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Abstract

Large-scale scientific experiments rely on dedicated high-performance data-acquisition sys-
tems to sample, readout, analyse, and store experimental data. However, with the rapid de-
velopment in detector technology in various fields, the number of channels and the data rate
are increasing. For trigger and control tasks data acquisition systems needs to satisfy real-time
constraints, enable short-time latency and provide the possibility to integrate intelligent data
processing. During recent years machine learning approaches have been used successfully in
many applications. This dissertation will study how machine learning techniques can be inte-
grated already in the data acquisition of large-scale experiments. A universal data acquisition
platform for multiple data channels has been developed. Different machine learning implemen-
tation methods and application have been realized using this system.

On the hardware side, recent FPGAs do not only provide high-performance parallel logic
but more and more additional features, like ultra-fast transceivers and embedded ARM proces-
sors. TSMC’s 16nm FinFET Plus (16FF+) 3D transistor technology enables Xilinx in the Zynq
UltraScale+ FPGA devices to increase the performance/watt ratio by 2 to 5 times compared to
their previous generation. The selected main processor ZU11EG owns 32 GTH transceivers
where each one could operate up to 16.3 Gb/s and 16 GTY transceivers where each of them
could operate up to 32.75 Gb/s. These transceivers are routed to x16 lanes Gen 3/4 PCIe, 12
lanes full-duplex FireFly electrical/optical data link and VITA 57.4 FMC+ connector.

The new Zynq UltraScale+ device provides at least three major advantages for advanced
data acquisition systems: First, the 16nm FinFET+ programmable logic (PL) provides high-
speed readout capabilities by high-speed transceivers; second, built-in quad-core 64-bit ARM
Cortex-A53 processor enable host embedded Linux system. Thus, webservers, slow control
and monitoring application could be realized in a embedded processor environment; third, the
Zynq Multiprocessor System-on-Chip technology connects programmable logic and micropro-
cessors. In this thesis, the benefits of such architectures for the integration of machine learning
algorithms in data acquisition systems and control application are demonstrated.

On the algorithm side, there have been many achievements in the field of machine learning
over the last decades. Existing machine learning algorithms split into several categories de-
pending on how the learning phase is organized: Supervised Learning, Unsupervised Learning,
Semi-Supervised Learning and Reinforcement Learning. Most commonly used in scientific
applications are supervised learning and reinforcement learning.

Supervised learning learns from the labelled input and output, and generates a function that
could predict the future different input to the appropriate output. A common application in-
stance is a classification. They have a wide difference in basic math theory, training, inference,
and their implementation.

One of the natural solutions is Application Specific Integrated Circuit (ASIC) Artificial
Intelligence (AI) chips. A typical example is the Google Tensor Processing Unit (TPU), it
could cover the training and inference for both supervised learning and reinforcement learning.
One of the major issues is that such chip could not provide high data transferring bandwidth
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other than high compute power. As a comparison, the Xilinx UltraScale+ FPGA could also
provide raw compute power and efficiency for all different data types down to a single bit.

From a deployment point of view, the training part of supervised learning is typically per-
formed by CPU/GPU/TPU on a fixed dataset. For reinforcement learning, the training phase
is more complex. The algorithm needs to periodically interact with the controlled system and
execute a Markov Decision Process (MDP). There is no static training dataset, but it is obtained
in real-time. The time slot between each step depends on the dynamics of the controlled sys-
tem. The inference is also bound to this sampling time because the algorithm needs to interact
with the environment and decide the appropriate action for a response, then a higher demand
on time is proposed.

This thesis gives solutions for both training and inference of reinforcement learning. At
first, the requirements are analyzed, then the algorithm is deduced from scratch, and train-
ing on the PS part of Zynq device is implemented, meanwhile the inference at FPGA side is
proposed which is similar solution compared with supervised learning. The results for Pol-
icy Gradient show a lot of improvement over a CPU/GPU-based machine learning framework.
The Deep Deterministic Policy Gradient also has improvement regarding both training latency
and stability. This implementation method provides a low-latency approach for reinforcement
learning on-field training process.



Zusammenfassung

Große wissenschaftliche Experimente basieren auf dedizierten Hochleistungsdatenerfassungssys-
temen, um experimentelle Daten auszuprobieren, auszulesen, zu analysieren und zu speich-
ern. Mit der rasanten Entwicklung der Detektortechnik in verschiedenen Bereichen steigen
jedoch die Anzahl der Kanäle und die Datenrate. Für Trigger- und Steuerungsaufgaben müssen
Datenerfassungssysteme Echtzeit-Einschränkungen erfüllen, Kurzzeitlatenz ermöglichen und
die Möglichkeit bieten, intelligente Datenverarbeitung zu integrieren. In den letzten Jahren
wurden Machine Learning-Ansätze in vielen Anwendungen erfolgreich eingesetzt. In dieser
Dissertation wird untersucht, wie maschinelle Lerntechniken bereits in die Datenerfassung von
Großexperimenten integriert werden können. Es wurde eine universelle Datenerfassungsplat-
tform für mehrere Datenkanäle entwickelt. Mit diesem System wurden verschiedene Imple-
mentierungsmethoden und Anwendungen für maschinelles Lernen realisiert.

Auf der Hardwareseite bieten die jüngsten FPGAs nicht nur eine leistungsstarke parallele
Logik, sondern immer mehr zusätzliche Funktionen wie ultraschnelle Transceiver und einge-
bettete ARM-Prozessoren. Die 16nm FinFET Plus (16FF+) 3D-Transistor-Technologie von
TSMC ermöglicht es Xilinx in den Zynq UltraScale+ FPGA-Geräten, das Leistungs-Watt-
Verhältnis im Vergleich zur vorherigen Generation um das 2- bis 5-fache zu erhöhen. Der
ausgewählte Hauptprozessor ZU11EG besitzt 32 GTH-Transceiver, bei denen jeder von ihnen
bis zu 16,3 GB/s und 16 GTY-Transceiver betreiben kann, bei denen jeder von ihnen bis zu
32,75 USD Gb/s betreiben kann. Diese Transceiver werden an x16-Lanes Gen 3/4- PCIe, 12-
und -duplex-Vollduplex-Verbindung FireFly und VITA 57.4 FMC+-Anschluss geroutet.

Das neue Zynq UltraScale+ Gerät bietet mindestens drei wesentliche Vorteile für fortschrit-
tliche Datenerfassungssysteme: Erstens bietet die 16nm FinFET+ programmierbare Logik (PL)
Hochgeschwindigkeits-Auslesefunktionen durch Hochgeschwindigkeits-Transceiver; zweitens,
integrierter Quad-Core 64-Bit ARM Cortex-A53 Prozessor ermöglichen Host Embedded Linux
System. So konnten Webserver, langsame Steuerungs- und Überwachungsanwendungen in
einer eingebetteten Prozessorumgebung realisiert werden. drittens verbindet die Zynq Mul-
tiprozessor System-on-Chip-Technologie programmierbare Logik und Mikroprozessoren. In
dieser These werden die Vorteile solcher Architekturen für die Integration von Machine Learning-
Algorithmen in Datenerfassungssysteme und Steuerungsanwendungen demonstriert.

Auf der Algorithmusseite gab es in den letzten Jahrzehnten viele Erfolge auf dem Ge-
biet des maschinellen Lernens. Bestehende Machine Learning-Algorithmen gliederten sich
in mehrere Kategorien, je nachdem, wie die Lernphase organisiert ist: Supervised Learning,
Unsupervised Learning, Semi-Supervised Learning und Reinforcement Learning. Am häu-
figsten in wissenschaftlichen Anwendungen verwendet werden, sind überwachtes Lernen und
Verstärkung lernen.

Überwachtes Lernen lernt von der beschrifteten Eingabe und Ausgabe und generiert eine
Funktion, die die zukünftigen unterschiedlichen Eingaben für die entsprechende Ausgabe vorher-
sagen könnte. Eine gemeinsame Anwendungsinstanz ist eine Klassifizierung. Sie haben einen
großen Unterschied in der grundlegenden mathematischen Theorie, Ausbildung, Rückschlüsse,
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und ihre Umsetzung.
Eine der natürlichen Lösung ist Application Specific Integrated Circuit (ASIC) Artificial

Intelligence (AI)-Chips. Ein typisches Beispiel ist die Google Tensor Processing Unit (TPU),
die die Ausbildung und Rückschlüsse sowohl für das überwachte Lernen als auch für das Ver-
stärkungslernen abdecken könnte. Eines der Hauptprobleme ist, dass ein solcher Chip keine
hohe Datenübertragungsbandbreite bieten konnte, außer hoher Rechenleistung. Zum Vergle-
ich: Der Xilinx UltraScale+ FPGA könnte auch eine rohe Rechenleistung und Effizienz für alle
Datentypen bis auf ein einziges Bit bieten.

Aus Sicht der Bereitstellung wird der Trainingsteil des überwachten Lernens in der Regel
von CPU/GPU/TPU für ein festes Dataset durchgeführt. Für das Verstärkungslernen ist die
Trainingsphase komplexer. Der Algorithmus muss regelmäßig mit dem kontrollierten System
interagieren und einen Markov Decision Process (MDP) ausführen. Es gibt kein statisches
Trainings-Dataset, aber es wird in Echtzeit abgerufen. Das Zeitfenster zwischen den einzelnen
Schritten hängt von der Dynamik des gesteuerten Systems ab. Die Schlussfolgerung ist auch
an diese Samplingzeit gebunden, da der Algorithmus mit der Umgebung interagieren und die
geeignete Aktion für eine Antwort entscheiden muss, dann wird eine höhere Zeitanforderung
vorgeschlagen.

Diese These liefert Lösungen sowohl für die Ausbildung als auch für die Rückschlussung
des Verstärkungslernens. Zuerst werden die Anforderungen analysiert, dann wird der Algorith-
mus von Grund auf neu abgeleitet, und die Ausbildung auf dem PS-Teil des Zynq-Geräts wird
implementiert, während die Schlussfolgerung auf FPGA-Seite vorgeschlagen wird, die eine
ähnliche Lösung im Vergleich zum überwachten Lernen ist. Die Ergebnisse für Richtlinien-
gradient zeigen eine Menge Verbesserungen gegenüber einem CPU/GPU-basierten Machine
Learning Framework. Der tiefer deterministischer Richtliniengradient hat auch Verbesserun-
gen in Bezug auf Trainingslatenz und Stabilität. Diese Implementierungsmethode bietet einen
Ansatz mit geringer Latenz für den Schulungsprozess für die Verstärkung des Lernens vor Ort.
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Chapter 1

Introduction

With the success of deep learning algorithms and the sharply increasing number of applications,
the competition on the ideal processing architectures has been re-opened again. For many years,
the x86 architecture[1] was the de-facto standard. Other architectures have been presented sev-
eral times but have not been considered. The effort and cost to migrate existing code was
considered too high. Especially the validation of approved implementations made researchers
stick to architectures and their corresponding programming languages of the last millennium.
Artificial intelligence seems to be a game-changer now which provides an novel processing
method and more clearly, the novel algorithms. Meanwhile, dedicated AI processors are pro-
posed and integrated nearly everywhere: from mobile embedded processors to FPGAs[2] and
GPUs[3].

In parallel to the spread on artificial intelligence in science, industry and society, the ARM
platform[4] has reached a performance level that can compete with the traditional x86 CPU ar-
chitecture. ARM Holdings develops the architecture and licenses it to other companies. ARM
processors have been used in Apples mobile phones and tablets for years and increased dras-
tically in performance. From next year on, ARM architectures will also be used in Apple
computers. As a proof, in year 2020, the Fujitsu A64FX, an Armv8.2-A+SVE based architec-
ture is used as supercomputer architecture and shows a relatively low execution time and high
performance compared with Marvell (Cavium) ThunderX2 processor and Intel Xeon Skylake
processor in [5].

Today’s power consumption demands alternatives to the x86 architecture. The energy con-
sumption of computing centres worldwide in the year 2017 has reached 350 billions of kWh
per year [6]. The ARM and FPGA both show the potential of low power consumption but the
same performance by comparison with CPU and GPU. The ARM cluster is more efficient for a
large dataset than GPU [7]. [8] illustrate that FPGAs overperform GPUs in energy efficiency
measured in Multiply-accumulate operation.

Dedicated AI-based algorithms, accelerator units like ARM processors and FPGAs are able
to reduce the aforementioned demand by at least an order of magnitude. This thesis will investi-
gate the impact of these probably disruptive technologies on Data Acquisition (DAQ) Systems.
A promising platform for DAQ applications is enabled by recent System on Chips (SoCs),
where the programmable logic combines with embedded ARM processors. They seem to be
ideal to evaluate the architectures for AI-enabled applications in science and evaluate the es-
timated performance increase. The thesis will demonstrate how to implement different AI
application on DAQ, how to allocate the AI tasks on different computing architectures within
one SoC, and the results will be illustrated.

4



1.1. ADVANCED DATA ACQUISITION SYSTEM 5

1.1 Advanced data acquisition system
The quality of data determines the quality of scientific results and thus the success of an ex-
periment. Data acquisition (DAQ) systems are essential to realizing high-quality results. DAQ
system span a wide bridge of technologies form front-end electronics to data processing and
archival. The term "data acquisition" refers to many measurement applications, all of which
require some form of characterization, monitoring, or control. Regardless of the specific ap-
plication, the purpose of general data acquisition systems is to measure physical parameters
or different kinds of signal (for example, optical, mechanical, thermal, electrical, magnetic,
chemical, etc.), or to use actuators generate specific actions based on the data received. Two
primary missions of the DAQ systems are data transmission and data processing. The compe-
tence of data transmission includes the DAQ system can receive the data and handle the data
(e.g. high speed and high bandwidth data). The data processing means the DAQ system is able
to interpret the data and react to it. The major challenges to recent DAQ systems are:

1) To support high data throughput acquisition and enable data processing with low-latencies;

2) To provide the flexibility to adopt to changing experimental phases and to cover the
dynamical development process during the construction of large-scale experiments;

3) To realize complex data processing algorithms to make DAQ systems intelligent.

These three challenges will then be discussed in the following and solutions will be presented.
First, the large scale physical experiment detectors have ever-increasing time, spatial, and en-
ergy resolution, and produce the data volume that previous generation sensors and DAQ system
could not match. This requires that the DAQ systems in used need to support high-throughput
data in the real-time range from front-end electronics to FPGAs, and also should include or
connect to post-processing components (e.g. CPU/GPU clusters). The DAQ system could be
configured as a transfer station, or process the data as an end-point. This requires the DAQ
system owns different and multiple communication channels, and this could enable the DAQ
system to be configured to the different topology. Some physics experiment need feedback
within a short time frame, for example, the beam control system at the Karlsruhe Research
Accelerator (KARA) [9, 10, 11]. Thus the DAQ needs to react to the incoming data with low-
latency shorter than the sampling time.

• Which devices are able to provide high throughput and low latencies? How to optimize
the latency?

Normally, the answer will be the Field Programmable Gate Array (FPGA). The leading
edge FPGA [12] could provide dozens of high bandwidth configurable transceivers for dif-
ferent high-speed data bus protocols. The execution model at FPGA is free for construction:
parallel, pipeline, and data flow, which is different from the instruction model on CPU/GPU.
This enables FPGA a possibility to build low latency data processing.

For the beam diagnostics systems, the FPGA-GPU heterogeneous [13, 14] system devel-
oped at the Institute for Data Processing and Electronics (IPE) plays an important role, provid-
ing a multi-Gigabyte per second real-time data transmission. In this heterogeneous system, one
of the key components is a Direct Memory Access (DMA) engine [15], so-called "KIT DMA".
That is fully compatible with Xilinx FPGA families 6 and 7, UltraScale+ device. The DMA is
PCIe Generation 2, 3, 4 compatible. The Xilinx Virtex-7 based PCIe FPGA board ("Hi-Flex")
used in [14, 15]. Fig (1.1) demonstrated the data throughput measurement by KIT DMA and
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it has a throughput larger than 6.5 GB/s in these 3 different transfer modes. This also provides
very low latency transmission between FPGA and GPU. By "GPUDirect (NVIDIA)", the av-
erage transfer latency is lower than 2 µs. By "DirectGMA" from AMD, the latency between
Hi-Flex and AMD FirePro W9100 is lower than 1.3 µs.

Figure 1.1: Data throughput measurements by KIT DMA to system memory, NVIDIA Tesla
K40 and AMD FirePro W9100. [13]

Secondly, the demanded flexibility of DAQ systems means they could serve as a general-
purpose tool, with dedicated processing units according to the problem to be solved. Because
FPGA has the capacity for various hardware implementation structure, it could dynamically be
reprogrammed with a data path that matches a dedicated processing/specific workload. Thus
FPGA performs better for specific applications than general-purpose application processors
like CPU/GPU. On the other hand, for general purpose applications, for example, a general
calculation or task without strict time tolerance could be implemented on such an application
processor. Some general embedded processors are also able to support a flexible control over
front-end analogue-to-digital converter (ADC) or other peripherals. The state and data inside
FPGA also demand a conveniently and flexibly control. Several questions could ask as follows
for these additional functionalities:

• Which device could provide such flexibility and support embedded operating system?

• Is there another chip is required in the hardware design? Is there a solution to reduce the
layout of the printed circuit board (PCB) if two chips on one board?

• Which tools are available to simplify the design effort and help to realize efficient com-
munication between FPGA and it’s embedded processor?

The third and also most demanding requirement is to realize complex tasks within DAQ
systems. The first and second requirement serves as a prerequisite for the third requirement:
complex task accomplishment. With the deepening of the research and the improvement of
the front-end data volume, the new detector/accelerator may have different and more complex
task than before. For some of these tasks, it is very hard to write the program or implement
it on the hardware. For example, a problem like recognizing a multi-dimensional object in a
cluttered scene. Such a problem could be the track finding through hundreds of hits at one
event [16] at collider experiments to construct a program to recognize the track is difficult
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because one doesn’t know how physics experts recognize the track in their brain. Or even there
was already one solution but a sophisticated algorithm is required. One simple method may
perform well for one single event but the track form and style are changing frequently per event,
a generalized approach for recognization is required. Besides the recognization problem, it is
a similar situation for the control problem. At KIT’s research synchrotron KARA, a micro-
bunching control loop is under development [17]. A formation of microstructures and CSR
fluctuations caused by self-interaction is tremendously complex, and even no proper solution or
traditional control methods to generate a longitudinal RF feedback to the RF cavity.

• Which device is suitable to cover many different kinds of machine learning approaches?

• Is there some general tool to transfer the Machine Learning (ML) model from ML experts
to engineers?

• How to allocate the different machine learning tasks on DAQ?

Machine learning (ML) will not replace the traditional approach in every case. But in some
applications, take the two above mentioned applications as examples, due to the complexity of
the problem, it may be the only solution to the problem. In the field of High Energy Physics
(HEP), machine learning becomes a novel data analysis approach and many applications have
been reported by white paper [18].

For other situations, machine learning algorithms also could be regarded as a good alterna-
tive. The traditional data processing methods may need sophisticated professional knowledge
of the application field, and a complex parameter adjustment process. Moreover, each method
is targeting a dedicated application, therefore it has poor generalization ability and robustness.
Deep learning is mainly based on data-driven feature extraction. Training on a large number of
samples, deep and specific feature representation of the data set can be obtained, which makes
the expression of the data set more efficient and accurate. That has lowered barriers to entry in
some industries.

1.2 Machine Learning

As Deep Learning (DL) is a branch of Machine Learning (ML), this thesis, will only use the
term Machine Learning because some of the method mentioned do not belong to deep learning.

Machine learning methods could be divided into three major paradigms: Supervised Learn-
ing, Unsupervised Learning Semi-supervised Learning and Reinforcement Learning. These
algorithms are addressing different problems.

This thesis will focus on Supervised Learning and Reinforcement Learning, which is the
most prevalently used approaches. The Supervised Learning (SL) is learning a model from
the training dataset of labelled examples by machine learning engineer, and use the model for
inference. Some of the typical tasks could be a classification or regression problem. On the
other side, Reinforcement Learning (RL) is designed to maximize long-term future rewards.
The algorithm aims to find an optimal control under the finite Markov Decision Processes
(MDPs). Both SL and RL have training stage and inference stage. The training stage is how
the model or algorithm becomes clever, no matter which approach it is to use. The inference is
to use the trained model/algorithm to solve the reality problem.
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Figure 1.2: The training and inference stage in supervised learning are normally independent.
The training stage is realized often on GPUs/CPUs due to a floating-point calculation and
machine learning framework availability, while inference can be implemented also on hardware
accelerators.

1.2.1 Supervised Learning
As shown in Fig (1.2), the label cat or dog needs to be prepared before the training stage. The
model will try to extract the pattern hidden behind the training data set with its corresponding
label. Once the training stage is finished and the model is verified, the parameters (e.g. the
weights and biases in Neural Network, Convolutional Network or Recurrent Neural Network)
is keep fixed. Then it validated in an inference stage, for instance, an image recognization
task, only the forward pass of the network is required to implement on the hardware. After the
verification, if the model satisfies the requirement, the model will be transferred to the hardware
for the inference. The inference hardware could be FPGA/GPU/CPU/ARM and/or any other
hardware devices. For realization in DAQ systems, several questions need to be answered:

• Which device is more suitable for the inference stage of SL?

• Is it obliged to deploy also the training process on the hardware for supervised learning
applications?

• Are there any tools to help to decrease the developing time to transfer the model from the
machine learning environment to the hardware platform?

• Is there a suitable device or platform that could cover as much supervised learning as
possible?

1.2.2 Reinforcement Learning
As to Reinforcement Learning, the model is established through interaction with the system
that needs to be controlled. Thus, in this case, there is no training data like supervised learning
required. The training data is generated online by interaction with the system to be modelled.
There are three basic components in RL: agent, action, and environment (normally a state signal
representing the environment). An agent is a decision-maker, and that means generate proper
action at each step. Then the agent action will be sent to the environment. The environment
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reacts to the actions and presents a new state to the agent shown in Fig (1.3). After this step,
the agent will collect the interaction information and use such information to learn.

The rules of Go-playing are simple and elegant, but the ways of playing vary largely. It
takes a lot of practice and studies to master its connotation. Go is considered to be one of the
most complex board games in the world. Writing a program that possesses the capability of
strategy, memory, observation, judgement and counting is extremely difficult. Therefore to set
up the reinforcement learning framework and to let the agent learning directly from the inter-
action with the game is an attractive alternative. The immediate or long-term wining or failure
indication will lead the machine learning to become more "clever". The agent AlphaGo de-
feated the human European Go champion by 5 games to 0 with reinforcement learning together
with a tree search algorithm [19]. As mentioned earlier, reinforcement learning is acquiring
training data during the interaction stage. This implies that the inference and training process
needs to be considered as one unit. Several questions need to be answered:

• Which device is suitable to implement reinforcement learning with both the inference
stage and training stage?

• Is it necessary to deploy the training process also on the hardware?

• If required, are there tools to help decrease the developing time that transferring the
training process from reinforcement learning engineering to electronic engineering?

• Is there a suitable device or platform that is able to cover most of the advanced reinforce-
ment learning algorithms?

Action

Agent

Environment

Reward
State 0 State 1

Figure 1.3: Go is an abstract strategy board game for two players [20]. Under the definition of
reinforcement learning concept [19], one player act as an agent, the other one is its opponent,
acting as the environment. The Go play continues in a way that agent and opponent give their
movements one after each. Once the opponent settles the stone, then the state (the location of
each stone on the board) is changed. After the agent receives the state signal, it will generate
the action for itself. The environment will change according to such movement. During each
step, the reward signal also generates from the environment, that guide the agent to learn from
each step.
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1.3 Machine Learining applications
Machine learning (ML) is the most common method in Artificial Intelligence (AI). In the field
of High Energy Physics (HEP), machine learning methods have been used for data analysis.
Many tools have been presented since 2010. The following examples demonstrate the success
of those applications in SL and RL.

In High-energy Physics after the collision of high eneretic particles, beams of secondaries
are generated. Jets denotes high-energetic, directed beams of particles. The main task of Jet
Physics is to identity the various particles after collision. For jet multiclass classification prob-
lems at the Large Hadron Collider (LHC) at Conseil Européen pour la Recherche Nucléaire
CERN [21]. Convolutional Neural Network (CNN) are used to discriminate quark and gluon
jets The Compact Muon Solenoid (CMS) [22] collaboration at LHC considers using convolu-
tional layers and Recurrent Neural Network (RNN). The Graphic Neural Network (GNN) are
also used for the analysis of jet substructures [23].

The heavy-ion experiments follows the theory of Quantum Chromodynamics (QCD). The
QCD have two different transition: a crossover [24] or first order [25]. The CNN is used to
identify two different equation of state (EoS) [26]. The PANDA detector (antiProton ANnihi-
lation at DArmstadt) [27] is a multi-purpose detector system. The task of track finding aims to
identify particles belonging to the same track. The neural network is used for hit aggregation
in [16], and a improved GNN method in [28].

The emission of Coherent Synchrotron Radiation (CSR) depends on the shortness of the
electron bunches. The self-interaction of the bunch causes micro-bunching instability. The
Karlsruhe Institute of Technology (KIT) storage ring Karlsruhe Research Accelerator (KARA)
aims at the stabilization of the emitted THz radiation to tackle the problem of micro-bunching
instability. A reinforcement learning (RL) based method is planned to be implemented through
an RF feedback system located at storage [17].

1.4 Accelerating Machine Learning
To use machine learning in DAQ systems, often real-time requirements need to be fulfilled.
Accelerated Machine Learning is a topic that reached out beyond scientific applications, in-
cluding industrial use-cases. How the algorithm is been accelerated firstly depends on the al-
gorithm itself, and its corresponding problem set to be solved. Secondly, the precision, power,
throughput, latency and cost required by application [29].

If one combines two different stages (training and inference) with two different methods
(reinforcement learning and supervised learning), there will be four components that have the
possible requirement for implementation and acceleration:

1. supervised learning training process

2. supervised learning inference process

3. reinforcement learning training process

4. reinforcement learning inference process

Not always all four implementations are required. Each algorithm results in a different
implementation strategy. Normally, for both supervised learning and reinforcement learning,
the training process is not needed any more during the inference procedure cause the model
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has already been verified by the test data set. Especially for supervised learning, because the
training process always happens off-line, therefore a natively long preparation time for data
collection, model fine-tuning happens in the supervised learning based engineering.

For reinforcement learning, however, the consideration will be slightly more complex. First,
the inference process part must be included because it will be the final solution. Whether the
learning process is needed is depends on the problem set. For example, in autonomous driving,
the tasks in [30] are mainly divided into two different tasks, the test task and the training
task. During the test task, the episode is running with a fixed optimal policy, and that is a
pure inference stage. But in the training task, it chooses a task with a noisy policy that will
randomly choose some other non-optimal policy to explore the action space. Because the
learning stage is required happening in the field, thus, for a hardware implementation, needs
to deploy both the inference stage and the training stage. The training stage for supervised
learning is already difficult, moreover, because some of the prevalent RL algorithm frameworks
is more complex than supervised learning, the reinforcement learning training process needs
much more computation and control than supervised learning. The training process required
the single/double precision Floating Point Unit (FPU) to guarantee the computational accuracy
of the training process. This again requires a capable application processor on the DAQ system.

For accelerated machine learning the questions listed above need to be refined.

1. Which Algorithm will be accelerated? Supervised Learning (SL) or Reinforcement
Learning(RL)?

2. Is there any difference between SL acceleration and RL acceleration?

3. The weights of the model(SL or RL) is fixed or need to be updated to adapt to the chang-
ing environment?

4. Which part should be put into the hardware, training process, inference part or both?

5. How to accelerate the SL inference part?

6. How to accelerate the RL inference part?

7. Is there any similarity between SL and RL inference?

8. How to process the RL training process on application processor?

9. Which main chip will be selected for SL and RL? FPGA, GPU, CPU, ARM or SoC?

1.5 Hardware platform
High-performance DAQ systems are today based on FPGAs. They provide a variety of high-
throughput links and an enormous amount of logic cells. In recent years, embedded processors
have been added to FPGA devices. The combination of both units makes FPGA-based DAQ
boards an ideal platform for machine learning integrated with high bandwidth data acquisition
and control. But only the latest FPGAs using the ARM architecture possess the potential to own
adequate ability of application performance. There is a wealth of portable software, drivers
and modules under the ARM-based embedded Linux system. Thus it provides both relatively
powerful computing power and control capability. Especially for machine learning, FPGA
could achieve low latency and high bandwidth for inference. For some of the small networks,
the ARM could undertake the responsibility of training where will show in Chapter 7, 8, and 9.
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The first embedded processors have already presented in the early 2000 years. Among the
first heterogeneous architecture are the Virtex-4 FX family [31], Virtex-5 FXT families [32].
The Virtex-5 FXT is a high-performance embedded system. The FPGA logic is one to two-
speed grade improvement over Virtex-4 devices. It owns PowerPC 440 (PPC440) cores em-
bedded with FPGA logic. One of the major drawbacks of this generation system-on-chip is it
required a hardware engineer to program the FPGA part first. Then the peripherals, memory
systems, including the data path across processor and logic, is required for the design. Fi-
nally, the processor could be programmed. Xilinx delivered the Zynq-7000 All Programmable
SoC [33] in the winter of 2011. This enables the developer to jump directly to the hardware-
software co-design, both hardware development and software development are independent and
can happen simultaneously then they are combined by the system engineer.

It already improves the embedded processor from PPC440 to Coretex-A9 (Zynq-7000), thus
resulting in a performance improvement from 1.0 to 2.5 DMIPS. Then comes the Zynq Ultra-
Scale+ equipped with Cortex-A53 which increase this performance to 3.45 DMIPS, enabling a
powerful application processor on the DAQ.

Figure 1.4: Zynq UltraScale+ MPSoC block design

Xilinx UltraScale+ MPSoC architecture family of products [12] integrates a feature-rich
64-bit quad-core or dual-core Arm Cortex-A53, dual-core Arm Cortex-R5 based processing
system (PS) and Xilinx programmable logic (PL) UltraScale architecture in a single device.
At the PS part, the embedded Linux system could be built and for data acquisition, processing
and general applications. On the other hand, at the PL part, the DMA could be integrated
into the FPGA and can communicate with GPU directly with high data bandwidth. As shown
in Fig (1.4), at the PS part of the Zynq UltraScale+ device, the ARM Cortex-A53 and real-
time ARM Cortex-R5 could provide a powerful embedded Linux system and/or bare mental
application. These processors have multiple access method to soft intellectual property (IP)
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core located at PL side through rich internal buses. This heterogeneous MPSoC saves PCB
wiring resources and DAQ system development time.

Demonstrated in Fig (1.4), the top part of the picture is the processing system of Zynq.
It is consists of an application processing unit, real-time processing unit, graphics processing
unit, memory controller, and connectivity for abundant peripherals. At PS part the Zynq Ultra-
Scale+ device, the ARM Corex-A53 and real-time ARM Cortex-R5 could provides a powerful
embedded Linux system and/or bare mental application. These processors have multiple ac-
cess method to soft intellectual property (IP) core located at PL side through rich internal buses.
This heterogeneous MPSoC save PCB wiring resources and DAQ development time.

The bottom side of the picture of block design is the programmable logic of Zynq. It
contains system logic cells, look-up-table (LUTs), Digital Signal Processing (DSPs), block
RAM, UltraRAM, general-purpose inputs/outputs and many high-speed connections.

1.6 Chapter arrangement
This dissertation has two parts. The first part is the hardware design. Within which Chap-
ter 2 is the design and test of the novel multipurpose PCIe readout card (HighFlex2); Chapter
3 demonstrates the works around system-on-chip and embedded Linux system. The second
part of the dissertation covers artificial intelligence implementation methods and its application
based on HighFlex2. Chapter 4 will give an introduction to machine learning, basic math-
ematic theory in supervised learning, and its acceleration methods; In Chapter 5, the Xilinx
DPU is implemented as a solution for supervised learning inference on HighFlex2; Chapter 6
introduce the major knowledge required in the dissertation; Chapter 7 demonstrate the efforts
to develop the reinforcement learning (Policy Gradient) training process on HighFlex2 and its
testbench; Chapter 8 shows the Deep Deterministic Policy Gradient implementation method on
HighFlex2; Chapter 9 is the overall reinforcement learning design at KARA; Chapter 10 is the
conclusion.
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Chapter 2

Hardware design of the readout card

This chapter focuses on the hardware design of a PCIe readout card based on the recent Zynq-
MPSoC programmable family. For large-scale real-time data process, the FPGA-GPU combi-
nation is considered as one suitable solution [34]. For many years, the Institute for Data pro-
cessing and Electronics (IPE) has been involved in the development of heterogeneous FPGA-
GPU systems for the processing of the data in real-time. As an upgraded version of the existing
readout card (so-called "HighFlex" [35]) to meet the needs of high-speed data processing and
artificial intelligence, a major feature provided by HighFlex2 is its compatibility with the PCIe
standard bus.

There are several commercial development platforms on the market, the HTG-930 [36] and
HTG-Z920 [37] from HiTech Global, Xilinx ZCU102 [38], ZCU104 [39] and ZCU106 [40].
Unfortunately, none of the evaluation boards meets all the requirements required by the projects,
such as electrical/optical interfacing, data throughput, flexibility, etc. Therefore, a custom read-
out card based on PCIe generation 3/4 with 16 lanes has been developed.

For example, the ZCU102 includes a PCIe Generation 2 with x4 lanes connected to the
ARM Processor Subsystem (PS) by dedicated GTR transceivers which support data rate up
to 6 Gb/s. While the custom readout card is based on PCIe generation 3/4 with 16 lanes,
which allows managing a data throughput of over 200 Gb/s in continuous readout mode. The
CPU/GPU platform is the data destination, therefore the readout card is a PCIe Endpoint de-
vice, the PCIe Gen3/4 also needs to connect with the PL part of the Zynq device where PCIe
Integrated Block [41] is supported. The HTG-930 and HTG-Z920 support x8 PCIe Gen4 or
x16 PCIe Gen3. However, the HTG-930 is mounted with Xilinx Virtex UltraScale+ [42] de-
vice, which is not an MPSoC. Therefore, it is not fully suitable to guest multiple machine
learning implementations and an embedded operating system. The HTG-Z920 is based on a
Xilinx MPSoC UltraScale+ PCIe platform but several important interfaces are not available,
like the Serial Advanced Technology Attachment (SATA), Ethernet, and in terms of flexible
high-speed data transmission, FireFly [43] connection.

The comparison between the available evaluation boards and the HighFlex2 is shown in
Fig (2.1). The last reason is scalability. The chip mounted on the ZCU102 is equipped with
Zynq UltraScale+ XCZU9EG-2FFVB1156E MPSoC and both ZCU104 and ZCU106 have
Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC on top. But such devices do not integrate
the PCIe hard-core and the necessary number of DSP slides that are required for the corrected
implementation of the ML network on FPGA. The selected Zynq is UltraScale+ XCZU11EG-
1FFVC1760 MPSoC. As shown in Fig (2.3), the direct comparison between the ZU7EG and
the ZU9EG, mounted on the evaluation boards, and the selected Zynq device ZU11EG shows
as the selected device integrates up to 4 PCIe hard-core logics, a large number of DSP slices
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Property ZCU102 HTG-930 HTG-Z920 HighFlex2

Main Chip
Zynq

Ultrascale+
Virtex

Ultrascale+
Zynq

Ultrascale+
Zynq

Ultrascale+

PCIe No Yes Yes Yes

FireFly No No No Yes

FMC+ No Yes Yes Yes

PL DDR4 Yes Yes Yes Yes

PS DDR4 Yes No Yes Yes

Ethernet Yes No No Yes

SD Card Yes No Yes Yes

SATA Yes No No Yes

Figure 2.1: Comparison between HighFlex2 readout card and the available commercial boards.

(up to 3000), which are necessary for ML implementation, and a large number of both GTY
and GTH serial high-speed transceivers, which are necessary for the implementation of the
fast optical and electrical interfaces (e.g. PCIe x16). Moreover, the selected FPGA package
FFVC1760 allows the migration that enables the re-mounting of the other high-end ZU17EG
and ZU19EG devices on the HighFlex2 card.

Figure 2.2: Top side of HighFlex2 DAQ card

In Fig (2.2), the fully assembled HighFlex2 DAQ card is shown. All components on the
board are tested and verified. The main processor on the centre to the left of the board is Zynq
UltraScale+ XCZU11EG-1FFVC1760 MPSoC. Located on the left side is the FMC+, which is
a VITA 57.4 standard connector. On the top left side are two FireFly connectors. The top side is
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a USB and a UART connector for the PS part. On the right-bottom side are the Micro SD card
and Ethernet connector. The bottom side is the PCIe x16 lanes slot. Also on the bottom left
of the board is the Phase Locked Loop (PLL) chip, which has 10 programmable clock outputs.
The middle part of the board has two SATA connectors where one could plug in an external
storage device like SSD. Below the SATA connectors are four DDR4 chips, which contain 2
GB size in total. On the backside of the board, there is a 72 bits data width SODIMM which
provides processing system with different DDR sizes compatibility(4GB, 8GB, and 16GB).

Figure 2.3: Zynq UltraScale+ EG devices [44]

Figure 2.4: MPSoC Device Migration Table [44]
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2.1 FPGA resources allocation

Zynq UltraScale devices provide various I/O and offer: several Giga-bit transceivers, High-
performance, (HP), high-density (HD), and high-range (HR) I/O banks. The HP banks could
support different voltage level of I/O standard, LVDS, and many other kind of chip-to-chip
interfaces. The HD I/O banks are designed for low-speed purpose.

The Xilinx high-speed transceivers on FPGA are designed to cover many high-speed pro-
tocols that is available nowadays. The UltraScale+ device integrates two different types of
high-speed transceivers: the GTH and GTY [45]. GTH has a 32.75 Gbps speed and GTY owns
16.3 Gbps respectively. XCZU11EG-1FFVC1760 have 32 number of GTH transceivers and 16
GTY transceivers.

To optimize the performance of the optical data link, 12 full-duplex lanes of the FireFly
are routed on 12 GTY transceivers. Therefore, the left 4 GTY resources are routed to FMC+
gigabit transceiver data pairs (DP). PCIe connection requires x16 transceivers, thus 16 lanes
of GTH are employed for this purpose. The left 16 GTH are routed to FMC+ DP. Therefore,
FMC+ contains 4 GTY and 16 GTH, providing a total 391.8 Gbps connection from/to a FMC+
mezzanine card. In Fig (2.5), the resources allocation plan map are shown.

Figure 2.5: The Zynq XCZU11EG-1FFVC1760 packaging diagram [46]

On the top-left side of the plan map, the red colour rectangular frames three GTY Quads
(GTY Quad 128-130) for FireFly. In addition to these, one HD I/O Bank 90 has been routed
to manage the I2C interface required from the FireFly optical connection. On the bottom-
right side of the plan map, the GTH Quad (GTH Quad 224-227) (green colour) shows PCIe
transceivers allocation. The blue colour part are the Quads and Banks that connected with
FMC+. The yellow rectangular frames the Banks (HP I/O Bank 65-67) that employed to con-
nect the FPGA to the DDR4 memory device integrated on the HighFlex2 card.
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2.2 Clock distribution
The clock distribution is fundamental to enable digital communication. The overall clock dis-
tribution on HighFlex2 is shown in Fig (2.6). The clocks which are provided to the Processing
System are PS_REF_CLK and PS-GTR. The PS-GTR clock is employed for PS-GTR high-
speed Transceivers. These transceivers are connected to 2 SATA connectors and operating in
raid configuration. The GTR requires a clock of 150 MHz.
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Figure 2.6: HighFlex2 clock overall distribution diagram
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Figure 2.7: Clock chip SI5341 could generate up to 10 independent clocks.

For PCIe logic block, a PLL (ICS871S1022) jitter attenuator clock generator is employed
to provide the reference clocks fully compliant to the PCIe hard-core Generation 4 Fig (2.6).
The clocks are distributed in such a way to instantiate one single PCIe core generation 4 x8
lanes or two parallel PCIe cores that can support generation 4 x16 lanes. The mentioned clock
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scheme will be discussed in the next paragraph. For PL (Programmable Logic) part memory, a
300 MHz clock is provided to the Memory Interface Generator (MIG) IP Core. The MIG is an
IP Core that combines the controller and physical layer (PHY) for interfacing the FPGA user
designs to the DDR4 memory device. For PS (Processing System) part memory, the DDR4
connected with the PS part have an internal clock provided directly from the DDR4 controller
integrated on the PS. The FireFly have two options: one from on-board SI5341 clock chip,
and the second option is from external clocks that defined by users. This provides a flexible
operation mode.

Because the PS part and PL part is working independently, once the PS is powered up,
the PS I2C could be used to configure the programmable low-jitter PLL SI5341 in Fig (2.6).
This allows the clocks to be ready before the PL starts to work. This low-jitter 10-output
programmable clock generator enables a flexible clock source configuration with the output
which could be programmed to 100 Hz to 1028 MHz. The reference clock of each GTH and
GTY Quad could have both on-board clock source and external clock source. The user could
configure the clock source according to the specific application through I2C directly connected
to the processing system. The configuration of the clock distribution could be programmed by
SILICON LABS ClockBuilder Pro software [47]. All the settings will be stored in a C header
file. The user could import that file into Xilinx Software Development Kit (SDK) and program
the PLL by the I2C interface managed by the ARM easily.

The Fig (1) in Appendix A shows the software structure in Xilinx SDK. Each channel can
be configured to LVDS, LVPECL, LVCMOS, CML, and HCSL with different signal amplitude.
Fig (2.7) shows the default clock configuration pre-programmed on the HighFlex2 card. The
input reference clock of the PLL can be selected between a reference clock, programmable by
the FPGA (Bank 64), or a reference clock provided by local quartz.

2.3 PCI Express circuit design

Fig (2.9) illustrated out the GTH transceivers and their connection to the PCIe giga-transfer
serial lines. Four GTH quad are employed to connect the 16 full-duplex lines of the PCIe:
GTH Quad 224, 225, 226 and 227. The GTH Quad 224 and 225 are connected to the lines from
8 to 15 of PCIe, which is connected to a PCIe hard-core with x8 lanes, generation 4. They use
the 100 MHz clock source from ICS87S1022. The GTH Quad 226 and 227 together own the
0-7 RX/TX. The reference clock is shown in Fig (2.9).

The routed PCIe connection scheme, shown in Fig (2.9), allows higher flexibility on the
PCIe implementation in the FPGA. Several solutions are possible in Fig (2.8).
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Figure 2.8: Three different PCIe configuration implementation. The left one is Gen 3/4 x8
lanes (TOP); The middle is the Gen 3/4 x8 lanes (BOTTOM); The right is generation 3 x 16
lanes.

Figure 2.12: Performance of the dual-core KIT DMA engine for PCIe Gen 3 x16

A preliminary test has been done to evaluate the corrected functionality of both PCIe in-
terfaces. The FPGA architecture deployed in the HighFlex2 is based on a double-core KIT-
DMA [15] operating with x16 lanes, PCIe generation 3. The architecture of the DMA engine
is shown in Fig (2.10). The architecture consists of 4 parts: the TX engine, RX engine, address
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Figure 2.9: Four GTH Quad are assigned to the PCIe ×16 edge connector directly.

Figure 2.10: Architecture of the KIT DMA engine for PCIe Gen 3 x8 [15]

table, and PCIe BAR. The TX/RX engine is used for transmitting/receiving data to/from an
external system (e.g. CPU/GPU based server). The address table stores the descriptors defined
by the driver and written from the Linux driver. Linux driver allocates the pages in the kernel
memory and it writes their physical addresses inside this address table. This write operation
only happens at the initialization stage. After which the FPGA could start to transfer the data
from FPGA to the corresponding address that allocated before. A detail working principle is
explained in [15].

The double-core implementation is an extention of the single-core KIT-DMA shown in Fig
(2.11). It consists in a Master-Slave architecture which is capable to work with two PCIe cores
in parallel sharing the descriptor lists. The double-core architecture is shown in Fig (2.11).

To keep the architecture simple, a Master-Slave architecture was designed [15]. The prin-
ciple is to have one DMA engine acting as a Master, and the second one as a Slave. Therefore,
the Master initiates the DMA operation with the Linux driver. Once the DMA is started, the
Master wakes the Slave up and both engines work together, shown in Fig (2.11). Both Mas-
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Figure 2.11: Architecture of the dual-core KIT DMA engine for PCIe Gen 3 x16 [15]

ter and Slave core are working in parallel. This could double the throughput compared with
single-core mode.

The result obtained through dual-core is presented in Fig (2.12), where each point is the
mean values measured for several tests. With 256B payloads, it could reach 12.4 GB/s through-
put with PCIe generation 3 and is expected to reach a throughput over 24 GB/s by means of
two PCIe cores, generation 4.

2.4 FireFly circuit design

FireFly Micro Flyover System is the first interconnect system that gives a designer the flexibil-
ity of using micro footprint with high-performance optical and low-cost copper interconnects
interchangeably with the same connector system. Samtec FireFly copper and optical cable sys-
tems provide the flexibility to achieve higher data rates to 28 Gbps for each lane and/or greater
distances, simplifying board design and enhancing performance. Two FireFly connectors are
present on the HighFlex2, offering the possibility to integrate up to 12 full-duplex lanes with
each one operating up to 28 Gb/s. Each pair is consists of a 1 UEC5 series FireFly edge card
socket connector for data transmission and a 1 UCC8 series FireFly connector for the configu-
ration, control, and power of the optical link. The slow control is connected with HD I/O Bank
90 as shown in Fig (2.5).
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Figure 2.13: Two UCC8 connectors for slow control not shown here. Two UEC5 data 12 lanes
are allocated to three GTY Quads.

The circuit routing on HighFlex2 is demonstrated at Fig (2.13). The on-board PLL SI5341 (red
arrow) and 85411 clock buffer for external user clock input (green arrow) provide the reference
clock of the GTY Quads. The blue arrows are the RX lanes routing, and the yellow arrows show
the TX routing. Through this simple principle, the HighFlex2 achieves the 12 lanes full-duplex
FireFly.

Figure 2.14: UEC5 TX to UEC5 RX is connected directly to enable the FireFly 12 lanes loop-
back test on HighFlex2.
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Figure 2.15: The figure demonstrate the IBERT IP implementation and three GTY Quads
FPGA implementation on HighFlex2.

Two UEC5 serves as TX and RX for a different direction. To exploit the potentiality offered
by the FireFly technology, the FireFly data lines have been connected to the GTY transceivers
of the FPGA. Each GTY transceiver provided by Zynq MPSoC could offer a data-link with
speed up to 32.75 Gb/s. The Quad 128, 129 and 130 are adjacent allowing an excellent clock
distribution that can be shared among all quads. The clock sources are fully configurable and
can be provided by two sources: the programmable clock chip SI5341, or the external user
clock. This configuration could provide the flexibility of different clock source and configura-
tions.

In order to test the performance of FireFly on HighFlex2, a FireFly copper cable is con-
nected from UEC5 TX to UEC5 RX on HighFlex2 directly shown in Fig (2.14). This enables
an on-board self loop-back test directly on HighFlex2 board. The Integrated Bit Error Ratio
Tester (IBERT) is required. IBERT for UltraScale/UltrasScale+ GTY transceivers IP has been
implemented and deployed in the FPGA. The FPGA placement of the FireFly GTY and the
IBERT logic implementation location is shown in Fig (2.15). The IBERT test has been config-
ured to test all 12 lanes in parallel at two different speeds, 20 and 25 GB/s. The test has been
performed to test and verify the design of the fast differential transmission lines routed on the
HighFlex2 board.

At IBERT IP configuration, two protocols are verified. One has a line rate of 20 Gbps,
another is 25 Gbps. The highest speed of 25 Gbps is limited by the provided official IBERT
core rather than the FireFly link itself. Both protocols are running with a reference clock
of 156.25 MHz. The insertion loss at Nyquist is 20 dB. Data lines are AC coupled with a
termination voltage VTT of 800 mV.

A 2D eye scan is provided in GTX/GTH IBERT IP of the Xilinx UltraScale+ series. Eye
diagram is a series of bit periodic superposition on the horizontal axis to form an eye-like wave-
form. Eye height represents noise and eye width represents jitter. The influence of crosstalk
and noise can be observed from the eye map, which reflects the overall characteristics of the
digital signal.
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Figure 2.16: The eye diagram of GTY lane 0.

Figure 2.17: Reults of the IBERT test on the 12 lanes FireFly at 20 Gb/s.

In Appendix A, Fig (4) shows 12 lanes eye diagram and all lanes works fine (successfully
locked on the given data transfer speed). The Fig (2.16) is the detail of lane 0 eye diagram.
Colour blue standards for a bit error rate (BER) of 10−6. From colour blue to dark red represent
a raise of error bits. The vertical coordinate is the voltage range from full vertical scale (-127
to +127) corresponds to 255 voltage offset. It shows the voltage offset from the baseline. The
conversion for each code at y-coordinate is 1.6 mv per code (for GTY Quad). The horizontal
unit is the unit interval (UI). At the 20 Gbps speed link, the unit is 50 ps.

At the optimal sampling time, the bit error rate is the lowest, while on both sides of the
time axis, the bit error rate increases continuously, as shown in the Bathtub Curve figure in
Appendix A Fig (5). In engineering, this curve for the error rate according to a signal sampling
point, called Bathtub Curve. The TX diff-swing is 950 mV.

The horizontal range for Fig (2.16) and Appendix A Fig (5) is from -0.5 unit interval (UI)
to 0.5 UI. They both declear an 55.56% open range percentage.

As shown in Fig (2.17), all 12 lanes are locked to the 20 Gbps. The total errors found after
1.3 minutes running is 0. The total bits transfered is about 1.57×1012. The bit error rate (BER)
is around 6.34× 10−13.
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Figure 2.18: The 2-D eye scan of channel 1 FireFly running at 25 Gbps.

A 25 Gbps speed data link also is verified here. The Appendix A Fig (6) is 12 lanes’s eye
diagram. The Fig (2.18) is the eye diagram of channel 1. The unit of y-coordinate is 1.6mv per
code that the same as the 20 Gpbs speed test. The UI at 25 Gbps speed link is 40 ps.

Different from 20 Gbps speed test, the TX diff-swing use 1040 mV. The colour blue is lower
bit error rate with about 10−6. The dark red colour represent a 4.1 × 10−1 bit error rate. The
horizontal increment is 10, and vertical increment is 16. The open region of each lane is shown
in Tab (2.1).

Table 2.1: Open percentage in horizontal and vertical direction

Lane Horizontal Percentage Vertical Percentage
0 57.14 20
1 71.43 46.67
2 57.14 33.33
3 42.86 26.67
4 57.14 40.00
5 71.43 40
6 57.14 40
7 57.14 46.67
8 71.43 46.67
9 57.14 33.33

10 57.14 46.67
11 57.14 40.00

The Tab (2.1) shows that all data link have a relatively large open area in both x-coordinate
and y-coordinate running at 25 Gbps. This denotes that all the 12 lanes are working properly
and proves the PCB routing for FireFly is of high quality.

Bathtub cureve in Appendix A Fig (7) explain the channel 1 in another aspect. The same as
Fig (2.18), declearing an 71.43% open range percentage.

As shown in Fig (2.19), all 12 lanes are locked to the 25 Gbps. The total errors found after
about 12 minutes running is 0. The total bits transfered is about 1.946× 1013 bits. The bit error
rate (BER) is around 5.139× 10−14 to 5.146× 10−14.
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Figure 2.19: The transmission lane information.

2.5 DDR4 for programmable logic
The external memory for FPGA logic is one of the important auxiliary equipment for FPGA
DAQ. It is used to temporarily store data from detectors as well as during the FPGA data
processing.

HighFlex2 is equipped with four MT40A256M16GE-083E DDR4 chips. Each MT40A256M
has a memory size of 4 Gb. Therefore in total, the PL memory is 2 GB in size. The PL DDR4
connection scheme between the four DDR4 devices and the FPGA is shown in Fig (2.20).

MT40A256M16 

device 3rd

MT40A256M16

device 4th

MT40A256M16 

device 2nd

Zynq UltraScale+
ZCU11EG

Address

Byte 0

Byte 1

MT40A256M16

device 1st

Address

Byte 2

Byte 3

Address

Byte 4

Byte 5

Address

Byte 6

Byte 7

FPGA 
BANK 65

Address

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

FPGA
BANK 66

FPGA
BANK 67

Figure 2.20: Four PL DDR4 chips topoloty

All four chips share the address bus, which is connected with FPGA bank 65. The byte 0 to
byte 3 is assigned to bank 66, and the byte 4 to byte 7 is assigned to bank 67. There are many
options to assign the ddr4 signals to FPGA bank. These banks have been selected is because
the bank 65, 66 and 67 are located in the same side of ZCU11EG FPGA package as shown in
Fig 2.21, allowing an optimal orientation for the routing of all fast data, address and control
lines on the board.

The MIG core provided by Xilinx integrates a test feature to check the signal integrity
during both the write and read operations. After downloading the bitstream containing MIG
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Figure 2.21: Zynq XCZU11EG-1FFVC1760 package pin, pin region coloured with orange
where the four DDR4 devices are connected.

Figure 2.22: The PL DDR4 calibration passed

core into HighFlex2, the Vivado hardware manager will automatically loads the benchmarking
core and it execute the test of the status of DDR4 after the memory calibration.

The first message is there are no errors detected during calibration. And during the calibra-
tion stage, there are about 25 tests, in which, 17 tests are passed shown in Appendix A Fig (8).
This means a succssful communication with DDR4 is estabilised.

2.6 PS peripherals design

A complete Linux embedded hardware system requires the support of complete peripherals.
As aforementioned, there are clock chip required to connected with PS directly, and also the
Ethernet. Besides this, the SD card and Flash chip are required to boot the system. The PS Mul-
tiplexed I/Os (MIO) is used to route with different peripherals as shown in Fig 9 at Appendix
A.

The Appendix A Fig 9 illustrate that the PS part MIO could be routed with different periph-
erals controllers: USB , NAND, SD2.0/3.0, QSPI, SPI, CAN, I2C, UART, GPIO, etc.



2.6. PS PERIPHERALS DESIGN 31

PS (ARM)Zynq UltraScale+

DDR4 PS

QSIP Dual Parallel
MIO 0- 12

MT25QU512ABB8ESF

IP4856CX25

SD 3.0 8Bit
MIO 39 - 51

I2C Controller
MIO 22 - 23

I2C Controller
MIO 24 - 25

SI5341

I2C

I2C

UART Controller

MIO 18 - 19

UART Controller

MIO 20 - 21

Ethernet Controller
MIO 64 - 77

Figure 2.23: HighFlex2 MIO resources allocation

Figure 2.24: HighFlex2 MIO resources allocation in the Zynq UltraScale+ PS IP configuration,
all the pheripharals selected have a check mark on the IP.

The Fig (2.23) illustrates the detail MIO allocation for HighFlex2. The Flash located at MIO
0 to 12. There are 2 MT25QU512ABB8ESF flash chips connected with HighFlex2, enabling
a 1 Gb size of external memory. The MIO 18 and 19 is the first UART RX and TX. The
MIO 20 and 21 is the second UART. The I2C controller located at MIO 22 and 23 is used for
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configuring the programmable clock device. The I2C at MIO 24 and 25 is connected to the
FMC+ I2C position, and this could provide the PS part with a possibility to directly talk with
FMC without going through FPGA (PL part). The SD card is located at MIO 39 to 51, and a
flexible size micro SD card could be inserted into the board with embedded Linux image and
device tree. The Marvel Alaska 88E1111 physical layer device connected with MIO from 64 to
77. This could provide PS with Ethernet capability. All the peripherals are tested and verified.
The Fig (2.24) shows this MIO allocation in Zynq UltraScale+ PS IP configuration.

2.7 Power supply design
As the Zynq device is a Multiprocessor systems-on-chip, there are different power domains for
the PL part and PS part. The power supply solution for Zynq MPSoC is complicated. The Zynq
UltraScale+ device has four different power domains: low-power domain (LPD), full-power
domain (FPD), PL power domain (PLPD), and battery power domain (BPD). The high level
use cases for power consolidation solution have two: Always on and Full power management
flexibility [48]. The full power management means for each power rail needs independent
software control to reduce the power usage in unused domains. Full power management
flexibility have 14 different power rails. This method will use a large number of regulators
which will cause a huge PCB layout that goes against the goal of a small board. This brings the
solution to Always on.

Figure 2.25: MPSoC Power Consolidation Solution [48]

For the speed grade −1 chip selected, the Always on should use Optimized for Cost. As
shown in Fig (2.25), there are 9 power rail needs to supply except the DDR. As our device is
EG series, not EV, the Video Codec encoder does not existed on the chip, therefore the number
9 power rail VCCINT_VCU could be ignored.

An 8 power supply rail configuration needs at least 8 regulators. This will increase the
difficulty of the layout arrangement. The voltage regulator LTM4650[49] provides two outputs
each of them could be configured independently and range from 0.6 V to 1.8 V. For each output
channel, it has one internal 0.12 µH inductor and saves a lot of space where needs to place a
relatively big inductor peripherally.
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The Zynq UltraScale+ device has strict demand for power-on/off sequencing [50]. For PS
part, the LPD and FPD they have their own recommended power-on sequence. The power-
off sequence is the reversed sequence of power-on. For LPD, first the VCC_PSINTLP, then
secondly is VCC_PSAUX, VCC_PSADC, and VCC_PSPLL. Last is VCCO_PSIO for PS I/O
supply. The VCC_PSINTFP and VCC_PSINTFP_DDR firstly be driven for FPD. Secondly
VPS_MGTRAVCC and VCC_PSDDR_PLL is needed. Last sequence is the VPS_MGTRAVTT
and VCCO_PSDDR. The Fig (2.26) demonstrate our solution to powering in sequence.

The PL power sequence is firstly VCC_INT, secondly the VCCINT_IO / VCC_BRAM
/VCCINT_VCU, thirdly the VCC_AUX / VCC_AUX_IO, and lastly VCCO. The PS and PL are
isolated in devices and independent, so consolidation of the PS and PL power rail is possible if
they have the same voltage level.

Figure 2.26: MPSoC Power Sequence Solution

The solution is combined with 5 individual voltage regulator. Four are LTM4650 to cover
the voltage level from 0.6 V to 1.8 V. Another MAX8686 is used for 3.3 V. Each device have
the run control PIN to turn on according to the channel, and each channel has open-drain
logic for power good indicator. The first device is used for VCC_INT, where is the main
power for PL Internal supply voltage. A combination of two output channel could guarantee
50A current. This triggers the 2nd channel of the fourth LTM4650 device, where supply the
VPS_MGTRAVCC. The power good signal triggers the 2nd stage of channel 1 of device 2 and
channel 1 of device 4 that marked by red lines. Then stage 2 starts the stage 3 that marked
by green lines on 1st channel of 3rd device, finally, the channel 2 of device 2 and device 3
first channel is enabled. In such a way also the adjustable voltage on channel 2 of device 3 is
provided for I/Os. Under each power, rail is related to one or two blocks that contain the names
of power for Zynq. The number in the black circle on the top-right of each block is related to
the power consolidation number in Fig (2.25).
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2.8 Conclusion
This chapter focuses on the design and hardware validation of the novel PCIe readout card
based on Zynq UltraScale+ MPSoC. The x16 lanes of PCIe generation 4 could provide up to
240 Gb/s data throughput with low-latency. The high data throughput combined with the low
latency opens a novel dimension of heterogeneous systems where FPGAs, CPUs, and GPUs
work together in a distributed architecture. This provides a flexible framework for real-time
data processing for several applications, for example, high-energy physics, hadron physics,
photon science and beam diagnostics. Some of the large AI models will also benefit from the
aforementioned heterogeneous architecture because the computation tasks could be distributed
and optimized between FPGAs and CPU/GPU.

Additionally, the full-duplex optical/copper FireFly data link enables a bi-direction data
throughput up to 330 Gb/s between FPGA and modern architecture platforms such as Ad-
vanced Telecommunications Computing Architecture (ATCA), Advanced Mezzanine Cards
(AMC), and uTCA. Such high data throughputs have been designed to satisfy the large-volume
data readout produced by modern beam diagnostics systems like KAPTURE and KALYPSO,
large detectors like PANDA, and sophisticated cryogenic detectors (ECHo). Novel architecture
based on modern remote direct memory access (RDMA) technology i.e. RoCE (RDMA over
Converged Ethernet) and iWARP could enable novel concepts of DirectGPU technology where
FPGA with GPU/CPU are connected by commercial high-performance ethernet data link.



Chapter 3

System-on-Chip on HighFlex2

The term Internet of things(IoT) is one of the significant components of new-generation infor-
mation technology. Firstly, the underlying key point and infrastructure is internet technology.
Secondly, the server and client extends to things, things are connected together and exchange
information with each other. This functionality is achieved through the embedded system using
Zynq UltraScale plus device.

The Experimental Physics and Industrial Control System (EPICS) [51] is a set of Open
Source software tools, libraries and applications developed collaboratively and used worldwide
to create distributed soft real-time control systems for scientific instruments such as a particle
accelerator, telescopes and other large scientific experiments. Bringing EPICS directly inside
the data acquisition system in the field other than host computer has one benefit that users and
scientists could monitor and control the hardware parameters in the same way as controlling
other devices and facilities under EPICS application.

The embedded Linux system could help to build EPICS and Webserver on the hardware.
Firstly, it is open source and has abundant software resources. Secondly, the Linux kernel is
powerful, stable, compact, tailorable, and flexible. The kernel takes charge of process manage-
ment, memory management, file systems, device control and networks. Thirdly in the field of
network, embedded Linux supports all the standard Internet protocols. It has a lot of network
management and network services, the user could build routers, firewall or servers.

3.1 Next generation DAQ system integration
With HighFlex2 board, the data transfer topology for large scale experiment is shown in Fig (3.1).
When the data coming from detectors go to HighFlex2, there are two principles to process the
data in real-time. One is using HighFlex2 as a data transfer centre that bridge the data from de-
tectors to post-processing unit through FireFly. Another principle is to use HighFlex2 as PCIe
endpoint under FPGA-GPU heterogeneous system that enables FPGA to transfer data directly
to GPU memory [14, 35]. For control and monitoring purpose, as each HighFlex2 card embed-
ded with EPICS and Webserver monitor, that user could use ethernet to remotely coordinates
and check the current status of PL of the HighFlex2.

To guarantee the functions aforementioned Fig (3.1), the whole system integration in HighFlex2
is demonstrated as Fig (3.2). This could first enable multiple application working together.
Firstly, it has the basic high-speed data transfer at PL part, to pass the incoming data to FireFly
or PCIe. The machine learning approach could be added in the PL part for data processing
like classification or control. Secondly, enables some of the data transfer between PS and PL
through AXI DMA. This will be used for the data monitor. Thirdly, the AIX lite mapped regis-

35
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Figure 3.1: the HighFlex2 card in high-performance data transfer for large scale experiment.

ter (blue block) could receive the commands from PS part, and also through this register, could
denote some critical signals at PL part, and reflect the status directly to the PS part without go-
ing through AXI DMA. At PS part, the Webserver and EPICS also use the AXI Lite interface
to control these registers also.

3.2 Hardware design of SoC

The term hardware design in Zynq MPSoC means the programmable logic design. This is the
footstone of the embedded Linux system. Theoretically, the PL part could leave empty because
PS have four gigabit Ethernet controller (GEM), and it is hardly connected on the MIO 64 to 75.
But to prove a hardware control in the FPGA side, a data flow is built for a software-hardware
co-design as shown in Fig (3.3). The dummy data generator generates pattern data and sends
the data to FIFO. The FIFO is considered as a relatively small data buffer between different
logic blocks. The high data rate coming from the physics experiment normally exceeds several
Gigabit per second, and this proposes the requirement of high capacity buffer for high-speed
data. The memory size of FIFO initialized inside FPGA is limited. Therefore, a large storage
buffer like external DDR3 or DDR4 is needed. In our case, the HighFlex2 have PL side DDR4
(2GB), which could be used as a regular external FIFO. The PL DDR4 connected with the
memory interface generator (MIG) in block design. The data continue to pass through a second
FIFO to cross the DDR4 clock to PL clock. Then a small block called tLAST is used to transfer
the FIFO interface to AXI4-Stream interface. Then the data goes into AXI Direct Memory
Access (DMA) that transfer the AXI4-Stream data into memory-mapped data located at PS
side memory. Through this architecture, the PS side has the information at FPGA side and a
webserver could be built as an application in the embedded Linux to monitor the data coming
from PL easily. There is also some control register in the PL part, which could be accessed
by AXI4-Lite interface. All the blocks in the PL part that have AXI4-Lite interface could be
integrated into the embedded Linux system, and control or accessed by ARM.

The hardware block is built in Xilinx tool Vivado. Fig (3.3) demonstrates the full data
chain from a dummy data generator to PL DDR4 and finally reach to PS DDR4. The left-
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Figure 3.2: The system integration combines all the PS and PL components together, thus
enable multiple functionalities at the same time.

Figure 3.3: The FPGA hardware block design for system on chip. This infrastructure will test
two important PL components: PL DDR4, and AXI DMA. Then the embedded Linux will be
built based on this hardware design. The webserver will be used to take the data from dummy
data generator and shows to the user. The EPICS is used to control the stage like start/stop
dummy data transfer, start/stop DDR4 transfer, and start/stop DMA transfer.

bottom block Zynq UltraScale IP in the Fig (3.3) generally represents the PS part of Zynq [52].
It has the software interface like AXI I/O groups around the Zynq UltraScale+ Processing
System. These interfaces could be divided into two parts: the outside interfaces and internal
interfaces. For outside interface, for example, the PS peripherals (UART, USB, etc) and PS
DDR4 is included in the configuration of this IP. And for the internal interface, like the AXI_HP
interface, is the bridge between PS and PL. The AXI DMA shown in this Fig (3.3), is connected
with this AXI_HP.

After the FPGA bitstream is generated (contains all the PS interfaces, PL, and PS-PL con-
nections), the Hardware Definiton File) (.hdf) could be exported for the embedded Linux. The
HDF is a container file that contains all the information needed to build a platform for a users
target devices, such as the CPU (or CPUs, here is actually ARM cores), Buses (different kind
of AXI4 buses), IP and the ports and pins used in the system such as interrupts.
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3.3 Yocto Project
The ecosystem to develop custom embedded Linux distribution for Zynq device is Yocto Project
(YP). The Yocto Project [53] is an open source project that reduce developing time/money. It is
hosted by Linux Foundation and have a plenty of industrial participation such as Xilinx, AMD,
Intel, TI, DELL and so on. The first step is to define the hardware. The bblayers.conf and
local.conf files /build/conf could configure the build. In the local.conf, the user needs to
point out the variable "HDF_PATH" that point to the HDF above.

One of the typical character for Yocto Project is that it has Layer Model. A collection of
related recipes. The user could use multiple layers to partition their embedded Linux function-
ality. It is relatively easy to generate several applications use command:

bitbake-layers create-layer [name of layer]

Layers are repositories that owns sets of instructions to tell how the embedded system
should do. In this chapter, there are two layers: EPICS and Webserver. Each layer contains the
necessary drivers and operating mode.

3.4 EPICS
EPICS is a distributed client and server architecture. The client normally means the user appli-
cation and scientists who operate the machine. EPICS software mainly consists of Input/Output
Controller (IOC) and Operator Interface (OPI). For server, the IOC needs to implement, and for
client, it needs OPI. For a complete IOC application, it includes Channel Access (CA) server in-
terface, the Database access interface, dynamic database, device support module, device driver
module, and so on. The OPI level is the EPICS tools running on Linux operating system.

3.4.1 EPICS on hardware
To integrated the EPICS into hardware, first task is to put the EPICS Base [54] into one Yocto
layer as an embedded Linux application. The version of EPICS is documented in [55]. The
whole software structure is shown in Fig (10) at Appendix B.

The client can probe the entire network or a single server address, while the server can make
itself visible to the entire network or a single client address. With this, the client can access
several servers at one time, for instance to control a common parameter present on multiple
servers/hardware. The parameters are represented in the form of database entries. The database
consists in a list of "records". A record has a number of variables called Process Variables (PV)
which can be inputs or outputs or inouts. These PV are the variables accessible by the client,
and also is the key channal could access the hardware.

A number of pre-existing records are distributed with the EPICS base. A "sub" type record
is employed to call a subroutine written in C language. This record is created in the epics-
dmareg.db saved in /myiocAPP/Db.

Record Creatation

/app/myiocApp/Db/epics-dmareg.db:

record(sub, controlreg) {field(SNAM, ”epics_dmaset”)}
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At each time the PV in the record are accessed by the client, the C application that have
the memory mapping similar with last section will run. It brings the link between EPICS client
request to the hardware. This link between both is established by the "SNAM" field. In this
case, the "epics_dmaset" function will be called at each time when the PV in the record named
"controlreg" are accessed by user. Moreover, this record is directly mapped to the hardware
control register, which is a 32 bits width of register. Some of the bit of this register is linked
with control signal in PL part for example, the PL reset, dummy data start, DDR4 read enable,
etc.

3.4.2 EPICS control on HighFlex2

Once the EPICS server is running on the HighFlex2 board, in terminal one could have the
following information shown in Fig (3.4). On the HighFlex2 side, firstly loads the database and
opens a command prompt. When type command "dbpr controlreg", will print out the PV of the
record and its own current value. At client side, the user could change the value on the PV and
the records as shown in Fig (3.5)

Figure 3.4: EPICS embedded server running on hardware

Figure 3.5: EPICS client running on host PC

The client can be any computer where the base distribution is installed. It needs to be able
to access the server through its IP address. In the generic configuration, the server signals its
presence at regular intervals to all the IP addresses encompassed by its broadcast address. The
client sends its commands the same way. Therefore, this configuration works if both the client
and the server have the same broadcast address. In our case the host computer and HighFlex2
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are connected within the same router. Then at client side, the PV is recognized as shown in
Fig (3.5).

If user change the control register from 0 to 1 and back to 0, then that means a reset. When
it became 1, the LEDs have the following status:

Figure 3.6: EPICS client control in reset mode

The LED7 is directly connected with control register bit[0]. This bit is the reset bit, and
active high. When the user set control register to 0x00000001, then this bit is one, the FPGA
firmware became reset mode. The LED1 is connected with the global reset, which is the AND
gate between PL DDR4 calibration done signal and control register reset bit. The LED0 and
LED3 is AXI DMA FIFO programmable full and programmable empty respectively. When it
in reset mode, both signal are pulled to high.

When user set the controlreg record field A back to 0x0 as shown in Fig (3.5), the reset
mode is de-asserted. Fig (3.8) is the LEDs result. Only the FIFO empty signal is left. The
server side could also see the changed value at hardware side Fig (3.7).

Figure 3.7: EPICS embedded server reaction

Figure 3.8: EPICS client control de-assert reset mode

When user starts the data transfer from dummy data generator, first the data transfer enable
LED6 is on. The AXI DMA FIFO is full because the PC driver side don’t ask data now. And
also the blinking LED2 represent that the PL DDR4 writing control signal is working. By this
the EPICS could control the PL side blocks that shown in Fig (3.3)
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Figure 3.9: EPICS client starts data transfer

3.5 Performance comparison
To measure the performance of the Zynq EPICS server and CPU EPICS server, thesis compile
the same ’sub’ type of record with the same PV name ’controlreg’ on the CPU. The testbench
is a 100 times loop running to continue write the same value on the "controlreg.A" PV of CPU
and Zynq server. EPICS camonitor is estabilied to monitor the access of PV. Every time a write
access will cause the callback function (HighFlex2) that generate one timestamp to record this
interaction. The difference of each of two adjacent timestamp is measured, which will be the
latency of server reaction time.

Figure 3.10: EPICS Server run trip latency comparision

Fig (3.10) illustrates the EPICS server reaction time comparision of Zynq and CPU. The
Zynq have about 120 µs average time and CPU own around 132 µs average time. Zynq have
standard error about 4.8 µs and CPU own around 4.67 µs standard error.

3.6 Webserver application
For Webserver application, our purpose is to start the dummy data transfer, then let the data
pass through all necessary PL blocks, goes into the PS memory, and monitored by Webserver.

All these operations needs access to global control register, AXI DMA control register, and
PS memory. The memory map method is one efficient way to access all of these addresses.
After boot up the Linux system on Zynq, there is one file called: /dev/mem. This character
device represents the whole physical memory of our hardware definition. The offset for each
device or peripherals could be edited in Vivado Memory Editor, shown in Fig (3.11). The
offset could be customized and user application in embedded Linux will reference this address
to access the corresponding devices. For example, the global control register KIT_register,
the reg0 has offset address 0x00A9000000 and AXI DMA control register has offset address
0x00A0000000.
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Figure 3.11: Vivado Address Editor denotes the offset address that used in both bare-mental
application and embeded Linux application.

The function mmap could let user application (user space) directly access the device mem-
ory (kernel space). Firstly, the function open() could use to open the device file /dev/mem,
then use the offset address to map the file to the virtual address. The mmap() function will
return one address as a pointer that the user could handle this device as a normal pointer in
C/C++ coding style.

Through webserver the user could both control or monitor the device. There is a relatively
long way from Web to hardware. Fig (3.12) shows how to use Common Gateway Interface
(CGI) defines how the information transfer between Webserver and client-side scripts.

Figure 3.12: Webserver CGI Control. Through CGI, the Web Page is linked together with user
application that the user could map the necessary data on the Web. In this case, the PL data is
transferred to the PS DDR4, then it is mapped directly into the Web page.

Fig (11) in Appendix B shows the file structure of webserver Yocto Layer named with meta-
ww. The webserver interface is defined in .htm files in Fig (11) (Appendix B). The CGI source
files inside filder led.cgi is the CGI implemented by C, and this connect the content on web
with Linux application. In CGI also map all the hardware or driver into system memory where
the CGI Linux application could access.

Because the CGI application is installed in /home/httpd at HighFlex2 embedded Linux
system, then a httpd command could be used to start one HTTP server on HighFlex2:

httpd -p 8080 -h /home/httpd/

The command -h point to where the web file .htm is located. The CGI transfer the data from
the user Linux application to the web. Through open the address in a web browser:
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<HighFlex2 IP Address>:8080/cgi-bin/led.cgi?page_offset=0

Figure 3.13: Result of DMA webserver. From the webserver, the user could monitor the data
coming from PL side. Also, the address offset could change to other parts to verify the data
transfer is consistent or not.

The Fig (3.13) displays the contents of the part of the memory allocated to the DMA op-
eration. Therefore, the first address in the "Address" column on the left is 0x0000000000, it
is actually interpreted as an offset from the DMA’s memory within the global memory shown
in Fig (3.11). The data input in this demo is the dummy data generator, which is actually a
counter that was implemented in the hardware design part of PL. The data is represented in
Little Endian format, so the increment is visible on the leftmost byte of the four bytes words.
The counter must be followed line by line, within the first column. The data in the three other
columns also come from the data generator module but are shifted each by one, compared to
their preceding column. The Address Offset entry can be employed to modify the offset, and
thus the part of memory that is displayed. On a page, the first 256 bytes are printed, corre-
sponding the addresses of sixteen 32-bytes lines. The Address Offset value shifts the addresses
by one full web server page: an offset of 0 prints the addresses 0x00000000 to 0x000000F0, an
offset of 1 print the addresses 0x00000100 to 0x000001F0 and so on.
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3.7 Conclusion
This chapter introduces a unified system with HighFlex2 Zynq device, where the FPGA firmware
and embedded Linux device driver is integrated. The development of embedded Linux under
Yocto Project (YP) requires a hardware description. This chapter provides Linux with such
description including Programmable Logic 2GB DDR4 memory, FIFOs, and AXM DMA.
Within this hardware description, some of the critical blocks are packaged as AXI4-Lite IP so
that PS could access through AXI interconnector for controlling and monitoring purpose. The
userspace memory implemented on the FPGA is mapped in the Linux application, i.e. EPICs,
TANGO, etc. Webserver and EPICS are developed as YP layers, where Web server could be
employed to send the status and flags on the quality of the data collected by the detector and
EPICS is employed for the integration of the whole detector system within the experiment
control system in a distributed client and server architecture.

System integration dramatically improves the scalability and flexibility of the DAQ sys-
tem. ARM and FPGA could share information and tasks. This opens multiple possibilities for
developers to allocate the different part of the particular application into different computing
resources on heterogeneous MPSoCs.

A higher level of a heterogeneous system is introduced. In the system, GPUs and FPGAs
provide a high-performance data transfer architecture for data-intensive experiments. Within
such a heterogeneous system, HighFlex2 plays an important role in data transferring.
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Chapter 4

Machine Learning preliminaries

4.1 Introduction on Supervised Learning

In [56], neurophysiologist Warren McCulloch and mathematician Walter Pitts proposed the
mathematical description and structure of neurons and demonstrated that any computational
function could be simulated with enough simple neurons connected and running in synchro-
nized operation. The word Deep corresponds to the word Shallow, which means the neural
network has at least one hidden layer and also means the neural network has at least 2 layers
in total (the number of hidden layers plus the output layer, the input layer is not taken into
account). From 1990 to 2012, the theory and method of machine learning have been improved
and enriched, there comes Support Vector Machine (SVM) [57], AdaBoost [58], Manifold
Learning [59], LSTM [60] and Random Forest [61]. SVM represents the victory of nuclear
technology, which is the idea that by implicitly mapping input vectors into higher-dimensional
space, nonlinear problems can be handled well. AdaBoost, on the other hand, represents a tri-
umph for the integrated learning algorithm, which achieves amazing accuracy by integrating a
few simple weak classifiers.

Although the backpropagation was already proposed [62] in 1986, it was limited by the
algorithms itself in several different aspects: the vanishing gradient problem, the limitation of
lack of training data and computing power. In the competition with SVM, the neural network
was inferior to SVM for a long time. In 2006, Hinton et al. proposed a method [63] to train the
deep neural network by using Restricted Boltzmann Machine to train each layer of the multi-
layer neural network, obtain the initial weight, and then continue to train the whole neural
network. This solves the gradient vanishing issue during training deep neural network.

In the year of 1980, Fukushima [64] proposed the neurocognitive machine and convolu-
tional neural layer sharing the weights, which is regarded as the prototype of the convolutional
neural network. In 2012, AlexNet [65], a deep convolutional neural network (CNN) invented
by Hinton group, first succeeded in image classification, and then it was applied to various
problems of machine vision, including general target detection, face detection, pedestrian de-
tection, face recognition, image segmentation, image edge detection, etc. In these problems,
the convolutional neural network has achieved the best performance. In the later years from
2013 to 2016, during ImageNet image recognition competition [66], comes the ZFNet [67],
VGGNet [68] and ResNet [69]. In the same periods, deep learning network structure, train-
ing methods and GPU hardware have continuous progress, it is then constantly conquering the
battlefield in fields of computer vision problems.

In another class of problems called time series analysis, Rerurrent Neural Networks (RNN) [60]
have achieve success. Typical examples are speech recognition, natural language processing,
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and the use of deep RNN can significantly improve the accuracy of speech recognition until it
meets the requirements of practical application.

4.2 Development of Reinforcement Learning

From March 8th to March 15th, 2016, in Seoul, South Korea, there was a five-game Go match
between AlphaGo [19] and Lee Sedol, who is ranked second in international titles of Go player.
AlphaGo won four over five matches. Where in AlphaGo, Monte-Carlo tree search and deep
reinforcement learning have been played important role. This success in AI highlighted another
major branch of machine learning, Reinforcement Learning (RL).

The development of reinforcement learning has a long history. Minsky first proposed the
concepts and terms of “reinforcement" and “reinforcement learning" in 1954. The term “opti-
mal control" came into use in the late 1950s to describe the problem of designing controllers
to minimize or maximize the behaviour of dynamic systems over time. One of the method that
could solve such problem is by extending the theory of Hamilton [70] and Jacobi[71]. This
method is called Dynamic Programming (DP) [72], using the concept of state and value func-
tions of dynamic systems or optimal return functions to define function equations, now com-
monly referred to as Bellman equations. Bellman [73] also introduced the discrete stochastic
version of the optimal control problem known as Markov Decision Processes (MDPs), and Ron
Howard [74] designed the policy iteration method for MDPs. All of which is the fundamental
components in reinforcement learning. These will be introduced in Chapter 6. Ian Witten first
proposed the temporal-diference learning rule [75, 76]. Thus, Witten’s 1977 paper conbined
both major threads of reinforcement learning, research, the “trial-and-error" learning and the
optimal control. This combination is enhanced by Watkins in 1989 [77], where the Q-learning
is proposed.

In 2013, DeepMind using the neural network in Atari game finished multiple games beyond
the level of human players [78]. The strategy is to use deep neural network as function approx-
imator of value function and policy, this avoids the problem of table storage space is large, and
slow in query the table. This combination of deep learning and reinforcement learning is called
Deep Q-Learning. Based on that, and the Actor-Critic structure [79], there are several prevalent
reinforcement learning algorithm is developed, for example, the Proximal Policy Optimization
(PPO) [80], the Asynchronous Actor-Critic Agents (A3C) [81], and the Deep Deterministic
Policy Gradient (DDPG) [82].

4.3 Basic structure in Deep Learning

In the following part will mainly introduce basic components used in supervised learning and
reinforcement learning: neural networks. The fully connected neural network and convolu-
tional neural network will be delivered.

4.3.1 Introduction of fully connected neural network

In this section will introduce the structure of neural network and convolutional neural network.
An simplified artificial neuron is called a perceptron [56]. The working principle of a percep-
tron is taking several of inputs, and produce a single binary output, as shown in the Fig (4.1).
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Figure 4.1: A perceptron takes several inputs, applys the weight on the conbinations between
input and perceptron, doing linear operation, then produce one output

The perceptron’s output is either 1 or 0 determined by the weighted sum
∑
i

wixi is going

over the threshold or not.
Based on such simple structure, one could adds the bias and activation function and get one

complete neuron. The activation normally is non-linear functions. If the nonlinear function
is used, the activation function introduces nonlinear factors to the neurons, so that the neural
network can approximate any nonlinear function arbitrarily, and then the neural network can
be applied to many nonlinear models. Fig (4.2) shows the working principle of one neuron,
the output is not 0 or 1, instead, it is determined by the according activation function. Here the
example show the sigmoid function, then the output is σ(

∑
i

wixi + b).

Figure 4.2: A neuron takes several inputs, applys the weight on the conbinations between input
and perceptron, doing linear operation with bias, then pass though the activation function to
produce one output

σ(z) =
1

1 + e−z
(4.1)

Equ (4.1) is the sigmoid activation function. There are multiple different activation func-
tions discussed in [83]. The most commonly used are ReLU, Sigmoid and Tanh function. If
these neurons are combined layer by layer, will form Fully-Connected (FC) Feedforward Neu-
ral Network as shown in Fig (4.3). Such FC NN could be extened in any form and structure in
this way to fit for different input data and more deep layers.

4.3.2 Introduction on convolutional neural network

The name "Convolutional" comes from one of the most important operations in the CNN:
convolutional layer [84]. A basic CNN structure is conbined with multiple convolutional layers,
activation layers, and maxpooling layers.



50 CHAPTER 4. MACHINE LEARNING PRELIMINARIES

Figure 4.3: Two neurons form the first layer and its two outputs connected with the input of
next layer, which have only one neuron

Convolutional layer

The word convolutional is different than the same word in signal processing [85]. As shown in
Fig (4.4), the input data is 7 times 7 matrix, and convolution kernel(also named filter) is 3 times
3 matrix.

In convolution neural network, the convolution kernels of layer (or filter) is similar to a
sliding window, in the input image sliding back and forth in a specific step on the whole training
process of the network, the convolution kernel containing weights will also be updated until the
training is completed. After each convolution operation, one of the local characteristics of the
input image map is obtained, and form the output image.

In the whole training process of the network, the convolution kernel containing weights will
also be updated until the training is completed.

Under this case, the 3 by 3 convolution kernel will moving from the top left corner to the
right bottom corner, and the moving stride here is 2, means the filter moves over the image
2 pixel per time. As denoted by the red frame in figure, the 3 by 3 filter will cover a 3 by 3
region of image, and the filter coefficient will multiply the image pixel accordingly, this will
get 1× 1 + (−1)× (−1) + (−1)× (1) + (−1)× (−1) + 1× 1 + (−1)× (−1) + (−1)× 1 +
(−1)× (−1) + 1× 1 = 5

The formulation expression under two-dimensional convolution is [86]:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (4.2)

The two dimension I is the input, the 2-D filter(kernel) is K.

Figure 4.4: the convolutional layer operation
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Normally at each convolutional layer, the filter is not only one, but several. For example in
ResNet [69], the conv1 layer have 64 seven by seven filters with stride step 2. Even though, this
reduce the parameters dramatically compared with fully connected layer. Because all the pixels
in the image are sharing the same filters. This brings the possibility of parallelized computing
on FPGA.

The output image size could be calculated:

Wo =
Wi −Kw + 2P

S
+ 1 (4.3)

Ho =
Hi −Kh + 2P

S
+ 1 (4.4)

In Equ (4.3, 4.4), the Wo and Ho is the output image width and height, the Wi and Hi is
the input image width and height. the Kw and Kh is the width and height of kernel, the P is
padding size, and the S is stride step size. The padding operation is used to adjust the final
output image size.

Pooling Layer

There are two widely used pooling operations: average pooling and Max pooling, of which
the maximum pooling is the most commonly used operation and its effect is generally better
than average pooling. Pooling layer is used to reduce the dimension of feature space on the
convolutional neural network, but not the depth. The maximum value of input areas is choosed
when the maximum pooling layer is used, and the average of the input areas is used when the
average pooling is used.

Figure 4.5: Max Pooling Operation

As shown in the Fig (4.5), the left side is the output image from the convolutional layer, also
called feature map. The right side is the output of max pooling layer with a pooling region width
of two by two pixels. The pooling region is different depends on different application. After
the pooling layer is the activation layer, the same with fully connected layer aforementioned in
fully connected layer.

4.4 Implementation consideration of Supervised Learning
The supervised learning approach belongs to statistics problem. Different from probability
problem, which use known models and parameters to predict the data, the statistics problem is
to use the collected/sampled data to reconstruct the models and its parameters.

Generally speaking, collecting training dataset is the starting point to build one supervised
learning model. The training dataset is a collection of samples. Each sample has independent
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features (the input variable of the model) and the class label (the output of the model). The task
of the training process is to decrease the difference between prediction value and label value
and is happening offline on CPU/GPU in general. For training large model, some of the typical
GPU based machine learning acceleration platform is introduced in [87, 88].

After the supervised learning model being trained and verified, the project needs deploy-
ment. The same as privious training process, CPU/GPU could be used for accelerating the
inference part of the model, and this is because, in principle, the calculation required in for-
ward pass (inference) and backpropagation (training) are similar: both are multiplication and
addition of matrices. There are plenty of tools that help machine learning experts to transfer
their knowledge into hardware projects, for instance, the Tapir XLa [89] and TVM [90], etc.
These machine learning compiler could generate the source code of CUDA device or exacuat-
able files from the machine learning model from Caffe, Flux, MXNet or Tensorflow.

FPGAs are considered as superior energy efficiency devices, providing high data bandwidth
and low latency. [91, 92] surveyed several hardware deployment methods for example, data
transfer and on-chip memory design, pipelining and quantization. The [92], [93] and [94] are
three typical instances of these solution. All of these are the accelerator for Convolutional Neu-
ral Network (CNN). Although CNN are successful on image processing and computer vision,
this didn’t means CNN cound cover the whole supervised learning algorithm set. Different
approaches are suitable for different application scenarios.

4.4.1 Implementation consideration of Reinforcement Learning
Because of the difference in mathematical theory foundation, reinforcement learning appli-
cation implementation and supervised learning implementation have a different viewpoint of
consideration. This difference is especially evident during the training process of each method.
As mentioned above, the supervised learning is learning offline, and in princile, it have no time
constraints on training process.

Figure 4.6: The reinforcement learning training process happens under MDP, and interacting
with environment on-line, the time-constraint depends on the step intervals

The reinforcement learning (RL) have a training process that agent (RL) needs to interact
with environment. The whole form of interaction is under finite Markov Decision Process
(MDP). Every step, the agent needs to decide which action or movement should be taken. And
this consideration time for agent depends on the environment. Consider a OpenAI Gym [95]
testbench controlling system: CartPole system [96]. The agent is the cart as shown in Fig (4.6),
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and it may move left or right to keep the pole to be balanced as long as possible. Firstly, this
movement needs to decide by agent in this time slot before the environment change to next state.
And this decision is inference of policy neural network. Secondly, according to some structure
of algorithm like Deep Deterministic Policy Gradient (DDPG) [82], the one-step training needs
to finish also in this time slot. This brings the strict time constraint when this cart-pole problem
is not simulation on CPU but in real experiment, which have a clear view in Fig (4.6), where
the hardware needs to finish this two task in one-step time slot. Chapter 7, 8 and 9 will give the
hardware solution that could guarantee the real-time requirements.

4.4.2 CPU, GPU and FPGA acceleration
CPU (Central Processing Unit) is one of the main components of the computer. The main
functionality is to translate computer instruction and execute a complex computer program.
Trough the increasing clock frequency, the performance have had an ever-increasing trend until
the year 2005 predicted by Moore’s law[97]. This trend comes to the end because of the major
factor of the power wall. The reduction of the physical size of the transistor for the same logic
or function of the processor will cause an increased power density, resulting in the electrical
leakage and heat dissipation problems.

The Graphic Processing Unit (GPU) is an important component of graphics system struc-
ture and a link between computer and display terminal for graphics rendering, shader and pro-
cessing in the early days. The computing architecture Compute Unified Device Architecture
(CUDA) [98] that enables GPU to be general computing unit tasks that require high compu-
tational power. The benchmarks like H.264, Finite-Difference Time-Domain (FDTD), MRI-Q
and many others mentioned in [99] provides the use cases of CUDA.

Figure 4.7: NVIDIA K40c GPU GK110 Architecture

As shown in Fig (12) in Appendix B is the Nvidia Tesla K40C GPU. K40 belongs to Kepler
GK110/210 architecture [100]. Demonstrated in Fig (4.7), it has 15 Multiprocessors, or called
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SMX (Streaming Multiprocessor) in [101]. Each SMX has 192 single-precision CUDA cores
per SMX, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST). Under the CUDA programming model, the threads are managed through Grid, Block,
and Thread in software level. Normally the host computer (CPU) launches one kernel and
appoints the size of the grid and block through configuration <grid, block>. Both the grid and
block could be a 1-dim, 2-dim or 3-dim structure. Each block could have up to 1024 threads
in total. From the hardware point of view, the threads are packaged as warps, each warp has
32 threads on a single SMX and each SMX uses SIMT (Single-Instruction, Multiple-Thread)
method for parallel threads/tasks.

Both of the training and inference of Neural Network, Convolutional Neural Network and
Graphic Neural Network mentioned above, are highly parallel in nature. Thus they are naturally
suited for GPU acceleration. That is similar for FPGA acceleration.

The FPGA can connect directly to the full data port (parallel input), and it could initialize
multiple computing cores for acceleration, which is similar to GPU. The FPGA can also carry
out parallel pipeline processing. FPGA don’t need to wait for all data to come in. With pipeline,
FPGA could start to handle one packet of data at each pipeline stage. This saves time in data
transmission and further saves time by starting processing earlier than when the data is first
received, rather than waiting until the data is collected. If the algorithm is determined and the
amount of data processed is basically determined in this pipelined way, then the delay of FPGA
processing is also fixed and can be accurate to an exact number of clock cycles. This will be
demonstrated in Chapter 9 for a forward pass neural network.



Chapter 5

Supervised Learning on FPGA

5.1 Optimazation methods targetting to FPGA
Optimizing the fully connected structure and Convolutional Neural Network is in the domain
of supervised learning. The accelerating part only focus on the inference. To cover the CNN on
HighFlex2, the Xilinx Deep Learning Processing Unit (DPU) [94] is the appropriate candidate,
which is optimized for the convolutional neural network. It also beed deployed for VGG,
ResNet, GoogLeNet and many others. The Xilinx DPU is a standard IP core that could be
deployed in the PL part.

Figure 5.1: Xilinx DPU architecture [94]

As shown in the Fig (5.1), the Xilinx DPU is consists of three parts, the instruction sched-
uler, the on-chip buffer controller and the computing engine. Through the data mover in the
on-chip buffer, the PS part load and read the result from the PL part.

The DPU owns configurable AXI master interface with 64 or 128 bits for accessing data so
that DPU can access the PS DDR memory space. These master ports are connected with PS
slave ports (S_AXI_HP*_FPD) in Fig (5.2).

The Fig (5.3) shows the detail block DPU. The part with yellow underpainting is the DPU
IP(version 3.0) and its corresponding peripherals (PLLs and interruputs). The left connection
is the control signal form PS side. The right part signals named after H_AXI is connected with
high performance interface of PS part for high throughput required from data mover in DPU
IP.
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Figure 5.2: Xilinx DPU Block Design on HighFlex2

Figure 5.3: Block Diagram for Xilinx DPU [94]

5.1.1 Xilinx DPU configuration options

The DPU IP could be configured for different performance and hardware resources utilization.
Firstly the number DPU cores, from 1 to 3 could be choosed, 3 could brings most performance
but a lot resource cost. Here the selection is 2 DPU cores. The convolution architecture choose
B4096, which means the peak operations is 4096 per clock cycle. The reason for choose B4096
is because the reference design for Xilinx ZCU102 [102] board is use this configuration also.
HighFlex2 exceeds ZCU102 in the resources like numbers of Block RAM, Flip-Flops, LUTs,
Distributed RAM, DSPs [103].

The greened highlighted part is the DPU IP implemented design shown in Fig (5.4).
The principal part is the BRAM where 86 percent of the BRAM is costed because of the

weights and bias, and also other intermediate variables. DSP slices are used for the convolution
operations and non-linear operations.

The next step is to integrate the DPU driver and dependent libraries in to the PetaLinux.
PetaLinux is an embedded Linux Software Development Kit(SDK) targeting FPGA-based
System-on-Chip design [104]. The major part that PetaLinux contains is Yocto Extensible
SDk [105](e-SDK). This e-SDK contains all the necessary layers from Xilinx for Zynq Ultra-
Scale plus devices, and also the sstate-cache that enables incremental builds. The e-SDK also
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Figure 5.4: Xilinx DPU Implemented Design on HighFlex2

Figure 5.5: Xilinx DPU Resources Utilization on HighFlex2

contains the sysroots that stores the directory of the Linux system.
Firstly needs to build a PetaLinux project and configure the hardware with the hardware

description file that generated from the hardware implementation Vivado project. Then add
the drivers given by Xilinx into the PetaLinux projects, built the project as a Image and start
HighFlex2 with SD card mode.

5.2 Demostration result

(a) cat (b) cab

Figure 5.6: First part of photos to demo resnet50 on HighFlex2.

As shown in Fig (5.8), the cat is recognized with 60.9056 percent (37.9113+22.9943). The
cab picture is recognized with 53.8945 percent. The picture Xi’an is the historical landscape
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(a) Xi’an (b) HighFlex2

Figure 5.7: Second part of photos to demonstrate resnet50 on HighFlex2

Bell Tower in Tang Dynasty of the ancient China. The name comes from several large bronze-
cast bells on the tower. The resnet50 successfully recognized it as bell cote with 71.6057
percent confident. Also interestingly the resnet50 recognize the HighFlex2 board as hard disk
with 63.8194 percent. The resson is that in the ImageNet [66] there is no "HighFlex2" category
and because the PCB board is looks like a hard disk. The total latency for this 4 image is
1360984 µs, and the frame rate is 2.93905 FPS.

Figure 5.8: HighFlex2 Image Classification Results

5.3 Conclusion
This chapter deals with a practical implementation of one supervised learning implementation
method on HighFlex2. This solution is based on Xilinx deep learning processor units (DPU)
and its embedded Linux drivers have been developed and implemented on the Zynq device.
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The DPU is meant to accelerate the convolutional neural network (CNN) inference part. This
allows HighFlex2 to implement several different types of CNN models on the programmable
logic part. The convolutional neural network implemented and tested is GoogLeNet. Other
models, for example, VGG, the YOLO-v3 for ADAS (Advanced Driver Assistance Systems),
and the FPN, also have the related example design and easy to implement. This opens a novel
possibility of real-time image processing based on the advanced UFO camera developed at
KIT for the ultrafast computer tomography. Furthermore, the aforementioned technology will
provide relatively fast deployment of the standard CPU/GPU based TensorFlow PyTorch and
Caffe models on the FPGA.



Chapter 6

Reinforcement Learning Introduction

In the recent years, with the increasing computing power capacity of High Performace Com-
puting (HPC), the ubiquity of big data and rapid development in deep learning technology,
reinforcement learning (RL) made great progress. RL has been considered and used in many
fields, for example, AlphaGo [19, 106], the CARLA driving simulator [107] in automatic driv-
ing field, the MILABOT model [108] and Facebook artifitial dialogue [109] in the field of
Natural Language processing (NPL), and many other applications in [110].

Because the thesis is intend to accomplish the full reinforcement learning platform, it is nec-
essary to review the basic knowledgement in reinforcement learning and bring out the technical
terms clearly before the algorithm implementation and application.

6.1 Markov property
Following the notation in [111], the field of reinforcement learning is briefly introduced below.
For a more detailed description of the subject, it will be delivered in the next sections within
this chapter.

Reinforcement learning is the computational approach to goal-directed learning from in-
teraction. In contrast to other sub-fields of machine learning, its learning paradigm does not
require a pre-existing data set, but merely an environment to interact with. The learner and
decision maker, usually called the agent, continuously interacts with the environment learning
from past experience and thereby improving its behaviour. At every time step, the agent per-
ceives the current state St of the environment and carries out an actionAt. Based on the chosen
action, the environment transitions to a new state St+1 and generate a scalar reward Rt+1 back
to the agent as shown in Fig (6.1).

Figure 6.1: The agent-environment interaction in a Markov decision process.

The reinforcement learning problem is formally described as a Markov Decision Process

60
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(MDP), demanding that the sequence of states fulfils the Markov property

p(St+1|St) = p(St+1|S1, . . . , St) , (6.1)

where p(St+1|St) denotes the conditional probability of transitioning from state St to state St+1.
At every time step t, the state St is thereby required to provide all relevant historical information
about the transition dynamics of the environment. While many problems can be modelled in
this form and the Markov property allows precise theoretical statements, it can be difficult to
fulfil this requirement in its most rigorous formulation for some practical applications. The
following definitions give formal expression in mathematic.

The Markov property means the next state st+1 only have the relationship with the previous
state st, and unrelated to the state before the st. As also mentioned in the Equ (6.1).

Definition 6.1.1. A state St is Markov if and only if [111]:

P [St+1 |St] = P[St+1 |S1, . . . , St]

In Def (6.1.1), the current state covers all the information from the history, and once the
agent have the information of the current state, it gets all the historical information, and what
happen in the next will only depends on the current state.

Definition 6.1.2. A Markov Process (or Markov Chain) is a tuple 〈S,P〉 [111]

The Def (6.1.2) is the Markov Process. Where the S is a (finite) set of states, P is a state
transition probability matrix [111],

P [St+1 |St] = P[St+1 |S1, . . . , St]]

Definition 6.1.3. A Markov Reward Process (MRP) is a tuple 〈S,P ,R, γ〉 [111]

Where the S is a finite set of states, P is a state transition probability matrix, denotes as
Pss′ = P[St+1 = s′ |St = s], theR is the reward function, and represent asRs = E[Rt+1 |St =
s]. And finally the γ is the discount factor, γ ∈ [0, 1]. This parameter is used for calculate the
accumulated return. Here gives the definition of Return:

6.1.1 Return
The return is denotes how much value the agent get from environment for a long time. It is the
sum of rewards.

Definition 6.1.4. The Return is the total discounted reward from time-step t [111]

Gt = Rt+1 + γRt+2 + · · ·+ γT−2RT =
∞∑
k=0

γkRt+k+1

If γ is close to 0, then it is a "myopic" evaluation, that the agent don’t care the far return,
and if the γ is close to 1, then the agent think that the future return is important. The Rt+1

is the current time step t immediate reward that return from the environment, and the Rt+2 is
the immediate reward received after the current step, and the RT is the immediate reward that
get from the teminate state at the end of this episode. The episode could be regarded as one
complete chain of the interaction between agent and environment, and the end of the episode is
the break point in a continuous Markov process. Here the Gt is only one sample in the whole
experiment, the goal of the RL is to maximize the average of the Gt in MRP.
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6.1.2 Value Function
Definition 6.1.5. The state-value function v(s) of a MRP is the expected return starting from
state s [111]

v(s) = E[Gt |St = s]

The value function is used to describe the long-term value of state s.

Bellman Equation for MRPs

The v(s) could be rewrited in following [111]:

Rs = E[Rt+1 |St = s]

= E[Rt+1 + γRt+2 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + . . . ) |St = s]

= E[Rt+1 + γGt |St = s]

= E[Rt+1 + γv(St+1) |St = s]

(6.3)

The Bellman equation in Equ (6.3) shows the value in one state could be calculated by the
expected value of sum of immediate reward Rt+1 and the discounted value of successor state
γv(St+1), shown in the Fig (6.2) below, where the Pss′ is the transition probability from state s
to next state s′ in Equ (6.1).

𝑣(𝑠)

𝑣 𝑠 = 𝑅𝑠 + 𝛾 𝑃𝑠𝑠′ 𝑣(𝑠
′)

𝑠′ ∈𝑆

𝑠

𝑠′

Figure 6.2: the value function in one state could calculate through the value in successor state

6.1.3 Markov Decision Process
A Markov Decision Process (MDP) is a Markov Reward Process with decisions. It is an envi-
ronment in which all states are Markov [111].

Definition 6.1.6. A Markov Decision Process is a tuple 〈S,A,P ,R, γ〉

Where there are three different points than Markov Reward Process (MRP). First it have
the finite set of action A, and the P is changed to:

Pass′ = P[St+1 = s′ |St = s, At = a] (6.4)

the rewardR is changed to:

Ra
s = E[Rt+1 |St = s, At = a] (6.5)
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6.1.4 Policies
Definition 6.1.7. A policy π is a distribution over actions given states

π(a |s) = P[At = a |St = s]

The agent policy maps the current state to the action. The policies depend on the current
state, this means the possibility that the agent takes action a at state s. The policy could be
divided into two categories: one is stochastic policy, which is Def. (6.1.7); another is deter-
ministic policy, which means at each state, the agent will generate a fixed action and could be
simply denoted as a = π(s), rather than a probability distribution. This is used in the Deep
Deterministic Policy Gradient, and the component that generates such fixed action always is
called actor network, which will discuss in the later chapters.

After the Def. (6.1.7), the MDP could interpreted as, given an MDPM = 〈S,A,P ,R, γ〉
and a policy π, the state sequence S1, S2, S3, . . . is a Markov Process, and the state and reward
sequence S1, R2, S2, R3, . . . is a MRP 〈S,Pπ,Rπ, γ〉, and most important, in which the [111]:

Pπs,s′ =
∑
a∈A

π(a |s)Pass′ (6.6)

Rπ
s =

∑
a∈A

π(a |s)Ra
s (6.7)

The Equ (6.6) illustrates that under a policy π, if the agent is on state s, it have a possibility
π(a1 |s) to choose action a1, then based on this action a1, the agent have a transition possibility
Pa1ss′ transfer from s to s′. So the final possibility of transition is a conclusion among action
space A.

6.2 State-Value Function
After have the definition of policy, the value function here is the extension over Def. (6.1.5):

Definition 6.2.1. A state-value fuction vπ(s) of an MDP is the expected return starting from
state s, and then following policy π

vπ(s) = Eπ[Gt |St = s] = Eπ[
∞∑
k=0

γkRt+k+1 |St = s], for all s ∈ S

The state-value function evaluates how much expected reward the agent will get at this state
s afterwards following the policy π.

6.3 Action-Value Function
There also the definition to evaluate how much reward one agent could receive after take a
specific action [111]:

Definition 6.3.1. A action-value fuction qπ(s, a) is the expected return starting from state s,
taking action a, and then following policy π

qπ(s, a) = Eπ[Gt |St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1 |St = s, At = a]
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This definition gives the method to evaluate how good if the agent takes action a when the
agent is in state s under a given policy π through the expected return. This vπ(s) and qπ(s, a)
could be measured by random samples, and this method is Monte-Carlo methods. If the number
of states is too much and it is not possible to do such much experiment to get the estimation of
vπ(s) and qπ(s, a), then parameterized function could be used to predict the value of these two
functions. This is used in Deep Q-Network [78] and Deep Deterministic Policy Gradient [82],
which will be illustrated later.

6.4 Temporal-Difference Prediction

Temporal-Difference (TD) combines the ideas of Dynamic Programming and Monte-Carlo
method [111]. The TD learning could learn from two continuous state without waiting the
finish of one complete episode. It is updated every single step.

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (6.8)

The Equ (6.8) shows one of the TD based method which is TD(0), or called one-step TD.
The Rt+1 + γV (St+1) is called TD-target, and the Rt+1 + γV (St+1) − V (St) is called TD-
error. This error is the diviation between old estimate V (St) and a current better estimate
Rt+1 + γV (St+1).

Algorithm 1 Tabular TD(0) for estimating vπ [111]
1: Input: the policy π to be evaluated
2: Algorithm parameter: step size α ∈ (0, 1]
3: Initialize V (s), for all s ∈ S+, arbitrarily except that V (terminal) = 0
4: loop for each episode:
5: Initialize S
6: loop for each step of episode:
7: A← action given by π for S
8: Take action A, observe R, S ′

9: V (S)← V (S) + α(R + γV (S ′)− V (S))
10: S ← S ′

11: end loop
12: until S is terminal
13: end loop

The same as Dynamic Programming, the V (S) is updated based on itself. Therefore, it
is called bootstrapping method. When the γ is sufficiently small, the TD(0) method could
garantee a convergence.

6.5 Model-Free Control

The last subsection introduce TD-prediction methods that could predict the value function.
Such prediction could be used to generate the policy.
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6.5.1 ε-Greedy Exploration
The ε-Greedy method could help all the state-action pairs are explored infinitely many times
so that the agent will not be stuck at only one policy that maybe not the optimal one. The
mathematical way is intuitionally to give the π with a non-zero value to try all the actions as
shown in Equ (6.9). And this is proved to guarantee the policy is continuously being improved.

π(a |s) =

ε/m+ 1− ε, if a∗ = arg max
a∈A

Q(s, a)

ε/m, otherwise.
(6.9)

6.5.2 Q-learning: Off-Policy Temporal-Difference Control
Q-learning is an off-policy method. The agent choose the next action by behaviour policy
At+1 ∼ µ(· |St), and learns from the target policy A′ ∼ π(· |St).

Algorithm 2 Q-learning (Off-policy TD Control) for estimating π ≈ π∗ [112]

1: Algorithm parameters: step size α ∈ (0, 1], small ε > 0
2: Initialize Q(s,a),for all s∈S+, a ∈A, arbitrarily except that Q(terminal, ·)= 0
3: loop for each episode:
4: Initialize S
5: loop for each step of episode:
6: Choose A from S using policy derived from Q (e.g., ε-greedy)
7: Take action A, obseve R, S ′

8: Q(S,A)← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]
9: S ← S ′

10: end loop
11: until S is terminal
12: end loop

In practice, the behaviour choose the ε-greedy, which allows some probability for explo-
ration, and the target policy is greedy with respect to action-value, as shown in Equ (6.9), the
arg maxaQ(S, a).

In the Q-learning, the target will be Rt+1 + γQ(St+1, A
′), the A′ is the aciton following the

greedy policy above. The algorithm first take action A, then observe the reward R and the next
step state S ′, the error here is the deviation betweenR+γmax

a
Q(S ′, a) andQ(S,A). The front

one is Q(st, at+1), which is target, the later one is the Q(st, at+1), which is estimate. α is the
learning rate. The γ is the discounted factor that assign different weights to different Q-value.

6.6 Function Approximation
Function Approximation approach is a booster to help RL method to solve practical engineering
problems. For some large scale of RL problem, the state space is always very large, for exam-
ple, the automatic driving [30], the state for the car is the external image and the surrounding
object observed by the car, and this observation is continuously changing. This means the state
number in step 7 in Alg (2) is infinity. A tabular method for Alg (2) is not practical. This tab-
ular based approach is exactly same as LookUp Table(LUT) in FPGA, a large Q-table should
be implemented to store the action-value Q(s, a) for each action and state pair. Normally if
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the problem set is relatively large, a "case" function in the code that will cost a lot of LUTs
in FPGA. Implementing this table on CPU/GPU also requires a large memory resources or
computational resource.

The θ ∈ Rd′ could be used as parameter vector. The basic idea of function approximation is
to build one approximator like v̂(S,θ) for value function or q̂(S,A,θ) for action-value function.
This will help map a state or state-action pair in a continuous space to one value. The θ is the
parameters in approximator, and it depends on this function approximator is a linear function,
neural network, decision tree, nearest neighbour, fourier or wavelet bases approximator and
many others.

Establish the deviation between the approximated action-value function and the true action-
value function:

J (θ) = Eπ[(qπ(S,A)− q̂(S,A,θ))2] (6.10)

The basic machine learing approach stochastic gradient descent can easily solve this optimiza-
tion problem:

∆θ = α(qπ(S,A)− q̂(S,A,θ))∇θq̂(S,A,θ) (6.11)

And for TD(0) method have this update formula:

∆θ = α(Rt+1 + γq̂(St+1, At+1,θ)− q̂(St, At,θ))∇θq̂(St, At,θ) (6.12)

In the Equ (6.12), Rt+1 + γq̂(St+1, At+1,θ) is the TD target and q̂(St, At,θ) is the function
prediction value. The deviation of two is the TD error. In the following chapters will intro-
duce how standard deep learning techniques will be used for function approximation in Policy
Gradient and Deep Deterministic Policy Gradient.

6.7 Deep Q-Learning
A function approximator Q(s, a;θ) in last subsection is used for a practical estimation of
Q∗(s, a). Then a loss function comes from TD-error could help for training the Q-network
Q(s, a;θ):

Li(θi) = Es,a∼ρ(·)[(yi −Q(s, a;θi))
2] (6.13)

The target yi, similar with the concept of labeled data in supervised learning:

Q∗(s, a) = Es′∼ε[r + γmaxa′Q
∗(s′, a′;θi−1) |s, a] (6.14)

The subcript i here is the number of iteration. The ρ(s, a) is a probability distribution, also
called behaviour distribution. Then the same as supervised learning training process [113],
calculate the derivative with respect to the parameter θi as also shown in Equ (6.11). But if one
directly use a non-linear function for a TD(0) control, it will not guarantee for convergence, it
is true for both on-policy and off-policy. But in practice, although there is no garantee, the Q
function still works and moves stablely towards improvement.

The Deep Q-learning or sometimes called Deep Q-network (DQN), is the method that con-
bines the function approximation and experience replay [114]. In the Alg (3) From the step 9 to
step 13 clearly shows how the experience replay performs. Because in [78] the input state is im-
age of Atiri Game, The φt and φt+1 here is the preprocessing to fit the input of neural network,
here it could be understood as st and st+1. Every time the agent finish one step in step 9, the
transition will be stored in one memory. Then the same as supervised learning, the training data
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Algorithm 3 Deep Q-learning with Experience Replay [78]
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for for episode = 1, M do
4: Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
5: for t=1, T do
6: With probability ε select a random action at
7: otherwise select at = maxaQ

∗(φ(st), a;θ)
8: Execute action at in emulator and observe reward rt and image xt+1

9: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
10: Store transition (φt, at, rt, φt+1) in D
11: Sample random minibatch of transitions (φt, at, rt, φt+1) from D

12: Set yi =

{
rj for terminal φj+1

rj + γmaxa′Q(φj+1, a
′;θ) for non-terminal φj+1

13: Perform a gradient descent step on (yi −Q(φj, aj;θ))2

14: end for
15: end for

set will be extracted from this memory and, performs the gradient descent, or other optimiza-
tion method to minimize the loss function. The motivation for experience replay is, firstly, the
training data should be Independent Identical Distribution (IID). Secondly, the random sample
from the memory could break the dependency between two transitions (φt, at, rt, φt+1).

6.8 Policy Gradient
Like the Q-learing and DQN, they indicate the Q-Value based method approximating the
value under current state, but the policy gradient method introduced in this subsection will
parametrize the policy directly:

π(a |s,θ) = Pr{At = a |St = s,θt = θ} (6.15)

The π is the policy with parameters θ used in this episode or step. In practice, this parame-
terized function will be a neural network where it is plugged into the current state and the last
layer will give out the possibility that how to take each action. The quality of a policy is mea-
sured with a policy score function J(θ) that collecting all the expected reward. Maximizing
the score function means looking for the optimal policy. Then the goal is to find the best θ
that maximizes the objective function J(θ). This is again the basic optimization method that is
similar to supervised learning. To maximize or minimize a function, if one knows the gradient
of the function, then an ascent or descent direction could be used for searching the optimal
point of the function. The policy gradient theorem [115] gives such a direction to update the
parameters towards the gradient ascent on policy function:

There are three different definition types of policy objective function:

Definition 6.8.1. In episodic environment one can use the start value, the policy objective
function is:

J1(θ) = V πθ(s1) = Eπθ [v1]
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Here in one episode, the start value defines how much reward will get if the agent starts
from the state s1 onwards.

Definition 6.8.2. In continuing environment one can use the average value, the policy objective
function is:

JavV (θ) =
∑
s

dπθ(s)V πθ(s)

Where dπθ is the stationary distribution of Markov chain for πθ. Practically dπθ = limt→∞ P (st =
s | s0, πθ), that shows the probability transfer from state s0 to st following policy πθ. The
Def (6.8.2) use this state distribution to average reward simply average all the possible states
following the πθ.

Definition 6.8.3. In continuous environment one can use the average reward per time-step, the
policy objective function is:

JavR(θ) =
∑
s

dπθ(s)
∑
a

πθ(s, a)V πθ(s)

In each step, the Def (6.8.3) average all the state firstly and average all the possible policy
times immediate reward get at current state-action pair.

The key point is, one could not know the exact mathematical expression of those objective
function J(θ), but once the difference of objective function ∇θJ(θ) with respect to parameter
θ is given, then the parameters could be updated and policy could be improved accordingly.
Before to understand the policy gradient theorem, let’s consider only one-step MDPs and the
average reward per time-step type of objective function. If starting from state s, get immediate
reward r = Rs,a, then the episode is finished. Then one will have expectation expression of
objective function:

J(θ) = Eπθ [r]

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a (6.16)

In Equ (6.20), the first sum is to calculate the expectation over starting state and the second
sum is the expectation over all the possible action with respect to the π. Then according to this,
the policy gradient will be:

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a

= Eπθ [∇θlogπθ(s, a)r]
(6.17)

In machine learning, the target for Maximum Likelihood Estimation is to find one set of
pramameters θ that try to fit the model with the observation data or training data with the
largest probability, which has the samilar concept with Cross Entropy, it normally have the
format as below:

H(p, q) = −
∑
x

p(x) log q(x) (6.18)

The purpose of a standard supervised machine learning problem is to minimize the cross-
entropy, by doing such will minimize the difference between labeled data and the prediction
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data. In Equ (6.18) where the H denotes the Entropy, that shows the difference between two
distribution. The p is the distribution of the reference data(or labeled data), the q is the distri-
bution of the prediction data. Then compare the Equ (6.18) with the Equ (6.17) there is no sum
operation

∑
, only the log πθ(s, a), that means, the output prediction data by model is πθ , and

the true label is 1 according to this prediction, others are 0. Because in practical implementa-
tion, the expectation will be estimated by sampling the data from experiments. The Equ (6.17)
can write down as:

H = −
∑
i

ŷi log yi (6.19)

Where the ŷi is always in a format of [. . . , 0, 0, 1, 0, . . . ], for a discrete action space problem,
the size of this array is depends on the dimension of the action space. The location of the 1 in
the labeled data is related to which action the agent takes in this experience, other labels are all
0. Then the Equ (6.17) becomes only logπθ(s, a)r. Such true data distribution try to increase
or decrease the probability of taking this action a when see this state s, and which direction
is depends on the sign of the reward r, if the reward r is negative, the it discourage the agent
when see state s to carry out action a, when the r is possitive, then agent will be encouraged.

Without proof, gives the policy gradient theorem here, it generalizes the likelihood ratial
approach from one-step MDPs to multi-step MDPs, where replace the immidiate reward r with
the action value Q.

Theorem 6.8.1. For any differentiable policy πθ(s, a), for any of the policy objective functions
J = J1, JavR, or 1

1−γJavV , the policy gradient is:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)]

= Eπθ [∇θ ln πθ(s, a)Qπθ(s, a)] (6.20)

6.9 Monte-Carlo Policy Gradient (REINFORCE)

Algorithm 4 Function REINFORCE
1: initialize θ arbitrarily
2: for each episode {s1, a1, r2, ..., sT−1, aT−1, rT} ∼ πθ do
3: for t = 1 to T − 1 do
4: θ ← θ + α∇θlogπθ(st, at)vt.
5: end for
6: end for
7: return θ;

The policy gradient theorem inform a very important message that the parameter gradient to
the policy objective function is propotional to ∇θ lnπθ(s, a)Qπθ(s, a), one could dirrectly use
such information to update the policy network. Here introduce REINFORCE update solution
for parameters in the policy πθ:

∆θt = α∇θ log πθ(s, a)vt (6.21)

Where in Equ (6.21) use the experiment sampling return vt to replace the Qπθ(s, a). This
update method will be the main step in policy gradient as shown in Alg (4).
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6.10 Conclusion
In this chapter, some of the important concepts in reinforcement learning are introduced, a
clear definition for state, reward, and action are given. The state-value function and action-
value function also is proposed. TD-based methods are introduced which are the base for
Deep Deterministic Policy Gradient used in Chapter 8 and 9. The Monte-Carlo Policy Gradient
method is shortly introduced; this is the algorithm used in Chapter 7.



Chapter 7

Policy Gradient on embedded processor

This chapter will gives the specific CartPole problem solved by Policy Gradient and its per-
formance on hardware. The CartPole problem (environment) comes from [116], and a same
version of environment is implemented in OpenAI environment with name CartPole-v1 [117].
This two blocks (agent and environment) are communicated with each other and both are run-
ning on MPSoC (PS part). This environment simulates the CartPole in a horizontal axis. This
fulfils the control equations, and receives the actions from the agent, then after which, the pole
moves. The goal of the control is to keep the CartPole balanced (the pole stays in a narrow
angle rang) as long as possible, as shown in the Fig (7.1), the agent should learn to keep the
absolute value θ as small as possible.

Figure 7.1: Cartpole problem

The Alg (5) illustrate the basic procedure of interaction between the agent and the CartPole
environment. It also demonstrates how the agent learns through policy gradient (PG) method.
At each step (the inner repeat loop in Alg (5)), the interaction procedure between agent and
environment is the same as the basic interaction scheme of reinforcement learning as shown in
Fig (6.1). Beginning from step 8 of Alg (5), the agent chooses one action At according to the
current state (observation) St and policy π. In step 9, the environment will apply this action,
and this transition will lead the agent to the next state (St+1). At the same time, agent also
collects a scalar reward from the environment. At step 11, the agent needs to store the current
step information into memory, which includes the current state, the chosen action, the received
reward, and the next state. After that, the agent checks whether the episode is finished or not.
In CartPole case, a fallen pole means that the cart could not keep the pole back to balanced

71
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Algorithm 5 Policy Gradient Implementation

1: differential policy parameterization πθ(a|s) (fully connected neural network)
2: initialize policy parameter θ ∈ Rd and learning rate α > 0
3: allocate memory to store information about the interaction with the environment
4: repeat
5: reset the S0 to a random staring state
6: t← 0
7: repeat
8: choose action At according to πθ(·|St)
9: St, Rt, St+1 ← env.step(At)

10: t← t+ 1
11: store the St, At, Rt, St+1 in memory
12: until St+1 is terminal (t = T )
13: calculate the cumulative discounted reward Gt

14: loop over steps in this episode t = 0, 1, . . . , T − 1
15: θ ← θ + αGt∇θ lnπθ(At|St)
16: end loop
17: until episode has reached a threshold number of steps

condition and the current episode is finished (reach to the terminal state). At the terminal point
of one episode, the RL agent collects all information related to this episode and calculates
the discounted cumulative reward Gt in step 13. This information is then used to update the
parameters of the policy in step 15. In step 17, if one episode, also means one effort of balance,
keep the pole for more than the stated steps (the author customized value, in later chapter the
author uses 500, 1000, 2000, 5000 number of steps. This value is required for the performance
analysis). It means the agent have learned well how to balance the pole, then the whole game
stops. Also one could keeping the game continue and let the agent learning forever. The next
chapter will deliver the backpropagation formula derivation and its implementation on Zynq.

In this subsection, a concrete example will be given to deliver the technique detail of the
backpropagation, which is the most important part and difficult part in all reinforcement learn-
ing algorithm implementation, as shown from step 13 to step 16 in Alg (5). One specific episode
taken by agent will be demonstrated later and the parameters update procedure in hardware will
be on display. Finally, the training procedure will be summarized.

7.1 Policy network
The policy approximation here use a 2-layer neural network for step 1 in Alg (5). As shown in
the picture 7.2, the policy takes the obvervation of the environment, gives out the probability of
the action. In the CartPole problem, the action space is simple : {left, right}. The input layer
takes 4 elements as the input observation space:

x position of the cart on the x-axis

θ the angle of the pole according to y-axis

ẋ the derivative of position

θ̇ the derivative of angle
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𝑥

𝜃

𝜃

𝑥
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𝑎1

𝑦2
𝑎2

𝑦1

Figure 7.2: The policy network use a 2-layer fully connected neural network, the input layer
has 4 units, hidden layer has 30 units, and the output layer has two unit related to the two-
dimension of action space. This two dimension is then implemented through a softmax layer
so that a probability could be generated in y1 and y2

The method of counting number of layers of neural network comes from [118], where
the input layer is not counted into the total number. The whole dissertation will follow this
convention.

7.2 One specific episode
During the experiment, taking the first episode as the example. The agent interact with the
environment, the pole fall down at 13th step, shown in figure 7.3.

… fall down
(episode finished)

state 1 state 3state 2 state 13

Figure 7.3: 13-step movement

Table 7.1: Output of NN and Actions

Step Left Prob Right Prob Left Right
1st 0.5345 0.4653 1 0
2nd 0.5236 0.4763 0 1
3rd 0.5343 0.4656 1 0
4th 0.5233 0.4766 1 0
5th 0.5117 0.4882 1 0
6th 0.4995 0.5005 1 0
7th 0.4871 0.5128 1 0
8th 0.4745 0.5255 1 0
9th 0.4619 0.5254 1 0

10th 0.4495 0.5504 0 1
11th 0.4546 0.5453 1 0
12th 0.4421 0.5578 0 1
13th 0.4467 0.5533 1 0
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The policy output(action probability), and the actual actions which are picked up in history
is shown in table 7.1. The 2nd and 3rd column is the output of the neural network, that gives the
probability to take each action. The “suggestion” given by the policy is similar between going
left or right and that is because it is the first episode, there is no backpropagation are taken so
far and the policy network did not learn anything. This explain that the network randomly gives
the probability about 50 percent to go left or right. The right two columns in Tab (7.1) is the
real action that was taken by the agent. The bold number 1 in Tab (??) denotes the actual action
taken by the agent. The action selection is not according to the largest probability in the policy.
It chooses an action based on probability.

7.2.1 Loss function of Policy Gradient
The basic loss function used in Policy Gradient is:

Loss = − 1

N

N∑
i=1

vti log yia (7.1)

The N is the number of steps the agent experienced in one episode. The yia here is the
column 2 and 3 in Tab (7.1), where the subscript i represents which step it is. The subscript
a denotes the related action. For example the y12 is in step 1, the propobility to take action 2
(going right) is 0.4653 in Tab (7.1). During training, the loss function will be divided into small
pieces, each piece represent one step.

7.2.2 Reward function of Policy Gradient
Reward function is one of the most important signal in RL. One need to clarify the meaning of
immediate reward r and the meaning of discounted reward vt in Equ (7.1). In CartPole problem,
the immediate reward r feedback by environment is always 1 when the agent successfully
balance the pole for one more single step. But when the pole is fall down, the reward coming
from environment is 0 at last step in one entire episode as shown in Fig (7.4).

The vti is the discounted reward where the subcript i denotes the step index in one episode.
The Alg (6) described how to calculate the normalized discouted reward through immediate
reward r.

Under such definition of reward signal, the agent learns to acquire more reward from envi-
ronment, and through which could keeping the pole for longer time. But this reward can not
be used directly in Equ (7.1) because in different steps, the vti have different meanings. At the
begining of the game, the agent keeping the pole very well, so the corresponding discounted
reward should be a large positive number, and then the steps close to the terminal point, the
agent show worse performance, the related vti should be large negative number. To transfer the
each step reward (+1) into a discounted and normalized vti needed in the Equ (7.1), one needs
the algorithm (6).

The Alg (6) shows the standard way to map the immediate reward to the discounted return.
Alg (6) firstly clean up the reward array, the ep_rs[step] is always 1 in CartPole problem shown
in Fig (7.4). Then calculate the accumulated return and the discounted return in each step at
Alg (6) step 9 and 10. The second for loop calculate the mean of the discounted return and
minus this mean to normalize the discounted return array. After which, the discounted return
value in this example is shown in Tab (7.2).

After these effort, the value in the last column of table 7.2 is related to each seperate step
that could be applied into the Equ (7.1). It is applied in the step 14 of Algorithm 5. For example,
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Algorithm 6 Function Normalized Discounted Return

1: receive the reward array ep_rs[step] from the environment every step
2: define gamma γ as the discounted factor to 0.99
3: define accu as the current accumulated return
4: define dis as the discounted return array
5: accu← 0
6: for i = 1 to N do
7: accu← accu ∗ γ + ep_rs[i]
8: dis[i] = accu
9: end for

10: calculate the mean of the discounted return array mean_dis
11: calculate the standard deviation of the discounted return array std_dis
12: for i = 1 to N do
13: dis[i]← (dis[i]−mean_dis)/std_dis
14: end for
15: return dis;

Reward:

… fall down
(episode finished)

state 1 state 3state 2 state 13

+1 +1 +1 +0

Figure 7.4: thirteen-step-rewards

Table 7.2: Output of NN, Taken Action and Return

Step Left Prob Right Prob Left Right Dis Return
1st 0.5345 0.4653 1 0 5.5203
2nd 0.5236 0.4763 0 1 4.6339
3rd 0.5343 0.4656 1 0 3.7386
4th 0.5233 0.4766 1 0 2.8342
5th 0.5117 0.4882 1 0 1.9207
6th 0.4995 0.5005 1 0 0.9979
7th 0.4871 0.5128 1 0 0.0659
8th 0.4745 0.5255 1 0 -0.8755
9th 0.4619 0.5254 1 0 -1.8265
10th 0.4495 0.5504 0 1 -2.7871
11th 0.4546 0.5453 1 0 -3.7574
12th 0.4421 0.5578 0 1 -4.7375
13th 0.4467 0.5533 1 0 -5.7275

the accumulated return −5.7275 is vt13 and it is related to the last action “going Left", the y131,
that the first subscript 13 denotes the 13th step, the second 1 denotes the action index “going
Left". A big negative value also means that the agent did a wrong step so the environment gives
a big punishment on the agent on the 13th step. In reverse, in the first step, the discounted return
vt1 is 5.5203, a positive number, which means that the action taken “going Left" is good.
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Furthermore, according to the Equ (7.1), the final loss function in Equ (7.1) for this episode
could be discribed more precisely through the value coming from Tab (7.2):

Loss = − 1

N
(vt1 ∗ log(y11) + vt2 ∗ log(y22) + ...

+ vt13 ∗ log(y131))

= − 1

13
(5.5203 ∗ log(0.5345) + 4.6339 ∗ log(0.4763)

+ ...+−5.7275 ∗ log(0.4467))

(7.2)

7.2.3 Backpropagation for Policy Gradient
A common way for ML development is first to build the computation diagram, secondly define
the loss function, thirdly in order to minimize the loss function, needs to calculate the deriva-
tive of parameter wi with respect to loss function Loss(w1, w2, ..., wn), and finally update the
parameters by SGD or other optimization method. The Equ (7.3) shows how to use the gradient
information to update one parameter, where the α is known as learning rate.

w1 = w1 − α ∗
∂L

∂w1

(7.3)

The most difficult step is step 3, the caculation of gradient. For example in PyTorch, there
is Autograd [119]. The method to calculate the gradient is called backpropagation [86].

Here take one easy machine learning example to explain the concept of forward propagation
and backpropagation. A detail implementation method also mentioned in [84].

𝑥1

𝑦

𝑥2

𝑙…
𝑓(𝑥1, 𝑥2)

= 𝑥1𝑤1 + 𝑥2𝑤2

Figure 7.5: forward pass calculation

As shown in the Fig (7.5) is the forward pass, always be the first step when build up one
network. The green arrows shows the forward pass, the input of function f is x1 and x2, pass
through function x1 ∗w1 +x2 ∗w2, get result y, then after several step get the final loss function
l.

The red arrows in Fig (7.6) shows the backward pass, on the right side, the input of node
is the differential value ∂l/∂y coming from the loss value. One could first assume that every
time will get this input value. Secondly, local gradient could be deduced by ∂y/∂x1 = w1,
then ∂l/∂x1 is ∂l/∂y · w1, this is the output of backpropagation, afterwards this value will be
the input of next compute node, until calculate to the input of the whole forward pass.

Then one could use backpropagation at step 15 in Alg (5). We now have the vti and the well-
defined loss function in last few subsections, we could calculate the derivative of the parameter
with respect to the loss function through backpropagation.
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𝑥1

𝑦

𝑥2

𝑙…
𝑓(𝑥1, 𝑥2)

= 𝑥1𝑤1 + 𝑥2𝑤2
𝜕𝑙

𝜕𝑦

𝜕𝑙

𝜕𝑥2
=
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𝜕𝑥1
=
𝜕𝑙

𝜕𝑦

𝜕𝑦

𝜕𝑥1

Figure 7.6: backpropagation calculation

We first review the policy network through Fig (7.2), and start from the last layer, the
softmax layer. The Equ (7.4) is the forward pass of softmax layer.

yi = softmax(ai) =
eai∑N
i=1 e

ai
(7.4)

The purpose of softmax layer is to map the final dense layer output to the action space, and
meanwhile it normalize the large or small value into numerical value between 0 and 1. The
subscript i in Equ (7.4) denotes which action, only 1 or 2 for CartPole case here. In Equ (7.4),
the ai is the input of the softmax activation layer, the yi is the output of the softmax. This helps
to transfer the array (ai) into a probability distribution in Fig (7.7).

𝑥

𝜃

𝜃
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𝑎1

𝑦2 = 0.4653
𝑎2

𝑦1 = 0.5346

𝑤11
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53.46% probability
move left

46.53% probability
move right

Actual choice

Figure 7.7: The softmax layer gives the probability of taking each action. The policy selecting
the action according to the probability. As a result the policy choose the left, “left” is the action
that agent took in real life.

In backpropagation of softmax, it is important to note that every action ai has relationship
with all yi. To be specific, the a1 have relationship with both y1 and y2, and it is the same for
a2. This is the most important part in the implementation of backpropagation for softmax layer.
Taking one parameter update solution in the neural network for an example, shown in Fig (7.8).

∂L

∂w11

=
1

N
(
N∑
i=1

∂Li
∂yi1

∂yi1
∂a1

∂a1
∂w11

+
∂Li
∂yi2

∂yi2
∂a1

∂a1
∂w11

) (7.5)

Now we can calculate the derivative of w11 with respect to the loss function, as the w11

only have relationship with a1, then the caculation will only sum over the a1 as shown in
the Equ (7.5). The major three part needs to solve in Equ (7.5) is ∂Li/∂yi1, ∂yi1/∂a1 and
∂a1/∂w11. First of all, the Loss function could be regarded as the sum of Li = vti ∗ log(yia),
and this also means each single step create a small loss in the global loss funcion. This small
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loss Li is the partial loss got in current single step i. It is very easy to deduce the first part:

∂L

∂yia
= vti ∗

1

yia
(7.6)

We focus on only the first step, so the step subscript i here will be ommited later. Later, other
step for example L2, L3 could use the same method to calculate. By doing this, only leaves the
subscript a to denotes which action.

∂L1

∂ya
= vt ∗

1

ya
(7.7)

The Equ (7.7) shows the small loss L1 which belongs to the first step. For a proper cacula-
tion for backpropagation, the vt ∗ 1/ya is devided into two part, the vt and 1/ya. In the actual
implementation, this part is onehot[ ] ∗ vt ∗ 1/ya. As shown in Fig (7.8), the onehot[ ] denotes
which action the agent takes in this step as shown in the column 4th and 5th in Table (7.2). If
action a is taken, then onehot[a] is 1, others are 0. The vt here is the discounted return in the last
column of Tab (7.2), and the product of onehot[ ] and vti is the input of the backpropagation
operation.

Figure 7.8: The beginning of the backpropagation is determined by the action taken in reality
and the discounted return, From the last layer’s softmax activation layer, the derivative to the
loss function will backward propogate from this layer, and pass through all layer until reach to
the input layer

The Equ (7.2) also demostrates this property. In Equ (7.2), the first partial loss (related to
first step) L1, vt ∗ log(y1) is equals to 5.5203 ∗ log(0.5345). Here the action taken showing
that it is not related to the action “going right", only related to the "going left". So in back-
propagation, the "going right" part could be ignored. This is ignored by the onehot[2], to select
only the action that occured (onehot[1]), the reason is that the onehot[2] is 0, then there is no
backpropagation value pass through the neural network.

Then the second part is ∂y1/∂a1, this is related to the softmax layer property. Without
decude, here directly gives the result. When the subscript of the ya, a, is equals to the subscript
of the denominator a, for example here 1 = 1, then the ∂y1/∂a1 is:

∂yi1
∂a1

= yi1 − yi12 (7.8)

If the subcript are different, then:

∂yi2
∂a1

= −yi1 ∗ yi2 (7.9)
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For the third part ∂a1/∂w11, because the a1 it is calculated by the fully connected neural
network where:

a1 =h1 ∗ w11 + h2 ∗ w12 + · · ·+ h30 ∗ w130 + b1 (7.10)

Here the h1 is the output value of first unit in hidden layer, the w11 is the weight between first
unit in hidden layer and the layer layers’ first unit. The b1 is the biases of the first unit of hidden
layer.

So the ∂a1/∂w11 could be easily deduced:

∂a1
∂w11

= h1 (7.11)

After have all the information, the parameter of delta w11 will get. Then it could be updated
by:

∂L1

∂w11

=
∂L1

∂y1

∂y1
∂a1

∂a1
∂w11

+
∂L1

∂y2

∂y2
∂a1

∂a1
∂w11

= vt ∗
1

y1
∗ 1 ∗ (y1 − y12) ∗ h1 + vt ∗

1

y2
∗ 0 ∗ (−y1y2) ∗ h1

= vt ∗ (1− y1) ∗ h1

(7.12)

w11 = w11 −
∂L

∂w11

∗ 0.1 (7.13)

The C code segment in Appendix C has the full implementation detail cover the above part
from loss function to the partial difference to all the parameters. The only left part is how to use
this information to update the weights and biases. One possible solution is shown in Equ (7.13)
is a standard gradient descent method.

In Equ (7.13), 0.1 is the user learning rate that is the hyper-parameter for searching the
gradient descent direction of the loss function. It is the same for updating bias of b. The user
could also adjust to other value. It is the same as other weights and biases. The derivative
of weights and the biases of the input layer and hidden layer is relatively easy, it can use the
backward derivative pass from the hidden layer to calculate.

7.3 Policy Gradient training hardware design
The flow chart is widely used in technical design, working procedure and presentation. Fig (7.9)
is the flow chart from step 13 to 16 in Alg (5). The training is episodic. In the CartPole
case means the agent only learns at the end of each episode (when the pole fell down). After
having the normalized discounted return, it will loop over each step. The Vti will attach to the
training data for step i. Here the training data is the history of how the agent interacted with the
environment at step i. Then a backward propagation will pass the partial loss function li though
the whole policy network to get the derivative of the parameter with respect to this partial loss
function. An optimization method could use to update the parameter in the last step. When it
finishes, the next partial loss function will be calculated for backward propagation and similar
parameter updating happens until all the steps are covered in this episode.

At Fig (7.10), there are 6 files given to struct the Policy Gradient testbench on HighFlex2
PS side. It is written in C++. The main.cc is the top file that contains the basic reinforcement
learning interaction steps. The nnet_common.h defines the basic data types of weights abd
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Figure 7.9: episodic training flow chart

biases. The parameters.h defines the dense layer structures and activation layer structures. The
nnet_activation.h The nnet_dense.h defines the C++ functions of forward pass. And finally the
cartpole.h simulates the CartPole environment. All the backpropagation is directly written in
C++ at main.cc. The Appendix C contains the whole part of backpropagation from softmax
layer back to first layer. Which is also one of the block in Fig (7.9). After the backpropagation,
the partial loss function is got. Then could use this information to update the weights.

7.4 Policy Gradient training curve
This section will exhibit the training curve on Zynq device, to proof the function validity on
hardware. The unit under test will be the training procedure demonstrated in flow chart in
Fig (7.9). The experiment is done on an Linux based PC and HighFlex2 DAQ board. The
standard PC use Ubuntu 16.04.6 LTS operation system, on 7 Intel(R) Core(TM) i7-4710HQ
@ 2.50GHz processors (cache size 6144KB). The result on CPU is shown in next four figures.
Because the CPU version and GPU version have similar result, and also the purpose of this
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Figure 7.10: The policy gradient software structure at Xilinx SDK

section is verification, then here only demostrate the CPU version. According to the step 17 of
Alg (5), a fixed threshold is set for a training trend comparison. The threshold value is set to
500, 1000, 2000, and 5000 steps in one episode.

Figure 7.11: 942 episode on CPU

In figure 7.11, each blue point means one episode test. The y coordinate axis means how
many steps in this episode. That means if in one episode, the cart could keep the pole for more
than 500 steps, then the whole game stop. First of all, one could clear see the trend that the
agent try to learn keeping the CartPole balanced for more number of steps in each episode. In
the top right corner of the figure, the blue point circled by the red circle means that in the 942th
episode, the pole is kept balanced for 566 steps on CPU.

In figure 7.12, the HighFlex2 Zynq test shows the pole is kept balanced for 515 steps at
936th episode as shown in the red cycle at the top right of the picture. The game finished
at 936th episode. Compared with Fig (7.11) on CPU, the HighFlex2 Zynq have the similar
behaviour.
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Figure 7.12: 936 episode on HighFlex2 Zynq

Figure 7.13: 945 episodes on CPU

Figure 7.14: 1251 episodes on HighFlex2 Zynq
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Figure 7.15: 1601 episodes on CPU

Figure 7.16: 1663 episodes on HighFlex2 Zynq

Figure 7.17: 2369 episodes on CPU
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Figure 7.18: 2197 episodes on on HighFlex2 Zynq

In figure 7.13 is the testbench for searching episode that goes over 1000 steps. It shows
the pole is kept balanced for 1083 steps at 945th episode on CPU. In figure 7.14, HighFlex2
test shows the pole is kept balanced for 1270 steps at 1251th episode as shown in the red cycle
at the top right of the picture. The total training trend is same between CPU Fig (7.13) and
HighFlex2 Fig (7.14).

The Fig (7.15) experiments that the CPU keep the pole balanced more than 2000 steps at
1601th episode. Fig (7.16) shows the pole is kept balanced for 2157 steps at 1663th episode as
shown in the red cycle at the top right of the picture.

In Fig (7.18), HighFlex2 test shows the pole is kept balanced for 5076 steps at 2197th
episode as shown in the red cycle at the top right of the picture. It is the samiliar behaviour
shown in Fig (7.17) that the CPU version used 2369 episodes to reach a good episode that owns
over 5 thousands steps.

7.5 Policy Gradient training performance
As the major purpose of this chapter is to focus on training latency of reinforcement learning.
In terms of policy gradient, the step 13 to step 16 in Alg (5) is the research emphasis. The
number of steps in one episode leads to different training time. Deduce from the Alg (5)
itself, the training process is a loop that loop over each step in one episode, thus the training
latency is roughly proportional to the step number if running purely on hardware without any
overhead. But in reality, it is hard to precisely control the movement of agent manually in
a fixed number of steps because the number of steps per episode depends on random action
space searching seed, the state of the environment, the level of agent’s learning (how well the
policy network is trained so far), etc. Thus, to realize a ponderable and reasonable comparison
between CPU, GPU, and Zynq, the step number in the episode should be the same. In this
section, the mandatory parameter set is used for step number. This is set in step 4 of Alg (7).

The Alg (7) is the testbench for policy gradient method training process performance test.
Only the training part in the algorithm is the unit under test, which is the step 12 to step 17.
This means only from step 13 to step 16 is under test, and each test is 100 times, in order to
get information about training stability. Step number for each episode will be forced as 1 steps,
100 steps, 5000 steps per episode. The number above 10000 steps is not reasonable because
according to benchmarking [120], some of the cutting-edge reinforcement learning algorithms
like REINFORCE, Trust Region Policy Optimization (TRPO), and Deep Deterministic Pol-
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Algorithm 7 Policy Gradient Fixed Steps Training Testbench

1: differential policy parameterization πθ(a|s) (fully connected neural network)
2: initialize policy parameter θ ∈ Rd and learning rate α > 0
3: allocate memory to store information about the interaction with the environment
4: prepare a fixed number, that guarantee a episode only have that amount of steps
5: repeat
6: choose action At according to πθ(·|St)
7: St, Rt, St+1 ← env.step(At)
8: t← t+ 1
9: store the St, At, Rt, St+1 in memory

10: until t equals to fixed number of steps
11: loop over 100 times of training test
12: extract the episode information from memory
13: calculate the cumulative discounted reward Gt for this episode
14: loop over steps in this episode t = 0, 1, . . .
15: θ ← θ + αGt∇θ lnπθ(At|St)
16: end loop
17: end loop

icy Gradient (DDPG), the deployed algorithms is 4693.7 steps, 4869.8 steps and 4634.4 steps
respectively in terms of average return. So in principle, a fixed training set is fed into the back-
ward function of CPU, GPU, and ARM implementation. In order to acquire a thorough analysis
of test data and different hardware, the experiment is tested 100 times for each different size of
training data set.

The GPU agent and environment is implemented by TensorFlow and OpenAI, on NVIDIA
Tesla K40c device. A detail parameters is exhibit in Fig (12) (Appendix B). The CPU running
environment is same with GPU version, disabling the GPU. For CPU performance test, the
code difference between GPU is only to disable the CUDA visbible device. The CartPole
environment is fully implmented on Zynq by C.

The training process of policy gradient is running on the processor system part of Zynq.
The unit under test is the same with GPU/CPU version in algorithm level, which is step 13 to
16 in Alg (5). In the ARM GNU compiler provides different optimization level for Cortex-A53
processor. The n in −On denotes the optimization level. −O0 is no optimization, −O1 is
optimize medium, −O2 is optimize more and −O3 is optimize most. The −O0 is normally
for debugging, and others for release. In the following the training will use −O3 optimization
level as default method unless otherwise specifically statement.

A thorough comparison of training latency under same condition is made by error-bar. If
the xi is the sampled test value, the x is the mean of xi, then the standard deviation (SD) is
Equ (7.14), and Equ (7.15) is standard error (SE), which denotes the individual sample and
populations differences. The average time of training latency and standard error (SE) is used in
error-bar. In this case, a low SE means a stable training latency.

σ =

√√√√ 1

n

N∑
i=1

(xi − x)2 (7.14)

σx =
σ√
n

(7.15)
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Figure 7.19: one-step episode error bar compared with ARM, CPU and GPU

Figure 7.20: one-hundred-step episode error bar compared with ARM, CPU and GPU

Figure 7.21: five-thousands-step episode error bar compared with ARM, CPU and GPU
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In Fig (7.19), each bar stands for 100 times of one-step long episode training test. The level-
3 optimization of Zynq is taken for comparison because of low latency. The height of the blue
bar is the mean of training latency. The Zynq left have the 5.104 µs lowest training latency. The
I-shaped on the bar represents the standard error of the training latency samples. Zynq have a
rough 0.0145 µs SE. The CPU and GPU have around 385 µs and 824 µs respectively. The SE
for CPU and GPU is about 5.47 µs and 8.57 µs, which is much higher than the Zynq version.

The Fig (7.19) is the error bar that combine the information of 100 steps episode test for
CPU, GPU and Zynq. This means the training data size is 100. Each bar stands for the average
training time for 100 times of one-hundred-step long episode training test. The height of the
blue bar is the mean of training latency. The Zynq -O3 optimization left have the 38.96 µs
lowest average training latency. The CPU and GPU have around 385 µs and 824 µs respectively.
Zynq have a rough 0.0145 µs SE. The SE for CPU and GPU is about 5.47 µs and 8.57 µs, which
is much higher than Zynq version.

The height of the blue bar in Fig (7.21) is the mean of training latency on Zynq for 5000-
step long episode. The Zynq -O3 optimization left have the 2990 µs lowest training latency.
The I-shaped on the bar represent the standard error of the training latency samples. Zynq have
a rough 2.0577 µs SE. The CPU and GPU have around 6554 µs and 7571 µs respectively. The
SE for CPU and GPU is about 49.9 µs and 79.12 µs, which is much higher than Zynq version.

7.6 Conclusion
This chapter gives the full implementation method for Policy Gradient. It contains several main
contributions. First, it gives a detailed reference from the mathematic deduce of the training
process for CartPole. This is the implementation theory reference for all hardware platforms.
Second, the training curve proves the convergence of training on HighFlex2 and also proves that
the traning latency has a much lower latency than other platforms. This full implementation
method totally circumvents a CPU/GPU Keras or TensorFlow based training platform. It also
provides an important starting point for the next chapters.



Chapter 8

DDPG on embedded processor

In the previous Policy Gradient (PG) chapter, the policy network could produce continuous
action space. This method has some drawbacks. 1, this method have the problem of high
variance; 2, it is hard to judge an action with only the reward, because the final accumulated
reward is depending on many steps and actions, then a proper action criterion is required; 3, PG
has a relatively low speed of convergence; 4, PG could only use in an episodic environment.
Actor-Critic could solve such problems.

From the Equ (6.20), the Actor-Critic method is almost there. Actor-Critic Methods com-
bines the Policy Gradient, the Policy Iteration and Value Iteration method. As mentioned in
the Policy Gradient section, the Q value is used to behave as a critic, adjusting the probability
of the appearance of the current trajectory. The critic part could use another neural network,
known as the evaluation network, also called critic network.

To be specific, the Qπθ(s, a) in Equ (6.20) will be replaced with critic network: Q(s,a |θQ).
The updating method of this network is the same as DQN, using TD-error as the loss function.
The Deep Deterministic Policy Gradient (DDPG) algorithm is a typical Actor-Critic based
method. Different from the basic version of Actor-Critic, DDPG has two additional networks
than the policy network (Actor) and evaluation network (Critic): the critic target network and
the actor target network. Each of the target networks is a copy from its counterpart at the
beginning but update slowly towards its corresponding evaluation network. As the major work
of the dissertation is to build the algorithm on the hardware, so the thesis here don’t put the
principle of the algorithm here, but only deliver the implementation details. The following
directly give the solution to use the Deep Deterministic Policy Gradient algorithm (Alg (8)) to
solve the pendulum problem in Fig (8.1).

Figure 8.1: Pendulum Problem environment have three state, cos(θ), sin(θ), and θ̇. The theta
is the angle between the pole and the vertical direction.

88
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Algorithm 8 Deep Deterministic Policy Gradient [82]

1: Randomly initialize critic network Q(s,a | θQ) and actor network µ(s | θµ) with weights θQ

and θµ

2: Initialize target network Q′ and µ′ with weights θQ′← θQ and θµ′← θµ

3: Initialize replay bufer R (memory buffer)
4: for episode=1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at = µ(st |θµ) +Nt according

to the current policy and exploration noise
9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′(si+1, µ

′(si+1 |θµ
′
)θQ

′
)

13: Update critic by minimizing the loss
L = 1

N

∑
i(yi −Q(si, ai |θQ))2

14: Update the actor policy using the sampled policy gradient:
∇θµJ≈ 1

N

∑
i∇aQ(s, a | θQ) |s=si,a=µ(si) ∇θµµ(s | θµ) |si

15: Update the target networks:
θQ

′ ← τθQ + (1− τ)θQ
′

θµ
′ ← τθµ + (1− τ)θµ

′

16: end for
17: end for
18: return θ;

8.1 Pendulum control
This section will introduce and solve one problem on HighFlex2: Pendulum problem, which is
a standard reinforcement learning test bench mentioned in [82]. The environment version used
is from OpenAI gym, Pendulum-v0 [121]. The pendulum problem is a classic control problem,
also called pendulum swing-up problem, literally meaning use force to bring the pendulum to
the upright position and try to keep balanced. The pendulum is a one-link pole with a 1-meter
length, 1 kg weight and friction coefficient of 1 Nsm/rad. The balance purpose of pendulum
control is to keep the pendulum standing up as shown in Fig (8.1). This means the targeting
angle of the pole is 180 degree or -180 degree. The Alg (8) DDPG is used to solve the problem.

8.2 Build DDPG networks
This section will introduce the software structures and how the DDPG networks are established
through C code. As shown in Fig (8.2) is the Xilinx SDK DDPG implementation. The DDPG
networks definition are located in the files of actor_parameters.h and critic_parameters.h.

8.2.1 Critic network
A complete DDPG hardware implementation require the realization from first step fo last step
of Alg (8). First is critic network and actor network.
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Figure 8.2: The Xilinx SDK software version for DDPG that solving Pendulum

The most basic three signals in RL interaction are state, reward, and action as shown in
Fig (6.1). The state that represent the status of pole is the position information cos(θ), sin(θ),
and the speed information θ̇.

In Fig (8.3), the task of the critic network is to predict the Q(s, a) value. The input of the
critic network is action a and state s. In the Pendulum-V0 environment, the state is cos(θ),
sin(θ), and θ̇, and the action is the joint effort, range from -2.0 N to 2.0 N, this denotes how
much effort the agent apply on the joint. Then the total number of input unit is four. The
output of the critic network is to give out the Q value, a scalar value. Therefore the output
layer must be one unit to generate such scalar value. The hidden layer could be any form.
Here we choose four fully-connected hidden layer as the major form, the activation layer after
each hidden layer is ReLU [122, 123, 124]. By conclusion, the structure of critic network is:
4 input units (state signal and action signal), then four fully connected layers: 32 units hidden
units (ReLU activation), and one output unit (linear activation). The θQ is the weights and
biases within these 5 layers. One top function of the critic network implementation is given in
Appendix D. All the parameters are stored in the critic_parameters.h as C struct.

1 s t r u c t c r i t i c _ l a y e r 2 _ d e n s e {
2 f l o a t w e i g h t s [ CRITIC_SECOND_LAYER_UNI ]
3 [ CRITIC_OUTPUT_LAYER_UNI ] ;
4 f l o a t b i a s e s [ CRITIC_OUTPUT_LAYER_UNI ] ;
5 f l o a t acc [ CRITIC_OUTPUT_LAYER_UNI ] ;
6

7 / / f o r c u r r e n t fo rward p r o p a g a t i o n
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Critic Network
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Figure 8.3: DDPG critic network

8 f l o a t d a t a i n p u t [ CRITIC_SECOND_LAYER_UNI ] ;
9 f l o a t r e s u l t [ CRITIC_OUTPUT_LAYER_UNI ] ;

10

11 / / p a r t i a l d e r i v a t i v e o f l o s s f u n c t i o n
12 f l o a t d i f f _ w e i g h t s [ CRITIC_SECOND_LAYER_UNI ]
13 [ CRITIC_OUTPUT_LAYER_UNI ] ;
14 f l o a t d i f f _ b i a s e s [ CRITIC_OUTPUT_LAYER_UNI ] ;
15

16 f l o a t d i f f _ i n [ CRITIC_OUTPUT_LAYER_UNI ] ;
17 f l o a t d i f f _ o u t [ CRITIC_SECOND_LAYER_UNI ] ;
18

19 f l o a t mt_we igh t s [ CRITIC_SECOND_LAYER_UNI ] [ CRITIC_OUTPUT_LAYER_UNI ] ;
20 f l o a t m t _ b i a s e s [ CRITIC_OUTPUT_LAYER_UNI ] ;
21 f l o a t v t _ w e i g h t s [ CRITIC_SECOND_LAYER_UNI ] [ CRITIC_OUTPUT_LAYER_UNI ] ;
22 f l o a t v t _ b i a s e s [ CRITIC_OUTPUT_LAYER_UNI ] ;
23 } c r i t i c _ l a y e r 2 _ d e n s e ;

Here is the example for layer2 of critic network. This C struct stores the important pa-
rameters that used in forward pass (datainput, result), backpropgation (diff, diff_in, diff_out),
and Adam updating (mt and vt). And also the weights and biases of this layer. It is the same
definition for critic target network, actor network, and actor target network layers.

8.2.2 Actor network

𝑎𝑐𝑡𝑖𝑜𝑛

Actor Network

𝜃0

cos (𝜃0)

s𝑖𝑛 (𝜃0)

𝜇 s𝑡 𝜃𝜇)

1st layer 2nd layer

…

16 Units 16 Units

… … …

16 Units 16 Units

3rd layer 4th layer

Figure 8.4: DDPG actor network
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As shown in Fig (8.4), the task of the actor network is to predict appropriate action a = µ(s |
θµ) using the information state, then the input of the network is state, the output is action. For
critic network, the input is state and action signal. State is cos(θ), sin(θ), and θ̇. And the action
is the joint effort. The number of total input unit is three. The output of the actor network one.
The hidden layer could be any form. Here we choose four hidden layers as the major form, the
activation layer after each hidden layer is ReLU. By conclusion, the structure of actor network
is: 3 input units (state signal), then four fully connected layers with 16 units hidden units (ReLU
activation), and one output unit (Tanh activation). Tanh activation layer is used to generate the
output from −1 to 1. To fulfil the −2 to 2 requirement from the environment only needs one
linear multiplier afterwards. The θµ is the weights and biases in the 5 layers. One top function
of the critic network implementation is given in Appendix E.

The 2nd step in Alg (8) is to build the corresponding target network. The target critic net-
work and target actor network architecture is the same with critic network and actor network.
In the beginning, the value of weights and biases are copied from its counterpart. Until now,
we have four neural networks: critic network, actor network, and its reference: target critic
network, target actor network. These four neural networks transmit information between each
other during the training process. Because of this indistinguishable property, the following will
use italic format to denotes these 4 neural networks.

8.2.3 Memory buffer
Following the Alg (8), the 3rd step is to prepare the replay buffer R, also called memory buffer.
This could be implemented by hardware and software. To have a better comparison between
software version, the test keeps as much as possible components same as Keras-RL [125],
only the most important part, the agents (four neural networks) on the hardware. In this case,
the memory buffer and the training dataset is provided by Keras-RL, only the forward() and
backward() function in Keras-RL is replaced by HighFlex2 RL implementation. Although the
buffer is implemented by Keras-RL, here the hardware implementation method will be given
for a better explanation of DDPG and how memory buffer works inside.

Now comes down to the 1st loop (start from step 4) and 2nd loop (start from step 7) in
Alg (8). The exterior loop (1st loop) is episodic, looping over a fixed number of episodes
during the whole interaction. This could be hundreds to tens of thousands, depends on the
AI designer. In the inner loop, and also the most important loop, from step 8 to 10, is how
the agent interacts with the environment in each step. This inner loop exactly reflects how the
agent interacts with the environment following MDP. The same with Fig (6.1), a detail version
of Fig (8.5) explain a one transition in the Alg (8) step 8 to 9. The current st is at θ0, and policy
network (actor network) gives out the action at, for example 1.6 newton (N) joint effort. After
applying this action to the environment, the Pendulum moves from state0 (θ0) to state1(θ1). At
the same time, the agent receives the immediate scalar reward rt 1.3. Practically, the term agent
receive all the information that happened at this interaction and stores them into the memory
buffer.

In step 10, the agent needs to store the transition {st, at, rt, st+1} into the memory buffer,
as shown in Fig (8.6). For example, if the agent already moves 323 steps from the beginning,
then the memory pointer moves to the memory buffer position 323.

1 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 0 ] = c u r r e n t _ c o s _ t h e t a ;
2 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 1 ] = c u r r e n t _ s i n _ t h e t a ;
3 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 2 ] = c u r r e n t _ t h e t a _ d o t ;
4 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 3 ] = a c t i o n ;
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Figure 8.5: The DDPG actor interacts with pendulum environment

Figure 8.6

5 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 4 ] = reward ;
6 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 5 ] = n e x t _ c o s _ t h e t a ;
7 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 6 ] = n e x t _ s i n _ t h e t a ;
8 t r a i n _ r e p o [ r e p o _ p o i n t e r ] [ 7 ] = n e x t _ t h e t a _ d o t ;

This memory buffer is ued in training stage of Alg (8) from step 11th step to 15th. In step
11, a random batch of transition will be extracted from the memory buffer, for example, 32
images of different Fig (8.6). This is the training data for four networks of DDPG.

8.3 Train critic network
The training process of critic network requires a forward pass and backpropagation.

The forward pass has two parts: the critic network and the target critic network. The state
signal S and action signal A from the training data set is feed into the critic network, then the
output is Q. Next, the "next state" signal S_ from the training data set is feed into target critic
network, get a "target action", then this "target action" together with S_ is feed into target critic
network, get so called Q_target.

The Q_target, Q, and R from training data set constitute the TD_error shown clearly in
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Fig (8.7). This is the loss function for training critic network. Then same with other training
process, this loss goes back from critic network to get the partial derivative of loss function with
respect to the critic network parameters. Adam optimizer is also used here to update the weights
and biases of critic network. The forward pass and backpropagation functions also located at
actor_parameters.h and critic_parameters.h. The Adam optimizer functions for critic network
are located at critic_parameters.h.

Figure 8.7: Overview of critic training (forward pass part)

Figure 8.8: Overview of critic training (backpropagation part)

At the begining of this section, needs to review our basic approach to updating a neural
network. It is not only suitable for reinforcement leanring here but also suitable for supervised
leanring:

1) calculate the loss function using the forward propagation

2) use the information of forward propagation and use backpropagation to calculate the gradi-
ent of parameters

3) use the gradient to update the parameters through Adam, gradient descent method, or other
optimizer

Before the training process, the training data needs to be extracted from the memory buffer,
which is one single transition information: {st, at, rt, st+1} from one training batch of data.

This section will mainly discuss the step 12 and 13 in Alg (8). The target value of critic
network is qtarget, which is:

yi = ri + γQ′(si+1, µ
′(si+1 |θµ

′
)θQ

′
) (8.1)
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This is the reference Q value, and it is coming from the target critic network Q′. According
to the Equ (8.1), the network Q′ needs two inputs: the si+1 and µ′(si+1 | θµ

′
). si+1 could

be directly get from memory buffer, and the µ′(si+1 | θµ
′
) is the forward propagation result

when feed si+1 to the target actor network shown in the bottom left of Fig (8.9). As shown in
Fig (8.9), only use the information state1 si+1 we could have the target Q value q′. Then the yi
in Equ (8.9) will be:

yi = ri + γq′ (8.2)
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Figure 8.9: Calculation of target Q value
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Figure 8.10: Q value forward propagation

The calculation of Q value q could use the critic network as shown in the Fig (8.10). We
use the action from the memory buffer state0 and action that the agent taken in the history (1.6
shown in memory buffer Fig (8.6)).

1 / / ∗∗∗∗∗∗∗∗ t h e C r i t i c Net ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
2

3 c r i t i c _ i n p u t _ l a y e r ( \
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4 / / a c t o r _ l a y e r 2 _ t a n h . r e s u l t ,
5 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ i n p u t ,
6 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ i n p u t , \
7 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
8

9 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ w e i g h t s , \
10 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ w e i g h t s , \
11 c r i t i c _ l a y e r 1 _ d e n s e . b i a s e s
12 ) ;
13

14 c r i t i c _ l a y e r 1 _ a c t i v e _ r e l u ( \
15 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
16 c r i t i c _ l a y e r 1 _ r e l u . r e s u l t \
17 ) ;
18

19 c r i t i c _ d e n s e _ l a y e r 2 (
20 c r i t i c _ l a y e r 1 _ r e l u . r e s u l t , \
21 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
22 c r i t i c _ l a y e r 2 _ d e n s e . we igh t s , \
23 c r i t i c _ l a y e r 2 _ d e n s e . b i a s e s ) ;
24

25 c r i t i c _ l a y e r 2 _ a c t i v e _ r e l u ( \
26 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
27 c r i t i c _ l a y e r 2 _ r e l u . r e s u l t \
28 ) ;
29

30 c r i t i c _ d e n s e _ l a y e r 3 (
31 c r i t i c _ l a y e r 2 _ r e l u . r e s u l t , \
32 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \
33 c r i t i c _ l a y e r 3 _ d e n s e . we igh t s , \
34 c r i t i c _ l a y e r 3 _ d e n s e . b i a s e s ) ;
35

36 c r i t i c _ l a y e r 3 _ a c t i v e _ r e l u ( \
37 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \
38 c r i t i c _ l a y e r 3 _ r e l u . r e s u l t \
39 ) ;
40

41 c r i t i c _ d e n s e _ l a y e r 4 (
42 c r i t i c _ l a y e r 3 _ r e l u . r e s u l t , \
43 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
44 c r i t i c _ l a y e r 4 _ d e n s e . we igh t s , \
45 c r i t i c _ l a y e r 4 _ d e n s e . b i a s e s ) ;
46

47 c r i t i c _ l a y e r 4 _ a c t i v e _ r e l u ( \
48 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
49 c r i t i c _ l a y e r 4 _ r e l u . r e s u l t \
50 ) ;
51

52 c r i t i c _ d e n s e _ l a y e r 5 (
53 c r i t i c _ l a y e r 4 _ r e l u . r e s u l t , \
54 c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \



8.3. TRAIN CRITIC NETWORK 97

55 c r i t i c _ l a y e r 5 _ d e n s e . we igh t s , \
56 c r i t i c _ l a y e r 5 _ d e n s e . b i a s e s ) ;
57

58 c r i t i c _ l a y e r 5 _ l i n e a r _ f o r w a r d (
59 c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \
60 c r i t i c _ l a y e r 5 _ l i n e a r . r e s u l t ,
61 1 ) ;

The code shows above is the critic network forward pass, for critic target network, that is
the same. Only to notice that the input of these two network is different during training.

According to step 13rd of Alg (8), the loss function is determined by N batch of data, we
only sample one training data set, then the loss function is modified to:

L = (yi −Q(si, ai | θQ))2 (8.3)

1 / / q _ t a r g e t = s e l f . R + 0 . 9 (Q_TARGET_GAMMA) ∗ q_
2 c r i t i c _ q _ t a r g e t = \
3 t r a i n _ c o s t + \
4 Q_TARGET_GAMMA ∗ \
5 c r i t i c _ l a y e r 5 _ t a r g e t _ l i n e a r . r e s u l t [ 0 ] ;
6

7 c r i t i c _ d i f f _ s t a r t = \
8 2 ∗ ( c r i t i c _ l a y e r 5 _ l i n e a r . r e s u l t [ 0 ] \
9 − c r i t i c _ q _ t a r g e t ) ;

10

11 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ i n [ 0 ] \
12 = c r i t i c _ d i f f _ s t a r t ;

This part of code clearly shows how to calculate the loss function for critic network training.
The critic_diff_start in the code is the starting point of the backpropagation. This is passed to
the last layer of critic network, then it continue to go back to the first layer.

Then update the critic network through the loss function, and according to the backpropa-
gation mentioned in the policy gradient chapter, this will reflect the relationship between critic
network parameter θQ and critic loss function. Secondly one can review the loss function in
Equ (8.3), the critic network parameter θQ only have the relationship with Q(si, ai | θQ), not
yi, the yi here is similar with the labeled data in supervised learning, could be regarded as a
fixed value. As the last layer in critic network is a linear function, between 4th layer and the
output layer, the fully-connected connection has 32 weights and 1 biases belonging to θQ that
is trainable.
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Figure 8.11: Illustration of backpropagation between 4th layer and 5th layer
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As mentioned in policy gradient chapter, the purpose of backpropagation is to calculate the
gradient (particial derivative) of trainable parameters. As shown in the Fig (8.11), the gradient
to w1 is very easy to deduce. The red arrow from the loss function pointed backward is the
backpropagation data flow. It will moves from right to the left. The Fig (8.11) only shows the
parameter update solution between 4th layer and output layer.

∂l

∂w1

=
∂l

∂q

∂q

∂w1

= 2(yi − q)
∂(w1r1 + w2r2 + · · ·+ w32r32 + b)

∂w1

= 2(yi − q)r1

(8.4)

Where the yi is coming from Equ (8.2), and the q is critic network output. The r1 is the first
output of 4th layer when feed state0 to critic network as shown in the Fig (8.11) on the 4th
layer unit. This result is calculate from the forward propagation explained in Fig (8.10).

The derivative of bias b with respect to loss function is similar with Equ (8.5).

∂l

∂b
=
∂l

∂q

∂q

∂b

= 2(yi − q)
∂(w1r1 + w2r2 + · · ·+ w32r32 + b)

∂b
= 2(yi − q)1

(8.5)

After get the gradient between 4th layer and output layer, we need to continue to calculate
other parameters in the neural networks. We consider what information is necessary to update
the parameters between 3th layer and 4th layer. The answer is ∂l/∂r1. This partial derivative
must be passed back.
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Figure 8.12: Illustration of backpropagation between 3th layer and 4th layer

For the derivative of weight w11 in Fig (8.12), it always includes two parts. The first part,
∂l/∂a1, could be calculated locally. The second part, ∂a1/∂w11, is transfered from backward
pass during backward propagation. It is same for all parameters which is located on the back-
ward pass. From Fig (8.12), it is clearly to observe the derivative of weight w11 with respect
to loss function. Notice that the subscript 11 denotes that this weight connects the 1st unit on
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3rd layer with 1st unit on 4th layer. As we need the ∂l/∂w11, which is ∂l/∂a1 · ∂a1/∂w11.
The ∂l/∂a1 is coming from the backward data pass, on the other hand, the ∂a1/∂w11 could be
calculated locally:

∂a1
∂w11

=
∂(r1(prev)w11 + r2(prev)w21 + · · ·+ r32(prev)w321 + b1)

∂w11

= r1(prev)
(8.6)

The r1(prev) is different from the r1 as shown in the Fig (8.12). The r1(prev) means
the 3rd layer ReLU activation output, and the r1 is the first unit output of 4th layer ReLU
activation. They are different output at different location as shown in Fig (8.12).

After having the local gradient, we need the partial gradient ∂l/∂a1, and this information is
coming from the backpropagation.

∂l

∂a1
=

∂l

∂r1

∂r1
∂a1

(8.7)

Again, the ∂l/∂r1 is coming from the backpropagation, and the ∂r1/∂a1 is the local gradi-
ent. The relationship between r1 and a1 is depending on the ReLU function, if the input value
a1 is bigger than 0, then ∂r1/∂a1 = 1, otherwise is 0. Where the ∂l/∂r1 could be calculated in
Equ (8.8).

∂l

∂r1
=
∂l

∂q

∂q

∂r1

=
∂l

∂q
w1

(8.8)

Here the w1 is the first parameter between 4th layer and last layer, it is different from w11.
Until now, we have the full information to update the w11. As we conbine the partial derivative
from Equ (8.6), Equ (8.7) and Equ (8.8), we could have the Equ (8.9).

∂l

∂w11

=
∂l

∂a1

∂a1
∂w11

=
∂l

∂q
w1
∂r1
∂a1

r1(prev) (8.9)

As to providing the partial derivative to the front layer, the ∂l/∂r1(prev) needed to deduce.

∂l

∂r1(prev)
=

∂l

∂a1

∂a1
∂r1(prev)

=
∂l

∂q
w1
∂r1
∂a1

w11
(8.10)

1

2 c r i t i c _ l a y e r 5 _ l i n e a r _ b a c k (
3 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ i n , \
4 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ o u t , \
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5 1 ) ;
6

7 c r i t i c _ d e n s e _ l a y e r 5 _ b a c k (
8 c r i t i c _ l a y e r 4 _ r e l u . r e s u l t , \
9 c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \

10 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ o u t , \
11 c r i t i c _ l a y e r 5 _ d e n s e . d i f f _ o u t , \
12 c r i t i c _ l a y e r 5 _ d e n s e . we igh t s , \
13 c r i t i c _ l a y e r 5 _ d e n s e . b i a s e s , \
14 c r i t i c _ l a y e r 5 _ d e n s e . d i f f _ w e i g h t s , \
15 c r i t i c _ l a y e r 5 _ d e n s e . d i f f _ b i a s e s ) ;
16

17 c r i t i c _ l a y e r 4 _ r e l u _ b a c k (
18 c r i t i c _ l a y e r 5 _ d e n s e . d i f f _ o u t , \
19 c r i t i c _ l a y e r 4 _ r e l u . d i f f _ o u t , \
20 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t ) ;
21 c r i t i c _ l a y e r 3 _ r e l u . r e s u l t , \
22 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
23 c r i t i c _ l a y e r 4 _ r e l u . d i f f _ o u t , \
24 c r i t i c _ l a y e r 4 _ d e n s e . d i f f _ o u t , \
25 c r i t i c _ l a y e r 4 _ d e n s e . we igh t s , \
26 c r i t i c _ l a y e r 4 _ d e n s e . b i a s e s , \
27 c r i t i c _ l a y e r 4 _ d e n s e . d i f f _ w e i g h t s , \
28 c r i t i c _ l a y e r 4 _ d e n s e . d i f f _ b i a s e s ) ;
29

30 c r i t i c _ l a y e r 3 _ r e l u _ b a c k (
31 c r i t i c _ l a y e r 4 _ d e n s e . d i f f _ o u t , \
32 c r i t i c _ l a y e r 3 _ r e l u . d i f f _ o u t , \
33 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t ) ;
34

35 c r i t i c _ d e n s e _ l a y e r 3 _ b a c k (
36 c r i t i c _ l a y e r 2 _ r e l u . r e s u l t , \
37 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \
38 c r i t i c _ l a y e r 3 _ r e l u . d i f f _ o u t , \
39 c r i t i c _ l a y e r 3 _ d e n s e . d i f f _ o u t , \
40 c r i t i c _ l a y e r 3 _ d e n s e . we igh t s , \
41 c r i t i c _ l a y e r 3 _ d e n s e . b i a s e s , \
42 c r i t i c _ l a y e r 3 _ d e n s e . d i f f _ w e i g h t s , \
43 c r i t i c _ l a y e r 3 _ d e n s e . d i f f _ b i a s e s ) ;
44

45 c r i t i c _ l a y e r 2 _ r e l u _ b a c k (
46 c r i t i c _ l a y e r 3 _ d e n s e . d i f f _ o u t , \
47 c r i t i c _ l a y e r 2 _ r e l u . d i f f _ o u t , \
48 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t ) ;
49

50 c r i t i c _ d e n s e _ l a y e r 2 _ b a c k (
51 c r i t i c _ l a y e r 1 _ r e l u . r e s u l t , \
52 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
53 c r i t i c _ l a y e r 2 _ r e l u . d i f f _ o u t , \
54 c r i t i c _ l a y e r 2 _ d e n s e . d i f f _ o u t , \
55 c r i t i c _ l a y e r 2 _ d e n s e . we igh t s , \
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56 c r i t i c _ l a y e r 2 _ d e n s e . b i a s e s , \
57 c r i t i c _ l a y e r 2 _ d e n s e . d i f f _ w e i g h t s , \
58 c r i t i c _ l a y e r 2 _ d e n s e . d i f f _ b i a s e s ) ;
59

60 c r i t i c _ l a y e r 1 _ r e l u _ b a c k (
61 c r i t i c _ l a y e r 2 _ d e n s e . d i f f _ o u t , \
62 c r i t i c _ l a y e r 1 _ r e l u . d i f f _ o u t , \
63 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t ) ;
64

65 c r i t i c _ l a y e r 1 _ b a c k (
66 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ i n p u t , \
67 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ i n p u t , \
68 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
69 c r i t i c _ l a y e r 1 _ r e l u . d i f f _ o u t , \
70 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ w e i g h t s , \
71 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ w e i g h t s , \
72 c r i t i c _ l a y e r 1 _ d e n s e . b i a s e s , \
73 c r i t i c _ l a y e r 1 _ d e n s e . d i f f _ s t a t e _ w e i g h t s , \
74 c r i t i c _ l a y e r 1 _ d e n s e . d i f f _ a c t i o n _ w e i g h t s , \
75 c r i t i c _ l a y e r 1 _ d e n s e . d i f f _ b i a s e s \
76 ) ;

The above codes is the backpropagation of critic network. Once this is done, at each layer
will get a "diff_weights" and "diff_biases". This is the partial derivative of loss function with
respect to weights and biases. The Adam optimizer will be used after this stage.

As shown in the Fig (8.12), at every red arrow stage of the backward, the backpropagation
function have two major tasks:

1. move the partial derivative from the back to the front of current layer

2. calculate the gradient of current layer parameters with respect to the loss function

Other part of the backpropagation stage, for example the ReLU unit, only have one task that
move the partial derivative to the next stage. One typical backpropagation function is shown
below:

1 vo id c r i t i c _ l a y e r 2 _ b a c k (
2 f l o a t d a t a i n p u t [ CRITIC_SECOND_LAYER_UNI ] ,
3 f l o a t r e s u l t [ CRITIC_OUTPUT_LAYER_UNI ] ,
4

5 f l o a t d i f f _ i n [ CRITIC_OUTPUT_LAYER_UNI ] ,
6 f l o a t d i f f _ o u t [ CRITIC_SECOND_LAYER_UNI ] ,
7

8 f l o a t w e i g h t s [ CRITIC_SECOND_LAYER_UNI ]
9 [ CRITIC_OUTPUT_LAYER_UNI ] ,

10 f l o a t b i a s e s [ CRITIC_OUTPUT_LAYER_UNI ] ,
11

12 f l o a t d i f f _ w e i g h t s [ CRITIC_SECOND_LAYER_UNI ]
13 [ CRITIC_OUTPUT_LAYER_UNI ] ,
14 f l o a t d i f f _ b i a s e s [ CRITIC_OUTPUT_LAYER_UNI ]
15 )
16 {
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17 P r o d u c t _ d i f f _ w e i g h t s :
18 f o r ( i n t i i = 0 ; i i <CRITIC_SECOND_LAYER_UNI ; i i ++)
19 {
20

21 P r o d u c t 2 : f o r ( i n t j j =0 ;
22 j j <CRITIC_OUTPUT_LAYER_UNI ; j j ++)
23 {
24 d i f f _ w e i g h t s [ i i ] [ j j ] =
25 d a t a i n p u t [ i i ]∗ d i f f _ i n [ j j ] ;
26 }
27 }
28

29 P r o d u c t _ d i f f _ b i a s :
30 f o r ( i n t j j = 0 ; j j <CRITIC_OUTPUT_LAYER_UNI ; j j ++)
31 {
32 d i f f _ b i a s e s [ j j ] = d i f f _ i n [ j j ] ;
33 }
34

35 / / c a l c u l a t e t h e d i f f _ o u t
36 R e s e t _ d i f f _ o u t :
37 f o r ( i n t i i = 0 ; i i <CRITIC_SECOND_LAYER_UNI ; i i ++)
38 {
39 d i f f _ o u t [ i i ] = 0 ;
40 }
41

42 P r o d u c t _ d i f f _ o u t :
43 f o r ( i n t i i = 0 ; i i <CRITIC_SECOND_LAYER_UNI ; i i ++)
44 {
45

46 P r o d u c t _ d i f f _ i n :
47 f o r ( i n t j j =0 ;
48 j j <CRITIC_OUTPUT_LAYER_UNI ; j j ++)
49 {
50 d i f f _ o u t [ i i ] =
51 d i f f _ o u t [ i i ] +
52 d i f f _ i n [ j j ]∗ w e i g h t s [ i i ] [ j j ] ;
53 }
54 }
55

56

57 }

By using the same method, moves the partial derivative from the last layer to the first layer,
and get all gradients of neural network parameters with respect to the loss function.

The optimization method of critic network is Adam [126]. Now have the gradient of
weights and bias between 4th layer and output layer. Using gradient descent to update the
parameter is simple, but in DDPG, the Adam optimizer is required. Because in the real imple-
mentation of solving pendulum problem, the gradient descent could not bring the DDPG train-
ing process into convergence. It is worth mentioning that in the most cutting-edge academic
papers, there is no constant use of Adam or NAdam (Nesterov ac-celerated Adam) [127, 128]
and other accepted adaptive optimization algorithms. What is the effective optimization method
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is depending on the problem itself.
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Figure 8.13: Overview of the optimizer used to update the value of weights and biases of
network

For any kind of optimization method, they use parameter gradient to loss function as shown
in Fig (8.13). The difference is how the optimizer use this gradient information. First of all,
for Adam optimizer, the input of the function is weights, biases, the gradient of weights and
biases diff_weights and diff_biases that calculated before. Each parameter have its
own gradient (mt) and the squared gradient (vt), so there is mt_weights and vt_weights
belongs to w1 to w32, and mt_biases and vt_biases belongs to b. And finally the learning
rate. In following will explain how the Adam is implemented.

First task is calculate the update for mt, which is explained in the Equ (8.11), it is to update
the biased first moment estimate. The gt is the gradient of parameters. The step t is to count
how many Adam optimizer is been called. Every time update needs to increment the step t.

mt = β1mt−1 + (1− β1)gt (8.11)

Second task is the update for vt. which is explained in the Equ (8.12), it is to update the
biased first moment estimate. The gt is the gradient of parameters.

vt = β1vt−1 + (1− β1)gt2 (8.12)

The third step is to update the parameters using the intermediate result above. After cal-
culate bias-corrected first moment estimate and bias-corrected second raw moment estimate,
which explained in Equ (8.13)

m̂t = mt/(1− β1t)
v̂t = vt/(1− β2t)

θ = θ − αm̂t/(
√
v̂t + ε)

(8.13)

Here in Equ (8.13) the α is the learning rate, θ is the neural network parameters weights
and biases. The ε is to prevent if the denominator is zero, here we choose 0.00000001 ac-
cording to the Keras DDPG agent implementation by reverse engineering. Because through
thorough reverse engineering, the hardware implementation could hole closely aligned with
Keras implementation that keeps the correctness and is easy for debugging.

Up to now, the step 12 and 13 in Alg (8) is finished for critic network, in the next section
will discuss how to update actor network.
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8.4 Train actor network
This section will mainly focus on the training of actor network, which steps 14 in Alg (8).
The same with critic network training, the training data is coming from the memory buffer, as
shown in Fig (8.6). The purpose of policy gradient is to increase the Q(s, a). Thus the Q is
called as objective function, and −Q as loss function.

Before one training process, the first is to get the training data from the repository as shown
in Fig (8.14). The dataset S,A,R, S is one training data. It is one of the history movement,
illustrated in step 13 in Alg (9).

To train the actor network, the first task is to do one time forward pass as illustrated clearly
in the previous subsection (Train critic network). The value used here is S. After applying
the state to the actor network, the output of actor network will be directly fed into the critic
network as one of the input. Another input for the critic network is this state signal S. Finally,
the critic network will generate the Q value. The forward pass functions are located in the
actor_parameters.h and critic_parameters.h.

Figure 8.14: Overview of actor training (forward pass part)

Figure 8.15: Overview of actor training (backpropagation part)

The minus of Q value is the loss function Fig (8.15). Then this loss will go back from
the critic until the actor. Through this, one could get the partial derivative of loss function
with respect to the actor network parameters. Then the Adam will be used to update the actor
network. The forward pass and backpropagation functions also located at actor_parameters.h
and critic_parameters.h. The Adam for actor network is located at actor_parameters.h.

As shown in Fig (8.16), the training for actor needs first feed the training data set{st, at, rt, st+1}
for a forward pass. The state0 in Fig (8.16) is from the training date set st. And most important
part in real implementation, is the action signal that feed into the critic network is the action
value from the action network. So the forward pass for actor network is:

a = µ(st | θµ) (8.14)

The forward pass for critic network is:
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Figure 8.16: The forward pass between actor network and critic network

q = µ(st, at | θQ) (8.15)

Our target is to maximize theQ, and to update the actor network θµ. Because theQ value is
influenced by the actor network and critic network, first the partial derivative is passed through
the critic network and back to the actor network. As the goal is to update the actor network
parameter θµ the only difference is when the partial derivative pass through critic network, there
is no needed to update the parameters for critic network, but only need pass through the partial
derivative. Because the forward and backpropagation will pass through two networks, the code
example is too long to put, thus it is located at the Appendix F and G.
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Figure 8.17: The backward pass between actor network and critic network

From the beginning, the partial derivative ∂l/∂r1 we could easily deduce:

∂l

∂r1
=
∂l

∂q

∂q

∂r1
= −w1

(8.16)

Then later the backpropagation continuous the same as training critic network. As the
partial derivative is passed to the first layer of critic network, we will get the information as
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shown in Fig (8.17), the ∂l/∂x1, the ∂l/∂x2, the ∂l/∂x3, and the ∂l/∂a. Only the ∂l/∂a is
used to continue transfering to the actor network. The only different part is in critic network,
the final unit is linear activation, but in actor network the last unit use tanh activation and a
multiplying unit 2. The forward pass function is:

tanh(x) = 2
ex − e−x

ex + e−x

= 2
1− e−2x

1 + e−2x
(8.17)

To deduce the backward pass, we need to know the derivative of this function.

tanh
′
(x) = 2

−e−2x(−2)(1 + e−2x)− (1− e−2x)e−2x(−2)

(1 + e−2x)2

= 2
2e−2x + 2e−4x + 2e−2x − 2e−4x

(1 + e−2x)2

= 2
4e−2x

(1 + e−2x)2

= 2
(1 + e−2x)2 − (1− e−2x)2

(1 + e−2x)2

= 2− 2
(1− e−2x)2

(1 + e−2x)2

= 2− 2tanh2(x)

(8.18)
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Figure 8.18: The tanh function backward pass

As shown in the Fig (8.18), the input of last unit of actor network is aIN , and output is a.
The ∂l/∂aIN is Equ (8.19).

∂l

∂aIN
=
∂l

∂a

∂a

∂aIN

=
∂l

∂a
(2− 2tanh2(aIN))

(8.19)
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The aIN is calculated by forward pass when feed the state0 to actor network. The ∂l/∂aIN
will continue going back. The actor network parameters between 4th and 5th layer could be
calculated the same as did in critic network.
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Figure 8.19: Each backpropagation has two tasks, one is to calculate the local gradient, another
is to pass the partial loss to the front layer

∂l

∂w1

=
∂l

∂aIN

∂aIN
∂w1

=
∂l

∂aIN
r1

(8.20)

The r1 is the output result from the ReLU activation of 4th layer of actor network. And
also, the partial derivative of loss function need to continue to pass backward.

∂l

∂r1
=

∂l

∂aIN

∂aIN
∂r1

=
∂l

∂aIN
w1

(8.21)

After this part, the later backpropagation is the same as critic network, even the network
structure is also similar. After the partial derivative is passed through both critic network and
actor network, all the parameters at actor network could be updated by Adam as described in
last section.

Up to now, the step 14th of Alg (8) is finished.

8.5 Soft-replacement for target networks
In the step 15th of Alg (8) is to slowly update the target actor network and target critic network.
This method could improve the stability of training process. The implementation method is
easy:

θQ
′ ← τθQ + (1− τ)θQ

′
(8.22)

θµ
′ ← τθµ + (1− τ)θµ

′
(8.23)
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The τ is 0.001, means the target networks parameter θQ′ and θµ′ will remain fairly static.

8.6 Pendulum solution description
The pendulum experiment is done with a Linux based PC, and HighFlex2. The pendulum
on PC is implemented by Keras-RL [125]. To ensure the same environment for Zynq ver-
sion test, the hardware version also uses the same pendulum environment by Keras-RL on PC.
The critic network, actor network, target critic network and target actor network is located on
the HighFlex2. The HighFlex2 communicate with the pendulum environment through ether-
net. Two functions, forward() and backward() are implemented on HighFlex2, to replace their
counterparts inside Keras-RL. The forward() is used for policy network, say, the actor network
for action selecting. This is described in the previous actor network build section. The back-
ward() represents the training process and is called after each step. This is described in the
previous train actor network and train critic network sections.

Algorithm 9 Modified DDPG Hardware Implementation

1: Randomly initialize critic network Q(s,a | θQ) and actor network µ(s | θµ) with weights θQ

and θµ

2: Initialize target networks Q′ and µ′ with weights θQ′← θQ and θµ′← θµ

3: Initialize reply bufer R
4: for episode=1,M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at = µ(st |θµ) from HighFlex2 forward()
9: Apply the exploration noise on the action at = µ(st |θµ) +Nt

10: Execute action at with Keras-RL
11: Observe reward rt and observe new state st+1 from Keras-RL
12: Store transition (st, at, rt, st+1) in R in Keras-RL
13: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R in Keras-RL
14: num_steps = num_steps + 1
15: if total num_steps > warmup_steps then
16: Transmit these minibatch from PC to HighFlex2 backward()
17: repeat
18: Use the (st, at, rt, st+1) to calculate the Q value and Target Q value
19: Update critic by minimizing the loss

L = 1
N

∑
i(yi −Q(si, ai |θQ))2

20: Backpropagation, and Update the critic network and its target network
21: Use the (st) to calculate the Q value
22: Update the actor policy using the sampled policy gradient:

∇θµJ≈ 1
N

∑
i∇aQ(s, a | θQ) |s=si,a=µ(si) ∇θµµ(s | θµ) |si

23: Backpropagation, and Update the actor network and its target network
24: until Trained the whole batch of transition
25: end if
26: end for
27: end for
28: return θ;
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The detailed hardware implementation flow for DDPG and its testbench is shown in Alg (9).
It is the modified version based on Alg (8). The Alg (9) demonstrated the detail interactive
mode between Keras-RL and HighFlex2. From step 4 to step 23 is the interaction stage between
agent and environment. The first part is from step 8 to step 14, which denotes how the agent in
HighFlex2 interact with the environment in the Keras-RL PC. The environment has the current
state st, and transmit this information to HighFlex2. The HighFlex2 function forward() works
like an Echo server, which response to the user client request, then transfer the actor network
output at back to Keras-RL PC. The environment Pendulum on OpenAI will response to this
action at, then transfer from state st to next state st+1, meanwhile, environment will generate
one scalar reward rt. This transition (st, at, rt, st+1) will be stored in Keras-RL at step 13.

The algorithm will first judge if the memory buffer has enough data for training or not.
Imagine if the agent only moves 18 steps, then it could not provide a 32 batch of transition
data for training. The warmup steps are set to 100, in this case, to provide the memory buffer
with a little training dataset. In step 16, the data set is transferred from Keras-RL to HighFlex2
backward() function. From step 17 to step 24, the algorithm loops over the training data set
in the backward() function of HighFlex2. The batch size could be the number ranging from 1
to 32. The training procedure from step 18 to step 20 is for updating critic network and target
critic network. The 21th step to 23 step is the process for updating actor network and target
actor network.

This testbench is also used for Chapter 9 beam dynamic simulation. The only difference is
to replace the environment related signals: state, action, and reward. This could also can use
for other DDPG application testbench.

8.7 Training curve of DDPG
The parameter M at step 4 of Alg (9) is set to 250, where denotes the maximum episode
the pendulum could run. The following two figures shows the pure software version on GPU
and hardware version on HighFlex2 Alg (9) version. Before to give out the reward trend, the
reward signal needs to explain first. As mentioned in the problem description, the purpose of
the pendulum problem is to keep the pole standing as long as possible, and with the least effort.

Figure 8.20: The pure software version (Keras-RL)
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r = −(θ2 + 0.1 ∗ θ̇2 + 0.001 ∗ a2) (8.24)

The theta is the angle from the vertical direction to the pole clockwise. The theta is range
from -π to π. The absolute value of theta is used in Equ (8.24) to calculate the immediate
scalar reward during each step. From this reward equation, one could deduce that the position
of the pole has a significant influence on the value of the reward. If the pole falls down, then
the reward will be a relatively large negative value. If the pole moves fast, then the accelerated
velocity θ̇ will be also large, resulting in a large negative reward. Also, the small effort means
the a2 should be small, this force the agent to learn a policy that moves the pendulum to the
balance point as fast as possible. Thus, when the reward is close to 0 is an ideal situation. The
episodic accumulated reward is the sum of the immediate step reward that the agent collected
during this episode. If the scalar immediate reward in each step is a small negative value,
then the total accumulated reward will also have a relatively small absolute value (because the
reward is always a negative value).

Figure 8.21: The hardware version (HighFlex2 and Keras-RL)

Fig (8.20) is the learning curve of the DDPG agent for the pendulum problem. The episodic
accumulated reward is trying to climb from rough -1750 to -200. This means the agent has
learned the skill to keep the pole to be balanced (from the simulation video). The same trend
could see from the hardware version Fig (8.21), where the four networks running on hardware
takes the agent’s responsibility to solve the pendulum in the same way with Keras-RL.

8.8 DDPG training performance
When the agent memory buffer has collected enough transitions, the agent could go into the
training process according to the step 15 to 25 in Alg (9). The test bench on CPU/GPU and
Zynq will study the training latency on this part.

The DDPG training process is continuously did 50 times to compare the training latency.
The Fig (8.22) shows the detail training latency for DDPG during 50 times. Each time take one
transition data. The GPU have the worst performance, where have a mean latency 6522 µs, and
the largest standard error 108. The CPU and Zynq have also dramatic difference in mean and
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standard error (SE) comparison. Zynq have lowest training latency with only 299.44 µs and
CPU have 1625 µs. Zynq is much more stable that have only 0.1343 µs SE but on the other
hand, CPU have around 16 µs SE.

Figure 8.22: The comparison between CPU GPU and Zynq

8.9 Conclusion
Reinforcement Learning (RL) focuses on optimal control under Markov Decision Processes.
Due to this property, the training process of the RL algorithm needs to acquire data from the en-
vironment at each step continuously. For some physics experiments, this interaction behaviour
needs to be completed in a short time slot, thus a low-latency reinforcement learning training
platform is demanded. This chapter gives a complete hardware-software implementation solu-
tion on HighFlex2 for the DDPG RL training process. The derivation formula and method in
the article can also be used as a guide for other hardware platform DDPG based applications.
The software framework is implemented in C on the HighFlex2, and a testbench is provided
to verify the framework behaviour. The performance is demonstrated and compared with the
standard Keras-RL implementation on CPU/GPU. The result shows a dramatical improvement
of the performance on the HighFlex2 RL. For RL inference, the inference of the neural network
could be deployed on the PL side. The next chapter will illustrate this method. If the parame-
ters need to be updated, the HighFlex2 RL could update the parameters in the PL through the
bare-metal connection between the processor and FPGA programable logic.



Chapter 9

Reinforcement Learning design at KARA

9.1 Introduction

This chapter focuses on the development of an intelligent data processing algorithm to control
the fast beam dynamics at KARA. The complexity of the data processing and the real-time
requirement for the fast feedback control imposes the deployment of reinforcement learning on
the Zynq.

With the increasing demand for compact, energy- and cost-efficient accelerator systems, in
addition to tailored photon emission matched to the often extreme requirements of experiments
in physics and photon science, the control systems have to cope with increasing complexity,
high sensor data output rates, large data volumes as well as the desire for fast feedbacks and
extensive beam control.

Driven by the interaction of short electron bunches with their own emitted coherent syn-
chrotron radiation (CSR), this instability leads to the formation of dynamically changing mi-
crostructures within the longitudinal charge distribution of the bunch. This will limit the use of
the emitted THz light in experiments. Given its dynamic nature, a fast and adaptive feedback
system is required to establish extensive control over the longitudinal beam dynamics.

Reinforcement learning reduces the effort and complexity of operating a control system,
where it may eventually control an accelerator autonomously. [129] illustrates how reinforce-
ment learning can be applied to this task, and also propose a longitudinal feedback loop. An
undirected method to probe the longitudinal dynamics of the beam consists of the measurement
of the CSR intensity emitted. To detect the CSR emitted at KARA, a dedicated front-end elec-
tronics readout card has been developed. KAPTURE-2 is able to sample a CSR pulse with a
sampling time down to 3 ps and pulse repetition rates up to 1 GHz. The platform consists of two
boards, the KAPTURE-2 front-end electronics [11] that samples the pulse from the accelerator,
and high-end HighFlex2 data acquisition board that which readout and process in real-time the
data generated by the KAPTURE-2 board. A fast light-weight reinforcement learning frame-
work is developed on HighFlex2. To provide a proof of concept, the Inovesa simulation (act as
an environment under RL concept) is connected with HighFlex2 to test the performance of the
reinforcement learning algorithm on hardware.

9.2 Karlsruhe Research Accelerator

The Karlsruhe Research Accelerator (KARA) is an electron storage ring and serves as a plat-
form for the development and testing of the new beam and acceleration technologies, pooling

112
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research of new accelerator concepts, and development of new detectors. The accelerator’s
circumference is 110 meters long. The electron energy range from 0.5 GeV to 2.5 GeV. The
storage ring can operate with an arbitrary bunch pattern filling scheme. This scheme could
range from a single-bunch to a multi-filling scheme up to 184 bunches with a time-space of
2 ns. Around the accelerators there are several detectors deployed, which is KAPTURE [10],
KAPTURE2 [11] and KALYPSO [130]. These detectors are useful for a real-time resolved
phase-space tomography, which is fundamental for the feedback control loop.

Figure 9.1: The storage ring is equipped with advanced beam diagnostics with fs time resolu-
tion

9.3 Micro-bunching instability
The coherent synchrotron radiation (CSR) is produced by electron bunches of a length of few
millimetres at the synchrotron light source. At KARA there are two basic operation modes:
the low αc optics, and the normal mode. As shown in Fig (9.2), the normal mode is running in
the X-rays frequency domain. The low αc optics mode is interesting for users because, under
this operation mode, it can generate coherent synchrotron radiation in the THz frequency range
with high intensity. However, the short bunch mode also leads to microstructures appearing in
the bunch, which causes fluctuations in the emitted CSR.

The longitudinal compression of particles within the bunch increases the intensity of coher-
ent emission in the THz frequency range. The self-interaction of the bunch with the emitted
CSR leads to the formation of micro-structures, which is referred to as micro-bunching insta-
bility. Due to the self-interaction of the bunch, the micro-bunching instability has a particular
threshold current for the stable operation with the constant intensity of CSR emission. If the
current exceeds the threshold, then the emitted radiation will change rapidly and persistently,
which is shown in Fig (9.4).

Exceeding a certain threshold current, the CSR self-interaction of short electron bunches
will result in a dynamically changing longitudinal charge distribution and thus to fluctuating
CSR emission (illustrated in Fig. 9.3). This underlying longitudinal dynamics can be simulated
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(compact mode )

Normal mode
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Figure 9.2: In the compact mode, the power is propotional to the square of number of paticles;
in normal mode, the power is propotional to the number of paticles.

by Vlasov-Fokker-Planck (VFP) equation [131]. The CSR self-interaction could be described
by the CSR wake potential,

VCSR(q) =

∫ ∞
−∞

ρ̃(ω)ZCSR(ω)eiωqdω , (9.1)

which can be added as a perturbation to the Hamiltonian. Here, q = (z−zs)/σz,0 denotes the
generalized longitudinal position, ρ̃(ω) the Fourier-transformed longitudinal bunch profile and
ZCSR(ω) the CSR-induced impedance of the storage ring. At the KIT storage ring KARA, such
simulations using the VFP solver Inovesa [132] have shown great qualitative agreement with
measurements of the emitted CSR power [133]. Therefore the VFP solver Inovesa simulation
will be the most significant avenue and reference to verify the control algorithm or machine
learning approaches.

The additional potential in Equ (9.1) can be interpreted as a perturbation to the accelerating
RF potential, and then cause a perturbation of the synchrotron motion within the bunch. This
will lead to the formation of microstructures and their dynamic evolution at time scales that
comparable to the synchrotron period. This physical property of synchrotron period Ts is the
time unit of Fig (9.3). This is the major reason for the necessity of real-time control in the
hardware and software design of the feedback loop.

Figure 9.4: A comparison between the real data acquired by KAPTURE and the simulated
behaviour by Innovesa. Image from IBPT, courtesy of Tobias Boltz.
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Figure 9.3: (a) The CSR self-interaction of the bunch causes the formation of micro-structures
in the longitudinal phase space density. (b) Their continuous variation leads to fluctuations in
the emitted CSR power. The illustrated dynamics are simulated with the VFP solver Inovesa.
Image from IBPT, courtesy of Tobias Boltz.

Figure 9.5: The natural behaviour of the instability leads to dynamic micro-structures in phase
space (left subgraph) and fluctiating CSR power (right subgraph). Image from IBPT, courtesy
of Tobias Boltz.

Figure 9.6: This CSR signal is measured by the KAPTURE system, while such manual control
will be replaced by the reinforcement learning deployed on the HighFlex2. Image from IBPT,
courtesy of Tobias Boltz.
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As an extension study of [129] at the Institute for Beam Physics and Technology (IBPT),
preliminary simulation with Inovesa showed a possibility of manual control over the CSR signal
illustrated as Fig (9.5) and Fig (9.6). Fig (9.5) present that the CSR have a high variance
initially. Through proper manual control by using the RF amplitude modulations, the CSR
could reach a relatively high average value with low variance as shown at the end-point of
the CSR signal in Fig (9.6). The goal is to use reinforcement learning to holds high level of
reproducibility of such ideal manual control.

9.4 Implementation of feedback loop
In order to apply reinforcement learning (RL) methods to control the micro-bunching instabil-
ity, the problem should be a Markov Decision Process (MDP) that suitable for reinforcement
learning basic requirement. Thus the basic component of RL needs to be defined in the follow-
ing: the state signal, the action signal and the reward signal.

CSR Signal

Agent

RF System
reward state

action

Figure 9.7: General feedback scheme using the CSR power signal to construct both, the state
and reward signal of the Markov decision process (MDP). [129]

9.4.1 State signal

Mentioned in [129], under the simulation situation of the longitudinal dynamics by VFP solvers,
an initial charge distribution and a set of constant parameters (e.g. machine parameters of the
storage ring) will define an initial state. The temporal evolution of this charge distribution will
be simulated by iteratively solving the VFP equation. At each time step, the calculation of the
next step is entirely based on the charge distribution of the current step. This could make sure
the definition of the state signal is fully described by a Markov process, described in Equ (6.2).
Thus, the definition of state signal in RL will be a sequence of longitudinal charge distributions:

St
.
= ψt(z, E) (9.2)

The Equ (9.2) is the ideal state signal. Although the first efforts towards phase space to-
mography are made at KARA, the longitudinal bunch profile is measured by an electro-optical
near-field setup combined with an ultrafast line-camera, "KAYLPSO" [130]. The system pro-
vides a turn-by-turn basis diagnostics measurement with femtosecond time resolution. The
horizontal bunch profile is measured by a fast-gated intensified camera or by KALYPSO. The
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system provides the precise energy spread measurement of each bunch. The fluctuation of emit-
ted CSR power is strongly influenced by the micro-bunching structures, therefore, in reality, the
state signals could be indirectly probed by CSR power emitted at the THz spectral range [11].
Two components serve for this purpose: a commercial zero-biased Schotty barrier diode detec-
tor and KAPTURE-2. The Schotty barrier diode detector could provide a spectral sensitivity
from 50 GHz to 2 THz [134]. The hardware connection is demonstrated at Fig (9.10). This
detector is then connected to the fast digitizer board KAPTURE-2. Then finally transferred to
HighFlex2 for post processing.

Figure 9.8: KAPTURE-2

KAPTURE (Karlsruhe Pulse Taking Ultra-fast Readout Electronics) [10] has been inte-
grated as a permanent diagnostic device at KARA. KAPTURE-2 [11] is a picosecond sampling
system for THz pulses with a high repetition rate (2 ns) in the accelerator. The system is able to
acquire and sample the pulse shape with 3 ps resolution by 4-channel simultaneously and con-
tinuously with a data rate up to 4 x 1.8 GS/s @ 12 bit per single THz pulse. Two KAPTURE
boards can be connected together to increase the number of sampling point to be acquired
for each THz pulse. The KAPTURE card is integrated within a heterogeneous FPGA-GPUs
framework, which provides a precise reconstruction of the THz pulse and the measurement
of both the pulse amplitude (mV) and the peaking time with a picoseconds time resolution.
Furthermore, a precise calculation of the fluctuation of both the intensity and the arrival time
of the CSR pulse is executed. A real-time FFT and measurement of CSR fluctuation could be
provided. This yields a useable observation for the state signal in the RL approach to micro-
bunching control.

Figure 9.9: InovesaRL structure
courtesy of T. Boltz from IBPT
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Under the support of hardware, a hand-crafted feature vector is constructed from the CSR
time signal:

St
.
= (µt′:t, σt′:t,mt′:t, a_fmain, fmain, φ_fmain, δ(thetav1), termination)T , (9.3)

To prove the hardware working properly before going to the field, the HighFlex2 RL im-
plementation needs to be verified under the simulation. This simulation environment is called
InovesaRL, and the definition of these 8 state signals defined in Equ (9.3) is located at In-
ovesaRL simulation shown in Fig (9.9). The InovesaRL is a reinforcement learning training
testbench that uses Inovesa as the environment. The "core" component is the abstraction layer
that provides the user with the basic interface of an RL environment. The user could use such
a way to define different RL algorithm and interact with the beam dynamics. The reward and
action signal used for the verification is also defined in InovesaRL.

9.4.2 Reward signal
To obtain goal-directed learning from the environment, a proper definition of the reward signal
is fundamental cause this will lead the agent to learn in the correct direction. As the primary
goal is to emit CSR power with high average power but low variance, a reward function has
been defined which is based on the time evolution of the CSR power intensity.

Rt
.
= Rt(Pt,CSR) . (9.4)

As the reward function has been defined in order to stabilize the CSR intensity, one possible
set up for reward signal could be:

Rt
.
= ω1µt′:t − ω2σt′:t , (9.5)

where µt′:t and σt′:t denote the normalized mean and standard deviation of the time series Pt,CSR

in the time interval [t′, t], and ω1,2 > 0 are weighting factors. The weighting factor is used to
adjust the importance of mean and standard deviation. This definition of reward allows having a
CSR power signal of high intensity and low fluctuation, which corresponds to a smooth charge
distribution that is not significantly changing in time. The reward function could be defined,
the Equ (9.5) is one possible definition, which seems to show a reasonable behaviour during the
simulations. The simulation setup used for verification of RL in this chapter is to use Equ (9.5).

9.4.3 Action signal
The last signal to be defined is the action. The action signal is the output of the actor network
which drives the RF cavity. Because the additional CSR wake potential in Equ (9.1) acts as a
perturbation to the RF potential, one prominent approach seems to act a modulation centered
to the main component of the RF system in order to compensate the CSR perturbation. This
compensation should optimize the fast micro-bunching dynamics. Thus, one straightforward
choice of the action space would be act on the RF amplitude modulation. The RF amplitude
modulation is denoted in:

VRF = V̂ (t)sin(2πfRF t), (9.6)

V̂ (t) = V̂0Amodsin(2πfmodt+ φmod), (9.7)
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At
.
= (Amod, fmod)

T , (9.8)

where VRF denotes the RF amplitude and V̂ (t) is the RF amplitude modulation. The Amod
is the amplitude of an RF amplitude modulation and fmod the modulation frequency of the
amplitude modulation. Dynamically modifying these two parameters should provide the agent
with a substantial amount of control over the RF system. This impact on the micro-bunching
dynamics has also been verified experimentally at [135, 136]. Both parameters are sent to a
commercial signal processor (model iGp12-720F by Dimtel, Inc. [137]).

9.4.4 Algorithm choosen

In this paragraph, the selection of the reinforcement algorithm to control the micro-bunching
instability by interacting with the state and reward signal to generate proper actions is discussed.
The pendulum balance problem in the previous chapter has a similar structure insofar as the
agent needs to generate proper actions to keep the episode running. Deep Deterministic Policy
Gradient is the first attempt and many other method are also in discussion like Policy Gradient,
Proximal Policy Optimization (PPO) [80], trust Region Policy Optimization (TRPO) [138], etc.

9.5 Hardware feedback loop

A detailed description of the General feedback shown in Fig (9.7) is depicted in Fig (9.10). The
front-end electronics KAPTURE2 will sample the CSR signal, then the information will be sent
to HighFlex2 DAQ. The HighFlex2 will extract several important features from the acquired
CSR pulses, like: the mean value and the standard deviation of the CSR intensity, the mean
value and the standard deviation of the arrive time with a resolution of picoseconds and many
others. The reinforcement learning is running on HighFlex2, and will generate appropriate ac-
tion signal (RF modulation) to the commercial model iGp12-720F for bunch-by-bunch (BBB)
feedback, where it finally reaches a small RF kicker cavity.

Figure 9.10: Implementation of the feedback loop to the RF cavity of KARA.
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9.6 Simulation result of training

Reinforcement learning (RL) training convergence could indicate a successful RL implemen-
tation and will be of prime importance to the functionality correctly implementation. To have
a proof of concept, the RL algorithm (DDPG training part on HighFlex2) is connected with
Inovesa simulation (on a standard PC) directly by Ethernet. The HighFlex2 acts as a server to
respond to the demand from the environment (Inovesa Beam Dynamics) shown in Fig (9.11).
In principle, the inference and training should be located at PL and PS respectively in the field.
Because the purpose is to prove the training part, the inference part could be implemented in
the PS part. The detailed implementation methods and their corresponding codes have been
elaborated in Chapter 8. The implementation to solve pendulum and to solve the beam dynam-
ics have a high degree of consistency. The only difference is the input size of the state, the
action space, and the definition of reward. The internal principle of RL training working the
same.

ARM - PS

Simulated
signal
(state)

State (t)

TD-error

Cri�c Training Process

PS Memory

State (t+1)

A(t)

Actor Training Process

Feature extrac�on

µ, 
σ,
mtr,

a_f_main,
phi_f_main

Host - PC

Simulated 
signal
(reward)

Reward

Memory
(Transi�ons)

FFT

Simulated
CSR

Update 
actor
network

Extract data from memory

Figure 9.11: The setup of proof of concept with Inovesa simulation. The feature extraction and
calculation of reward are processed in the PC. Only the RL part (actor and critic) is implemented
at HighFlex2 ARM processor.

The networks used for KARA micro-bunching instability control are remarkably similar to
those networks used at Chapter 8 Pendulum control. Two of the major signal is required to
modify because the Pendulum and CSR state is different.
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Figure 9.12: The DDPG actor network under Inovesa simulation
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Figure 9.13: The DDPG critic network under Inovesa simulation

The actor network in DDPG will use these 8 state signal to predict the action signal in
Fig (9.12). Action space is a two-dimensional vector as delivered at Equ (9.8)

Where in Equ (9.8), the Amod is the amplitude of RF modulation and fmod is the RF mod-
ulation frequency. The RF phase remains untouched. This is the yellow point of Fig (9.12)
(actor network output) and Fig (9.13) (critic network input). The actor network has four fully-
connected dense layers and each layer have activation ReLU. The final unit is a linear activation.
Each layer has 64 units.

The critic network in DDPG receives the actions and states, to predict the Q value of this
(a, s) pair as shown in Fig (9.13). The critic network has four fully-connected dense layers and
each layer have activation ReLU. Each layer has 64 units. The final unit is a linear activation.
The target networks (target critic network and target actor network), have the same structure
as its counterpart.



122 CHAPTER 9. REINFORCEMENT LEARNING DESIGN AT KARA

Figure 9.14: The CSR signal result after HighFlex2 (top) and the Keras-RL (bottom) interacts
with Inovesa simulation.

Figure 9.15: The RF amplitude modulation result after HighFlex2 (top) and the Keras-RL (bot-
tom) interacts with Inovesa simulation.

As defined in Chapter 6, one episode consists of many steps. One episode could also be
called a complete chain or an attempt at the interaction between agent and environment. It
is a series of steps. As the result of the simulated RF modulation, the time behaviour of one
episode of the CSR dynamics changes is demonstrated in the plots of Fig (9.14). The episode is
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terminated when the fluctuation of the CSR reaches a certain programmable threshold as shown
in both software version and hardware version above 1.4 ms. More than 3500 of such episodes
have been simulated with Inovesa. Fig (9.14) illustrates one of those. The comparison of the
hardware implementation and Keras on GPU in Fig (9.14) shows a similar behaviour and they
suppress the CSR fluctuation at around 0.8 ms and 0.9 ms respectively.

Fig (9.15) shows the comparison between the amplitude modulation generated by the Actor
on HighFlex2 and on GPU. The hardware implementation generates the similar action com-
pared to Keras.

9.7 Hardware training performance

A performance test is implemented according to the steps 15 to 25 in Alg (9). The test bench
on CPU/GPU and Zynq will study the training latency on this part similar to the RL chapter
above.

Figure 9.16: The comparison between CPU GPU and Zynq

The DDPG training process for KARA is the same as the pendulum problem testbench.
Each training process is continuously done 50 times to compare the training latency. Fig (9.16)
shows the detail training latency for DDPG during 50 times for KARA configuration. The GPU
have the worst performance, where have a mean latency of 6037 µs, and the largest standard
error 55 µs. The CPU and Zynq have also a dramatic difference in mean and standard error
(SE) comparison. Zynq have the lowest training latency with only 1648 µs and the CPU have
rough 1800 µs. Zynq have only 0.1343 µs SE but on the other hand, the CPU have around 16
µs SE. This SE means the Zynq could keep a much more stable training time.

9.8 DDPG inference at PL

The inference of DDPG denotes only the actor network implementation because it is the neural
network that used to generate the control action. To enable the low-latency of inference and
fast development time, thesis decides to use Vivado HLS to implement the actor network.
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Figure 9.17: The developed ddpg actor network forward pass top function

Figure 9.18: The layer4 of actor network forward pass function

As shown in Fig (9.17), it clearly define the 5 layers’ structure. All layers have a similar
function. Take the layer4 as an example that shown in Fig (9.18). The forward pass normally
maps the input vector to the output. Inside which the input vector is doing matrix multiplication
and interact with weights and biases. This has original parallelism. The Fig (9.18) shows the
usage of HLS hardware optimization directive "pragma pipeline" to enable the pipeline stage.
And pipeline will automatically unroll the for loop.

Fig (9.19) demonstrates the result of ddpg_actor function. The interval for the next data
coming is 4233 clock cycle at 4 ns clock period. Therefore if combine performance testbench
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Figure 9.19: The actor network HLS synthesis result.

that uses the forward pass for actor network to test 50 times, a comparison between three
platforms is illustrated in Fig (9.20).

Figure 9.20: The comparison between CPU GPU and Zynq.

The Fig (9.20) concludes the last inference training performance. The GPU inference time
have about 557 µs with 19 µs SE. And CPU inference time owns around 200 µs with 3.52 µs
SE. The FPGA inference time is done by Vivado HLS, with a fixed latency of 4233 clock cycles
means Zynq inference have 16.932 µs and no SE. The PL part inference shows an extremely
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low latency compared with CPU/GPU. This method to share the training task and inference
work between PS and PL, that take a thorough usage of the Zynq device for RL.

9.9 Conclusion
Driven by CSR self-interaction, the micro-bunching instability at storage rings is caused by a
fast and dynamic perturbation that depends on the longitudinal charge distribution. The goal
is to stabilize the coherent synchrotron radiation emitted in the THz range by controlling lon-
gitudinal phase-space dynamics of the beam. To establish extensive control over dynamics, a
reinforcement learning (RL) based feedback loop is proposed and developed that can react to
small changes in the charge distribution and adjust the RF system accordingly. In this chapter,
two major results are delivered: the overall closed-loop hardware design for the KARA experi-
mental station, and the performance on physics simulation. As the closed-loop design, in detail,
the fast THz beam intensity is measured by new KAPTURE-2 front-end electronics. To vali-
date the concept, the full simulation of the physics of the beam which includes fast dynamics of
the THz emissions has been set up by InovesaRL and interacts with reinforcement learning on
HighFlex2. The HighFlex2 (RL agent) reacts to mimic the micro-bunching instability through
Inovesa. The reinforcement learning implementation on HighFlex2 has been compared with
Keras-RL on CPU/GPU. Both the Zynq RL implementation and the CPU/GPU RL implemen-
tation show a similar prediction of the behaviour and the same trend of reward collection, which
confirms that the HighFlex2 RL is working as expected. Furthermore, the training performance
has improved in both training and inference when compared to the standard CPU version. At
the same time, a relatively fixed latency is guaranteed in training and fixed latency in inference
which ensures a safety feedback training time for a physics experiment.



Chapter 10

Conclusion

The data acquisition system and data processing approach is critical for the success of large-
scale experiments. The increasing data volume and complex task ask for novel hardware and
software implementation. Two core contributions of this thesis are the design and evaluation of
the data acquisition system HighFlex2, and the machine learning implementation capability on
HighFlex2. Together, they make the HighFlex2 a multifunctional intelligent data acquisition
board.

High-throughput data acquisition system

High-throughput is the major feature of the data acquisition system for a large-scale exper-
iment. For this requirement, the main processing core is Xilinx Zynq UltraScale+ ZU11EG.
The processing system and programmable logic on ZU11EG MPSoC provide the pluripotential
for different task and data movement capability. The ZU11EG is hard-wired with 16 lanes PCIe
gen3/4, 12 lanes FireFly duplex connection, and VITA 57.4 FMC+ standard connector. Thus
the new DAQ has multiple connections and topologies possibility with other ATCA, AMC and
uTCA based DAQ systems and front-end electronics. All the properties enable HighFlex2 to
become the ideal hardware platform for the implementation of both traditional data acquisition
and machine learning approach.

Webserver and EPICS

The Webserver and EPICS application is built through the Yocto Project. The users could
access HighFlex2 programmable logic easily through a web page or EPICS. This makes the
FPGA part much more open and friendly to non-hardware experts. By Yocto Project, the same
method could be applied to the HDL logic related to front-end electronics. The important and
critical signal could directly be accessed and monitored by the processing system. Therefore,
it is also very helpful for hardware engineering developers because a more transparent way of
controlling and debugging can be developed. The machine learning implementation benefited
from the cooperative work between PS and PL.

Supervised Learning Implementation

The thesis provides an example design by Xilinx DPU. This method has the acceleration com-
ponents for the commonly used operations like convolution and deconvolution, pooling, ReLU
and softmax activation layers, and so on. The DPU is located at PL side and PS in used for
coordinating data transfering and control. With DPU on HighFlex2, plenty of convolutional
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neural networks could be depolyed on HighFlex2, for example, VGG, ResNet, GoogLeNet,
etc. The Zynq UltraScale+ device supports more aggressive convolution architectures than the
Zynq 7000 series. For example more DPU cores, 4096 operations per clock, high RAM usage,
etc. Using the command line under the embedded Linux environment to manipulate the CNN
on HighFlex2 offers the machine learning engineer a quick model transfer from the CPU/GPU.
From the experience of SL development at IPE, ARM is also a powerful and flexible compu-
tation node. It has enough abilities to implement the forward pass of some of the small size of
neural network or convolutional neural network, LSTM, graphic neural network, etc. There-
fore, a future work will be a thorough investigation around comparison between CPU/GPU,
FPGA (PL), and ARM (PS). A detailed suggestion for careful hardware selection should be
given in the following work.

Reinforcement Learning Implementation

Because many applications require an online-training reinforcement learning (RL) on the scene,
this thesis proposes one solution to implement the training process of RL on HighFlex2 which
is close to the data source. The policy gradient and deep deterministic policy gradient is verified
and tested. One of the major tasks during these two implementations is the mathematical
derivation of the training process. Among the training process of reinforcement learning, the
most significant part is the certification of capability of the backpropagation on PS part of Zynq
on HighFlex2. This provides the hardware engineers with a theoretical reference to deploy their
own reinforcement learning for different algorithms and applications. Some components like
forwarding pass, backpropagation, optimizer by gradient descent or Adam, can also be used
for lightweight supervised learning training process. The functions are implemented with both
C and C++, thus they could be easily transferred to another CPU/GPU/ARM-based hardware
platform. Through the reference design, the FPGA-based RL training process also should be
considered.

One could discover a complementary property between reinforcement learning (RL) and
supervised learning (SL). Because the implementation of inference and training has a lot of
similarity between RL and SL. The inference part of SL and RL normally is the forward pass
of one kind of neural network, and what network structure in chosen depends on the signal
the application is dealing with. Thus, the implementation of inference of RL could reuse the
existing technology used at SL. For example, if a trained RL model uses a convolutional neural
network (CNN) for the actor of Deep Deterministic Policy Gradient, then the aforementioned
Xilinx DPU could be deployed at Programmable Logic (PL) part for the RL inference.
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ASIC Application-specific Integrated Circuit

CMS Compact Muon Solenoid

CNN Convolutional Neural Network

CPU Central Processing Unit

CSR Coherent Synchrotron Radiation

DAQ Data Acquisition

DL Deep Learning

DMA Direct Memory Access

DMIPS Dhrystone Million Instructions executed Per Second

DPU Deep Learning Processing Unit

DSP Digital Signal Processing

ECL Emitter Coupled Logic

FPGA Field Programmable Gate Array

GNN Graphic Neural Network

GPU Graphics Processing Unit

IBERT Integrated Bit Error Ratio Tester

KARA Karlsruhe Research Accelerator

LVCMOS Low-Voltage Complementary Metal Oxide Semiconductor

LVDS Low-Voltage Differential Signaling

LVPECL Low-Voltage Positive Emitter-Couple Logic

MDP Markov Decision Process

ML Machine Learning

MRP Markov Reward Process
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140 LIST OF ABBREVIATIONS

PCIe Peripheral Component Interconnect Express

PL Programmable Logic

PLL Phase Locked Loop

PS Processing System

RAM Random Access Memory

RL Reinforcement Learning

RNN Recurrent Neural Network

SDK Software Development Kit

SL Supervised Learning

TPU Tensor Processing Unit

TTL Transistor-Transistor Logic
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Figure 1: This figure is the software structure under Xilinx SDK. The I2C relevant bare-metal
drivers are inside different files for different I2C operation. For the user, it is the highlighted
.h file that required to copy into SDK environment. It is generated from the ClockBuilder.
This file will vary and depending on the clock chip itself. The functions will drive the PS I2C
Controller to generate the serial I2C protocol to the SI5341. These I2C driver functions are
mainly in the xiicps_polled_master_example.c. The reset, start, other operation are all in the
main function (in the helloworld.c). It is relatively easy to configure because only the PS part
is needed. Once the clock chip is configured, all the 10 clocks are available.
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Figure 2: FPGA implementation of a PCIe core, generation 3/4 x 8 lanes (top)
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Figure 3: FPGA implementation of a PCIe core, generation 3/4 x 8 lanes (bottom)



144 APPENDIX A

Figure 4: The figure demonstrates 12 eye diagrams of GTY lanes running at 20 Gbps. The
subfigures from top-left to bottom-right correspond to the lane 0 to 11.
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Figure 5: The bathtub curve diagram of GTY lane 0.



146 APPENDIX A

Figure 6: The figure demonstrates 12 eye diagrams of 12 different GTY lanes running at 25
Gbps. The subfigures from top-left to bottom-right correspond to the lane 0 to 11.
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Figure 7: The bathtub curve diagram of GTY lane 1.

Figure 8: The tests during calibration.
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Figure 10: EPICS embedded software files tree

The folder /apps is under the corresponding Yocto layer. First for cross-compiler employed
on Zynq device, demostrate in Fig (10), in file CONFIG_SITE located at /configure, the archi-
tecture variable needs to set to linux-arm to adapt to Zynq device:

CROSS_COMPILER_TARGET_ARCHS
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Figure 11: Tree of files belongs to layer webserver application under the developing host PC.
These files finally is been compiled into Yocto layers as a built embedded Linux application on
HighFlex2.

Figure 12: NVIDIA K40C GPU specification
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1

2 / / e x t r a c t t h e s t a t e s i g n a l from memory
3 x1 = obv_repo [ c u r r e n t _ s t e p ] [ 0 ] ;
4 x2 = obv_repo [ c u r r e n t _ s t e p ] [ 1 ] ;
5 x3 = obv_repo [ c u r r e n t _ s t e p ] [ 2 ] ;
6 x4 = obv_repo [ c u r r e n t _ s t e p ] [ 3 ] ;
7

8 / / e x t r a c t t h e forward pass r e s u l t ( )
9 Y1 = l a y e r 2 _ s o f t m a x . r e s u l t _ r e p o [ c u r r e n t _ s t e p ] [ 0 ] ;

10 / / t h e f i r s t u n i t o u t p u t ( y1 )
11 Y2 = l a y e r 2 _ s o f t m a x . r e s u l t _ r e p o [ c u r r e n t _ s t e p ] [ 1 ] ;
12 / / t h e second u n i t o u t p u t ( y2 )
13

14 d i f f _ s t a r t 1 = −d i s c o u n t e d _ e p _ r s [ c u r r e n t _ s t e p ] \
15 ∗ o n e _ h o t _ a c t i o n _ r e p o [ c u r r e n t _ s t e p ] [ 0 ] ;
16 / / 5 .5203 ( v a l u e i n t h e d e m o n s t r a t e d example e p i s o d e , on eh o t [1 ]∗ v t )
17 d i f f _ s t a r t 2 = −d i s c o u n t e d _ e p _ r s [ c u r r e n t _ s t e p ] \
18 ∗ o n e _ h o t _ a c t i o n _ r e p o [ c u r r e n t _ s t e p ] [ 1 ] ;
19 / / 0 ( v a l u e i n t h e d e m o n s t r a t e d example e p i s o d e , on eh o t [2 ]∗ v t )
20

21 / / t h e num_step here i s 13 f o r t h i s example
22 d i f f _ s o f t 1 1 = (1−Y1 ) / num_step ;
23 d i f f _ s o f t 1 2 = −Y2 / num_step ;
24 d i f f _ s o f t 2 1 = −Y1 / num_step ;
25 d i f f _ s o f t 2 2 = (1−Y2 ) / num_step ;
26

27 d i f f _ s o f t [ 0 ] [ 0 ] = d i f f _ s o f t 1 1 ∗ d i f f _ s t a r t 1 ;
28 d i f f _ s o f t [ 0 ] [ 1 ] = d i f f _ s o f t 1 2 ∗ d i f f _ s t a r t 1 ;
29 d i f f _ s o f t [ 1 ] [ 0 ] = d i f f _ s o f t 2 1 ∗ d i f f _ s t a r t 2 ;
30 d i f f _ s o f t [ 1 ] [ 1 ] = d i f f _ s o f t 2 2 ∗ d i f f _ s t a r t 2 ;
31

32 l a y e r 2 _ s o f t m a x . d i f f _ o u t [ c u r r e n t _ s t e p ] [ 0 ] = \
33 ( d i f f _ s o f t [ 0 ] [ 0 ] + d i f f _ s o f t [ 1 ] [ 0 ] ) ;
34 l a y e r 2 _ s o f t m a x . d i f f _ o u t [ c u r r e n t _ s t e p ] [ 1 ] = \
35 ( d i f f _ s o f t [ 0 ] [ 1 ] + d i f f _ s o f t [ 1 ] [ 1 ] ) ;
36

37 / / c a c u l a t i o n o f t h e d i f f o u t f o r t h e second l a y e r
38 f o r ( i n t i =0 ; i <=SECOND_LAYER_UNI−1; i ++)
39 {
40 l a y e r 2 _ d e n s e . d i f f _ o u t [ c u r r e n t _ s t e p ] [ i ] = \
41 ( ( d i f f _ s o f t [ 0 ] [ 0 ] + d i f f _ s o f t [ 1 ] [ 0 ] ) \
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42 ∗ l a y e r 2 _ d e n s e . w e i g h t s [ i ] [ 0 ] + \
43 ( d i f f _ s o f t [ 0 ] [ 1 ] + d i f f _ s o f t [ 1 ] [ 1 ] ) \
44 ∗ l a y e r 2 _ d e n s e . w e i g h t s [ i ] [ 1 ] ) ;
45 }
46

47 / / b a c k p r o p o g a t e t h e p a r t i a l l o s s t o t h e f r o n t l a y e r s
48 / / used l a t e r f o r u p d a t i n g f i r s t l a y e r w e i g h t s
49 f o r ( i n t i =0 ; i <= SECOND_LAYER_UNI−1; i ++)
50 {
51 l a y e r 1 _ t a n h . d i f f _ o u t [ c u r r e n t _ s t e p ] [ i ] = \
52 (1− l a y e r 1 _ t a n h . r e s u l t _ r e p o [ c u r r e n t _ s t e p ] [ i ] \
53 ∗ l a y e r 1 _ t a n h . r e s u l t _ r e p o [ c u r r e n t _ s t e p ] [ i ] ) ;
54 }
55

56 / / g e t t h e d i f f e r e n t i a l v a l u e r e s p e c t t o l a y e r 2 w e i g h t s .
57 f o r ( i n t i =0 ; i <=SECOND_LAYER_UNI−1; i ++)
58 {
59 l a y e r 2 _ d e n s e . d e l t a _ w e i g h t [ c u r r e n t _ s t e p ] [ i ] [ 0 ] = \
60 l a y e r 2 _ s o f t m a x . d i f f _ o u t [ c u r r e n t _ s t e p ] [ 0 ] \
61 ∗ ( l a y e r 1 _ t a n h . r e s u l t _ r e p o [ c u r r e n t _ s t e p ] [ i ] ) ;
62 l a y e r 2 _ d e n s e . d e l t a _ w e i g h t [ c u r r e n t _ s t e p ] [ i ] [ 1 ] = \
63 l a y e r 2 _ s o f t m a x . d i f f _ o u t [ c u r r e n t _ s t e p ] [ 1 ] \
64 ∗ ( l a y e r 1 _ t a n h . r e s u l t _ r e p o [ c u r r e n t _ s t e p ] [ i ] ) ;
65 }
66

67 l a y e r 2 _ d e n s e . d e l t a _ b i a s [ c u r r e n t _ s t e p ] [ 0 ] = \
68 l a y e r 2 _ s o f t m a x . d i f f _ o u t [ c u r r e n t _ s t e p ] [ 0 ] ;
69 l a y e r 2 _ d e n s e . d e l t a _ b i a s [ c u r r e n t _ s t e p ] [ 1 ] = \
70 l a y e r 2 _ s o f t m a x . d i f f _ o u t [ c u r r e n t _ s t e p ] [ 1 ] ;
71

72

73 f o r ( i n t i n p u t _ c o u n t = 0 ; i n p u t _ c o u n t <= \
74 INPUT_LAYER_UNI−1; i n p u t _ c o u n t ++)
75 {
76 f o r ( i n t o u t p u t _ c o u n t =0; o u t p u t _ c o u n t <= \
77 SECOND_LAYER_UNI−1; o u t p u t _ c o u n t ++)
78 {
79 l a y e r 1 _ d e n s e . d e l t a _ w e i g h t [ c u r r e n t _ s t e p ]
80 [ i n p u t _ c o u n t ] [ o u t p u t _ c o u n t ] = \
81 ( l a y e r 2 _ d e n s e . d i f f _ o u t [ c u r r e n t _ s t e p ] [ o u t p u t _ c o u n t ] ) \
82 ∗ ( l a y e r 1 _ t a n h . d i f f _ o u t [ c u r r e n t _ s t e p ] [ o u t p u t _ c o u n t ] ) \
83 ∗ ( obv_repo [ c u r r e n t _ s t e p ] [ i n p u t _ c o u n t ] ) ;
84 }
85 }
86

87

88 f o r ( i n t o u t p u t _ c o u n t = 0 ; \
89 o u t p u t _ c o u n t <= INPUT_LAYER_UNI−1; o u t p u t _ c o u n t ++)
90 {
91 l a y e r 1 _ d e n s e . d e l t a _ b i a s [ c u r r e n t _ s t e p ] [ o u t p u t _ c o u n t ] = \
92 ( l a y e r 2 _ d e n s e . d i f f _ o u t [ c u r r e n t _ s t e p ] [ o u t p u t _ c o u n t ] ) ∗ \
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93 ( l a y e r 1 _ t a n h . d i f f _ o u t [ c u r r e n t _ s t e p ] [ o u t p u t _ c o u n t ] ) ;
94 }
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The following code is the critic network forward part. It is used for predicting the Q value of
the state-action pair. Thus there are two input unit for critic network: the state and action. The
output is a scalar value.

1 / / c r i t i c ne twork dense l a y e r 1
2 c r i t i c _ i n p u t _ l a y e r (
3 / / a c t o r ne twork r e s u l t ,
4 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ i n p u t , \
5 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ i n p u t , \
6 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
7

8 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ w e i g h t s , \
9 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ w e i g h t s , \

10 c r i t i c _ l a y e r 1 _ d e n s e . b i a s e s
11 ) ;
12

13 c r i t i c _ l a y e r 1 _ a c t i v e _ r e l u ( \
14 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
15 c r i t i c _ l a y e r 1 _ r e l u . r e s u l t ) ;
16

17 / / c r i t i c ne twork dense l a y e r 2
18 c r i t i c _ d e n s e _ l a y e r 2 ( c r i t i c _ l a y e r 1 _ r e l u . r e s u l t , \
19 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
20 c r i t i c _ l a y e r 2 _ d e n s e . we igh t s , \
21 c r i t i c _ l a y e r 2 _ d e n s e . b i a s e s ) ;
22

23 c r i t i c _ l a y e r 2 _ a c t i v e _ r e l u ( \
24 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
25 c r i t i c _ l a y e r 2 _ r e l u . r e s u l t ) ;
26

27 / / c r i t i c ne twork dense l a y e r 3
28 c r i t i c _ d e n s e _ l a y e r 3 ( c r i t i c _ l a y e r 2 _ r e l u . r e s u l t , \
29 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \
30 c r i t i c _ l a y e r 3 _ d e n s e . we igh t s , \
31 c r i t i c _ l a y e r 3 _ d e n s e . b i a s e s ) ;
32

33 c r i t i c _ l a y e r 3 _ a c t i v e _ r e l u ( \
34 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \
35 c r i t i c _ l a y e r 3 _ r e l u . r e s u l t ) ;
36

37 / / c r i t i c ne twork dense l a y e r 4
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38 c r i t i c _ d e n s e _ l a y e r 4 ( c r i t i c _ l a y e r 3 _ r e l u . r e s u l t , \
39 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
40 c r i t i c _ l a y e r 4 _ d e n s e . we igh t s , \
41 c r i t i c _ l a y e r 4 _ d e n s e . b i a s e s ) ;
42

43 c r i t i c _ l a y e r 4 _ a c t i v e _ r e l u ( \
44 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
45 c r i t i c _ l a y e r 4 _ r e l u . r e s u l t ) ;
46

47 / / c r i t i c ne twork dense l a y e r 5
48 c r i t i c _ d e n s e _ l a y e r 5 ( c r i t i c _ l a y e r 4 _ r e l u . r e s u l t , \
49 c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \
50 c r i t i c _ l a y e r 5 _ d e n s e . we igh t s , \
51 c r i t i c _ l a y e r 5 _ d e n s e . b i a s e s ) ;
52

53 c r i t i c _ l a y e r 5 _ l i n e a r _ f o r w a r d ( c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \
54 c r i t i c _ l a y e r 5 _ l i n e a r . r e s u l t , 1 ) ;

The slight difference between normal dense layer and critic input dense layer is that require to
calculate the action input and state input seperately, then combine then together. Also in this
layer, the weights are divided into action’s weights and state’s weights. In the training part,
these two parts also handled in different ways.

1 vo id c r i t i c _ i n p u t _ l a y e r (
2 f l o a t a c t i o n _ i n p u t [ CRITIC_INPUT_ACTION_UNI ] ,
3 f l o a t s t a t e _ i n p u t [ CRITIC_INPUT_STATE_UNI ] ,
4 f l o a t r e s u l t [ CRITIC_SECOND_LAYER_UNI ] ,
5 f l o a t a c t i o n _ w e i g h t s [ CRITIC_INPUT_ACTION_UNI ] \
6 [ CRITIC_SECOND_LAYER_UNI ] ,
7 f l o a t s t a t e _ w e i g h t s [ CRITIC_INPUT_STATE_UNI ] \
8 [ CRITIC_SECOND_LAYER_UNI ] ,
9 f l o a t b i a s e s [ CRITIC_SECOND_LAYER_UNI ]

10 )
11 {
12 f l o a t cache ;
13

14 f l o a t a c t i o n _ m u l t [ CRITIC_INPUT_ACTION_UNI ] \
15 [ CRITIC_SECOND_LAYER_UNI ] ;
16 f l o a t a c t i o n _ a c c [ CRITIC_SECOND_LAYER_UNI ] ;
17 f l o a t a c t i o n _ r e s u l t [ CRITIC_SECOND_LAYER_UNI ] ;
18

19 f l o a t s t a t e _ m u l t [ CRITIC_INPUT_STATE_UNI ] \
20 [ CRITIC_SECOND_LAYER_UNI ] ;
21 f l o a t s t a t e _ a c c [ CRITIC_SECOND_LAYER_UNI ] ;
22 f l o a t s t a t e _ r e s u l t [ CRITIC_SECOND_LAYER_UNI ] ;
23

24

25 / / a c t i o n p a r t c a l c u l a t i o n
26 A c t i o n _ P r o d u c t 1 : f o r ( i n t i i = 0 ; \
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27 i i <CRITIC_INPUT_ACTION_UNI ; i i ++)
28 {
29 cache = a c t i o n _ i n p u t [ i i ] ;
30 A c t i o n _ P r o d u c t 2 : f o r ( i n t j j =0 ; \
31 j j <CRITIC_SECOND_LAYER_UNI ; j j ++)
32 {
33 a c t i o n _ m u l t [ i i ] [ j j ] = cache ∗ a c t i o n _ w e i g h t s [ i i ] [ j j ] ;
34 }
35 }
36

37 Action_RESETACCUM : f o r ( i n t i a c c = 0 ; \
38 i a c c < CRITIC_SECOND_LAYER_UNI ; i a c c ++)
39 {
40 a c t i o n _ a c c [ i a c c ] = ( f l o a t ) 0 ;
41 }
42

43 Action_ACCUM1 : f o r ( i n t i i =0 ; \
44 i i < CRITIC_INPUT_ACTION_UNI ; i i ++)
45 {
46 Action_ACCUM2 : f o r ( i n t j j =0 ; \
47 j j <CRITIC_SECOND_LAYER_UNI ; j j ++)
48 {
49 a c t i o n _ a c c [ j j ] += a c t i o n _ m u l t [ i i ] [ j j ] ;
50 }
51 }
52

53 Action_RESULT : f o r ( i n t i r e s = 0 ; \
54 i r e s < CRITIC_SECOND_LAYER_UNI ; i r e s ++)
55 {
56 a c t i o n _ r e s u l t [ i r e s ] = ( f l o a t ) a c t i o n _ a c c [ i r e s ] ;
57 }
58

59 / / s t a t e p a r t c a l c u l a t i o n
60 S t a t e _ P r o d u c t 1 : f o r ( i n t i i = 0 ; \
61 i i <CRITIC_INPUT_STATE_UNI ; i i ++)
62 {
63 cache = s t a t e _ i n p u t [ i i ] ;
64 S t a t e _ P r o d u c t 2 : f o r ( i n t j j =0 ; \
65 j j <CRITIC_SECOND_LAYER_UNI ; j j ++)
66 {
67 s t a t e _ m u l t [ i i ] [ j j ] = cache ∗ s t a t e _ w e i g h t s [ i i ] [ j j ] ;
68 }
69 }
70

71 State_RESETACCUM : f o r ( i n t i a c c = 0 ; \
72 i a c c < CRITIC_SECOND_LAYER_UNI ; i a c c ++)
73 {
74 s t a t e _ a c c [ i a c c ] = ( f l o a t ) 0 ;
75 }
76

77 State_ACCUM1 : f o r ( i n t i i =0 ; \
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78 i i < CRITIC_INPUT_STATE_UNI ; i i ++)
79 {
80 State_ACCUM2 : f o r ( i n t j j =0 ; \
81 j j <CRITIC_SECOND_LAYER_UNI ; j j ++)
82 {
83 s t a t e _ a c c [ j j ] += s t a t e _ m u l t [ i i ] [ j j ] ;
84 }
85 }
86

87 State_RESULT : f o r ( i n t i r e s = 0 ; \
88 i r e s < CRITIC_SECOND_LAYER_UNI ; i r e s ++)
89 {
90 s t a t e _ r e s u l t [ i r e s ] = ( f l o a t ) s t a t e _ a c c [ i r e s ] ;
91 }
92

93 Adding_Bias : f o r ( i n t i r e s = 0 ; \
94 i r e s < CRITIC_SECOND_LAYER_UNI ; i r e s ++)
95 {
96 r e s u l t [ i r e s ] =
97 ( f l o a t ) s t a t e _ r e s u l t [ i r e s ] + a c t i o n _ r e s u l t [ i r e s ] \
98 + b i a s e s [ i r e s ] ;
99 }

100 } ;
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The following code snippet is the actor network forward part. It is used for predicting the action
from state signal. Thus the input for Pendulum state here is cos(θ), sin(θ), and θ̇, that represent
the full information of Pendulum state. The output is the action, here is the joint force, that
indicate how the agent moves the pendulum to keep balanced.

1 / / g e t t h e s t a t e s i g n a l from e n v i r o n m e n t
2 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t [ 0 ] = c u r r e n t _ c o s _ t h e t a ;
3 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t [ 1 ] = c u r r e n t _ s i n _ t h e t a ;
4 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t [ 2 ] = c u r r e n t _ t h e t a _ d o t ;
5

6 / a = a c t o r . c h o o s e _ a c t i o n ( s )
7 / / t h e A c t o r Eval Net ( fo rward p r o p a g a t i o n ) / /
8 / / a c t o r ne twork dense l a y e r 1
9 a c t o r _ d e n s e _ l a y e r 1 ( a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t , \

10 a c t o r _ l a y e r 1 _ d e n s e . r e s u l t , \
11 a c t o r _ l a y e r 1 _ d e n s e . we igh t s , \
12 a c t o r _ l a y e r 1 _ d e n s e . b i a s e s ) ;
13

14 a c t o r _ l a y e r 1 _ a c t i v e _ r e l u ( a c t o r _ l a y e r 1 _ d e n s e . r e s u l t , \
15 a c t o r _ l a y e r 1 _ r e l u . r e s u l t ) ;
16

17 / / a c t o r ne twork dense l a y e r 2
18 a c t o r _ d e n s e _ l a y e r 2 ( a c t o r _ l a y e r 1 _ r e l u . r e s u l t , \
19 a c t o r _ l a y e r 2 _ d e n s e . r e s u l t , \
20 a c t o r _ l a y e r 2 _ d e n s e . we igh t s , \
21 a c t o r _ l a y e r 2 _ d e n s e . b i a s e s ) ;
22

23

24 a c t o r _ l a y e r 2 _ a c t i v e _ r e l u ( a c t o r _ l a y e r 2 _ d e n s e . r e s u l t , \
25 a c t o r _ l a y e r 2 _ r e l u . r e s u l t ) ;
26

27 / / a c t o r ne twork dense l a y e r 3
28 a c t o r _ d e n s e _ l a y e r 3 ( a c t o r _ l a y e r 2 _ r e l u . r e s u l t , \
29 a c t o r _ l a y e r 3 _ d e n s e . r e s u l t , \
30 a c t o r _ l a y e r 3 _ d e n s e . we igh t s , \
31 a c t o r _ l a y e r 3 _ d e n s e . b i a s e s ) ;
32

33 a c t o r _ l a y e r 3 _ a c t i v e _ r e l u ( a c t o r _ l a y e r 3 _ d e n s e . r e s u l t , \
34 a c t o r _ l a y e r 3 _ r e l u . r e s u l t ) ;
35

36 / / a c t o r ne twork dense l a y e r 4
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37 a c t o r _ d e n s e _ l a y e r 4 ( a c t o r _ l a y e r 3 _ r e l u . r e s u l t , \
38 a c t o r _ l a y e r 4 _ d e n s e . r e s u l t , \
39 a c t o r _ l a y e r 4 _ d e n s e . we igh t s , \
40 a c t o r _ l a y e r 4 _ d e n s e . b i a s e s ) ;
41

42 a c t o r _ l a y e r 4 _ a c t i v e _ r e l u ( a c t o r _ l a y e r 4 _ d e n s e . r e s u l t , \
43 a c t o r _ l a y e r 4 _ r e l u . r e s u l t ) ;
44

45 / / a c t o r ne twork dense l a y e r 5
46 a c t o r _ d e n s e _ l a y e r 5 ( a c t o r _ l a y e r 4 _ r e l u . r e s u l t , \
47 a c t o r _ l a y e r 5 _ d e n s e . r e s u l t , \
48 a c t o r _ l a y e r 5 _ d e n s e . we igh t s , \
49 a c t o r _ l a y e r 5 _ d e n s e . b i a s e s ) ;
50

51 a c t o r _ l a y e r 5 _ a c t i v e _ t a n h ( a c t o r _ l a y e r 5 _ d e n s e . r e s u l t , \
52 a c t o r _ l a y e r 5 _ t a n h . r e s u l t ) ;

The detail implementation of function actor_dense_layer1() is shown below, it is simply a ma-
trix multiplication that calculate the fully connected layer forward pass.

1 vo id a c t o r _ d e n s e _ l a y e r 1 (
2 f l o a t d a t a i n p u t [ACTOR_INPUT_LAYER_UNI ] ,
3 f l o a t r e s u l t [ACTOR_SECOND_LAYER_UNI] ,
4

5 f l o a t w e i g h t s [ACTOR_INPUT_LAYER_UNI] \
6 [ACTOR_SECOND_LAYER_UNI] ,
7 f l o a t b i a s e s [ACTOR_SECOND_LAYER_UNI]
8 )
9 {

10 f l o a t cache ;
11

12 f l o a t mul t [ACTOR_INPUT_LAYER_UNI ] [ ACTOR_SECOND_LAYER_UNI ] ;
13 f l o a t acc [ACTOR_SECOND_LAYER_UNI ] ;
14

15 P r o d u c t 1 : f o r ( i n t i i = 0 ; i i <ACTOR_INPUT_LAYER_UNI ; i i ++)
16 {
17 cache = d a t a i n p u t [ i i ] ;
18 P r o d u c t 2 : f o r ( i n t j j =0 ; j j <ACTOR_SECOND_LAYER_UNI ; j j ++)
19 {
20 mul t [ i i ] [ j j ] = cache ∗w e i g h t s [ i i ] [ j j ] ;
21 }
22 }
23

24 RESETACCUM: f o r ( i n t i a c c = 0 ; \
25 i a c c < ACTOR_SECOND_LAYER_UNI ; i a c c ++)
26 {
27 acc [ i a c c ] = ( f l o a t ) b i a s e s [ i a c c ] ;
28 }
29

30 ACCUM1: f o r ( i n t i i =0 ; i i < ACTOR_INPUT_LAYER_UNI ; i i ++)
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31 {
32 ACCUM2: f o r ( i n t j j =0 ; j j <ACTOR_SECOND_LAYER_UNI ; j j ++)
33 {
34 acc [ j j ] += mul t [ i i ] [ j j ] ;
35 }
36 }
37

38 RESULT : f o r ( i n t i r e s = 0 ; \
39 i r e s < ACTOR_SECOND_LAYER_UNI ; i r e s ++)
40 {
41 r e s u l t [ i r e s ] = ( f l o a t ) acc [ i r e s ] ;
42 }
43

44 }



Appendix F

1

2

3 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t [ 0 ] = c u r r e n t _ s 1 ;
4 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t [ 1 ] = c u r r e n t _ s 2 ;
5 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t [ 2 ] = c u r r e n t _ s 3 ;
6

7 a c t o r _ d e n s e _ l a y e r 1 (
8 a c t o r _ l a y e r 1 _ d e n s e . d a t a i n p u t , \
9 a c t o r _ l a y e r 1 _ d e n s e . r e s u l t , \

10 a c t o r _ l a y e r 1 _ d e n s e . we igh t s , \
11 a c t o r _ l a y e r 1 _ d e n s e . b i a s e s ) ;
12

13 a c t o r _ l a y e r 1 _ a c t i v e _ r e l u (
14 a c t o r _ l a y e r 1 _ d e n s e . r e s u l t , \
15 a c t o r _ l a y e r 1 _ r e l u . r e s u l t ) ; \
16

17 a c t o r _ d e n s e _ l a y e r 2 ( \
18 a c t o r _ l a y e r 1 _ r e l u . r e s u l t , \
19 a c t o r _ l a y e r 2 _ d e n s e . r e s u l t , \
20 a c t o r _ l a y e r 2 _ d e n s e . we igh t s , \
21 a c t o r _ l a y e r 2 _ d e n s e . b i a s e s ) ;
22

23 a c t o r _ l a y e r 2 _ a c t i v e _ r e l u ( \
24 a c t o r _ l a y e r 2 _ d e n s e . r e s u l t , \
25 a c t o r _ l a y e r 2 _ r e l u . r e s u l t ) ;
26

27 a c t o r _ d e n s e _ l a y e r 3 ( \
28 a c t o r _ l a y e r 2 _ r e l u . r e s u l t , \
29 a c t o r _ l a y e r 3 _ d e n s e . r e s u l t , \
30 a c t o r _ l a y e r 3 _ d e n s e . we igh t s , \
31 a c t o r _ l a y e r 3 _ d e n s e . b i a s e s ) ;
32

33 a c t o r _ l a y e r 3 _ a c t i v e _ r e l u (
34 a c t o r _ l a y e r 3 _ d e n s e . r e s u l t , \
35 a c t o r _ l a y e r 3 _ r e l u . r e s u l t ) ;
36

37

38 a c t o r _ d e n s e _ l a y e r 4 (
39 a c t o r _ l a y e r 3 _ r e l u . r e s u l t , \
40 a c t o r _ l a y e r 4 _ d e n s e . r e s u l t , \
41 a c t o r _ l a y e r 4 _ d e n s e . we igh t s , \
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42 a c t o r _ l a y e r 4 _ d e n s e . b i a s e s ) ;
43

44 a c t o r _ l a y e r 4 _ a c t i v e _ r e l u (
45 a c t o r _ l a y e r 4 _ d e n s e . r e s u l t , \
46 a c t o r _ l a y e r 4 _ r e l u . r e s u l t ) ;
47

48 a c t o r _ d e n s e _ l a y e r 5 (
49 a c t o r _ l a y e r 4 _ r e l u . r e s u l t , \
50 a c t o r _ l a y e r 5 _ d e n s e . r e s u l t , \
51 a c t o r _ l a y e r 5 _ d e n s e . we igh t s , \
52 a c t o r _ l a y e r 5 _ d e n s e . b i a s e s ) ;
53

54 a c t o r _ l a y e r 5 _ a c t i v e _ t a n h (
55 a c t o r _ l a y e r 5 _ d e n s e . r e s u l t , \
56 a c t o r _ l a y e r 5 _ t a n h . r e s u l t ) ;
57 / / End o f t h e A c t o r Net fo rward prop
58

59 / / Begin o f t h e C r i t i c Net fo rward prop
60

61 / / pas s t h e a c t o r o u t p u t t o t h e c r i t i c i n p u t
62

63 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ i n p u t [ 0 ]
64 = a c t o r _ l a y e r 5 _ t a n h . r e s u l t [ 0 ] ;
65

66 / / ∗∗∗∗∗∗∗∗ t h e C r i t i c Net ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
67 c r i t i c _ i n p u t _ l a y e r ( \
68 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ i n p u t ,
69 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ i n p u t , \
70 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
71 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ w e i g h t s , \
72 c r i t i c _ l a y e r 1 _ d e n s e . s t a t e _ w e i g h t s , \
73 c r i t i c _ l a y e r 1 _ d e n s e . b i a s e s
74 ) ;
75

76 c r i t i c _ l a y e r 1 _ a c t i v e _ r e l u ( \
77 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t , \
78 c r i t i c _ l a y e r 1 _ r e l u . r e s u l t \
79 ) ;
80

81 c r i t i c _ d e n s e _ l a y e r 2 (
82 c r i t i c _ l a y e r 1 _ r e l u . r e s u l t , \
83 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
84 c r i t i c _ l a y e r 2 _ d e n s e . we igh t s , \
85 c r i t i c _ l a y e r 2 _ d e n s e . b i a s e s ) ;
86

87 c r i t i c _ l a y e r 2 _ a c t i v e _ r e l u ( \
88 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t , \
89 c r i t i c _ l a y e r 2 _ r e l u . r e s u l t \
90 ) ;
91

92 c r i t i c _ d e n s e _ l a y e r 3 (
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93 c r i t i c _ l a y e r 2 _ r e l u . r e s u l t , \
94 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \
95 c r i t i c _ l a y e r 3 _ d e n s e . we igh t s , \
96 c r i t i c _ l a y e r 3 _ d e n s e . b i a s e s ) ;
97

98 c r i t i c _ l a y e r 3 _ a c t i v e _ r e l u ( \
99 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t , \

100 c r i t i c _ l a y e r 3 _ r e l u . r e s u l t \
101 ) ;
102

103

104 c r i t i c _ d e n s e _ l a y e r 4 (
105 c r i t i c _ l a y e r 3 _ r e l u . r e s u l t , \
106 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
107 c r i t i c _ l a y e r 4 _ d e n s e . we igh t s , \
108 c r i t i c _ l a y e r 4 _ d e n s e . b i a s e s ) ;
109

110 c r i t i c _ l a y e r 4 _ a c t i v e _ r e l u ( \
111 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t , \
112 c r i t i c _ l a y e r 4 _ r e l u . r e s u l t \
113 ) ;
114

115 c r i t i c _ d e n s e _ l a y e r 5 (
116 c r i t i c _ l a y e r 4 _ r e l u . r e s u l t , \
117 c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \
118 c r i t i c _ l a y e r 5 _ d e n s e . we igh t s , \
119 c r i t i c _ l a y e r 5 _ d e n s e . b i a s e s ) ;
120

121 c r i t i c _ l a y e r 5 _ l i n e a r _ f o r w a r d (
122 c r i t i c _ l a y e r 5 _ d e n s e . r e s u l t , \
123 c r i t i c _ l a y e r 5 _ l i n e a r . r e s u l t , \
124 1 ) ;
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1 / / t r a i n i n g f o r A c t o r Eval
2

3 / / i n i t i a l i z e t h e d i f f i n from t h e s t a r t
4 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ i n [ 0 ] = −1;
5

6 c r i t i c _ l a y e r 5 _ l i n e a r _ b a c k (
7 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ i n , \
8 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ o u t , \
9 1 ) ;

10

11 c r i t i c _ d e n s e _ l a y e r 5 _ a c t o r _ b a c k (
12 c r i t i c _ l a y e r 5 _ l i n e a r . d i f f _ o u t , \
13 c r i t i c _ l a y e r 5 _ d e n s e . d i f f _ o u t , \
14 c r i t i c _ l a y e r 5 _ d e n s e . w e i g h t s ) ;
15

16 c r i t i c _ l a y e r 4 _ r e l u _ b a c k (
17 c r i t i c _ l a y e r 5 _ d e n s e . d i f f _ o u t , \
18 c r i t i c _ l a y e r 4 _ r e l u . d i f f _ o u t , \
19 c r i t i c _ l a y e r 4 _ d e n s e . r e s u l t ) ;
20

21 c r i t i c _ d e n s e _ l a y e r 4 _ a c t o r _ b a c k (
22 c r i t i c _ l a y e r 4 _ r e l u . d i f f _ o u t , \
23 c r i t i c _ l a y e r 4 _ d e n s e . d i f f _ o u t , \
24 c r i t i c _ l a y e r 4 _ d e n s e . w e i g h t s ) ;
25

26 c r i t i c _ l a y e r 3 _ r e l u _ b a c k (
27 c r i t i c _ l a y e r 4 _ d e n s e . d i f f _ o u t , \
28 c r i t i c _ l a y e r 3 _ r e l u . d i f f _ o u t , \
29 c r i t i c _ l a y e r 3 _ d e n s e . r e s u l t ) ;
30

31 c r i t i c _ d e n s e _ l a y e r 3 _ a c t o r _ b a c k (
32 c r i t i c _ l a y e r 3 _ r e l u . d i f f _ o u t , \
33 c r i t i c _ l a y e r 3 _ d e n s e . d i f f _ o u t , \
34 c r i t i c _ l a y e r 3 _ d e n s e . w e i g h t s ) ;
35

36 c r i t i c _ l a y e r 2 _ r e l u _ b a c k (
37 c r i t i c _ l a y e r 3 _ d e n s e . d i f f _ o u t , \
38 c r i t i c _ l a y e r 2 _ r e l u . d i f f _ o u t , \
39 c r i t i c _ l a y e r 2 _ d e n s e . r e s u l t ) ;
40

41 c r i t i c _ d e n s e _ l a y e r 2 _ a c t o r _ b a c k (
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42 c r i t i c _ l a y e r 2 _ r e l u . d i f f _ o u t , \
43 c r i t i c _ l a y e r 2 _ d e n s e . d i f f _ o u t , \
44 c r i t i c _ l a y e r 2 _ d e n s e . w e i g h t s ) ;
45

46 c r i t i c _ l a y e r 1 _ r e l u _ b a c k (
47 c r i t i c _ l a y e r 2 _ d e n s e . d i f f _ o u t , \
48 c r i t i c _ l a y e r 1 _ r e l u . d i f f _ o u t , \
49 c r i t i c _ l a y e r 1 _ d e n s e . r e s u l t ) ;
50

51 c r i t i c _ d e n s e _ l a y e r 1 _ a c t o r _ b a c k (
52 c r i t i c _ l a y e r 1 _ r e l u . d i f f _ o u t , \
53 c r i t i c _ l a y e r 1 _ d e n s e . a c t o r _ d i f f _ o u t , \
54 c r i t i c _ l a y e r 1 _ d e n s e . a c t i o n _ w e i g h t s ) ;
55

56 / / t h e n back from c r i t i c t o a c t o r
57 a c t o r _ l a y e r 5 _ t a n h _ b a c k (
58 c r i t i c _ l a y e r 1 _ d e n s e . a c t o r _ d i f f _ o u t , \
59 a c t o r _ l a y e r 5 _ t a n h . d i f f _ o u t , \
60 a c t o r _ l a y e r 5 _ d e n s e . r e s u l t ) ;
61

62 a c t o r _ d e n s e _ l a y e r 5 _ b a c k (
63 a c t o r _ l a y e r 4 _ r e l u . r e s u l t , \
64 a c t o r _ l a y e r 5 _ d e n s e . r e s u l t , \
65 a c t o r _ l a y e r 5 _ t a n h . d i f f _ o u t , \
66 a c t o r _ l a y e r 5 _ d e n s e . d i f f _ o u t , \
67 a c t o r _ l a y e r 5 _ d e n s e . we igh t s , \
68 a c t o r _ l a y e r 5 _ d e n s e . b i a s e s , \
69 a c t o r _ l a y e r 5 _ d e n s e . d i f f _ w e i g h t s , \
70 a c t o r _ l a y e r 5 _ d e n s e . d i f f _ b i a s e s ) ;
71

72 a c t o r _ l a y e r 4 _ r e l u _ b a c k (
73 a c t o r _ l a y e r 5 _ d e n s e . d i f f _ o u t , \
74 a c t o r _ l a y e r 4 _ r e l u . d i f f _ o u t , \
75 a c t o r _ l a y e r 4 _ d e n s e . r e s u l t ) ;
76

77 a c t o r _ d e n s e _ l a y e r 4 _ b a c k (
78 a c t o r _ l a y e r 3 _ r e l u . r e s u l t , \
79 a c t o r _ l a y e r 4 _ d e n s e . r e s u l t , \
80 a c t o r _ l a y e r 4 _ r e l u . d i f f _ o u t , \
81 a c t o r _ l a y e r 4 _ d e n s e . d i f f _ o u t , \
82

83 a c t o r _ l a y e r 4 _ d e n s e . we igh t s , \
84 a c t o r _ l a y e r 4 _ d e n s e . b i a s e s , \
85

86 a c t o r _ l a y e r 4 _ d e n s e . d i f f _ w e i g h t s , \
87 a c t o r _ l a y e r 4 _ d e n s e . d i f f _ b i a s e s ) ;
88

89 a c t o r _ l a y e r 3 _ r e l u _ b a c k (
90 a c t o r _ l a y e r 4 _ d e n s e . d i f f _ o u t , \
91 a c t o r _ l a y e r 3 _ r e l u . d i f f _ o u t , \
92 a c t o r _ l a y e r 3 _ d e n s e . r e s u l t ) ;
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93

94 a c t o r _ d e n s e _ l a y e r 3 _ b a c k (
95 a c t o r _ l a y e r 2 _ r e l u . r e s u l t , \
96 a c t o r _ l a y e r 3 _ d e n s e . r e s u l t , \
97 a c t o r _ l a y e r 3 _ r e l u . d i f f _ o u t , \
98 a c t o r _ l a y e r 3 _ d e n s e . d i f f _ o u t , \
99

100 a c t o r _ l a y e r 3 _ d e n s e . we igh t s , \
101 a c t o r _ l a y e r 3 _ d e n s e . b i a s e s , \
102

103 a c t o r _ l a y e r 3 _ d e n s e . d i f f _ w e i g h t s , \
104 a c t o r _ l a y e r 3 _ d e n s e . d i f f _ b i a s e s ) ;
105

106 a c t o r _ l a y e r 2 _ r e l u _ b a c k (
107 a c t o r _ l a y e r 3 _ d e n s e . d i f f _ o u t , \
108 a c t o r _ l a y e r 2 _ r e l u . d i f f _ o u t , \
109 a c t o r _ l a y e r 2 _ d e n s e . r e s u l t ) ;
110

111 a c t o r _ d e n s e _ l a y e r 2 _ b a c k (
112 a c t o r _ l a y e r 1 _ r e l u . r e s u l t , \
113 a c t o r _ l a y e r 2 _ d e n s e . r e s u l t , \
114 a c t o r _ l a y e r 2 _ r e l u . d i f f _ o u t , \
115 a c t o r _ l a y e r 2 _ d e n s e . d i f f _ o u t , \
116

117 a c t o r _ l a y e r 2 _ d e n s e . we igh t s , \
118 a c t o r _ l a y e r 2 _ d e n s e . b i a s e s , \
119

120 a c t o r _ l a y e r 2 _ d e n s e . d i f f _ w e i g h t s , \
121 a c t o r _ l a y e r 2 _ d e n s e . d i f f _ b i a s e s ) ;
122

123 a c t o r _ l a y e r 1 _ r e l u _ b a c k (
124 a c t o r _ l a y e r 2 _ d e n s e . d i f f _ o u t , \
125 a c t o r _ l a y e r 1 _ r e l u . d i f f _ o u t , \
126 a c t o r _ l a y e r 1 _ d e n s e . r e s u l t ) ;

All purpose for backpropagation is to get the diff_weights and diff_biases (partial deriva-
tive). Once the above code finish, for actor network, all the parameters have the partial deriva-
tive of loss function. Then it could be used for any optimizer methods to update the parameters.
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