instead of lower integral limit 1, we can consider any
constant b > 0. In the context of hard-sphere pressure law (2.1.39) and (2.1.40) we
choose ϱ̄

2 instead of 1.

Remark 2.1.8. If p(ϱ) = aϱγ , with γ > 1, a > 0 we consider P (ϱ) = a
γ−1ϱ

γ . If
γ = 1, a > 0, we consider pressure potential as P (ϱ) = aϱ ln ϱ.

2.2 Compressible Navier–Stokes system

We recall the compressible Navier–Stokes equation in the time-space cylinder
(0, T )× Ω:

∂tϱ+ divx(ϱu) = 0, (2.2.1)
∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ) = divxS(∇xu) + ϱf . (2.2.2)

Here S(∇xu) is Newtonian stress tensor defined by

S(∇xu) = µ

(︃
∇xu+∇T

xu

2
− 1

d
(divxu)I

)︃
+ λ(divxu)I, (2.2.3)

where µ > 0 and λ > 0 are the shear and bulk viscosity coefficients, respectively,
and ϱf is a source term. Also the pressure p satisfies one of the following relations
(2.1.35)-(2.1.40).

Boundary, far field and initial conditions

Boundary conditions: If Ω is a bounded domain then we invoke different
boundary conditions:
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• Periodic boundary condition:

Ω = Td. (2.2.4)

• No-slip boundary condition:

u = 0 on ∂Ω. (2.2.5)

• Navier slip boundary condition:

u · n = 0 and [S · n]tan = 0 on ∂Ω, (2.2.6)

where n is the outer normal vector on ∂Ω.

Far field condition: For an unbounded domain, we introduce the far field condition
as,

ϱ→ ϱ∞, u → u∞ as x ∈ Ω and |x| → ∞, (2.2.7)

with ϱ∞ > 0, and u∞ ∈ Rd.
Initial conditions: We supplement an initial data (ϱ0, (ϱu)0) as

ϱ(0, ·) = ϱ0, (ϱu)(0, ·) = (ϱu)0. (2.2.8)

2.2.1 Strong solution

For the sake of simplicity we consider a bounded domain Ω with no slip boundary
condition (2.2.5) and pressure law (2.1.35)-(2.1.38). We prescribe the initial state

ϱ(0, ·) = ϱ0, ϱu(0, ·) = (ϱu)0, (2.2.9)

with ϱ0, (ϱu)0 are as smooth as needed and ϱ0 > 0 to avoid the degenerate vacuum
regime. Then the compressible Navier–Stokes system((2.2.1)-(2.2.3)) is locally well
posed in the Sobolev space W k,2(Ω) for large k, see e.g. Kazhikov and Shelukhin
[90], Valli and Zajaczkowski [118], and Matsumara and Nishida[100]. We state the
following theorem that ensures the local existence in a bounded domain Ω of class
C2+σ for σ > 0, with no-slip boundary condition:

Theorem 2.2.1. Let p ∈ C∞(0,∞), p(ϱ) > 0 for ϱ > 0, µ > 0, η > 0, and

ϱ0 > 0, ϱ0 ∈W k,2(Ω),u0 =
(ϱu)0
ϱ0

∈W k,2
0 (Ω) for k >

[︃
d

2

]︃
+ 1.

Moreover, the initial data satisfies the compatibility condition:

u0 = 0 on ∂Ω,

∇xp(ϱ0) = µ

(︃
∇xu0 +∇T

xu0

2
− 1

d
(divxu0)I

)︃
+ λ(divxu0)I on ∂Ω.

(2.2.10)
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Then there exists a positive T > 0 such that the problem (2.2.1)-(2.2.3) admits a
strong solution (ϱ,u) in (0, T )× Ω, unique in the class

ϱ ∈ C([0, T ];W k,2(Ω)), ∂tϱ ∈ C([0, T ];W k−1,2(Ω)),

u ∈ C([0, T ];W k,2
0 (Ω;Rd)), ∂tu ∈ C([0, T ];W k−2,2(Ω)).

(2.2.11)

Remark 2.2.2. For a bounded domain, we use the Sobolev embedding theorem
(1.1.1) to conclude

W k,2(Ω) ↪→ C(Ω), for k >
[︃
d

2

]︃
+ 1.

The assumption in the Theorem 2.2.1 ensures that (ϱ,u) is continuous. If we consider
large k, then we obtain more regular solution.

The Navier–Stokes system admits global-in-time solutions provided the initial
data close enough to an equilibrium state. Here we state a result that was shown by
Matsumara and Nishida [100] (cf. also Valli and Zajaczkowski[118])

Theorem 2.2.3. Let p ∈ C∞(0,∞), p′(ϱ) > 0 for ϱ > 0, µ > 0, η > 0. Let a positive
constant ϱ̄ > 0 be given. Then there exists ϵ > 0 such that for any initial data

ϱ0 ∈W 3,2(Ω), u0 ∈W 3,2
0 (Ω),

ˆ
Ω
(ϱ0 − ϱ̄) dx = 0,

∥ϱ0 − ϱ̄∥W 3,2(Ω) + ∥u0∥W 3,2(Ω;Rd) < ϵ,

with the compatibility condition (2.2.10), the Navier–Stokes system admits a unique
strong solution [ϱ,u] defined on the time interval (0.∞),

ϱ ∈ C([0, T ];W 3,2(Ω)), ∂tϱ ∈ C([0, T ];W 2,2(Ω)),

u ∈ C([0, T ];W 3,2
0 (Ω;Rd)), ∂tu ∈ C([0, T ];W 1,2(Ω)).

such that

ϱ(t, ·) → ϱ̄ in W 3,2(Ω), u(t, ·) → 0 in W 3,2(Ω;Rd) as t→ ∞.

Remark 2.2.4. We note that in the introduction we also give the term classical
solution. Although various literature points out the subtle difference between classical
and strong solution. In this thesis, when we speak of classical solution or strong
solution, we imply that these solutions are regular enough and solve the system in a
pointwise sense.

2.2.2 Weak solution

Here we discuss the weak solutions of the compressible Navier–Stokes system.
In general, weak solutions satisfy the equations in terms of distributions. A single
equation in the weak formulation is replaced by a family of integral identities satisfied
for all sufficiently smooth test functions.
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Isentropic type pressure laws

The isentropic equation of state is given in (2.1.35). A general pressure law of
isentropic type and its non-monotone variants are described in (2.1.36)–(2.1.38).

Bounded domain: We give the definition of a dissipative weak solution of the
system in a bounded domain Ω. First, we consider a no slip boundary condition
(2.2.5).

We call an initial data (ϱ0, (ϱu)0) as finite energy initial data, if it satisfies the
following conditions

0 ≤ ϱ0 in Ω, and E0 =

ˆ
Ω

(︃
|(ϱu)0|2

ϱ0
+ P (ϱ0)

)︃
dx <∞. (2.2.12)

Definition 2.2.5. We say that (ϱ,u) is a dissipative weak solution in (0, T )× Ω to
the system of equations (2.2.1)-(2.2.3), with the no-slip condition (2.2.5), the finite
energy initial data (2.2.12), and the source term f ∈ L∞((0, T )× Ω) if the following
is satisfied:

• Regularity class: 0 ≤ ϱ ∈ Cw([0, T ];L
γ(Ω)), u ∈ L2(0, T ;W 1,2

0 (Ω;Rd)),
ϱu ∈ Cw([0, T ];L

2γ
γ+1 (Ω;Rd)), p(ϱ) ∈ L∞(0, T ;L1(Ω)).

• Renormalized equation of continuity: For any τ ∈ (0, T ) and any
φ ∈ C1

c ([0, T ]× Ω), it holds[︃ˆ
Ω
(ϱ+ b(ϱ))φ dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[(ϱ+ b(ϱ))∂tφ+ (ϱ+ b(ϱ))u · ∇xφ+ (b(ϱ)− ϱb′(ϱ))divxuφ] dx dt ,

(2.2.13)

where b ∈ C1[0,∞) and there exists a rb > 0 such that b′(x) = 0, for all x > rb.

• Momentum equation: For any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T ] × Ω;Rd), it

holds[︃ ˆ
Ω
ϱu(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱu · ∂tφφφ+ ϱu⊗ u : ∇xφφφ+ p(ϱ)divxφφφ− S(∇xu) : ∇xφφφ− ϱf ·φφφ]dxdt .

(2.2.14)

• Energy inequality: The total energy E is defined as

E(τ) =

ˆ
Ω

(︃
1

2
ϱ|u|2 + P (ϱ)

)︃
(τ, ·) dx
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for τ ∈ [0, T ). It satisfies

E(τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt ≤ E0 +

ˆ τ

0

ˆ
Ω
ϱu · f dx dt (2.2.15)

for a.e. τ > 0.

Remark 2.2.6. A similar definition is possible for the periodic boundary condi-
tion(2.2.4). Here we have to consider u ∈ L2(0, T ;W 1,2(Td)). The other state
variables belong to the same regularity class and the identities and inequalities
(2.2.13)-(2.2.15) remain the same. We also refer dissipative weak solution as finite
energy weak solution.

Remark 2.2.7. The energy inequality can be rewritten using the following observa-
tion:

S(∇xu) : ∇xu = µD0(∇xu) : D0(∇xu) + λ|divxu|2.

If we consider the Navier slip boundary condition (2.1.20) to the system, the
definition is slightly modified.

Definition 2.2.8. We say (ϱ,u) is a dissipative weak solution of the system (2.2.1)-
(2.2.3) with finite energy initial data (2.2.12) and boundary condition (2.2.6) if we
have

u ∈ L2(0, T ;W 1,2(Ω;Rd)) with u · n = 0 on ∂Ω.

The other variables ϱ, ϱu and P (ϱ) belong to the same regularity class as in the
Definition 2.2.5. The renormalized continuity equation (2.2.13) and the energy
inequality (2.2.15) remain same. For the momentum equation, the integral identity[︃ ˆ

Ω
ϱu(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱu · ∂tφφφ+ ϱu⊗ u : ∇xφφφ+ p(ϱ)divxφφφ− S(∇xu) : ∇xφφφ− ϱf · u]dx dt.

(2.2.16)

holds for any τ ∈ (0, T ) and any φφφ ∈ C1([0, T ]× Ω;Rd) with φφφ · n = 0 on ∂Ω.

Definition in unbounded domain: Here we give the definition in the domain
Rd. First, we need to include the far field condition(2.2.7) suitably. For a simpler
consideration we choose f = 0. We choose (ϱ̄,0) as a static solution of the system
with ϱ̄ constant. The we perform the following modification of the system:

• Initial data: It satisfies ϱ0 ≥ 0, ϱ0 ∈ L1
loc(Rd) and

E0 =

ˆ
Rd

(︃
1

2

|(ϱu)0|2

ϱ0
+ (P (ϱ0)− (ϱ0 − ϱ̄)P ′(ϱ̄))− P (ϱ̄)

)︃
dx <∞. (2.2.17)
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• Regularity class: ϱ− ϱ̄ ∈ Cw([0, T ];L
2 + Lγ(Rd)), u ∈ L2(0, T ;D1,2

0 (Rd;Rd)),
ϱu ∈ Cw([0, T ];L

2 + L
2γ
γ+1 (Rd;Rd)).

• The renormalized continuity equation holds for the class of test functions is
C1
c ([0, T ] × Rd). The momentum equation remains true for text functions in

C1
c ([0, T ]× Rd;Rd).

• The far field conditions are incorporated through the energy inequality. The total
energy E is defined in [0, T ) as

E(τ) =

ˆ
Rd

(︃
1

2
ϱ|u|2 + (P (ϱ)− (ϱ− ϱ̄)P ′(ϱ̄))− P (ϱ̄)

)︃
(τ, ·) dx. (2.2.18)

It satisfies

E(τ) +

ˆ τ

0

ˆ
Rd

S(∇xu) : ∇xu dx dt ≤ E0 (2.2.19)

for a.e. τ > 0.

Here we notice a different form of total energy(2.2.18) in energy inequality(2.2.19).
We now attempt to provide an informal justification for such a consideration.

To reduce the complexity, we assume a monotone pressure law (2.1.35) or (2.1.37)
with pressure potential P . For R > 0, we consider B(0, R) ⊂ Rd. We also assume the
system is provided by no-slip boundary condition, i.e., uR = 0 on ∂B(0, R) where
(ϱR,uR) denotes a weak solution following Definition 2.2.5 in B(0, R) with initial
data (ϱ0,R, (ϱu)0,R = (1B(0,R)ϱ0,1B(0,R)(ϱu)0)).

The energy inequality in B(0, R) is given by

ER(τ) +

ˆ τ

0

ˆ
B(0,R)

S(∇xuR) : ∇xuR dx dt ≤ E0,R

for a.e. τ > 0 with

ER(τ) =

ˆ
B(0,R)

(︃
1

2
ϱR|uR|2 + P (ϱR)

)︃
(τ, ·) dx.

In B(0, R), the conservation of mass yields
ˆ
B(0,R)

(ϱR − ϱ̄)P ′(ϱ̄)(τ, ·) dx =

ˆ
B(0,R)

(ϱ0,R − ϱ̄)P ′(ϱ̄) dx.

Hence, we rewrite the energy inequality as

ER(τ)−
ˆ
B(0,R)

((ϱR − ϱ̄)P ′(ϱ̄)− P (ϱ̄))(τ, ·) dx+

ˆ τ

0

ˆ
B(0,R)

S(∇xuR) : ∇xuR dx dt

≤ E0,R −
ˆ
B(0,R)

((ϱR,0 − ϱ̄)P ′(ϱ̄)− P (ϱ̄))(τ, ·) dx.
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This motivates us to consider

ER(τ) =

ˆ
B(0,R)

(︃
1

2
ϱR|uR|2 + (P (ϱR)− (ϱR − ϱ̄)P ′(ϱ̄)− P (ϱ̄))

)︃
(τ, ·) dx

Considering the following extension of (ϱR,uR) in Rd as

ϱ̀R =

{︄
ϱR in B(0, R)

ϱ̄ otherwise
and ùR =

{︄
uR in B(0, R)

0 otherwise
,

we obtain ˆ
Rd

(︃
1

2
ϱ̀R|ùR|2 + (P (ϱ̀R)− (ϱ̀R − ϱ̄)P ′(ϱ̄)− P (ϱ̄))

)︃
(τ, ·) dx

+

ˆ τ

0

ˆ
Rd

S(∇xùR) : ∇xùR dx dt ≤ E0.

Passing limit R→ ∞, we expect the total energy (2.2.18) in Rd.

Remark 2.2.9. Let f be a time independent function and of the form f = ∇xG with
G a real valued function on Rd. Then a static solution (ϱ̃, 0) of the system satisfies

∇xp(ϱ̃) = ϱ̃∇xG.

Even if for a simple G, ϱ̃ may not be constant. In this case we consider a far field
condition as

ϱ→ ϱ̃, u → 0 as |x| → ∞. (2.2.20)

Remark 2.2.10. For a general unbounded domain with boundary (like, exterior
domain, Rd \B(0, 1)), we need to implement the far field condition and the boundary
condition accordingly.

The existence of the weak solution for the compressible system Navier–Stokes has
been studied in the last decades.

• In d = 1, the existence of a global in time weak solution was proved by Antontsev
et al. [5].

• In d = 2 with γ ≥ 3
2 and d = 3 with γ ≥ 9

5 , P. L. Lions [96] proved the same.

• Feireisl in [50], improved the result for d = 2 with γ > 1 and for d = 3 with γ > 3
2 .

• For d = 2, there is a certain improvement by Vaigant and Kazhikhov [119], the
existence is valid for γ ≥ 1.

The above results mostly consider a bounded domain Ω with no-slip boundary
condition. We state a theorem on the existence of a weak solution.
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Theorem 2.2.11. Let Ω ⊂ Rd, d ≥ 2 be a bounded domain with Lipschitz boundary
and the initial data (ϱ0, (ϱu)0) satisfies (2.2.12). If the pressure law is given by
(2.1.35) or (2.1.37) with γ > d

2 , then there exists a weak solution in (0, T )×Ω for the
Navier–Stokes system (2.2.1)-(2.2.3) with no-slip boundary condition (2.2.5) following
the Definition 2.2.5.

There are a number of results related to various boundary conditions and general
non-monotone pressure laws. Here we list some of them.

• Global in time weak solution exists for a periodic boundary condition, i.e. Ω = Td.
We also have a similar result for a bounded domain with the Navier slip boundary
condition(2.2.6), see Novotný and Straškraba [105, Section 7.12].

• For an exterior domain, there is an existence result proved by Novotný and Pokorný
[104].

• For a compactly supported perturbation of the pressure law (2.1.36), Feireisl [49]
showed existence.

• Recently, Bresch and Jabin [19] proved the existence for a more general non-
monotone pressure law.

Hard-sphere pressure law

We consider the system (2.2.1)-(2.2.3) in the domain Td, i.e. the state variables
are endowed with periodic boundary conditions with the pressure law (2.1.39) or
(2.1.40). A suitable modification of the Definition 2.2.5 is required.

First, we notice that the pressure laws (2.1.39) and (2.1.40) have the property

lim
ϱ→ϱ̄

p(ϱ) = +∞.

Accordingly, we modify the hypothesis on the initial data as

ϱ(0, ·) = ϱ0(·) with 0 ≤ ϱ0 < ϱ̄ in Td,

ˆ
Td

P (ϱ0) dx <∞,

ϱu(0, ·) = (ϱu)0, and
ˆ
Td

|(ϱu)0|2

ϱ0
<∞,

(2.2.21)

where P is given by,

P (ϱ) = ϱ

ˆ ϱ

ϱ̄
2

p(z)

z2
dz. (2.2.22)

Similarly, we can define H and Q. We now give the definition of a weak solution for
such pressure laws in the periodic domain Td:

Definition 2.2.12. We say that (ϱ,u) is a dissipative weak solution in (0, T )× Td

to the system of equations ((2.2.1)-(2.2.3)), with the periodic boundary conditions
(2.2.4), supplemented with initial data (2.2.21) if:
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• Regularity class: For a.e. (t, x) ∈ (0, T )× Td we have 0 ≤ ϱ(t, x) < ϱ̄. It holds
that

ϱ ∈ Cw([0, T ];L
γ(Td)) for any γ > 1, p(ϱ) ∈ L1((0, T )× Td),

u ∈ L2(0, T ;W 1,2(Td;Rd)), ϱu ∈ Cw([0, T ];L
2(Td;Rd)).

(2.2.23)

• Continuity equation: For any τ ∈ (0, T ) and any test function
φ ∈ C∞([0, T ]× Td), it holds

ˆ τ

0

ˆ
Td

[ϱ∂tφ+ ϱu · ∇xφ] dx dt =
ˆ
Td

ϱ(τ, ·)φ(τ, ·)−
ˆ
Td

ϱ0φ(0, ·) dx. (2.2.24)

• Renormalized continuity equation: The continuity equation also holds in the
sense of renormalized solutions:[︃ˆ

Td

(b(ϱ))φ dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
Td

[b(ϱ)∂tφ+ b(ϱ)u · ∇xφ+ (b(ϱ)− ϱb′(ϱ))divxuφ] dx dt ,
(2.2.25)

where φ ∈ C1([0, T ]× Td) for any b ∈ C1[0, ϱ̄) satisfying

|b(s)|2 + |b′(s)|2 ≤ C(1 + h(s)) for some constant C and any s ∈ [0, ϱ̄). (2.2.26)

• Momentum equation: For any τ ∈ (0, T ) and any test function
φφφ ∈ C1(0, T ;C2(Td;Rd)), it holds

ˆ τ

0

ˆ
Td

[ϱu · ∂tφφφ+ (ϱu⊗ u : ∇xφφφ+ p(ϱ)divxφφφ− S(∇xu) : ∇xφφφ] dx dt

=

ˆ
Td

ϱu(τ, ·) ·φφφ(τ, ·) dx−
ˆ
Td

ϱ0u0 ·φφφ(0, ·) dx.
(2.2.27)

• Energy inequality: For a.e. τ ∈ (0, T ), the following inequality holds

ˆ
Td

[︃
1

2
ϱ|u|2 + P (ϱ)

]︃
(τ, ·) dx+

ˆ τ

0

ˆ
Td

S(∇xu) : ∇xu dx dt

≤
ˆ
Td

[︃
1

2
ϱ0|u0|2 + P (ϱ0)

]︃
dx,

(2.2.28)

Concerning to the existence of a dissipate weak solution we have the following
remark.
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Remark 2.2.13.

• By applying the argument in Feireisl and Zhang [78] with the refined argument of
Feireisl, Lu and Málek [63], it can be shown that, under the following assumption
on the pressure near the singular point

lim
ϱ→ϱ̄

h(ϱ)(ϱ̄− ϱ)β > 0, for some β >
5

2
, (2.2.29)

there exists a global in time weak solution following the Definition 2.2.12.

• Condition (2.2.26) on b ensures that b(ϱ), b′(ϱ) ∈ L2((0, T )× Td).

• The pressure potential P defined by (2.2.22) is bounded below, i.e., there exists
C > 0 such that P (ϱ) + C ≥ 0 for all ϱ ∈ [0, ϱ̄) .

2.3 Compressible Euler system

As we mentioned earlier, the Euler system describes the inviscid fluid. Let T > 0
and Ω ⊂ Rd, d = 2, 3 be the domain. We consider the compressible Euler equation
in time-space cylinder QT = (0, T ) × Ω describing the time evolution of the mass
density ϱ = ϱ(t, x) and the momentum field m = m(t, x)

∂tϱ+ divxm = 0, (2.3.1)

∂tm + divx
(︃

m ⊗ m
ϱ

)︃
+∇xp(ϱ) = ϱf . (2.3.2)

• Pressure law: The pressure p and the density ϱ of the fluid are interrelated by
the standard isentropic law

p(ϱ) = aϱγ , a > 0, γ > 1. (2.3.3)

• Boundary condition: For a bounded domain we consider impermeability condi-
tion on the boundary, i.e.

m · n = 0 on ∂Ω, n is the outer normal vector on the boundary . (2.3.4)

• Far field condition: For an unbounded or exterior domain we prescribe the far
field condition as,

|ϱ− ϱ̃| → 0, m → 0 as |x| → ∞, (2.3.5)

with ϱ̃ satisfies
∇xp(ϱ̃) = ϱ̃f .

For the sake of simplicity, we restrict ourselves only to the case where f is a time
independent function. In this case, we have ϱ̃ is time independent too.

• Initial data: We supplement the initial data as

ϱ(0, ·) = ϱ0, m(0, ·) = m0. (2.3.6)
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2.3.1 Weak solution

The strong or classical solution for Euler system exists only in local in time.
First we provide the definition for bounded domain Ω with impermeability boundary
condition(2.3.4).

Definition 2.3.1. Let f ∈ L∞((0, T )× Ω). A pair (ϱ,m) is called a weak solution
of the Euler system with initial data (ϱ0,m0) satisfying

ϱ0 ≥ 0 a.e. in Ω and
ˆ
Ω

(︃
|m0|2

ϱ0
+ P (ϱ0)

)︃
dx <∞ (2.3.7)

if the following is true.

• Measurability: The variables ϱ = ϱ(t, x), m = m(t, x) are measurable function
in (0, T )× Rd, ϱ ≥ 0,

• Continuity equation: The integral identityˆ T

0

ˆ
Ω

[︁
ϱ∂tϕ+m · ∇xϕ

]︁
dx dt = −

ˆ
Ω
ϱ0ϕ(0, ·) dx (2.3.8)

holds for any ϕ ∈ C1
c ([0, T )× Ω).

• Momentum equation: The integral identityˆ T

0

ˆ
Ω

[︃
m · ∂tφφφ+ 1{ϱ>0}

m⊗m

ϱ
: ∇xφφφ+ p(ϱ)divxφφφ− ϱf ·φφφ

]︃
dx dt

= −
ˆ
Rd

m0 ·φφφ(0.·) dx,
(2.3.9)

holds for any φφφ ∈ C1
c ([0, T )× Ω;Rd) with φφφ · n|∂Ω = 0.

A weak solution is called admissible weak solution if the energy inequality holds,
i.e., for a.e. 0 ≤ τ ≤ T ,ˆ

Ω

(︃
1

2

|m|2

ϱ
+ P (ϱ)

)︃
(τ, ·) dx ≤

ˆ
Ω

(︃
1

2

|m0|2

ϱ0
+ P (ϱ0)

)︃
dx+

ˆ τ

0

ˆ
Ω
m · f dx.

(2.3.10)

Remark 2.3.2. Different forms of the energy inequality are available in literature,
for instanceˆ T

0

ˆ
Ω

(︃
1

2

|m|2

ϱ
+ P (ϱ)

)︃
∂tϕ dx dt ≤ −

ˆ
Ω

(︃
1

2

|m0|2

ϱ0
+ P (ϱ0)

)︃
ϕ(0) dx, (2.3.11)

for any test function ϕ ∈ C1
c [0, T ), ϕ ≥ 0.

For this inequality (2.3.11), we assume f = 0 in (2.3.2). This form of the energy
inequality (2.3.11) provides more information about the distributional time derivative
of the total energy. Although the former form of energy inequality is more general
and allows a larger class for its solution.

Remark 2.3.3. Similar definition can be provided for domain Rd equipped with a
far field condition.
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2.4 Complete Euler system

Recall, the complete Euler system describes the time evolution of the density
ϱ = ϱ(t, x), the momentum m = m(t, x) and the energy e = e(t, x) of a compressible
inviscid fluid in the time-space cylinder QT = (0, T )× Rd:

∂tϱ+ divxm = 0, (2.4.1)

∂tm+ divx
(︃
m⊗m

ϱ

)︃
+∇xp = 0, (2.4.2)

∂te + divx
[︃
(e + p)

m

ϱ

]︃
= 0. (2.4.3)

The total energy e of the fluid

e =
1

2

|m|2

ϱ
+ ϱe,

consists of the kinetic energy ekin(=
1
2
|m|2
ϱ ) and the internal energy eint(= ϱe). Here,

p is the pressure related to ϱ, e through Boyle-Mariotte equation of state (2.1.25).
Also introducing entropy(s) as

s(ϱ, ϑ) = log(ϑcv)− log(ϱ),

where ϑ is absolute temperature, we have the entropy equation:

∂t(ϱs) + divx(sm) = 0. (2.4.4)

Now with the introduction of the total entropy S by S = ϱs, we rephrase (2.4.4) as

∂tS + divx
(︃
S
m

ϱ

)︃
= 0. (2.4.5)

The total entropy helps us to rewrite the pressure p and e in terms of ϱ and S as

p = p(ϱ, S) = ϱγ exp

(︃
S

cvϱ

)︃
, e = e(ϱ, S) =

1

γ − 1
ϱγ−1 exp

(︃
S

cvϱ

)︃
,

and, (ϱ, S) ↦→ ϱγ exp

(︃
S
cvϱ

)︃
is a strictly convex function in the domain of positivity,

meaning at points, where it is finite and positive. In the context of weak solution we
allow an inequality instead of (2.4.5) as

∂tS + divx
(︃
S
m

ϱ

)︃
≥ 0.

Let us complete the formulation of the complete Euler system by imposing the
initial and far field conditions:
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• Initial data: The initial state of the fluid is given through the conditions

ϱ(0, ·) = ϱ0, m(0, ·) = m0, S(0, ·) = S0. (2.4.6)

• Far field condition: We introduce the far field condition as,

ϱ→ ϱ∞, m → m∞, S → S∞ as |x| → ∞, (2.4.7)

with ϱ∞ > 0, m∞ ∈ Rd and S∞ ∈ R.

Let us fix some notations for this case:

• Let (ϱ∞,m∞, S∞) ∈ R× Rd × R such that ϱ∞ > 0. We define the relative energy
with respect to (ϱ∞,m∞, S∞)as,

e(ϱ,m, S|ϱ∞,m∞, S∞) = eint(ϱ, S|ϱ∞, S∞) + ekin(ϱ,m|ϱ∞,m∞),

with

eint(ϱ, S|ϱ∞, S∞) = eint(ϱ, S)−
∂eint

∂ϱ
(ϱ∞, S∞)(ϱ− ϱ∞)

− ∂eint

∂S
(ϱ∞, S∞)(S − S∞)− eint(ϱ∞, S∞)

and

ekin(ϱ,m|ϱ∞,m∞) =ekin(ϱ,m)− ∂ekin

∂ϱ
(ϱ∞,m∞)(ϱ− ϱ∞)

− ∂ekin

∂m
(ϱ∞,m∞) · (m−m∞)− ekin(ϱ∞,m∞).

Introducing the velocity fields u, u∞ as m = ϱu and m∞ = ϱ∞u∞, respectively
we observe

ekin(ϱ,u|ϱ∞,u∞) =
1

2
ϱ|u− u∞|2.

• In a more precise notation we write

e(ϱ,m, S|ϱ∞,m∞, S∞)

= e(ϱ,m, S)− ∂e(ϱ∞,m∞, S∞) · [(ϱ,m, S)− (ϱ∞,m∞, S∞)]

− e(ϱ∞,m∞, S∞).

We assume an initial data (ϱ0,m0, S0) satisfies

0 ≤ ϱ0 in Rd and
ˆ
Rd

e(ϱ0,m0, S0|ϱ∞,m∞, S∞) dx <∞. (2.4.8)
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2.4.1 Weak solution

The definition of the weak solutions is as follows:

Definition 2.4.1. Let (ϱ∞,m∞, S∞) ∈ R× Rd × R such that ϱ∞ > 0. The triplet
(ϱ,m, S) is called an admissible weak solution of the complete Euler system with an
initial data (ϱ0,m0, S0) which follows (2.4.8), if the following is true:

• Measurability: The variables ϱ = ϱ(t, x), m = m(t, x) S = S(t, x) are measur-
able function in (0, T )× Rd and ϱ ≥ 0 for a.e. (0, T )× Rd.

• Continuity equation: The integral identity
ˆ T

0

ˆ
Rd

[︁
ϱ∂tϕ+m · ∇xϕ

]︁
dx dt = −

ˆ
Rd

ϱ0ϕ(0, ·) dx (2.4.9)

holds for any ϕ ∈ C1
c ([0, T )× Rd).

• Momentum equation: The integral identity
ˆ T

0

ˆ
Rd

[︃
m · ∂tφφφ+ 1{ϱ>0}

m⊗m

ϱ
: ∇xφφφ+ 1{ϱ>0}p(ϱ, S)divxφφφ

]︃
dx dt

= −
ˆ
Rd

m0 ·φφφ(0.·) dx
(2.4.10)

holds for any φφφ ∈ C1
c ([0, T )× Rd;Rd).

• Energy inequality: The satisfaction of the far field conditions is enforced through
the energy inequality in the following form :ˆ

Rd

e(ϱ,m, S|ϱ∞,m∞, S∞) (τ, ·) dx ≤
ˆ
Rd

e(ϱ0,m0, S0|ϱ∞,m∞, S∞) dx,

(2.4.11)

for a.e. τ ∈ (0, T ).

• Entropy inequality: The integral inequality
ˆ T

0

ˆ
Rd

[︃
S ∂tϕ+ 1{ϱ>0}

S

ϱ
m · ∇xϕ

]︃
dx dt ≤ 0 (2.4.12)

holds for any ϕ ∈ C1
c ((0, T )× Rd) with ϕ ≥ 0.

Remark 2.4.2. A definition for bounded domain is similar.

We refer the following articles and monographs for the local in time strong
solutions for bounded as well as unbounded domains [97], [110] and [12]. For Euler
system a finite time blow-up for strong solutions has been observed by Smoller[111].
We already mention in the introduction that there are several results indicating the
ill-posedness of weak solutions for Euler system for a large class of data, see [33], [35],
[61], [36].
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2.5 Measure-valued solutions

There are several numerical schemes for solving compressible fluid models. Un-
fortunately, it is difficult to establish that a given numerical scheme converges to a
weak solution for the general case. In the context of the isentropic Navier-Stokes
system, the convergence of some schemes has a restriction to the adiabatic exponent
γ. For physically relevant adiabatic exponents, 1 ≤ γ ≤ 3

2 , both the existence of
weak solutions and the convergence of numerical schemes in space dimension three
have not yet been proved. There are some results of Karper [88], Feireisl, Karper and
Pokorný [60], for large adiabatic exponents.

The concept of measure-valued solutions was introduced by DiPerna [41] in
the context of hyparbolic conservation laws. For incompressible fluids, there is a
similar consideration by DiPerna and Majda [43], in particular, focusing on the
incompressible Euler system and other related models for inviscid fluids. For the
viscous counterpart, measure-valued solutions are given by Málek et al. [98], Neustupa
[102] etc. Unfortunately, the generalized weak-strong uniqueness property is missing
in the class of solutions considered by DiPerna and Majda in [43].

Recently, the concept of measure-valued solution is revisited by Fjordholm et
al. [80], [81], [79] through certain numerical experiments with oscillatory solutions.
On the other hand, more appropriate definition of measure-valued solutions is given
by Gwiazda et al. [86] for the barotropic Euler system, Feireisl et al. [56] for the
Navier–Stokes system, Březina and Feireisl [20] for the complete Euler system, Březina,
Feireisl and Novotný [27] for the Navier-Stokes-Fourier system. These measure-valued
solutions satisfy the desired weak-strong uniqueness property.

In addition, there are several results on identifying the limit of numerical schemes
as a measure-valued solution. For the Navier–Stokes system, there are results for
the physically admissible adiabatic exponent, see Feireisl and Lukáčová-Medvidova
[65] and Feireisl et al. [68]. In the context of Euler, there are results by Feireisl,
Lukáčová-Medvidova and Mizerova [69], [70]. Furthermore, the availability of the
generalized weak-strong uniqueness principle ensures a strong convergence of the
numerical solutions to the strong (classical) solution in the lifespan of the strong
solution.

2.5.1 A general approach

Let Ω (⊂ Rd) be a bounded domain . For each n ∈ N, we consider a map
wn : Rd → Rd. Taking motivation from (2.1.4), we consider an approximation of a
general balance law with Fn = F(dn,wn) such that

ˆ T

0

ˆ
Ω
dn(t, x)∂tϕ(t, x) dx dt +

ˆ T

0

ˆ
Ω
Fn · ∇xϕ(t, x) dx dt

= −
ˆ T

0

ˆ
Ω
σn(t, x)ϕ(t, x) dx dt +

ˆ T

0
En[ϕ] dt ,

(2.5.1)

with ϕ ∈ C1
c ((0, T )× Ω). Furthermore, We have the following assumptions:



2.5. Measure-valued solutions 53

• Variables dn ∈ L∞(0, T ;Lp(Ω)) and wn ∈ L∞(0, T ;Lq(Ω)) are bounded indepen-
dently of n, for p, q > 1, and F : R × Rd → Rd is a continuous function with
Fn ∈ L1((0, T )× Ω) bounded uniformly.

• The source term σn → σ weakly in Lr((0, T )× Ω) for r ≥ 1.

• The term En represents an error. Moreover, if En[ϕ] → 0 in L1(0, T ), then we call
the above approximation consistent.

The scheme involving the approximate sequence dn,wn together with the equation
and consistency error is called the consistent approximation scheme.

From the bounds of dn, Fn and σn we infer

dn → d̄ weak-(*)ly in L∞
weak-(*)(0, T ;L

p(Ω)),

wn → w̄ weak-(*)ly in L∞
weak-(*)(0, T ;L

q(Ω)),

Fn → F̄ weak-(*)ly in M((0, T )× Ω).

On the other hand, we can conclude that there exists a Young measure

V ∈ L∞
weak-(*)((0, T )× Ω;P(R× Rd))

such that the weak-(*) limits of dn,wn coincides with the barycenter of the Young
measure, i.e., d̄ = ⟨V ; d̃⟩ and w̄ = ⟨V ; w̃⟩. But for the term F(dn,wn) we introduce

R = F̄−
⟨︂
V;F(d̃, w̃)

⟩︂
,

the defect measure. Thus in terms of the Young measure we rewrite the balance law
with defect as

ˆ T

0

ˆ
Ω
⟨V ; d̃⟩∂tϕ(t, x) dx dt +

ˆ T

0

ˆ
Ω

⟨︂
V;F(d̃, w̃)

⟩︂
· ∇xϕ(t, x) dx dt

= −
ˆ T

0

ˆ
Ω
σ(t, x)ϕ(t, x) dx dt + ⟨R, ϕ⟩M((0,T )×Ω),Cc((0,T )×Ω) , (2.5.2)

with ϕ ∈ C1
c ((0, T )× Ω).

2.5.2 Definition of measure-valued solutions

In the last subsection we give an idea of how to define the measure-valued solution
of a balance law. Similarly, we consider a set of consistent approximate solutions for
the continuity and the momentum equation and observe that the limiting behavior
leads to a measure-valued solution. For the barotropic Navier–Stokes system, Feireisl
et al. [56] give a definition of a measure-valued solution for a monotone pressure law
(2.1.35) or (2.1.37) with no-slip boundary condition. We state the definition below.
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Definition 2.5.1. We say that a parameterized measure {νt,x}(t,x)∈(0,T )×Ω,

ν ∈ L∞
weak

(︁
(0, T )× Ω;P([0,∞)× Rd)

)︁
, ⟨ντ,x; ϱ̃⟩ ≡ ϱ, ⟨ντ,x; ũ⟩ ≡ u

is a dissipative measure-valued solution of the Navier–Stokes system in (0, T )× Ω,
with the initial condition ν0 and dissipation defect D,

D ∈ L∞(0, T ), D ≥ 0,

if the following holds.

• Continuity equation: For a.e. τ ∈ (0, T ) and ψ ∈ C1([0, T ]× Ω) it holds
ˆ
Ω
⟨ντ,x; ϱ̃⟩ψ(τ, ·) dx−

ˆ
Ω
⟨ν0; ϱ̃⟩ψ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨νt,x; ϱ̃⟩∂tψ + ⟨νt,x; ϱ̃ũ⟩ · ∇xψ

]︁
dx dt .

(2.5.3)

• Momentum equation: Let

u = ⟨νt,x; ũ⟩ ∈ L2(0, T ;W 1,2
0 (Ω;Rd)),

and there exists a measure rM ∈ L∞
weak-(*)(0, T ;M(Ω)) and ξ ∈ L1(0, T ) such that

for a.e. τ ∈ (0, T ) and every φφφ ∈ C1([0, T ]× Ω;Rd), φφφ|∂Ω = 0,

|⟨rM ;∇xφφφ⟩| ≤ ξ(τ)D(τ)∥φφφ∥C1(Ω) (2.5.4)

and ˆ
Ω
⟨ντ,x; ϱ̃ũ⟩ ·φφφ(τ, ·) dx−

ˆ
Ω
⟨ν0; ϱ̃ũ⟩ ·φφφ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨νt,x; ϱ̃ũ⟩ · ∂tφφφ+ ⟨νt,x; ϱ̃ũ⊗ ũ⟩ : ∇xφφφ+ ⟨νt,x; p(ϱ̃)⟩divxφφφ

]︁
dx dt

−
ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xφφφ dx dt +

ˆ τ

0
⟨rM ;∇xφφφ⟩ dt .

(2.5.5)

• Energy inequality: The integral inequality
ˆ
Ω

⟨︃
νt,x;

(︃
1

2
ϱ̃|ũ|2 + P (ϱ̃)

)︃⟩︃
dx+

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt +D(τ)

≤
ˆ
Ω

⟨︃
ν0;

(︃
1

2
ϱ̃|ũ|2 + P (ϱ̃)

)︃⟩︃
dx

(2.5.6)

holds for a.e. τ ∈ (0, T ). In addition, the following version of ‘Poincaré’s inequality’
holds for a.e τ ∈ (0, T ):

ˆ τ

0

ˆ
Ω
⟨νt,x; |ũ− u|2⟩ dx dt ≤ cPD(τ) (2.5.7)
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Remark 2.5.2. In [56, Section 2.2], there is an existence result of such measure-
valued solution. One can clearly observe that there are more unknowns than the
number of equations and constraints. Thus, uniqueness for such solutions cannot be
expected. A positive fact is that these solutions satisfy the compatibility and the
generalized weak-strong uniqueness property, as mentioned in the introduction.

Renomalized dissipative measure-valued solution (rDMV solution)

In particular, the above definition applies to a monotone pressure law. Our goal
is to establish a weak-strong uniqueness property for a non-monotone pressure law.
The renormalized equation plays an important role in the context of a non-monotone
pressure. Unfortunately, the above definition is not sufficient to conclude that the
renormalized continuity equation holds, at least in the measure-valued sense. This
leads us to consider a more general class of solutions, namely renormalized dissipative
measure-valued solution. Here, the velocity gradient(∇xu) has been incorporated as
part of the Young measure along with natural candidates for the phase space e.g.
density and velocity (ϱ,u).

Phase Space: Therefore, a suitable phase space framework for the measure–
valued solution is

F =

{︃(︂
ϱ̃, ũ,˜︂Dv

)︂ ⃓⃓⃓⃓
ϱ̃ ∈ [0,∞), ũ ∈ Rd, ˜︂Dv ∈ Rd×d

sym

}︃
. (2.5.8)

˜

Definition 2.5.3. Let Ω ⊂ Rd be a bounded Lipschitz domain. We say that a
parameterized measure {Vt,x}(t,x)∈(0,T )×Ω,

V ∈ L∞
weak-(*)

(︁
(0, T )× Ω;P(F)

)︁
,

is a renormalized dissipative measure-valued (rDMV) solution of the Navier–Stokes
system (2.2.1)-(2.2.3) in (0, T )× Ω with the no-slip boundary condition (2.2.5), the
pressure-density relation (2.1.36) or (2.1.38), the initial condition

V0 ∈ L∞
weak-(*)

(︁
Ω;P([0,∞)× Rd)

)︁
and, a dissipation defect D,

D ∈ L∞(0, T ), D ≥ 0,

if the following holds:

• Equation of continuity: For a.e. τ ∈ (0, T ) and ψ ∈ C1([0, T ]× Ω), we have
ˆ
Ω
⟨Vτ,x; ϱ̃⟩ψ(τ, ·) dx−

ˆ
Ω
⟨V0,x; ϱ̃⟩ψ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; ϱ̃⟩∂tψ + ⟨Vt,x; ϱ̃ũ⟩ · ∇xψ

]︁
dx dt .

(2.5.9)
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• Renormalized equation of continuity : For a.e. τ ∈ (0, T ) and a test function
ψ ∈ C1([0, T ]× Ω), we have

ˆ
Ω
⟨Vτ,x; b(ϱ̃)⟩ψ(τ, ·) dx−

ˆ
Ω
⟨V0,x; b(ϱ̃)⟩ψ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; b(ϱ̃)⟩∂tψ + ⟨Vt,x; b(ϱ̃)ũ⟩ · ∇xψ

]︁
dx dt

−
ˆ τ

0

ˆ
Ω
⟨Vt,x; (ϱ̃b

′(ϱ̃)− b(ϱ̃))tr(˜︂Dv)⟩ · ψ dx dt ,

(2.5.10)

where b ∈ C1[0,∞), ∃rb > 0 such that b′(x) = 0, ∀x > rb.

• Momentum equation: There exists a measure

rM ∈ L∞
weak-(*)(0, T ;M(Ω;Rd×d)),

and ξ ∈ L1(0, T ) such that for a.e. τ ∈ (0, T ) and for any φφφ ∈ C1([0, T ]× Ω;Rd)
with φφφ|∂Ω = 0, we have

|⟨rM (τ);∇xφφφ⟩{M(Ω;Rd×d),C(Ω;Rd×d)}| ≤ ξ(τ)D(τ)∥φφφ∥C1(Ω) (2.5.11)

andˆ
Ω
⟨Vτ,x; ϱ̃ũ⟩ ·φφφ(τ, ·) dx−

ˆ
Ω
⟨V0,x; ϱ̃ũ⟩ ·φφφ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; ϱ̃ũ⟩ · ∂tφφφ+ ⟨Vt,x; ϱ̃(ũ⊗ ũ)⟩ : ∇xφφφ+ ⟨Vt,x; p(ϱ̃)⟩divxφφφ

]︁
dx dt

−
ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv)⟩ : ∇xφφφ dx dt +

ˆ τ

0
⟨rM ;∇xφφφ⟩{M(Ω;Rd×d),C(Ω;Rd×d)} dt .

(2.5.12)

• Momentum compatibility: The following compatibility condition remains true:

−
ˆ τ

0

ˆ
Ω
⟨Vt,x; ũ⟩ · divxM dx dt =

ˆ τ

0

ˆ
Ω
⟨Vt,x;˜︂Dv⟩ : M dx dt

for any M ∈ C1(Q̄T ;Rd×d
sym).

(2.5.13)

• Energy inequality: The energy inequality
ˆ
Ω

⟨︃
Vt,x;

(︃
1

2
ϱ̃|ũ|2 + P (ϱ̃)

)︃⟩︃
dx+

ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv) : ˜︂Dv⟩ dx dt +D(τ)

≤
ˆ
Ω

⟨︃
V0,x;

(︃
1

2
ϱ̃|ũ|2 + P (ϱ̃)

)︃⟩︃
dx

(2.5.14)

holds for a.e. τ ∈ (0, T ).
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• Generalized Korn-Poincaré inequality: For v ∈ L2(0, T ;H1
0 (Ω;Rd)), the

following inequality is true
ˆ τ

0

ˆ
Ω
⟨Vt,x; |ũ− v|2⟩ dx dt ≤ cP

ˆ τ

0

ˆ
Ω
⟨Vt,x; |D0(˜︂Dv)− D0(∇xv)|2⟩ dx dt .

(2.5.15)

Remark 2.5.4. In all the above expressions, V0,x = V0(x) for a.e. x ∈ Ω.

Remark 2.5.5. Here one can consider an initial data V0 as
ˆ
Ω

⟨︃
V0,x

1

2
ϱ̃|ũ|2 + P (ϱ̃)

⟩︃
dx <∞. (2.5.16)

Our main goal is to prove weak-strong uniqueness, given sufficiently smooth initial
data. Therefore, instead of considering initial conditions as a measure V0, we can
consider finite energy initial data. This means (⟨V0; ϱ̃⟩, ⟨V0; ϱ̃v⟩) = (ϱ0, (ϱu)0) are
functions with ϱ0 ≥ 0, (ϱu)0 = 0 on the set {x ∈ Ω | ϱ0(x) = 0} and

ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+ P (ϱ0)

)︃
(t, ·) dx <∞. (2.5.17)

Remark 2.5.6. As a consequence of the above definition, we have[︃ ˆ
Ω
⟨Vt,x;Q(ϱ̃)⟩(t, ·) dx

]︃t=τ

t=0

= −
ˆ τ

0

ˆ
Ω
⟨Vt,x; q(ϱ̃)tr(˜︂Dv)⟩ dx dt , (2.5.18)

where q ∈ C1
c (0,∞) and Q(s) = s

´ s
1

q(ξ)
ξ2

dξ, for s > 0.

A possible extension to the Navier slip boundary condition

In the case of Navier slip boundary condition (2.2.6), we modify the Definition
2.5.3 in the following way:

Definition 2.5.7. We say that a parameterized measure {Vt,x}(t,x)∈(0,T )×Ω,

V ∈ L∞
weak-(*)

(︁
(0, T )× Ω;P(F)

)︁
,

is a renormalized dissipative measure–valued (rDMV) solution of the Navier–Stokes
system (2.2.1)-(2.2.3) in (0, T ) × Ω, with the pressure-density relation (2.1.36) or
(2.1.38), the initial condition

V0 ∈ L∞
weak-(*)

(︁
Ω;P([0,∞)× Rd)

)︁
and a dissipation defect D,

D ∈ L∞(0, T ), D ≥ 0,

if the following holds.
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• The continuity equation and the renormalized continuity equation hold as in (2.5.9)
and (2.5.10).

• Momentum equation: There exists a measure

rM ∈ L∞
weak-(*)(0, T ;M(Ω;Rd×d))

and ξ ∈ L1(0, T ) such that for a.e. τ ∈ (0, T ) and every φφφ ∈ C1([0, T ] × Ω;Rd),
φφφ · n|∂Ω = 0, the following holds:

|⟨rM (τ);∇xφφφ⟩{M(Ω;Rd×d),C(Ω;Rd×d)}| ≤ ξ(τ)D(τ)∥φφφ∥C1(Ω) (2.5.19)

and
ˆ
Ω
⟨Vτ,x; ϱ̃ũ⟩ ·φφφ(τ, ·) dx−

ˆ
Ω
⟨V0,x; ϱ̃ũ⟩ ·φφφ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; ϱ̃ũ⟩ · ∂tφφφ+ ⟨Vt,x; ϱ̃(ũ⊗ ũ)⟩ : ∇xφφφ+ ⟨Vt,x; p(ϱ̃)⟩divxφφφ

]︁
dx dt

−
ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv)⟩ : ∇xφφφ dx dt +

ˆ τ

0
⟨rM ;∇xφφφ⟩{M(Ω;Rd×d),C(Ω;Rd×d)} dt .

(2.5.20)

• Energy inequality remains unchanged as in (2.5.14).

• Momentum compatibility condition satisfy as it is, (2.5.13).

• Generalized Korn-Poincaré inequality holds as
ˆ τ

0

ˆ
Ω

⟨︁
Vt,x; |ũ− v|2

⟩︁
dx dt ≤cP

ˆ τ

0

ˆ
Ω

⟨︂
Vt,x; |D0(˜︂Dv)− D0(∇xv)|2

⟩︂
dx dt

+

ˆ τ

0

ˆ
Ω

⟨︁
Vt,x; ϱ̃|ũ− v|2

⟩︁
dx dt ,

(2.5.21)

for v ∈ L2(0, T ;W 1,2(Ω;Rd)).

2.5.3 Existence of a rDMV solution

Here we give an overview of the existence of a rDMV solution that follows the
Definition 2.5.3 or 2.5.7, depending on the boundary condition. For now, we stick
to no-slip boundary condition (2.2.5). First, we consider an approximation problem
of the Navier–Stokes system (2.2.1)-(2.2.3) with the pressure law (2.1.36) or (2.1.38)
and the adiabatic exponent γ ≥ 1. In particular, we consider an artificial pressure
approximation by modifying the pressure as

pmod(ϱ) = p(ϱ) + δϱΓ, (2.5.22)
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with Γ ≥ 2 and δ > 0 is a small parameter. Hence the following approximate problem
reads as

∂tϱ+ divx(ϱu) = 0, (2.5.23)

∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ) + δ∇xϱ
Γ = divxS(∇xu), (2.5.24)

with no-slip boundary condition

u = 0 on ∂Ω. (2.5.25)

Remark 2.5.8. One can consider any general consistent approximation, of the
problem. In Chapter 5 we will discuss about consistent approximation.

First we note that, for a fixed δ > 0, the existence of a renormalized weak solution
of the Navier–Stokes system, which follows the Definition 2.2.5 is known if pressure
follows, (2.5.22) with Γ ≥ 2, see, Feireisl [49] and Bresch and Jabin [19].

For each δ > 0, we denote the weak solution as (ϱδ,uδ). We need some additional
hypothesis on initial energy. For the sake of simplicity, we choose an initial data

V0 = δ(ϱ0,(ϱu)0),

such that

ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+ P (ϱ0)

)︃
dx <∞. (2.5.26)

For the approximate problem (2.5.23)-(2.5.25), we consider initial data {ϱδ,0, (ϱu)δ,0}
belong to a certain regularity class for which a weak solution exists and it satisfies

1

2
ϱδ,0|uδ,0|2 + P (ϱδ,0) +

δ

Γ− 1
ϱΓδ,0 →

1

2

|(ϱu)0|2

ϱ0
+ P (ϱ0) in L1(Ω), (2.5.27)

as δ → 0.
Our goal is to verify that the family of weak solutions {ϱδ,uδ,∇xuδ}δ>0 generates

a renormalized dissipative measure-valued solution(rDMV), that follows the Definition
2.5.3.

Apriori estimates:

From (2.5.27) we obtain

ˆ
Ω

(︃
1

2
ϱδ,0|uδ,0|2 + P (ϱδ,0) +

δ

Γ− 1
ϱΓδ,0

)︃
dx ≤ C,
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where C is independent of δ. From the energy inequality (2.2.15) of a finite energy
weak solution we have the following uniform estimates:

sup
t∈[0,T ]

ˆ
Ω
H(ϱδ)(t, ·) dx ≤ C,

sup
t∈[0,T ]

ˆ
Ω
ϱδ|uδ|2(t, ·) dx ≤ C,

ˆ T

0

ˆ
Ω
S(∇xuδ) : ∇xuδ dx dt ≤ C,

sup
t∈[0,T ]

δ

Γ− 1

ˆ
Ω
ϱΓδ (t, ·) dx ≤ C.

By Korn and Poincaré inequality we have that uδ is bounded in L2(0, T ;W 1,2
0 (Ω)).

We also get that {ϱδ} is bounded in L∞(0, T ;Lγ(Ω)) for γ > 1 and {ϱδ log ϱδ} is
bounded in L∞(0, T ;L1(Ω)) for γ = 1. From our assumption q ∈ C1

c [0,∞), we have
Q(ϱ) ≈ ϱ. Hence we can conclude that

[︁1
2
ϱδ|uδ|2 + P (ϱδ)

]︁
(t, ·) ∈ M(Ω) is bounded uniformly for t ∈ (0, T ),[︁

µ|∇xuδ|2 + (λ− µ

d
)|divxuδ|2

]︁
is bounded in M+([0, T ]× Ω),

δϱΓδ (t, ·) ∈ M+(Ω) is bounded uniformly for t ∈ (0, T ).

Thus passing to a subsequence, we obtain

[︁1
2
ϱδ|uδ|2 + P (ϱδ)

]︁
(t, ·) → E weakly-(*) in L∞

weak(0, T ;M(Ω)),[︁
µ|∇xuδ|2 + (λ− µ

d
)|divxuδ|2

]︁
→ σ weakly-(*) in M+([0, T ]× Ω),

δϱΓδ (t, ·) → ζ weakly-(*) in L∞
weak(0, T ;M+(Ω)).

From the fundamental theorem of Young measure (1.3.1), we ensure the existence of
a Young measure V , generated by

{︂
ϱδ,uδ,Duδ

= ∇xuδ+∇T
x uδ

2

}︂
δ>0

.

Now we introduce two non-negative measures

E∞ = E −
⟨︁
Vt,x;

1

2
s|v|2 + P (s)

⟩︁
, (2.5.28)

σ∞ = σ − ⟨Vt,x; S(˜︂Dv) : ˜︂Dv⟩. (2.5.29)

With the help of Lemma 1.3.14, we claim that

E∞ ∈ L∞
weak-(*)(0, T ;M

+(Ω)) and σ∞ ∈ M+([0, T ]× Ω).
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Passage to limit in energy inequality:

The energy inequality of the approximate problem (2.5.23)-(2.5.25) reads as[︃ ˆ
Ω

(︃
1

2
ϱδ|uδ|2 + P (ϱδ) +

δ

Γ− 1
ϱΓδ

)︃
(t, ·) dx

]︃t=τ

t=0

+

ˆ τ

0

ˆ
Ω
S(∇xuδ) : ∇xuδ dx dt ≤ 0.

We perform the passage of limit in the energy inequality and, we obtain
ˆ
Ω

⟨︃
Vτ,x;

(︃
1

2
ϱ̃|ũ|2 + P (ϱ̃)

)︃⟩︃
dx+

ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv) : ˜︂Dv⟩ dx dt

+ E∞(τ)[Ω] + Cζ(τ)[Ω] + σ∞[[0, τ ]× Ω] ≤
ˆ
Ω

⟨︃
V0,x;

(︃
1

2
ϱ̃|v|2 + P (ϱ̃)

)︃⟩︃
dx,

where C > 0 is a constant. We consider

D(τ) = E∞(τ)[Ω] + Cζ(τ)[Ω] + σ∞[[0, τ ]× Ω]. (2.5.30)

Passage to limit in renormalized continuity equation:

We have,[︃ ˆ
Ω
(ϱδ + b(ϱδ))φ dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω

[︁
(ϱδ + b(ϱδ))∂tφ+ (ϱδ + b(ϱδ))uδ · ∇xφ+ (b(ϱδ)− ϱδb

′(ϱδ))divxuδφ
]︁
dxdt,

where b ∈ C1[0,∞) and there exists rb > 0 such that b′(x) = 0, ∀x > rb. This choice
of b implies

(b(ϱδ)− ϱδb
′(ϱδ))divxuδ ∈ L1((0, T )× Ω) is uniformly bounded. (2.5.31)

From this it followsˆ
Ω
⟨Vτ,x; ϱ̃⟩ψ(τ, ·) dx−

ˆ
Ω
⟨V0; ϱ̃⟩ψ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; ϱ̃⟩∂tψ + ⟨Vt,x; ϱ̃ũ⟩ · ∇xψ

]︁
dx dt

and ˆ
Ω
⟨Vτ,x; b(ϱ̃)⟩ψ(τ, ·) dx−

ˆ
Ω
⟨V0; b(ϱ̃)⟩ψ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; b(ϱ̃)⟩∂tψ + ⟨Vt,x; b(ϱ̃)ũ⟩ · ∇xψ

]︁
dx dt

−
ˆ τ

0

ˆ
Ω
⟨Vt,x; (ϱ̃b

′(ϱ̃)− b(ϱ̃))tr(˜︂Dv)⟩ψ dx dt.
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Passage to limit in momentum equation:

We have[︃ ˆ
Ω
ϱδuδ(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω

[︁
ϱδuδ · ∂tφφφ+ (ϱδuδ ⊗ uδ) : ∇xφφφ+ (p(ϱδ) + δϱΓδ )divxφφφ

− S(∇xuδ) : ∇xφφφ
]︁

dx dt.

Using |(ϱδuδ ⊗ uδ)ij | ≤ ϱδ|uδ|2 for i, j = 1, · · · , d and Lemma 2.1 from Feireisl et al.
[56] we obtain
ˆ
Ω
⟨Vτ,x; ϱ̃ũ⟩ ·φφφ(τ, ·) dx−

ˆ
Ω
⟨V0; ϱ̃ũ⟩ ·φφφ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[︁
⟨Vt,x; ϱ̃ũ⟩ · ∂tφφφ+ ⟨Vt,x; ϱ̃(ũ⊗ ũ)⟩ : ∇xφφφ+ ⟨Vt,x; p(ϱ̃)⟩divxφφφ

]︁
dx dt

−
ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv)⟩ : ∇xφφφ dx dt +

ˆ τ

0
⟨rM ;∇xφφφ⟩ dt +

ˆ τ

0
⟨rL; divxφφφ⟩ dt ,

where rM = {rMi,j}di,j=1, r
M
i,j ∈ L∞

weak(0, T ;M(Ω)) and rL ∈ L∞
weak(0, T ;M(Ω)) such

that
|rMi,j(τ)| ≤ E∞(τ) and |rL(τ)| ≤ ζ(τ).

The defect measures rM and rL contain the concentration defect of the terms ϱδuδ⊗uδ,
p(ϱδ) and δϱΓδ . Due to (2.5.30), rM and rL are controlled by D.

Verification of momentum compatibility:

Since uδ is bounded in L2(0, T ;W 1,2
0 (Ω)), in this case we can check the relation

easily.

Verification of Generalized Korn–Poincaré inequality:

This follows from the inequality
ˆ τ

0

ˆ
Ω
|uδ|2 dx dt ≤ Cp

ˆ τ

0

ˆ
Ω
D0(∇xuδ) : D0(∇xuδ) dx dt .

Thus we summarize the above discussion in the following theorem.

Theorem 2.5.9. Suppose Ω be a Lipschitz bounded domain in Rd with d = 1, 2, 3
and suppose the pressure satisfies (2.1.36) or (2.1.38). If (ϱ0, (ϱu)0) satisfies (2.5.26),
then there exists a renormalized dissipative measure-valued solution(rDMV) as defined
in Definition 2.5.3 with initial data V0 = δ{ϱ0,(ϱu)0}.
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Navier Slip boundary condition: We can use a similar technique to prove
the existence for Navier slip boundary condition. The existence of weak solutions for
this boundary condition can be found in Novotný-Straškraba [105].

Here we have to use generalized Korn-Poincaré inequality to obtain an uniform
bound for ∥uδ∥L2(0,T ;W 1,2(Ω:R3). We use the fact

´
Ω ϱδ(t, x) dx =

´
Ω ϱ0,δ dx > 0 for

a.e. t in (0, T ) to obtain
ˆ τ

0

ˆ
Ω
|uδ|2 dx dt

≤ Cp

(︃ˆ τ

0

ˆ
Ω
D0(∇xuδ) : D0(∇xuδ) dx dt +

ˆ τ

0

ˆ
Ω
ϱδ|uδ|2 dx dt

)︃
.

This gives the required bound of the norm ∥uδ∥L2(0,T ;W 1,2(Ω:R3). We obtain uniform
bounds on other variables, as we obtained in the case of no-slip boundary condition.

We have the test function class for the momentum equation is

{φφφ ∈ C1([0, T ];C1(Ω;Rd)) with φ · n = 0 on ∂Ω}.

On the other hand, we obtain that the defect measure rM belongs to the space
L∞

weak-(*)(0, T ;M(Ω;Rd×d)).
Thus we obtain a similar results and verify all the desires properties including

the Generalized Korn-Poincaré inequality(2.5.21). Thus for the Navier slip condition
a similar theorem is also true.

Theorem 2.5.10. Suppose Ω be a Lipschitz bounded domain in Rd with d = 1, 2, 3
and suppose the pressure satisfies (2.1.36) or (2.1.38). If (ϱ0, (ϱu)0) satisfies (2.5.26),
then there exists a renormalized dissipative measure-valued solution(rDMV) as defined
in Definition 2.5.7 with initial data V0 = δ{ϱ0,(ϱu)0}.

2.6 Dissipative solutions of compressible fluids

Let us first clarify an ambiguity for the term ‘dissipative solutions’. P. L. Lions
[95]-[96], first coined this term to refer to a class of generalized solutions that satisfy
a certain relative energy inequality, which we will introduce in the next chapter. In
other words these dissipative solutions should satisfy the weak-strong uniqueness
property. Here we consider a class of generalized solutions and call them as dissipative
solutions since they satisfy the weak-strong uniqueness property.

2.6.1 Definition of a dissipative solutions for the Navier-Stokes sys-
tem

When considering a monotone pressure law (2.1.35), we can simplify the notion of
measure-valued solutions. We refer to this type of solutions as dissipative solutions.

Suppose we consider the artificial pressure approximation of the Navier–Stokes
system, i.e., (2.5.23)-(2.5.25) with a monotone pressure law (2.1.35). We recall the
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uniform bounds:

∥ϱδ∥L∞(0,T ;Lγ(Ω)) ≤ C,

∥√ϱδuδ∥L2(Ω;R3) ≤ C,

∥uδ∥L2(0,T ;W 1,2(Ω:R3) ≤ C,

∥H(ϱδ)∥L∞(0,T ;L1(Ω)) ≤ C.

As a consequence of it, we obtain

∥ϱδuδ∥L∞(0,T ;L2γ/γ + 1(Ω;R3)) ≤ C,

ess sup
t∈[0,T ]

ˆ
Ω
δϱΓδ dx ≤ C.

From the above bounds, we obtain the following weak and weak-(*) convergence

ϱδ → ϱ weak-(*)ly in L∞(0, T ;Lγ(Ω)),

uδ → u weakly in L2(0, T ;W 1,2(Ω : R3).

Also with the help of Lemma 8.1 (Appendix) of Abbatiello et al. [2], we obtain

ϱδuδ → ϱu weak-(*)ly in L∞(0, T ;L
2γ/γ + 1(Ω)).

Let us introduce the conservative variable mδ = ϱδuδ. Also we notice that the
sequence {ϱδ,mδ}δ>0 generates a Young measure {Vt,x}(t,x)∈(0,T )×Ω. Moreover, we
have

(ϱ,m) = ({(t, x) ↦→ ⟨Vt,x; ϱ̃⟩}, {(t, x) ↦→ ⟨Vt,x; m̃⟩})
In terms of momentum, we rewrite kinetic energy with a possible extension:

(ϱδ,mδ) ↦→
1

2

|mδ|2

ϱδ
=

⎧⎪⎨⎪⎩
1
2
|(ϱδuδ)|2

ϱδ
if , ϱδ ̸= 0,mδ ̸= 0,

0 if ϱδ = 0, mδ = 0,

∞ if ϱδ = 0, mδ ̸= 0.

(2.6.1)

It is easy to verify that the map (ϱ,m) ↦→ 1
2
|m|2
ϱ is convex l.s.c in (0,∞)× Rd. From

energy inequality, it is worth to notice that it equals ∞ only on a set of zero measure
in (0, T )× Ω. We have the following convergence:

1

2

|mδ|2

ϱδ
→ 1

2

|m|2
ϱ

weakly-(*) in L∞(0, T ;M(Ω;Rd×d
sym)),

P (ϱδ) → P (ϱ) weakly-(*) in L∞(0, T ;M(Ω)),

δϱΓδ (t, ·) → ζ weakly-(*) in L∞(0, T ;M(Ω)).

Hence we define a measure

Rkin
e =Rkin

e,1 +Rkin
e,1

=

(︄
1

2

|m|2
ϱ

−
⟨︃
Vt,x;

1

2

|m̃|2

ϱ̃

⟩︃)︄
+

(︃⟨︃
Vt,x;

1

2

|m̃|2

ϱ̃

⟩︃
− 1

2

|m|2

ϱ

)︃
.
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Using (1.3.13), we obtain Rkin
e,1 ∈ L∞(0, T ;M+(Ω)). Also from Jensen’s inequality we

have 0 ≤ Rkin
e,1 ∈ L∞(0, T ;L1(Ω)). Now we consider the total energy defect as

Re =
1

2

|m|2
ϱ

− 1

2

|m|2

ϱ
+ P (ϱ)− P (ϱ) +

1

Γ− 1
ζ.

Hence, we haveRe ∈ L∞(0, T ;M+(Ω)).
Also, we have the following convergence:

mδ ⊗mδ

ϱδ
→ m⊗m

ϱ
weakly-(*) in L∞(0, T ;M(Ω;Rd×d

sym)),

p(ϱδ) → p(ϱ) weakly-(*) in L∞(0, T ;M(Ω)),

δϱΓδ (t, ·) → ζ weakly-(*) in L∞(0, T ;M(Ω)).

We consider

Rm =

[︃
m×m

ϱ
− m×m

ϱ

]︃
+
[︁
p(ϱ)− p(ϱ) + ζ

]︁
I,

We notice that for any ξ ∈ Rd, the map (ϱ,m) ↦→ |m·ξ|2
ϱ , with a similar extension like

(2.6.1), is convex l.s.c. This helps to conclude that

For any ξ ∈ Rd,Rm : ξ ⊗ ξ ∈ Re ∈ L∞(0, T ;M+(Ω)).

This implies
Rm ∈ L∞(0, T ;M+(Ω;Rd×d

sym)).

Furthermore, we observe

λ1Tr(Rm) ≤ Re ≤ λ2Tr(Rm), λ1, λ2 > 0. (2.6.2)

Defect measures Rm,Re are called turbulent defect measures. Now we need to perform
the limit passage in the approximate continuity equation, the approximate momentum
equation and the approximate energy inequality and summarize the above discussion
to give the definition of the dissipative solutions which is as follows:

Definition 2.6.1. Let γ ≥ 1. We say that (ϱ,u) with

ϱ ∈Cweak([0, T ];L
γ(Ω)), ϱ ≥ 0, ϱu ∈ Cweak([0, T ];L

2γ
γ+1 (Ω)),

u ∈ L2(0, T ;W 1,2
0 (Ω)),

is a dissipative solution of the system (2.2.1)-(2.2.3) with no-slip boundary condition
(2.2.5) and initial data (ϱ0, (ϱu)0) which satisfies

ϱ0 ≥ 0, E0 =

ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+ P (ϱ0)

)︃
dx <∞, (2.6.3)
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if there exist turbulent defect measures

Rm ∈ L∞(0, T ;M+(Ω;Rd×d
sym)) and Re ∈ L∞(0, T ;M+(Ω)), (2.6.4)

satisfying the compatibility condition

λ1Tr(Rm) ≤ Re ≤ λ2Tr(Rm), for some λ1, λ2 > 0, (2.6.5)

such that the following is satisfied:

• Equation of continuity: For any τ ∈ (0, T ) and any φ ∈ C1
c ([0, T ]×Ω), it holds[︃ ˆ

Ω
ϱφ dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱ∂tφ+ ϱu · ∇xφ] dx dt . (2.6.6)

• Momentum equation: For any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T ]× Ω;Rd) with

φφφ · n|∂Ω = 0, it holds[︃ ˆ
Ω
ϱu(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱu · ∂tφφφ+ ϱu⊗ u : ∇xφφφ+ p(ϱ)divxφφφ] dx dt

−
ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xφφφ dxdt +

ˆ τ

0

ˆ
Ω
∇xφφφ : dRm dt .

(2.6.7)

• Energy inequality: The total energy E is defined in [0, T ) as

E(τ) =

ˆ
Ω

(︃
1

2
ϱ|u|2 + P (ϱ)

)︃
(τ, ·) dx.

It satisfies,

E(τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt +

ˆ
Ω
d Re(τ, ·) ≤ E0 (2.6.8)

for a.e. τ > 0.

From the discussion at the beginning of the subsection, we establish the existence
of a dissipative solution.

Theorem 2.6.2. Suppose Ω be a bounded domain and pressure follows (2.1.35) with
γ > 1. If (ϱ0, (ϱu)0) satisfies (2.6.3), then there exists a dissipative solution of the
compressible Navier–Stokes system, that follows the Definition 2.6.1.

Remark 2.6.3. Instead of pressure law (2.1.35) we can consider a general pressure
as described in (2.1.37).
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2.6.2 Dissipative solution: Barotropic Euler system

Similarly, for the Euler system (2.3.1)-(2.3.2) with pressure law (2.3.3) we provide
a definition of the dissipative solution in a bounded domain Ω with impermeability
boundary condition (2.3.4).

Definition 2.6.4. We say that (ϱ,m) with

ϱ ∈Cweak([0, T ];L
γ(Ω)), ϱ ≥ 0, m ∈ Cweak([0, T ];L

2γ
γ+1 (Ω)),

is a dissipative solution to the compressible Euler equation with the boundary
condition (2.3.4) and the initial data (ϱ0,m0) satisfying

ϱ0 ≥ 0, E0 =

ˆ
Ω

(︃
1

2

|m0|2

ϱ0
+ P (ϱ0)

)︃
dx <∞, (2.6.9)

if there exist the turbulent defect measures

Rm ∈ L∞(0, T ;M+(Ω;Rd×d
sym)), Re ∈ L∞(0, T ;M+(Ω)),

satisfying the compatibility condition

λ1Tr(Rm) ≤ Re ≤ λ2Tr(Rm), λ1, λ2 > 0, (2.6.10)

such that the following holds:

• Equation of continuity: For any τ ∈ (0, T ) and any φ ∈ C1
c ([0, T )×Ω) it holds[︃ˆ

Ω
ϱφ dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱ∂tφ+m · ∇xφ] dx dt ; (2.6.11)

• Momentum equation: For any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T )× Ω;Rd) with

φφφ · n|∂Ω = 0, it holds[︃ ˆ
Ω
m(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω

[︃
m · ∂tφφφ+ 1{ϱ>0}

(︃
m⊗m

ϱ

)︃
: ∇xφφφ+ p(ϱ)divxφφφ

]︃
dx dt

+

ˆ τ

0

ˆ
Ω
∇xφφφ : dRm dt ;

(2.6.12)

• Energy inequality: The total energy E is defined in [0, T ) as

E(τ) =

ˆ
Ω

(︃
1

2

|m|2

ϱ
+ (P (ϱ)

)︃
(τ, ·) dx

and it satisfies

E(τ) +

ˆ
Ω
d Re(τ, ·) ≤ E0 (2.6.13)

for a.e. τ > 0;
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Remark 2.6.5. An existence of a dissipative solution for the Euler system is found
in Breit, Feireisl and Hofmanová [17, Section 5]

The definition in the full domain Ω = Rd, equipped with far field condition is as
follows:

Definition 2.6.6. We say that (ϱ,m) with

ϱ ∈Cweak([0, T ];L
2 + Lγ(Rd)), ϱ ≥ 0, m ∈ Cweak([0, T ];L

2 + L
2γ
γ+1 (Rd)),

is a dissipative solution to the compressible Euler equation (2.3.1)-(2.3.2) with initial
data (ϱ0,m0) satisfying

ϱ0 ≥ 0, E0 =

ˆ
Rd

(︃
1

2

|m0|2

ϱ0
+ P (ϱ0)− (ϱ0 − ϱ̄)P ′(ϱ̄)− P (ϱ̄)

)︃
dx <∞, (2.6.14)

if there exist the turbulent defect measures

Rm ∈ L∞(0, T ;M+(Rd;Rd×d
sym)), Re ∈ L∞(0, T ;M+(Rd)),

satisfying the compatibility condition

λ1Tr(Rm) ≤ Re ≤ λ2Tr(Rm), λ1, λ2 > 0, (2.6.15)

such that the following holds:

• Equation of continuity: The integral identity[︃ˆ
Rd

ϱφ dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
Rd

[ϱ∂tφ+m · ∇xφ] dx dt (2.6.16)

holds for any τ ∈ (0, T ) and any φ ∈ C1
c ([0, T )× Rd).

• Momentum equation: The integral identity[︃ ˆ
Rd

m(τ, ·) ·φφφ(τ, ·) dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
Rd

[︃
m · ∂tφφφ+ 1{ϱ>0}

(︃
m⊗m

ϱ

)︃
: ∇xφφφ+ p(ϱ)divxφφφ

]︃
dx dt

+

ˆ τ

0

ˆ
Rd

∇xφφφ : dRm dt

(2.6.17)

holds for any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T )× Rd;Rd).

• Energy inequality: The total energy E is defined for τ ∈ (0, T ) as

E(τ) =

ˆ
Rd

(︃
1

2

|m|2

ϱ
+ (P (ϱ)− (ϱ− ϱ̄)P ′(ϱ̄)− P (ϱ̄))

)︃
(τ, ·) dx.

It satisfies

E(τ) +

ˆ
Rd

d Re(τ, ·) ≤ E0 (2.6.18)

for a.e. τ > 0.



2.6. Dissipative solutions of compressible fluids 69

2.6.3 A possible adaptation for a special domain

In the previous sections we have given the definition of a weak and a dissipative
solution in the bounded domain and the full domain. Now we consider the domain
Ω = R2 × (0, 1), an infinite slab.

Navier stokes system:

For the compressible Navier–Stokes system (2.2.1)-(2.2.3) with a monotone isen-
tropic pressure law (2.1.35) and finite energy initial data, we assume a far field
condition,

|ϱ− ϱ̃| → 0, u → 0 as |xh| → ∞, (2.6.19)

where (ϱ̃, 0) is a static solution, and, a boundary condition

u · n = 0 and [S · n]tan = 0 on ∂Ω. (2.6.20)

In the presence of an external force f in the momentum equation we observe that the
static solutions ϱ̃ satisfy

∇xp(ϱ̃) = ϱ̃f ,

for a time independent function f .

Weak solution: First we give the definition of weak solution in this domain from
Feireisl and Novotný [75, Section 2.2]. We consider a finite energy initial data, i.e.,
ϱ0 ≥ 0, ϱ0 ∈ L1

loc(Rd) and

E0 =

ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+ (P (ϱ0)− (ϱ0 − ϱ̃)P ′(ϱ̃))− P (ϱ̃)

)︃
dx <∞. (2.6.21)

Definition 2.6.7. Let γ ≥ 1 and (ϱ0, (ϱu)0) be a finite energy initial data. We say
that (ϱ,u) is a weak solution of the Navier–Stokes system with pressure law(2.1.35)
in Ω = R2 × (0, 1), if the following is true.

• Regularity class: We have 0 ≤ ϱ, ϱ− ϱ̃ ∈ Cweak(0, T ;L
2 + Lγ(Ω)),

u ∈ L2(0, T ;W 1,2(Ω;Rd)) and ϱu ∈ Cweak(0, T ;L
2 + L

2γ
γ+1 (Ω)).

• The renormalized continuity equation holds in weak sense for the class of test
functions is C∞

c ([0, T )× Ω). The momentum equation remains true in weak sense
for text function class {ϕϕϕ ∈ C∞

c ([0, T ]× Ω;Rd) |ϕϕϕ · n = 0 in Ω}.

• The far field conditions are incorporated through the energy inequality. The total
energy E is defined in [0, T ) as,

E(τ) =

ˆ
Ω

(︃
1

2
ϱ|u|2 + (P (ϱ)− (ϱ− ϱ̃)P ′(ϱ̃))− P (ϱ̃)

)︃
(τ, ·) dx



70 Chapter 2. Fluid models and generalized solutions

It satisfies,

E(τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt ≤ E0 (2.6.22)

for a.e. τ > 0.

Remark 2.6.8. In general one can assume f ∈ L∞((0, T ) × Ω). Here we consider
f = ∇G with G is independent of time and G ∈ C1(Ω) with ∇xG ∈ L∞(Ω). A simple
example is G(xh, x3) = −x3 which resemblances the simplest form of the gravitational
potential, as a consequence of such choice of G, one can choose ϱ̃ ∈ C2(Ω) ∩ L∞(Ω).
Later In our application we consider this particular form of G. Hence we investigate
on this particular G.

Next, we give the definition of a dissipative solution.

Definition 2.6.9. Let f ∈ L∞(Ω) and Let 0 < ϱ̃ ∈ W 1,∞(Ω) and it satisfies
∇xp(ϱ̃) = ϱ̃f . We say that (ϱ,u) with

ϱ− ϱ̃ ∈ Cweak([0, T ];L
2 + Lγ(Ω)), ϱ ≥ 0, ϱu ∈ Cweak([0, T ];L

2 + L
2γ
γ+1 (Ω)),

and u ∈ L2(0, T ;W 1,2(Ω)),

is a dissipative solution to (2.2.1)-(2.2.3) with boundary condition (2.6.20), initial
data (ϱ0, (ϱu)0) and far field condition (2.6.19) satisfying

ϱ0 ≥ 0, E0 =

ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+ P (ϱ0)− (ϱ0 − ϱ̃)P ′(ϱ̃)− P (ϱ̃)

)︃
dx <∞, (2.6.23)

if there exist the turbulent defect measures

Rm ∈ L∞(0, T ;M+(Ω;Rd×d
sym)), Re ∈ L∞(0, T ;M+(Ω)),

satisfying the compatibility condition

λ1Tr(Rm) ≤ Re ≤ λ2Tr(Rm), λ1, λ2 > 0, (2.6.24)

such that the following holds:

• Equation of continuity: For any φ ∈ C∞
c ([0, T ]× Ω), it holds[︃ˆ

Ω
ϱφ dx

]︃t=T

t=0

=

ˆ τ

0

ˆ
Ω
[ϱ∂tφ+ ϱu · ∇xφ] dx dt . (2.6.25)

• Momentum equation: For any φφφ ∈ C∞
c ([0, T ]× Ω;Rd), it holds[︃ ˆ

Ω
ϱu(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱu · ∂tφφφ+ ϱu⊗ u : ∇xφφφ+ p(ϱϵ)divxφφφ] dx dt

−
ˆ τ

0

ˆ
Ω
[S(∇xu) : ∇xφφφ− ϱf ·φφφ] dx dt +

ˆ τ

0

ˆ
Ω
∇xφφφ : dRm dt .

(2.6.26)
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• Energy inequality: The total energy E is defined in [0, T ) as

E(τ) =

ˆ
Ω

(︃
1

2
ϱ|u|2 + (P (ϱ)− (ϱ− ϱ̃P ′(ϱ̃))− P (ϱ̃)

)︃
(τ, ·) dx.

It satisfies

E(τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt +

ˆ
Ω
d Re(τ, ·) ≤ E0 (2.6.27)

for a.e. τ > 0.

In the Definition 2.6.7 as well as in Definition 2.6.9, we notice a different form of
the energy inequality, (2.6.22) and (2.6.27). In the sub-section 2.2.2, we discussed
informally the invading domain technique for Rd, and how the far field conditions are
incorporated through energy inequality.

In this case, the situation is a bit more delicate. We again try to justify informally
how we obtain such energy inequality as described in (2.6.22) and (2.6.27).

First,we assume f = ∇xG with G ∈ W 1,∞(Ω) and the initial data (ϱ0, (ϱu)0)
satisfies (2.6.21). We consider ΩR = B(0, R)× (0, 1) where B(0, R) is a ball of radius
R in R2, also assume the system is provided by no-slip boundary condition, i.e.,
uR = 0 on ∂ΩR, where (ϱR,R) denotes a finite energy weak solution in ΩR. We
recall the energy inequality in ΩR:

ER(τ) +

ˆ τ

0

ˆ
ΩR

S(∇xuR) : ∇xuR dx dt ≤ E0 +

ˆ τ

0

ˆ
ΩR

ϱRuR · f dx dt .

for a.e. τ > 0 with

ER(τ) =

ˆ
ΩR

(︃
1

2
ϱR|uR|2 + P (ϱR)

)︃
(τ, ·) dx,

and ϱ0,R = 1ΩR
ϱ0, (ϱu)0,R = 1ΩR

(ϱu)0. Using the fact that ϱ̃ is independent of time
from the continuity equation we have[︃ˆ

ΩR

(ϱR − ϱ̃)P ′(ϱ̃) dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
ΩR

ϱRuR · ∇x(P
′(ϱ̃)) dx dt .

Using the property of a static solution that it satisfies ∇xP
′(ϱ̃) = f , we observe

ER(τ)−
ˆ
ΩR

((ϱR − ϱ̄)P ′(ϱ̄)− P (ϱ̄))(τ, ·) dx+

ˆ τ

0

ˆ
ΩR

S(∇xuR) : ∇xuR dx dt

≤ E0,R −
ˆ
ΩR

((ϱR,0 − ϱ̄)P ′(ϱ̄)− P (ϱ̄))(τ, ·) dx.

This motivates to consider

ẼR(τ) =

ˆ
ΩR

(︃
1

2
ϱR|uR|2 + (P (ϱ)− (ϱR − ϱ̃)P ′(ϱ̃))− P (ϱ̃)

)︃
(τ, ·) dx.
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Using this we rewrite energy inequality as

ẼR(τ) +

ˆ τ

0

ˆ
ΩR

S(∇xuR) : ∇xuR dx dt ≤ Ẽ0,R (2.6.28)

Next, we consider a possible extension in Rd as

ϱ̀R =

{︄
ϱR in B(0, R)

ϱ̃ otherwise
and ùR =

{︄
uR in B(0, R)

0 otherwise
.

This helps us to extend the inequality (2.6.28) in Rd. We have E0,R ≤ E0, where E0

is independent of R. Using some structural property of kinetic energy and pressure,
we obtain an uniform bound for ϱR̀ − ϱ̃, and similarly for other variables. Finally a
suitable limiting process gives the precise energy inequality as in (2.6.22) or (2.6.27).

The above discussion is too informal, it is just to give an idea how we get the
energy inequality. It is mathematically incorrect formulation for our problem as
we consider no-slip boundary condition on ∂(B(0, R) × (0, 1)) instead of proposed
Navier slip boundary. One can consider the weak solutions with Navier-slip boundary
condition in bounded domain but this leads some other problem of possible zero
extensions of uR. Although there is a standard approach to deal this difficulty is by
introducing a suitable symmetry class.

Symmetry Class: Ebin[46] described that the slip boundary condition (imper-
meability boundary condition) in R2 × (0, 1) can be transformed into periodic ones
by considering the space of symmetric functions. Here ϱ,uh(= u1, u2) were extended
as even functions in the x3-variable defined on R2 × T1, while u3 is extended as an
odd function in x3 on the same set, i.e.,

ϱ(t, xh,−x3) = ϱ(t, xh, x3), uh(t, xh,−x3) = uh(t, xh, x3),

u3(t, xh,−x3) = −u3(t, xh, x3).
(2.6.29)

for all t ∈ (0, T ), xh ∈ R2, x3 ∈ T1. A similar convention is adopted for the initial
data.

Hence, the consideration of the domain R2 × (0, 1) with slip boundary condition
is equivalent to R2 × T1. We have to consider solutions in the class (2.6.29). Just a
small remark that, now we can justify the consideration of no-slip boundary condition
on ∂(B(0, R)× T1) in the informal justification of the energy inequality above and a
possible extension of uR in whole Ω by zero outside B(0, R)× T1. Here also we have
a similar definition of weak solution in domain R2 × T1

Definition 2.6.10. Let γ ≥ 1, (ϱ0, (ϱu)0) is a finite energy initial data, then we say
(ϱ,u) solves the Navier–Stokes system with pressure law in R2 × T1, if

• Regularity class: 0 ≤ ϱ, ϱ− ϱ̃ ∈ Cweak(0, T ;L
2 + Lγ(Ω)),

u ∈ L2(0, T ;W 1,2(Ω;Rd)) and ϱu ∈ Cweak(0, T ;L
2 + L

2γ
γ+1 (Ω)).
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• The renormalized continuity equation holds for the class of test functions is
C1
c ([0, T ]× R2 × T1). The momentum equation remains true for text functions in

C1
c ([0, T ]× R2 × T1;Rd).

• The energy inequality is similar to that in (2.6.27).

Dissipative solution: Similarly, we can provide the definition of a dissipative
solution in Ω = R2 × T1. The definition is similar to the Definition 2.6.9,

Definition 2.6.11. Let γ ≥ 1, (ϱ0, (ϱu)0) is a finite energy initial data, then we say
(ϱ,u) solves the Navier–Stokes system with pressure law in R2 × T1, if

• Regularity class: 0 ≤ ϱ, ϱ− ϱ̃ ∈ Cweak(0, T ;L
2 + Lγ(Ω)),

u ∈ L2(0, T ;W 1,2(Ω;Rd)) and ϱu ∈ Cweak(0, T ;L
2 + L

2γ
γ+1 (Ω)).

• The renormalized continuity equation holds for the class of test functions is
C1
c ([0, T ]× R2 × T1). The momentum equation remains true for text functions in

C1
c ([0, T ]× R2 × T1;Rd).

• The far field conditions are incorporated through the energy inequality. The total
energy E is defined in [0, T ) as,

E(τ) =

ˆ
Ω

(︃
1

2
ϱ|u|2 + (P (ϱ)− (ϱ− ϱ̃)P ′(ϱ̃))− P (ϱ̃)

)︃
(τ, ·) dx

It satisfies,

E(τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt ≤ E0 (2.6.30)

for a.e. τ > 0.

Euler System

For the compressible Euler system (2.2.1)-(2.2.3) with a monotone isentropic
pressure law (2.1.35) and finite energy initial data, we assume a far field and boundary
condition as follows:

• Boundary condition: The impermeability or slip boundary condition on ∂Ω is
given by

m · n = 0 on ∂Ω.

• Far field condition: Considering x = (xh, x3), the conditions read as

|ϱ− ϱ̃| → 0, u → 0 as |xh| → ∞, (2.6.31)

where a static solution(ϱ̃, 0) satisfies ∇xp(ϱ̃) = ϱ̃f in Ω. Now we provide the definition.
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Definition 2.6.12. We say functions ϱ,u with

ϱ− ϱ̃ ∈Cweak([0, T ];L
2 + Lγ(Ω)), ϱ ≥ 0, m ∈ Cweak([0, T ];L

2 + L
2γ
γ+1 (Ω)),

are a dissipative solution to the compressible Euler equation (2.3.1)-(2.3.2) with initial
data (ϱ0, (ϱu)0) satisfying,

ϱ0 ≥ 0, E0 =

ˆ
Ω

(︃
1

2

|m0|2

ϱ0
+ P (ϱ0)− (ϱ0 − ϱ̃)P ′(ϱ̃)− P (ϱ̃)

)︃
dx <∞, (2.6.32)

if there exist the turbulent defect measures

Rm ∈ L∞(0, T ;M+(Ω;Rd×d
sym)), Re ∈ L∞(0, T ;M+(Ω)),

satisfying compatibility condition

λ1Tr(Rm) ≤ Re ≤ λ2Tr(Rm), λ1, λ2 > 0, (2.6.33)

such that the following holds:

• Equation of continuity: For any τ ∈ (0, T ) and any φ ∈ C1
c ([0, T )×Ω) it holds[︃ˆ

Ω
ϱφ dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω
[ϱ∂tφ+m · ∇xφ] dx dt ; (2.6.34)

• Momentum equation: For any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T )× Ω;Rd) with

φφφ · n|∂Ω = 0, it holds[︃ ˆ
Ω
m(τ, ·) ·φφφ(τ, ·) dx

]︃t=τ

t=0

=

ˆ τ

0

ˆ
Ω

[︃
m · ∂tφφφ+ 1{ϱ>0}

(︃
m⊗m

ϱ

)︃
: ∇xφφφ+ p(ϱ)divxφφφ

]︃
dx dt

+

ˆ τ

0

ˆ
Ω
f ·φφφ dx dt +

ˆ τ

0

ˆ
Ω
∇xφφφ : dRm dt ;

(2.6.35)

• Energy inequality: The total energy E is defined in [0, T ) as

E(τ) =

ˆ
Ω

(︃
1

2

|m|2

ϱ
+ (P (ϱ)− (ϱ− ϱ̃)P ′(ϱ̃))− P (ϱ̃)

)︃
(τ, ·) dx,

and it satisfies

E(τ) +

ˆ
Ω
d Re(τ, ·) ≤ E0 (2.6.36)

for a.e. τ > 0;
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Remark 2.6.13. If we want to provide the definition in R2 × T1. Then we have to
mention ϱ,m belong to certain symmetry class along with f . The test function in
momentum equation belongs to the class {φφφ ∈ C1

c ([0, T )× Ω;Rd)}.

Remark 2.6.14. Euler system is equipped with impermeability boundary condition.
Existence of s dissipative solution of Euler system can be proved by taking a vanishing
viscosity limit of the Navier–Stokes system equipped with Navier slip boundary
condition.

Remark 2.6.15. We can repeat our ‘informal justification’ in this context to legit-
imize the choice of total energy and energy inequality (2.6.36).

Remark 2.6.16. The purpose of this definition is to use it in the case of rotating
fluids which we consider in the Chapter 4.

2.7 Concluding remark

We have omitted here a very detailed description of the derivation of the system;
interested readers may follow Trusendal and Rajagopal [117]. We mainly follow the
derivation of Feireisl, Karper and Pokorný [60] and Feireisl [50]. For compressible
Navier–Stokes we recommend the following monograph for a detailed discussion and
proof of weak solutions, P.L. Lions [96], Feireisl [50], Novotný and Straškaba [105].
In connection with the generalized solution, we refer the reader to Feireisl et al. [67].

After the introduction of the dissipative solution for the Navier–Stokes system, it
looks as if the meaning of the measure-valued solution is less relevant. However, it
should be noted that the dissipative solution is only available for a monotone pressure,
while the renormalized dissipative measure-valued (rDMV) solution is for a general
non-monotone pressure. So it is worth considering as long as no suitable definition of
the dissipative solution is available for a non-monotone pressure.
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Chapter 3

Generalized weak–strong
uniqueness property for a viscous
fluid

3.1 Introduction

We discussed the limitations of the classical or strong solution and the need to
consider a generalized solution. Also, the importance of compatibility and generalized
weak–strong uniqueness for generalized solutions was pointed out in the introduction.
We recall the generalized weak–strong uniqueness property which asserts that a
generalized solution and the strong solution emanating for the same initial data
coincide as long as the strong solution exists.

In this chapter we focus on generalized weak-strong uniqueness results for the
compressible system Navier-Stokes with non-monotone pressure laws. In the last
chapter, we introduced several non-monotone pressure laws, see (2.1.36), (2.1.38),
and (2.1.40).

In the context of the Navier–Stokes system for a monotone pressure, Germain [85]
showed weak–strong uniqueness in a class of weak solutions that enjoys additional
regularity properties. Unfortunately, the existence of weak solutions in his class is
still an open problem.

Feireisl, Novotný and Sun [76] and Feireisl, Jin and Novotný [59] showed the
weak–strong uniqueness result in the existence class for an isentropic (barotropic)
pressure equation of state with strictly increasing pressure. They consider the finite
energy weak solutions of the compressible Navier–Stokes system. These results were
extended by Feireisl et al. [56] to the class of the so–called dissipative measure–valued
solutions .

Feireisl, Lu and Novotný [64] extended the weak–strong uniqueness principle
to the hard–sphere pressure type equation of state, still with strictly monotone
pressure–density relation.

Recently, Feireisl [53] proved weak–strong uniqueness in the class of weak solutions,

77
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with a non–monotone compactly supported perturbation of the isentropic equation of
state.

Our basic goal is first to extend the weak-strong uniqueness property for a more
general non-monotone Lipschitz perturbation of isentropic pressure. We also try to
verify the similar results for different boundary conditions and for measure-valued
solutions. Similarly, for the hard-sphere type pressure law, we consider a compactly
supported perturbation of the pressure and verify the weak-strong uniqueness property.

The plan for this chapter is as follows:

• First, we derive the relative energy inequality for various pressure laws and boundary
conditions. We do not need a strong solution to derive the relative energy inequality.
We just need appropriate test functions.

• Next, we prove the weak-strong uniqueness property for non–monotone barotropic
pressures, and we discuss weak-strong uniqueness when the pressure is given by a
hard-sphere type pressure law. For the barotropic case, we discuss two different
boundary conditions, no-slip and Navier slip. In the context of hard-sphere pressure,
we consider a periodic boundary condition.

• The last part of this chapter is devoted to the generalized weak–strong uniqueness.
Here we consider a renormalized dissipative measure-valued(rDMV) solution of the
system with a non-monotone compactly supported perturbation of the barotropic
pressure.

3.2 Relative Energy

In the introduction we discussed the relative energy and its importance. Here we
provide a relative energy for compressible Navier-Stokes system following Feireisl,
Novotný and Sun [76] and Feireisl, Jin and Novotný [59]. Their consideration is valid
for monotone pressures (2.1.35) and (2.1.37), and the relative energy is given by

E(τ) = E(ϱ,u|r,U)(τ)

:=

ˆ
Ω

(︃
1

2
ϱ|u−U|2 + (P (ϱ)− P (r)− P

′
(r)(ϱ− r))

)︃
(τ, ·)dx,

(3.2.1)

where P is Pressure potential, (ϱ,u) is a weak solutions of compressible Navier–Stokes
system, r,U are two arbitrary test functions, and τ > 0. The choice of monotone
pressure law (2.1.35) or (2.1.37) ensures that P is a convex function.

A suitable modification for the non-monotone pressure

Our main goal is to deal with general non-monotone pressure-density relations
(2.1.36), (2.1.38) and (2.1.40). When the pressure is non-monotone, the convexity
for the pressure potential P is absent. As an immediate effect, we cannot infer
the distance property of relative energy. To overcome this difficulty, Feireisl in [52]
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proposes a modified version of (3.2.1) by considering only its monotone part. It
describes as

E(τ) = E(ϱ,u|r,U)(τ)

:=

ˆ
Ω

(︃
1

2
ϱ|u−U|2 + (H(ϱ)−H(r)−H ′(r)(ϱ− r))

)︃
(τ, ·) dx,

(3.2.2)

for τ > 0, and r,U are arbitrary test functions and (ϱ,u) is weak solution of the
compressible Navier–Stokes system and H is the pressure potential related to h as in
(2.1.36), (2.1.38) and (2.1.40).

3.2.1 Relative energy inequality for weak solutions

Only by assuming that (ϱ,u) is a weak solution and (r,U) is a suitable test
function, we can derive an inequality which we call the relative energy inequality. We
say the term ‘suitable test functions’ because we consider the following cases:

• Non-monotone isentropic pressure law and no-slip boundary condition,

• Non-monotone isentropic pressure law and Navier slip boundary condition,

• Non-monotone hard-sphere pressure law and periodic boundary condition.

In the subsection 2.2.2, we discuss the choice of test functions in momentum equation
and their dependence on the boundary conditions.

Non-monotone isentropic pressure law and no-slip boundary condition

We consider the non-monotone pressure law (2.1.36) or (2.1.38) and the boundary
condition for the velocity is (2.2.5). We assume that the test functions (r,U) satisfy

r ∈ C∞
c ([0, T ]× Ω) and U ∈ C∞

c ([0, T ]× Ω;Rd). (3.2.3)

Then for a.e. τ ∈ (0, T ), we have

E(τ) =
ˆ
Ω

(︃
1

2
ϱ|u|2 +H(ϱ)

)︃
(τ, ·) dx−

ˆ
Ω
ϱu ·U(τ, ·) dx

+

ˆ
Ω
ϱ

(︃
1

2
|U|2 dx−H ′(r)

)︃
(τ, ·) dx+

ˆ
Ω
h(r)(τ, ·) dx = Σ4

i=1Ki.
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The first term K1 is related to the energy inequality and satisfies the following
inequality:ˆ

Ω

(︃
1

2
ϱ|u|2 +H(ϱ)

)︃
dx

=

ˆ
Ω

(︃
1

2
ϱ|u|2 + P (ϱ)

)︃
(τ) dx−

ˆ
Ω
Q(ϱ)(τ, ·) dx

≤
ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+ P (ϱ0)

)︃
dx−

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt −

ˆ
Ω
Q(ϱ)(τ, ·) dx

≤
ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+H(ϱ0)

)︃
dx−

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt

−
ˆ
Ω
Q(ϱ)(τ, ·) dx+

ˆ
Ω
Q(ϱ0) dx.

If the non-monotone part of the pressure in compactly supported, i.e., q ∈ C1
c (0,∞),

Then corresponding pressure potential Q ∈ C1(0,∞) with Q(s) ≈ s. Noticing that
the renormalized equation of continuity (2.2.13) makes sense for a function b such
that b(ϱ), ϱb′(ϱ) ∈ L∞(0, T ;L2(Ω)), we can substitute Q as b in the renormalized
equation of continuity and obtainˆ

Ω
Q(ϱ)(τ) dx−

ˆ
Ω
Q(ϱ0) dx = −

ˆ τ

0

ˆ
Ω
q(ϱ)divxu dx dt .

Consequently, we haveˆ
Ω

(︃
1

2
ϱ|u|2 +H(ϱ)

)︃
dx

≤
ˆ
Ω

(︃
1

2

|(ϱu)0|2

ϱ0
+H(ϱ0)

)︃
dx−

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dx dt

+

ˆ τ

0

ˆ
Ω
q(ϱ)divxu dx dt .

Remark 3.2.1. If we consider q ∈ C0,1[0,∞), then with an additional assumption
on the adiabatic exponent, which is γ ≥ 2, we can perform a similar analysis.

For K2 and K3 we use the momentum equation (2.2.14) and the continuity
equation (2.2.13), respectively. To compute the term K5 we use the following identity:ˆ τ

0

ˆ
Ω
h′(r)∂tr dx dt =

[︃ˆ
Ω
h(r)(τ) dx

]︃t=τ

t=0

.

Hence, we obtain

E(τ) +
ˆ τ

0

ˆ
Ω
S(∇xu) : (∇xu−∇xU) dx dt

≤
ˆ
Ω

(︃
|(ϱu)0|2

ϱ0
+H(ϱ0)

)︃
dx−

ˆ
Ω
(ϱu)0 ·U0 dx

+

ˆ
Ω
ϱ0

(︃
1

2
|U0|2 −H ′(r0)

)︃
dx+

ˆ
Ω
h(r0) dx+

ˆ τ

0
R(t)dt,
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where r0 = r(0, ·) and U0 = U(0, ·) in Ω and

R(t) =−
ˆ
Ω
(ϱu · ∂tU+ ϱu⊗ u : ∇xU+ p(ϱ)divxU) dx

+

ˆ
Ω

(︃
ϱ ∂t

(︃
1

2
|U|2 −H ′(r)

)︃
+ ϱu · ∇x

(︃
1

2
|U|2 −H ′(r)

)︃)︃
dx

+

ˆ
Ω
h′(r)∂tr dx+

ˆ
Ω
q(ϱ)divxu dx.

Let us introduce initial relative energy E0 as

E0 =
ˆ
Ω

1

2
ϱ0

⃓⃓⃓⃓
|(ϱu)0|2

ϱ0
−U0

⃓⃓⃓⃓2
+
(︁
H(ϱ0)−H(r0)−H ′(r0)(ϱ0 − r0))

)︁
dx.

By regrouping the terms in the above inequality, we deduce that

E(τ)+
ˆ τ

0

ˆ
Ω
S(∇xu) : (∇xu−∇xU) dx dt

≤ E0 −
ˆ τ

0

ˆ
Ω
(ϱu− ϱU) · ∂tU dx dt

−
ˆ τ

0

ˆ
Ω

(︃
ϱu⊗ u : ∇xU− ϱu · ∇x

(︃
1

2
|U|2

)︃)︃
dx dt

−
ˆ τ

0

ˆ
Ω
(h′(r) + ϱH ′′(r))∂tr dx dt

−
ˆ τ

0

ˆ
Ω
(h(ϱ)divxU+ ϱuH ′′(r)∇xr) dx dt

+

ˆ τ

0

ˆ
Ω
q(ϱ)(divxu− divxU) dx dt .

Further, we assume 0 < r in (0, T ) × Ω. Eventually, by rearranging the terms we
obtain the relative energy inequality

E(τ)+
ˆ τ

0

ˆ
Ω
S(∇xu) : (∇xu−∇xU) dx dt

≤ E0 −
ˆ τ

0

ˆ
Ω
ϱ(u−U) · ∂tU dx dt

−
ˆ τ

0

ˆ
Ω
[ϱu⊗ u : ∇xU− ϱu · (U · ∇x)U+ h(ϱ)divxU] dx dt

+

ˆ τ

0

ˆ
Ω

(︃(︂
1− ϱ

r

)︂
h′(r)∂tr − ϱu · h

′(r)

r
∇xr

)︃
dx dt

+

ˆ τ

0

ˆ
Ω
q(ϱ)(divxu− divxU) dx dt .

(3.2.4)

Suppose p follows a pressure law (2.1.36), (2.1.38). We consider the following hypoth-
esis:

For q ∈ C1
c (0,∞), we consider γ ≥ 1, and

for q ∈ C0,1[0,∞), we consider γ ≥ 2.
(3.2.5)
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We summarize the above discussion in the following lemma:

Lemma 3.2.2. Suppose (ϱ,u) is a weak solution of the Navier–Stokes system following
the Definition 2.2.5 with pressure constraint (3.2.5) and (r,U) is an arbitrary test
function with 0 < r ∈ C∞

c ([0, T ]×Ω) and U ∈ C∞
c ([0, T ]×Ω;Rd), then the inequality

(3.2.4) holds.

Non-monotone isentropic pressure law and Navier slip boundary condi-
tion

In the case of the Navier slip boundary condition, we note that the test function for
the momentum equation belongs to the class {φφφ ∈ C∞([0, T ]× Ω) |φφφ · n = 0 on ∂Ω}.
So we choose test functions as

0 < r ∈ C∞([0, T ]× Ω) and U ∈ C∞([0, T ]× Ω;Rd) with U · n = 0 on ∂Ω.
(3.2.6)

In this case, we obtain a similar relative energy inequality and the statement follows
as

Lemma 3.2.3. Suppose (ϱ,u) is a weak solution of the Navier–Stokes system following
the Definition 2.2.8 with (3.2.5) and (r,U) with (2.1.20) be any test function (r,U)
satisfying (3.2.6) then the inequality (3.2.4) holds.

Non-monotone hard-sphere pressure law and periodic boundary condition

Considering the hard-sphere non-monotone pressure (2.1.40) in the domain flat
torus i.e.Td, we can derive a similar relative energy inequality:

Lemma 3.2.4. Suppose (ϱ,u) is a weak solution of the Navier–Stokes system following
the Definition 2.2.12 in (0, T ) × Td and (r,U) be any test function with 0 < r ∈
C∞
c ([0, T ]× Td) and U ∈ C∞

c ([0, T ]× Td;Rd) then (3.2.4) is true.

Remark 3.2.5. We notice a small difference in the renormalized continuity equation
(2.2.25), where b has to satisfy certain structural assumption. The assumption q is
compactly supported allows us to consider Q as b. Furthermore, in the Definition
2.2.12, we observe that the class of test function for the renormalized continuity equa-
tion and the momentum equation is {(φ,φφφ) ∈ C1([0, T ]×Td)×C1([0, T ];C2(Td;Rd))}.
Hence the Lemma 3.2.4 remains trues in this class of test function.

3.2.2 Relative energy inequality for measure-valued solutions

In the context of measured-valued solution, we consider the relative energy as

Emv(t) = Emv(V|r,U)(t)

:=

ˆ
Ω

[︃⟨︁
Vt,x;

1

2
ϱ̃|ũ−U|2 +H(ϱ̃)−H(r)−H ′(r)(ϱ̃− r)

⟩︁]︃
(t, x) dx,

(3.2.7)

where t > 0, (r,U) is an appropriate test function and V is a solution as defined in
Definition 2.5.3 or 2.5.7 depending on boundary conditions.
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Non-monotone isentropic pressure law and no-slip boundary condition

Lemma 3.2.6. Let (V,D) be a renormalized measure–valued solution(rDMV) of
the Navier–Stokes system (2.2.1)-(2.2.3) for initial data V0 and boundary condition
(2.2.5) following Definition 2.5.3. Furthermore, we assume a pressure follows (2.1.36)
or (2.1.38) with q ∈ C1

c (0,∞) and γ ≥ 1. Then for 0 < r ∈ C∞
c ([0, T ] × Ω) and

U ∈ C∞
c ([0, T ]× Ω;Rd), we have the following relative energy inequality:

Emv(τ)+

ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv) : ˜︂Dv⟩ dx dt −

ˆ τ

0

ˆ
Ω
⟨Vt,x; S(˜︂Dv)⟩ : ∇xU dx dt +D(τ)

≤
ˆ
Ω

[︃⟨︁
V0,x;

1

2
ϱ̃|ũ−U0|2 +H(ϱ̃)−H(r0)−H ′(r0)(ϱ̃− r0)

⟩︁]︃
dx

+

ˆ τ

0
Rmv(t) dt ,

(3.2.8)

where U0(x) = U(0, x), r0(x) = r(0, x) for x ∈ Ω and for a.e. t ∈ (0, T ) the
remainder term Rmv(t) is given by

Rmv(t) =−
ˆ
Ω
⟨Vτ,x; ϱ̃ũ⟩ · ∂tU dx− ⟨rM (t);∇xU⟩

−
ˆ
Ω
[⟨Vt,x; ϱ̃ũ⊗ ũ⟩ : ∇xU+ ⟨Vt,x;h(ϱ̃)⟩divxU] dx

+

ˆ
Ω
[⟨Vt,x; ϱ̃⟩U · ∂tU+ ⟨Vt,x; ϱ̃ũ⟩ · (U · ∇x)U] dx

+

ˆ
Ω

[︃⟨︁
Vt,x;

(︃
1− ϱ̃

r

)︃⟩︁
h′(r)∂tr − ⟨Vt,x; ϱ̃ũ⟩ ·

h′(r)

r
∇xr

]︃
dx

−
ˆ
Ω
⟨Vt,x; q(ϱ̃)⟩ divxU dx+

ˆ
Ω

⟨︂
Vt,x; q(ϱ̃)Tr(˜︂Dv)

⟩︂
dx

The proof is based on the similar approach as in the case of weak solutions. Here
we have

Emv(τ) =

ˆ
Ω

⟨︃
Vτ,x;

1

2
ϱ̃|ũ|2 +H(ϱ̃)

⟩︃
dx−

ˆ
Ω
⟨Vτ,x; ϱ̃ũ⟩ ·U dx

+

ˆ
Ω

1

2
⟨Vτ,x; ϱ̃⟩|U|2 dx−

ˆ
Ω
⟨Vτ,x; ϱ̃⟩H ′(r) dx+

ˆ
Ω
h(r) dx.

Now we need to apply the Definition 2.5.3 suitably to obtain the desired result.

Non-monotone isentropic pressure law and Navier slip boundary condition

A similar lemma is true for the Navier slip boundary condition when we consider
appropriate test functions.

Lemma 3.2.7. Let (V,D) be a renormalized measure–valued solution(rDMV) of the
Navier–Stokes system (2.2.1)-(2.2.3) for initial data V0 and boundary condition (2.2.5)
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following Definition (2.5.7). Furthermore, we assume a pressure follows (2.1.36) or
(2.1.38) with q ∈ C1

c (0,∞) and γ ≥ 1. Let (r,U) be a test function class which satisfy
(3.2.6). Then (3.2.8) is true.

Remark on a possible extension of the relative energy inequalities

We notice that we can extend both the inequalities (3.2.4) and (3.2.8), for a class
of test functions in appropriate Sobolev spaces. In the Lemma 3.2.2, we consider the
test functions in

0 < r ∈ C∞
c ([0, T ]× Ω) and U ∈ C∞

c ([0, T ]× Ω;Rd).

The main idea is to use the density of the above functions in Sobolev space. However,
it applies only to those Sobolev functions for which the integrals on the right-hand
side of the relative energy inequality are well-defined. We can state a modified version
of Lemma 3.2.2 in the following way:

Proposition 3.2.8. Suppose (ϱ,u) is a weak solution of the Navier–Stokes system
following the Definition 2.2.5 with pressure constraint (3.2.5) and (r,U) is an arbitrary
test function with

0 < r ∈ C1([0, T ];W k,2(Ω)) and U ∈ C1([0, T ];W k,2
0 (Ω;Rd)). with k >

[︃
d

2

]︃
+ 1,

then the inequality (3.2.4) holds.

The proof is direct but lengthy, using mainly the density of smooth functions in
Sobolev space. We skip the proof here, an interested reader can look it up in Basaric
[11, Section 2] for a detailed discussion.

3.3 Results on weak-strong uniqueness and generalized
weak-strong uniqueness property

3.3.1 Weak-strong unqiueness for the compressible Navier–Stokes
system with a non-monotone isentropic pressure law

In the first part of this section, we consider the no-slip boundary condition. We
provide the main result and the proof of it. A similar result can be proved for the
Navier slip boundary condition.

At first we assume that (r,U) is a strong solution of the Navier–Stokes system
(2.2.1)-(2.2.3) with initial data (r0,U0) with r0 > 0 in the class as mentioned in
(2.2.11). Then we have the following lemma:

Lemma 3.3.1. Let (ϱ,u) be a weak solution of the compressible Navier–Stokes system
with pressure law (2.1.36) or (2.1.38), and (r,U) a strong solution of the same system.
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We further assume that a strong solution belongs to the class (2.2.11) with initial
condition (0 < r(0, ·),U0) in Ω. Then the following inequality holds

E(τ)+
ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt

≤ E0 +
ˆ τ

0

ˆ
Ω

(︂ϱ
r
− 1
)︂
(U− u) · (divxS(∇xU)−∇xq(r)) dx dt

+

ˆ τ

0

ˆ
Ω
ϱ(u−U) · ((U− u) · ∇x)U dx dt

+

ˆ τ

0

ˆ
Ω
(−h(ϱ) + h(r) + h′(r)(ϱ− r)) divxU dx dt

+

ˆ τ

0

ˆ
Ω
(divxu− divxU)(q(ϱ)− q(r)) dx dt ,

(3.3.1)

for a.e. τ ∈ (0, T ).

Proof. We assume that (r,U) is a strong solution and the initial data r(0, ·) > 0 in
Ω. Moreover, we have that the strong solution belongs to the class (2.2.11). Hence,
we conclude that r > 0 in (0, T )× Ω. Thus, we obtain

∂tr + divx(rU) = 0,

r(∂tU+ (U · ∇x)U) +∇xp(r) = divx(S(∇xU)).

We use the above equations to the relative energy (3.2.4) and deduce the inequality
(3.3.1).

Relation between pressure and pressure potential

We take the monotone part of the pressure, i.e. h, where the pressure p follows
(2.1.36) or (2.1.38). We recall the pressure potential H when p follows (2.1.38). It is
given by

H(ϱ) = ϱ

ˆ ϱ

0

h(ξ)

ξ2
dξ, ϱ > 0.

If p follows (2.1.36) then we consider

H(ϱ) =

{︄
a

γ−1ϱ
γ , γ > 1,

aϱ log ϱ, γ = 1,
.

Next we state an important lemma for H.

Lemma 3.3.2. Let a, b > 0. Suppose r lies on a compact subset [a, b] of (0,∞).
Then there exists 0 < r1 < r2 depending on r, such that the following relation holds:

H(ϱ)−H(r)−H ′(r)(ϱ− r) ≥ c(r)

{︄
(ϱ− r)2 for r1 ≤ ϱ ≤ r2,

(1 + ϱγ) otherwise
, (3.3.2)

where c(r) is uniformly bounded and depends on a, b.
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Proof. We give an idea of the proof for h(ϱ) = aϱγ with γ > 1. First we notice that

H(ϱ)−H(r)−H ′(r)(ϱ− r) = H(ϱ)−H ′(r)ϱ+ h(r).

Since r ∈ [a, b], thus H ′(r) and h(r) is uniformly bounded. Hence for large ϱ, H(ϱ)
is the dominating term.

On the other hand we notice when ϱ → 0, H(ϱ)−H(r)−H ′(r)(ϱ− r) → h(r).
Using the fact that h is monotone we have h(r) ≥ h(a), a fixed quantity. Hence we
can choose r1, r2 such that the inequality holds when ϱ < r1 or ϱ > r2. Finally, using
Taylor’s formula we obtain (3.3.2).

For a general pressure we have to use the condition lim infϱ→∞
p(ϱ)
ϱγ > 0, to

complete the proof.

As a corollary of the above lemma we have the following:

Lemma 3.3.3. For ϱ ≥ 0, it holds that

|h(ϱ)− h(r)− h′(r)(ϱ− r)| ≤ C(r)(H(ϱ)−H(r)−H ′(r)(ϱ− r)),

where C(r) is uniformly bounded if r lies in some compact subset of (0,∞).

Proof. We observe that there exists r3 and r4 depending on r such that the following
inequality holds:

h(ϱ)− h(r)− h′(r)(ϱ− r) ≤ c1(r)

{︄
(ϱ− r)2 for r3 ≤ ϱ ≤ r4,

(1 + ϱγ) otherwise
,

where c1(r) is uniformly bounded for r belonging to compact subsets of (0,∞). Lemma
3.3.2 together with a suitable choice of r1, r2 helps us to conclude the proof.

Now we state the main theorem.

Theorem 3.3.4. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded Lipschitz domain. Let the
pressure be given by (2.1.36) or (2.1.38), with γ ≥ 2 and q ∈ C0,1[0,∞). We further
assume that

0 < r0 = r(0, ·) ∈W k,2(Ω) and U0 = U(0, ·) ∈W k,2(Ω;Rd) with k >
[︃
d

2

]︃
+ 2.

Suppose that (ϱ,u) is a dissipative weak solution following the Definition 2.2.5 and
(r,U) is a strong solution of the problem (2.2.1)-(2.2.3) with no slip boundary condition
(2.2.5) on the time interval [0, T ) such that the initial data satisfies

ϱ(0, ·) = r(0, ·) > 0, ϱu(0, ·) = r(0, ·)U(0, ·).

Then
ϱ = r, u = U in (0, T )× Ω.
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Proof of the Theorem 3.3.4:

First we recall the relative energy inequality from the Lemma 3.3.1:

E(τ)+
ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt

≤ E0 +
ˆ τ

0

ˆ
Ω

(︂ϱ
r
− 1
)︂
(U− u) (divxS(∇xU)−∇xq(r)) dx dt

+

ˆ τ

0

ˆ
Ω
ϱ(u−U) · ((U− u) · ∇x)U dx dt

+

ˆ τ

0

ˆ
Ω
(−h(ϱ) + h(r) + h′(r)(ϱ− r)) divxU dx dt

+

ˆ τ

0

ˆ
Ω
(divxu− divxU)(q(ϱ)− q(r)) dx dt .

Our goal is to estimate the terms on right hand side of the above inequality. We
observe that the hypothesis about the initial data ensures a strong solution belongs
to a regularity class (2.2.11).

Thus, we get ∥∇xU∥C([0,T ]×Ω;Rd×d) is finite, inf [0,T ]×Ω r > 0 and r lies in a compact
subset of (0,∞). These along with Lemma 3.3.3 yield
ˆ τ

0

ˆ
Ω
ϱ(u−U) · ((U− u) · ∇x)U dx dt ≤ ∥∇xU∥C([0,T ]×Ω)

ˆ τ

0
E(t) dt (3.3.3)

andˆ τ

0

ˆ
Ω
(−h(ϱ) + h(r) + h′(r)(ϱ− r)) divxU dx dt ≤ ∥∇xU∥C([0,T ]×Ω)

ˆ τ

0
E(t) dt .

(3.3.4)

To compute the term
ˆ τ

0

ˆ
Ω

(︂ϱ
r
− 1
)︂
(U− u) (divxS(∇xU)−∇xq(r)) dx dt ,

we choose r1, r2 > 0 in the Lemma 3.3.2 such that they satisfy

r1 <

inf
(x,t)∈(0,T )×Ω

r(x, t)

2
, r2 > 2× sup

(x,t)∈(0,T )×Ω
r(x, t)

and 1 + ϱγ ≥ max{ϱ, ϱ2}, ∀ϱ ≥ r2.

Since q is globally Lipschitz by Rademacher’s theorem [48, Theorem 3.2], q is almost
everywhere differentiable and its derivative is bounded by the Lipschitz constant Lq.
Hence we obtain, ⃓⃓⃓⃓

1

r
∇xq(r)

⃓⃓⃓⃓
≤ Lq

inf r
∥r∥C1([0,T ]×Ω).
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Consider a cut-off function

ψ ∈ C∞
c (0,∞) such that 0 ≤ ψ ≤ 1 and ψ(s) = 1 for s ∈ (r1, r2), (3.3.5)

and rewrite (ϱ− r)(U− u) as

(ϱ− r)(U− u) = ψ(ϱ)(ϱ− r)(U− u) + (1− ψ(ϱ))(ϱ− r)(U− u).

Consequently, using Young’s inequality(1.1.1), we obtain

ψ(ϱ)(ϱ− r)(U− u) ≤ 1

2

ψ2(ϱ)
√
ϱ

(ϱ− r)2 +
1

2

ψ2(ϱ)
√
ϱ
ϱ|U− u|2.

From the fact that ψ is compactly supported in (0,∞), and the Lemma 3.3.2, we
have the following estimate:ˆ τ

0

ˆ
Ω
ψ(ϱ)(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤

(︄⃦⃦⃦⃦
1

r

(︁
divxS(∇xU)

)︁⃦⃦⃦⃦
C([0,T ]×Ω;Rd)

+
Lq

inf r
∥r∥C1([0,T ]×Ω;Rd)

)︄ ˆ τ

0
E(t) dt

≤ C(r,U, q)

ˆ τ

0
E(t) dt .

(3.3.6)

Now, we consider

(1− ψ(ϱ))(ϱ− r)(U− u) = (w1(ϱ) + w2(ϱ))(ϱ− r)(U− u),

where supp(w1) ⊂ [0, r1) and supp(w2) ⊂ (r2,∞).
For any δ > 0, using Young’s inequality (1.1.1) again, we deduce that

w1(ϱ)(ϱ− r)(U− u) ≤ C(δ)w2
1(ϱ)(ϱ− r)2 + δ|U− u|2.

Thus using Poincaré inequality(1.1.8) and Korn inequality (1.1.11) we have
ˆ τ

0

ˆ
Ω
w1(ϱ)(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤ C(r,U, q, δ)

ˆ τ

0
E(t) dt + δ

ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt .

(3.3.7)

Similarly, the following observation

w2(ϱ)(ϱ− r)(U− ũ) ≤ C(r)(ϱ+ ϱ|U− u|2),

helps us to deduceˆ τ

0

ˆ
Ω
w2(ϱ)(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤ C(r,U, q)

ˆ τ

0
E(t) dt .

(3.3.8)
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Combining (3.3.6), (3.3.7) and (3.3.8) we obtain
ˆ τ

0

ˆ
Ω
(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤ C(δ, r,U, q)

ˆ τ

0
E(t) dt + δ

ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt .

(3.3.9)

First from Young’s inequality we have
ˆ τ

0

ˆ
Ω
(divxu− divxU)(q(ϱ)− q(r)) dx dt

≤ C(δ)Lq

ˆ τ

0

ˆ
Ω
(ϱ− r)2 dx dt + δ

ˆ τ

0

ˆ
Ω
|divxU− divxu|2 dx dt .

We note that, with the help of Korn inequality (1.1.11), the last integral is
controlled by ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt .

We use the assumption γ ≥ 2 to conclude
ˆ τ

0

ˆ
Ω
(divxu− divxU)(q(ϱ)− q(r)) dx dt

≤ C(δ, r, q)

ˆ τ

0
E(t) dt + δ

ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt .

(3.3.10)

Thus combining the estimates (3.3.3), (3.3.4), (3.3.9) and (3.3.10) and choosing a
small δ suitably, we obtain

E(τ)+1

2

ˆ τ

0

ˆ
Ω
S(∇xu−∇xU) : (∇xu−∇xU) dx dt ≤ E0 + C(r,U, q)

ˆ τ

0
E(t) dt .

(3.3.11)

The hypothesis on the initial condition helps us to infer E0 = 0. Since C(r,U, q) in
(3.3.11) is uniformly bounded in [0, T ]. Therefore, we apply Grönwall’s inequality to
conclude

E = 0 a.e. in (0, T ).

This ends the proof of the Theorem 3.3.4.
Navier slip boundary condition: In the case of the Navier slip boundary

condition, a similar result holds. The main difference in considering the Navier slip
boundary condition is the unavailability of the Poincaré inequality for the velocity u,
since u ∈ L2(0, T ;W 1,2(Ω)) and the standard Poincaré inequality (1.1.8) is not true
in L2(0, T ;W 1,2(Ω)). Therefore, we need to consider the generalized Korn-Poincaré
Inequality(1.1.13). Here we state the result in this case.
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Proposition 3.3.5. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded Lipschitz domain. Let the
pressure be given by (2.1.36) or (2.1.38), with γ ≥ 2 and q ∈ C0,1[0,∞). We further
assume that

0 < r0 = r(0, ·) ∈W k,2(Ω) and U0 = U(0, ·) ∈W k,2(Ω;Rd) with k >
[︃
d

2

]︃
+ 2.

Suppose that (ϱ,u) is a dissipative weak solution following the Definition 2.2.8 and
(r,U) is a strong solution of the problem (2.2.1)-(2.2.3) with Navier slip boundary
condition (2.2.6) on the time interval [0, T ) such that initial data satisfies

ϱ(0, ·) = r(0, ·) > 0, ϱu(0, ·) = r(0, ·)U(0, ·).

Then
ϱ = r, u = U in (0, T )× Ω.

First we rewrite an analogous lemma of (3.3.1) by using the following structural
property of the Newton rheological law (2.2.3):

S(A) : A = µD0(A) : D0(A) + λ|trace(A)|2.

where A ∈ Rd×d.

Lemma 3.3.6. Suppose (ϱ,u) is a weak solution of the compressible Navier–Stokes
system following the Definition 2.2.8 with pressure law (2.1.36) or (2.1.38) and [r,U]
is a strong solution of the same system with r > 0 satisfying Navier-slip boundary
condition. Then the following inequality holds

E(τ)+µ
ˆ τ

0

ˆ
Ω
D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+ λ

ˆ τ

0

ˆ
Ω
|divxu− divxU|2 dx dt

≤ E0 +
ˆ τ

0

ˆ
Ω

(︂ϱ
r
− 1
)︂
(U− u) (divxS(∇xU)−∇xq(r)) dx dt

+

ˆ τ

0

ˆ
Ω
ϱ(u−U) · ((U− u) · ∇x)U dx dt

+

ˆ τ

0

ˆ
Ω
(−h(ϱ) + h(r) + h′(r)(ϱ− r)) divxU dx dt

+

ˆ τ

0

ˆ
Ω
(divxu− divxU)(q(ϱ)− q(r)) dx dt ,

(3.3.12)

for a.e. τ ∈ (0, T ).

In order to estimate the terms on the right hand side of (3.3.12), we notice that
except for the remainder term

ˆ τ

0

ˆ
Ω

(︂ϱ
r
− 1
)︂
(U− u) (divxS(∇xU)−∇xq(r)) dx dt ,
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the estimates are similar to those in the case of no-slip boundary condition (Theorem
3.3.4), since we have used the Poincaré inequality only in this term.

For this term first we consider ψ as in (3.3.5). Then we obtain

ˆ τ

0

ˆ
Ω
ψ(ϱ)(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤ C(r,U, q)

ˆ τ

0
E(t) dt .

(3.3.13)

Again, we consider

(1− ψ(ϱ))(ϱ− r)(U− u) = (w1(ϱ) + w2(ϱ))(ϱ− r)(U− u), .

where supp(w1) ⊂ [0, r1) and supp(w2) ⊂ (r2,∞).
The following observation

w2(ϱ)(ϱ− r)(U− u) ≤ C(r)(ϱ+ ϱ|U− u|2),

helps us to deduce

ˆ τ

0

ˆ
Ω
w2(ϱ)(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤ C(r,U, q)

ˆ τ

0
E(t) dt .

(3.3.14)

Also, for any δ > 0, using Young’s inequality (1.1.1) again, we deduce that

w1(ϱ)(ϱ− r)(U− u) ≤ C(δ)w2
1(ϱ)(ϱ− r)2 + δ|U− u|2.

Now, we notice the presence of the term δ|U−u|2 in the right hand side of the above
inequality. From Generalized Korn-Poincaré inequality (1.1.13) we infer

ˆ
Ω
|U− u|2 dx ≤ C(d,Ω)

(︃ ˆ
Ω
D0(∇xu−∇xU) : D0(∇xu−∇xU) dx

+

ˆ
Ω
ϱ|U− u|2 dx

)︃
.
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It yieldsˆ τ

0

ˆ
Ω
w1(ϱ)(ϱ− r)(U− u) · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤ C

(︄⃦⃦⃦⃦
1

r

(︁
divxS(∇xU)

)︁⃦⃦⃦⃦
C([0,T ]×Ω;Rd)

+
Lq

inf r
∥r∥C1([0,T ]×Ω;Rd), δ

)︄ ˆ τ

0
E(t) dt

+ δC(d,Ω)

(︃ ˆ τ

0

ˆ
Ω
D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+

ˆ τ

0

ˆ
Ω
ϱ|U− u|2 dx dt

)︃
≤ C(r,U, q, δ)

ˆ τ

0
E(t) dt

+ δC(d,Ω)

ˆ τ

0

ˆ
Ω
D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt .

(3.3.15)

Arguing similarly as we have done in the proof of the Theorem 3.3.4 we conclude the
claim that the Proposition 3.3.5 is true.

3.3.2 Weak–strong uniqueness for a non-monotone hard-sphere
type pressure law

Suppose (ϱ,u) is a dissipative weak solution of the system (2.2.1)-(2.2.3) with
pressure law (2.1.40) in (0, T ) × Td. As mentioned in the Remark 2.2.13, the as-
sumption (2.2.29) is essential for the existence of a weak solution. Then we have the
relative energy inequality (3.2.4) which holds for a suitable class of test functions, in
particular, for (r,U) ∈ C1([0, T ]× Td)× C1([0, T ];C2(Td)) with r > 0.

Furthermore, if we assume that (r,U) ∈ C1([0, T ]× Td)× C1([0, T ];C2(Td)) is a
strong solution of the same system with r > 0 in (0, T )× Td, then the following form
of relative energy holds for a.e. τ ∈ (0, T ):

E(τ)+
ˆ τ

0

ˆ
Td

S(∇xu−∇xU) : (∇xu−∇xU) dx dt ≤ E0 +
ˆ τ

0
R1(t) dt ,

(3.3.16)

where R1(·) is given by

R1(t) =

ˆ
Td

(︂ϱ
r
− 1
)︂
(U− u) (divxS(∇xU)−∇xq(r)) dx dt

+

ˆ
Td

ϱ(u−U) · ((U− u) · ∇x)U dx dt

+

ˆ
Td

(−h(ϱ) + h(r) + h′(r)(ϱ− r)) divxU dx dt

+

ˆ
Td

(divxu− divxU)(q(ϱ)− q(r)) dx dt .

(3.3.17)
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In the context of isentropic pressure law (2.1.35) and (2.1.37), we have Lemma
3.3.3, which leads us to the conclusion that the term

ˆ τ

0

ˆ
Td

(−h(ϱ) + h(r) + h′(r)(ϱ− r)) divxU dx dt .

is controlled by the relative energy
´ τ
0 E(t) dt . Unfortunately, we are unable to

obtain a similar lemma for the monotone part of the pressure law (2.1.40). Instead,
we have the following lemma from Feireisl, Lu and Novotný [64, Lemma 2.1]:

Lemma 3.3.7. Let h be the monotone part of the pressure law (2.1.40) and H the
pressure potential associated with h. Let ϱ ≥ 0 and 0 < α0 ≤ r ≤ ϱ̄− α0 < ϱ̄. There
exists α1 ∈ (0, α0) and a constant c > 0, such that

H(ϱ)−H(r)−H ′(r)(ϱ− r) ≥

⎧⎪⎨⎪⎩
c(ϱ− r)2, if α1 ≤ ϱ ≤ ϱ̄− α1,
h(r)
2 , if 0 ≤ ϱ ≤ α1,

H(ϱ)
2 , if ϱ̄− α1 ≤ ϱ < ϱ̄.

We also have,

h(ϱ)− h(r)− h′(r)(ϱ− r) ≤

⎧⎪⎨⎪⎩
c(ϱ− r)2, if α1 ≤ ϱ ≤ ϱ̄− α1,

1 + h′(r)r − h(r), if 0 ≤ ϱ ≤ α1,

2h(ϱ), if ϱ̄− α1 ≤ ϱ < ϱ̄.

Remark 3.3.8. Without loss of generality we can assume on [ϱ̄− α1, ϱ̄), H(ϱ) > 2.
Furthermore, we consider α1 such that supp(q) ⊂ (α1, ϱ̄− α1), where q is the non-
monotone part in the pressure law (2.1.40).

Remark 3.3.9. In Lemma 3.3.7, the constant c depends on r such that c(r) is
uniformly bounded on (α0, ϱ̄− α0). Also, 0 ≤ ϱ ≤ ϱ̄− α1 we obtain

|h(ϱ)− h(r)− h′(r)(ϱ− r)| ≤ C(H(ϱ)−H(r)−H ′(r)(ϱ− r)).

Moreover, for ϱ̄ − α1 ≤ ϱ < ϱ̄ we have no control on h(ϱ) − h(r) − h′(r)(ϱ − r) by
H(ϱ)−H(r)−H ′(r)(ϱ− r).

Relative energy inequality with extra term

First we introduce a few notations and important results.

• In Td, we denote ∆x the Laplace operator defined on spatially periodic functions
with zero mean.

• For 1 < q < ∞, we denote Lq
0(Td) := {f ∈ Lq(Td)|

´
Td f dx = 0.}, then

by classical elliptic theory, ∆−1
x is a bounded linear mapping from Lq

0(Td) to
W 2,q(Td) ∩ Lq

0(Td).
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To overcome the difficulty stated in Remark 3.3.9, we add one extra term
ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt

on the relative energy inequality, where b is a function that satisfies the hypothesis of
renormalized equation. To include this term, we have to use ∇x∆

−1
x (b(ϱ)− ⟨b(ϱ)⟩)

as a test function in the momentum equation (2.2.27) and then the renormalized
continuity equation (2.2.25) suitably. Then we obtain

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt =

ˆ τ

0

ˆ
Td

R2(t) dt +

ˆ
Td

R3(τ), (3.3.18)

where R2(·) is given by

R2(t) =

ˆ
Td

h(ϱ)⟨b(ϱ)⟩ dx−
ˆ
Td

(q(ϱ)− q(r)) (b(ϱ)− ⟨b(ϱ)⟩) dx+

ˆ
Td

q(r)b(ϱ) dx

−
ˆ
Td

ϱu⊗ u : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx

+

ˆ
Td

S(∇xu) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx

+

ˆ
Td

ϱu · ∇x∆
−1
x divx(b(ϱ)u) dx

+

ˆ
Td

ϱu · ∇x∆
−1
x

(︁
(b′(ϱ)ϱ− b(ϱ))divxu− ⟨(b′(ϱ)ϱ− b(ϱ)divxu⟩

)︁
dx,

(3.3.19)

and R3(·) is given by

R3(τ) =

ˆ
Td

ϱu · ∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)(τ, ·) dx

−
ˆ
Td

ϱ0u0 · ∇x∆
−1
x (b(ϱ0)− ⟨b(ϱ0)⟩) dx

(3.3.20)

Indeed, it is important to verify that the term
´ τ
0

´
Td b(ϱ)h(ϱ) dx dt is well defined

for suitable b, then the identity (3.3.18) makes sense. We give the following lemma
which ensures this.

Lemma 3.3.10. Suppose the pressure constraint (2.2.29) is satisfied, i.e.,

lim
ϱ→ϱ̄

h(ϱ)(ϱ̄− ϱ)β > 0, for some β ≥ 5

2
.

Let {ϱ,u} be a dissipative weak solution in (0, T ) × Ω in the sense of definition
(2.2.12). Let (r,U) ∈ C1([0, T ]× Td)× C1([0, T ];C2(Td;Rd)) be a strong solution of
the same system with 0 < r < ϱ̄. Let b ∈ C1[0, ϱ) satisfy the condition

|b′(s)|
5
2 + |b(s)|

5
2 ≤ C(1 + h(s)) for some constant C and any s ∈ [0, ϱ̄). (3.3.21)
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Then the following relative energy is true for a.e. τ ∈ (0, T ),

[E(t)]t=τ
t=0+

ˆ τ

0

ˆ
Td

S(∇xu−∇xU) : (∇xu−∇xU) dx dt +

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt

≤
ˆ τ

0
R1(t) dt +

ˆ τ

0
R2(t) dt +R3(τ),

(3.3.22)

with R1, R2 and R3 are given by (3.3.17),(3.3.19), and (3.3.20),respectively.

Remark 3.3.11. The Lemma 3.3.10 remains true even if we do not assume that
(ϱ,U) is a strong solution. It suffices to assume (r,U) ∈ C1([0, T ] × Td) ×
C1([0, T ];C2(Td;Rd)) with 0 < r < ϱ̄. In this case we need to replace (3.3.16)
by (3.2.4).

Remark 3.3.12. The condition for b in (3.3.21) is slightly changed from the similar
assumption in the Definition 2.2.12. But this is related to the technical assump-
tion(2.2.29).

Here we give an extended outline of the proof of the Lemma 3.3.10. By (2.2.29),
we first observe

H(s) ≤ C + (ϱ̄− s)h(s) ≤ 2C +H(s), for all s ∈ [0, ϱ̄),

where C is a constant that depends on ϱ̄. Together with (3.3.21), this gives

|b(ϱ)|+ |b′(ϱ)| ≤ C(1 + h(s))
2
5 ≤ C(1 +H(s))

2
3 , for s ∈ [0, ϱ̄).

Since q ∈ C1
c [0, ϱ̄), we have Q ∈ C1[0, ϱ̄). Hence from the energy inequality (2.2.28)

in the Definition 2.2.12, we obtain

b(ϱ), b′(ϱ) ∈ L
5
2 ((0, T )× Td) ∩ L∞(0, T ;L

3
2 (Td)) (3.3.23)

The function b(ϱ) satisfies the renormalized equation of continuity (2.2.25). Therefore,
we are able to get the following information on ∂tb(ϱ):

∂tb(ϱ) ∈
(︂
L2(0, T ;W−1, 6

5 (Td)) ∩ L
10
9 (0, T ;W−1, 30

17 (Td)) + L
10
9 ((0, T )× Td)

)︂
.

Due to the fact that b(ϱ) satisfies (3.3.23), we choose ∇x∆
−1
x (b(ϱ)−⟨b(ϱ)⟩) as the test

function in the momentum equation (2.2.27) by suitably modifying the test function
class {︂

φφφ ∈ L
5
2 (0, T ;W 1, 5

2 (Td;Rd)) ∩ L∞(0, T ;W 1, 3
2 (Td;Rd))

}︂
. (3.3.24)

It is possible, since the test function class {φφφ ∈ C1([0, T ];C2(Td;Rd))} is dense in
(3.3.24). Hence, we obtain

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt =

ˆ τ

0

ˆ
Td

R2(t) dt +

ˆ
Td

R3(τ), (3.3.25)
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where R2 and R3 are described as in (3.3.19) and (3.3.20), respectively. Next, we
show that the integrals in the right hand side of (3.3.25) make sense from the following
bounds for a.e. τ ∈ (0, T ):

At first, we have
ˆ τ

0

ˆ
Td

h(ϱ)⟨b(ϱ)⟩ dx dt ≤ ∥h(ϱ)∥L∞(0,T ;L1(Td))∥⟨b(ϱ)⟩∥L1(0,T )

≤ ∥h(ϱ)∥L∞(0,T ;L1(Td))∥b(ϱ)∥L1(0,T ;L1(Td)).

As q is compactly supported, we obtain
ˆ τ

0

ˆ
Td

((q(ϱ)− q(r)) (b(ϱ)− ⟨b(ϱ)⟩)− q(r)b(ϱ)) dx dt

≤ C
(︂
∥q(ϱ)∥L∞((0,T )×Td) + ∥q(r)∥L∞((0,T )×Td)

)︂
∥b(ϱ)∥L1(0,T ;L1(Td))

From Definition (2.2.12) and Sobolev embedding W 1,2(Td) ⊂ L6, for d = 3, we have

ϱu⊗ u ∈ L∞(0, T ;L1(Td;Rd×d)) ∩ L1(0, T ;L3(Td;Rd×d)) ∩ L
5
3 ((0, T )× Td;Rd×d).

Therefore, we deduce that
ˆ τ

0

ˆ
Td

ϱu⊗ u : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx dt

≤ C∥ϱu⊗ u∥
L

5
3 ((0,T )×Td;Rd×d)

∥(b(ϱ)− ⟨b(ϱ)⟩)∥
L

5
2 ((0,T )×Td)

.

Similarly, we have the following estimate:
ˆ τ

0

ˆ
Td

S(∇xu) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx dt

≤ C∥∇xu∥L2((0,T )×Td;Rd×d)∥(b(ϱ)− ⟨b(ϱ)⟩)∥L2((0,T )×Td).

Again using the Sobolev embedding, we get ϱu ∈ L2(0, T ;L6(Td;Rd)). This implies
ˆ τ

0

ˆ
Td

ϱu · ∇x∆
−1
x divx(b(ϱ)u) dx dt

≤ C∥ϱu∥L2(0,T ;L6(Td;Rd))∥b(ϱ)u∥L2(0,T ;L
6
5 (Td;Rd))

.

Analogously, it is easy to verify that
ˆ τ

0

ˆ
Td

ϱu · ∇x∆
−1
x

(︁
(b′(ϱ)ϱ− b(ϱ))divxu− ⟨(b′(ϱ)ϱ− b(ϱ)divxu⟩

)︁
dx dt

≤ ∥ϱu∥X∥b(ϱ)− ϱb′(ϱ)∥
L

5
2 ((0,T )×Td)

∥divxu∥L2((0,T )×Td),
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where X = L2(0, T ;L6(Td;Rd)) ∩ L∞(0, T ;L2(Td;Rd)).
Also, we deduce that
ˆ
Td

ϱu · ∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩(τ, ·) dx−

ˆ
Td

ϱ0u0 · ∇x∆
−1
x (b(ϱ0)− ⟨b(ϱ0)⟩ dx

≤ C
(︂
∥ϱu∥L∞(0,T ;L2(Td;Rd))∥b(ϱ)∥L∞(0,T ;L

3
2 (Td))

+ ∥ϱ0u0∥L2(Td;Rd))∥b(ϱ0)∥L 3
2 (Td)

)︂
.

Thus, we have all the integrals of R2 and R3 is bounded. This ends the proof of the
Lemma 3.3.10.

Main theorem

Now we will provide the weak-strong uniqueness result for this problem.

Theorem 3.3.13. Suppose (ϱ,u) is a weak solution of the system (2.2.1)-(2.2.3)
following the Definition 2.2.12 with the pressure law (2.1.40) in (0, T )×Td. Suppose,
the monotone part h of the pressure satisfies

lim
ϱ→ϱ̄

h(ϱ)(ϱ̄− ϱ)β > 0, for some β ≥ 3, (3.3.26)

and, the non-monotone part q is compactly supported in [0, ϱ̄). Let (r,U) ∈ C1([0, T ]×
Td)× C1([0, T ];C2(Td)) be a strong solution of the same system with 0 < r < ϱ̄, and
with the same initial data (ϱ0, (ϱu)0). Then there holds,

(ϱ,u) = (r,U) in (0, T )× Td

Remark 3.3.14. The assumption β ≥ 3 in (3.3.26) is purely technical to prove the
weak–strong uniqueness.

The main idea to obtain the weak-strong uniqueness is to estimate the remainder
terms R1, R1 and R3 in (3.3.22). We will try to show that either these estimates are
bounded by η(·)E(·) for some positive function η, or absorbed it left hand side of the
inequality.

Instead of considering b from certain class we can choose a particular b that
satisfies (3.3.21).

Choice of b and its properties

Consider b ∈ C∞[0, ϱ̄), b′(s) ≥ 0 as follows:

b(s) =

{︄
0 if s ≤ ϱ̄− α1,

− log(ϱ̄− s), if ϱ̄− α2 ≤ s < ϱ̄,
b′(s) > 0 if ϱ̄− α1 < s < ϱ̄− α2.

(3.3.27)

The choice of α2 is in such a way that

− log(ϱ̄− s) ≥ 16∥divxU∥C([0,T ]×Td), if ϱ̄− α2 ≤ s < ϱ̄. (3.3.28)
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Considering the assumption (3.3.26), we have

For γ > 0, lim
s→ϱ̄−

h(s)

(b(s))γ
= lim

s→ϱ̄−

H(s)

(b(s))γ
= lim

s→ϱ̄−

h(s)

(b′(s))β
= lim

s→ϱ̄−

H(s)

(b(s))β−1
= +∞.

(3.3.29)

This helps to obtain the following results:

• From (3.3.29) and (3.3.7), we have
ˆ
Td

|b(ϱ)|γ dx =

ˆ
ϱ≥ϱ̄−α1

|b(ϱ)|γ dx

≤ C

ˆ
ϱ≥ϱ̄−α1

H(ϱ) dx

≤ C

ˆ
ϱ≥ϱ̄−α1

(H(ϱ)−H(r)−H ′(r)(ϱ− r)) dx,

(3.3.30)

for any γ ≥ 1.

• Also for any 2 ≤ β0 ≤ β, we have
ˆ
Td

|b′(ϱ)|β0−1 dx ≤ C

ˆ
ϱ≥ϱ̄−α1

H(ϱ) dx

≤ C

ˆ
ϱ≥ϱ̄−α1

(H(ϱ)−H(r)−H ′(r)(ϱ− r)) dx,
ˆ
Td

|b′(ϱ)|β0 dx≤ C

ˆ
Td

h(ϱ) dx.

(3.3.31)

This choice of b ensures that the Lemma 3.3.10 remains true.

Estimates for the remainder terms R1, R2 and R3

We consider the following subsets of Td at any instantaneous time t:

Ω1 = {x ∈ Td|0 ≤ ϱ ≤ ϱ̄− α1},
Ω2 = {x ∈ Td|ϱ̄− α1 ≤ ϱ ≤ ϱ̄− α2},
Ω3 = {x ∈ Td|ϱ̄− α2 ≤ ϱ < ϱ̄}.

For any ψ ∈ L2(0, T ;L2(Td)) we have
ˆ
Td

(q(ϱ)− q(r))ψ dx ≤ Cδ

(︃ˆ
Td

1Ω1(ϱ− r)2 dx+

ˆ
Td

1Ω2∪Ω3 dx
)︃
+ δ

ˆ
Td

ψ2 dx,

since suppq ⊂ (0, ϱ̄− α1). From the Lemma 3.3.7 we note that the first term on the
right hand side of the above inequality is controlled by the relative energy.
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First, we focus on the term R1 and consider

R1,1(t) =

ˆ
Td

(︂ϱ
r
− 1
)︂
(U− u) (divxS(∇xU)−∇xq(r)) dx

+

ˆ
Td

ϱ(u−U) · ((U− u) · ∇x)U dx

+

ˆ
Td

1Ω1(−h(ϱ) + h(r) + h′(r)(ϱ− r))divxU dx

+

ˆ
Td

(divxu− divxU)(q(ϱ)− q(r)) dx.

We have calculated these terms in the Subsection 3.3.1. However, we need to be a
little careful as we consider domain Td. Instead of the Poincaré inequality(1.1.8), we
need to use the generalized Korn–Poincaré inequality (1.1.13). Thus we obtain

ˆ τ

0
R1,1(t) dt ≤C(δ, q, rU)

ˆ τ

0

ˆ
Td

E(t) dt

+ δCp

(︃ ˆ τ

0

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+

ˆ τ

0

ˆ
Td

|divxu− divxU|2 dx dt
)︃
,

for any δ > 0 and Cp is the constant coming from the Korn–Poincaré inequality. On
the other hand, the choice of b in (3.3.27) yields

ˆ τ

0

ˆ
Td

1Ω2∪Ω3(−h(ϱ) + h(r) + h′(r)(ϱ− r))divxU dx dt ≤ 1

8

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt .

From this we deduce that

ˆ τ

0
R1(t) dt ≤ C(δ, ϱ̄, r,U, q)

ˆ τ

0
E(t) dt +

1

8

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt

+ δCp

(︃ ˆ τ

0

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+

ˆ τ

0

ˆ
Ω
|divxu− divxU|2 dx dt

)︃
.

(3.3.32)
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Now we recall the remainder term R2,

R2(t) =

ˆ
Td

h(ϱ)⟨b(ϱ)⟩ dx−
ˆ
Ω
(q(ϱ)− q(r)) (b(ϱ)− ⟨b(ϱ)⟩) dx+

ˆ
Ω
q(r)b(ϱ) dx

−
ˆ
Td

ϱu⊗ u : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx

+

ˆ
Td

S(∇xu) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx

+

ˆ
Td

ϱu · ∇x∆
−1
x divx(b(ϱ)u) dx

+

ˆ
Td

ϱu · ∇x∆
−1
x

(︁
(b′(ϱ)ϱ− b(ϱ))divxu− ⟨(b′(ϱ)ϱ− b(ϱ)divxu⟩

)︁
dx

=
7∑︂

j=1

Tj .

We quickly recall the regularity class of the variables:

ϱ ∈ Cw([0, T ];L
γ(Td)) for any γ > 1, p(ϱ) ∈ L1((0, T )× Td)

u ∈ L2(0, T ;W 1,2(Td;Rd)), ϱu ∈ Cw([0, T ];L
2(Td;Rd)).

Now using the Sobolev embedding we have ϱu ∈ L2(0, T ;L6(Td;Rd)), and

ϱu⊗ u ∈ L∞(0, T ;L1(Td;Rd×d)) ∩ L1(0, T ;L3(Td;Rd×d)) ∩ L
5
3 ((0, T )× Td;Rd×d).

Further we note that b(ϱ) and b′(ϱ) satisfies (3.3.23). Moreover, from (3.3.30) and
(3.3.31) we have

b(ϱ) ∈ L∞(0, T ;Lγ(Td)) for any γ ≥ 1.

From (3.3.30) we get

⟨b(ϱ)⟩ = 1

L(Td)

ˆ
Td

b(ϱ) ≤ E(t),

for a.e. t ∈ (0, T ). Also, from the Definition 2.2.12, we have h(ϱ) ∈ L∞(0, T ;L1(Td)).
This implies

ˆ
Td

h(ϱ)⟨b(ϱ)⟩ dx ≤ η(t)E(t),

where η ∈ L1(0, T ).
Henceforth, we use η as a generic function in L1(0, T ) which depends on q, ϱ̄, the

initial data (ϱ0, (ϱu)0), the initial energy E0 and the strong solution (r,U).
We have q is compactly supported and b(ϱ) satisfies (3.3.23), these yield

ˆ
Td

h(ϱ)⟨b(ϱ)⟩ dx−
ˆ
Td

(q(ϱ)− q(r)) (b(ϱ)− ⟨b(ϱ)⟩) dx ≤ η(t)E(t).
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This helps us to conclude

T1 + T2 + T3 ≤ η(t)E(t). (3.3.33)

Let us consider the term T4, i.e.,ˆ
Td

ϱu⊗ u : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx.

We have the following identity

ϱu⊗ u =ϱ(u−U)⊗ (u−U) + ϱU⊗ (u−U)

+ ϱ(u−U)⊗U+ (ϱ− r)U⊗U+ rU⊗U.

From our choice of b, we note that

∥∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩))∥Lγ(Td;Rd×d) ≤ ∥b(ϱ)∥Lγ(Td), for any γ ≥ 1.

We employ the Sobolev embedding theorem to obtainˆ
Td

ϱ(u−U)⊗ (u−U) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩) dx

≤ C(ϱ̄)∥√ϱ(u−U)∥L2(Td)∥u−U∥L6(Td)∥b(ϱ)∥L3(Td)

≤ C(ϱ̄, δ)∥√ϱ|u−U∥2L2(Td)∥b(ϱ)∥
2
L3(Td) + δ∥u−U∥2W 1,2(Td).

Eventually, we use the Generalized Korn-Poincaré inequality (1.1.13) to deduce
ˆ
Td

ϱ(u−U)⊗ (u−U) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩) dx

≤ C(δ, ϱ̄)η(t)E(t) + δ

(︃
Cp

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt
)︃
.

Analogously, we haveˆ
Td

ϱU⊗ (u−U) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩) dx

≤ C(ϱ,̄U)

(︃ˆ
Td

ϱ|u−U|2 dx+

ˆ
Td

|b(ϱ)|2 dx
)︃
.

We notice that both the terms in the right hand side of the last inequality are
dominated by the relative energy.

By a similar argument, we getˆ
Td

(ϱ− r)U⊗U : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩) dx ≤ η(t)E(t) +

ˆ
Td

|b(ϱ)|2 dx

and ˆ
Td

rU⊗U : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩) dx ≤ η(t)E(t).



102 Chapter 3. Generalized weak–strong uniqueness

Thus, collecting all estimates of the term T4, we obtain

T4 =
ˆ
Td

ϱu⊗ u : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx

≤ C(δ, ϱ̄,U, E0) η(t)E(t)

+ δ

(︃
Cp

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt
)︃
.

For the term T5, at first we rewrite

S(∇xu) = (S(∇xu)− S(∇xU)) + (S(∇xU)).

Then, with the help of the Young’s inequality and the generalized Korn-Poincaré
inequality (1.1.13), we get

ˆ
Td

S(∇xu) : ∇x(∇x∆
−1
x (b(ϱ)− ⟨b(ϱ)⟩)) dx

≤ C(δ)η(t)E(t) + δ

(︃
Cp

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt
)︃
.

For the term T6, we consider

ϱu · ∇x∆
−1
x divx(b(ϱ)u) = ϱ(u−U) · ∇x∆

−1
x divx(b(ϱ)(u−U))

+ ϱ(u−U) · ∇x∆
−1
x divx(b(ϱ)U)

+ ϱU · ∇x∆
−1
x divx(b(ϱ)(u−U)) + ϱU · ∇x∆

−1
x divx(b(ϱ)U)

Therefore, we deduce that
ˆ
Td

ϱ(u−U) · ∇x∆
−1
x divx(b(ϱ)(u−U)) dx

≤ C(ϱ̄)∥√ϱ(u−U)∥L2(Td)∥u−U∥L6(Td)∥b(ϱ)∥L3(Td)

≤ C(ϱ̄, δ)∥√ϱ|u−U∥2L2(Td)∥b(ϱ)∥
2
L3(Td) + δ∥|u−U∥2W 1,2(Td).

In a similar way, we estimate the other terms in T6 and obtain

T6 =
ˆ
Td

ϱu · ∇x∆
−1
x divx(b(ϱ)u) dx

≤ C(δ)η(t)E(t) + δ

(︃
C

ˆ τ

0

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt
)︃

Now the only remaining term to be estimated from R2 is

T7 =
ˆ
Td

ϱu · ∇x∆
−1
x

(︁
(b′(ϱ)ϱ− b(ϱ))divxu− ⟨(b′(ϱ)ϱ− b(ϱ)divxu⟩

)︁
dx.
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The first observation isˆ
Td

ϱu · ∇x∆
−1
x

(︁
(b′(ϱ)ϱ− b(ϱ))divxu− ⟨(b′(ϱ)ϱ− b(ϱ)divxu⟩

)︁
dx

= −
ˆ
Td

divx∆−1
x (ϱu− ⟨ϱu⟩)(b′(ϱ)ϱ− b(ϱ))divxu.

Again, we split the integral into several in the following way:
ˆ
Td

divx∆−1
x (ϱu− ⟨ϱu⟩)(b′(ϱ)ϱ− b(ϱ))divxu

=

ˆ
Td

divx∆−1
x (ϱu− ⟨ϱu⟩)(b′(ϱ)ϱ− b(ϱ))divxU

+

ˆ
Td

divx∆−1
x ((ϱu− ⟨ϱu⟩)− (ϱU− ⟨ϱU⟩)) (b′(ϱ)ϱ− b(ϱ))(divxu− divxU)

+

ˆ
Td

divx∆−1
x (ϱU− ⟨ϱU⟩)(b′(ϱ)ϱ− b(ϱ))(divxu− divxU).

We notice the importance of considering β ≥ 3 in (3.3.26) in the following expression:
ˆ
Td

divx∆−1
x (ϱ(u−U)− ⟨ϱ(u−U)⟩)(b′(ϱ)ϱ− b(ϱ))(divxu− divxU)

≤ ∥divx∆−1
x (ϱ(u−U)− ⟨ϱ(u−U)⟩)∥L6(Td)

×
(︂
∥b′(ϱ)ϱ− b(ϱ)∥L3(Td)∥divxu− divxU∥L2(Td)

)︂
≤ C(δ)∥√ϱ(u−U)∥2L2(Td)∥b

′(ϱ)ϱ− b(ϱ)∥2L3(Td) + δ∥divxu− divxU∥2L2(Td).

It is necessary because we need a uniform bound of the term ∥b′(ϱ)ϱ − b(ϱ)∥2L3(Ω).
Finally, we can estimate the other remaining terms and infer that

T7 =
ˆ
Td

ϱu · ∇x∆
−1
x

(︁
(b′(ϱ)ϱ− b(ϱ))divxu− ⟨(b′(ϱ)ϱ− b(ϱ)divxu⟩

)︁
dx

≤ η(t)E(t) + δCp

(︄ ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dt

+

ˆ
Td

|divxu− divxU|2 dx

)︄
.

Thus, by combining all the estimates, we get
ˆ τ

0
R2(t) dt ≤

ˆ τ

0
η(t)E(t) dt

+ δCp

(︃
C

ˆ τ

0

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+

ˆ τ

0

ˆ
Td

|divxu− divxU|2 dx dt
)︃ (3.3.34)
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Now for initial data ϱ0 = r0 ∈ [α0, ϱ̄− α0], we have b(ϱ0) ≡ 0. Hence, for R3, we get

R3(τ) ≤
1

4

ˆ
Td

ϱ|u−U|2(τ, ·) dx+
1

2

ˆ
ϱ≥ϱ̄−α1

(H(ϱ)−H(r)−H ′(r)(ϱ− r)) dx.

(3.3.35)

We collect all the estimates of R1, R3 and R3 from (3.3.32), (3.3.34) and (3.3.35),
respectively and obtain

E(τ)+
ˆ τ

0

ˆ
Td

S(∇xu−∇xU) : (∇xu−∇xU) dx dt +

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ)

≤ E0 +
ˆ τ

0
η(t)E(t) dt +

1

8

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt

+ δCp

(︃ ˆ τ

0

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+

ˆ τ

0

ˆ
Td

|divxu− divxU|2 dx dt
)︃
,

for a η ∈ L1(0, T ).
We use the following identity:

S(∇xu−∇xU) : (∇xu−∇xU) = µD0(u−U) : D0(u−U) + λ|divxu− divxU|2,

and, choose δ small, depending on µ, λ such that we have

E(τ) + µ

4

ˆ τ

0

ˆ
Td

D0(∇xu−∇xU) : D0(∇xu−∇xU) dx dt

+
λ

4

ˆ τ

0

ˆ
Td

|divxu− divxU|2 dx dt +
1

4

ˆ τ

0

ˆ
Td

b(ϱ)h(ϱ) dx dt

≤ E0 +
ˆ τ

0
η(t)E(t) dt ,

(3.3.36)

where η ∈ L1(0, T ).
Proof of the Theorem 3.3.13: From the hypothesis of the theorem, we have

(r0, r0U0) = (ϱ0, (ϱu)0).

This concludes E0 = 0. Since b ≥ 0, as a consequence of Grönwall’s lemma, we
conclude that

E(t) = 0 for a.e. t ∈ (0, T ).

This ends the proof of the theorem 3.3.13.

3.3.3 Generalized weak–strong uniqueness for a non-monotone isen-
tropic pressure

Now we are in the last part of this chapter. Here we consider the renormalized
dissipative measure-valued(rDMV) solutions of the compressible Navier–Stokes system
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(2.2.1)-(2.2.3), following the Definition 2.5.3 with no-slip boundary condition (2.2.5).
We consider a non-monotone barotropic pressure law, that follows (2.1.36) or (2.1.38).

Now we state the main result that describes a generalized weak-strong uniqueness
result for the Navier–Stokes system.

Theorem 3.3.15. Let Ω ⊂ Rd, d = 1, 2, 3 be a Lipschitz bounded domain. Suppose
the pressure p satisfies (2.1.36) or (2.1.38), with q ∈ C1

c (0,∞) and γ ≥ 1. Let
{Vt,x,D} be a rDMV solution to the Navier–Stokes system (2.2.1)-(2.2.3) in (0, T )×Ω,
with initial state represented by V0 and no-slip boundary condition, as defined in
Definition (2.5.3). Let (r, U) be a strong solution to the same system in (0, T )× Ω
with initial data (r0,U0) satisfying r0 > 0 in Ω. We assume that the strong solution
belongs to the class

r, ∇xr, U, ∇xU ∈ C([0, T ]× Ω), ∂tU ∈ L2(0, T ;C(Ω;Rd)), r > 0, U|∂Ω = 0.
(3.3.37)

Then there exists a constant Λ = Λ(T ), depending only on the norms of r, r−1, U,
and the initial data (r0,U0) in the aforementioned spaces, such that

ˆ
Ω

[︃⟨︃
Vτ,x;

1

2
ϱ̃|ũ−U|2 +H(ϱ̃)−H(r)−H ′(r)(ϱ̃− r)

⟩︃]︃
dx+D(τ)

≤ Λ(T )

ˆ
Ω

[︃⟨︃
V0,x;

1

2
ϱ̃|ũ−U0(x)|2 +H(ϱ̃)−H(r0(x))−H ′(r0(x))(ϱ̃− r0(x))

⟩︃]︃
dx,

for a.e. τ ∈ (0, T ), U0(x) = U(0, x) and r0(x) = r(0, x) for x ∈ Ω. In particular, if
the initial states coincide, i.e.

V0,x = δ{r0(x),U0(x)}, for a.e. x ∈ Ω (3.3.38)

then D = 0, and

Vτ,x = δ{r(τ,x),U(τ,x),∇xU(τ,x)} for a.e. (τ, x) ∈ (0, T )× Ω.

Since, In initial energy is dependent on the density and the velocity it enough to
consider V0,x as described in (3.3.38).

We recall that considering suitable test functions we already have the relative
energy inequality, see Lemma 3.2.6. From the hypothesis of the Theorem 3.3.15 we
have assumption r0(x) > 0 in Ω. Using the above observation on the strong solution
(r,U) we rewrite the Lemma 3.2.6 in the following way:

Lemma 3.3.16. Let (V,D) be a rDMV solution that follows the Definition 2.5.3.
Suppose(r,U) is a strong solution in the class (3.3.37) with initial data (r0,U0) such
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that r0 > 0 in Ω. Then the following inequality is true for a.e. τ ∈ (0, T ):

Emv(τ) + µ

ˆ τ

0

ˆ
Ω
⟨Vt,x;D0(˜︂Dv −∇xU) : D0(˜︂Dv −∇xU)⟩ dx dt

+ λ

ˆ τ

0

ˆ
Ω
⟨Vt,x; |Tr(˜︂Dv)− divxU|2⟩ dx dt +D(τ)

≤
ˆ
Ω

[︃⟨︃
V0,x;

1

2
ϱ̃|ũ−U0|2 +H(ϱ̃)−H(r0)−H ′(r0)(ϱ̃− r0)

⟩︃]︃
dx

+

ˆ τ

0

ˆ
Ω
⟨Vt,x; (ϱ̃(ũ−U) · ∇x)U · (U− ũ)⟩ dx dt

+

ˆ τ

0

ˆ
Ω
⟨Vt,x; (ϱ̃− r)(U− ũ)⟩ · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

+

ˆ τ

0

ˆ
Ω
⟨Vt,x; (−h(ϱ̃) + h(r) + h′(r)(ϱ̃− r))⟩ divxU dx dt

+

ˆ τ

0

ˆ
Ω

⟨︁
Vt,x;

(︁
q(ϱ̃)− q(r)

)︁
(Tr(˜︂Dv)− divxU)

⟩︁
dx dt

+ ∥U∥C1([0,T ]×Ω;RN )

ˆ τ

0
ξ(t)D(t) dt = Σ6

i=1Ii.

(3.3.39)

Estimates for the remainder terms

To simplify the calculation, we assume

∂tU ∈ C([0, T ]× Ω;Rd). (3.3.40)

First, we note that for our assumption of the pressure law, the Lemma 3.3.2 and 3.3.3
remain true in this case. To obtain our desired result, let us estimate the terms Ii,
for i = 1, · · · , 6 in (3.3.39).
Remainder term I2: We have

|I2| ≤ ∥U∥C1([0,T ]×Ω;Rd)

ˆ τ

0
Emv(t) dt . (3.3.41)

Remainder term I4: Similarly, using the Lemma 3.3.3 we get

|I4| ≤ C

ˆ τ

0
Emv(t) dt . (3.3.42)

Remainder term I3: Here we introduce a function ψ ∈ C∞
c (0,∞) with

0 ≤ ψ ≤ 1, such that
ψ(ϱ̃) = 1 for ϱ̃ ∈ (r1, r2),

where r1, r2 is related with the Lemma 3.3.2 and (3.3.3). Without loss of generality
we assume r1 ≤ 1

2 inf r, r2 ≥ 2× sup r and supp(q) ⊂ (r1, r2). We rewrite

⟨Vt,x; (ϱ̃− r)(U− ũ)⟩
= ⟨Vt,x;ψ(ϱ̃)(ϱ̃− r)(U− ũ)⟩+ ⟨Vt,x; (1− ψ(ϱ̃))(ϱ̃− r)(U− ũ)⟩.
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Consequently we obtain

⟨Vt,x;ψ(ϱ̃)(ϱ̃− r)(U− ũ)⟩ ≤ 1

2

⟨︃
Vt,x;

ψ2(ϱ̃)√
ϱ̃

(ϱ̃− r)2
⟩︃
+

1

2

⟨︃
Vt,x;

ψ2(ϱ̃)√
ϱ̃
ϱ̃|U− ũ|2

⟩︃
.

(3.3.43)

Now using that ψ is compactly supported in (0,∞) and Lemma 3.3.2 we conclude
that,

ˆ τ

0

ˆ
Ω
⟨Vt,x;ψ(ϱ̃)(ϱ̃− r)(U− ũ)⟩ · 1

r

(︁
divxS(∇xU)−∇xq(r)

)︁
dx dt

≤
⃦⃦⃦⃦
1

r

(︁
divxS(∇xU)−∇xq(r)

)︁⃦⃦⃦⃦
C([0,T ]×Ω;Rd)

ˆ τ

0
Emv(t) dt .

(3.3.44)

We rewrite 1 − ψ(ϱ̃) = w1(ϱ̃) + w2(ϱ̃), where supp(w1) ⊂ [0, r1) and supp(w2) ⊂
(r2,∞),

⟨Vt,x; (1− ψ(ϱ̃))(ϱ̃− r)(U− ũ)⟩ = ⟨Vt,x; (w1(ϱ̃) + w2(ϱ̃))(ϱ̃− r)(U− ũ)⟩.

For δ > 0 we obtain,

⟨Vt,x;w1(ϱ̃)(ϱ̃− r)(U− ũ)⟩ ≤ C(δ)⟨Vt,x;w
2
1(ϱ̃)(ϱ̃− r)2⟩+ δ⟨Vt,x; |U− ũ|2⟩.

Hence, the generalized Korn–Poincaré inequality (2.5.15) implies
ˆ τ

0

ˆ
Ω
⟨Vt,x;w1(ϱ̃)(ϱ̃− r)(U− ũ)⟩ dx dt

≤ C

ˆ τ

0
Emv(t) dt + δ

ˆ τ

0

ˆ
Ω
⟨Vt,x; |D0(˜︂Dv)− D0(∇xU)|2⟩ dx dt .

We know w2(ϱ̃) > 0 and, |ϱ̃− r| ≤ 2ϱ̃ if ϱ̃ > 2r2. Now using Youngs inequality (1.1.1),
we obtain

⟨Vt,x;w2(ϱ̃)(ϱ̃− r)(U− ũ)⟩ ≤ C⟨Vt,x;w2(ϱ̃)(ϱ̃+ ϱ̃|U− ũ|2)⟩.

It yields
ˆ τ

0

ˆ
Ω
⟨Vt,x;w2(ϱ̃)(ϱ̃− r)(U− ũ)⟩ dx dt ≤ C(r)

ˆ τ

0
Emv(t) dt .

We take δ small enough and combine all the above terms to obtain

|I3| ≤ C

ˆ τ

0
Emv(t) dt +

µ

4

ˆ τ

0

ˆ
Ω
⟨Vt,x; |D0(˜︂Dv)− D0(∇xU)|2⟩ dx dt . (3.3.45)

Remainder term I5: From our choice of q and ψ we get

q(ϱ̃)− q(r) = ψ(ϱ̃)(q(ϱ̃)− q(r))− (1− ψ(ϱ̃))q(r).
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Since q is compactly supported C1 function, we have

|q(ϱ̃)− q(r)| ≤ C
(︁
ψ(ϱ̃)|ϱ̃− r|+ (1− ψ(ϱ̃))

)︁
.

As a direct consequence of Young’s inequality (1.1.1) with δ > 0 we deduce that⟨︁
Vt,x;

(︁
q(ϱ̃)− q(r)

)︁
(Tr(˜︂Dv)− divxU)

⟩︁
≤ C

4δ

⟨︁
Vt,x;

(︁
ψ(ϱ̃)(ϱ̃− r)2 + (1− ψ(ϱ̃))

)︁⟩︁
+ δ
⟨︁
Vt,x; |Tr(˜︂Dv)− divxU|2

⟩︁
.

Further using Lemma 3.3.2 and choosing an appropriate δ, we infer

|I5| ≤ C

ˆ τ

0
Emv(t) dt +

λ

2

ˆ τ

0

ˆ
Ω
⟨Vt,x; |Tr(˜︂Dv)− divxU|2⟩ dx dt . (3.3.46)

Remainder term I6: From the definition of defect measure we know

|⟨rM (τ);∇xφφφ⟩{M(Ω;Rd×d),C(Ω;Rd×d)}| ≤ ξ(τ)D(τ)∥φφφ∥C1(Ω).

This implies

|I6| ≤ C

ˆ τ

0
ξ(t)D(t) dt . (3.3.47)

Proof of the Theorem 3.3.15:

Considering the above discussion, additional assumption (3.3.40) and combining
all estimates of Ii for i = 2, 3, 4, 5, 6, we have

Emv(τ) +
µ

4

ˆ τ

0

ˆ
Ω
⟨Vt,x;D0(˜︂Dv −∇xU) : D0(˜︂Dv −∇xU)⟩ dx dt

+
λ

2

ˆ τ

0

ˆ
Ω
⟨Vt,x; |Tr(˜︂Dv)− divxU|2⟩ dx dt +D(τ)

≤
ˆ
Ω

[︃⟨︁
V0,x;

1

2
ϱ̃|ũ−U0|2 +H(ϱ̃)−H(r0)−H ′(r0)(ϱ̃− r0)

⟩︁]︃
dx

+ C(r,U, q)

ˆ τ

0
Emv(t) dt +

ˆ τ

0
ξ(t)D(t) dt .

(3.3.48)

Now applying Grönwall’s lemma, we concludeˆ
Ω

[︃⟨︃
Vτ,x;

1

2
ϱ̃|ũ−U|2 +H(ϱ̃)−H(r)−H ′(r)(ϱ̃− r)

⟩︃]︃
dx+D(τ)

≤ Λ(T )

ˆ
Ω

[︃⟨︃
V0,x;

1

2
ϱ̃|ũ−U0(x)|2 +H(ϱ̃)−H(r0(x))−H ′(r0(x))(ϱ̃− r0(x))

⟩︃]︃
dx,

for a.e. τ ∈ [0, T ].

Remark 3.3.17. For simplicity of the proof we assume (3.3.40). If we stick to only
(3.3.37), then we have

´ τ
0 η(r,U,q)(t)Emv(t) dt , where η(r,U,q) ∈ L1(0, T ) instead of

the term c(r,U, q)
´ τ
0 Emv(t) dt in (3.3.48).
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Navier Slip boundary condition

A possible adaptation in the context of Navier slip boundary condition(2.2.6) is
possible. Here we have the following proposition:

Proposition 3.3.18. Let Ω ⊂ Rd, d = 1, 2, 3 be a Lipschitz bounded domain. Suppose
the pressure p satisfies (2.1.36) or (2.1.38), with q ∈ C1

c (0,∞). Let {Vt,x,D} be a
rDMV solution to the Navier–Stokes system (2.2.1)-(2.2.3) in (0, T )× Ω, with initial
state represented by V0 and Navier-slip boundary condition, as defined in Definition
(2.5.7). Let (r, U) be a strong solution to the same system in (0, T )× Ω with initial
data (r0,U0) satisfying r0 > 0 in Ω. We assume that the strong solution belongs to
the class

r, ∇xr, U, ∇xU ∈ C([0, T ]× Ω), ∂tU ∈ L2(0, T ;C(Ω;Rd)), r > 0, U|∂Ω = 0.
(3.3.49)

Then there exists a constant Λ = Λ(T ), depending only on the norms of r, r−1, U,
and the initial data (r0,U0) in the aforementioned spaces, such thatˆ

Ω

[︃⟨︃
Vτ,x;

1

2
ϱ̃|ũ−U|2 +H(ϱ̃)−H(r)−H ′(r)(ϱ̃− r)

⟩︃]︃
dx+D(τ)

≤ Λ(T )

ˆ
Ω

[︃⟨︃
V0,x;

1

2
ϱ̃|ũ−U0(x)|2 +H(ϱ̃)−H(r0(x))−H ′(r0(x))(ϱ̃− r0(x))

⟩︃]︃
dx,

for a.e. τ ∈ (0, T ), U0(x) = U(0, x) and r0(x) = r(0, x) for x ∈ Ω. In particular, if
the initial states coincide, i.e.

V0,x = δ{r0(x),U0(x)}, for a.e. x ∈ Ω

then D = 0, and

Vτ,x = δ{r(τ,x),U(τ,x),∇xU(τ,x)} for a.e. (τ, x) ∈ (0, T )× Ω.

The proof is almost similar to the proof of the Theorem 3.3.15. We have the
relative energy inequality from the Lemma 3.2.7. We need to obtain a lemma similar
to Lemma 3.3.16.

Now, if we compare the Definition 2.5.3 for the no-slip boundary condition with
the Definition 2.5.7 for the Navier slip boundary condition, we notice two different
variants of Generalized Korn-Poincaré inequalty (2.5.15) and (2.5.21). In the context
of Navier-slip boundary condition, we need to use (2.5.21) appropriately for the term
I3 in (3.3.39).

3.4 Concluding remark

Hypothesis on the adiabatic constant γ and q in (3.2.5) is related to the growth
of the perturbation q when ϱ → ∞. The weak-strong uniqueness result (Theorem
3.3.4) remains valid as soon as

q′(ϱ) ≈ ϱα for ϱ→ ∞, where α+ 1 ≤ γ

2
, γ ≥ 1.
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The weak- strong uniqueness results are available for different systems of fluid
dynamics by Berthelin and Vasseur [13], Mellet and Vasseur [101], or Saint–Raymond
[109] to name a few examples. In the context of hyperbolic conservation law, there is
a generalized weak-strong uniqueness result by Brenier, De Lellis and Székelyhidi [18]

For a monotone pressure law and a bounded domain Ω, the weak-strong uniqueness
property for the compressible Navier–Stokes system with inflow-outflow boundary
condition is proved by Kwon, Novotný and Satko [93]. We expect a similar result for
a non-monotone pressure law.

For Navier–Stokes-Fourier system weak strong uniqueness result was proved by
Feireisl and Novotný [73] and later extended by Jesslé, Jin and Novotný [87].

We have introduced a dissipative solution of the Navier–Stokes system for a
monotone pressure law. We can observe a similar generalized weak–strong uniqueness
for this class of solutions. It is fairly straightforward, but outside our scope in this
thesis.

In the context of weak-strong uniqueness for the isentropic Euler system with
a non-monotone pressure law, a limitation arises in the adaptation of the similar
argument, since the viscous term plays a central role.

For a hard-sphere type pressure law, the proof of the weak-strong uniqueness
property for a bounded domain without slip boundary condition is still open. We use
∇x∆

−1
x (b(ϱ)− ⟨b(ϱ)⟩) as a test function in the momentum equation and adjoint of

operator ∇x∆
−1
x plays a crucial role later. If we consider some different boundary

condition like no slip, we have to replace ∇x∆
−1
x operator by Bogovskii operator B,

see Galdi [84, Chapter III]. In that case adjoint of B is quite different from adjoint of
∇x∆

−1
x .



Chapter 4

Singular limit and multiple scale
analysis for a perfect fluid

4.1 Introduction

In this chapter we are interested in singular limit problems. We consider a system
with characteristic numbers. As mentioned earlier, this system is called the primitive
system. Then we will identify the target system when the characteristic numbers are
small or large. The classical approach is to consider classical (strong) solutions of the
primitive system and expect them to converge to the classical solutions of the target
system. We have already pointed out in the introduction that the main limitation of
this approach is that in most cases there is no global existence of a strong solution
of the primitive system. The second approach is based on the theory of generalized
solution. As mentioned earlier, the Navier–Stokes and the Euler system admit a
global in time generalized solution. Two methods may be adopted here to solve the
problem:

I. The first method is to consider generalized solutions of the primitive system and
expect them to converge to a generalized solution of the target system. Then the
generalized weak-strong uniqueness of the target system provides convergence in
the life span of the strong solution of the target system.

II. Another method is based on the use of the relative energy. We consider the
generalized solution of the primitive system. Assuming that the existence of a
strong solution of the target system is known a priori, we use it as a test function
in the relative energy and obtain convergence.

We have the following advantages:

• Generalized solutions of the primitive system exist globally in time. Therefore, the
result depends only on the life span of the target problem, which may be finite.

• Convergence holds for a large class of generalized solutions, indicating some stability
of the limit solution of the target system.

111
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Here we describe the two problems we are interested in

• In the first problem, we consider the compressible Euler system with low Mach
number limit. We assume that the spatial domain is Rd. Here we consider a
dissipative solution of the compressible Euler system and find that it converges to a
dissipative solution of the incompressible Euler system. In R2, the incompressible
Euler system has a global in time strong solution, so we obtain the desired result
using weak-strong uniqueness for suitable initial data. On the other hand, in R3,
we have only local existence of strong solution for the incompressible Euler system,
so we can prove convergence only locally in time.

• In the second case, we consider a rotating compressible Euler system in R2 × (0, 1).
We study the effect of the low Mach number limit (also called incompressible limit),
low Rossby number limit and low Froude number limit acting simultaneously on the
system and with different scale interactions. Since a low Rossby number indicates
fast rotation, the resulting flow is expected to be planar. Depending on the multiple
scaling, we obtain different target systems, although all describe incompressible
fluids.

There are a number of articles dealing with the low Mach number limit in the context
of measure–valued solutions. In Feireisl, Klingenberg and Markfelder [62], Bruell
and Feireisl [23], Březina and Mácha [25], it is shown that measure–valued solution
of primitive system, describing a compressible inviscid fluid, converges to a strong
solution of the incompressible target system given suitable initial data. The ‘single–
scale’ limit of the rotating Euler system was studied by Nečasová and Tong in [103]
using the measure–valued solution.

4.2 Low Mach number limit for the Compressible Euler
system

We consider T > 0 and Ω = Rd with d = 2, 3. We quickly revisit the scaled
compressible Euler system in the time-space cylinder QT = (0, T ) × Rd, which
describes the time evolution of the mass density ϱ = ϱ(t, x) and the momentum field
m = m(t, x) of the fluid :

Sr ∂tϱ+ divxm = 0,

Sr ∂tm+ divx
(︃
m⊗m

ϱ

)︃
+

1

Ma2
∇xp(ϱ) = 0.

(4.2.1)

• Pressure Law: In an isentropic setting, the pressure p and the density ϱ of the
fluid are interrelated by

p(ϱ) = aϱγ , a > 0, γ > 1. (4.2.2)

• Scaling: The scaled system contains these characteristic numbers:
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Sr– Strouhal number,

Ma– Mach number.
Here we consider,

Sr ≈ 1 and Ma ≈ ϵ for ϵ > 0. (4.2.3)

For each ϵ > 0, we denote (ϱϵ,mϵ) the solution of the system. We provide a suitable
initial data condition and a far field condition as follows:

• Far field condition: Let (ϱ̄,0) be a static solution of the above system with
ϱ̄ > 0. We assume

ϱϵ → ϱ̄, m → 0 as |x| → ∞. (4.2.4)

• Initial data: We supplement the initial data as

ϱϵ(0, ·) = ϱϵ,0, mϵ(0, ·) = mϵ,0. (4.2.5)

The main goal is to study the low Mach number limit of the system, i.e., as ϵ→ 0,
(ϱϵ,mϵ) converges to certain functions satisfying a system of equations. We are
interested in the dissipative solution of the primitive system.

Remark 4.2.1. Here we consider a dissipative solution of the system following the
Definition 2.6.6. Although the definition is given for ϵ = 1. We can modify it for
scaling (4.2.3). The term

´ T
0

´
Rd p(ϱ)divxφφφ dx dt in the equation (2.6.17) is replaced

by 1
ϵ2

´ T
0

´
Rd p(ϱϵ)divxφφφ dx dt and the energy inequality is given by

ˆ
Rd

(︃
|mϵ|2

ϱϵ
+

1

ϵ2
(P (ϱϵ)− (ϱϵ − ϱ̄)P ′(ϱ̄)− P (ϱ̄))

)︃
(τ, ·) dx+

ˆ
Rd

dCe(τ)

≤
ˆ
Rd

(︃
|m0,ϵ|2

ϱϵ
+

1

ϵ2
(P (ϱ0,ϵ)− (ϱ0,ϵ − ϱ̄)P ′(ϱ̄)− P (ϱ̄))

)︃
dx.

Here we fix some notation and recall important results for this chapter:

• We denote

Eϵ(τ) =

ˆ
Rd

(︃
|mϵ|2

ϱϵ
+

1

ϵ2
(P (ϱϵ)− (ϱϵ − ϱ̄)P ′(ϱ̄)− P (ϱ̄)

)︃
(τ, ·)) dx.

• Here we consider P (ϱ) = a
γ−1ϱ

γ for the pressure law (4.2.2).

• Let r be a positive real valued function and let its range lie in a compact subset of
(0,∞). Then for any ϱ ≥ 0, there exists r1, r2 > 0, that depends on r such that

P (ϱ)− (ϱ− r)P ′(r)− P (r) ≥ c(r)

{︄
(ϱ− r)2 for r1 ≤ ϱ < r2

1 + ϱγ , otherwise
, (4.2.6)

where c(r) is a constant dependent on r. We note that if γ > 2, one can consider
1 + ϱ2 instead of 1 + ϱγ in (4.2.6). Taking the last observation into account, we
can replace γ by γ′ = min{2, γ} in (4.2.6).
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• Essential and residual part of a function: We introduce a function χ = χ(ϱ)
such that

χ(·) ∈ C∞
c (0,∞), 0 ≤ χ ≤ 1, χ(ϱ) = 1 if ϱ1 ≤ ϱ ≤ ϱ2,

where ϱ1, ϱ2 > 0. For a function, H = H(ϱ,u) we set

[H]ess = χ(ϱ)H(ϱ,u), [H]res = (1− χ(ϱ))H(ϱ,u). (4.2.7)

4.2.1 Derivation of the target system

Here is an informal justification of how to obtain the target system. First, we note
that (ϱ̄, 0) is a static solution of the scaled Euler system (4.2.1)-(4.2.3) with far field
condition (4.2.4). Consider

ϱϵ = ϱ̄+ ϵϱ(1)ϵ + ϵ2ϱ(2)ϵ + · · · ,
mϵ = ϱ̄v + ϵm(1)

ϵ + ϵ2m(2)
ϵ + · · · .

As a consequence of the above we obtain

p(ϱϵ) = p(ϱ̄) + ϵp′(ϱ̄)ϱ(1)ϵ + ϵ2(p′(ϱ̄)ϱ(2)ϵ +
1

2
p′′(ϱ̄)(ϱ(1)ϵ )2) + o(ϵ3).

From the continuity equation and the momentum equation we get

ϱ̄divxv + ϵ(∂tϱ
(1)
ϵ + divxm(1)

ϵ ) + o(ϵ2) = 0

and

ϱ̄(∂tv + (v · ∇x)v) +∇x(p
′(ϱ̄)ϱ(2)ϵ +

1

2
p′′(ϱ̄)(ϱ(1)ϵ )2)

+
1

ϵ
(p′(ϱ̄)∇xϱ

(1)
ϵ ) + o(ϵ) = 0.

Further, we assume
(︁ϱϵ−ϱ̄

ϵ

)︁
→ q and mϵ → ϱ̄v in a strong sense. This implies

divxv = 0.

Let H be the Helmholtz projection. Now divxv = 0 implies H[v] = v. Let ϕ : Rd → R
be a smooth scalar field. Then we have H(∇xϕ) = 0. It yields

divxv = 0,

H
[︁
∂tv + (v · ∇x)v

]︁
= 0.

(4.2.8)

In other words, the system (4.2.8) is also described as

divxv = 0,

∂tv + (v · ∇x)v +∇xΠ = 0,
(4.2.9)

where Π is the pressure, which is unknown.
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Dissipative solution of target system

For the incompressible Navier–Stokes the idea of dissipative solutions was in-
troduced by Abbatiello and Feireisl [1], which can be extended analogously for the
incompressible Euler system in Rd. First, we prescribe an initial data for the system
(4.2.9)as

v(0, ·) = v0 with v0 ∈ L2(Rd;Rd). (4.2.10)

The definition is as follows:

Definition 4.2.2. We say that v ∈ Cweak([0, T ];L
2(Rd;Rd)) is a dissipative solution

of the problem (4.2.9) with initial data (4.2.10) if there exist turbulent defect measures
(Cm,Ce) with

Cm ∈ L∞
weak-(*)(0, T ;M

+(Rd;Rd×d
sym)), Ce ∈ L∞

weak-(*)(0, T ;M
+(Rd)),

such that the following holds:

• Compatibility of turbulent defect measures: There exists Λ1,Λ2 > 0 such
that

Λ1Tr(Cm) ≤ Ce ≤ Λ2Tr(Cm). (4.2.11)

• Incompressiblity: For any τ ∈ (0, T ) and any φ ∈ C1
c ([0, T )× Rd) it holdsˆ τ

0

ˆ
Rd

v · ∇xφ dx dt = 0. (4.2.12)

• Momentum equation: For any τ ∈ (0, T ) and any φφφ ∈ C1
c ([0, T )×Rd;Rd) with

divxφφφ = 0, it holds[︃ ˆ
Rd

v(τ, ·) ·φφφ(τ, ·) dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
Rd

[v · ∂tφφφ+ v ⊗ v : ∇xφφφ] dx dt +

ˆ τ

0

ˆ
Rd

∇xφφφ : dCm dt .
(4.2.13)

• Energy inequality: For a.e. τ ∈ [0, T ), we haveˆ
Rd

1

2
|v(τ, ·)|2 dx+

ˆ
Rd

d Ce(τ, ·) ≤
ˆ
Rd

1

2
|v0|2 dx. (4.2.14)

4.2.2 Main Result

We say that the set of initial data {(ϱ0,ϵ,m0,ϵ)}ϵ>0 is well-prepared if

0 < ϱ0,ϵ ∈ L2 ∩ L∞(Rd) and
m0,ϵ

ϱ0,ϵ
∈ L2(Rd;Rd),

for each ϵ > 0, and they have the following property

ϱ0,ϵ = ϱ̄+ ϵϱϵ̃
(1) with ϱϵ̃(1) → 0 in L2(Rd),

u0,ϵ =
m0,ϵ

ϱ0,ϵ
→ v0 in L2(Rd;R3) with divxv0 = 0.

(4.2.15)
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Theorem 4.2.3. Let pressure p follows (4.2.2). Let {(ϱ0,ϵ,m0,ϵ)}ϵ>0 be a family of
well prepared initial data, i.e., it satisfies (4.2.15). For each ϵ > 0, (ϱϵ,mϵ,Rmϵ ,Reϵ)
is a dissipative solution of the compressible Euler system for the initial data (ϱ0,ϵ,m0,ϵ).
As ϵ → 0, (ϱϵ,mϵ,Rmϵ ,Reϵ) converges to a dissipative solution (v,Cm,Ce) of the
incompressible Euler system with initial data v0.

Moreover, an additional assumption

v0 ∈W k,2(Rd) with divxv0 = 0, for k ≥ d+ 1 (4.2.16)

ensures a local in time strong solution V of the incompressible Euler system, i.e., there
exists Tmax > 0 such that V ∈ C1([0, Tmax);W

k,2(Rd;Rd)) and it solves (4.2.9) in
point wise sense. The condition (4.2.16) implies v = V in C([0, Tmax);C

1(Rd;Rd)),
Cm,Ce = 0 and

mϵ√
ϱϵ

→ v in L2
loc((0, Tmax)× Rd;Rd).

Remark 4.2.4. If d = 2 and v0 satisfies (4.2.16), the incompressible Euler system
has global in time strong solution, see [89]. In this case Theorem 4.2.3 remains true
for any T > 0.

Here we provide the proof of the theorem4.2.3. For the sake of simplicity, we
assume ϱ̄ = 1.

Uniform bounds and convergence

First, we want to obtain certain uniform bounds on the variables (ϱϵ,mϵ). We
assume that (ϱϵ,mϵ) is a dissipative solution. We recall the energy inequality

Eϵ(τ) +

ˆ
Rd

d Reϵ(τ, ·) ≤ E0,ϵ (4.2.17)

for a.e. τ > 0, with

Eϵ(τ) =

ˆ
Rd

(︃
1

2

|mϵ|2

ϱϵ
+ P (ϱϵ)− P (1)− P ′(1)(ϱϵ − 1))

)︃
dx.

The choice of well-prepared initial data (4.2.15) gives an uniform estimate for the
initial energy, i.e.,

E0,ϵ ≤ C,

where C independent of ϵ. This along with (4.2.6) gives the following uniform
estimates:

ess sup
t∈(0,T )

⃦⃦⃦⃦
mϵ√
ϱϵ

⃦⃦⃦⃦
L2(Rd;R3)

≤ C,

ess sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − 1

ϵ

]︃
ess

⃦⃦⃦⃦
L2(Rd)

≤ C,

ess sup
t∈(0,T )

∥[ϱϵ]res∥γLγ(Rd)
+ ess sup

t∈(0,T )
∥[1]res∥γLγ(Rd)

≤ ϵ2C.
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In the last expression, the essential part [ · ]ess and the residual part [ · ]res is
considered in the similar line of (4.2.7), particularly choosing ϱ1 = 1

2 and ϱ2 = 2.
Hence we have

ess sup
t∈(0,T )

∥[ϱϵ − ϱ̄]res∥Lγ(Rd) ≤ ϵ
2
γC

From the last equation we get⃦⃦⃦⃦(︃
ϱϵ − 1

ϵ

)︃⃦⃦⃦⃦
L∞(0,T ;L2+Lγ(Rd))

≤ (1 + ϵ
2
γ
−1

)C

First we observe that for 1 < γ ≤ 2,⃦⃦⃦⃦(︃
ϱϵ − 1

ϵ

)︃⃦⃦⃦⃦
L∞(0,T ;L2+Lγ(Rd))

≤ C,

with C is independent of ϵ.
For γ > 2 is a bit simpler. From the Remark 4.2.1 we note that⃦⃦⃦⃦(︃

ϱϵ − 1

ϵ

)︃⃦⃦⃦⃦
L∞(0,T ;L2(Rd)

≤ C,

where C is independent of ϵ. In other words, we infer that⃦⃦⃦⃦(︃
ϱϵ − 1

ϵ

)︃⃦⃦⃦⃦
L∞(0,T ;L2+Lγ′ (Rd))

≤ C,

with γ′ = min{γ, 2}.
Thus, we have the following convergence:

ϱ(1)ϵ ≡
(︃
ϱϵ − 1

ϵ

)︃
→ ϱ(1)

{︄
weak-(*)ly in L∞(0, T ;L2 + Lγ(Rd)), for 1 < γ ≤ 2,

weak-(*)ly in L∞(0, T ;L2(Rd)) for γ > 2,

mϵ√
ϱϵ

→ v weak-(*)ly in L∞(0, T ;L2(Rd;Rd)),

(4.2.18)

at least for a suitable subsequence. For 1 < γ ≤ 2, we obtain

ϱϵ → 1 in L∞(0, T ;L2 + Lγ(Rd)).

and
∥mϵ∥L∞(0,T ;L2+L2γ/γ + 1(Rd;Rd)) ≤ C.

Thus passing to a suitable subsequence, we have

mϵ → m weak-(*)ly in L∞(0, T ;L2 + L
2γ/γ + 1(Rd;Rd)).

The strong convergence of ϱϵ together with (4.2.18) implies m = v, in the sense of
distribution.
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Arguing similarly for γ > 2, it holds

ϱϵ → 1 in L∞(0, T ;L2(Rd))

and

∥mϵ∥L∞(0,TL2+L4/3(Rd;Rd)) ≤ C.

Therefore, we again deduce that

mϵ → m weak-(*)ly in L∞(0, T ;L2 + L
4/3(Rd;Rd)),

for a suitable subsequence as the case may be. Furthermore, we have m = v, in the
sense of distribution. Thus we have,

mϵ√
ϱϵ

→ v weak-(*)ly in L∞(0, T ;L2(Rd;Rd)).

Defect measure and limit passage

Letting ϵ→ 0 in the continuity equation we have,ˆ τ

0

ˆ
Rd

v · ∇xφ dx dt = 0,

for any τ ∈ (0, T ) and any φ ∈ Cc([0, T ) × Rd). We observe the following uniform
estimate ⃦⃦⃦⃦

mϵ ⊗mϵ

ϱϵ

⃦⃦⃦⃦
L∞(0,T ;L1(Rd;Rd×d)

≤ C

Also energy equation gives us uniform bound for the convective term mϵ⊗mϵ
ϱϵ

in
L∞(0, T ;L1(Rd;Rd)) norm. Hence we obtain

mϵ ⊗mϵ

ϱϵ
→ C1 weak-(*)ly in L∞

weak-(*)(0, T ;M(Rd;Rd×d
sym)).

Analogously for the kinetic energy we observe

1

2

|mϵ|2

ϱϵ
→ C2 weak-(*)ly in L∞

weak-(*)(0, T ;M(Rd)).

Furthermore, we already have

wϵ =
mϵ√
ϱϵ

→ v weak-(*)ly in L∞
weak-(*)(0, T ;L

2(Rd;Rd)),

Consider b(λ) = 1
2 |λ|

2 for λ ∈ Rd. It is a convex function. We note that C2 = b(w),
where b(w) is the weak-(*) limit of b(wϵ) in L∞

weak-(*)(0, TM(Rd)). Proposition 1.3.17
implies that

C2
e ≡ C2 −

|v|2

2
∈ L∞

weak-(*)(0, TM
+(Rd)).
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Next consider

C2
m = C1 − v ⊗ v.

It is easy to verify that for any ξ ∈ Rd and V ∈ Rd×d,

V ⊗V : ξ ⊗ ξ = |V · ξ|2.

and the mapping V ↦→ |V · ξ|2 is a convex function for any ξ ∈ Rd. It yields

C2
m = C1 − v ⊗ v ∈ L∞

weak-(*)(0, T ;M
+(Rd;Rd×d

sym)).

Since ˆ
Rd

dReϵ(τ, ·) ≤ C,

we have the uniform estimate for energy defect measure for a.e. τ ∈ (0, T ) The
compatibility of defect measures Rmϵ and Reϵ implies

Rmϵ → C1
m weak-(*)ly in L∞

weak-(*)(0, T ;M(Rd;Rd×d
sym)),

Reϵ → C1
e weak-(*)ly in L∞

weak-(*)(0, T ;M(Rd)).

We define the total turbulent defect measure as

Cm = C1
m + C2

m and Ce = C1
e + C2

e.

Using the fact

Tr
(︃
mϵ ⊗mϵ

ϱϵ

)︃
=

|mϵ|2

ϱϵ

and the relation between pressure and pressure potential we infer the compatibility
of the defect measure Cm and Ce as in (4.2.11).

We notice that the class of test function for incompressible Euler system is
φφφ ∈ C1

c ([0, T )× Rd;Rd) such that divxφφφ = 0. For such φφφ in the scaled momentum
equation we have,[︃ ˆ

Rd

mϵ(τ, ·) ·φφφ(τ, ·) dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
Rd

[︃
mϵ · ∂tφφφ+

(︃
mϵ ⊗mϵ

ϱϵ

)︃
: ∇xφφφ

]︃
dx dt +

ˆ τ

0

ˆ
Rd

∇xφφφ : dRmϵ dt .

(4.2.19)

Therefore, using the convergence of state variables and the characterization of nonlin-
ear term by a defect measure, we conclude[︃ ˆ

Rd

v(τ, ·) ·φφφ(τ, ·) dx
]︃t=τ

t=0

=

ˆ τ

0

ˆ
Rd

[v · ∂tφφφ+ v ⊗ v : ∇xφφφ] dx dt +

ˆ τ

0

ˆ
Rd

∇xφφφ : dCm dt .
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From the lower semicontinuity of the norm, we obtain the following form of energy
inequality: ˆ

Rd

1

2
|v(τ, ·)|2 dx+

ˆ
Rd

d Ce(τ, ·) ≤
ˆ
Rd

1

2
|v0|2 dx.

We conclude (v,Cm,Ce) is a dissipative solution for incompressible Euler equation.

Weak(dissipative)–strong uniqueness for incompressible Euler system

In the review article Wiedemann [121, Theorem 3.4] proves generalized weak–
strong uniqueness for the incompressible Euler system. Drawing inspiration from
that, we consider the relative energy as

e(v |V)(τ) =

ˆ
Rd

|v −V|2(τ) dx, (4.2.20)

for τ ∈ (0, Tmax), v is an dissipative solution and V is the strong solution. It is easy
to verify that

e(v |V)(τ) +

ˆ
Rd

d Ce(τ, ·)

≤ e(v0,V(0)) + C

(︃ˆ τ

0
e(v |V)(t) dt +

ˆ τ

0

ˆ
Rd

Tr (dCm(·)) dt
)︃
,

for a.e. τ ∈ (0, Tmax). Furthermore, the choice of initial data v0 in (4.2.16) and the
assumption v0 = V(0, ·) imply the desired weak-strong uniqueness in (0, Tmax)× Rd.
This infer that the defect measures vanish, i.e.,

Cm = 0 and Ce = 0. (4.2.21)

Local strong convergence

The equation (4.2.21) shows that

b(w) =
1

2
|v|2.

Let B be a bounded subset of Rd and T < Tmax. We notice that b and wϵ satisfy the
hypothesis of the Lemma 1.3.26, and as an immediate consequence, we have

b(wϵ) →
1

2
|v|2 weakly in L1((0, T )×B).

It implies ˆ T

0

ˆ
B
b(wϵ) dx dt →

ˆ T

0

ˆ
B
|v|2 dx dt ,

the L2-norm convergence of wϵ.
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Moreover, we have

wϵ → v weakly in L2((0, T )×B).

Weak convergence together with norm convergence in (0, T )×B asserts that

wϵ → v in L2((0, T )×B).

This ends the proof of the Theorem 4.2.3.

4.3 Multi-scale analysis of a compressible rotating invis-
cid fluid

In this section we are interested in studying the singular limit problems of a
rotating compressible inviscid fluid. We consider the model of a rotating fluid as
described in Chemin et al. [32]. Let T > 0 and Ω(⊂ R3) = R2 × (0, 1) be an infinite
slab. The rotating Euler system is the barotropic Euler system (2.3.1)-(2.3.2) with
forcing term

ϱf = −b×m+ ϱ∇xG. (4.3.1)

The term b × m represents the effect of rotation (Coriolis force) with the axis of
rotation b and the effect of gravitational force is given by ∇xG. We have neglected
the effect of the centrifugal force.

We consider the scaled compressible Euler equation in the time-space cylinder
QT = (0, T )× Ω which describes the time evolution of the mass density ϱ = ϱ(t, x)
and the momentum field m = m(t, x) of a rotating inviscid fluid with axis of rotation
b = (0, 0, 1):

• Conservation of mass:

Sr ∂tϱ+ divxm = 0. (4.3.2)

• Conservation of momentum:

Sr ∂tm + divx
(︃

m ⊗ m
ϱ

)︃
+

1

Ma2
∇xp(ϱ) +

1

Ro
b× m =

1

Fr2
ϱ∇xG. (4.3.3)

• Multiple scaling: The scaled system contains characteristic numbers:
Strouhal number(Sr), Mach number(Ma), Rossby number(Ro) and Froude num-
ber(Fr).
Here we consider a multiple scaling as

Sr ≈ 1, Ma ≈ ϵm, Ro ≈ ϵ, Fr ≈ ϵn for ϵ > 0, m, n > 0. (4.3.4)
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• Pressure law: The pressure p and the density ϱ of the fluid are interrelated by
the standard isentropic law

p(ϱ) = aϱγ , a > 0, γ > 1. (4.3.5)

Thus for each ϵ > 0, a solution of the system is denoted by (ϱϵ,mϵ), just to indicate
the dependence of solutions on scaling parameter. Now to complete the formulation
we introduce the initial, boundary, far field and other important conditions.

• Boundary condition: Here we consider impermeability or slip condition on the
horizontal boundary, i.e.

mϵ · n = 0 on ∂Ω, where n = (0, 0,±1). (4.3.6)

• Far field condition: Let us introduce the notation x = (xh, x3) ∈ Ω and the
projection of x in R2 as Ph(x) = xh.

For each ϵ > 0, we identify a static solution (ϱ̃ϵ,0) that satisfies (4.3.2)-(4.3.3)
with (4.3.4). More specifically, a static solutions is a pair (ϱ̃ϵ,0), where the density
profile ϱ̃ϵ satisfies

∇xp(ϱ̃ϵ) = ϵ2(m−n)ϱ̃ϵ∇xG. (4.3.7)

We assume the far field condition as,

|ϱϵ − ϱ̃ϵ| → 0, mϵ → 0 as |xh| → ∞. (4.3.8)

• Initial data: For each ϵ > 0, we supplement the initial data as

ϱϵ(0, ·) = ϱϵ,0, mϵ(0, ·) = mϵ,0. (4.3.9)

• Choice of G: We consider

G(x) = −Λx3 in Ω, with Λ = 0 or 1. (4.3.10)

In certain cases we can ignore the gravitational effect by considering Λ = 0.
For Λ = 1, G corresponds to the gravitational force acting in the vertical direction.

Remark 4.3.1. As a matter of fact, the driving potential G can be seen as a sum
of the centrifugal force proportional to the norm of the horizontal component of the
spatial variable i.e. (x21+x

2
2) and the gravitational force acting in the vertical direction

x3. We omit the effect of the centrifugal force in the present section motivated by
certain meteorological models.

Remark 4.3.2. We are interested in multiple scaling of (4.3.4), i.e., we choose
different m,n ∈ N.



4.3. Multi-scale analysis of a compressible rotating inviscid fluid 123

Dissipative solution for a rotating Euler system

We are interested in the dissipative solutions of the primitive system (4.3.2)-
(4.3.3). For the domain Ω = R2 × (0, 1), we introduced the definition of a dissipative
solution for the Euler system in Chapter 2, see Definition 2.6.12. For the definition
of a dissipative solution for a rotating fluid, we now substitute f following (4.3.1) in
Definition 2.6.12. However, we note again that the definition is given for ϵ = 1. For
any ϵ > 0, we can modify it by observing the Remark 4.2.1 from the last section.

Thus, for ϵ > 0, we denote (ϱϵ,mϵ) as a dissipative solution with turbulent defect
measures (Rmϵ ,Reϵ) of the system (4.3.2)-(4.3.3) with constraints (4.3.4)-(4.3.10)
following the Definition 2.6.12.

Remark 4.3.3. It is worth to noting that the term (−b×m) does not contribute
in the energy, since the following identity is true for any vector v ∈ R3:

b× v · v = 0, for b = (0, 0, 1).

4.3.1 Relative energy inequality

In our approach, relative energy functional plays an important role. We consider
a scaled version of relative energy as

Eϵ(t) = E(ϱϵ,mϵ|ϱ̃, ũ)(t)

:=

ˆ
Ω

[︄
1

2
ϱϵ

⃓⃓⃓⃓
mϵ

ϱϵ
− ũ

⃓⃓⃓⃓2
+

1

ϵ2m
(P (ϱϵ)− P (ϱ̃)− P ′(ϱ̃)(ϱϵ − ϱ̃))

]︄
(t, ·) dx,

(4.3.11)

where ϱ̃, ũ satisfies

0 < ϱ̃ ∈ C∞([0, T ])× Ω) with ϱ̃− ϱ̃ϵ having compact support in [0, T ]× Ω,

ũ ∈ C∞
c ([0, T ]× Ω;Rd) with ũ · n = 0 on ∂Ω,

(4.3.12)

and, (ϱϵ,mϵ) is a dissipative solution of the system.

Remark 4.3.4. Let ϱ̃, ũ satisfies (4.3.12) and 0 < ϱ1 < ϱ2. We consider a function
χ = χ(ϱ) such that

χ(·) ∈ C∞
c (0,∞), 0 ≤ χ ≤ 1, χ(ϱ) = 1 if ϱ1 ≤ ϱ ≤ ϱ2,

For a function, H = H(ϱ,u) we set

[H]ess = χ(ϱ)H(ϱ,m), [H]res = (1− χ(ϱ))H(ϱ,m). (4.3.13)
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The relative energy is a coercive functional (see. Bruell and Feireisl [23, Section 2]),
that satisfies the following estimate:

E(ϱϵ,uϵ|ϱ̃, ũ)(t) ≥
ˆ
Ω

[︃⃓⃓⃓⃓
mϵ

ϱϵ
− m̃

⃓⃓⃓⃓2]︃
ess

dx+

ˆ
Ω

[︃
|mϵ|2

ϱϵ

]︃
res

dx

+
1

ϵ2m

ˆ
Ω
[(ϱϵ − ϱ̃)2]ess dx+

1

ϵ2m

ˆ
Ω
[1]res + [ϱγϵ ]res dx,

(4.3.14)

for t ∈ (0, T ).

In Section 3.2, we derive a relative energy inequality for viscous fluids. In this
case, a similar scaled version of the relative energy inequality is possible and given in
the next lemma.

Lemma 4.3.5. Let (ϱϵ̃, 0) be a static solution and (ϱϵ,mϵ) be a dissipative solution
of system (4.3.2)-(4.3.10) with defect measure (Reϵ ,Rmϵ) for finite enrgy initial data
(ϱ0,ϵ,m0,ϵ) that follows the Definition (2.6.12). Suppose (ϱ̃, ũ) satisfies (4.3.12). Then
we have the following inequality

Eϵ(τ) +
ˆ
Ω
d Reϵ(τ, ·)

≤ E0,ϵ −
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵũ) · ∂tũ dx dt −

ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵũ)⊗mϵ

ϱϵ

)︃
: ∇xũ dx dt

− 1

ϵ2m

ˆ τ

0

ˆ
Ω
(p(ϱϵ)− p(ϱ̃))divxũ dx dt +

1

ϵ2m

ˆ τ

0

ˆ
Ω
(ϱ̃− ϱϵ)∂tP

′(ϱ̃) dx dt

+
1

ϵ

ˆ τ

0

ˆ
Ω
b×mϵ · ũ dx dt

+
1

ϵ2m

ˆ τ

0

ˆ
Ω
(ϱ̃ũ−mϵ) · (∇xP

′(ϱ̃)−∇xP
′(ϱϵ̃)) dx dt

− 1

ϵ2n

ˆ τ

0

ˆ
Ω
(ϱϵ − ϱ̃)∇xG · ũ dx dt −

ˆ τ

0

ˆ
Ω
∇xũ : dRmϵ(t, ·) dt .

(4.3.15)

where E0,ϵ is the following expression

ˆ
Ω

[︄
1

2
ϱ0,ϵ

⃓⃓⃓⃓
m0,ϵ

ϱ0,ϵ
− ũ(0, ·)

⃓⃓⃓⃓2
+

1

ϵ2m
(︁
P (ϱ0,ϵ)− P (ϱ̃(0, ·))− P ′(ϱ̃(0, ·))(ϱ0,ϵ − ϱ̃(0, ·))

)︁]︄
dx.

Remark 4.3.6. The proof of this lemma is similar to the one we performed in the
last chapter (see, Section 3.2). We only need to deal with the scaled system by
considering the Remark 4.2.1.

Remark 4.3.7. Instead of considering (ϱ̃, ũ) as a smooth function, we can extend
this to a suitable class of Sobolev functions as we have described in Proposition 3.2.8.
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4.3.2 Derivation of target systems: Multiple scales

Here is an informal justification of how we obtain the limiting system, which we
call the target system. First, we note that (ϱ̃ϵ, 0) is a static solution of (4.3.2)-(4.3.3)
satisfying

∇xp(ϱ̃ϵ) = Λϵ2(m−n)ϱ̃ϵ∇xG. (4.3.16)

Let us consider an asymptotic expansion around the (ϱ̃ϵ,v) as

ϱϵ = ϱ̃ϵ + ϵmϱ(1)ϵ + ϵ2mϱ(2)ϵ + · · · ,
uϵ = v + ϵmv(1)

ϵ + ϵ2mv(2)
ϵ + · · · .

Using the fact mϵ = ϱϵuϵ, we have

mϵ = ϱ̃ϵv + ϵmm(1)
ϵ + ϵ2mm(2)

ϵ + · · · ,

where m
(1)
ϵ = ϱϵv

(1)
ϵ + ϱ

(1)
ϵ v. As a consequence of the above, we obtain

p(ϱϵ) = p(ϱ̃ϵ) + ϵmp′(ϱ̃ϵ)ϱ
(1)
ϵ + ϵ2m(p′(ϱ̃ϵ)ϱ

(2)
ϵ +

1

2
p′′(ϱ̃ϵ)(ϱ

(1)
ϵ )2) + o(ϵ3m).

Substituting this into the continuity and momentum equation, we get

divx(ϱ̃ϵv) + ϵm(∂tϱ
(1)
ϵ + divx(v(1)

ϵ ϱ̄+ vϱ(1)ϵ ) + o(ϵ2m) = 0 (4.3.17)

and

∂t(ϱ̃ϵv) + (ϱ̃ϵv · ∇x)v +∇x

(︃
p′(ϱ̃ϵ)ϱ

(2)
ϵ +

1

2
p′′(ϱ̃ϵ)(ϱ

(1)
ϵ )2

)︃
+ ϵm−1b×m(1)

ϵ +
1

ϵ2m
∇xp(ϱϵ̃) +

1

ϵm
∇x(p

′(ϱ̃ϵ)ϱ
(1)
ϵ ) +

1

ϵ
(ϱ̄b× v)

− Λ
1

ϵ2n
ϱ̃ϵ∇xG+ o(ϵm−1, ϵm) = 0.

(4.3.18)

In order to take into account ‘multiple scaling’, we consider three different cases as

• (Case I:) the gravitational force is absent, i.e., Λ = 0, m = 1,

• (Case II: ) the gravitational force is present and Mach and Froude number has
same scaling, i.e., Λ = 1, m = n = 1,

• (Case III:) the gravitational force is present and the effect of Mach number is
dominant, i.e., Λ = 1, m

2 > n ≥ 1.
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Case I: Λ = 0, m = 1; Target System: Geophysical Flow

First, from (4.3.7) we observe ϱ̃ϵ = ϱ̄, a constant. Without loss of generality, we
assume ϱ̄ > 0. Therefore, we rewrite (4.3.17) and (4.3.18) as

ϱ̄divxv + ϵ(∂tϱ
(1)
ϵ + divx(v(1)

ϵ ϱ̄+ vϱ(1)ϵ ) + o(ϵ2) = 0,

and

ϱ̄(∂tv + (v · ∇x)v) +∇x

(︃
p′(ϱ̄)ϱ(2)ϵ +

1

2
p′′(ϱ̄)(ϱ(1)ϵ )2

)︃
+ b×m(1)

ϵ +
1

ϵ
(p′(ϱ̄)∇xϱ

(1)
ϵ + ϱ̄b× v) + o(ϵ) = 0,

respectively, where m
(1)
ϵ = v

(1)
ϵ ϱ̄+ vϱ

(1)
ϵ .

Furthermore, we assume
(︁ϱϵ−ϱ̄

ϵ

)︁
→ q and uϵ → v in some strong sense. Then, as

a consequence, we have

p′(ϱ̄)∇xq + ϱ̄b× v = 0,

divxv = 0,

ϱ̄(∂tv + (v · ∇x)v) +∇xΠ1 + b×m1 = 0,

∂tq + divxm1 = 0.

From the above equations, it yields

qx3 = 0, q(x) = q(xh),∇⊥
xh
q =

ϱ̄

p′(ϱ̄)
vh, vh = (v1, v2),

divxh
vh = 0, v3x3 = 0, where ∇⊥

xh
≡
(︃
− ∂

∂x2
,
∂

∂x1

)︃
.

If we additionally assume smoothness of the variables, we derive

v1x3 = 0, v2x3 = 0.

We conclude that the quantity v depends only on xh = (x1, x2), i.e.,

v(x) = v(xh).

Moreover, the slip boundary condition (4.3.6) gives

v3(xh, x3) = 0.

Thus, we infer v = (vh(xh), 0) and

p′(ϱ̄)

ϱ̄
∇xh

q + b× v = 0,

∂t

(︃
∆xh

q − 1

p′(ϱ̄)
q

)︃
+∇⊥

xh
q · ∇xh

(︃
∆xh

q − 1

p′(ϱ̄)
q

)︃
= 0.

(4.3.19)

In (4.3.19), q can be regarded as a kind of stream function and the relation between
q and u gives the incompressibility condition, i.e., divxh

vh = 0.
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Case II: Λ = 1, m = n = 1; Target System: Stratified fluid, Geophysical
flow

In this case, a static solution ϱ̃ϵ satisfying

∇xp(ϱ̃ϵ) = ϱ̃ϵ∇xG. (4.3.20)

is independent of ϵ. We denote it by ϱ̂. From our choice of G(x) = −x3, we have
ϱ̂(x) = ϱ̂(x3). Furthermore, we can choose 0 < ϱ̂ ∈ C∞([0, 1]).

We rewrite (4.3.17) and (4.3.18) as

divx(ϱ̂v) + ϵ(∂tϱ
(1)
ϵ + divx(v(1)

ϵ ϱ̂+ vϱ(1)ϵ ) + o(ϵ2) = 0

and

∂t(ϱ̂v) + divx(ϱ̂v ⊗ v) +∇x

(︃
p′(ϱ̂)ϱ(2)ϵ +

1

2
p′′(ϱ̂)(ϱ(1)ϵ )2

)︃
+ b×m(1)

ϵ +
1

ϵ
(∇x(p

′(ϱ̂)ϱ(1)ϵ ) + b× ϱ̂v) =
1

ϵ
ϱ(1)ϵ ∇xG+ o(ϵ),

respectively, where m
(1)
ϵ = v

(1)
ϵ ϱ̂+ vϱ

(1)
ϵ .

We assume
(︁ϱϵ−ϱ̂

ϵ

)︁
→ q and uϵ → v in some strong sense. Consequently, we get

∇x(p
′(ϱ̂)q) + b× ϱ̂v = q∇xG,

divx(ϱ̂v) = 0,

∂t(ϱ̂v) + divx(ϱ̂v ⊗ v) +∇xΠ1 + b×m1 = 0,

∂tq + divxm1 = 0.

From the above equations, we deduce that

∇x(P
′(ϱ̂)q) + b× ϱ̂v = 0.

The choice of b implies
(P ′′(ϱ̂)q)x3 = 0.

Further, an additional smoothness assumption gives

(P ′′(ϱ̂)q)(xh, x3) = (P ′′(ϱ̂)q)(xh, 0) for x3 ∈ (0, 1).

Also using the boundary condition, we obtain v(xh, x3) = (vh(xh), 0).
From our choice of G, we consider C = P ′′(ϱ̂(0)) > 0 and P ′′(ϱ̂(x3)) ̸= 0 for x3 ∈ [0, 1].
Thus, we have a definite structure of q and it is given by

q(xh, x3) = C
q(xh, 0)

P ′′(ϱ̂(x3))
.

Finally, we deduce that for each x3 ∈ (0, 1), (q,v) satisfies

∇x(P
′′(ϱ̂)q) + b× v = 0,

∂t(∆xh
(p′(ϱ̂)q)− q) +∇⊥

xh
(p′(ϱ̂)q) · ∇xh

(∆xh
(P ′′(ϱ̂)q)) = 0,

(4.3.21)

and v(xh, x3) = (vh(xh), 0).
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Remark 4.3.8. The system (4.3.21) has similarity with (4.3.19). Unfortunately, q
in (4.3.21) is dependent on x3, contrary to (4.3.19). The system (4.3.21) is a damped
variant of the incompressible Euler system, see Zeitlin [124].

Case III: Λ = 1, m
2 > n ≥ 1; Target System: 2D Euler Fluid

We observe that a static solution (ϱ̃ϵ,0) satisfying

∇xp(ϱ̃ϵ) = ϵ2(m−n)ϱ̃ϵ∇xG,

has the following property:
lim
ϵ→0

∇xP
′(ϱ̃ϵ) = 0,

as soon as G(x) = −x3 in Ω and m
2 > n. Without loss of generality we assume

ϱ̃ϵ ≈ ϱ̄+ ϵ2(m−n).

From (4.3.17) and (4.3.18), we obtain

ϱ̄divxv + ϵm(∂tϱ
(1)
ϵ + divx(v(1)

ϵ ϱ̄+ vϱ(1)ϵ ) + o(ϵ2m) = 0

and

ϱ̄(∂tv + (v · ∇x)v) +∇x

(︃
p′(ϱ̄)ϱ(2)ϵ +

1

2
p′′(ϱ̄)(ϱ(1)ϵ )2

)︃
+ ϵm−1b×m(1)

ϵ +
1

ϵm
p′(ϱ̄)∇xϱ

(1)
ϵ +

1

ϵ
(ϱ̄b× v)− 1

ϵ2n
ϱ̄∇xG+ o(ϵm) = 0,

(4.3.22)

respectively, where m
(1)
ϵ = v

(1)
ϵ ϱ̄+ vϱ

(1)
ϵ . In addition, we assume that ϱϵuϵ → ϱ̄v and

uϵ → v in some strong sense.
Let H be the Helmholtz projection, then we have

H
(︃
∂t(ϱϵuϵ) + divx(ϱϵuϵ ⊗ uϵ) +

1

ϵ
b× ϱϵuϵ

)︃
= H(ϵαdivxS(∇xuϵ) +

1

ϵ2n
ϱϵ∇xG.

Multiplying the above equation by ϵ, we get

H[b× ϱ̄v] = 0.

This implies that there exists a scalar field ψ such that

b× ϱ̄v = ∇xψ.

Now using the slip boundary(4.3.6) as in ‘Case I’, we have v(x) = (vh(xh), 0). The
limit system is identified as incompressible Euler system in R2, i.e.,

divxh
vh = 0,

∂tvh + (vh · ∇xh
)vh +∇xh

Π = 0.
(4.3.23)

Here we summarize the above discussion.
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Multiple Scales
Case Relation between m, n and Λ Target System
I Λ = 0, m = 1 Quasi-geophysical flow, see (4.3.19).
II Λ = 1, m = 1, n = 1 Stratified quasi-geophysical flow, see

(4.3.21).
III Λ = 1, m

2 > n ≥ 1 2D Euler Equation, see, (4.3.23)

4.3.3 Case I: Low mach and Rossby number limit in the absence of
gravitational potential

First, we recall the consideration of Case I, i.e., G = 0, m = 1. The choice of
initial data plays an important role in our analysis. Hence, we give an appropriate
notion of well-prepared data for this case.

Definition 4.3.9. We say that the set of initial data {(ϱ0,ϵ,m0,ϵ)}{ϵ>0} is well-
prepared if,

ϱ0,ϵ = ϱ̄+ ϵϱ
(1)
0,ϵ , {ϱ0,ϵ}{ϵ>0} is bounded in L2 ∩ L∞(Ω), ϱ

(1)
0,ϵ → q0 in L2(Ω),

m0,ϵ

ϱ0,ϵ
→ v0 =

(︁
v
(1)
0 ,v

(2)
0 , 0) in L2(Ω;R3

)︁
with the following relation

−∆xh
q0 = ϱ̄Curlxh

Ph(v0).

(4.3.24)

Existence result for target system

In the last section we informally identify the limit system (4.3.19) and it has a
similar structure to the 2D Euler equations. We expect the existence of a global in
time strong solution for regular initial data. In particular, we may use the abstract
theory of Oliver [106, Theorem 3], to obtain the result:

Proposition 4.3.10. Suppose that

q0 ∈Wm,2(R2) for m ≥ 4.

Then, the problem (4.3.19) admits a solution q, unique in the class

q ∈ C([0, T ];Wm,2(R2)) ∩ C1([0, T ];Wm−1,2(R2)).

Main Theorem

Here we state the main theorem that we want to prove.

Theorem 4.3.11. Let (ϱϵ,mϵ) be a dissipative solution of the system (4.3.2)-(4.3.10)
with Λ = 0 and m = 1. Moreover, we assume that the initial data is well-prepared, i.e.
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it satisfies (4.3.24) and q0 ∈ W k,2 with k ≥ 4. Let (q,v) solves (4.3.19) for initial
data q0. Then after taking a subsequence, the following holds,

ϱ(1)ϵ ≡ ϱϵ − ϱ̄

ϵ
→ q weak-(*)ly in L∞(0, T ;L2 + Lγ′

(Ω)),

mϵ → ϱ̄v weak-(*)ly in L∞(0, T ;L2 + L
2γ
γ+1 (Ω)),

(4.3.25)

where γ′ = min{2, γ}. Furthermore, we have

mϵ√
ϱϵ

→ v strongly in L1
loc((0, T )× Ω;R3).

To prove the theorem, we will first try to obtain some bounds on the state
variables.

Uniform bounds and weak convergence of variables

We consider (ũ = 0, ϱ̃ = ϱ̄) as a test function in (4.3.15). Obviously, it belongs
to the test function class (4.3.12). For this test function the relative energy inequality
reduces to the energy inequality. From the consideration of the well-prepared data,
we obtain

ˆ
Ω

(︃
|m0,ϵ|2

ϱϵ
+

1

ϵ2
P (ϱ0,ϵ)− (ϱ0,ϵ − ϱ̄)P ′(ϱ̄)− P (ϱ̄)

)︃
dx < E,

where E is independent of ϵ. Using (4.3.14), we have the following uniform bounds

ess sup
t∈(0,T )

⃦⃦⃦⃦
mϵ√
ϱϵ

⃦⃦⃦⃦
L2(Ω;R3)

≤ C,

ess sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵ

]︃
ess

⃦⃦⃦⃦
L2(Ω)

≤ C,

ess sup
t∈(0,T )

∥[ϱϵ]res∥γLγ(Ω) + ess sup
t∈(0,T )

∥[1]res∥γLγ(Ω) ≤ ϵ2C,

where [ · ]ess and [ · ]res are following (4.3.13) with ϱ1 = 1
2 and ϱ2 = 2.

Passing to a subsequence(not relabeled), we obtain

ϱ(1)ϵ ≡
(︃
ϱϵ − ϱ̄

ϵ

)︃
→ ϱ(1) weak-(*)ly in L∞(0, T ;L2 + Lγ′

(Ω)),

mϵ√
ϱϵ

→ m̂ weak-(*)ly in L∞(0, T ;L2(Ω;R3))

where γ′ = min{2, γ}. We define u = m̂√
ϱ̄
. Furthermore, we deduce that

ϱϵ → ϱ̄ in L∞(0, T ;L2 + Lγ(Ω)).
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From the observation mϵ =
√
ϱϵ

mϵ√
ϱϵ

, it yields

∥mϵ∥L∞(0,T ;L2+Lγ̀(Ω;R3)) ≤ C,

where γ̀ = min
{︂

4
3 ,

2γ
γ+1

}︂
. Again, passing to a subsequence(not relabeled), we get

mϵ → m weak-(*)ly in L∞(0, T ;L2 + L
2γ/γ + 1(Ω;R3)).

From, the strong convergence of ϱϵ, we infer that

m = ϱ̄u

in the sense of distribution. Now, letting ϵ→ 0 in the continuity equation, we have

ϱ̄

ˆ τ

0

ˆ
Ω
u · ∇xφ dx dt = 0.

This is the weak form of the incompressibility condition. Furthermore multiplying
momentum equation by ϵ and letting ϵ→ 0 we get the diagnostic equation,

b× u+
p′(ϱ̄)

ϱ̄
∇xϱ

(1) = 0,

in the sense of distribution.
Clearly, from last relation we have ϱ(1) is independent of x3, i.e. ϱ(1) = ϱ(1)(xh).

Relative energy and convergence to the target system

We recall here the target system:

p′(ϱ̄)

ϱ̄
∇xq + b× v = 0,

∂t

(︃
∆xh

q − 1

p′(ϱ̄)
q

)︃
+∇⊥

xh
q · ∇xh

(︃
∆xh

q − 1

p′(ϱ̄)
q

)︃
= 0.

Let q0 ∈W k,2(R2) with k ≥ 4 and (q0,v0) satisfies (4.3.24). Further we assume that
(q,v) is the strong solution of the target system (4.3.19) with initial data (q0,v0).

Our goal is to show that (ϱ(1),u) ≡ (q,v). Here we choose proper test functions
and will show that the relative energy goes to zero as ϵ→ 0, i.e., lim

ϵ→0
Eϵ(t) = 0.

We consider

ũ = v, ϱ̃ = ϱ̄+ ϵq.
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The remark (4.3.7) helps us to consider such test functions. We rewrite the relative
energy inequality as

Eϵ(τ)+
ˆ
Ω

dReϵ(τ, ·)

≤ Eϵ(0)−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵv) · (∂tv + (v · ∇xh

)v) dx dt

−
ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵv)⊗ (mϵ − ϱϵv)

ϱϵ

)︃
: ∇xv dx dt

− 1

ϵ2

ˆ τ

0

ˆ
Ω
(p(ϱϵ)− p(ϱ̃))divxv dx dt +

1

ϵ

ˆ τ

0

ˆ
Ω
b×mϵ · v dx dt

+
1

ϵ2

ˆ τ

0

ˆ
Ω
(ϱ̄+ ϵq − ϱϵ)P

′′(ϱ̃) ∂t(ϱ̄+ ϵq) dx dt

+
1

ϵ2

ˆ τ

0

ˆ
Ω
((ϱ̄+ ϵq)v −mϵ)∇xP

′′(ϱ̃)∇x(ϱ̄+ ϵq) dx dt

−
ˆ τ

0

ˆ
Ω
∇xũ : dRmϵ(t, ·) dt .

Using the fact divxh
v = 0, we obtain

Eϵ(τ)+
ˆ
Ω

dReϵ(τ, ·)

≤ Eϵ(0)−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵv) · (∂tv + (v · ∇xh

)v) dx dt

−
ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵv)⊗ (mϵ − ϱϵv)

ϱϵ

)︃
: ∇xv dx dt

+
1

ϵ

ˆ τ

0

ˆ
Ω
P ′′(ϱ̄)mϵ · ∇xh

q dx dt +

ˆ τ

0

ˆ
Ω
(q − ϱ1ϵ )P

′′(ϱ̄+ ϵq) ∂tq dx dt

− 1

ϵ

ˆ τ

0

ˆ
Ω
mϵ · P ′′(ϱ̄+ ϵq)∇xq dx dt −

ˆ τ

0

ˆ
Ω
∇xũ : dRmϵ(t, ·) dt

= Σ7
i=1Li.

Consideration of well prepared data yields

Eϵ(ϱ0,ϵ,m0,ϵ | ϱ̄+ ϵq0,v0) ≤
⃦⃦⃦⃦
m0,ϵ

ϱ0,ϵ
− v0

⃦⃦⃦⃦2
L2(Ω)

+ ∥ϱ(1)0,ϵ − q0∥2L2(Ω).

From this we conclude

|L1| ≤ c(ϵ). (4.3.26)

From now on we use c(ϵ) as a generic function such that c(ϵ) → 0 as ϵ→ 0.
We have the following observation

mϵ − ϱϵv = (mϵ − ϱ̄u) + ((ϱ̄− ϱϵ)u) + (ϱϵ(u− v))
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and
P ′′(ϱ̄+ ϵq) = P ′′(ϱ̄+ ϵq)− P ′′(ϱ̄) + P ′′(ϱ̄).

This together with the weak convergence of state variables implies

|L2 + L5| ≤c(ϵ) +
ˆ τ

0

ˆ
Ω
ϱ̄(v − u) · (∂tv + (v · ∇xh

)v) dx dt

+

ˆ τ

0

ˆ
Ω
(q − ϱ(1))P ′′(ϱ̄) ∂tq dx dt .

The fact (q,v) is a strong solution of (4.3.19) implies
ˆ
Ω
ϱ̄(v − u) · (∂tv + (v · ∇xh

)v) dx dt +

ˆ τ

0

ˆ
Ω
(q − ϱ(1))P ′′(ϱ̄) ∂tq dx dt

=
p′(ϱ̄)2

ϱ̄

d
dt

ˆ
Ω

(︁
|∇xh

q|2 + 1

p′(ϱ̄)
|q|2
)︁

dx− ϱ̄

ˆ
Ω
u · ∇xh

|v|2 dx.

Eventually, using properties of q,u and v we obtain
ˆ τ

0

(︃ˆ
Ω
(ϱ̄(v − u) · (∂tv + (v · ∇xh

)v) dx dt + (q − ϱ(1))∂tqP
′′(ϱ̄)) dx

)︃
dt = 0.

Thus we have

|L2 + L5| ≤ c(ϵ). (4.3.27)

From the definition of relative energy, we deduce

|L3| ≤
ˆ τ

0
Eϵ(t) dt (4.3.28)

It is easy to verify that

1

ϵ

(︁
P ′′(ϱ̄+ ϵq)− P ′′(ϱ̄)

)︁
→ P ′′′(ϱ̄)q in L∞(0, T ;L∞ ∩ L2(Ω)), as ϵ→ 0.

The above statement helps us to get

L4 + L6 →
ˆ τ

0

ˆ
Ω
ϱ̄P ′′′(ϱ̄)qv · (∇xh

q, 0) dx dt = 0.

Therefore, we obtain

|L4 + L6| ≤ c(ϵ). (4.3.29)

Using compatibility of defect measures, we have the following estimate:

|L7| ≤
ˆ τ

0

ˆ
Ω

dReϵ(t, ·) dt . (4.3.30)
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Combining (4.3.26)-(4.3.30), we infer that

Eϵ(τ) +
ˆ
Ω

dReϵ(τ, ·) ≤ c(ϵ) +

ˆ τ

0
Eϵ(t) dt + C

ˆ τ

0

ˆ
Ω

dReϵ(t, ·) dt ,

for a.e. τ ∈ (0, T ).
Finally, using Grönwall’s lemma 1.1.7, we have

Eϵ(τ) +
ˆ
Ω

dReϵ(τ, ·) ≤ c(ϵ)C(T ),

where c(ϵ) → 0 as ϵ→ 0. Hence, we obtain our deired result

lim
ϵ→0

Eϵ(τ) = 0. (4.3.31)

Now we use the coerceivity of relative energy functional(4.3.14) and conclude

ϱϵ − ϱ̄

ϵ
→ q strongly in L1

loc((0, T )× Ω),

mϵ√
ϱϵ

→
√
ϱ̄v strongly in L1

loc((0, T )× Ω;R3).

It ends the proof of the Theorem 4.3.11.

4.3.4 Case II: Low Mach and Rossby number limit in the presence
of strong stratification

In this case Λ = 1 and m = n = 1 implies that a static solution ϱ̃ϵ is independent
of ϵ. We denote it by ϱ̂ and it satisfies

∇xp(ϱ̂) = ϱ̂∇xG.

Eventually, we also have
P ′(ϱ̂) = G+ C,

where C is a constant and as G(x) = −x3 in Ω we also have ϱ̂(xh, x3) = ϱ̂(x3) in Ω.
In particular, we choose a particular static solution (ϱ̂ = ϱ̂(x3)) such that

0 < ϱ̂ ∈ C3(Ω) ∩W 1,∞(Ω).

First we recall the target system. It states that for eachx3 ∈ [0, 1],
(q(xh, x3),v(xh, x3) = (vh(xh), 0)) solves

∇x(P
′′(ϱ̂(x3))q) + b× v = 0, (4.3.32)

∂t(∆xh
(p′(ϱ̂(x3))q)− q) +∇⊥

xh
(p′(ϱ̂(x3))q) · ∇xh

(∆xh
(P ′′(ϱ̂(x3))q)) = 0, (4.3.33)

supplemented with initial data q(0, ·) = q0 in Ω. From the first equation we have(︁
P ′′(ϱ̂)q

)︁
x3

= 0.
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This leads to consider q(xh, x3) = f(ϱ̂(x3))q̂(xh), for some smooth function f :
(0,∞) → (0,∞), such that

f(ϱ̂) =
C

P ′(ϱ̂)
,

with C > 0. The above system is well defined in R2 × (0, 1), for each x3 ∈ (0, 1), it
satisfies an equation similar to (4.3.19).

If assume q0 ∈ W k,2(Rd) with k > 4. For each x3 ∈ [0, 1], the equation (4.3.33)
admits strong solution. Furthermore, following Oliver [106, Theorem 3], we have for
each x3 ∈ [0, 1], q(·, x3) ∈ C([0, T ];W k,2(R2)) ∩ C1([0, T ];W k−1,2(R2)).

Finally from the above discussion we state the regularity of the target system as

Proposition 4.3.12. Suppose that

q0 ∈W k,2(R2) for k ≥ 4.

Then, the problem (4.3.21) admits a solution q, unique in the class

q ∈ C([0, T ];W k,2(R2)× C3([0, 1])) ∩ C1([0, T ];W k−1,2(R2)× C3([0, 1])).

We define the well prepared data as

Definition 4.3.13. We say that the set of initial data {(ϱ0,ϵ,m0,ϵ)}{ϵ>0} is well-
prepared if,

ϱ0,ϵ = ϱ̂+ ϵϱ
(1)
0,ϵ , {ϱ0,ϵ}{ϵ>0} is bounded in L2 ∩ L∞(Ω), ϱ

(1)
0,ϵ → q0 in L2(Ω),

m0,ϵ

ϱ0,ϵ
→ v0 =

(︁
v
(1)
0 ,v

(2)
0 , 0) in L2(Ω;R3

)︁
with the relation

−∆xh
q0 = ϱ̂Curlxh

Ph(v0), and q0 ∈ L2(R2).

(4.3.34)

Theorem 4.3.14. Let (ϱϵ,mϵ) be a dissipative solution of the system (4.3.2)-(4.3.10)
with Λ = 1 and m = n = 1. Moreover, we assume that the initial data is well-prepared,
i.e., it satisfies (4.3.34) and q0 ∈ W k,2 with k ≥ 4. Let (q,v) solves (4.3.21) for
initial data q0. Then after taking a subsequence, the following holds,

ϱ(1)ϵ ≡ ϱϵ − ϱ̂

ϵ
→ q weak-(*)ly in L∞(0, T ;L2 + Lγ′

(Ω)),

mϵ → ϱ̄v weak-(*)ly in L∞(0, T ;L2 + L
2γ
γ+1 (Ω)),

where γ′ = min{2, γ}. Furthermore, we have

mϵ√
ϱϵ

→ v strongly in L1
loc((0, T )× Ω;R3).
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Before heading towards the proof, we recall the relative energy inequality for this
case,

Eϵ(τ) +
ˆ
Ω
d Reϵ(τ, ·)

≤ Eϵ(0)−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵũ) · ∂tũ dxdt −

ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵũ)⊗mϵ

ϱϵ

)︃
: ∇xũ dxdt

− 1

ϵ2

ˆ τ

0

ˆ
Ω
(p(ϱϵ)− p(ϱ̃))divxũ dx dt +

1

ϵ2

ˆ τ

0

ˆ
Ω
(ϱ̃− ϱϵ)∂tP

′(ϱ̃) dx dt

+
1

ϵ

ˆ τ

0

ˆ
Ω
b×mϵ · ũ dx dt

+
1

ϵ2

ˆ τ

0

ˆ
Ω
(ϱ̃ũ−mϵ) · (∇xP

′(ϱ̃)−∇xP
′(ϱϵ̃)) dx dt

− 1

ϵ2

ˆ τ

0

ˆ
Ω
(ϱϵ − ϱ̃)∇xG · ũ dx dt −

ˆ τ

0

ˆ
Ω
∇xũ : dRmϵ(t, ·) dt ,

with (ϱ̃, ũ) satisfies (4.3.12) with ϱϵ̃ = ϱ̂.

Uniform bounds and weak convergence

To obtain a uniform bound, we proceed similarly to Section 4.2.3. First, using
ũ = 0, ϱ̃ = ϱ̂ as test functions and well-prepared data(4.3.34), we obtain the following
uniform bounds:

ess sup
t∈(0,T )

⃦⃦⃦⃦
mϵ√
ϱϵ

⃦⃦⃦⃦
L2(Ω;R3)

≤ C,

ess sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̂

ϵ

]︃
ess

⃦⃦⃦⃦
L2(Ω)

≤ C,

ess sup
t∈(0,T )

∥[ϱϵ]res∥γLγ(Ω) + ess sup
t∈(0,T )

∥[1]res∥γLγ(Ω) ≤ ϵ2C.

This implies that

ϱ(1)ϵ ≡
(︃
ϱϵ − ϱ̂

ϵ

)︃
→ ϱ(1) weak-(*)ly in L∞(0, T ;L2 + Lγ′

(Ω)),

mϵ√
ϱϵ

→ m̂ weak-(*)ly in L∞(0, T ;L2(Ω;R3)),

passing to a suitable subsequence as the case may be, here γ′ = min{2, γ}.
We also deduce that

ϱϵ → ϱ̂ in L∞(0, T ;L2 + Lγ′
(Ω)).

Furthermore, we have

∥mϵ∥L∞(0,T ;L2+Lγ̀(Ω;R3)) ≤ C,
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where γ̀ =
{︂

4
3 ,

2γ
γ+1

}︂
. Eventually, for a suitable subsequence, we get

mϵ → m weak-(*)ly in L∞(0, T ;L2 + Lγ̀(Ω;R3)).

Letting ϵ→ 0 in the continuity equation, we infer the incompressibility condition
in the weak sense, i.e.,

ˆ τ

0

ˆ
Ω
m · ∇xφ dx dt = 0.

Define u = m
ϱ̂ . Multiplying momentum equation by ϵ and letting ϵ→ 0, we obtain

the diagnostic equation

b× u+∇x

(︂
P ′′(ϱ̂)ϱ(1)

)︂
= 0, (4.3.35)

in the the sense of distributions.

Strong convergence using relative energy inequality

Let (q,v) be a strong solution of the above system with initial data (q0,v0)
satisfying (4.3.34) with k ≥ 4. Our goal is to show that (ϱ(1),u) ≡ (q,v). Here we
choose appropriate test functions and will show that lim

ϵ→0
Eϵ(t) = 0.

We consider the test functions for the relative energy inequality (4.3.15) as

ũ = v = (vh, 0), ϱ̃ = ϱ̂+ ϵq.

Thus, we rewrite the relative energy inequality in the following form:

Eϵ(τ)+
ˆ
Ω

dReϵ(τ)

≤ Eϵ(0)−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵv) · (∂tv + (v · ∇x)v) dx dt

−
ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵv)⊗ (mϵ − ϱϵv)

ϱϵ

)︃
: ∇xv dx dt

− 1

ϵ2

ˆ τ

0

ˆ
Ω
(p(ϱϵ)− p(ϱ̃))divxv dx dt − 1

ϵ

ˆ τ

0

ˆ
Ω
b× v · (mϵ − ϱ̂v) dx dt

+
1

ϵ2

ˆ τ

0

ˆ
Ω
(ϱ̂+ ϵq − ϱϵ)P

′′(ϱ̂+ ϵq) ∂t(ϱ̂+ ϵq) dx dt

+
1

ϵ2

ˆ τ

0

ˆ
Ω
((ϱ̂+ ϵq)v −mϵ) · ∇x(P

′(ϱ̂+ ϵq)− P ′(ϱ̂)) dx dt

−
ˆ τ

0

ˆ
Ω
∇xv : dRmϵ(t, ·) dt .
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Using the fact divxh
v = 0 and (4.3.32), we obtain

Eϵ(τ)+
ˆ
Ω

dReϵ(τ)

≤ Eϵ(0)−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵv) · (∂tv + (v · ∇x)v) dx dt

+
1

ϵ

ˆ τ

0

ˆ
Ω
(ϱ̂+ ϵq − ϱϵ)P

′′(ϱ̂+ ϵq) ∂tq dx dt

−
ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵv)⊗ (mϵ − ϱϵv)

ϱϵ

)︃
: ∇xv dx dt

− 1

ϵ2

ˆ τ

0

ˆ
Ω
(ϱ̂v −mϵ) · ∇x(P

′(ϱ̂+ ϵq)− P ′(ϱ̂)− ϵP ′′(ϱ̂)q) dx dt

+
1

ϵ

ˆ τ

0

ˆ
Ω
qv · ∇x(P

′(ϱ̂+ ϵq)− P ′(ϱ̂)) dx dt

−
ˆ τ

0

ˆ
Ω
∇xv : dRmϵ(t, ·) dt = Σ7

i=1Li.

Now we want to estimate each term Li for i = 1, · · · , 7. First we notice that,
consideration of the well prepared data(4.3.34) yields

Eϵ(ϱ0,ϵ,m0,ϵ | ϱ̄+ ϵq0,v0) ≤
⃦⃦⃦⃦
m0,ϵ

ϱ0,ϵ
− v0

⃦⃦⃦⃦2
L2(Ω)

+
⃦⃦⃦
ϱ
(1)
0,ϵ − q0

⃦⃦⃦2
L2(Ω)

.

This implies

|L1| ≤ c(ϵ). (4.3.36)

Here c(ϵ) is a generic function such that c(ϵ) → 0 as ϵ→ 0.
First, we rewrite two terms of L2 and L3 as

mϵ − ϱϵv = (mϵ − ϱ̄u) + ((ϱ̄− ϱϵ)u) + (ϱϵ(u− v))

and
P ′′(ϱ̄+ ϵq) = P ′′(ϱ̄+ ϵq)− P ′′(ϱ̄) + P ′′(ϱ̄).

Using the weak convergence of the variables, we obtain

|L2 + L3| ≤c(ϵ) +
ˆ τ

0

ˆ
Ω
(ϱ̂v −m) · (∂tv + (v · ∇x)v) dx dt

+

ˆ τ

0

ˆ
Ω
(q − ϱ(1)) ∂t(P

′′(ϱ̂)q) dx dt .

We claim thatˆ τ

0

ˆ
Ω
(ϱ̂v −m) · (∂tv + (v · ∇x)v) dx dt +

ˆ τ

0

ˆ
Ω
(q − ϱ(1)) ∂t(P

′′(ϱ̂)q) dx dt = 0.

(4.3.37)
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To prove the above claim, first we observe that

v · ∂t(ϱ̂v) + q∂t(P
′(ϱ̂)q) =

1

2
∂t
(︁
ϱ̂|v|2 + P ′(ϱ̂)q2

)︁
.

Since, (q,v) solves (4.3.21), multiplying (4.3.33) by q we get
ˆ τ

0

ˆ
Ω
v · ∂t(ϱ̂v) + q∂t(P

′(ϱ̂)q) dx dt = 0.

Now we use (4.3.35) and (4.3.32) to deduce
ˆ τ

0

ˆ
Ω

(︂
m · ∂tv + ϱ(1)∂t

(︁
P ′′(ϱ̂)q

)︁)︂
dx dt =

ˆ τ

0

ˆ
Ω
b×m ·

(︁
P ′′(ϱ̂)v

)︁
dx dt

and
ˆ τ

0

ˆ
Ω
b×m ·

(︁
P ′′(ϱ̂)v

)︁
dx dt +

ˆ τ

0

ˆ
Ω
m · (v · ∇x)v dx dt

=

ˆ τ

0
m · ∇xh

(︃
1

2
|v|2

)︃
dx dt = 0.

Hence we achieve (4.3.37) and it implies

|L2 + L3| ≤ c(ϵ). (4.3.38)

From the definition of relative energy, we obtain

|L4| ≤
ˆ τ

0
Eϵ(t) dt . (4.3.39)

Since 0 < ϱ̂ ∈ C3([0, 1]), we verify that

1

ϵ
∇x

(︁
P ′(ϱ̂+ ϵq)− P ′(ϱ̂)

)︁
→ ∇x

(︁
P ′′(ϱ̂)q

)︁
in L∞(0, T ;L∞ ∩ L2(Ω))

and

1

ϵ2
∇x(P

′(ϱ̂+ ϵq)− P ′(ϱ̂)− ϵP ′′(ϱ̂)q) → ∇x

(︃
1

2
P ′′′(ϱ̂)

)︃
in L∞(0, T ;L∞ ∩ L2(Ω)).

The above relation implies

lim
ϵ→0

L5 =

ˆ τ

0

ˆ
Ω
(ϱ̂v −m) · ∇x

(︃
1

2
P ′′′(ϱ̂)

)︃
dx dt = 0 (4.3.40)

and

lim
ϵ→0

L6 =

ˆ τ

0

ˆ
Ω
qv → ∇x

(︁
P ′′(ϱ̂)q

)︁
dx dt = 0 (4.3.41)
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We obtain

|L7| ≤ C

ˆ τ

0

ˆ
Ω
I : dCmϵ(t, ·) dt . (4.3.42)

Combining (4.3.36)-(4.3.42), we have that

Eϵ(τ)+
ˆ
Ω

dCeϵ ≤ c(ϵ) +

ˆ τ

0
Eϵ(t) dt + C

ˆ τ

0

ˆ
Ω

d Tr(Cmϵ) dt , (4.3.43)

for a.e. τ ∈ (0, T ). Finally, using the compatibility of turbulent defect measures and
Grönwall’s lemma (1.1.7), we infer

Eϵ(τ)+
ˆ
Ω

dCeϵ ≤ c(ϵ) ≤ c(ϵ)C(T ), (4.3.44)

where c(ϵ) → 0 as ϵ→ 0. Therefore, we obtain our desired result,

lim
ϵ→0

Eϵ(τ) = 0. (4.3.45)

Now using coerceivity of the relative energy functional (4.3.14), we say

ϱ(1) = q and v = u.

Moreover, we use coercievity together with (4.3.45) to conclude

ϱϵ − ϱ̄

ϵ
→ q strongly in L1

loc((0, T )× Ω),

mϵ√
ϱϵ

→
√
ϱ̄v strongly in L1

loc((0, T )× Ω;R3).

This completes the proof of the Theorem 4.3.14.

4.3.5 Case III: Low Mach and Rossby number limit in the presence
of low stratification

In this case we consider Λ = 1, m2 > n ≥ 1.

Properties of a static solution

First, we notice that a static solution (ϱ̃ϵ,0) satisfies

∇xp(ϱ̃ϵ) = ϵ2(m−n)ϱ̃ϵ∇xG.

In terms of the pressure potential, we rewrite the above equation as

∇xP
′(ϱ̃ϵ) = ϵ2(m−n)∇xG.

So, we obtain

P ′(ϱ̃ϵ) = −ϵ2(m−n)x3 + C,
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where C is a constant. As a consequence of G = (0, 0,−x3), we have ϱ̃ϵ(x) = ϱ̃ϵ(x3).
Without loss of generality, we consider C = 1. We know that P ′(s) ≈ sγ−1 for s ≥ 0.
To reduce complication, here we assume P ′(s) = sγ−1, for s ≥ 0. We also have

P ′′(ϱ̃ϵ)∇xϱ̃ϵ = ϵ2(m−n).

For 0 < ϵ < 1
2 , we observe that a static solution ϱ̃ϵ satisfies the following property:

0 < ϱϵ̃ ∈ C∞([0, 1]),

sup
x3∈[0,1]

|ϱ̃ϵ(x3)− 1| ≤ ϵ
2(m−n)

γ−1 , sup
x3∈[0,1]

|∇xϱ̃ϵ(x3)| ≤ ϵ2(m−n).
(4.3.46)

Remark 4.3.15. Since, we are interested for the case ϵ→ 0, thus consideration of
0 < ϵ < 1

2 is justified. Furthermore, if γ > 2 and ϵ < 1 we have

sup
x3∈[0,1]

|ϱ̃ϵ(x3)− 1| ≤ ϵ2(m−n)

As m > n, asymptotically, the static solution approaches the constant state ϱ̃ = 1 as
ϵ→ 0.

Existence results for the target system

We recall the expected target system, the 2D Euler equation, i.e.

divxh
vh = 0, in R2,

∂tvh + (vh · ∇xh
)vh +∇xh

Π = 0, in R2.
(4.3.47)

The result stated below by Kato and Lai [89] ensures the existence and uniqueness
for the incompressible Euler system in R2 for sufficiently smooth initial data.

Proposition 4.3.16. Let

v0 ∈W k,2(R2;R2), k ≥ 3, divxh
v0 = 0

be given. Then the system (4.3.47) supplemented with initial data vh(0) = v0 admits
regular solution (vh,Π), unique in the class

vh ∈ C([0, T ];W k,2(R2;R2)), ∂tvh ∈ C([0, T ];W k−1,2(R2;R2)),

Π ∈ C([0, T ];W k,2(R2)),
(4.3.48)

with divxh
vh = 0.

Alternatively, we write the system (4.3.47) as

∂t Curlxh
vh + vh · ∇xh

Curlxvh = 0, in R2.
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Well-prepared data

We say that the set of initial data {(ϱ0,ϵ,m0,ϵ)}{ϵ>0} is well-prepared if

ϱϵ(0, ·) = ϱ0,ϵ = ϱϵ̃ + ϵmϱ
(1)
0,ϵ with {ϱ(1)0,ϵ}ϵ>0 is bounded in L2 ∩ L∞(Ω)

and ϱ(1)0,ϵ → 0 in L2(Ω),

u0,ϵ =
m0,ϵ

ϱ0,ϵ
→ v0 =

(︁
v
(1)
0 ,v

(2)
0 , 0

)︁
in L2(Ω;R3) with divxh

v0 = 0.

(4.3.49)

Main Theorem

We provide the main result for this case.

Theorem 4.3.17. Let (ϱϵ,mϵ) be a dissipative solution of the system (4.3.2)-(4.3.10)
with Λ = 1 and m

2 > n ≥ 1. Moreover, we assume that the initial data is well-prepared,
i.e. it satisfies (4.3.34) and v0 ∈W k,2(R2) with k ≥ 3. Then,

ess sup
t∈(0,T )

∥ϱϵ − ϱ̃ϵ∥(L2+Lγ′ )(Ω) ≤ ϵmc

mϵ√
ϱϵ

→ v

{︄
weak-(*)ly inL∞(0, T ;L2(Ω;R3)),

strongly in L1
loc((0, T )× Ω;R3),

where γ′ = min{2, γ} and v = (vh, 0) is the unique solution of the incompressible
Euler system with initial data v0 in R2.

In the remaining subsection, we give the proof.

Uniform bound and weak convergence

First, we note that ũ = 0 and ϱ̃ = ϱ̃ϵ satisfy (4.3.12). Hence, we use them as test
functions in the relative energy inequality(4.3.15). One the other hand, the choice of
(4.3.49) ensures that the initial energyE0,ϵ is uniformly bounded. Thus we have the
following bounds

ess sup
t∈(0,T )

⃦⃦⃦⃦
mϵ√
ϱϵ

⃦⃦⃦⃦
L2(Ω;R3)

≤ C,

ess sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
ess

⃦⃦⃦⃦
L2(Ω)

≤ C,

ess sup
t∈(0,T )

∥[ϱϵ]res∥γLγ(Ω) + ess sup
t∈(0,T )

∥[1]res∥γLγ(Ω) ≤ ϵ2mC,

(4.3.50)

where C is independent of ϵ. We consider γ′ = min{2, γ}. The estimate (4.3.50) and
the fact γ′ ≤ 2 imply

ess sup
t∈(0,T )

∥ϱϵ − ϱ̃ϵ∥(L2+Lγ′ )(Ω) ≤ (ϵm + ϵ
2m
γ′ )C ≤ ϵmC. (4.3.51)
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The equation (4.3.51), together with (4.3.46) yield

ϱϵ → 1 in L∞(0, T ;Lq
loc(Ω)) for any 1 ≤ q < γ′. (4.3.52)

Also, from the uniform bound (4.3.50) and (4.3.52) imply

mϵ√
ϱϵ

→ u weak-(*)ly in L∞(0, T ;L2(Ω;R3)),

and

mϵ → m weak-(*)ly in L∞(0, T ;L2 + Lγ̀(Ω;R3)),

passing to suitable subsequence, where γ̀ = min{4
3 ,

2γ
γ+1}. The strong convergence of

the density (4.3.52) helps to obtain m = u in the weak sense.
Finally, we may let ϵ→ 0 in the continuity equation to deduce that,

ˆ τ

0

ˆ
Ω
u · ∇xφ dx dt = 0, ∀φ ∈ C∞

c (Ω).

Strong convergence

Here we choose proper test functions and prove that lim
ϵ→0

Eϵ(t) = 0.

Taking motivation from (4.3.22), we consider another equation that describes a
non-oscillatory part described by a variable qϵ, that satisfies

∂t(∆xh
qϵ − (ϵm−1)2qϵ) +

1

ϵm−1
∇⊥

xh
qϵ · ∇xh

(∆xh
qϵ − (ϵm−1)2qϵ) = 0, (4.3.53)

in R2 supplemented with initial data qϵ(0, ·) = q0,ϵ such that

−∆xh
q0,ϵ + (ϵ2(m−1))q0,ϵ = ϵm−1CurlPh(v0) (4.3.54)

Let us introduce another variable vϵ such that vϵ and qϵ are interrelated by

∇xqϵ + ϵm−1b× vϵ = 0. (4.3.55)

Thus initial data for vϵ satisfy

−∇xh
q0,ϵ = ϵm−1b× v0,ϵ.

From the hypothesis on initial data in the Theorem 4.3.17, we have

v0 ∈W k,2(Rd), with k ≥ 3.

We observe that ∥q0,ϵ∥L2(R2) ≤ C and ∥∇xq0,ϵ∥L2(R2) ≤ ϵm−1C. Therefore, we can
consider {q0,ϵ}ϵ>0 such that q0,ϵ → 0 in L2(R2) as ϵ→ 0. Furthermore, we also note
that v0,ϵ → Ph(v0) as ϵ→ 0.
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In order to have a simplified notation, we consider ω = ϵm−1 and q̃ϵ =
qϵ
ω . We

rewrite (4.3.53) as

∂t(∆xh
q̃ϵ − ω2q̃ϵ) +∇⊥

xh
q̃ϵ · ∇xh

(∆xh
q̃ϵ − ω2qϵ) = 0, (4.3.56)

We notice that the equation (4.3.56) has a similar structure to (4.3.19). Thus we
apply the Proposition 4.3.10 to ensure the existence and uniqueness of solution q̃ϵ.

In order to obtain a uniform estimate independent of ϵ we multiply the (4.3.56)
by qϵ and performing integration by parts, we get

ˆ
R2

(︁
|∇xh

q̃ϵ|2 + ω2|q̃ϵ|2
)︁
(t, ·) dx =

ˆ
R2

(︁
|∇xh

q̃0,ϵ|2 + ω2|q̃0,ϵ|2
)︁

dx, (4.3.57)

for a.e. t ∈ (0, T ). As the initial data for q̃ϵ depends only on v0, we deduce that

{−∆xh
q̃ϵ + ω2q̃ϵ}ϵ>0 is bounded in C1([0, T ];W k−2,2(R2)) ∩ C([0, T ];W k−1,2(R2)).

Now, from (4.3.55), we also get

{vϵ}ϵ>0 is bounded in C([0, T ];W k,2(R2)) ∩ C1([0, T ];W k−1,2(R2)).

It is easy to verify that ∂tq̃ϵ satisfies the equation

∂tqϵ = (∆xh
− ω2)−1(vϵCurlxh

vϵ)

Consequently, it yields

{∂tq̃ϵ}ϵ>0 is bounded in C([0, T ];W k−1,2(R2)),

and
{∂tvϵ}ϵ>0 is bounded in C([0, T ];W k,2(R2;R2))

This bounds are independent of ϵ.
Therefore, we obtain the following weak convergence:

vϵ → v weakly in C([0, T ];W k,2(R2)),

and
∂tvϵ → ∂tv weakly in C([0, T ];W k−1,2(R2)).

Since k ≥ 4, applying Sobolev embedding theorem, we obtain

vϵ → v in Lq(0, T ;Lq
loc(R

2)). (4.3.58)

We rewrite (4.3.56) as

∂t(Curlxh
vϵ)− ω2∂tq̃ϵ + vϵ∇x(Curlxh

vϵ) = 0. (4.3.59)

From (4.3.58), we infer that

∂t(Curlxh
v) + v · ∇x(Curlxh

v) = 0.
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This is similar to (4.3.47). We also have

Π ∈ C([0, T ];W k,2(R2)).

Clearly we have the following estimates

∥qϵ∥L∞(0,T ;L2(Ω)) ≤ C

∥∂tqϵ∥L∞(0,T ;Lq(Ω)) + ∥∇xh
qϵ∥L∞(0,T ;L2(Ω)) ≤ ϵm−1C,

(4.3.60)

for q ≥ 2. Also vϵ ∈ C([0, T ];W k−1,2) with k ≥ 4 implies

∥qϵ∥L∞((0,T )×R2) ≤ C. (4.3.61)

Now, we consider a suitable test function for the relative energy inequality(4.3.15) as

ũ = Vϵ = (vϵ, 0), ϱ̃ = ϱ̃ϵ + ϵmqϵ, (4.3.62)

where (qϵ,v3) satisfies (4.3.53) ans (4.3.55) and ϱ̃ϵ is a static solution satisfies (4.3.46).
We use the relation between qϵ and vϵ and obtain

Eϵ(τ) +
ˆ
Ω
d Reϵ(τ, ·)

≤ Eϵ(0)−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵVϵ) · (∂tVϵ + (Vϵ · ∇x)Vϵ) dx dt

−
ˆ τ

0

ˆ
Ω

(︃
(mϵ − ϱϵVϵ)⊗ (mϵ − ϱϵVϵ)

ϱϵ

)︃
: ∇xVϵ dx dt

+
1

ϵ2m

ˆ τ

0

ˆ
Ω
(ϱ̃− ϱϵ)∂tP

′(ϱ̃) dx dt +
1

ϵm

ˆ τ

0

ˆ
Ω
mϵ · ∇xqϵ(P

′′(ϱ̃)− P ′′(1)) dxdt

+
1

ϵ2m

ˆ τ

0

ˆ
Ω
mϵ · (P ′′(ϱ̃)− P ′′(ϱϵ̃))∇xϱ̃ϵ dx dt

− 1

ϵ2n

ˆ τ

0

ˆ
Ω
(ϱϵ − ϱ̃)∇xG ·Vϵ dx dt −

ˆ τ

0

ˆ
Ω
∇xũ : dRmϵ(t, ·) dt = Σ8

i=1Li.

(4.3.63)

Here we compute each term Li, i = 1(1)8 of (4.3.63). For term L1 we have

Eϵ(ϱ0,ϵ, (ϱu)0,ϵ | ϱ̃ϵ + ϵmq0,ϵ,v0) ≤
⃦⃦⃦⃦
(ϱu)0,ϵ
ϱ0,ϵ

− v0

⃦⃦⃦⃦2
L2(Ω)

+
⃦⃦⃦
ϱ
(1)
0,ϵ − q0,ϵ

⃦⃦⃦2
L2(Ω)

.

Consideration of well prepared data yields,

|L1| ≤ ξ(ϵ). (4.3.64)
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From now on we use this generic function ξ(·), such that lim
ϵ→0

ξ(ϵ) = 0.
We rewrite L2 as

L2 =−
ˆ τ

0

ˆ
Ω
(mϵ − ϱϵVϵ) · (∂tVϵ + (Vϵ · ∇x)Vϵ) dx dt

=−
ˆ τ

0

ˆ
Ω
mϵ · (∂tVϵ + (Vϵ · ∇x)Vϵ) dx dt

+

ˆ τ

0

ˆ
Ω
(ϱϵ − 1)Vϵ · ∂tVϵ dx dt +

ˆ τ

0

ˆ
Ω
∂tVϵ ·Vϵ dx dt

=L2,1 + L2,2 + L2,3.

Using (4.3.60) and (4.3.46) we obtain

|L2,2| ≤ ξ(ϵ). (4.3.65)

We claim

L2,1 → −
ˆ τ

0

ˆ
Ω
u · ∇xh

Π dx dt = 0,

as ϵ→ 0. Let, K be a compact subset of R2. We use (4.3.58) to deduce
ˆ τ

0

ˆ
K×(0,1)

mϵ·(∂tVϵ+(Vϵ·∇x)Vϵ) dx dt →
ˆ τ

0

ˆ
K×(0,1)

u·(∂tv+(v·∇x)v) dx dt ,

where v = (vh, 0). Using the fact that Π ∈ C([0, T ];W k,2(R2)) with k ≥ 3, we have

|L2,1| ≤ ξ(ϵ).

We want to estimate the term L4. First we rewrite it as,

L4 =
1

ϵm

ˆ τ

0

ˆ
Ω
(ϱ̃− ϱϵ)P

′′(ϱ̃)∂tqϵ dx dt

=

ˆ τ

0

ˆ
Ω
(P ′′(ϱ̃)− P ′′(ϱ̃ϵ))

(︃
qϵ −

ϱϵ − ϱ̃ϵ
ϵm

)︃
∂tqϵ dx dt

+

ˆ τ

0

ˆ
Ω
(P ′′(ϱ̃ϵ)− P ′′(1))

(︃
qϵ −

ϱϵ − ϱ̃ϵ
ϵm

)︃
∂tqϵ dx dt

+

ˆ τ

0

ˆ
Ω
qϵ∂tqϵ dx dt −

ˆ τ

0

ˆ
Ω

ϱϵ − ϱ̃ϵ
ϵm

∂tqϵ dx dt

=L4,1 + L4,2 + L4,3 + L4,4.

First we have for each x ∈ Ω,

(P ′′(ϱ̃)− P ′′(ϱ̃ϵ)) ≤ Cϵm|qϵ(x)|.
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We observe that

|L4,1| ≤ ϵm sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
ess

− qϵ

⃦⃦⃦⃦
L2(Ω)

∥∂tqϵ∥L∞([0,T ]×Rd)∥qϵ∥L∞(0,T ;L2(Ω))

+ ϵm sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
res

⃦⃦⃦⃦
Lγ′ (Ω)

∥qϵ∥L∞(0,T ;Lγ′∗ (Ω))∥∂tqϵ∥L∞([0,T ]×Rd),

where 1
γ′ +

1
γ′∗ = 1.

Similarly, using (4.3.46) we have

|L4,2| ≤ϵ
2(m−n)

γ−1 sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
ess

− qϵ

⃦⃦⃦⃦
L2(Ω)

∥∂tqϵ∥L∞(0,T ;L2(Ω))

+ ϵ
2(m−n)

γ−1 sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
res

⃦⃦⃦⃦
Lγ′ (Ω)

∥∂qϵ∥L∞(0,T ;Lγ′∗ (Ω)),

for 1 < γ ≤ 2, and

|L4,2| ≤ϵ2(m−n) sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
ess

− qϵ

⃦⃦⃦⃦
L2(Ω)

∥∂tqϵ∥L∞(0,T ;L2(Ω))

+ ϵ2(m−n) sup
t∈(0,T )

⃦⃦⃦⃦[︃
ϱϵ − ϱ̄

ϵm

]︃
res

⃦⃦⃦⃦
Lγ′ (Ω)

∥∂qϵ∥L∞(0,T ;Lγ′∗ (Ω)),

for γ > 2.
Analogously, we deduce

|L4,4| ≤
⃦⃦⃦⃦
ϱϵ − ϱ̃ϵ
ϵm

⃦⃦⃦⃦
L∞(0,T ;L2+Lγ′ (Ω))

∥∂tqϵ∥L∞(0,T ;L2∩Lγ′∗ (Ω))
,

where 1
γ′ +

1
γ′∗ = 1. We use estimate (4.3.60) to conclude

|L4,1|+ |L4,2|+ |L4,4| ≤ ξ(ϵ). (4.3.66)

The equation (4.3.57) implies

L2,3 + L4,4 =

ˆ τ

0

ˆ
Ω
(∂tvϵ · vϵ + qϵ∂tqϵ) dx dt = 0 (4.3.67)

Therefore, combining all estimates we get

|L2 + L4| ≤ ξ(ϵ). (4.3.68)

It is easy to verify that

|L3| ≤ ∥∇xh
vh∥L∞(0,τ ;L∞(Ω))

ˆ τ

0
Eϵ(t) dt . (4.3.69)
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For the term L5, the first observation is for x ∈ Ω we have

P ′′(ϱ̃(x))− P ′′(1) = (ϱ̃− 1)P ′′′(η(x)),

and, η(x) ∈ (min{1, ϱ̃},max{1, ϱ̃}). From the choice of ϱ̃ = ϱϵ̃ + ϵmqϵ we have

sup
x∈Ω

|P ′′′(η(x))| ≤ C,

where C is dependent only on v0.
We rewrite L5 as

L5 =
1

ϵm

ˆ τ

0

ˆ
Ω
(ϱ̃− 1)P ′′′(η(x))mϵ · ∇xqϵ dx dt

=
1

ϵm

ˆ τ

0

ˆ
Ω
mϵ · ∇xqϵ(ϱ̃ϵ − 1)P ′′′(η(x)) dx dt

+

ˆ τ

0

ˆ
Ω
qϵmϵ · ∇xqϵP

′′′(η(x)) dx dt ,

By using (4.3.46) we observe,

|L5| ≤ ϵm−2n∥mϵ∥L∞(0,T ;L2+L4/3(Ω;R3))∥∇xqϵ∥L∞(0,T ;L2∩L4(Ω;R3))

+ ∥mϵ∥L∞(0,T ;L2+L4/3(Ω;R3))∥qϵ∇xqϵ∥L∞(0,T ;L2∩L4(Ω;R3)),
(4.3.70)

for γ > 2, and

|L5| ≤ ϵ
2(m−n)

γ−1 ∥mϵ∥L∞(0,T ;L2+L2γ/γ + 1(Ω;R3))∥∇xqϵ∥L∞(0,T ;L2∩L(2γ/γ + 1)′ (Ω;R3))

+ ∥mϵ∥L∞(0,T ;L2+L2γ/γ + 1(Ω;R3))∥qϵ∇xqϵ∥L∞(0,T ;L2∩L(2γ/γ + 1)′ (Ω;R3)),

(4.3.71)

for 1 < γ ≤ 2, where 2γ
γ+1

′
= 2γ

γ−1 .
In particular, m

2 > n ≥ 1, (4.3.50) and (4.3.60) imply

|L5| ≤ϵ2(m−n)−1C, for γ > 2,

and

|L5| ≤ ϵ
(m−2n)+(m−γ+1)

γ−1 C, for 1 < γ < 2,

where C is a constant depending on v0 in both cases. Finally we obtain

L5 ≤ ξ(ϵ). (4.3.72)

Similarly, we rewrite the term L6 as

L6 =
1

ϵ2m

ˆ τ

0

ˆ
Ω
mϵ · (ϱ̃− ϱ̃ϵ)P

′′′(ζ(x))∇xϱ̃ϵ dx dt

=
1

ϵm

ˆ τ

0

ˆ
Ω
mϵ · qϵP ′′′(ζ(x))∇xϱ̃ϵ dx dt ,
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where for each x, ζ(x) ∈ (min{ϱϵ̃, ϱ̃},max{ϱϵ̃, ϱ̃}). Using arguments similar to L5, we
have

|L6| ≤ ϵm−2n∥mϵ∥L∞(0,T ;L2+L2γ/γ + 1(Ω;R3))∥qϵ∥L∞(0,T ;L2∩L(2γ/γ + 1)′ (Ω))

≤ ξ(ϵ).
(4.3.73)

Now, the choice of G implies

L7 = 0. (4.3.74)

The compatibility of the defect measures yield

|L8| ≤ C

ˆ τ

0

ˆ
Ω

dReϵ dt . (4.3.75)

Therefore, combining all estimates (4.3.64)-(4.3.75), we get

Eϵ(τ) +
ˆ
Ω
d Reϵ(τ, ·) ≤ ξ(ϵ) + c

ˆ τ

0
Eϵ(t) dt + C

ˆ τ

0

ˆ
Ω

dReϵ dt . (4.3.76)

We use Grönwall’s lemma (1.1.7) to infer

Eϵ(τ) +
ˆ
Ω
d Reϵ(τ, ·) ≤ ξ(ϵ)C(T ), (4.3.77)

where ξ(ϵ) → 0 as ϵ → 0. The coercivity of the relative energy functional helps to
deduce

lim sup
ϵ→0

ˆ
K

⃓⃓⃓⃓
mϵ√
ϱϵ

− v

⃓⃓⃓⃓2
dx ≤ C(T ) lim sup

ϵ→0
ξ(ϵ),

where, K ⊂ Ω is a compact set. Thus, we conclude that u = vh. Also, we obtain

mϵ√
ϱϵ

→ v strongly in L1
loc((0, T )× Ω;R3).

It ends proof of the theorem 4.3.17.

4.4 Concluding remark

In this chapter, we consider only the well-prepared data and expect that the results
are valid for the ill-prepared data as well. Then we can consider the well-prepared
case as a special case of the ill-prepared case. The analysis is a bit difficult, since we
need to consider appropriate Rossby-acoustic wave equations and suitable dispersive
estimates in this context. Identifying the domain R2 × (0, 1) with R2 × T1 satisfying
(2.6.29) will help us to obtain the estimates.

We also note that in the Section 4.2, we first obtain a dissipative solution of the
target system and then use the properties of the strong solution to get the desired
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result. We expect that the same procedure can work for the problems in the Section
4.3, although it is not yet verified.

It is worth noting that for a rotating fluid we consider the gravitational potential
as (4.3.10), and ignore the effect of the centrifugal force. There is a possibility that
we may get similar results if we consider a more appropriate gravitational potential.
In Subsection 4.3.2 we pointed out the importance of the choice of G to obtain the
target system. Thus, for a different G, we may not obtain the exact system, but some
similar systems.

Here we focus mainly on the inviscid fluid. For its viscous counterpart, there are
some results with additional consideration of the high Reynolds number limit. For
rotating fluids in the domain R2× (0, 1) there are some results, see Feireisl, Gallagher
and Novotný [55], Feireisl et al. [54], Feireisl and Novotný [75, 74], Feireisl, Lu and
Novotný [77], Li [94], to name a few. These results are based on weak solutions of
the compressible system Navier–Stokes with monotone pressure law. Therefore, there
is some restriction on the adiabatic exponent γ as γ > 3

2 . We have the definition
dissipative solution for Navier-Stokes in the Definition 2.6.9 for the physically relevant
adiabatic range γ ≥ 1. Thus, this limitation can be overcome and most of the above
results can be reproduced.

There are several results on the stratification of rotating fluids for the complete
Euler system by considering measure-valued solutions, see Březina and Mácha [25].
Also, a singular limit problem for the complete compressible Euler system in the low
Mach and strong stratification regime is considered by Bruell and Feireisl [23]. For
singular limit problems with the Navier–Stokes–Fourier system, we recommend the
monograph by Feireisl and Novotný [72].



Chapter 5

Convergence of a consistent
approximation to the complete
Euler system

5.1 Introduction

In this chapter our goal is to study the weak convergence of suitable approximation
schemes of the complete Euler system. In the context of weak solutions, we have
already mentioned several ill-posedness results for both barotropic Euler system and
complete Euler system, see Chiodaroli and Kreml [36]. Now it is worthwhile to study
in particular the solutions of the Euler system coming from the vanishing viscosity
limit of the Navier–Stokes system. In [58] Feireisl and Hofmanová established that in
the whole space (Rd) the vanishing viscosity limit of the barotropic Navier–Stokes
system either converges strongly or its weak limit is not a weak solution for the
corresponding barotropic Euler system. In this chapter, we will investigate whether
the similar phenomenon holds for the complete Euler system.

There have been many advances in the study of solutions of the barotropic Euler
system coming from the vanishing viscosity limit of the compressible barotropic
Navier–Stokes system. If compressible barotropic Euler system admits a smooth
solution, the unconditional convergence of the vanishing viscosity limit of the Navier-
Stokes system was established by Sueur[114]. Recently, Basarić [11] identified the
vanishing viscosity limit of the Navier-Stokes system with a measure valued solution
of the barotropic Euler system on an unbounded domain. However in a bounded
domain, the choice of a boundary condition for the Navier-Stokes system plays a
crucial role in avoiding the boundary layer difficulties. Feireisl in [51] showed that the
vanishing viscosity limit of the Navier–Stokes–Fourier system in the class of general
weak solutions yields the complete Euler system, provided that the latter admits a
smooth solution in the bounded domain. Wang and Zhu [120] establish a similar
result in bounded domain with complete slip boundary condition.

In this chapter we deal not only with the vanishing viscosity approximation
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of the complete Euler system but also with general approximations. Approximate
solutions can be viewed as a kind of numerical approximation to the complete Euler
system. Here we consider a more general class of approximate solutions, namely
consistent approximate solutions, following DiPerna and Majda [44]. In the context
of the complete Euler system in Rd, the approximate solution arising from the
vanishing viscosity and vanishing heat conduction approximation from the Navier–
Stokes–Fourier system is a good candidate for an approximation scheme. One can
also consider approximate solutions that come from Brenner’s two velocity model.
Both schemes have certain advantages and disadvantages. The existence of a weak
solution for the Navier-Stokes-Fourier system with Boyle-Mariotte pressure law is still
open. Therefore, one has to consider an additional radiation pressure as described in
Feireisl and Novotny[72]. A discussion of these models is presented in Březina and
Feireisl [26].

The consistent approximations typically generate the so–called measure–valued
solutions. For the complete Euler system existence of a measure valued solution was
proved by Brezina and Feireisl using Young measures, see[20], [26]. Later in [16],
Breit, Feireisl and Hofmanová define dissipative solutions for the same system, by
suitably modifying the measure-valued solutions.

Our main goal is to prove that in Rd, if approximate solutions converge weakly to
a weak solution of the complete Euler system, the convergence of the state variables
will be strong, at least pointwise almost everywhere. Approximate solutions from the
Brenner’s model satisfy the minimal principle for entropy i.e., if the initial entropy
sn(0, ·) ≥ s0 in Rd for a constant s0, then sn(t, x) ≥ s0 for a.e. (t, x) ∈ (0, T )× Rd.
Meanwhile this principle is not available for approximate solutions from the Navier–
Stokes–Fourier system. Here we consider both types of approximate solutions. As
we will see, the absence of the entropy minimum principle will significantly weaken
the available uniform bounds for the approximate sequence. Nevertheless, we are
able to establish strong a.e. convergence. In the context of the approximate solutions
satisfying a suitable minimal principle for entropy a local strong convergence can be
established.

Another important feature of our result is that we only assume that the initial
energy is bounded. In fact, Feireisl and Hofmanová [58] obtained a similar result by
considering a strong convergence of the initial energy.

We recall the complete Euler system in the physical space Rd with d = 2, 3,
describing the time evolution of the density ϱ = ϱ(t, x), the momentum m = m(t, x)
and the energy e = e(t, x) of a compressible inviscid fluid in the space time cylinder
QT = (0, T )× Rd:

∂tϱ+ divxm = 0,

∂tm+ divx
(︃
m⊗m

ϱ

)︃
+∇xp = 0,

∂te + divx
(︃
(e + p)

m

ϱ

)︃
= 0.
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As we have already mentioned, by considering the entropy s or the total entropy S,
the energy balance can be replaced by the entropy balance

∂t(ϱs) + divx(sm) = 0,

or by the total entropy balance

∂tS + divx
(︃
S
m

ϱ

)︃
= 0.

The other hypotheses are specified in the following way.

• Consitutive relation:The equation of state is given by Boyle-Mariotte law, i.e.,

e = cvϑ, cv =
1

γ − 1
, where γ > 1 is the adiabatic constant, (5.1.1)

with internal energy ϱe. The total entropy helps us to rewrite the pressure p and e
in terms of ϱ and S as

p = p(ϱ, S) = ϱγ exp

(︃
S

cvϱ

)︃
, e = e(ϱ, S) =

1

γ − 1
ϱγ−1 exp

(︃
S

cvϱ

)︃
.

• Initial data: The initial state of the fluid is given through the conditions

ϱ(0, ·) = ϱ0, m(0, ·) = m0, S(0, ·) = S0. (5.1.2)

• Far field condition: We introduce the far field condition as,

ϱ→ ϱ∞, m → m∞, S → S∞ as |x| → ∞, (5.1.3)

with ϱ∞ > 0, m∞ ∈ Rd and S∞ ∈ R.

The definition of an admissible weak solution of this system has been presented in
the Section 2.4.

The present setting is more in the spirit of more general measure–valued solutions
introduced in Březina and Feireisl [20]. As a matter of fact, considering weaker
concept of generalized solutions makes our results stronger as the standard weak
solutions are covered.

5.2 Approximate solutions of the complete Euler system

As we mentioned at the beginning of the chapter, our main results are related to the
approximate problems of the complete Euler system. We assume that (ϱ∞,m∞, S∞) ∈
R× Rd × R such that ϱ∞ > 0. The relative energy with respect to (ϱ∞,m∞, S∞) is
denoted by e(·|ϱ∞,m∞, S∞). It is defined as

e(ϱ,m, S | ϱ∞,m∞, S∞)

= e(ϱ,m, S)− ∂e(ϱ∞,m∞, S∞) · [(ϱ,m, S)− (ϱ∞,m∞, S∞)]

− e(ϱ∞,m∞, S∞),
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where e is the total energy with the following energy extension in Rd+2 :

(ϱ,m, S) ↦→ e(ϱ,m, S) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
|m|2
ϱ + cvϱ

γ exp

(︃
S
cvϱ

)︃
, if ϱ > 0,

0, if ϱ = m = 0, S ≤ 0,

∞, otherwise

(5.2.1)

5.2.1 Definition: Consistent approximation of the complete Euler
system

We assume that for each n ∈ N, ϱ0,n m0,n and S0,n are measurable function in
Rd such that

0 ≤ ϱ0,n and
ˆ
Rd

e(ϱ0,n,m0,n, S0,n|ϱ∞,m∞, S∞) dx ≤ Cn, (5.2.2)

where Cn <∞ is a constant.
We say that {(ϱn,mn, Sn = ϱnsn)}n∈N is a family of admissible consistent

approximate solutions to the complete Euler system in (0, T )× Rd with initial data
{(ϱ0,n,m0,n, S0,n = ϱ0,ns0,n)}n∈N satisfying (5.2.2) if the following holds for each
n ∈ N:

• The variables ϱn = ϱn(t, x), mn = mn(t, x) and Sn = Sn(t, x) are measurable
function in (0, T )× Rd, with ϱn ≥ 0;

• For any ϕ ∈ C1
c ([0, T )× Rd), we have

−
ˆ
Rd

ϱ0,nϕ(0, ·) dx =

ˆ T

0

ˆ
Rd

[︁
ϱn∂tϕ+mn · ∇xϕ

]︁
dx dt +

ˆ T

0
E1,n[ϕ] dt ;

(5.2.3)

• For any φφφ ∈ C1
c ([0, T )× Rd;Rd), we have

−
ˆ
Rd

m0,nφφφ(0, ·) dx =

ˆ T

0

ˆ
Rd

[︃
mn · ∂tφφφ+ 1{ϱn>0}

mn ⊗mn

ϱn
: ∇xφφφ

+ 1{ϱn>0}p(ϱn, Sn) divxφφφ
]︃

dx dt +

ˆ T

0
E2,n[φφφ] dt ;

(5.2.4)

• For a.e. 0 < τ < T , we have
ˆ
Rd

e(ϱn,mn, Sn | ϱ∞,m∞, S∞)(τ) dx

≤
ˆ
Rd

e(ϱ0,n,m0,n, S0,n|ϱ∞,m∞, S∞) dx+ E3,n;

(5.2.5)
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• For any ψ ∈ C1
c ((0, T )× Rd) with ψ ≥ 0, we have
ˆ T

0

ˆ
Rd

[︃
Sn ∂tψ + 1{ϱn>0}

Sn
ϱn

mn · ∇xψ

]︃
dx dt

≤ −
ˆ
Rd

ϱ0,ns0,nψ(0, ·) dx+

ˆ T

0
E4,n[ψ] dt ;

(5.2.6)

• Here, the terms E1,n[ϕ], E2,n[φφφ], E3,n and E4,n[ψ] represent consistency errors, i.e.,

E3,n, E4,n[ψ] ≥ 0

and

E1,n[ϕ] → 0, E2,n[φφφ] → 0, E3,n → 0 and E4,n[ψ] → 0 as n→ ∞, (5.2.7)

for fixed ϕ, φφφ and ψ(≥ 0) in L1(0, T ).

Instead of (5.2.6), a renormalized version of the entropy inequality can be considered
for the approximation problem:
ˆ T

0

ˆ
Rd

[︃
ϱnχ(sn) ∂tψ + χ(sn)mn · ∇xψ

]︃
dx dt ≤ −

ˆ
Rd

ϱ0,nχ(s0,n)ψ(0, ·) dx,

(5.2.8)

for any ψ ∈ C1
c ((0, T )× Rd) with ψ ≥ 0 and any χ,

χ : R → R a non–decreasing concave function, χ(s) ≤ χ̄ for all s ∈ R.

Remark 5.2.1. Obviously, one can recover the inequality (5.2.6) without error from
the inequality (5.2.8). Moreover, considering the renormalized entropy inequality
(5.2.8) leads to the conclusion that entropy is transported along streamlines, see
Březina and Feireisl [20, Section 2.1.1]. We reformulate it by saying that minimal
principle for entropy holds, i.e.

for s0 ∈ R, if sn(0, ·) ≥ s0 then sn(τ, ·) ≥ s0 in Rd for a.e. 0 < τ < T. (5.2.9)

Remark 5.2.2. In [20], it is shown that approximate solutions coming from the
system Navier–Stokes–Fourier may not satisfy the renormalized version of the entropy
balance (5.2.8), but only (5.2.6). Meanwhile, we note that the approximate solutions
from Brenner’s model satisfy (5.2.8), see [26, Section 4.1].

The above remark motivates us to consider two different approximation problems.
From now on, we refer them as follows:

• First approximation problem : Approximate solutions satisfy (5.2.3)-
(5.2.7);

• Second approximation problem : Approximate solutions satisfy (5.2.3)-
(5.2.5), (5.2.7) and (5.2.8);
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Assumption on the initial data

Now we prescribe an additional assumption on initial data. Together with (5.2.2),
we assume that the initial relative energy is uniformly bounded, i.e.,

ϱ0,n ≥ 0 and
ˆ
Rd

e(ϱ0,n,m0,n, S0,n|ϱ∞,m∞, S∞) dx ≤ E0, (5.2.10)

where E0 is independent of n. This assumption is shared by both approximate
problems.

5.2.2 Young measure generated by approximate solutions

It is easy to prove that (ϱ,m) ↦→ 1
2
|m|2
ϱ is a strictly convex for ϱ > 0 and m ∈ Rd.

We give the the following lemma from Breit et al. [16, Lemma 3.1] that ensures the
convexity of pressure and eventually the internal energy.

Lemma 5.2.3. The mapping

(ϱ, S) ↦→ p(ϱ, S), ϱ > 0, S ∈ R

is strictly convex.

Subsequently, we obtain (ϱ, S) ↦→ e(ϱ, S), ϱ > 0, S ∈ R is also strictly convex.
Thus we conclude that the total energy

(ϱ,m, S) ↦→ e(ϱ,m, S), ϱ ∈ R, m ∈ Rd and S ∈ R,

which follows the extension (5.2.1), is strictly convex when ϱ > 0, and convex
elsewhere.

Thus using convexity of energy, we have

e(ϱ,m, S | ϱ∞,m∞, S∞) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ϱ− ϱ∞)2 + |m−m∞|2 + (S − S∞)2

if ϱ∞
2 ≤ ϱ ≤ 2ϱ∞, |m−m∞| ≤ max

{︂
1, |m∞|

2

}︂
and |S − S∞| ≤ max

{︂
1, |S∞|

2

}︂
,

|ϱ− ϱ∞|+ |m−m∞|+ |S − S∞|,
otherwise.

(5.2.11)

Then (5.2.11) and (5.2.10) provide an uniform bound for the state variables. In
particular we have

∥ϱn − ϱ∞∥L∞(0,T ;L1+L2(Rd)) ≤ C,

∥ Sn − S∞∥L∞(0,T ;L1+L2(Rd)) ≤ C,

∥mn −m∞∥L∞(0,T ;L1+L2(Rd;Rd)) ≤ C.
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Following Ball [9, Section 2], we conclude that the sequence (ϱn,mn, Sn) generates a
Young measure {Vt,x}t∈(0,T )×Rd , passing to a subsequence if necessary. We denote
the barycenter of the Young measure as (ϱ,m, S) i.e.,

(ϱ(t, x),m(t, x), S(t, x))

= ({(t, x) ↦→ ⟨Vt,x; ϱ̃⟩}, {(t, x) ↦→ ⟨Vt,x; m̃⟩}, {(t, x) ↦→ ⟨Vt,x; S̃⟩}).

From the Proposition 1.3.17, we also observe that

(ϱ,m, S) ∈ L∞
weak-(*)(0, T ;L

1
loc(Rd)).

5.3 The first approximation problem

Hypothesis on the initial data

We recall the basic hypothesis that initial density is non-negative and initial
relative energy is uniformly bounded, i.e.

ϱ0,n ≥ 0 and
ˆ
Rd

e(ϱ0,n,m0,n, S0,n|ϱ∞,m∞, S∞) dx ≤ E0

with E0 is independent of n. From (5.2.11) we deduce

ϱ0,n − ϱ∞ ∈ L2 + L1(Rd) and ϱ0,n → ϱ0 weak-(*)ly in M+
loc(R

d) as n→ ∞,
(5.3.1)

passing to a subsequence as the case may be. Here we will state the main theorem.

Theorem 5.3.1 (First approximation problem). Let d = 2, 3 and γ > 1. Let
(ϱn,mn, Sn = ϱnsn) be a sequence of admissible solutions of the consistent approxi-
mation with uniformly bounded initial energy as in (5.4.1) and the initial densities
satisfying (5.3.1). Suppose that the barycenter (ϱ,m, S) of the Young measure gen-
erated by the sequence (ϱn,mn, Sn) is an admissible weak solution of the complete
Euler system satisfying

ϱ(0, x) = ϱ0(x), S(t, x) = 0 whenever ϱ(t, x) = 0 for a.e. (t, x) ∈ (0, T )× Rd.
(5.3.2)

Then passing to a subsequence as the case may be, we have

ϱn → ϱ, mn → m and Sn → S for a.e. (t, x) ∈ (0, T )× Rd. (5.3.3)

In the remainder of the section, our goal is to prove the Theorem 5.3.1.
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5.3.1 Defect measures

We recall the relative energy bound

∥e(ϱn,mn, Sn | ϱ∞,m∞, S∞)∥L∞(0,T ;L1(Rd)) ≤ C, (5.3.4)

and as a consequence we have

∥ϱn − ϱ∞∥L∞(0,T ;L1+L2(Rd)) +
⃦⃦
mn −m∞

⃦⃦
L∞(0,T ;L1+L2(Rd;Rd))

+ ∥Sn − S∞∥L∞(0,T ;L1+L2(Rd)) ≤ C.
(5.3.5)

We also have a Young measure V generated by {(ϱn,mn, Sn)}n∈N and

V ∈ L∞
weak-(*)((0, T )×Rd;P(R× Rd × R)).

Defect measures for state variables ϱ,m and S

We have the following embedding

L∞(0, T ;L2 + L1(Rd)) ⊂ L∞
weak-(*)(0, T ;L

2 +M(Rd)).

This gives

ϱn − ϱ∞ → ϱ− ϱ∞ as n→ ∞ in L∞
weak-(*)(0, T ;L

2 +M(Rd)).

We introduce the defect measure

Cϱ = ϱ− {(t, x) ↦→ ⟨Vt,x; ϱ̃⟩}

Using the Remark 1.3.16 of Lemma 1.3.14, we obtain Cϱ ∈ L∞
weak-(*)(0, T ;M(Rd)).

Similarly, for the sequences {(mn − m∞)}n∈N and {(Sn − S∞)}n∈N we define the
corresponding concentration defect measures as:

Cm = m− {(t, x) ↦→ ⟨Vt,x; m̃⟩} and CS = S − {(t, x) ↦→ ⟨Vt,x; S̃⟩}.

From the fact ϱn ≥ 0 we infer

Cϱ ∈ L∞
weak-(*)(0, T ;M

+(Rd)).

Relative energy defect

Let us remind ourselves that L∞
weak-(*)(0, T ;M(Rd)) is the dual of L1(0, T ;C0(Rd))

and that the relative energy is uniformly bounded (5.2.10). Passing to a suitable
subsequence, we obtain

e(ϱn,mn, Sn | ϱ∞,m∞, S∞) → e(ϱ,m, S | ϱ∞,m∞, S∞) in L∞
weak-(*)(0, T ;M(Rd)).

We introduce defect measures:
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• Concentration defect for relative energy:

Rcd = e(ϱ,m, S | ϱ∞,m∞, S∞)− ⟨Vt,x; e(ϱ̃, m̃, S̃ | ϱ∞,m∞, S∞)⟩,

• Oscillation defect for relative energy:

Rod = ⟨Vt,x; e(ϱ̃, m̃, S̃ | ϱ∞,m∞, S∞)⟩ − e(ϱ,m, S | ϱ∞,m∞, S∞),

• Total relative energy defect:

R = Rcd +Rod.

Remark 5.3.2. As a direct consequence of Lemma 1.3.14 and (5.2.10) we get

∥Cϱ∥L∞(0,T ;M(Rd)) ≤ ∥R∥L∞(0,T ;M(Rd)).

Analogously, we have

∥|Cm|∥L∞(0,T ;M(Rd)) + ∥|CS |∥L∞(0,T ;M(Rd)) ≤ ∥R∥L∞(0,T ;M(Rd)).

Energy defect and its finiteness

First, we rewrite the relative energy as

e(ϱn,mn, Sn)− e(ϱ∞,m∞, S∞)

= e(ϱn,mn, Sn | ϱ∞,m∞, S∞)

+ ∂e(ϱ∞,m∞, S∞) · (ϱn − ϱ∞,mn −m∞, Sn − S∞),

Then the relative energy bound (5.2.10) together with (5.2.11) gives

∥e(ϱn,mn, Sn)− e(ϱ∞,m∞, S∞)∥L∞(0,T ;L2+L1(Rd)) ≤ C.

In particular, we conclude that

e(ϱn,mn, Sn)− e(ϱ∞,m∞, S∞) → e(ϱ,m, S)− e(ϱ∞,m∞, S∞)

weak-(*)ly in L∞(0, T ;L2 +M(Rd)).

In a similar way, we consider the energy defect measures:

• Concentration defect for energy:

Rcd
eng = e(ϱ,m, S)− ⟨Vt,x; e(ϱ̃, m̃, S̃)⟩,

• Oscillation defect for energy:

Rod
eng = ⟨Vt,x; e(ϱ̃, m̃, S̃)⟩ − e(ϱ,m, S),
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• Total energy defect:

Reng = Rcd
eng +Rod

eng.

We observe that

e(ϱn,mnSn)− e(ϱ,m, S)

= e(ϱn,mn, Sn | ϱ∞,m∞, S∞)− e(ϱ,m, S | ϱ∞,m∞, S∞)

+ ∂e(ϱ∞,m∞, S∞) · (ϱn − ϱ,mn −m, Sn − S)

The above equation together with the Remark 5.3.2 gives

Reng ∈ L∞
weak-(*)(0, T ;M(Rd)) (5.3.6)

and

∥Reng∥L∞(0,T ;M(Rd)) ≤ ∥R∥L∞(0,T ;M(Rd)).

Specifically, we have

R = Reng − ∂e(ϱ∞,m∞, S∞) · (Cϱ,Cm,CS).

From the observation that (ϱ,m, S) ↦→ e(ϱ,m, S) is a non-negative convex l.s.c
function in Rd+2, we obtain

Reng ∈ L∞
weak-(*)(0, T ;M

+(Rd)).

Remark 5.3.3. Suppose that the sequence (ϱn,mn, Sn) has a weak or weak-(*) limit
in the respective space, then the corresponding defect measure (Cϱ,Cm,CS) vanishes.
As a consequence , we observe

R = Reng.

Defect measures of the nonlinear terms in momentum equation

In the approximate momentum equation (5.2.4), we note the presence of two
nonlinear terms

1ϱn>0
mn ⊗mn

ϱn
and 1ϱn>0p(ϱn, Sn).

Writing

1ϱn>0
mn ⊗mn

ϱn
− m∞ ⊗m∞

ϱ∞

= 1ϱn>0ϱn

(︃(︃
mn

ϱn
− m∞

ϱ∞

)︃
⊗
(︃
mn

ϱn
− m∞

ϱ∞

)︃)︃
− (mn −m∞)⊗m∞

ϱ∞
− m∞ ⊗ (mn −m∞)

ϱ∞
+ (ϱn − ϱ∞)

m∞ ⊗m∞
ϱ2∞

,
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we obtain the following uniform bound⃦⃦⃦⃦
1ϱn>0

mn ⊗mn

ϱn
− m∞ ⊗m∞

ϱ∞

⃦⃦⃦⃦
L∞(0,T ;L2+L1(Rd;Rd×d))

≤ C.

Hence, we have

1ϱn>0
mn ⊗mn

ϱn
− m∞ ⊗m∞

ϱ∞
→ m⊗m

ϱ
− m∞ ⊗m∞

ϱ∞

weak-(*)ly in L∞
weak-(*)(0, T ;L

2 +M(Rd;Rd×d)).

Thus, we consider the concentration defect Ceng,cd
m1 and the oscillation defect Ceng,od

m1

as

Ceng,cd
m1

=
m⊗m

ϱ
−
⟨︃
Vt,x;1ϱ̃>0

m̃⊗ m̃

ϱ̃

⟩︃
and

Ceng,od
m1

=

⟨︃
Vt,x;1ϱ̃>0

m̃⊗ m̃

ϱ̃

⟩︃
− 1ϱ>0

m⊗m

ϱ
,

respectively. We notice that, for any ξ ∈ Rd, we get(︃
1ϱn>0

mn ⊗mn

ϱn
− m∞ ⊗m∞

ϱ∞

)︃
: (ξ ⊗ ξ) →

(︃
m⊗m

ϱ
− m∞ ⊗m∞

ϱ∞

)︃
: (ξ ⊗ ξ)

weak-(*)ly in L∞
weak-(*)(0, T ;L

2 +M(Rd)).

Next, we note that for any ξ ∈ Rd, the function

[ϱ,m] ↦→

⎧⎪⎨⎪⎩
|m·ξ|2

ϱ if ϱ > 0,

0, if ϱ = m = 0,

∞, otherwise

(5.3.7)

is convex lower semi-continuous. It yields that

Ceng,cd
m1

+ Ceng,od
m1

∈ L∞
weak-(*)(0, T ;M

+(Rd;Rd×d
sym)).

To obtain this, we use the following observation:

(Ceng,cd
m1

+ Ceng,od
m1

) : (ξ ⊗ ξ) = lim
n→∞

1ϱn>0
mn ⊗mn

ϱn
: (ξ ⊗ ξ)− 1ϱ>0

m⊗m

ϱn
: (ξ ⊗ ξ)

= lim
n→∞

1ϱn>0
|mn · ξ|2

ϱn
− 1ϱ>0

|m · ξ|2

ϱ
in D′((0, T )×B)

for any bounded open set B ⊂ Rd and eventually

(Ceng,d
m1

+ Ceng,od
m1

) : (ξ ⊗ ξ) ∈ L∞
weak-(*)(0, T ;M

+(Rd)).
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Analogously, for the pressure term 1ϱn>0p(ϱn, Sn) we define the concentration defect
Ceng,cd
m2 and the oscillation defect Ceng,od

m2 as

Ceng,cd
m2

= p(ϱ, S)I−
⟨︁
Vt,x;1ϱ̃>0p(ϱ̃, S̃)I

⟩︁
and

Ceng,od
m2

=
⟨︁
Vt,x;1ϱ̃>0p(ϱ̃, S̃)I

⟩︁
− 1ϱ>0p(ϱ, S)I.

Noticing that, for any ξ ∈ Rd, (ϱ, S) ↦→ p(ϱ, S)I : (ξ · ξ), with an extension

[ϱ, S] ↦→

⎧⎪⎨⎪⎩
p(ϱ, S)|ξ|2 if ϱ > 0,

0, if ϱ = 0, S ≤ 0

∞, otherwise
(5.3.8)

is a convex lower semi-continuous function, we are able to conclude

Ceng,cd
m2

+ Ceng,od
m2

∈ L∞
weak-(*)(0, T ;M

+(Rd;Rd×d
sym)).

Finally, we consider the total defect as

Ceng = Ceng,cd
m1

+ Ceng,od
m1

+ Ceng,cd
m2

+ Ceng,od
m2

.

Summerizing the above discussion we infer that

Ceng ∈ L∞
weak-(*)(0, T ;M

+(Rd;Rd×d
sym)).

Comparison of defect measures Tr(Ceng) and Reng

With the help of the following relation

Tr
(︃
m⊗m

ϱ

)︃
=

|m|2

ϱ
and Tr

(︃
ϱγ exp

(︃
S

cvϱ

)︃
I
)︃

= dϱγ exp

(︃
S

cvϱ

)︃
we conclude the existence of Λ1,Λ2 > 0 such that

Λ1Reng ≤ Tr(Ceng) ≤ Λ2Reng. (5.3.9)

5.3.2 Limit passage

The main goal here is the limit passage in the continuity equation and the
momentum equation.
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Continuity equation

First, we perform the limit passage in the approximate continuity equation (5.2.3)
and obtain

ˆ T

0

ˆ
Rd

[︁
∂tϕ dϱ(t) +∇xϕ · dm

]︁
dt = 0,

for ϕ ∈ C1
c ((0, T )× Rd). In a more suitable notation we write

ˆ T

0

ˆ
Rd

[︁
ϱ∂tϕ+m · ∇xϕ

]︁
dx dt +

ˆ T

0

ˆ
Rd

[︁
∂tϕ dCϱ +∇xϕ · dCm

]︁
dt = 0,

(5.3.10)

for ϕ ∈ C1
c ((0, T )× Rd). Further we prove that

ϱ ∈ Cweak-(*)([0, T ];L
2 +M(Rd)).

Using (5.3.1) we conclude
ˆ
K
ϱ0ψ dx =

ˆ
K
ψd(ϱ(0)), (5.3.11)

for K ⊂ Rd, K compact and ψ ∈ Cc(K).

Local equi-integrability of {ϱn}n∈N and {mn}n∈N

We assume that the triplet (ϱ,m, S) is a weak solution of the complete Euler
system with initial data (ϱ0,m0, S0), i.e. the continuity equation is

ˆ T

0

ˆ
Rd

[︁
ϱ∂tϕ+m · ∇xϕ

]︁
dx dt = −

ˆ
Rd

ϱ0ϕ(0, ·) dx, (5.3.12)

for any ϕ ∈ C1
c ([0, T )× Rd).

Eventually, ϱ ∈ L1
loc((0, T )× Rd) and m ∈ L1

loc((0, T )× Rd;Rd) yield
ˆ
K
ϱ0ψ dx =

ˆ
K
ϱ(0, ·)ψ dx, (5.3.13)

for a compact subset K ⊂ Rd and ψ ∈ Cc(K).
On the other hand, (5.3.12) together with (5.3.10) implies

∂tCϱ + divxCm = 0

in the sense of distributions in (0, T )×Rd. Considering the fact Cϱ ∈ L∞(0, T ;M(Rd))
and Cm ∈ L∞(0, T ;M(Rd;Rd)), we write the above relation as,

ˆ T

0

ˆ
Rd

∂tϕ dCϱ dt +

ˆ T

0

ˆ
Rd

∇xϕ · dCm dt = 0, for ϕ ∈ D((0, T )× Rd).
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Let us consider ϕ(t, x) = η(t)ψ(x) with η ∈ D(0, T ) and ψ ∈ D(Rd). Then, we rewrite
the above equation in the following form:

ˆ T

0

(︃ ˆ
Rd

ψ dCϱ

)︃
η′(t) dt +

ˆ T

0

(︃ ˆ
Rd

∇xψ · dCm

)︃
η(t) dt = 0.

Since the density and the momentum defects are finite, we have

ˆ T

0

(︃ ˆ
Rd

ψ dCϱ

)︃
η′(t) dt +

ˆ T

0

(︃ ˆ
Rd

∇xψ · dCm

)︃
η(t) dt = 0,

for η ∈ D(0, T ), ψ ∈ C1(Rd) and ∇xψ ∈ L∞(Rd;Rd). We consider ψ = 1 and obtain

ˆ T

0

(︃ ˆ
Rd

dCϱ

)︃
η′(t) dt = 0.

From this we deduce that t ↦→
´
Rd dCϱ(t) is absolutely continuous in (0, T ) and the

distributional derivative is 0. This along with (5.3.11) and (5.3.13) gives Cϱ(0, ·) = 0
in Rd. Finally, we get

ˆ
Rd

dCϱ(t) = 0 for t ∈ (0, T ),

and Cϱ = 0 for a.e. t ∈ (0, T ).
Let B ⊂ (0, T ) × Rd be a bounded Borel set. Since ϱn ≥ 0 and Cϱ = 0 , we

conclude that {ϱn}n∈N is equi-integrable in B. We have

mn =
√
ϱn

mn√
ϱn
,

and also |mn|2
ϱn

is bounded in L1(B). As a consequence, we conclude {mn}n∈N is
equi-integrable in B.

Momentum equation with defect

Now, if we perform passage of limit in the momentum equation (5.2.4), we get

ˆ T

0

ˆ
Rd

[︃
m · ∂tφφφ+ 1{ϱ>0}

m⊗m

ϱ
: ∇xφφφ+ 1{ϱ>0}p(ϱ, S)divxφφφ

]︃
dx dt

+

ˆ T

0

ˆ
Rd

∇xφφφ : dCeng = 0,

(5.3.14)

for φφφ ∈ Cc((0, T )× Rd;Rd).
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Almost everywhere convergence

From our assumption that the barycenter of the Young measure is a weak solution
of the complete Euler system, this implies

ˆ
Rd

∇xϕ : dCeng = 0 for any ϕ ∈ C1
c (Rd;Rd) for a.e. t ∈ (0, T ).

Thus, from Proposition 1.3.20, we obtain

Ceng = 0.

Eventually, the comparison of the defect measure (5.3.9) implies

Reng = 0.

As a consequence of the Theorem 1.3.26, we have

e(ϱn,mn, Sn) → e(ϱ,m, S) weakly in L1(B). (5.3.15)

From this we deduce that

e(ϱ,m, S) = ⟨Vt,x; e(ϱ̃, m̃, S̃)⟩ = e(ϱ,m, S) in B.

Since e is convex and strictly convex in its domain of positivity, we use a sharp form
of the Jensen’s inequality as described in Lemma 1.3.30 to conclude that either

Vt,x = δ{ϱ(t,x),m(t,x),S(t,x)}

or

supp[V] ⊂ {[ϱ̃, m̃, S̃]|ϱ̃ = 0, m̃ = 0, S̃ ≤ 0}.

Here we recall the assumption (5.3.2), i.e.,

S(t, x) = 0 whenever ϱ(t, x) = 0 for a.e. (t, x) ∈ (0, T )× Rd.

It implies
Vt,x = δ{ϱ(t,x),m(t,x),S(t,x)}.

From Lemma 1.3.25, we conclude that {ϱn,mn, Sn} converges to (ϱ,m, S) in measure.
Passing to a suitable subsequence, we obtain

ϱn → ϱ, mn → m and Sn → S a.e. in (0, T )× Rd. (5.3.16)

This completes the proof of the Theorem 5.3.1
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5.4 The second approximation problem

Hypothesis on the initial data

We recall that the initial density is non-negative and the initial relative energy is
uniformly bounded, i.e.,

ϱ0,n ≥ 0 and
ˆ
Rd

e(ϱ0,n,m0,n, S0,n|ϱ∞,m∞, S∞) dx ≤ E0, (5.4.1)

with E0 is independent of n.
For the second approximation problem, we need an additional assumption that

the initial entropy is bounded below, i.e., for some s0 ∈ R we have

s0,n ≥ s0 in Rd, for all n ∈ N. (5.4.2)

Main Result

We state the main theorem for this approximation problem.

Theorem 5.4.1 (Second approximation problem). Let d = 2, 3 and γ > 1 and
(ϱn,mn, Sn = ϱnsn) be a sequence of admissible solutions of the consistent approx-
imation with initial energy satisfying (5.4.1) and and the initial entropy satisfying
(5.4.2). Suppose,

ϱn → ϱ in D′((0, T )× Rd), mn → m in D′((0, T )× Rd;Rd),

Sn → S in D′((0, T )× Rd),
(5.4.3)

where (ϱ,m, S) is a weak solution of the complete Euler system.
Then

e(ϱn,mn, Sn | ϱ∞,m∞, S∞) → e(ϱ,m, S | ϱ∞,m∞, S∞) in Lq(0, T ;L1
loc(Rd))

as n→ ∞ for any 1 ≤ q <∞. Moreover,

ϱn → ϱ in Lq(0, T ;Lγ
loc(R

d)),mn → m− in Lq(0, T ;L
2γ
γ+1 (Rd;Rd))

Sn → S in Lq(0, T ;Lγ
loc(R

d)),

for any 1 ≤ q <∞.

The remainder of this section is devoted to the proof of the Theorem 5.4.1. First,
we note that the formulation of the second approximation problem and the hypothesis
about the initial data (5.4.2) yield the minimal principle for the entropy(5.2.9), i.e.,
sn ≥ s0 for a.e. (t, x) ∈ (0, T )× Rd. This helps us to obtain a finer estimate for the
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relative energy compared to (5.2.11), which is

e(ϱ,m, S | ϱ∞,m∞, S∞) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ϱ− ϱ∞)2 + |m−m∞|2 + (S − S∞)2

if ϱ∞
2 ≤ ϱ ≤ 2ϱ∞, |m−m∞| ≤ max

{︂
1, |m∞|

2

}︂
and |S − S∞| ≤ max

{︂
1, |S∞|

2

}︂
,

(1 + ϱγ) + m2

ϱ + (1 + Sγ),

otherwise.
(5.4.4)

For a detailed discussion about of the above statement, see Breit et al. [16, Section
3]. Without loss of generality, we assume s0 ≥ 0, otherwise we need to rescale by
taking the total entropy Sn=ϱn(sn − s0).

Uniform bounds and weak convergence

Assumption (5.4.1) implies

∥e(ϱn,mn, Sn | ϱ∞,m∞, S∞)∥L∞(0,T ;L1(Rd)) ≤ C.

Together with (5.4.4), the above bound gives

∥ϱn − ϱ∞∥L∞(0,T ;Lγ+L2(Rd)) ≤ C,⃦⃦
mn −m∞

⃦⃦
L∞(0,T ;L

2γ
γ+1+L2(Rd))

≤ C.
(5.4.5)

Eventually, recalling the total entropy Sn, we have

∥Sn − S∞∥L∞(0,T ;Lγ+L2(Rd)) ≤ C,⃦⃦⃦⃦
Sn√
ϱn

⃦⃦⃦⃦
L∞(0,T ;L2γ(Rd))

≤ C.
(5.4.6)

The above uniform bounds yield the following convergence:

ϱn − ϱ∞ → ϱ− ϱ∞ weak-(*)ly in L∞(0, T ;Lγ + L2(Rd)),

mn −m∞ → m−m∞ weak-(*)ly in L∞(0, T ;L
2γ
γ+1 + L2(Rd)),

Sn − S∞ → S − S∞ weak-(*)ly in L∞(0, T ;Lγ + L2(Rd)),

passing to a suitable subsequence as the case may be. Here also one can consider a
Young measure V generated by (ϱn,mn, Sn) such that

V ∈ L∞
weak-(*)((0, T )× Rd;P(Rd+2)). (5.4.7)

Since, Young measure captures the weak limit, we obtain

(ϱ(t, x),m(t, x), S(t, x))

= ({(t, x) ↦→ ⟨Vt,x; ϱ̃⟩}, {(t, x) ↦→ ⟨Vt,x; m̃⟩}, {(t, x) ↦→ ⟨Vt,x; S̃⟩}).
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5.4.1 Defect measures

Unlike Section 5.2, here we have the presence of a defect measure only in the
nonlinear terms.

Relative energy defect

We know
L∞(0, T ;L1(Rd)) ⊂ L∞

weak-(*)(0, T ;M(Rd)).

Moreover, L∞
weak-(*)(0, T ;M(Rd)) is the dual of L1(0, T ;C0(Rd)). Thus passing to a

suitable subsequence, we obtain

e(ϱn,mn, Sn | ϱ∞,m∞, S∞) → e(ϱ,m, S | ϱ∞,m∞, S∞) in L∞
weak-(*)(0, T ;M(Rd)).

In particular, we say

ekin(ϱn,mn|ϱ∞,m∞) → ekin(ϱ,m|ϱ∞,m∞) in L∞
weak-(*)(0, T ;M(Rd))

and

eint(ϱn, Sn | ϱ∞, S∞) → eint(ϱ, S | ϱ∞, S∞) in L∞
weak-(*)(0, T ;M(Rd)).

We consider

Re = e(ϱ,m, S | ϱ∞,m∞, S∞)− 1{ϱ>0}e(ϱ,m, S | ϱ∞,m∞, S∞).

Using convexity and lower semi-continuity of the relative energy, we have

Re ∈ L∞
weak-(*)(0, T ;M

+(Rd)). (5.4.8)

Defects from the non linear terms in momentum equation

We consider a map C(·, ·|ϱ∞,m∞) : R× Rd → Rd×d as

C(ϱ,m|ϱ∞,m∞) = 1{ϱ>0}ϱ

(︃
m

ϱ
− m∞

ϱ∞

)︃
⊗
(︃
m

ϱ
− m∞

ϱ∞

)︃
.

For any ξ ∈ Rd, we obtain that the map

(ϱ,m) ↦→ C(ϱ,m|ϱ∞,m∞) : (ξ ⊗ ξ)

is a convex lower semi-continuous function with a possible extension

[ϱ,m] ↦→

⎧⎪⎨⎪⎩
|m·ξ|2

ϱ if ϱ > 0,

0, if ϱ = m = 0,

∞, otherwise .

(5.4.9)
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We have
mn ⊗mn

ϱn
= C(ϱn,mn|ϱ∞,u∞) +mn ⊗ u∞ + u∞ ⊗mn − ϱnu∞ ⊗ u∞,

with
∥C(ϱn,mn|ϱ∞,u∞)∥L∞(0,T ;L1(Rd;Rd×d)) ≤ C,

where u∞ = m∞
ϱ∞

. It implies

C(ϱn,mn|ϱ∞,u∞) → C(ϱ,m|ϱ∞,u∞) weak-(*)ly in L∞
weak-(*)(0, T ;M(Rd;Rd×d

sym)).

We introduce the defect measure as

Rm1 = C(ϱ,m|ϱ∞,u∞)− 1{ϱ>0}C(ϱ,m|ϱ∞,u∞) (5.4.10)

Similarly, we define a map P(·, ·|ϱ∞, S∞) : R× R → Rd×d such that

P(ϱ, S|ϱ∞, S∞)

=

(︃
p(ϱ, S)− ∂p

∂ϱ
(ϱ∞, S∞)(ϱ− ϱ∞)− ∂p

∂S
(ϱ∞, S∞)(S − S∞)− p(ϱ∞, S∞)

)︃
I.

Here, we define the defect measure

Rm2 = P(ϱ, S|ϱ∞, S∞)− 1ϱ>0P(ϱ, S|ϱ∞, S∞). (5.4.11)

We use (5.4.9) to conclude

Rm = Rm1 +Rm2 ∈ L∞
weak-(*)(0, T ;M

+(Rd;Rd×d
sym) (5.4.12)

Comparison of defect measures

There exists scalars Λ1,Λ2 > 0 such that

Λ1Re ≤ Tr(Rm) ≤ Λ2Re. (5.4.13)

Remark 5.4.2. It is clear that, we do not need to define the energy defect separately
here as in Section 5.2. Basically, the weak convergence of the state variables implies
that the energy defect coincides with the relative energy defect.

5.4.2 Limit passage

Now we pass to the limit in the equations of for approximate solutions and obtain

Equation of continuity:
ˆ T

0

ˆ
Rd

[︁
ϱ∂tϕ+m · ∇xϕ

]︁
dx dt = 0, (5.4.14)

for any ϕ ∈ C1
c ((0, T )× Rd),
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Momentum equation with defect:

ˆ T

0

ˆ
Rd

[︃
m · ∂tφφφ+ 1{ϱ>0}

m⊗m

ϱ
: ∇xφφφ+ 1{ϱ>0} p(ϱ, S)divxφφφ

]︃
dx dt

+

ˆ T

0

ˆ
Rd

∇xφφφ : dRm = 0,

(5.4.15)

for any φφφ ∈ C1
c ((0, T )× Rd;Rd),

Relative energy:

e(ϱ,m, S | ϱ∞,m∞, S∞) = e(ϱ,m, S | ϱ∞,m∞, S∞) +Re. (5.4.16)

Disappearance of defect measures

We assume that the triplet (ϱ,m, S) is an admissible weak solution of the complete
Euler system, i.e., (ϱ,m, S) follows the Definition 2.4.1. It implies

ˆ T

0

ˆ
Rd

∇xφφφ : dRm = 0,

for any φφφ ∈ C1
c ([0, T ]× Rd;Rd). Thus, by applying Proposition (1.3.20) we conclude

Rm = 0. Finally, using (5.4.13) we obtain Re = 0.
Consequently, we also have

e(ϱn,mn, Sn | ϱ∞,m∞, S∞) → e(ϱ,m, S | ϱ∞,m∞, S∞)

weak-(*)ly in L∞
weak-(*)(0, T ;M(Rd)).

(5.4.17)

Almost everywhere convergence

Let B ⊂ (0, T )× Rd be a compact set. Recall the Young measure generated by
{(ϱn,mn, Sn)}n∈N is V . From Re = 0 we infer that⟨︁

Vt,x; e(ϱ̃, m̃, S̃ | ϱ∞,m∞, S∞)
⟩︁
= e(ϱ,m, S | ϱ∞,m∞, S∞) for a.e. (0, T )× Rd.

We already have weak-(*) convergence of {e(ϱn,mn, Sn | ϱ∞,m∞, S∞)}n∈N, using
Lemma 1.3.26 we deduce that

e(ϱn,mn, Sn | ϱ∞,m∞, S∞) → e(ϱ,m, S | ϱ∞,m∞, S∞) weakly in L1(B). (5.4.18)

Now convexity of e(·|ϱ∞,m∞, S∞) and the Theorem 2.11 from Feireisl [50] helps us
to conclude

ϱn → ϱ,mn → m and Sn → S a.e. in B. (5.4.19)
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Local strong convergence

We have {e(ϱn,mn, Sn | ϱ∞,m∞, S∞)}n∈N is equi-integrable in B, in particular
{eint(ϱn, Sn)}n∈N is equi-integrable in B. As a trivial consequence we obtain
{(ϱγn, Sγ

n)}n∈N is also equi-integrable. Above statement along with almost everywhere
convergence gives

ϱγn → ϱγ and Sγ
n → Sγweakly in L1(B).

It implies
ˆ
B
ϱγn dx dt →

ˆ
B
ϱγ dx dt and

ˆ
B
Sγ
n dx dt →

ˆ
B
Sγ dx dt . (5.4.20)

These concludes the norm convergence i.e.,

|ϱn|Lγ(B) → |ϱ|Lγ(B).

Now weak convergence and norm convergence implies the strong convergence.

ϱn → ϱ in Lγ(B).

Similarly, for the total entropy we also obtain,

Sn → S in Lγ(B).

Strong convergence for the momentum follows exact steps as in part 5.4.5. Since
ϱ ∈ Lγ(B) we deduce that

mn → m in L
2γ
γ+1 (B;Rd).

Relative energy is positive, lower semi-continuous and convex function. It implies

e(ϱn,mn, Sn | ϱ∞,m∞, S∞) → e(ϱ,m, S | ϱ∞,m∞, S∞) in L1(B).

We invoke the bounds (5.4.5) and (5.4.6) to conclude our desired strong convergences
as stated in Theorem 5.4.1.

5.5 Concluding remark

In both theorems 5.3.1 and 5.4.1 we have the hypothesis that the barycenter
of a Young measure V, (ϱ,m, S) is an admissible weak solution of the complete
Euler system. If we look closely at the proof, it is a matter of a small additional
assumption. It suffices to assume that it solves the momentum equation and the
continuity equation for suitable initial data in a weak sense to obtain the desired
result.

The results in this chapter are based exclusively on the domain Rd. The main
stumbling block for bounded domain is the unavailability of the Proposition 1.3.20.
Although there is modified version of the proposition for a bounded domain Ω.
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Proposition 5.5.1. Let Ω ⊂ Rd be a bounded domain. Let D ∈ M+(Ω;Rd×d
sym

satisfying
ˆ
Ω
∇xφφφ : dD = 0 for any φφφ ∈ C1

c (Ω;Rd),

and

1

δ

ˆ
{x∈Ω|dist[x,∂Ω≤δ]}

d(Tr(D)) → 0 as δ → 0.

Then D = 0.

This is reflected as an additional hypothesis about energy as

lim sup
ϵ→0

ˆ
x∈Ω,dist[x,∂Ω]≤δ

[e(ϱϵ,mϵ, Sϵ)− e(ϱ,m, S)](τ, ·) dx

is of order o(δ) as δ → 0, for a.e. τ ∈ (0, T ). For a detailed discussion the reader may
consult Feireisl and Hoffmanová [58].
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