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Abstract

Well-posedness of systems describing the motion of fluids in the class of strong
and weak solutions represents one of the most challenging problems of the mod-
ern theory of partial differential equations.
To overcome the problem of existence, one suitable idea is to consider a larger
class of solutions. In the first part of the thesis we identify a measure-valued solu-
tion, characterized by a parametrized Young measure, of the compressible Euler
system with damping on a general (unbounded) domain as a vanishing viscosity
limit for the compressible Navier-Stokes system. Afterwards, we establish the
weak (measure-valued)–strong uniqueness principle, and, as a consequence, we
obtain convergence of the weak solutions of the Navier-Stokes equations in the
zero viscosity limit to the strong solution of the Euler system, as long as the latter
exists.
To handle the problem of uniqueness, one possible way is to perform a semiflow
selection, identifying, among all the solutions emanating from the same initial
data, the one satisfying the semigroup property. In the second part of the thesis
we study under which assumptions it is possible to guarantee the existence of a
semiflow selection for autonomous and non-autonomous systems, choosing the
Skorokhod space of càglàd functions as trajectory space. Subsequently, we adapt
this abstract machinery to the compressible Navier-Stokes system, for which we
will be able to prove the existence of a semiflow selection depending only on the
initial density and momentum, and to models describing general non-Newtonian
fluids. In this latter case, we prove the existence of dissipative solutions for a
linear pressure and we will analyse under which conditions it is possible to guar-
antee the existence of weak solutions.





Zusammenfassung

Die Wohlgestelltheit von Problemen, die aus der Beschreibung der Bewegung von
Fluiden stammen, in der Klasse von starken oder schwachen Lösungen zu zeigen,
ist eine der herausforderndsten Aufgabenstellungen in der modernen Theorie
partieller Differentialgleichungen.
Eine Möglichkeit, um die Existenz von Lösungen zu zeigen, ist den
Lösungsgebriff passend zu erweitern. Im ersten Teil dieser Arbeit identifizieren
wir eine maßwertige Lösung der gedämpften kompressiblen Euler-Gleichungen
auf einem allgemeinen (unbeschränkten) Gebiet, die durch ein parametrisiertes
Young-Maß charakterisiert wird, als den Grenzwert der kompressiblen Navier-
Stokes-Gleichungen bei verschwindender Viskosität. Anschließend zeigen wir
ein Prinzip der schwach- beziehungsweise maßwertig-starken Einzigkeit und er-
halten als Konsequenz die Konvergenz schwacher Lösungen der Navier-Stokes-
Gleichungen bei verschwindender Viskosität gegen starke Lösungen der Euler-
Gleichungen, falls letztere existieren.
Ein Weg die Frage nach der Einzigkeit von Lösungen zu behandeln ist die
Auswahl eins Halbflusses, das heißt aus der Menge aller Lösungen zu gegebe-
nen Anfangsdaten diejenige auszuwählen, die die Halbgruppeneigenschaft be-
sitzt. Im zweiten Teil der Arbeit untersuchen wir, unter welchen Voraussetzungen
eine solche Auswahl eines Halbflusses für autonome und nicht-autonome Sys-
teme möglich ist, wobei wir als Raum für die Trajektorien den Skorochod-Raum
der Càglàd-Funktionen wählen. Anschließend adaptieren wir die abstrakten Re-
sultate für die kompressiblen Navier-Stokes-Gleichungen, für die wir die Exis-
tenz einer Halbfluss-Auswahl zeigen können, welche nur von den Anfangswerten
der Dichte und Impulsdichte abhängt, sowie für eine Klasse von Modellen zur
Beschreibung nichtnewtonscher Fluide. Für Letztere zeigen wir die Existenz dis-
sipativer Lösungen unter Annahme eines linearen Drucks und untersuchen unter
welchen Bedingungen die Existenz schwacher Lösungen gesichert ist.
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I N T R O D U C T I O N

From the blood flowing in our bodies to the air we breathe, fluids play an essential role in
our everyday lives. As the etymology of the word suggests (from Latin fluere,“to flow”), a
fluid is a substance tending to flow or conform to the outline of its container, not resisting
any shear force applied to it; the most common examples are gases, liquids and plasmas. In
view of their importance for many real world problems and thus the need of a rigorous an-
alytical description, it has already been figured out during the 18th century that the motion
of fluids can be modelled through a system of partial differential equations, a mathematical
transcription of (mainly) two physical conservation laws. Assuming that the fluid is a con-
tinuum, contained at a given time t ∈ R in a certain spatial domain Ω of the d-dimensional
Euclidean space Rd, the first principle, known as conservation of mass, gives birth to the fol-
lowing equation

∂t$ + divx($u) = 0, (1)

while the second one, known as conservation of momentum, has in general the following ex-
pression

∂t($u) + divx($u⊗ u) +∇x p = divx S. (2)

In both (1) and (2), the unknown quantities are the density $ = $(t, x) and the velocity u =

u(t, x) of the fluid, while the pressure p and the viscous stress S are determined by the material
properties of the fluid. Depending on the choice of S, i.e. the capacity of the fluid to resist
to deformation at a given rate, we obtain different systems. If we deal with an inviscid flow
and thus S = 0 in (2), we get the compressible Euler system; in this case, instead of velocity, the
momentum m = ($u)(t, x) is often considered as state function along with the density. Even
though there are only few examples of inviscid fluids in the real world, better known as
superfluids, Euler equations are a matter of great interest in fluid dynamics as they represent
the optimal model to describe gases and the behaviour of some vortex-like phenomena with
vanishing viscous forces, such as the formation of tornados. In ordinary conditions, several
fluids are isotropic, i.e. their properties are the same in all directions, and satisfy a constitutive
equation known as Newton’s rheological law under which viscosity is a linear function of
the velocity gradient. More precisely,

S = S(∇xu) = µ

(
∇xu +∇T

x u− 2
d
(divx u)I

)
+ η(divx u)I,

where µ > 0, η ≥ 0 are constants. With this particular choice of S we obtain the compressible
Navier-Stokes system. Water belongs to this class, even though it is modelled as an incompress-
ible fluid, i.e. the density $ is constant and thus equation (1) reduces to divx u = 0. However,
not all the fluids that we might encounter in nature are Newtonian, just think of blood,
honey and paint to name some: viscosity can change to either more liquid or more solid
when under force. We can then consider a general compressible viscous fluid system, assuming
the viscous stress tensor S to be related to the symmetric velocity gradient

Dxu =
1
2
(∇xu +∇T

x u)
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through a general implicit rheological law

S : Dxu = F(Dxu) + F∗(S),

with F a proper lower semi-continuous function and F∗ its conjugate. The physical back-
ground of writing the constitutive equation for S in this form is the fact that S is monotone
in the velocity gradient and vice versa, as clearly explained in the recent survey on a new
classification of incompressible fluids by Blechta, Málek and Rajagopal [10]. For more details
on how to deduce equations (1) and (2) one can consult, for instance, the monograph by
Chorin and Marsden [24].

According to Hadamard, every mathematical system modelling physical phenomena should
be well-posed, meaning that the following three issues must be verified.

• Existence: for any fixed data, a solution exists.

• Uniqueness: for any fixed data, the solution is unique.

• Stability: small perturbations of the data should result in small variation of the corre-
sponding solutions.

The data of our problem (1)–(2) are the initial and boundary conditions, i.e. the values of the
state variables $ and u (or m according to the system) at the initial time and on the boundary
of the domain, respectively. In order to verify the aforementioned properties, it is first im-
portant to specify the notion of solution. Intuitively, one would say that the couple ($, u) of
smooth, or at least continuously differentiable, functions constitutes a solution if it satisfies
equations (1) and (2) pointwise. This is the definition of strong or classical solution. However,
whether or not system (1)–(2) admits a unique strong solution for any fixed data is still an
open question and it represents one of the most challenging problems of the contemporary
theory of partial differential equations. The idea is then to look for a more general concept
of solution, for which the derivatives may not all exist but which satisfy system (1)–(2) in
some sense. Roughly speaking, we may multiply both equations (1) and (2) by test functions,
i.e. smooth and compactly supported functions, integrate over our domain and through an
integration by parts transfer all the derivatives to the test functions. In this way, we get the
concept of weak or distributional solution. In order to establish some a priori bounds necessary
to determine the function spaces framework where the distributional solutions are looked for,
and in order to guarantee the problem to remain well-posed in the class of weak solutions,
system (1)–(2) is often coupled with a third integral relation known as energy inequality and
given by

d
dt

ˆ
Ω

[
1
2

$|u|2 + P($)
]

dx +

ˆ
Ω

S : ∇xu dx ≤ 0, (3)

where the pressure potential P is the solution of the following ordinary differential equation:

$P′($)− P($) = p($).

It is worth noticing that equality holds in (3) if we deal with strong solutions, i.e. the density $

and the velocity u are smooth functions, but it may not be true if we consider weak solutions.
The point is that there may be some sources of dissipation due to possible singularities
and, if this occurs, a non-negative measure must be added to the left-hand side of the energy
equality, or we can equivalently consider the inequality as in (3). We say that the couple ($, u)
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constitutes a dissipative weak solution to system (1)–(2) if equations (1), (2) and inequality (3)
hold in the distributional sense. Nevertheless, even with this weaker notion of solution, the
problem of well-posedness has a lot of open tasks. Let us first focus on the Euler system.
In 1965 Glimm [47] proved the existence of dissipative weak solutions when d = 1 and
sufficiently small (in the BV-norm) initial data, while uniqueness and stability under the
same conditions were shown later on by Bressan, Crasta and Piccoli [15]. There are, of course,
a lot of available results but well-posedness in the context of dissipative weak solutions when
d ≥ 2 is far from being solved. Moreover, the recent developments achieved by means of the
convex integration technique lead us to conclude that the barotropic Euler system is ill-posed
in the class of dissipative weak solutions in the multidimensional setting. More precisely,
De Lellis and Székelyhidi [28] proved the existence of bounded initial data for which there
are infinitely many dissipative weak solutions, also known as wild solutions. Similarly, for
a periodic domain, Chiodaroli [23] and Feireisl [34] showed with two different approaches
that for any continuously differentiable initial density there exists a bounded initial velocity
which generates wild solutions. The overall picture is quite different when we turn our
attention to the Navier-Stokes system. Well-posedness for d = 1 was completely solved by
Kazhikhov [52]. In higher dimension and with the isentropic pressure p($) = a$γ, existence of
dissipative weak solutions for any finite initial data when the adiabatic exponent γ is strictly
greater than d/2 was proved by Lions [57] and Feireisl [33] with homogeneous boundary
conditions, and by Girinon [46], Chang, Jin and Novotný [21] for general inflow-outflow
boundary conditions, to cite few results. The case d = 2 and γ = 1 was solved by Plotnikov
and Weigant [67]. However, as for the Euler system, uniqueness is still an open problem.
Finally, not much can be said for systems describing general viscous fluids, if we look for
global-in-time solutions with large data. The existence of large-time weak solutions was
proved by Mamontov [60], [61] in the case of exponentially growing viscosity coefficients
and linear pressure p($) = a$, by Feireisl, Liao and Málek [40] in the case where the bulk
viscosity λ = λ(|divx u|) becomes singular for a finite value of |divx u|, and by Matušů-
Nečasová and Novotný [62] in the case of linear pressure.

To overcome the problem of existence, one suitable idea is to consider a larger class of so-
lutions. More precisely, we may look for a measure-valued solution, i.e. a map returning for
every point in the domain a probability distribution of values and satisfying the equations
only in an average sense. The advantage of relaying on this very weak concept of solution
is that they can be easily identified as limits of weakly convergent subsequences of approx-
imate solutions, even in presence of oscillations and concentrations, which actually become
part of the definition. Moreover, recently they have been used in the analysis of convergence
of certain numerical schemes, see e.g. [41]. In the context of the isentropic Euler system
with d = 1, DiPerna [29] was able to show that a measure-valued solution obtained through
convergence of approximated solutions is not just a measure but actually a weak solution.
In higher dimension, the existence of dissipative measure-valued solutions, i.e. satisfying an
analogous of the energy inequality (3), was first proved by Gwiazda, Świerczewska-Gwiazda
and Wiedemann [48] and later by Breit, Feireisl and Hofmanová [14] with a slightly differ-
ent approach involving energy defects instead of the description of concentrations via the
Alibert–Bouchitté defect measures, cf. [4]. In the context of a general compressible viscous
fluid system, Abbatiello, Feireisl and Novotný [2] showed the existence of dissipative solu-
tions, i.e. weak solutions satisfying the system modulo a defect measure, with an isentropic
pressure and adiabatic exponent γ > 1. However, the problem of uniqueness seems to be
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even harder to solve in such a wide class of solutions. Fundamental in this connection be-
comes the weak-strong uniqueness principle: if the system admits a solution in the classical
sense then it must coincide with the measure-valued solution emanating from the same ini-
tial data. Because of its importance, the proof of existence of measure-valued solutions goes
hand-in-hand with the one of weak-strong uniqueness and it is actually present in all the
aforementioned works.

In the same spirit, in the first part of the present thesis we identify a class of measure-
valued solutions of the isentropic Euler system with damping, an extra term modelling fric-
tion, as a vanishing viscosity limit for the Navier-Stokes system, cf. Chapter 2. The strategy
here pursued can be seen as the “compressible” counterpart of the pioneering work from
Di Perna and Majda [31] in the incompressible case. The compressible case was treated by
Sueur [74] on a bounded domain by means of the relative energy method. Our goal is to
propose an alternative approach based on the concept of dissipative measure-valued solu-
tions and extend the result to a more general class of domains. A similar limit problem was
also considered by Březina and Mácha [17] on the flat torus, where the starting system is
the compressible Navier-Stokes one with some extra terms modelling non–local interaction
forces, and by Chen and Glimm [22] on the whole domain R3, with a Kolmogorov–type hy-
pothesis. It is worth noticing that, unlike the standard Euler system, the linear damping term
guarantees the existence of a global-in-time strong solution at least for certain small initial
data and therefore the result can be applied to concrete examples, cf. [65], [70] in the case of
a bounded domain, and [50], [58], [72] for the whole space.

To handle the problem of uniqueness, one possible way is to perform a sort of selection in
order to identify, among all the solutions emanating from the same initial data, a suitable one
such that the resulting selection enjoys the semigroup (or semiflow) property: letting the system
run from time 0 to time s, restarting it and letting it run from time s to time t is equivalent
in letting it run directly from time 0 to time t. We refer to the procedure of identifying this
kind of solution when possible as semiflow selection. The construction of the semigroup arises
from the theory of Markov selection in order to study the well-posedness of certain system; it
was first developed by Krylov [54] and later adapted by Flandoli and Romito [44], Cardona
e Kapitanski [20] in the context of the incompressible Navier-Stokes system. In the same
spirit, Breit, Feireisl and Hofmanová [14] proved the existence of the semiflow selection for
dissipative measure-valued solution of the isentropic Euler system. Note that this strategy
provides a suitable alternative to establish well-posedness in contrast to problems, where
uniqueness can be achieved as a consequence of intrinsic stability, cf. e.g. DiPerna–Lions
theory [30] and its extension by Ambrosio [5], or the theory of viscosity solutions for scalar
parabolic equations, see Crandall, Ishii and Lions [26]. The main advantage of this approach
is the possibility to identify the class of solutions that maximize the energy dissipation rate.
They reflect many important properties with (hypothetical) smooth solutions in the long run:
convergence to equilibria and/or certain stable waves, see Feireisl, Kwon and Novotný [39],
Feireisl and Novotný [43].

The second part of this thesis will be entirely dedicated to the semiflow selection. More
precisely, inspired by [14], [20], we will first analyse under which assumptions it is possible to
guarantee the existence of a semiflow selection in an abstract setting, cf. Chapter 3. The main
novelty of the present work is the choice of the Skhorohod space of cáglád, i.e. left-continuous
and having right-hand limits, functions as trajectory space T . Actually, one could think that
a more natural choice for T would be the space of continuous functions as in [20]. However,



vii

this option can be too strong: if we want to apply the abstract setting to the typical systems
arising from fluid dynamics, it is difficult to ensure the energy of the system to be continuous
since it is at most a non-increasing quantity with possible jumps. For the aforementioned
reason, in the context of the isentropic Euler system [14], the authors considered the energy in
the L1-space. But the space of integrable functions as trajectory space is still not an optimal
choice as it is better to work with a space whose elements are well-defined at any point.
Afterwards, we will adapt this abstract machinery to the compressible Navier-Stokes and
general viscous fluid systems, cf. Chapters 4 and 5 respectively.

structure of the thesis

We conclude this introductory part summarizing what will be treated in the present thesis.

In Chapter 1, we collect all the mathematical tools that will be used throughout the thesis,
with close attention to the Orlicz and Skorokhod spaces, cf. Sections 1.2, 1.3 respectively,
and to the Young measures, cf. Section 1.4. In particular, we derive a proper metric for the
Skorokhod space on an unbounded domain and taking values in a separable Hilbert space,
cf. Section 1.3.2.

The first main goal of Chapter 2 is to identify a class of generalized - dissipative measure-
valued solutions - for the Euler system with damping on a general (unbounded) domain as
a vanishing viscosity limit of the Navier-Stokes equations. More precisely, we will work on
two fronts considering, on one side, a family of new domains obtained as intersection of the
balls of radius R with the primordial domain, and, on the other side, a family of viscous
coefficients of the compressible Navier-Stokes system rescaled by 1/R. For each fixed R > 0,
the existence of dissipative weak solution in this context has already been established by
Feireisl [33] for any finite energy initial data and thus, thanks to some a priori estimates, we
will be able to perform the limit R → ∞ simultaneously in the domain and in the viscosity.
In particular, the dissipative weak solutions of the Navier-Stokes system will generate for
R→ ∞ a Young measure, which will be identified with a dissipative measure-valued solution
for the Euler system with damping, cf. Theorem 2.5.2. The second fundamental goal of
Chapter 2 is the validity of the weak-strong uniqueness principle for the compressible Euler
system with damping: if the system admits a strong solution, it must coincide with the
dissipative measure-valued one emanating from the same initial data, cf. Theorem 2.6.1.
Finally, combining these two achievements, we can conclude that the solutions of the Navier-
Stokes system converge in the zero viscosity limit to the strong solution of the Euler system
with damping as long as the latter exists, cf. Theorem 2.7.1. The work presented in this
chapter can be found in [9].

In Chapter 3, we study under which conditions it is possible to guarantee the existence of
a semiflow selection in an abstract setting. In the first part we will focus on an autonomous
system for which the time variable does not appear explicitly in the equations. More precisely,
denoting with H a separable Hilbert space, with X ⊆ H the phase space and with T =

D([0, ∞); H) the trajectory space associated to the system, we will show the existence of a
Borel-measurable map U : X → T such that for any initial data u0 ∈ X, U(u0) represents
that particular solution satisfying the semigroup property:

U(u0)(t1 + t2) = U [U(u0)(t1)] (t2) for any t1, t2 ≥ 0,
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cf. Theorem 3.1.2. Following Cardona and Kapitanski [20] and Breit, Feireisl and Hofmanová
[14], the key point of the proof is to assume that the set-valued map U : X → 2T , associating
to every initial data u0 ∈ X the family U (u0) of solutions that arise from u0, satisfies five
properties: non-emptiness, compactness, Borel-measurability, shift-invariance and continua-
tion. In the second part we will examine the case of a non-autonomous system, where the time
variable appears explicitly in the equations and thus it is always necessary to specify the
starting time t0 ≥ 0. Introducing the trajectory space Tt0 = D([t0, ∞); H) for any t0 ≥ 0, we
look for a semiprocess {Pt0}t0≥0, with Pt0 : X → Tt0 , such that for any initial data v0 ∈ X,
Pt0(v0) represents that particular solution satisfying an analogous of semigroup property for
autonomous systems:

Pt0(v0)(t2) = Pt1 [Pt0(v0)(t1)](t2) for any t0 ≤ t1 ≤ t2. (4)

As already done by Cardona and Kapitanski [19], the rather standard method how to prove
the existence of such semiprocess is to convert the system into an autonomous one consider-
ing the time as a new unknown. However, there are possible drawbacks of this method. Let
h0 denote the time-dependent quantities appearing in the system.

1. If h0 is independent of time, do we get the natural condition that Pt0(v0) is independent
of t0 meaning

Pt0(v0) ' Pt1(v0) for every t0, t1 ≥ 0,

for every fixed initial data v0 ∈ X?

2. If h0 is periodic in time for some constant T > 0, do we get the natural condition that

Pt0+T(v0) ' Pt0(v0) for every t0 ≥ 0,

for every fixed initial data v0 ∈ X?

3. Let h1
0 and h2

0 be two different time-dependent quantities appearing in the system and
let {Pi

t0
}t0≥0 be the selection associated to hi

0, with i = 1, 2. If

h1
0(t) = h2

0(t) for any t ≥ T > 0,

do we get the natural condition that

P1
t (v0) = P2

t (v0) for all t ≥ T > 0,

for every fixed initial data v0 ∈ X?

In order to guarantee all the above properties, it is more convenient to consider various
time dependent quantities h0 ∈ HD represented by the forcing but also possibly boundary
conditions as data, specifically not as quantities fixed from the beginning but as part of the
(initial) data along with the initial condition v0 ∈ X. More precisely, inspired by the works
of Capelato, Samprogna and Simsen [18], [69], we will first define an exact generalized semipro-
cess as a family {Gt0}t0≥0 of set-valued functions Gt0 : X× HD → 2Tt0 that associated to every
initial data (v0, h0) ∈ X× HD the family Gt0(v0, h0) of solutions arising from (v0, h0) and sat-
isfying the same five properties of the analogous set-valued map U for autonomous system.
In this way, we will be able to prove the existence of a semiprocess {Pt0}t0≥0 associated to
every exact generalized semiprocess, satisfying (4) and the three aforementioned properties,
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cf. Theorem 3.2.3 and Proposition 3.2.4. The first part on autonomous systems can be found
in [8], while the second part on non-autonomous systems is new and does not appear in any
published article.

Chapter 4 is entirely devoted to the compressible Navier-Stokes system. It is well-know
that the system admits global in time dissipative weak solutions, see e.g. Lions [57] and
Feireisl [33]; uniqueness, on the other side, is still an open problem. The idea is then to
adapt the abstract machinery introduced in Chapter 3 to prove the existence of a semiflow
selection in this context, cf. Theorem 4.3.1. Moreover, we will show that it is possible the
select only the admissible solutions minimizing the total energy, cf. Definition 4.2.2. Following
the same strategy performed by Breit, Feireisl and Hofmanová [14] to show existence of a
semiflow selection for dissipative measure-valued solutions of the isentropic Euler system, at
first we will consider the energy E as a third state variable along with the density $ and the
momentum m. However, while for the Euler flow the expression of the energy only in terms
of [$, m] is a delicate issue as it may contain defect due to possible oscillations/concentrations,
such a problem does not occur for the Navier-Stokes system, where the energy is indeed a
function of [$, m] at least for a.e. t ∈ (0, ∞). Due to the aforementioned reason, we will be
able to prove the existence of a restricted selection not depending on the initial energy E0, cf.
Theorem 4.4.1. The work presented in this chapter can be found in [7].

The goal of Chapter 5 is to prove the existence of a semiflow selection for models of general
compressible viscous fluid described by equations (1), (2) for which we assume a barotropic
pressure p($) = a$γ, γ ≥ 1, and the viscous stress tensor S to be related to the symmetric
velocity gradient Dxu through a general implicit rheological law of the type

S : Dxu = F(Dxu) + F∗(S),

with F a proper lower semi-continuous function. It is worth noticing that Newton’s rheolog-
ical law 4.1.5 can be obtained choosing

F(Dxu) =
µ

2
|Dxu|2 + λ

2
|divx u|2, with µ > 0,

2
d
+ λ ≥ 0,

and thus one may wonder why the Navier-Stokes system was studied in a separate chapter.
The reason is that in this context we cannot guarantee the existence of weak solutions and a
more general notion of solution must be considered, namely dissipative solutions, containing
the defects arising from possible oscillations and/or concentrations, cf. Definition 5.2.1. In
order to prove the existence of a semiflow selection in this context, there are two main diffi-
culties we have to overcome: the weak sequential stability of the family of dissipative solutions
and the existence of dissipative solutions, arising from a fixed initial data. While the first
problem will be solved for any γ ≥ 1, cf. Theorem 5.4.1, the second issue will be handled
only for γ = 1, cf. Theorem 5.5.12, as the case γ > 1 was recently solved by Abbatiello,
Feireisl and Novotný in [2]. It is interesting to note that for γ = 1 and particular choices of
the function F, the defect in the momentum equation vanishes and the latter is satisfied in
the sense of distributions, cf. Theorem 5.6.2. Thus our approach represents an alternative to
the “standard” measure-valued framework applied in this context by Matušů-Nečasová and
Novotný [62]. The work presented in this chapter can be found in [8], apart of Sections 5.5
and 5.6, which can be found in [6].
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Rd d-dimensional Euclidean space, d ≥ 1

Ω domain - an open connected subset of Rd

Q closure of a set Q ⊂ Rd

∂Q boundary of a set Q ⊂ Rd

a = [a1, . . . , ad] vector in Rd, d ≥ 2

A = [aij]
d
i,j=1 square matrix in Rd×d, d ≥ 2

AT = [aji]
d
i,j=1 transpose of a square matrix A = [aij]

d
i,j=1

Tr[A] = ∑d
i=1 aii trace of a square matrix A = [aij]

d
i,j=1

a · b = ∑d
i=1 aibi scalar product of two vectors a = [a1, . . . , ad],

b = [b1, . . . , bd]

A : B = ∑d
i,j=1 aijbij scalar product of two matrices A = [aij]

d
i,j=1, B = [bij]

d
i,j=1

a⊗ b = [aibj]
d
i,j=1 tensor product of two vectors a = [a1, . . . , ad],

b = [b1, . . . , bd]

∂yi f = ∂ f
∂yi

partial derivative of a function f = f (y), y = [y1, . . . , yd],

with respect to the variable yi

∂α f = ∂α1
y1 . . . ∂αd

yd f partial derivative of order |α| = ∑d
i=1 αi

of a function f = f (y)

∇y f = [∂y1 f , . . . , ∂yd f ] gradient of a function f = f (y)

Dy f = 1
2 (∇y f +∇T

y f ) symmetric gradient of a function f = f (y)

divy v = ∑d
i=1 ∂yi vi divergence of a vector function v, v(y) = [v1(y), . . . , vd(y)]

∆y f = divy∇y f Laplace operator of a function f = f (y)

2X family of all subsets of a space X

‖ · ‖X norm on a normed linear space X

〈·; ·〉X∗,X duality pairing between a vector space X and its dual X∗

span(M) space of all linear finite combinations of vectors

contained in M ⊂ X, with X a vector space

supp( f ) = {y ∈ Q : f (y) 6= 0} support of a function f : Q→ R, Q ⊂ Rd

. inequality holds modulo a multiplicative constant
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1
P R E L I M I N A R I E S

The aim of this chapter is to collect all the mathematical tools that will be used throughout
the thesis. For the well-known results, a reference will be given without further details, while
proofs will be provided for the ones derived for the specific purposes of this work.

1.1 common function spaces

We start recalling the definitions and fundamental properties of the function spaces the
reader will encounter during the treatment.

1.1.1 Spaces of continuous functions

Let Q ⊆ Rd be an open set and X a Banach space. We denote with

• C(Q; X) the space of continuous functions on Q and ranging in X.

If Q is bounded, C(Q; X) is a Banach space with norm

‖ f ‖C(Q;X) = sup
y∈Q
‖ f (y)‖X;

• Cweak(Q; X) the space of functions defined on Q and ranging in X which are continuous
with respect to the weak topology.

If Q is bounded, we say that

fn → f in Cweak(Q; X) as n→ ∞

if for all g ∈ X∗

sup
y∈Q
|〈g; fn(y)− f (y)〉X∗,X| → 0 as n→ ∞;

• Ck(Q; X), with k a non-negative integer, the space of k-times continuously differentiable
functions on Q.

If Q is bounded, Ck(Q; X) is a Banach space with norm

‖ f ‖Ck(Q;X) = max
|α|≤k

sup
y∈Q
‖∂α f (y)‖X.

Moreover, we set

C∞(Q; X) =
∞⋂

k=0

Ck(Q; X);

• D(Q; X) = C∞
c (Q; X) the space of functions belonging to C∞(Q; X) and having compact

support in Q;

• C0(Q) the completion of Cc(Q) with respect to the uniform norm ‖ · ‖∞.
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1.1.2 Spaces of measures

Let Q ⊆ Rd be an open set. We denote with

• M(Q; Rm) = [C0(Q; Rm)]∗ the space of vector-valued Radon measures, which can be
identified as the dual space of C0(Q; Rm).

If Ω ⊂ Rd is a bounded domain, thenM(Ω) = [C(Ω)]∗.

• M+(Q) the space of positive Radon measures;

• M+(Q; Rd×d
sym) the space of tensor–valued Radon measures R such that

R : (ξ ⊗ ξ) ∈ M+(Q),

for all ξ ∈ Rd, and with components Ri,j = Rj,i;

• D′(Q; Rm) = [C∞
c (Q; Rm)]∗ the space of distributions, which can be identified as the

dual space of D(Q; Rm).

1.1.3 Lebesgue spaces

Let Q ⊆ Rd be a measurable set and X a Banach space. We denote with

• Lp(Q; X), with 1 ≤ p ≤ ∞, the Banach space of Bochner-measurable functions f defined
on Q and ranging in X such that the norm

‖ f ‖Lp(Q;X) =

(ˆ
Q
‖ f (y)‖p

X dx
) 1

p

, for 1 ≤ p < ∞

‖ f ‖L∞(Q;X) = ess sup
y∈Q

‖ f (y)‖X

is finite;

• Lp
loc(Q; X), with 1 ≤ p < ∞, the vector space of locally Lp-integrable functions, meaning

that f ∈ Lp
loc(Q; X) if f ∈ Lp(K; X) for any compact set K ⊂ Q.

Let Q ⊆ Rd be a measurable set and Lp(Q) := Lp(Q; R). Then, the following inequalities
hold.

(i) Hölder’s inequality:
‖ f g‖Lr(Q) ≤ ‖ f ‖Lp(Q)‖g‖Lq(Q) (1.1.1)

with
1
r
=

1
p
+

1
q

, 1 ≤ p, q, r ≤ ∞,

for any f ∈ Lp(Q) and g ∈ Lq(Q) (see e.g. Adams [3], Theorem 2.3).

(ii) Minkowski’s inequality:

‖ f + g‖Lp(Q) ≤ ‖ f ‖Lp(Q) + ‖g‖Lp(Q), (1.1.2)

for any 1 ≤ p < ∞ (see e.g. Adams [3], Theorem 2.4).
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(iii) Interpolation inequality:
‖h‖Lr(Q) ≤ ‖h‖θ

Lp(Q)‖h‖
1−θ
Lq(Q)

, (1.1.3)

with
1
r
=

θ

p
+

1− θ

q
, 1 ≤ p < r < q ≤ ∞,

for any h ∈ Lp(Q) ∩ Lq(Q) (it follows from (i) choosing f = hθ , g = h1−θ).

(iv) Young’s inequality:

‖ f g‖L1(Q) ≤
1
p
‖ f ‖p

Lp(Q)
+

1
q
‖g‖q

Lq(Q)
(1.1.4)

with
1 =

1
p
+

1
q

, 1 < p, q < ∞,

for any f ∈ Lp(Q) and g ∈ Lq(Q) (it easily follows using the concavity of the logarithm
function

log(| f g|) = log(| f |) + log(|g|) = 1
p

log(| f |p) + 1
q

log(|g|q) ≤ log
(

1
p
| f |p + 1

q
|g|q
)

,

exponentiating and integrating over Q).

There is another way how to introduce the Lebesgue spaces, namely to consider completion
of the space D(Q; X) with respect to the norm ‖ · ‖Lp(Q;X), when 1 ≤ p < ∞. To this end, we
need the following definition.

Definition 1.1.1. A family of regularizing kernels in Rd is a sequence {θε}ε>0 such that

θε(y) :=
1
εd θ

(y
d

)
for any y ∈ Rd,

where θ ∈ C∞
c (Rd) is a non-negative, bell-shaped function such that

θ(y) = θ(|y|),
ˆ

Rd
θ(y) dy = 1.

Let Q ⊆ Rd be a measurable set. Given a function f ∈ Lp(Q; X), with 1 ≤ p ≤ ∞, the
convolution of θε with f is given by

(θε ∗ f )(y) =
ˆ

Rd
θε(y− z) f (z) dz for any y ∈ Rd,

where f has been extended to be zero outside Q.

Lebesgue functions can be approximated by smooth functions, as stated in the following
result.

Theorem 1.1.2. Let Q ⊆ Rd be a measurable set, X a separable Banach space and {θε}ε>0 a family
of regularizing kernels in Rd.

(i) For any f ∈ Lp(Q; X), with 1 ≤ p < ∞, extended to be zero outside Q,

θε ∗ f ∈ C∞
c (Rd; X),

and the derivatives can be transferred to the smooth term:

∂α(θε ∗ f ) = (∂αθε) ∗ f for any partial derivative ∂α.
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(ii) For any f ∈ Lp(Q; X), with 1 ≤ p < ∞,

θε ∗ f → f in Lp(Q; X)

as ε→ 0.

Proof. See e.g. Brezis [16], Proposition IV.20 and Theorem IV.22.

We conclude reporting some properties of the Lp-spaces.

Theorem 1.1.3. Let Q ⊆ Rd be a measurable set and X a separable Banach space.

(i) Lp(Q; X), with 1 ≤ p < ∞, is separable.

Moreover, the space C∞
c (Q; X) is dense in Lp(Q; X), with 1 ≤ p < ∞.

(ii) If X is reflexive, then Lp(Q; X), with 1 < p < ∞, is reflexive.

More precisely, any continuous linear functional ` ∈ [Lp(Q; X)]∗, with 1 ≤ p < ∞, admits a
unique representation f` ∈ Lp′(Q; X∗) such that

〈`; g〉[Lp(Q;X)]∗,Lp(Q;X) =

ˆ
Q
〈 f`(y); g(y)〉X∗,X dy,

for all g ∈ Lp(Q; X), where
1
p
+

1
p′

= 1. (1.1.5)

We say that p′ is the conjugate exponent of p is (1.1.5) holds.

Proof. (i) is a direct consequence of Theorem 1.1.2. For (ii), see [45], Theorem 1.14.

1.1.4 Sobolev spaces

Let Q ⊆ Rd be an open set. We denote with

• Wk,p(Q; Rm), with 1 ≤ p ≤ ∞ and k a positive integer, the Banach space of functions
f having all distributional derivatives ∂α f up to order |α| = k in Lp(Q; Rm), where
∂α f ∈ D′(Q; Rm) is defined as

〈∂α f ;ϕ〉D′(Q;Rm),D(Q;Rm) = (−1)|α|
ˆ

Q
f · ∂αϕ dy,

for any ϕ ∈ D(Q; Rm). The norm is defined as

‖ f‖Wk,p(Q;Rm) =

(
m

∑
i=1

∑
|α|≤k
‖∂α fi‖

p
Lp(Q)

) 1
p

, for 1 ≤ p < ∞

‖ f‖Wk,∞(Q;Rm) = max
1≤i≤m
|α|≤k

‖∂α fi‖L∞(Q).

We will often write Hk(Q; Rm) := Wk,2(Q; Rm);

• Wk,p
0 (Q; Rm) the completion of C∞

c (Q; Rm) with respect to the norm ‖ · ‖Wk,p(Q;Rm);



1.1 common function spaces 5

• W−k,p′(Q; Rm), with 1 ≤ p < ∞ and k a positive integer, the dual space of Wk,p
0 (Q; Rm);

• WD,p(Q; Rd), with 1 ≤ p < ∞, the Banach space of functions f ∈ Lp(Q; Rd) whose
trace-free distributional symmetric gradient

Dy f − 1
d

Tr[Dy f ]I

belongs to Lp(Q; Rd×d). The norm is defined as

‖ f‖WD,p(Q;Rd) = ‖ f‖Lp(Q;Rd) +

∥∥∥∥Dy f − 1
d

Tr[Dy f ]I
∥∥∥∥

Lp(Q;Rd×d)

;

• WD,p
0 (Q; Rd) the completion of C∞

c (Q; Rd) with respect to the norm ‖ · ‖WD,p(Q;Rd).

Let Ω ⊂ Rd be a bounded Lipschitz domain and 1 ≤ p < ∞. Then, the following two
inequalities hold.

(i) Poincaré inequality: there exists a positive constant c such that

‖ f‖Lp(Ω;Rd) ≤ c‖∇y f‖Lp(Ω;Rd×d) (1.1.6)

holds for any f ∈W1,p
0 (Ω; Rd) (see e.g. Ziemer [76], Theorem 4.5.1);

(ii) Trace-free Korn inequality: there exists a positive constant c such that

‖∇y f‖Lp(Ω;Rd×d) ≤ c
∥∥∥∥Dy f − 1

d
Tr[Dy f ]I

∥∥∥∥
Lp(Q;Rd×d)

(1.1.7)

holds for any f ∈WD,p
0 (Ω; Rd) (see Breit, Cianchi and Diening [11], Theorem 3.1).

In the following result, we report some properties of the Sobolev spaces.

Theorem 1.1.4. Let Ω ⊂ Rd be a bounded Lipschitz domain.

(i) Wk,p(Ω), with 1 ≤ p < ∞, is separable.

Moreover, the space Ck(Ω) is dense in Wk,p(Ω), with 1 ≤ p < ∞.

(ii) Wk,p
0 (Ω), with 1 < p < ∞, is reflexive.

W−k,p′(Ω), with 1 ≤ p < ∞ and p′ the conjugate exponent of p, is a proper subspace of the
space of distributions D′(Ω).

More precisely, any continuous linear functional ` ∈ W−k,p′(Ω), with 1 ≤ p < ∞, admits a
unique representation fα ∈ Lp′(Ω) such that

〈`; g〉
W−k,p′ (Ω),Wk,p

0 (Ω)
= ∑
|α|≤k

(−1)|α|
ˆ

Ω
fα(y) ∂αg(y) dy,

for all g ∈Wk,p
0 (Ω).

Proof. See e.g. Adams [3], Theorems 3.8 and 3.16.

We report the embedding results connecting Sobolev and Lebesgue spaces.
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Theorem 1.1.5. Let Ω ⊂ Rd be a bounded Lipschitz domain, k ≥ 1 and 1 ≤ p ≤ ∞. The continuous
embedding

Wk,p(Ω) ↪→ Lq(Ω) (1.1.8)

holds if

(i) kp < d and 1 ≤ q ≤ p∗ with

p∗ =
dp

d− kp
; (1.1.9)

(ii) kp = d and 1 ≤ q < ∞;

(iii) kp > d and 1 ≤ q ≤ ∞.

Moreover, in all cases the embedding is compact except from kp < d and q = p∗.

Proof. See e.g. Ziemer [76], Theorem 2.5.1 and Remark 2.5.2.

Consequently, we get the following embedding theorem for dual Sobolev spaces.

Theorem 1.1.6. Let Ω ⊂ Rd be a bounded domain, k > 0, 1 ≤ p ≤ ∞ and p′ the conjugate exponent
of p. The compact embedding

Lq(Ω) ↪→↪→W−k,p′(Ω) (1.1.10)

holds if

(i) kp < d and p∗
p∗−1 < q < ∞ with p∗ defined as in (1.1.9);

(ii) kp = d and 1 < q < ∞;

(iii) kp > d and 1 ≤ q < ∞.

Remark 1.1.7. In Theorem 1.1.5, for kp > d we have the stronger embedding

Wk,p(Ω) ↪→ Ck−
[

d
p

]
−1, ν

(Ω), (1.1.11)

with

ν

=
[

d
p

]
+ 1− d

p if d
p ∈ Z,

arbitary value ∈ (0, 1) if d
p /∈ Z,

where [·] denotes the integer part and Cm,ν(Q) ⊂ Cm(Q) denotes the space of functions
having their m-th derivative ν-Hölder continuous in Ω. Moreover, the embedding is compact
if 0 < ν <

[
d
p

]
+ 1− d

p .

1.1.5 Space of functions of bounded variation

Let [a, b] ⊂ R. The total variation of a function f defined on [a, b] is the quantity

Vb
a ( f ) = sup

P∈P

nP−1

∑
i=0
| f (ti+1)− f (ti)|,
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where the supremum is taken over the set

P =
{

P = {t0, . . . , tnP}| P is a partition of [a, b], a = t0 < t1 < · · · < tnP = b
}

.

We say that f is a function of bounded variation, and we write f ∈ BV([a, b]), if Vb
a ( f ) is finite.

In particular, every monotone function f defined on [a, b] belongs to BV([a, b]). Indeed, for
every partition P = {t0, . . . , tnP}

nP−1

∑
i=0
| f (ti+1)− f (ti)| = ±

nP−1

∑
i=0

(
f (ti+1)− f (ti)

)
= ±

(
f (b)− f (a)

)
and thus Vb

a ( f ) = | f (b)− f (a)|, which is finite.
We conclude reporting Helly’s theorem.

Theorem 1.1.8. Let { fn}n∈N ⊂ BV([a, b]) be a uniformly bounded sequence, meaning that there
exists a positive constant c is independent of n such that

sup
n∈N

Vb
a ( fn) ≤ c,

Moreover suppose that there exists a positive constant K such that

sup
n∈N

| fn(t)| ≤ K for any t ∈ [a, b].

Then there exists f ∈ BV([a, b]) such that, passing to a suitable subsequence as the case may be,

fn(t)→ f (t) for any t ∈ [a, b],

as n→ ∞.

Proof. See e.g. Natanson [63], Helly’s First Theorem, page 222.

1.2 orlicz spaces

In this section we are going to recall the definition and basic properties of Orlicz spaces,
which can be seen as a natural generalization of Lebesgue spaces. They will play a fun-
damental role in the study of a general compressible viscous fluid with linear pressure, cf.
Chapter 5.

Definition 1.2.1. (i) We say that Φ is a Young function generated by ϕ if

Φ(t) =
ˆ t

0
ϕ(s) ds for any t ≥ 0,

where the real-valued function ϕ defined on [0, ∞) is non-negative, non-decreasing,
left-continuous and such that

ϕ(0) = 0, lim
s→∞

ϕ(s) = ∞.
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(ii) Let Φ be a Young function generated by ϕ. We say that Ψ is the complementary function
to Φ if it is given by

Ψ(t) =
ˆ t

0
ψ(s) ds for any t ≥ 0,

where
ψ(s) := sup

ϕ(r)≤s
r for any s ≥ 0.

(iii) A Young function Φ is said to satisfy the ∆2-condition if there exist a positive constant
K and t0 ≥ 0 such that

Φ(2t) ≤ KΦ(t) for any t ≥ t0. (1.2.1)

(iv) Let Φ1 and Φ2 be two Young functions. We write

– Φ1 ≺ Φ2 if there exists a positive constant c and t0 ≥ 0 such that

Φ1(t) ≤ Φ2(ct) for any t ≥ t0;

– Φ1 ≺≺ Φ2 if

lim
t→∞

Φ1(t)
Φ2(λt)

= 0 for any λ > 0.

Lemma 1.2.2. A Young function Φ is continuous, non-negative, increasing and convex on [0, ∞).
Moreover

Φ(0) = 0, lim
t→∞

Φ(t) = ∞

lim
t→0+

Φ(t)
t

= 0, lim
t→∞

Φ(t)
t

= ∞.

Proof. See e.g. Kufner, John and Fučı́k [55], Lemma 3.2.2.

Example 1.2.3. (i) Φ(t) = tp

p , with 1 < p < ∞, is a Young function generated by ϕ(s) = sp−1

and satisfying the ∆2-condition with K = 2p and t0 = 0. Moreover Ψ(t) = tq

q is its
complementary function, with q the conjugate exponent of p;

(ii) Φ(t) = t log+ t is a Young function generated by

ϕ(s) =

{
0 if 0 ≤ s ≤ 1,

log t + 1 if t > 1.

Its complementary function is given by

Ψ(t) =

{
t if 0 < t < 1,

et−1 if t ≥ 1.

Definition 1.2.4. Let Q ⊂ Rd be an open bounded set, Φ a Young function and Ψ its comple-
mentary one. We denote with

(i) L̃Φ(Q) the Orlicz class of all real-valued measurable functions f defined a.e. on Q such
that the quantity

σ( f ; Φ) :=
ˆ

Q
Φ(| f (y)|) dy

is finite;
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(ii) LΦ(Q) the Orlicz space of all real-valued measurable functions f defined a.e. on Q such
that the quantity

sup
g∈L̃Ψ(Q)
σ(g;Ψ)≤1

ˆ
Q
| f (y)g(y)| dy (1.2.2)

is finite. It is a vector space with norm ‖ f ‖LΦ defined by (1.2.2) (see Kufner, John and
Fučı́k [55], Theorem 3.6.4);

(iii) EΦ(Q) is the closure with respect to the Orlicz norm ‖ · ‖LΦ of the set of all bounded
measurable functions defined on Q.

We are now ready to state some properties of the Orlicz spaces.

Theorem 1.2.5. Let Q ⊂ Rd be an open bounded set and Φ a Young function.

(i) LΦ(Q) is a Banach space.

(ii) EΦ(Q) is separable.

(iii) Any continuous linear functional ` ∈ [EΦ(Q)]∗ admits a unique representation f` ∈ LΨ(Q)

such that
〈`; g〉[EΦ(Q)]∗;EΦ(Q) =

ˆ
Q

f (y)g(y) dy,

for all g ∈ EΦ(Q), where Ψ is the complementary function to Φ.

Moreover, let Young function Φ satisfy the ∆2-condition.

(iv) LΦ(Q) = EΦ(Q) and thus LΦ(Q) is separable;

(v) LΦ(Q) is reflexive if and only if the complementary function Ψ satisfies the ∆2-condition, too.

Proof. See Kufner, John and Fučı́k [55], Theorems 3.9.1, 3.12.9, 3.13.6, 3.13.9 and Lemma
3.12.3.

We have the following comparison of Orlicz spaces.

Theorem 1.2.6. Let Q ⊂ Rd be an open bounded set and Φ1, Φ2 be two Young functions.

(i) If Φ1 ≺ Φ2, then the following continuous embedding holds:

LΦ2(Q) ↪→ LΦ1(Q).

(ii) If Φ1 ≺≺ Φ2, then the following continuous embedding holds:

LΦ2(Q) ↪→ EΦ1(Q).

Proof. See Kufner, John and Fučı́k [55], Theorems 3.17.1, 3.17.5 and 3.17.7.

As in the Lebegue-spaces case, we can approximate Orlicz functions with smooth func-
tions.

Theorem 1.2.7. Let Q ⊆ Rd be an open bounded set, Φ a Young function and {θε}ε>0 a family of
regularizing kernels in Rd.
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(i) For any f ∈ EΦ(Q) extended to be zero outside Q

θε ∗ f ∈ C∞
c (Rd).

(ii) For any f ∈ EΦ(Q)

θε ∗ f → f in EΦ(Q)

as ε→ 0.

Proof. See Kufner, John and Fučı́k [55], Theorem 3.18.1.1.

1.2.1 Compactness in Orlicz spaces

We will need the following characterization of compactness in Orlicz spaces.

Theorem 1.2.8. Let Q ⊂ Rd be an open bounded set and let Φ1, Φ2 be two Young functions such
that Φ1 ≺≺ Φ2. Let K be a bounded subset of LΦ2(Q) that is relatively compact in the sense of
convergence in measure. Then K is relatively compact in LΦ1(Q).

Proof. See Kufner, John and Fučı́k [55], Theorems 3.14.11 and 3.17.8.

We are now ready to prove the following result.

Proposition 1.2.9. Let Ω ⊂ Rd be a bounded domain and let Φ be a Young function. Then, for a
fixed q ≥ 1

X = W1,q
0 ∩ L∞(Ω) ↪→↪→ LΦ(Ω).

Proof. Let K be a bounded set of X and let Φ1 be a Young function such that Φ ≺≺ Φ1. In
particular, K is bounded in the Orlicz space LΦ1(Ω); indeed, denoting with Ψ the comple-
mentary Young function of Φ, we have that for every f ∈ K and every g belonging to the
Orlicz class L̃Ψ(Ω)

ˆ
Ω
| f (y)g(y)| dy ≤ ‖ f ‖L∞(Ω)‖g‖L1(Ω) ≤ ‖ f ‖L∞(Ω) σ(g; Ψ),

and thus

‖ f ‖LΦ1 (Ω) = sup
g∈L̃Ψ(Ω)
σ(g;Ψ)≤1

ˆ
Ω
| f (y)g(y)| dy ≤ ‖ f ‖L∞(Ω) ≤ ‖ f ‖X ≤ c,

where ‖ f ‖X = max{‖ f ‖W1,q(Ω), ‖ f ‖L∞(Ω)} and the constant c is independent of the choice
f ∈ K. Furthermore, since

W1,q(Ω) ↪→↪→ L1(Ω),

the set K is relatively compact in L1(Ω) and consequently it is relatively compact with respect
to the convergence in measure. Now, it is sufficient to apply Theorem 1.2.8.
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1.2.2 De la Vallée–Poussin criterion

Strictly connected to the Dunford-Pettis theorem 1.5.4, the De la Vallée–Poussin criterion relates
the equi-integrability of a sequence in L1 with being uniformly bounded in an Orlicz space.

Theorem 1.2.10. Let Q ⊂ Rd be a bounded measurable set and let { fn}n∈N be a sequence in L1(Q).
Then, the following statements are equivalent.

(i) The sequence { fn}n∈N is equi-integrable, meaning that for any ε > 0 there exists δ = δ(ε) > 0
such that ˆ

M
| fn(y)| dy < ε for any M ⊂ Q such that |M| < δ,

independently of n.

(ii) There exists a Young function Φ satisfying the ∆2-condition (1.2.1) such that the sequence
{ fn}n∈N is uniformly bounded in the Orlicz space LΦ(Q).

Remark 1.2.11. Condition (ii) can be replaced considering the following one, involving the
notion of superlinearity.

(ii’) There exists a superlinear non-decreasing function F : [0, ∞)→ [0, ∞) such that

sup
n∈N

ˆ
Q

F(| fn(y)|) dy < ∞,

where superlinearity means that

lim
z→+∞

F(z)
z

= +∞.

Proof. (ii)⇒ (i) See Pedregal [66], Chapter 6, Lemma 6.4.
(i) ⇒ (ii) We report the proof as we require the stronger condition, with respect to the

standard version of the criterion, that the Young function Φ satisfies the ∆2-condition. For
n ∈ N and j ≥ 1 fixed, let

µj( fn) := |{y ∈ Q : | fn(y)| > j}|.

As the sequence { fn}n∈N is equi-integrable, from the Dunford-Pettis theorem 1.5.4, condition
(ii), there exists a strictly increasing sequence of positive integers {Cm}m∈N such that for each
m

sup
n∈N

ˆ
{| fn|>Cm}

| fn(y)| dy ≤ 1
2m .

For n ∈ N and m ≥ 1 fixed
ˆ
{| fn|>Cm}

| fn(y)| dy =
∞

∑
j=Cm

ˆ
{j<| fn|≤j+1}

| fn(y)| dy ≥
∞

∑
j=Cm

j [µj( fn)− µj+1( fn)] ≥
∞

∑
j=Cm

µj( fn).

In particular, we obtain

∞

∑
m=1

∞

∑
j=Cm

µj( fn) ≤
∞

∑
m=1

ˆ
{| fn|>Cm}

| fn(y)| dy ≤
∞

∑
m=1

1
2m = 1.
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For m ≥ 0, we define

αm =

{
0 if m < C1,

max{k : Ck ≤ m} if m ≥ C1.

Notice that
αm ≥ j ⇔ Cj ≤ m. (1.2.3)

It is straightforward that αm → ∞ as m→ ∞. We define a step function ϕ on [0, ∞) by

ϕ(s) =
∞

∑
m=0

αmχ(m,m+1](s) for any 0 ≤ s < ∞.

It is clear that ϕ is non-negative, non-decreasing, left-continuous and such that ϕ(0) = 0,
lims→∞ ϕ(s) = ∞. Then, we can define the Young function Φ generated by ϕ as

Φ(t) =
ˆ t

0
ϕ(s) ds, for any 0 ≤ t < ∞.

At this point, notice that we have the freedom to take the constants Cj, j ≥ 1, as large as we
want and consequently, the constants αm, m ≥ 1, will be as small as we want. More precisely,
we may find a positive constant c such that

α2m ≤ c αm for any m ≥ 1.

We then obtain, for all s ∈ [0, ∞),

ϕ(2s) =
∞

∑
m=0

αmχ( m
2 , m+1

2 )(s) =
∞

∑
k=0

α2kχ(k,k+ 1
2 )
(s) ≤ c

∞

∑
k=0

αkχ(k,k+ 1
2 )
(s) ≤ c ϕ(s);

consequently, for all t ∈ [0, ∞),

Φ(2t) =
ˆ 2t

0
ϕ(s) ds = 2

ˆ t

0
ϕ(2z) dz ≤ 2c

ˆ t

0
ϕ(z) dz = 2c Φ(t),

and thus we get that the Young function Φ satisfies the ∆2-condition (1.2.1).
Finally, for n ∈ N fixed, using the fact that Φ(0) = Φ(1) = 0 and for j ≥ 1, noticing that

α0 = 0,

Φ(j + 1) =
ˆ j+1

0
ϕ(s) ds =

j

∑
m=0

ˆ m+1

m
ϕ(s) ds ≤

j

∑
m=0

ϕ(m + 1) =
j

∑
m=0

αm =
j

∑
m=1

αm,

we get ˆ
Q

Φ(| fn(y)|) dy =

ˆ
{| fn|=0}

Φ(| fn(y)|) dy +
∞

∑
j=0

ˆ
{j<| fn|≤j+1}

Φ(| fn(y)|) dy

≤
∞

∑
j=1

[µj( fn)− µj+1( fn)] Φ(j + 1)

≤
∞

∑
j=1

[µj( fn)− µj+1( fn)]
j

∑
m=1

αm

=
∞

∑
m=1

αm

∞

∑
j=m

[µj( fn)− µj+1( fn)]

=
∞

∑
m=1

αmµm( fn) =
∞

∑
m=1

µm( fn)
αm

∑
j=1

1 =
∞

∑
j=1

∞

∑
m=Cj

µm( fn) ≤ 1
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where we used (1.2.3) in the last line. In particular, we obtain that the sequence { fn}n∈N is
uniformly bounded in the Orlicz space LΦ(Q).

1.3 skorokhod space

In this section we are going to study the Skorokhod space of càglàd (an acronym for “con-
tinue à gauche, limites à droite”) functions, i.e., the space of left-continuous and having
right-hand limits functions.

We will first focus on bounded domains and range the real line, defining a proper metric
and characterizing the convergence with respect to it. For these purposes, we will follow
the approach presented by Whitt [75]. It is worth noticing that, even if in [75] the author
considered càdlàg (“continue à droite, limites à gauche”) functions, the same construction
works in our context as well: dealing with the completed graphs of the functions, which are
obtained by adding segments joining the left and right limits at each discontinuity point to
the graph, the actual value of the function at discontinuity points does not matter, provided
that it falls appropriately between the left and right limits.

In the second part we will consider the unbounded domain [0, ∞) and range a separable
Hilbert space H, as the Skorokhod space D([0, ∞); H) represents the suitable trajectory space
for proving the existence of a semiflow selection, cf. Chapter 3. Unlike the case of continuous
functions, the topology on the space of càglàd functions on an unbounded interval cannot be
built up by simply considering functions being càglàd on any compact, see e.g. Jakubowski
[49]. Our idea is then to see the Skorokhod space as a particular Fréchet space, cf. Definition
1.3.8.

1.3.1 Bounded domain and range the real line

Definition 1.3.1. Let T > 0 be fixed. We define the Skorokhod space D([0, T]) as the space of
the real-valued càglàd functions defined on [0, T]. More precisely, Φ belongs to the space
D([0, T]) if it is left–continuous and has right–hand limits:

(i) for 0 < t ≤ T, Φ(t−) = lims↑t Φ(s) exists and Φ(t−) = Φ(t);

(ii) for 0 ≤ t < T, Φ(t+) = lims↓t Φ(s) exists.

Remark 1.3.2. We can replace [0, T] with any bounded domain of the type [a, b], a, b ∈ R. The
space D([a, b]) is essentially the same as D([0, T]) since they are homeomorphic.

We are now ready to collect some properties of càglàd functions.

Proposition 1.3.3. The following properties hold.

(i) Number of discontinuities: for each Φ ∈ D([0, T]), the set

Disc(Φ) := {t ∈ [0, T) : Φ(t) 6= Φ(t+)} (1.3.1)

is either finite or countably infinite.

(ii) Boundedness: each Φ ∈ D([0, T]) is bounded, i.e., the uniform norm

‖Φ‖∞ = sup
t∈[0,T]

|Φ(t)|

is finite.



14 preliminaries

(iii) Measurability: each Φ ∈ D([0, T]) is Borel-measurable.

Proof. See Whitt [75], Corollaries 12.2.1, 12.2.3 and 12.2.4.

In order to define a proper metric, we first need to introduce few objects.

Definition 1.3.4. Let Φ ∈ D([0, T]) be fixed. We define

(i) the completed graph of Φ as the set

ΓΦ := {(t, z) ∈ [0, T]×R| z = αΦ(t) + (1− α)Φ(t+), for some α ∈ [0, 1]},

with Φ(T+) := Φ(T). In other words, the completed graph is a connected subset
of the plane R2 containing the line segment joining (t, Φ(t)) and (t, Φ(t+)) for all
discontinuity points;

(ii) an order on the completed graph ΓΦ by saying that (t1, z1) ≤ (t2, z2) if either

– t1 < t2;

– t1 = t2 and |z1 −Φ(t1+)| ≤ |z2 −Φ(t1+)|;

(iii) a parametric representation of the completed graph ΓΦ (or of the function Φ) as a con-
tinuous non-decreasing function (r, u) mapping [0, 1] onto ΓΦ, with r ∈ C([0, 1]; [0, T])
being the time component and u ∈ C([0, 1]; R) the spatial component. The parametric
is non-decreasing using the order introduced above;

(iv) Π(Φ) the set of all parametric representations of Φ.

We are now ready to introduce a proper metric on D([0, T]).

Definition 1.3.5. For Φ1, Φ2 ∈ D([0, T]), we define

dT(Φ1, Φ2) = inf
(rj,uj)∈Π(Φj)

j=1,2

max{‖r1 − r2‖∞, ‖u1 − u2‖∞};

it constitutes a metric on D([0, T]) (see Whitt [75], Theorem 12.3.1).

In the following result we give some characterizations of the dT-convergence.

Theorem 1.3.6. Let {Φn}n∈N be a sequence in D([0, T]) endowed with the dT-metric. If

Φn → Φ in D([0, T]) (1.3.2)

as n→ ∞, then

Φn(t)→ Φ(t) for all t /∈ Disc(Φ), including t = 0 and t = T (1.3.3)

as n→ ∞, where Disc(Φ) defined in (1.3.1) is a dense subset of [0, T]. Moreover

(i) if Φn are monotone for all n ∈ N, conditions (1.3.2) and (1.3.3) are equivalent;

(ii) if Φn are continuous for all n ∈ N, condition (1.3.2) is equivalent to

sup
t∈[0,T]

|Φn(t)−Φ(t)| → 0 as n→ ∞.

Proof. See Whitt [75], Theorem 12.5.1, Lemma 12.5.1 and Corollary 12.5.1.
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1.3.2 Unbounded domain and range a Hilbert space

Definition 1.3.7. Let H be a given separable Hilbert space. We define the Skorokhod space
D([0, ∞); H) as the space of the càglàd functions defined on [0, ∞) taking values in H. More
precisely, Φ belongs to the space D([0, ∞); H) if it is left–continuous and has right–hand
limits:

(i) for t > 0, Φ(t−) = lims↑t Φ(s) exists and Φ(t−) = Φ(t);

(ii) for t ≥ 0, Φ(t+) = lims↓t Φ(s) exists.

Definition 1.3.8. Let {ek}k∈N be a basis of the separable Hilbert space H. For every Φ ∈
D([0, ∞); H) we define

Φ̂T :=


Φ(0) for t ∈ [−1, 0],

Φ(t) for t ∈ (0, T),

Φ(T) for t ∈ [T, T + 1],

(1.3.4)

and for every Φ, Ψ ∈ D([0, ∞); H) we define

d∞(Φ, Ψ) :=
∞

∑
M=1

∞

∑
k=1

1
2M

1
2k

dM

(〈
Φ̂M; ek

〉
,
〈

Ψ̂M; ek

〉)
1 + dM

(〈
Φ̂M; ek

〉
,
〈

Ψ̂M; ek

〉) , (1.3.5)

where, for all M ∈ N, dM denotes the Skorokhod metric on the space D([−1, M + 1]), cf.
Definition 1.3.5.

It is easy to verify that d∞ is a metric on D([0, ∞); H). Moreover, we have the following
result.

Proposition 1.3.9. Let {Φn}n∈N be a sequence in D([0, ∞); H) endowed with the d∞-metric. If

Φn → Φ in D([0, ∞); H) (1.3.6)

as n→ ∞, then for all k ∈ N

〈Φn(t); ek〉 → 〈Φ(t); ek〉 for a.e. t ∈ (0, ∞) (1.3.7)

as n→ ∞. Moreover

(i) if Φn are monotone for all n ∈ N, conditions (1.3.6) and (1.3.7) are equivalent;

(ii) if Φn are continuous for all n ∈ N, condition (1.3.6) is equivalent to

sup
t∈[0,M]

|〈Φn(t)−Φ(t); ek〉| → 0

as n→ ∞, for all k, M ∈ N.

Proof. First of all, we will show that (1.3.6) is equivalent to〈
Φ̂n M; ek

〉
→
〈

Φ̂M; ek

〉
in D([−1, M + 1]) (1.3.8)
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as n → ∞, for all k, M ∈ N. Indeed, if (1.3.6) holds, let ε > 0, k, M ∈ N be fixed and choose
a positive ε̃ = ε̃(ε) such that

2k+M ε̃

1− 2k+M ε̃
< ε. (1.3.9)

From (1.3.6), there exists n0 = n0(ε̃) such that

1
2k+M

dM

(〈
Φ̂n M; ek

〉
,
〈

Φ̂M; ek

〉)
1 + dM

(〈
Φ̂n M; ek

〉
,
〈

Φ̂M; ek

〉) ≤ d∞(Φn, Φ) < ε̃, for all n ≥ n0,

which, combined with (1.3.9), implies

dM

(〈
Φ̂n M; ek

〉
,
〈

Φ̂M; ek

〉)
< ε for all n ≥ n0.

Vice versa, if (1.3.8) holds, let ε > 0 be fixed and choose N = N(ε) ≥ 2, such that 1/2N < ε/2.
From (1.3.8), there exists n0 = n0(ε) such that

max
k+M≤N

dM

(〈
Φ̂n M; ek

〉
,
〈

Φ̂M; ek

〉)
< ε for all n ≥ n0.

For every n ≥ n0 we obtain

d∞(Φn, Φ) ≤ ∑
2≤k+M≤N

ε

2k+M + ∑
k+M>N

1
2k+M =

ε

2

(
1− 1

2N−1

)
+

1
2N < ε.

Let now (1.3.8) hold and let k ∈ N be fixed. From Theorem 1.3.6, for each M ∈ N〈
Φ̂n M(t); ek

〉
→
〈

Φ̂M(t); ek

〉
for all t /∈ Disc(Φ), including t = −1, t = M + 1 (1.3.10)

as n → ∞, implying in particular from (1.3.4) the uniform convergence of Φ̂n M to Φ̂M on
[−1, 0] and [M, M + 1]. We then recover that for all M ∈ N〈

Φn|[0,M](t); ek

〉
→
〈

Φ|[0,M](t); ek

〉
for all t /∈ Disc(Φ)

as n→ ∞. Introducing the set

Disc(Φ) =
⋃

M∈N

DiscM(Φ),

then trivially DiscM(Φ) ⊆ DiscM+1(Φ) for all M ∈ N and

〈Φn(t); ek〉 → 〈Φ(t); ek〉 for all t /∈ Disc(Φ)

as n → ∞. Since by Proposition 1.3.3 each DiscM(Φ) is either finite or countable, the set
Disc(Φ) is at most countable and thus we get (1.3.7). Furthermore, conditions (i) and (ii)
follow easily from the fact that

(i) if Φn is monotone for every n ∈ N then (1.3.8) is equivalent to (1.3.10) for all k, M ∈ N

by Theorem 1.3.6;

(ii) if Φn is continuous for every n ∈ N then (1.3.8) reduces to uniform convergence on the
interval [−1, M + 1] for all k, M ∈ N.
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1.4 young measures

In this section we recall some useful definitions and results concerning the theory of Young
measures, which will play a central role in the definition of dissipative measure-valued solution
for the compressible Euler system with damping, cf. Chapter 2.

Definition 1.4.1. Let Q ⊆ Rn be an open set.

(i) The mapping ν : Q→M(Rm) is said to be weak-∗measurable, if for all F ∈ L1(Q; C0(Rm))

the function
Q 3 y 7→ 〈νy, F(y, ·)〉 =

ˆ
Rm

F(y, λ) dνy(λ),

is measurable. Here and in the sequel we use the standard notation νy = ν(y), as if
measures νy were parametrized by y.

(ii) L∞
weak(Q;M(Rm)) denotes the vector space of all weak-∗ measurable ν : Q →M(Rm)

such that the quantity

ess sup
y∈Q

‖νy‖M(Rm) = ess sup
y∈Q

sup
f∈C0(R

m)
‖ f ‖∞≤1

|〈νy, f 〉|

is finite. The norm is defined as

‖ν‖L∞
weak(Q;M(Rm)) = ess sup

y∈Q
‖νy‖M(Rm).

The following result states that the space L∞
weak(Q;M(Rm)) can be identified as the dual

space of L1(Q; C0(Rm)).

Theorem 1.4.2. Let Q ⊆ Rn be an open set. Any continuous linear functional ` ∈ (L1(Q; C0(Rm)))∗

admits a unique representation ν ∈ L∞
weak (Q;M(Rm)) such that

〈`; F〉(L1(Q;C0(Rm)))∗;L1(Q;C0(Rm)) =

ˆ
Q
〈νy, F(y)〉 dy, (1.4.1)

for all F ∈ L1(Q; C0(Rm)), and

‖`‖(L1(Q;C0(Rm)))∗ = ‖ν‖L∞
weak(Q;M(Rm)).

Proof. See Málek, Nečas, Rokyta and Ružička [59], Chapter 3, Theorem 2.11.

Theorem 1.4.3. Let Q ⊂ Rn be a measurable set and let {zR}R>0 be a sequence of measurable
functions such that zR : Q→ Rm, R > 0. Then there exists a subsequence, still denoted by zR, and a
measure-valued function ν, called the Young measure associated to {zR}R>0, satisfying the following
properties.

(i) ν ∈ L∞
weak(Q;M(Rm)) is such that

‖νy‖M(Rm) ≤ 1 for a.e. y ∈ Q,

and for every ϕ ∈ C0(Rm)

ϕ(zR)
∗
⇀ ϕ in L∞(Q),

as R→ ∞, with
ϕ(y) = 〈νy, ϕ〉 for a.e. y ∈ Q.
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(ii) If
lim
k→∞

sup
R>0
|{y ∈ Q ∩ Br : |zR(y)| ≥ k}| = 0 (1.4.2)

for every r > 0, where Br ≡ {y ∈ Q : |y| ≤ r}, then

‖νy‖M(Rm) = 1 for a.e. y ∈ Q.

(iii) Let Φ : [0, ∞)→ R be a Young function satisfying the ∆2-condition (1.2.1). If condition (1.4.2)
holds and

sup
R>0

ˆ
Q

Φ(|τ(zR)|)dy < ∞, (1.4.3)

for some continuous function τ : Rm → R, then

τ(zR)
∗
⇀ τ in LΦ(Q)

as R→ ∞, with
τ(y) = 〈νy, τ〉 for a.e. y ∈ Q.

Proof. See See Málek, Nečas, Rokyta and Ružička [59], Chapter 4, Theorem 2.1.
We reproduce the proof of the first point in order to give an idea of the explicit construction
of the Young measure associated to a measurable sequence {zR}R>0. First, for every R we
define the mapping

νR : Q→M(Rm)

defined for a.e. y ∈ Q by
νR

y = δzR(y),

where δa is the Dirac measure supported at a ∈ Rm. Hence, for every ψ ∈ L1(Q; C0(Rm)) the
function

y 7→ 〈νR
y , ψ(y)〉

is measurable; indeed

〈νR
y , ψ(y)〉 =

ˆ
Rm

ψ(y, ·) dνR
y =

ˆ
Rm

ψ(y, ·) dδzR(y) = ψ(y, zR(y)),

and thus ˆ
Q
|〈νR

y , ψ(y)〉| dy ≤
ˆ

Q
sup

λ∈Rm
|ψ(y, λ)| dy = ‖ψ‖L1(Q;C0(Rm)).

The mapping νR is weakly-∗ measurable with

‖νR‖L∞
weak(Q;M(Rm)) = ess sup

y∈Q
‖νR

y ‖M(Rm) = ‖δzR(y)‖M(Rm) = 1.

Therefore, {νR}R>0 is uniformly bounded in L∞
weak(Q;M(Rm)), which by Theorem 1.4.2 is

the dual space of the separable space L1(Q; C0(Rm)); by Banach-Alaoglu theorem 1.5.3, there
exists ν ∈ L∞

weak(Q;M(Rm)) such that, passing to a suitable subsequence as the case may be,

νR ∗
⇀ ν in L∞

weak(Q;M(Rm))
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as R→ ∞. This means that for all ψ ∈ L1(Q; C0(Rm))

ˆ
Q

ψ(y, zR(y)) dy =

ˆ
Q
〈νR

y , ψ(y)〉 dy→
ˆ

Q
〈νy, ψ(y)〉 dy

as R → ∞. If we now choose ψ(y, λ) = g(y)ϕ(λ) with g ∈ L1(Q), ϕ ∈ C0(Rm), the last limit
tells us that

ˆ
Q

g(t, x)ϕ(zR(y)) dy =

ˆ
Q

g(y)〈νR
y , ϕ〉 dy→

ˆ
Q

g(y)〈νy, ϕ〉 dy

as R→ ∞. Then, for every ϕ ∈ C0(Rm), knowing that

ϕ(zR)
∗
⇀ ϕ in L∞(Q)

as R→ ∞, we can deduce that

ϕ(y) = 〈νy, ϕ〉 for a.e. y ∈ Q.

From the weak-∗ lower semi-continuity of the norm we also have that

‖νy‖M(Rm) ≤ lim inf
R→∞

‖νR
y ‖M(Rm) = 1 for a.e. y ∈ Q.

Remark 1.4.4. If zR are uniformly bounded in Lp(Q; Rm) for some 1 ≤ p < ∞, the condition
(1.4.2) is satisfied. Indeed, denoting AR

k ≡ {y ∈ Q ∩ Br; |zR(y)| ≥ k}, we have

|AR
k |kp ≤

ˆ
AR

k

|zR(y)|pdy ≤
ˆ

Q
|zR(y)|pdy ≤ c.

Since c is independent of both R and k, we obtain

sup
R>0
|AR

k | ≤
c

kp ,

which implies (1.4.2).

1.4.1 Concentration measures and dissipation defect

The following three lemmas enable the introduction of the concentration measures and dissipa-
tion defect for a dissipative measure-valued solution, cf. Chapter 2.

Lemma 1.4.5. Let Q ⊆ Rn be a measurable set and let {zR}R>0, zR : Q → Rm be a sequence of
measurable functions generating a Young measure ν ∈ L∞

weak(Q;M(Rm)). For every continuous
function H : Rm → R such that

‖H(zR)‖L1(Q) ≤ c, uniformly in R,

〈νy; H〉 is finite for a.e. y ∈ Q.
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Proof. Without loss of generality, we can consider |H| or, equivalently, assume that H ≥ 0.
We take a family of cut-off functions

Tk(z) = min{z, k};

Then Tk(H) ∈ C0(Rm) and thus, for any fixed k ∈ N,

Tk(H(zR))
∗
⇀ Tk(H) in L∞(Q)

as R→ ∞, with
Tk(H)(y) = 〈νy, Tk(H)〉 for a.e. y ∈ Q,

as a consequence of Theorem 1.4.3, condition (i). On the other hand we have that

Tk(H)(λ)↗ H(λ), for any λ ∈ Rm

as k→ ∞; by monotone convergence theorem, we have that

〈νy, Tk(H)〉 =
ˆ

Rm
Tk(H)(λ) dνy(λ)→

ˆ
Rm

H(λ) dνy(λ) for a.e. y ∈ Q

as k → ∞. Hence H is νy-integrable but the integral can also be infinite. However, by the
weak-∗ lower semi-continuity of the norm

‖〈ν, Tk(H)‖L1(Q) ≤ lim inf
R→∞

‖Tk(H(zR))‖L1(Q) ≤ lim inf
R→∞

‖H(zR)‖L1(Q) ≤ c,

uniformly in k. Then, since

(i) limk→∞〈νy; Tk(H)〉 = 〈νy; H〉 for a.e. y ∈ Q;

(ii) supk∈N ‖〈ν; Tk(H)〉‖L1(Q) ≤ c,

applying Fatou’s lemma we get that ‖〈ν; H〉‖L1(Q) ≤ c. Then 〈νy; H〉 is finite for a.e. y ∈
Q.

Lemma 1.4.6. Let Q ⊆ Rn be a measurable set and let {zR}R>0, zR : Q → Rm be a sequence of
measurable functions generating a Young measure ν ∈ L∞

weak(Q;M(Rm)). Let F : Rm → [0, ∞) be
a continuous function such that

‖F(zR)‖L1(Q) < ∞ uniformly in R,

and let G : Rm → R be a continuous function such that

|G(z)| . F(z) for all z ∈ Rm.

Denote

F∞ := F(z)− 〈ν; F〉,
G∞ := G(z)− 〈ν; G〉,

where F(z), G(z) ∈ M(Q) are the weak-∗ limits of {F(zR)}R>0, {G(zR)}R>0 in M(Q), respec-
tively. Then

|G∞| . F∞. (1.4.4)
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Proof. See Feireisl, Gwiazda, Świerczewska-Gwiazda and Wiedemann [35], Lemma 2.1; we
report the proof in details. We have seen that the Young measure {νy}y∈Q is such that for all
ψ ∈ L1(Q; C0(Rm))

ˆ
Q

ψ(y, zR(y)) dy→
ˆ

Q
〈νy, ψ(y)〉 dy =

ˆ
Q

ˆ
Rm

ψ(y, λ) dνy(λ)dy

as R→ ∞. Now, from the fact that

F(zR)
∗
⇀ F(z) inM(Q),

G(zR)
∗
⇀ G(z) inM(Q)

as R→ ∞, we have that for any ϕ ∈ C0(Q)

〈F(z), ϕ〉 = lim
R→∞

ˆ
Q

F(zR)ϕ dy = lim
R→∞

ˆ
{|zR|≤M}

F(zR)ϕ dy + lim
R→∞

ˆ
{|zR|>M}

F(zR)ϕ dy.

Now, we can write
ˆ
{|zR|≤M}

F(zR(y))ϕ(y) dy =

ˆ
Q

ψ(y, zR(y)) dy,

with
ψ(y, λ) = F(λ)ϕ(y)χ{|λ|≤M};

then, we have that ψ ∈ L1(Q; C0(Rm)); indeed, calling K = supp(ϕ) we have
ˆ

Q
‖ψ(y, ·)‖C0(Rm) dy =

ˆ
K
|ϕ(y)| sup

|λ|≤M
|F(λ)| ≤ |K| sup

y∈K
|ϕ(y)| sup

|λ|≤M
|F(λ)| ≤ c,

since both ϕ and F are continuous functions and so they admit maximum on compact sets.
Then, for what we have told previously, we have

lim
R→∞

ˆ
{|zR|≤M}

F(zR)ϕ dy = lim
R→∞

ˆ
Q

ψ(y, zR(y)) dy

=

ˆ
Q
〈νy, ψ(y)〉 dy =

ˆ
Q

ˆ
Rm

ψ(y, λ) dνy(λ)dy

=

ˆ
Q

ˆ
{|λ|≤M}

F(λ)ϕ(y) dνy(λ)dy.

Applying now Lebesgue theorem we have

lim
M→∞

(
lim

R→∞

ˆ
{|zR|≤M}

F(zR)ϕ dy

)
=

ˆ
Q

(ˆ
Rm

F(λ)dνy(λ)

)
ϕ dy =

ˆ
Q
〈νy; F〉ϕ dy.

Similarly, for any ϕ ∈ C0(Q)

lim
M→∞

(
lim

R→∞

ˆ
{|zR|≤M}

G(zR)ϕ dy

)
=

ˆ
Q
〈νy; G〉ϕ dy.
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Then, we deduce

〈F∞, ϕ〉 = lim
M→∞

(
lim

R→∞

ˆ
{|zR|>M}

F(zR)ϕ dy

)
,

〈G∞, ϕ〉 = lim
M→∞

(
lim

R→∞

ˆ
{|zR|>M}

G(zR)ϕ dy

)
.

From condition |G| . F we obtain (1.4.4).

However, in some cases it is impossible to guarantee the function F to be continuous in
Lemma 1.4.6. We might use the following result, where continuity is replaced by lower
semi-continuity.

Lemma 1.4.7. Under the same hypothesis of Lemma 1.4.6 with F : Rm → [0, ∞] being lower semi-
continuous and such that

F(z) & |z| as |z| → ∞,

G : Rm → R being continuous and such that

lim sup
|z|→∞

|G(z)| < lim inf
|z|→∞

F(z), (1.4.5)

relation (1.4.4) still holds.

Proof. First of all, there exist a sequence {En}n∈N ⊂ C(Rm) of continuous functions such that

0 ≤ En(z) ≤ F(z), En(z)↗ F(z) as n→ ∞, for any z ∈ Rm,

and, in view of (1.4.5), a constant r > 0 such that

|G(z)| < F(z) for any |z| > r.

Consider now a function T ∈ C∞(Rm) such that

T(z)


= 0 if |z| ≤ r,

∈ (0, 1) if r < |z| < r + 1,

= 1 if |z| ≥ r + 1,

and construct a sequence {Fn}n∈N ⊂ C(Rm) of continuous functions such that

Fn(z) := T(z)max{|G(z)|, En(z)}.

In particular, notice that

Fn(z) =

{
0 if |z| ≤ r,

max{|G(z)|, En(z)} if |z| ≥ r + 1,

and thus
0 ≤ Fn(z) ≤ F(z), Fn(z) ≥ |G(z)| if |z| ≥ r + 1.

We can apply Lemma 1.4.6 to get

G(z)− 〈ν; G〉 . Fn(z)− 〈ν; Fn〉
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for any n ∈ N, and thus the proof reduces to show

Fn(z)− 〈ν; Fn〉 ≤ F(z)− 〈ν; F〉,

or equivalently, to show that for any lower semi-continuous function H : Rm → [0, ∞]

H(z)− 〈ν; H〉 ≥ 0. (1.4.6)

Repeating the same arguments, we can find a sequence {Hn}n∈N ⊂ C0(Rm) of bounded
continuous functions such that

0 ≤ Hn(z) ≤ H(z), Hn(z)↗ H(z) as n→ ∞, for any z ∈ Rm. (1.4.7)

For any fixed n ∈ N, we have that

Hn(zR)
∗
⇀ Hn(z) in L∞(Q)

as R→ ∞, with
Hn(z)(y) = 〈νy, Hn〉 for a.e. y ∈ Q,

as a consequence of Theorem 1.4.3, condition (i). On the other side, from (1.4.7) and mono-
tone convergence theorem, we have that

〈νy, Hn〉 =
ˆ

Rm
Hn(λ) dνy(λ)→

ˆ
Rm

H(λ) dνy(λ) = 〈νy, H〉 for a.e. y ∈ Q

as n→ ∞. Finally, we obtain

0 ≤ H(z)− Hn(z) = H(z)− 〈ν; Hn〉 → H(z)− 〈ν; H〉

as n→ ∞, which proves (1.4.6).

1.5 miscellaneous results

In this last section, we collect various fundamental theorems that will be widely used through-
out the thesis.

1. We start recalling the Arzelá-Ascoli theorem.

Theorem 1.5.1. Let Q ⊂ Rd be compact and let X be a compact topological metric space
endowed with a metric dX. Let { fn}n∈N be a sequence of functions in C(Q; X) that is equi-
continuous, meaning that for any ε > 0 there exists a δ = δ(ε) > 0 such that

dX [ fn(y), fn(z)] ≤ ε provided |y− z| < δ,

independently of n. Then, there exists f ∈ C(Q; X) such that, passing to a suitable subsequence
as the case may be,

sup
y∈Q

dX [ fn(y), f (y)]→ 0

as n→ ∞.

Proof. See e.g. Kelley [51], Chapter 7, Theorem 17.
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2. We now report the following version of Gronwall’s Lemma.

Lemma 1.5.2. Let f = f (t) and β = β(t) be continuous and non-negative functions defined
on [0, T], and let α = α(t) be a continuous, positive and non-decreasing function defined on
[0, T]. If

f (τ) ≤ α(τ) +

ˆ τ

0
β(t) f (t) dt for all τ ∈ [0, T],

then
f (τ) ≤ α(τ) exp

(ˆ τ

0
β(t) dt

)
for all τ ∈ [0, T].

Proof. See e.g. Pachpatte [64], Theorem 1.3.1.

3. Next, we report the Banach-Alaoglu theorem, which provides a sufficient condition to get
weakly relatively compact sequences.

Theorem 1.5.3. Let X be a normed vector space. Then, the closed unit ball in the continuous
dual space X∗, endowed with its usual operator norm, is compact with respect to the weak-∗
topology. Moreover,

(i) if X is a separable Banach space, then every uniformly bounded sequence has a weakly-∗
convergent subsequence.

In particular, if { fn}n∈N is uniformly bounded in L∞(Q; X∗), with Q ⊆ Rd a measurable
set, then, passing to a suitable subsequence as the case may be,

fn
∗
⇀ f in L∞(Q; X∗)

as n→ ∞, meaning that
ˆ

Q
〈 fn; g〉X∗,X dy→

ˆ
Q
〈 f ; g〉X∗,X dy

as n→ ∞, for all g ∈ L1(Q; X);

(ii) if X is a reflexive Banach space, then every uniformly bounded sequence in X has a weakly
convergent subsequence.

Proof. See e.g. Rudin [68], Theorem 3.15.

4. Since the L1-space is neither reflexive nor the dual of a Banach space, uniformly bounded
sequences in L1 are in general not weakly relatively compact. However, the Dunford-
Pettis theorem gives a necessary and sufficient condition to get weak compactness.

Theorem 1.5.4. Let Q ⊂ Rd be a bounded measurable set and let { fn}n∈N be an uniformly
bounded sequence in L1(Q). Then, the following statements are equivalent.

(i) { fn}n∈N is weakly precompact in L1(Q): there exists f ∈ L1(Q) such that, passing to a
suitable subsequence as the case may be,

fn ⇀ f in L1(Q)

as n→ ∞.
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(ii) For any ε > 0 there exists C = C(ε) > 0 such that
ˆ
{| fn|>C}

| fn(y)| dy < ε,

independently of n.

(iii) The sequence { fn}n∈N is equi-integrable, cf. condition (i) of Theorem 1.2.10.

Proof. See e.g. Ekeland and Temam [32], Chapter 8, Theorem 1.3.

5. Subsequently, we report some properties of lower semi-continuous and convex functions.

Theorem 1.5.5. Let Φ : Rm → (−∞,+∞] be a lower semi-continuous and convex function.

(i) The epigraph of Φ defined as

Epi[Φ] := {(a, z) ∈ R×Rm| Φ(z) ≤ a}

is closed and convex.

Moreover, let Q ⊆ Rd be a measurable set and { fn}n∈N a sequence of functions in L1(Q; Rm)

such that
fn ⇀ f in L1(Q; Rm)

as n→ ∞.

(ii) If Φ( fn) ∈ L1(Q) for any n ∈ N and

Φ( fn) ⇀ Φ( f ) in L1(Q)

as n→ ∞, then
Φ( f ) ≤ Φ( f ) a.e. on Q. (1.5.1)

If moreover Φ is strictly convex on an open set U ⊆ Rm and the equality holds in (1.5.1)
a.e. on Q, then, passing to a suitable subsequence as the case may be,

fn(y)→ f (y) for a.e. y ∈ {x ∈ Q| f (x) ∈ U}

as n→ ∞.

(iii) Φ( f ) : Q→ R is integrable and
ˆ

Q
Φ( f (y)) dy ≤ lim inf

n→∞

ˆ
Q

Φ( fn(y)) dy.

Proof. For (i), see Ekeland and Temam [32], Chapter 1, Propositions 2.1 and 2.3.
For (ii) and (iii), see Feireisl [33], Theorem 2.11 and Corollary 2.2.

Remark 1.5.6. Here and in what follows, if { fn}n∈N is a sequence of functions in
L1(Q; Rm), with Q ⊆ Rd measurable, such that

fn ⇀ f in L1(Q; Rm)

as n→ ∞, then any weak L1-limit of a composition Φ( fn) will be denoted by Φ( f ).
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6. The following result states uniqueness of the inverse Laplace transform, better know as
Lerch’s theorem.

Theorem 1.5.7. If a function F = F(s) has the inverse Laplace transform f = f (t), meaning
that

F(s) =
ˆ ∞

0
e−st f (t) dt for any s ≥ s0

with f continuous, then f is uniquely determined, considering functions which differ from each
other on a point set having Lebesgue measure zero the same.

Proof. See e.g. Cohen [25], Theorem 2.1.

7. Next, we report the Banach-Caccioppoli fixed-point theorem.

Theorem 1.5.8. Let X be a Banach space with norm ‖ · ‖X, Z ⊆ X a closed convex subset of
X and let F : Z → Z be a contractive map, meaning that there exists a constant k ∈ [0, 1) such
that

‖F(z1)− F(z2)‖X ≤ k‖z1 − z2‖X for any z1, z2 ∈ Z.

Then there exists a unique fixed point z ∈ Z of the mapping F, meaning that

z = F(z).

Proof. See e.g. Schwartz [71], Chapter XII.

8. The following result represents an useful criteria to get the Borel-measurability of a
given map.

Theorem 1.5.9. Let X be a metric space and B its Borel σ-field. Let x 7→ Kx map X into
comp(Y) for some separable metric space Y, where comp(Y) denotes the space of all compact
subsets of Y. Suppose that for any sequence {xn}n∈N such that xn → x in X as n → ∞ and
any yn ∈ Kxn there exists y ∈ Kx such that yn → y in Y as n→ ∞. Then, the map x 7→ Kx is
a Borel map of X into comp(Y).

Proof. See Stroock and Varadhan [73], Lemma 12.1.8.

9. We conclude with a topological result known as Cantor’s intersection theorem.

Theorem 1.5.10. Let S be a Hausdorff space. A decreasing nested sequence of non-empty
compact subsets of S is non-empty. In other words, supposing {Cn}n∈N is a sequence of non-
empty compact subsets of S satisfying

C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ . . .

it follows that ⋂
n∈N

Cn 6= ∅.

Proof. See e.g. Lewin [56], Section 7.8.
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2
VA N I S H I N G V I S C O S I T Y L I M I T

The goal of this chapter is to show that the dissipative weak solutions of the compressible
Navier-Stokes system converge in the zero viscosity limit to the strong solution of the com-
pressible Euler system with damping defined on a general spatial domain, as long as the
latter exists, cf. Theorem 2.7.1. The proof is a direct consequence of two results: first, we
identify the measure-valued solution of the Euler system as a vanishing viscosity limit of
the Navier-Stokes system, cf. Theorem 2.5.2; secondly, we prove the weak-strong uniqueness
principle for the Euler system, i.e. the measure-valued solution coincides with the classical
one emanating from the same initial data on the lifespan of the strong solution, cf. Theorem
2.6.1.

The chapter is organized as follows. In Section 2.1 we introduce the models, in particular

(i) the Euler system in terms of [$, m] on (0, T) × Ω, where Ω can be a bounded or an
exterior domain, or the whole space Rd;

(ii) for any fixed R > 0, the Navier-Stokes system in terms of [$R, uR] on (0, T)×ΩR, where
ΩR is the intersection of Ω with the ball centred at origin and radius R, and with the
viscous stress terms rescaled by 1/R.

In section 2.2 we derive the weak formulation of the compressible Navier-Stokes system,
providing the definition of a dissipative weak solution [$R, uR], cf. Definition 2.2.1. Assuming
the initial energy to be bounded, in Section 2.3 we recover all the a priori estimates necessary
to perform the limit R → ∞, which generates the Young measure associated to the Euler
system, analysed in Section 2.4, and leading to the definition of a dissipative measure-valued
solution for the compressible Euler system with damping in Section 2.5, cf. Definition 2.5.1.
Section 2.6 is devoted to the proof of the weak-strong uniqueness principle for the Euler
system, showing that the dissipative measure-valued solutions satisfy an extended version
of the energy inequality, known as relative energy inequality, for smooth and compactly
supported [r, U], and extending it for any strong solution [r, U] of the Euler system through
a density argument. Finally, in Section 2.7 we prove Theorem 2.7.1.

2.1 from the euler to the navier-stokes system

Let us consider the compressible Euler system with damping, described by the following couple
of equations

∂t$ + divx m = 0, (2.1.1)

∂tm + divx

(
m⊗m

$

)
+∇x p($) + am = 0; (2.1.2)

here $ = $(t, x) denotes the density, m = m(t, x) the momentum - with the convection that
the convective term is equal to zero whenever $ = 0 - and p = p($) the pressure. The term
am, with a ≥ 0, represents “friction”. We will study the system on the set

(t, x) ∈ (0, T)×Ω,
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where T > 0 is a fixed time and Ω ⊆ Rd, with d = 2, 3, can be a bounded or unbounded
domain, along with the boundary condition

m · n|∂Ω = 0, (2.1.3)

for all t ∈ [0, T]; if Ω is unbounded, we impose the condition at infinity

$→ $, m→ 0 as |x| → ∞, (2.1.4)

with a constant $ ≥ 0. We also consider the following initial data

$(0, ·) = $0, m(0, ·) = m0, (2.1.5)

with $0 ≥ 0. We finally assume that the pressure p is given by the isentropic state equation

p($) = A$γ, (2.1.6)

where γ > 1 is the adiabatic exponent and A > 0 is a constant.
Our goal is to identify a class of generalized dissipative measure-valued solutions for the

Euler system (2.1.1), (2.1.2) as a vanishing viscosity limit of the Navier-Stokes equations.
More specifically, we start considering the set

ΩR = Ω ∩ BR, BR = {x ∈ Rd : |x| < R},

where we assume ΩR to be at least a Lipschitz domain, and we consider the compressible
Navier-Stokes system

∂t$R + divx($RuR) = 0, (2.1.7)

∂t($RuR) + divx($RuR ⊗ uR) +∇x p($R) =
1
R

divx S(∇xuR)− a$RuR; (2.1.8)

now uR = uR(t, x) is the velocity and SR = S(∇xuR) is the viscous stress, which we assume to
be a linear function of the velocity gradient, more specifically to satisfy Newton’s rheological
law

SR = S(∇xuR) = µ

(
∇xuR +∇T

x uR −
2
d
(divx uR)I

)
+ λ(divx uR)I, (2.1.9)

where µ > 0, λ ≥ 0 are constants.
As our goal is to perform the vanishing viscosity limit for the Navier-Stokes system, we

impose the complete slip boundary conditions on ∂Ω:

uR · n|∂Ω = 0, (SR · n)× n|∂Ω = 0, (2.1.10)

and the no–slip boundary conditions on ∂BR:

uR|∂BR = 0, (2.1.11)

for all t ∈ [0, T]. Of course, conditions (2.1.10) and (2.1.11) may be not compatible but they
do not give rise to any extra analytical problem assuming that ∂BR ∩ ∂Ω = ∅ for R large
enough, meaning that ∂Ω is a compact set. That is Ω is either

(i) a bounded domain,
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(ii) an exterior domain,

(iii) the whole space Rd.

For the sake of simplicity, we restrict ourselves to these three cases. Finally, we impose the
initial conditions independent of R:

$R(0, ·) = $0, ($RuR)(0, ·) = m0 in ΩR, (2.1.12)

where $0, m0 are the initial conditions of the Euler system as in (2.1.5).

2.2 weak formulation of the navier-stokes system

First of all, choosing a constant background density $ ≥ 0, we can notice that the Navier-
Stokes system (2.1.7), (2.1.8) can be rewritten as

∂t($R − $) + divx($RuR) = 0, (2.2.1)

∂t($RuR) + divx($RuR ⊗ uR) +∇x[p($R)− p($)] =
1
R

divx S(∇xuR)− a$RuR. (2.2.2)

2.2.1 Energy balance

Multiplying the balance of momentum (2.2.2) by uR and noticing that each term of this
product can be rewritten as

∂t($RuR) · uR = ∂t

(
1
2

$R|uR|2
)
+

1
2
|uR|2∂t$R,

divx($RuR ⊗ uR) · uR = divx

(
1
2

$R|uR|2uR

)
+

1
2
|uR|2 divx($RuR),

∇x[p($R)− p($)] · uR = divx([p($R)− p($)]uR)− [p($R)− p($)]divx uR,

divx S(∇xuR) · uR = divx(S(∇xuR)uR)− S(∇xuR) : ∇xuR,

we get the following equality

∂t

(
1
2

$R|uR|2
)
+ divx

(
1
2

$R|uR|2uR

)
+ divx([p($R)− p($)]uR)− [p($R)− p($)]divx uR

=
1
R

divx(S(∇xuR)uR)−
1
R

S(∇xuR) : ∇xuR − a$R|uR|2,

(2.2.3)

where we used the fact that

1
2
|uR|2(∂t$R + divx($RuR)) = 0

by the continuity equation (2.1.7). Integrating (2.2.3) over ΩR, through an integration by parts
and keeping in mind that uR satisfies the boundary conditions (2.1.10), (2.1.11), we recover
that terms

divx

(
1
2

$R|uR|2uR

)
, divx([p($R)− p($)]uR), divx(S(∇xuR)uR)
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vanish, and we get

d
dt

ˆ
ΩR

(
1
2

$R|uR|2
)

dx−
ˆ

ΩR

[p($R)− p($)]divx uR dx

+ a
ˆ

ΩR

$R|uR|2 dx +
1
R

ˆ
ΩR

S(∇xuR) : ∇xuR dx = 0.
(2.2.4)

Introducing the pressure potential P = P($) as a solution of

$P′($)− P($) = p($), (2.2.5)

we can write

−[p($R)− p($)] = P($R)− P′($)($R − $)− P($)− $R[P′($R)− P′($)].

Noticing that

divx
[(

P($R)− P′($)($R − $)− P($)
)
uR
]

=
[
P($R)− P′($)($R − $)− P($)

]
divx uR + [P′($R)− P′($)]∇x$R · uR

=
(

P($R)− P′($)($R − $)− P($)− $R[P′($R)− P′($)]
)

divx uR

+ [P′($R)− P′($)]divx($RuR),

and that, multiplying (2.2.1) by P′($R)− P′($),

[P′($R)− P′($)]divx($RuR) = −[P′($R)− P′($)]∂t($− $)

= −∂t[P($R)− P′($)($R − $)− P($)]

we obtain

−[p($R)− p($)]divx uR = divx
[(

P($R)− P′($)($R − $)− P($)
)
uR
]

+ ∂t[P($R)− P′($)($R − $)− P($)].

Again, keeping in mind that uR satisfies the boundary conditions (2.1.10), (2.1.11), we have
ˆ

ΩR

divx
[(

P($R)− P′($)($R − $)− P($)
)
uR
]

dx = 0

and thus, (2.2.4) can be rewritten as

d
dt

ˆ
ΩR

[
1
2

$R|uR|2 + P($R)− P′($)($R − $)− P($)
]

dx

+ a
ˆ

ΩR

$R|uR|2 dx +
1
R

ˆ
ΩR

S(∇xuR) : ∇xuR dx = 0.
(2.2.6)

2.2.2 Dissipative weak solution

We are now ready to give the definition of a dissipative weak solution.

Definition 2.2.1. The pair of functions [$R, uR] is called dissipative weak solution of the Navier-
Stokes system (2.1.7)–(2.1.12) if the following holds:
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(i) regularity class:

$R ∈ Cweak([0, T]; Lγ(ΩR)),

$RuR ∈ Cweak([0, T]; L
2γ

γ+1 (ΩR; Rd)),

uR ∈ L2(0, T; W1,2(ΩR; Rd)), uR|∂BR = 0,

and $R is a non-negative function a.e. in (0, T)×ΩR;

(ii) weak formulation of the continuity equation: the integral identity[ˆ
ΩR

($R − $)ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
ΩR

[($R − $)∂t ϕ + $RuR · ∇x ϕ] dxdt (2.2.7)

holds for any τ ∈ [0, T] and any ϕ ∈ C1
c ([0, T]×ΩR), where $R(0, ·) = $0;

(iii) weak formulation of the balance of momentum: the integral identity[ˆ
ΩR

$RuR ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
ΩR

($RuR · ∂tϕ+ $RuR ⊗ uR : ∇xϕ) dxdt

+

ˆ τ

0

ˆ
ΩR

[p($R)− p($)]divxϕ dxdt

−
ˆ τ

0

ˆ
ΩR

[
1
R

S(∇xuR) : ∇xϕ+ a$RuR ·ϕ
]

dxdt

(2.2.8)

holds for any τ ∈ [0, T] and any ϕ ∈ C1
c ([0, T]×Ω ∩ BR; Rd) with ϕ · n|∂Ω = 0, where

($RuR)(0, ·) = m0;

(iv) energy inequality: the integral inequality

ˆ
ΩR

[
1
2

$R|uR|2 + P($R)− P′($)($R − $)− P($)
]
(τ, ·) dx

+ a
ˆ τ

0

ˆ
ΩR

$R|uR|2 dxdt +
1
R

ˆ τ

0

ˆ
ΩR

S(∇xuR) : ∇xuR dxdt

≤
ˆ

ΩR

[
1
2
|m0|2

$0
+ P($0)− P′($)($0 − $)− P($)

]
dx

(2.2.9)

holds for a.e. τ > 0.

The integral identities (2.2.7) and (2.2.8) can be easily deduced multiplying equations (2.1.7)
and (2.1.8) respectively by test functions, integrating over (0, τ) × ΩR and performing an
integration by parts, while the energy inequality (2.2.9) follows from (2.2.6). Further details
on the compressible Navier-Stokes system can be found in Chapter 4.

2.2.3 Existence of weak solutions

To guarantee the existence of weak solutions, we can now use the following result.
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Theorem 2.2.2. Let Ω ⊂ Rd, d = 2, 3 be a domain with compact Lipschitz boundary such that
∂Ω ∩ ∂BR = ∅ for R large enough, let ΩR = Ω ∩ BR and let T > 0 be arbitrary. Suppose that the
initial data satisfy

$0 ∈ Lγ(ΩR), $0 ≥ 0 a.e. in ΩR,
|($u)0|2

$0
∈ L1(ΩR).

Let the pressure p satisfy (2.1.6) with

γ >
d
2

.

Then the Navier-Stokes system (2.1.7)-(2.1.12) admits a dissipative weak solution [$R, uR] in (0, T)×
ΩR in the sense of Definition 2.2.1.

The proof follows the same line as in [33], Theorem 7.1. The fact that the boundary con-
ditions are different on ∂Ω and ∂BR does not present any extra difficulty as the closures of
these two components of the boundary are disjoint.

2.3 limit passage

Proposition 2.3.1. Let Ω ⊂ Rd, d = 2, 3 be a domain with compact Lipschitz boundary such that
∂Ω ∩ ∂BR = ∅ for R large enough, and let $ ≥ 0 be a given far field density if Ω is unbounded. Let
{$R, mR = $RuR}R>0 be a family of dissipative weak solutions to the Navier-Stokes system (2.1.7) –
(2.1.12) in

(0, T)×ΩR, ΩR = Ω ∩ BR,

in the sense of Definition 2.2.1. Let the corresponding initial data $0, m0 be independent of R satisfying

$0 ≥ 0,
ˆ

Ω

[
1
2
|m0|2

$0
+ P($0)− P′($)($0 − $)− P($)

]
dx ≤ E0. (2.3.1)

Moreover, suppose that uR is extended to be zero and $R as $ outside BR, for every R > 0. Then,
passing to a suitable subsequence as the case may be,

$R − $→ $− $ in Cweak([0, T]; L2 + Lγ(Ω)), (2.3.2)

mR → m in Cweak([0, T]; L2 + L
2γ

γ+1 (Ω; Rd)), (2.3.3)

p($R)− p($) ∗⇀ p($)− p($) in L∞(0, T; L2(Ω) +M(Ω)), (2.3.4)

1$R>0
mR ⊗mR

$R

∗
⇀ 1$>0

m⊗m
$

in L∞(0, T;M(Ω; Rd×d
sym)), (2.3.5)

|mR|2
$R

∗
⇀
|m|2

$
in L∞(0, T;M(Ω)), (2.3.6)

1
2
|mR|2

$R
+ P($R)− P′($)($R − $)− P($) ∗⇀ E in L∞(0, T;M(Ω)) (2.3.7)

as R→ ∞.

Proof. First of all, we can replace ΩR by Ω in the previous integrals (2.2.7), (2.2.8) and (2.2.9);
more precisely, from now on we will consider[ˆ

Ω
($R − $)ϕ(t, ·) dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[($R − $)∂t ϕ + mR · ∇x ϕ] dxdt, (2.3.8)



2.3 limit passage 35

for any τ ∈ [0, T] and all ϕ ∈ C1
c ([0, T]×Ω),[ˆ

Ω
mR ·ϕ(t, ·) dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
mR · ∂tϕ+ 1$R>0

mR ⊗mR

$R
: ∇xϕ

]
dxdt

+

ˆ τ

0

ˆ
Ω
[p($R)− p($)]divxϕ dxdt

−
ˆ τ

0

ˆ
Ω

[
1
R

S(∇xuR) : ∇xϕ+ amR ·ϕ
]

dxdt,

(2.3.9)

for any τ ∈ [0, T] and all ϕ ∈ C1
c ([0, T]×Ω; Rd), ϕ · n|∂Ω = 0, and

ˆ
Ω

[
1
2
|mR|2

$R
+ P($R)− P′($)($R − $)− P($)

]
(τ, ·) dx

+ a
ˆ τ

0

ˆ
Ω

|mR|2
$R

dxdt +
1
R

ˆ τ

0

ˆ
Ω

S(∇xuR) : ∇xuR dxdt

≤
ˆ

Ω

[
1
2
|m0|2

$0
+ P($0)− P′($)($0 − $)− P($)

]
dx,

(2.3.10)

for a.e. τ ∈ [0, T]. Note that this is correct for R large enough as the test functions are
compactly supported in ΩR. From (2.3.1) and the energy inequality (2.3.10), we can easily
deduce ∥∥∥∥ mR√

$R

∥∥∥∥
L∞(0,T;L2(Ω;Rd))

≤ c(E0), (2.3.11)

‖P($R)− P′($)($R − $)− P($)‖L∞(0,T;L1(Ω)) ≤ c(E0), (2.3.12)

1
R

ˆ T

0

ˆ
Ω

S(∇xuR) : ∇xuR dxdt ≤ c(E0), (2.3.13)

where the bounds are independent of R. Next, from (2.3.13), we can deduce that

1
R

ˆ T

0
‖S(∇xuR)(t, ·)‖2

L2(Ω;Rd×d) dt ≤ c(E0). (2.3.14)

Following Feireisl, Jin and Novotný [37], we can now use relation

P($)− P′($)($− $)− P($) ≥ c($)

{
($− $)2 for $

2 < $ < 2$

(1 + $γ) otherwise,
(2.3.15)

with a positive constant c($). More precisely, following [42], Section 4.7, we introduce the
decomposition of an integrable function hR into its essential and residual parts:

hR = [hR]ess + [hR]res, (2.3.16)

where
[hR]ess = χ($R)hR, [hR]res = (1− χ($R))hR,

χ ∈ C∞
c (0, ∞), 0 ≤ χ ≤ 1, χ(r) = 1 for r ∈

[
$

2
, 2$

]
.
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Then, from (2.3.12) and (2.3.15), we have

‖[$R − $]ess‖L∞(0,T;L2(Ω)) = ess sup
t∈(0,T)

ˆ
Ω
($R − $)2χ($R)(t, ·) dx

≤ 1
c($)
‖(P($R)− P′($)($R − $)− P($))‖L∞(0,T;L1(Ω))

≤ c(E0),

(2.3.17)

and

‖[$R − $]res‖L∞(0,T;Lγ(Ω)) = ess sup
t∈(0,T)

ˆ
Ω
|$R − $|γ(1− χ($R))(t, ·) dx

. ess sup
t∈(0,T)

ˆ
Ω
(1 + $γ)(1− χ($R))(t, ·) dx

≤ 1
c($)
‖(P($R)− P′($)($R − $)− P($))‖L∞(0,T;L1(Ω))

≤ c(E0).

(2.3.18)

In particular the Banach-Alaoglu thorem 1.5.3 implies that, passing to a suitable subsequence
as the case may be,

[$R − $]ess
∗
⇀ f$−$ in L∞(0, T; L2(Ω)), (2.3.19)

[$R − $]res
∗
⇀ g$−$ in L∞(0, T; Lγ(Ω)) (2.3.20)

as R→ ∞; defining
$− $ := f$−$ + g$−$,

we have that
$R − $

∗
⇀ $− $ in L∞(0, T; L2 + Lγ(Ω))

as R → ∞, which can be strengthened to (2.3.2), as a consequence of the Arzelá-Ascoli
theorem 1.5.1. We can repeat the same procedure for the momenta; indeed, in view of
(2.3.11) we obtain

‖[mR]ess‖L∞(0,T;L2(Ω)) = ess sup
t∈(0,T)

ˆ
Ω

$R
|mR|2

$R
χ($R)(t, ·) dx

≤ 2$

∥∥∥∥ mR√
$R

(t, ·)
∥∥∥∥

L∞(0,T;L2(Ω;Rd))

≤ c(E0);

(2.3.21)

from (2.3.12) and (2.3.15), we also have

‖[√$R]res‖L∞(0,T;L2γ(Ω)) = ess sup
t∈(0,T)

ˆ
Ω

$
γ
R(1− χ($R))(t, ·) dx

≤ ess sup
t∈(0,T)

ˆ
Ω
($γ

R + 1)(1− χ($R))(t, ·) dx

≤ c(E0),
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which, together with (2.3.11) and Hölder’s inequality (1.1.1) with r = 2γ
γ+1 , p = 2γ and q = 2

gives

‖[mR]res‖
L∞(0,T;L

2γ
γ+1 (Ω;Rd))

≤ ess sup
t∈(0,T)

‖[√$R]res(t, ·)‖L2γ(Ω)

∥∥∥∥ mR√
$R

(t, ·)
∥∥∥∥

L2(Ω;Rd)

≤ c(E0).

(2.3.22)
Then we obtain, passing to suitable subsequences as the case may be

$RuR
∗
⇀ m in L∞(0, T; L2 + L

2γ
γ+1 (Ω; Rd))

as R → ∞; again, the last convergence can be strengthened to (2.3.3). In a similar way, in
view of (2.3.17), we have

‖[p($R)− p($)]ess‖L∞(0,T;L2(Ω)) = ess sup
t∈(0,T)

ˆ
Ω
|p($R)− p($)|2χ($R)(t, ·) dx

≤ p′(2$) ‖[$R − $]ess‖L∞(0,T;L2(Ω))

≤ c(E0),

(2.3.23)

and thus, passing to a suitable subsequence as the case may be,

[p($R)− p($)]ess
∗
⇀ fp($)−p($) in L∞(0, T; L2(Ω)) (2.3.24)

as R→ ∞. On the other side, from (2.3.12) and (2.3.15),

‖[p($R)− p($)]res‖L∞(0,T;L1(Ω)) = A ess sup
t∈(0,T)

ˆ
Ω
|$γ

R − $γ|(1− χ($R))(t, ·) dx

≤ A max{$γ, 1} ess sup
t∈(0,T)

ˆ
Ω
(1 + $

γ
R)(1− χ($R))(t, ·) dx

≤ c(E0),

while from (2.3.11), ∥∥∥∥1$R>0
mR ⊗mR

$R

∥∥∥∥
L∞(0,T;L1(Ω;Rd×d

sym))

≤ c(E0).

There is a disturbing phenomena that may occur to bounded sequences in L1: concentrations.
The idea is then to see L1(Ω) as embedded in the space of bounded Radon measuresM(Ω),
which in turn can be identified as the dual space of the separable space Cc(Ω). We get,
passing to suitable subsequences as the case may be,

[p($R)− p($)]res
∗
⇀ gp($)−p($) in L∞(0, T;M(Ω)), (2.3.25)

and convergences (2.3.5)–(2.3.7) as R→ ∞. Defining

p($)− p($) := fp($)−p($) + gp($)−p($),

we obtain (2.3.4).

With Proposition 2.3.1 at hand, we are now ready to perform the limit R → ∞ in the
weak formulation of our initial problem (2.2.1), (2.2.2); notice that the R-dependent viscous
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stress tensor vanishes. Indeed, using (2.3.14) and Hölder’s inequality (1.1.1) with r = 1 and
p = q = 2 we get

1
R

ˆ T

0

ˆ
Ω
|S(∇xuR) : ∇xϕ| dxdt

≤ 1√
R

∥∥∥∥ 1√
R

S(∇xuR)

∥∥∥∥
L2((0,T)×Ω;Rd×d)

‖∇xϕ‖L2((0,T)×Ω;Rd×d)

≤ c(E0)√
R
‖∇xϕ‖L2((0,T)×Ω;Rd×d) .

Keeping in mind that the functions $ and m are weakly continuous in time, we finally get[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$∂t ϕ + m · ∇x ϕ] dxdt, (2.3.26)

for any τ ∈ [0, T] and any ϕ ∈ C1
c ([0, T]×Ω), and[ˆ

Ω
m ·ϕ(t, ·) dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+ 1$>0

m⊗m
$

: ∇xϕ+ p($)divxϕ

]
dxdt

− a
ˆ τ

0

ˆ
Ω

m ·ϕ dxdt
(2.3.27)

for any τ ∈ [0, T) and any ϕ ∈ C1
c ([0, T]×Ω; Rd), ϕ · n|∂Ω = 0. Finally, we may pass to the

limit in the energy inequality (2.3.10) to get
ˆ

Ω
E(τ, ·) dx + a

ˆ τ

0

ˆ
Ω

|m|2
$

dxdt ≤
ˆ

Ω

[
1
2
|m0|2

$0
+ P($0)− P′($)($0 − $)− P($)

]
dx

(2.3.28)
for a.e. τ ∈ (0, T). Equations (2.3.26), (2.3.27), and (2.3.28) form a suitable platform for
introducing the measure-valued solutions of the Euler system with damping. The exact
definition requires the concept of Young measures; the interested reader can find all the
details in Section 1.4.

2.4 young measure for the compressible euler system

Our next goal is to adapt the abstract machinery presented in Section 1.4 in order to introduce
the definition of a dissipative measure-valued solution for the compressible Euler system
with damping. To this end, it is enough to take

• Q = (0, T)×Ω ⊂ Rd+1;

• m = d + 1;

• zR = ($R − $, mR),

in Theorem 1.4.3, where ($R, mR = $RuR) are the weak solutions of the Navier-Stokes system
(2.2.1), (2.2.2). First of all, notice that condition (1.4.2) is satisfied for zR = ($R − $, mR);
indeed, introducing the sets AR

k ≡ {y ∈ Q ∩ Br; |zR(y)| ≥ k} we have, for y ∈ AR
k

k ≤ |($R − $, mR)(y)| ≤ |($R − $)(y)|+ |mR(y)|
≤ |[$R − $]ess(y)|+ |[$R − $]res(y)|+ |[mR]ess(y)|+ |[mR]res(y)|,



2.4 young measure for the compressible euler system 39

and hence at least one of the terms on the last line must be ≥ k
4 so that

AR
k ⊆

{
y ∈ Q ∩ Br; |[$R − $]ess(y)| ≥

k
4

}
︸ ︷︷ ︸

≡AR
k,1

∪
{

y ∈ Q ∩ Br; |[$R − $]res(y)| ≥
k
4

}
︸ ︷︷ ︸

≡AR
k,2

∪
{

y ∈ Q ∩ Br; |[mR]ess(y)| ≥
k
4

}
︸ ︷︷ ︸

≡AR
k,3

∪
{

y ∈ Q ∩ Br; |[mR]res(y)| ≥
k
4

}
︸ ︷︷ ︸

≡AR
k,4

.

For k large enough (k ≥ 4), we have

|AR
k |k ≤ 4

4

∑
i=1
|AR

k,i|
k
4

. |AR
k,1|
(

k
4

)2

+ |AR
k,2|
(

k
4

)γ

+ |AR
k,3|
(

k
4

)2

+ |AR
k,4|
(

k
4

) 2γ
γ+1

≤
ˆ

AR
k,1

|[$R − $]ess(y)|2 dy +

ˆ
AR

k,2

|[$R − $]res(y)|γ dy +

ˆ
AR

k,3

|[mR]ess(y)|2 dy

+

ˆ
AR

k,4

|[mR]res(y)|
2γ

γ+1 dy

≤ ‖[$R − $]ess‖2
L2(Q) + ‖[$R − $]res‖γ

Lγ(Q)
+ ‖[mR]ess‖2

L2(Q;Rd) + ‖[mR]res‖
2γ

γ+1

L
2γ

γ+1 (Q;Rd)

≤ c(E0),

where in particular the constant c(E0) is independent of k and R so that

sup
R>0
|AR

k | ≤
c
k

,

which implies (1.4.2).
Applying Theorem 1.4.3, condition (ii), we recover that the Young measure in our case is

a parametrized family of probability measures supported on the set [0, ∞) × Rd, since the
densities are supposed to be non-negative:

νt,x : (t, x) ∈ (0, T)×Ω→ P([0, ∞)×Rd),

ν ∈ L∞
weak((0, T)×Ω;P([0, ∞)×Rd)).

It is also easy to check that Ψ(t) = tp with p > 1 are Young functions that satisfy the
∆2-condition (1.2.1) with constant 2p, and in that case LΨ(Q) = Lp(Q). Thus,

1. first, we can take Ψ(t) = t2 and τ1(z) = z1 χ(z1 + $), where z = (z1, z2, z3, z4) in
our case, to notice that condition (1.4.3) is equivalent in requiring that [$R − $]ess are
uniformly bounded in L2((0, T)×Ω) which is true from (2.3.17). Then we obtain

〈νt,x; τ1〉 = f$−$(t, x) for a.e. (t, x) ∈ (0, T)×Ω,

where f$−$ is the weak-∗ limit found in (2.3.19); moreover, taking Ψ(t) = tγ and
τ2(z) = z1(1− χ(z1 + $)), condition (1.4.3) is equivalent in requiring that [$R − $]res

are uniformly bounded in Lγ((0, T)×Ω) which is true from (2.3.18). Then we obtain

〈νt,x; τ2〉 = g$−$(t, x) for a.e. (t, x) ∈ (0, T)×Ω,
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where g$ is the weak-∗ limit found in (2.3.20). Unifying the two results we get

〈νt,x; τ1 + τ2〉 = ($− $)(t, x) for a.e. (t, x) ∈ (0, T)×Ω,

where $− $ is the weak limit of the densities found in (2.3.2). We will write 〈νt,x; $〉 =
$(t, x) for almost every (t, x) ∈ (0, T)×Ω just to make the notation readable;

2. secondly, we can take Ψ(t) = t2 and τ1(z) = zi χ(z1 + $) with i = 2, 3, 4 to see that
condition (1.4.3) is equivalent in requiring that each component of [mR]ess is uniformly

bounded in L2((0, T)×Ω) which is true from (2.3.21). Also, choosing Ψ(t) = t
2γ

γ+1 and
τ2(z) = zi(1− χ(z1 + $)) with i = 2, 3, 4, condition (1.4.3) is equivalent in requiring

that each component of [mR]res is uniformly bounded in L
2γ

γ+1 ((0, T)×Ω) which is true
from (2.3.22). Then we obtain

〈νt,x; τ1 + τ2〉 = mi(t, x) for a.e. (t, x) ∈ (0, T)×Ω,

which we will write 〈νt,x; m〉 = m(t, x) for almost every (t, x) ∈ (0, T)×Ω, with m the
weak limit of the momenta found in (2.3.3);

3. finally, we can take Ψ(t) = t2 and τ1(z) = [p(z1 + $)− p($)] χ(z1 + $) to notice that
condition (1.4.3) is equivalent in requiring that [p($R)− p($)]ess are uniformly bounded
in L2((0, T)×Ω) which is true from (2.3.23). Then we obtain

〈νt,x; τ1〉 = fp($)−p($)(t, x) for a.e. (t, x) ∈ (0, T)×Ω, (2.4.1)

where fp($)−p($) is the weak-∗ limit found in (2.3.24).

Moreover, due to Lemma 1.4.5, it makes sense to introduce the following new measures:

p∞ = p($)− 〈ν; p($)〉,

M∞ = 1$>0
m⊗m

$
−
〈

ν;1$>0
m⊗m

$

〉
,

σ∞ =
|m|2

$
−
〈

ν;
1
2
|m|2

$

〉
,

E∞ = E−
〈

ν;
1
2
|m|2

$
+ P($)− P′($)($− $)− P($)

〉
.

Notice that p∞ is indeed a measure since, taking τ2(z) = [p(z1 + $)− p($)] (1− χ(z1 + $)),
from (2.4.1), we have

p∞(t, x) = gp($)−p($)(t, x)− 〈νt,x; τ2〉 for a.e. (t, x) ∈ (0, T)×Ω,

where gp($)−p($) is the weak-∗ limit found in (2.3.25). Now, revisiting the momentum equa-
tion (2.3.27) and using the fact that

divx ϕ = I : ∇xϕ,

we get[ˆ
Ω

m ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+

(〈
νt,x;1$>0

m⊗m
$

〉
+ M∞

)
: ∇xϕ

]
dxdt

+

ˆ τ

0

ˆ
Ω
[(〈νt,x; p($)〉+ p∞)I : ∇xϕ− am ·ϕ] dxdt,
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for all τ ∈ [0, T] and for all ϕ ∈ C1
c ([0, T]×Ω; Rd), ϕ · n|∂Ω = 0, which can be rewritten as[ˆ

Ω
m ·ϕ(t, ·) dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+

〈
νt,x;1$>0

m⊗m
$

〉
: ∇xϕ

]
dxdt

+

ˆ τ

0

ˆ
Ω
[〈νt,x; p($)〉divx ϕ− am ·ϕ] dxdt +

ˆ τ

0

ˆ
Ω
∇xϕ : dµm,

for all τ ∈ [0, T] and for all ϕ ∈ C1
c ([0, T]×Ω; Rd), ϕ · n|∂Ω = 0, where

µm = M∞ + p∞I ∈ L∞
weak(0, T;M(Ω; Rd×d))

is a tensor-valued measure. Similarly, from (2.3.28) we get
ˆ

Ω

[〈
ντ,x;

1
2
|m|2

$
+ P($)− P′($)($− $)− P($)

〉
+ E∞(τ)

]
dx

+ a
ˆ τ

0

ˆ
Ω

[〈
νt,x;
|m|2

$

〉
+ σ∞

]
dxdt

≤
ˆ

Ω

[〈
ν0,x;

1
2
|m|2

$
+ P($)− P′($)($− $)($− $)− P($)

〉
+ E∞(0)

]
dx,

for a.e. τ ∈ (0, T), which can be rewritten as
ˆ

Ω

〈
ντ,x;

1
2
|m|2

$
+ P($)− P′($)($− $)− P($)

〉
dx

+ a
ˆ τ

0

ˆ
Ω

〈
νt,x;
|m|2

$

〉
dxdt +D(τ)

≤
ˆ

Ω

〈
ν0,x;

1
2
|m|2

$
+ P($)− P′($)($− $)− P($)

〉
dx,

for a.e. τ ∈ (0, T), with D ∈ L∞(0, T) such that

D(τ) =
ˆ

Ω
E∞(τ) dx + a

ˆ τ

0

ˆ
Ω

σ∞ dxdt.

It can be deduced that ˆ τ

0

ˆ
Ω

d|µm| .
ˆ τ

0
D(t) dt,

for a.e. τ ∈ (0, T). Indeed,
ˆ τ

0

ˆ
Ω

d|µm| ≤
ˆ τ

0

ˆ
Ω
|M∞| dxdt +

d

∑
i,j=1

ˆ τ

0

ˆ
Ω
|p∞|δi,j dxdt

=

ˆ τ

0

ˆ
Ω
|M∞| dxdt + d

ˆ τ

0

ˆ
Ω
|p∞| dxdt.

Now it is sufficient to apply Lemma 1.4.6 with F = P($) − P′($)($ − $) − P($) and G =

p($)− p($), and noticing that

1. the function

[$, m] 7→


0 if m = 0,
|m|2

$ if $ > 0,

∞ otherwise
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is lower semi-continuous, we can apply Lemma 1.4.7 with F = |m|2
$ and G = 0 to get

|m|2
$
−
〈

ν;
|m|2

$

〉
≥ 0;

2. we have

1$>0
m⊗m

$
−
〈

ν;1$>0
m⊗m

$

〉
∈ L∞

weak(0, T;M+(Ω; Rd×d)),

meaning that for any ξ ∈ Rd(
1$>0

m⊗m
$
−
〈

ν;1$>0
m⊗m

$

〉)
: (ξ ⊗ ξ) ≥ 0.

Indeed,

1$>0
m⊗m

$
: (ξ ⊗ ξ)−

〈
ν;1$>0

m⊗m
$

〉
: (ξ ⊗ ξ)

= lim
R→∞

1$R>0
mR ⊗mR

$R
: (ξ ⊗ ξ)−

〈
ν;1$>0

m⊗m
$

〉
: (ξ ⊗ ξ)

= lim
R→∞

1$R>0
|mR · ξ|2

$R
−
〈

ν;1$>0
|m · ξ|2

$

〉
= 1$>0

|m · ξ|2
$

−
〈

ν;1$>0
|m · ξ|2

$

〉
in D′((0, T)× B) for any bounded open set B ⊂ Ω, where in the last line we used the
fact that ∥∥∥∥1$R>0

|mR · ξ|2
$R

∥∥∥∥
L∞(0,T;L1(Ω))

≤ c(E0, ξ),

and thus the weak-∗ limit in L∞(0, T;M(Ω)) exists. Now it is enough to proceed as in
step 1;

3. we can write

Tr
[
1$>0

m⊗m
$
−
〈

ν;1$>0
m⊗m

$

〉]
= 1$>0

|m|2
$
−
〈

ν;1$>0
|m|2

$

〉
,

finally, we conclude that
ˆ τ

0

ˆ
Ω

d|µm| .
ˆ τ

0

ˆ
Ω

E∞ dxdt ≤
ˆ τ

0
D(t) dt.

2.5 dissipative measure-valued solution

We are ready to introduce the concept of dissipative measure-valued solution to the compressible
Euler system with damping. It can be seen as a generalization of a similar concept introduced
by Gwiazda et al. [48]. While the definition in [48] is based on the description of concentra-
tions via the Alibert–Bouchitté defect measures [4], our approach is motivated by [35], where
the mere inequality (2.5.4) is required postulating the domination of the concentrations by
the energy dissipation defect. This strategy seems to fit better the studies of singular limits
on general physical domains performed in the present thesis.
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Definition 2.5.1. A parametrized family of probability measures

νt,x : (t, x) ∈ (0, T)×Ω→ P([0, ∞)×Rd),

ν ∈ L∞
weak((0, T)×Ω;P([0, ∞)×Rd)),

is a dissipative measure-valued solution of problem (2.1.1)–(2.1.6) with initial condition {ν0,x}x∈Ω

if

1. the integral identityˆ
Ω
〈ντ,x; $〉ϕ(τ, ·) dx−

ˆ
Ω
〈ν0,x; $〉ϕ(0, ·) dx

=

ˆ τ

0

ˆ
Ω
[〈νt,x; $〉∂t ϕ + 〈νt,x; m〉 · ∇x ϕ] dxdt

+

ˆ τ

0

ˆ
Ω
∇x ϕ · dµc

(2.5.1)

holds for all τ ∈ [0, T] and for all ϕ ∈ C1
c ([0, T]×Ω), with 〈ν0,x; $〉 = $0. Here

µc ∈ L∞
weak(0, T;M(Ω; Rd))

is a vector–valued measure;

2. the integral identityˆ
Ω
〈ντ,x; m〉 ·ϕ(τ, ·) dx−

ˆ
Ω
〈ν0,x; m〉 ·ϕ(0, ·) dx

=

ˆ τ

0

ˆ
Ω

[
〈νt,x; m〉 · ∂tϕ+

〈
νt,x;1$>0

m⊗m
$

〉
: ∇xϕ

]
dxdt

+

ˆ τ

0

ˆ
Ω
[〈νt,x; p($)〉divx ϕ− a〈νt,x; m〉 ·ϕ] dxdt

+

ˆ τ

0

ˆ
Ω
∇xϕ : dµm,

(2.5.2)

holds for all τ ∈ [0, T] and for all ϕ ∈ C1
c ([0, T]×Ω; Rd), ϕ · n|∂Ω, with 〈ν0,x; m〉 = m0.

Here
µm ∈ L∞

weak(0, T;M(Ω; Rd×d))

is a tensor–valued measure; both µc, µm are called concentration measures;

3. the following inequality
ˆ

Ω

〈
ντ,x;

1
2
|m|2

$
+ P($)− P′($)($− $)− P($)

〉
dx

+ a
ˆ τ

0

ˆ
Ω

〈
νt,x;
|m|2

$

〉
dxdt +D(τ)

≤
ˆ

Ω

〈
ν0,x;

1
2
|m|2

$
+ P($)− P′($)($− $)− P($)

〉
dx,

(2.5.3)

holds for a.e. τ ∈ (0, T), where

D ∈ L∞(0, T), D ≥ 0

is called dissipation defect of the total energy;
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4. there exists a constant C > 0 such that
ˆ τ

0

ˆ
Ω

d|µc|+
ˆ τ

0

ˆ
Ω

d|µm| ≤ C
ˆ τ

0
D(t)dt, (2.5.4)

for a.e. τ ∈ (0, T).

Now, summarizing the discussion concerning the vanishing viscosity limit of the Navier-
Stokes system, we can state the first result of the present thesis.

Theorem 2.5.2. Let Ω ⊂ Rd, d = 2, 3 be a domain with compact Lipschitz boundary and let $ ≥ 0
be a given far field density if Ω is unbounded. Let [$R, uR] be a family of dissipative weak solutions to
the Navier-Stokes system (2.1.7) – (2.1.12) in

(0, T)×ΩR, ΩR = Ω ∩ BR.

Let the corresponding initial data $0, u0 be independent of R satisfying

$0 ≥ 0,
ˆ

Ω

[
1
2

$0|u0|2 + P($0)− P′($)($0 − $)− P($)
]

dx ≤ E0.

Then the family {$R, mR = $RuR}R>0 generates, as R → ∞, a Young measure {νt,x}t∈(0,T);x∈Ω
which is a dissipative measure-valued solution of the Euler system with damping (2.1.1)–(2.1.6).

2.6 weak-strong uniqueness

In this section we aim to prove the following result.

Theorem 2.6.1. Let [r, U] be a strong solution of the compressible Euler system with damping (2.1.1)–
(2.1.6) such that, for a fixed m > d

2 + 1,

r− $ ∈ C([0, T]; Hm(Ω))

U ∈ C([0, T]; Hm(Ω; Rd))

with r > 0 and U · n|∂Ω = 0. Let {νt,x}(t,x)∈(0,T)×Ω be a dissipative measure-valued solution of the
same system (in terms of $ and the momentum m), with dissipation defect D in the sense of Definition
2.5.1 and such that

ν0,x = δr(0,x),(rU)(0,x) for a.e. x ∈ Ω.

Then D = 0 and
νt,x = δr(t,x),(rU)(t,x) for a.e. (t, x) ∈ (0, T)×Ω.

Remark 2.6.2. This theorem applies to the already know results concerning strong solutions;
in particular

(i) if Ω is bounded, for local in time solutions see [70], and [65] for the global one;

(ii) if Ω = R3, for local in time solution see for instance [50], [58], and [72] for the global
one.

The proof will be divided in three steps:
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1. first, in Section 2.6.1, introducing the relative energy functional E , we will show that
proving Theorem 2.6.1 is equivalently in showing that D(τ) = 0 and E(τ) = 0 for all
τ ∈ (0, T), cf. Lemma 2.6.3;

2. secondly, in Section 2.6.2, we will prove that the dissipative measure-valued solu-
tions of problem (2.1.1)–(2.1.6) satisfy an extended version of the energy inequality
(2.5.3) known as relative energy inequality for smooth and compactly supported [r, U], cf.
Lemma 2.6.4;

3. subsequently, in Section 2.6.3, through a density argument, we will show that the rela-
tive energy inequality holds for [r, U] as in the hypothesis of Theorem 2.6.1, cf. Lemma
2.6.7;

4. finally, in Section 2.6.4, we will prove that D(τ) = 0 and E(τ) = 0 for all τ ∈ (0, T), cf.
Lemma 2.6.8.

2.6.1 Relative energy

Introducing the relative energy functional:

E(ν = νt,x($, m)|r, U) =

ˆ
Ω

〈
νt,x;

1
2$

(|m− $U|2) + P($)− P′(r)($− r)− P(r)
〉

dx, (2.6.1)

we can prove the following result.

Lemma 2.6.3. Let {νt,x}(t,x)∈(0,T)×Ω be a dissipative measure-valued solution of problem (2.1.1)–
(2.1.6) in the sense of Definition 2.5.1, and let $, r > 0. Then

E(ν| r, U) ≥ 0,

and the equality holds if and only if

νt,x = δr(t,x),rU(t,x) for a.e. (t, x) ∈ (0, T)×Ω.

Proof. If $ 7→ p($) is strictly increasing in (0, ∞), which is true in our case, then the pressure
potential P is strictly convex; indeed

P′′($) =
p′($)

$
> 0.

For a differentiable function this is equivalent in saying that the function lies above all of its
tangents:

P($) ≥ P′(r)($− r) + P(r)

for all $, r ∈ (0, ∞), and the equality holds if and only if $ = r. In the latter case, it is also
easy to deduce that m = rU.
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2.6.2 Relative energy inequality

Lemma 2.6.4. Let {νt,x}(t,x)∈(0,T)×Ω be a dissipative measure-valued solution of the compressible
Euler system with damping (2.1.1)–(2.1.6) with concentration measures µc, µm and dissipation defect
D in the sense of Definition 2.5.1. Then, for every function

r− $ ∈ C∞
c ([0, T]×Ω),

U ∈ C∞
c ([0, T]×Ω; Rd),

in particular U · n|∂Ω = 0, the following inequality holds:

[E(ν|r, U)]t=τ
t=0 + a

ˆ τ

0

ˆ
Ω

〈
νt,x;

m
$
· (m− $U)

〉
dxdt +D(τ)

≤
ˆ τ

0

ˆ
Ω
〈νt,x; $U−m〉 · [∂tU +∇xU ·U] dxdt

+

ˆ τ

0

ˆ
Ω

〈
νt,x;1$>0

(m− $U)⊗ ($U−m)

$

〉
: ∇xU dxdt

−
ˆ τ

0

ˆ
Ω
〈νt,x; p($)− p(r)〉divx U dxdt

−
ˆ τ

0

ˆ
Ω
[〈νt,x; ($− r)∂tP′(r) + (m− rU) · ∇xP′(r)〉 dxdt

−
ˆ τ

0

ˆ
Ω
∇xU : dµm +

ˆ τ

0

ˆ
Ω

U · ∇xU · dµc −
ˆ τ

0

ˆ
Ω
∇xP′(r) · dµc.

(2.6.2)

Remark 2.6.5. Relation (2.6.2) is know as relative energy inequality.

Remark 2.6.6. Note that we must have $ > 0 if Ω is unbounded in order to guarantee that $

and r are bounded below away from zero.

Proof. First of all, we can take U as a test function in the momentum equation (2.5.2) to obtain

[ˆ
Ω
〈νt,x; m〉 ·U dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
〈νt,x; m〉 · ∂tU +

〈
νt,x;1$>0

m⊗m
$

〉
: ∇xU

]
dxdt

+

ˆ τ

0

ˆ
Ω
〈νt,x; p($)〉divxU dxdt− a

ˆ τ

0

ˆ
Ω
〈νt,x; m〉 ·U dxdt

+

ˆ τ

0

ˆ
Ω
∇xU : dµm,

1
2 |U|2 as a test function in the continuity equation (2.5.1) to get

[
1
2

ˆ
Ω
〈νt,x; $〉|U|2 dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[〈νt,x; $〉U · ∂tU + 〈νt,x; m〉 · ∇xU ·U] dxdt

+

ˆ τ

0

ˆ
Ω

U · ∇xU · dµc,
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and P′(r)− P′($) as test function in (2.5.1) to get[ˆ
Ω
〈νt,x; $〉(P′(r)(t, ·)− P′($))dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
〈νt,x; $〉∂tP′(r) dxdt

+

ˆ τ

0

ˆ
Ω
〈νt,x; m〉 · ∇xP′(r) dxdt

+

ˆ τ

0

ˆ
Ω
∇xP′(r) · dµc.

Then, from the energy inequality (2.5.3), summing up all these terms we get[ˆ
Ω

〈
νt,x;

1
2$
|m− $U|2 + P($)− $P′(r) + $P′($)− P($)

〉
dx
]t=τ

t=0

+ a
ˆ τ

0

ˆ
Ω

〈
νt,x;

m
$
· (m− $U)

〉
dxdt +D(τ)

≤
ˆ τ

0

ˆ
Ω
〈νt,x; $U−m〉 · [∂tU +∇xU ·U] dxdt

+

ˆ τ

0

ˆ
Ω

〈
νt,x;1$>0

(m− $U)⊗ ($U−m)

$

〉
: ∇xU dxdt

−
ˆ τ

0

ˆ
Ω
〈νt,x; p($)〉divx U dxdt

−
ˆ τ

0

ˆ
Ω
[〈νt,x; $〉∂tP′(r) + 〈νt,x; m〉 · ∇xP′(r)] dxdt

−
ˆ τ

0

ˆ
Ω
∇xU : dµm +

ˆ τ

0

ˆ
Ω

U · ∇xU · dµc −
ˆ τ

0

ˆ
Ω
∇xP′(r) · dµc.

Notice that the term
m
$
· (m− $U) =

|m|2
$
−m ·U

is well-defined and integrable. We have

P($)− $P′(r) + $P′($)− P($) = P($)− P′(r)($− r)− P(r)− [p(r)− p($)],

where [ˆ
Ω
〈νt,x; p(r)− p($)〉 dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
〈νt,x; ∂t(p(r)− p($))〉 dxdt

=

ˆ τ

0

ˆ
Ω
〈νt,x; ∂t p(r)〉 dxdt.

Using relation p′(r) = rP′′(r) along with the fact thatˆ
Ω

divx[p(r)U] dx =

ˆ
∂Ω

p(r)U · n dSx = 0,

we can deduce thatˆ
Ω
〈νt,x; ∂t p(r)〉 dx =

ˆ
Ω
〈νt,x; r∂tP′(r) + divx[p(r)U]〉 dx

=

ˆ
Ω
〈νt,x; r∂tP′(r) + r∇xP′(r) ·U + p(r)divx U〉 dx.

We finally obtain relation (2.6.2).
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2.6.3 Density argument

Lemma 2.6.7. Let {νt,x}(t,x)∈(0,T)×Ω be a dissipative measure-valued solution of the compressible
Euler system with damping (2.1.1)–(2.1.6) with the far field density $ > 0 if Ω is unbounded, concen-
tration measures µc, µm and dissipation defect D in the sense of Definition 2.5.1. Then, the relative
energy inequality (2.6.2) holds for any

r− $ ∈ C([0, T]; Hm(Ω))

U ∈ C([0, T]; Hm(Ω; Rd))

where m > d
2 + 1 is fixed, r > 0 and U · n|∂Ω = 0.

Proof. Using the density of the compactly supported smooth functions in the Sobolev spaces,
we can find two sequences {rn − $}n∈N ⊂ C∞

c ([0, T] × Ω), {Un}n∈N ⊂ C∞
c ([0, T] × Ω; Rd)

such that

rn − $→ r− $ in C([0, T]; Hm(Ω)),

Un → U in C([0, T]; Hm(Ω; Rd)).

If we now fix ε > 0, we know that there exists n0 = n0(ε) such that, for every n ≥ n0

sup
t∈[0,T]

‖(r− rn)(t, ·)‖Hm(Ω) < ε,

sup
t∈[0,T]

‖(U−Un)(t, ·)‖Hm(Ω;Rd) < ε.

From now on, let n ≥ n0; for each t ∈ [0, T] we have
ˆ

Ω

〈
νt,x;

1
2$
|m− $U|2

〉
dx

=

ˆ
Ω

〈
νt,x;

1
2$
|m− $(U−Un + Un)|2

〉
dx

=

ˆ
Ω

〈
νt,x;

1
2$
|m− $Un|2

〉
dx−

ˆ
Ω
〈νt,x; m− $Un〉 · (U−Un)(t, ·) dx

+
1
2

ˆ
Ω
〈νt,x; $〉|U−Un|2(t, ·) dx

=

ˆ
Ω

〈
νt,x;

1
2$
|m− $Un|2

〉
dx

−
ˆ

Ω
〈νt,x; m− ($− $)Un〉 · (U−Un)(t, ·) dx + $

ˆ
Ω

Un · (U−Un)(t, ·) dx

+
1
2

ˆ
Ω
〈νt,x; $− $〉|U−Un|2(t, ·) dx +

$

2

ˆ
Ω
|U−Un|2(t, ·) dx.

Revoking the splitting (2.3.16) of an integrable function, we can writeˆ
Ω
〈νt,x; m− ($− $)Un〉 · (U−Un)(t, ·) dx

=

ˆ
Ω
〈νt,x; [m]ess − [$− $]essUn〉 · (U−Un)(t, ·) dx

+

ˆ
Ω
〈νt,x; [m]res − [$− $]resUn〉 · (U−Un)(t, ·) dx;
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since

〈ν(t,·); [m]ess − [$− $]essUn〉, (U−Un)(t, ·) ∈ L2(Ω; Rd)

we can apply Hölder’s inequality (1.1.1) with r = 1, p = 2 and q = 2 to get

ˆ
Ω
〈νt,x; [m]ess − [$− $]essUn〉 · (U−Un)(t, ·) dx

≤ sup
t∈[0,T]

‖〈ν(t,·); [m]ess − [$− $]essUn〉‖L2(Ω;Rd)‖(U−Un)(t, ·)‖L2(Ω;Rd)

. sup
t∈[0,T]

‖(U−Un)(t, ·)‖Hm(Ω;Rd)

. ε.

We also have that

〈ν(t,·); [$− $]resUn〉 ∈ Lγ(K); Rd)

with K compact and since γ > 2γ
γ+1 we obtain

〈ν(t,·); [m]res − [$− $]resUn〉 ∈ L
2γ

γ+1 (Ω; Rd);

using the embedding of the Sobolev space into the Hölder one (1.1.11), we get that (U−
Un)(t, ·) ∈ L∞(Ω; Rd) and hence, due to the interpolation inequality (1.1.3),

(U−Un)(t, ·) ∈ Lp(Ω; Rd) for all p ∈ [2, ∞].

Since 2γ
γ−1 > 2, we can again apply Hölder’s inequality (1.1.1) with r = 1, p = 2γ

γ+1 and

q = 2γ
γ−1 to get

ˆ
Ω
〈νt,x; [m]res − [$− $]resUn〉 · (U−Un)(t, ·) dx

≤ sup
t∈[0,T]

‖〈ν(t,·); [m]res − [$− $]resUn〉‖
L

2γ
γ+1 (Ω;Rd)

‖(U−Un)(t, ·)‖
L

2γ
γ−1 (Ω;Rd)

. sup
t∈[0,T]

‖(U−Un)(t, ·)‖Hm(Ω;Rd)

. ε.

On the other side, we can apply Hölder’s inequality (1.1.1) with r = 1, p = 2 and q = 2 to
obtain

ˆ
Ω

Un · (U−Un)(t, ·) dx ≤ sup
t∈[0,T]

‖Un(t, ·)‖L2(Ω;Rd)‖(U−Un)(t, ·)‖L2(Ω;Rd)

. sup
t∈[0,T]

‖(U−Un)(t, ·)‖Hm(Ω;Rd)

. ε.
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Similarly,

ˆ
Ω
〈νt,x; $− $〉|U−Un|2(t, ·) dx

=

ˆ
Ω
〈νt,x; [$− $]ess + [$− $]res〉|U−Un|2(t, ·) dx

≤ sup
t∈[0,T]

‖〈ν(t,·); [$− $]ess〉‖L2(Ω;Rd)‖(U−Un)(t, ·)‖L4(Ω;Rd)

+ sup
t∈[0,T]

‖〈ν(t,·); [$− $]res〉‖Lγ(Ω;Rd)‖(U−Un)(t, ·)‖
L

2γ
γ−1 (Ω;Rd)

. ε,

and ˆ
Ω
|U−Un|2(t, ·) dx ≤ sup

t∈[0,T]
‖(U−Un)(t, ·)‖Hm(Ω;Rd) < ε.

Summarizing, so far we proved that there exists a positive constant C such that

ˆ
Ω

〈
νt,x;

1
2$
|m− $U|2

〉
dx ≤

ˆ
Ω

〈
νt,x;

1
2$
|m− $Un|2

〉
dx + Cε.

Proceeding in a similar way, we can write

ˆ
Ω
〈νt,x; P($)− P′(r)($− r)− P(r)〉 dx

=

ˆ
Ω
〈νt,x; P($)− P′(rn)($− rn)− P(rn)〉 dx

+

ˆ
Ω
〈νt,x; P′(rn)($− rn)− P′(r)($− r)〉 dx−

ˆ
Ω
[P(r)− P(rn)](t, ·) dx

=

ˆ
Ω
〈νt,x; P($)− P′(rn)($− rn)− P(rn)〉 dx

+

ˆ
Ω
[P(rn)− P′(r)(rn − r) + P(r)](t, ·) dx−

ˆ
Ω
〈νt,x; [P′(r)− P′(rn)]($− rn)〉 dx

=

ˆ
Ω
〈νt,x; P($)− P′(rn)($− rn)− P(rn)〉 dx

+
P′′(ξ1)

2

ˆ
Ω
(r− rn)

2(t, ·) dx− P′′(ξ2)

ˆ
Ω
〈νt,x; $− $〉(r− rn) dx

+ P′′(ξ2)

ˆ
Ω
(rn − $)(r− rn)(t, ·) dx.

We can now focus on the last three terms: the first one is simply bounded as follows

ˆ
Ω
(r− rn)

2(t, ·) dx ≤ sup
t∈[0,T]

‖(r− rn)(t, ·)‖Hm(Ω) < ε;



2.6 weak-strong uniqueness 51

the second one can be rewritten as
ˆ

Ω
〈νt,x; $− $〉(r− rn)(t, ·) dx

=

ˆ
Ω
〈νt,x; [$− $]ess〉(r− rn)(t, ·) dx +

ˆ
Ω
〈νt,x; [$− $]res〉(r− rn)(t, ·) dx

≤ sup
t∈[0,T]

‖〈ν(t,·); [$− $]ess〉‖L2(Ω;Rd)‖(r− rn)(t, ·)‖L2(Ω)

+ sup
t∈[0,T]

‖〈ν(t,·); [$− $]res〉‖Lγ(Ω;Rd)‖(r− rn)(t, ·)‖
L

γ
γ−1 (Ω)

. ε;

notice that, if γ ∈ (1, 2) we use the same argument as before while if γ ∈ [2, ∞) we have
to use the Sobolev embedding in the Lebesgue spaces (1.1.8). For the last term we can use
Hölder’s inequality (1.1.1) with r = 1, p = 2 and q = 2 to get

ˆ
Ω
(rn − $)(r− rn)(t, ·) dx ≤ sup

t∈[0,T]
‖(rn − $)(t, ·)‖L2(Ω)‖(r− rn)(t, ·)‖L2(Ω)

. sup
t∈[0,T]

‖(r− rn)(t, ·)‖Hm(Ω)

. ε.

Again, summarizing, we proved the existence of a positive constant C such that
ˆ

Ω
〈νt,x; P($)− P′(r)($− r)− P(r)〉 dx

≤
ˆ

Ω
〈νt,x; P($)− P′(rn)($− rn)− P(rn)〉 dx + Cε.

Repeating the same steps for each term that appears in the relative energy inequality and
introducing the operator

L(ν|r, U)(τ) = a
ˆ τ

0

ˆ
Ω

〈
νt,x;

m
$
· (m− $U)

〉
dxdt +D(τ)

+

ˆ τ

0

ˆ
Ω
〈νt,x; m− $U〉 · [∂tU +∇xU ·U] dxdt

−
ˆ τ

0

ˆ
Ω

〈
νt,x;1$>0

(m− $U)⊗ ($U−m)

$

〉
: ∇xU dxdt

+

ˆ τ

0

ˆ
Ω
〈νt,x; p($)− p(r)〉divx U dxdt

+

ˆ τ

0

ˆ
Ω
[〈νt,x; ($− r)∂tP′(r) + (m− rU) · ∇xP′(r)〉 dxdt

+

ˆ τ

0

ˆ
Ω
∇xU : dµm +

ˆ τ

0

ˆ
Ω

U · ∇xU · dµc −
ˆ τ

0

ˆ
Ω
∇xP′(r) · dµc,

we have

[E(ν|r, U)(t)]t=τ
t=0 + L(ν|r, U)(τ) ≤ [E(ν|rn, Un)(t)]

t=τ
t=0 + L(ν|rn, Un)(τ) + Cε ≤ Cε,



52 vanishing viscosity limit

for some positive constant C, since for a test function we already proved that the relative
energy inequality holds which is equivalent in saying that

[E(ν|rn, Un)(t)]
t=τ
t=0 + L(ν|rn, Un)(τ) ≤ 0.

By the arbitrary of ε we can conclude that the relative energy inequality (2.6.2) holds for [r, U]

as in our hypothesis.

2.6.4 Vanishing of the relative energy

We are now ready to prove one of the main result: the weak-strong uniqueness principle.

Lemma 2.6.8. Let [r, U] be a strong solution of the compressible Euler system with damping (2.1.1)–
(2.1.6) such that, for a fixed m > d

2 + 1,

r− $ ∈ C([0, T]; Hm(Ω))

U ∈ C([0, T]; Hm(Ω; Rd))

where r > 0 and the far field density $ > 0 if the domain Ω is unbounded. Let {νt,x}(t,x)∈(0,T)×Ω be
a dissipative measure-valued solution of the same system (in terms of $ and the momentum m), with
the same far field density $, concentration measures µc, µm and dissipation defect D in the sense of
Definition 2.5.1, such that

ν0,x = δr(0,x),(rU)(0,x) for a.e. x ∈ Ω.

Then D(τ) = 0 and E(τ) = 0 for all τ ∈ (0, T), where the relative energy functional E is defined as
in (2.6.1).

Proof. We can use the fact that [r, U] is a strong solution: from the momentum equation (2.1.2)
we can deduce that

∂tU + U · ∇xU = −1
r
∇x p(r)− aU = −P′′(r)∇xr− aU = −∇xP′(r)− aU;

substituting in (2.6.2), we get

[E(ν|r, U)]t=τ
t=0 + a

ˆ τ

0

ˆ
Ω

〈
νt,x;

1
2$
|m− $U|2

〉
dxdt +D(τ)

≤
ˆ τ

0

ˆ
Ω

〈
νt,x;1$>0

(m− $U)⊗ ($U−m)

$

〉
: ∇xU dxdt

−
ˆ τ

0

ˆ
Ω
〈νt,x; p($)− p(r)〉divx U dxdt

−
ˆ τ

0

ˆ
Ω
[〈νt,x; P′′(r)($− r)[∂tr +∇xr ·U]〉 dxdt

−
ˆ τ

0

ˆ
Ω
∇xU : dµm +

ˆ τ

0

ˆ
Ω

U · ∇xU · dµc −
ˆ τ

0

ˆ
Ω
∇xP′(r) · dµc.

From the continuity equation (2.1.1) we also have

∂tr +∇xr ·U = −r divx U,
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and thus, knowing that rP′′(r) = p′(r), we get

[E(ν|r, U)]t=τ
t=0 + a

ˆ τ

0

ˆ
Ω

〈
νt,x;

1
2$
|m− $U|2

〉
dxdt +D(τ)

≤
ˆ τ

0

ˆ
Ω

〈
νt,x;1$>0

(m− $U)⊗ ($U−m)

$

〉
: ∇xU dxdt

−
ˆ τ

0

ˆ
Ω
〈νt,x; p($)− p′(r)($− r)− p(r)〉divx U dxdt

−
ˆ τ

0

ˆ
Ω
∇xU : dµm +

ˆ τ

0

ˆ
Ω

U · ∇xU · dµc −
ˆ τ

0

ˆ
Ω
∇xP′(r) · dµc.

Finally, using the fact that the initial data are the same and thus E(ν|r, U)(0) = 0, we end up
to

E(ν|r, U)(τ) + a
ˆ τ

0

ˆ
Ω

〈
νt,x;

1
2$
|m− $U|2

〉
dxdt +D(τ)

≤
ˆ τ

0

ˆ
Ω

〈
νt,x;

∣∣∣∣1$>0
(m− $U)⊗ ($U−m)

$

∣∣∣∣〉 |∇xU| dxdt

+

ˆ τ

0

ˆ
Ω
〈νt,x; |p($)− p′(r)($− r)− p(r)|〉|divx U| dxdt

+

ˆ τ

0

ˆ
Ω
|∇xU| · d|µm|+

ˆ τ

0

ˆ
Ω
|U · ∇xU| · d|µc|

+

ˆ τ

0

ˆ
Ω
|∇xP′(r)| · d|µc|.

Since U and P′(r)− P($) are L∞-functions, we can control terms |∇xU|, |divx U|, |U · ∇xU|
and |∇xP′(r)| by some constants. It is also obvious that there exist a constant c1 such that∣∣∣∣1$>0

(m− $U)⊗ ($U−m)

$

∣∣∣∣ ≤ c1

2$
|m− $U|2,

and a constant c2 such that

|p($)− p′(r)($− r)− p(r)| ≤ c2(P($)− P′(r)($− r)− P(r)).

Thus

E($, m|r, U)(τ) +D(τ) ≤ c
ˆ τ

0
[E($, m|r, U)(t) +D(t)]dt.

By Gronwall lemma 1.5.2 we obtain

E($, m|r, U)(τ) +D(τ) ≤ 0 for all τ ∈ (0, T).

But since E ,D ≥ 0 this implies D(τ) = 0 and E(τ) = 0 for all τ ∈ (0, T).

2.7 vanishing viscosity limit

Unifying the two main results achieved in this chapter, namely Theorems 2.5.2 and 2.6.1, we
conclude the first part of the present thesis proving our last theorem: the solutions of the
Navier-Stokes system converge in the zero viscosity limit to the strong solution of the Euler
system with damping on the life span of the latter.
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Theorem 2.7.1. Let Ω ⊂ Rd, d = 2, 3 be a domain with compact Lipschitz boundary and $ > 0 be
a given far field density if Ω is unbounded. Let {$R, mR = $RuR}R>0 be a family of dissipative weak
solutions to the Navier-Stokes system (2.1.7) – (2.1.12) in

(0, T)×ΩR, ΩR = Ω ∩ BR.

Let the corresponding initial data $0, m0 be independent of R satisfying

$0 > 0,
ˆ

Ω

[
1
2
|m0|2

$0
+ P($0)− P′($)($0 − $)− P($)

]
dx ≤ E0.

Moreover, suppose that
(

$0 − $, m0
$0

)
∈ Hm(Ω), m > d

2 + 1, and that

r− $ ∈ C([0, T]; Hm(Ω))

U ∈ C([0, T]; Hm(Ω; Rd))

is the strong solution to the Euler system with damping (2.1.1)–(2.1.6) with initial data
(

$0, m0
$0

)
.

Then

$R − $→ r− $ in Cweak([0, T]; L2 + Lγ(Ω)) and in L1((0, T)× K),

mR = $RuR → rU in Cweak([0, T]; L2 + L
2γ

γ+1 (Ω; Rd)) and in L1((0, T)× K; Rd)

as R→ ∞, for any compact K ⊂ Ω.

Proof. In the proof of Theorem 2.5.2, we showed that

$R − $→ 〈ν; $− $〉 in Cweak([0, T]; L2 + Lγ(Ω)),

mR → 〈ν; m〉 in Cweak([0, T]; L2 + L
2γ

γ+1 (Ω; Rd)),

where
νt,x : (t, x) ∈ (0, T)×Ω→ P([0, ∞)×Rd),

ν ∈ L∞
weak((0, T)×Ω;P([0, ∞)×Rd)),

is the Young measure associated to the sequence {$R, mR}R>0 but also the dissipative measure-
valued solution to the Euler system with damping. Since

ν0,x = δ$0(x),m0(x) for a.e. x ∈ Ω,

we can apply Theorem 2.6.1 to get that

νt,x = δr(t,x),rU(t,x) for a.e. (t, x) ∈ (0, T)×Ω,

and hence we obtain the claim.
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3
A B S T R A C T S E T T I N G

Semiflow selection is an important tool when dealing with systems that lack uniqueness.
In these contexts, a natural question is weather it is possible or not to construct a solution
satisfying an important feature of systems with uniqueness, known as semigroup or semiflow
property: letting the system run from time 0 to time s, restarting it and letting it run from time
s to time t is equivalent in letting it run directly from time 0 to time t. The aim of this chapter
is to prove the existence of a semiflow selection with range the Skorokhod space of càglàd, i.e.
left–continuous and having right–hand limits, functions, introduced and studied in Section
1.3.

The chapter is organized as follows. In Section 3.1 we will focus on autonomous systems.
More precisely, denoting with X the phase space and with T the trajectory space, our goal
is to prove the existence of a Borel-measurable map U : X → T satisfying the semigroup
property: for any initial data u0 ∈ X, U(u0) is a solution of the system such that

U(u0)(t1 + t2) = U[U(u0)(t1)](t2) for any t1, t2 ≥ 0,

cf. Theorem 3.1.2. In Section 3.2 we will focus on non-autonomous systems, for which we
aim the prove the existence of a semiprocess {Pt0}t0≥0 such that, for any initial data v0 ∈ X,
Pt0(v0) is a solution of the system satisfying

Pt0(v0)(t2) = Pt1 [Pt0(v0)(t1)](t2) for every t0 ≤ t1 ≤ t2,

cf. Theorem 3.2.3. Considering the external force and the boundary condition not as quanti-
ties fixed from the beginning but as part of data, we will be able to show that some properties
of the data can be transferred to the semiflow selection, cf. Proposition 3.2.4.

3.1 autonomous system

Let us first consider a general autonomous system:
∂tu + A(u) = 0 for (t, x) ∈ (0, ∞)×Ω,

u = 0 for (t, x) ∈ (0, ∞)× ∂Ω,

u(0) = u0.

(3.1.1)

The word “autonomous” refers to the fact that the time variable does not appear explicitly
in the system. Consequently, (3.1.1) is time-shift invariant meaning that if u = u(t, x) solves
(3.1.1), ST ◦u is a solution as well, where for every T > 0 the time-shift operator ST is defined
as

ST ◦ u(t) = u(t + T) for all t ≥ 0.

In particular, in this context it is not important to specify the starting time t0 ≥ 0, which for
simplicity can always be taken as t0 = 0.
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If there exists a unique solution for every fixed initial data, we can define a map U such
that for every initial data u0

U(u0)(t) is a solution of system (3.1.1) evaluated at time t ≥ 0.

If there exists a solution for every fixed initial data but it may not be unique, we can define
a map U such that, among all the solutions arising from u0, U(u0) is the one satisfying the
semigroup property; more precisely

U(u0)(t) is a solution of system (3.1.1) evaluated at time t ≥ 0 such that

U(u0)(t1 + t2) = U[U(u0)(t1)](t2) for every t1, t2 ≥ 0.

We will refer to the procedure of finding a map satisfying such an important feature of
systems with uniqueness as semiflow selection. The remaining part of this section will be
dedicated to the proof of the existence of a semiflow selection for autonomous systems.

3.1.1 Setting and main result

In order to state the main result of this section, i.e. the existence of a semiflow selection, it is
necessary to fix a proper setting. Let

• H be a separable Hilbert space with a basis {ek}k∈N;

• X be the phase space associated to (3.1.1), which we suppose to be a closed convex subset
of H;

• T = D([0, ∞); H) be the trajectory space, where D([0, ∞); H) denotes the Skorokhod
space of càglàd functions defined on [0, ∞) and taking values in H, introduced and
studied in Section 1.3.2;

• U : X → 2T be the set-valued map that associates to every initial data u0 ∈ X the family
of (classical, weak, measure-valued, . . . ) solutions to system (3.1.1) emanating from u0;
more precisely, for every u0 ∈ X

U (u0) :=

u ∈ T :

at any time t ≥ 0, u(t) ∈ X is the value

of a solution “in a certain sense” of

system (3.1.1) with initial data u(0) = u0

 . (3.1.2)

Furthermore, we suppose that U satisfies the following properties.

(P1) Non-emptiness: for every u0 ∈ X, U (u0) is a non-empty subset of T .

(P2) Compactness: for every u0 ∈ X, U (u0) is a compact subset of T .

(P3) Measurability: the map U : X → 2T is Borel-measurable.

(P4) Shift-invariance: introducing the positive shift operator ST ◦ u for every T > 0 and
u ∈ T as

ST ◦ u(t) := u(t + T), for all t ≥ 0, (3.1.3)

then, for any T > 0, u0 ∈ X and u ∈ U (u0), we have

ST ◦ u ∈ U (u(T)).
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(P5) Continuation: introducing the continuation operator u1 ∪T u2 for every T > 0 and
u1, u2 ∈ T as

u1 ∪T u2(t) :=

{
u1(t) for 0 ≤ t ≤ T,

u2(t− T) for t > T,
for all t ≥ 0, (3.1.4)

then, for any T > 0, u0 ∈ X, u1 ∈ U (u0) and u2 ∈ U (u1(T)), we have

u1 ∪T u2 ∈ U (u0).

Remark 3.1.1. It is worth noticing that requirement u(t) ∈ X for any u0 ∈ X, u ∈ U (u0)

and any t ≥ 0 in definition (3.1.2) is necessary in order to guarantee the validity of the
shift-invariance and continuation properties.

We are now ready to state the following result; the proof is postponed to the next subsec-
tion.

Theorem 3.1.2. Let the mapping U : X ⊆ H → 2T satisfy properties (P1)–(P5) stated above. Then,
there exists a Borel-measurable map

U : X → T , U(u0) ∈ U (u0) for every u0 ∈ X,

satisfying the semigroup property: for any u0 ∈ X and any t1, t2 ≥ 0

U(u0)(t1 + t2) = U[U(u0)(t1)](t2).

3.1.2 Proof of the existence of a semiflow selection

The idea of the proof of Theorem 3.1.2 is to reduce iteratively the set U (u0) for a fixed u0 ∈ X,
selecting the minimum points of particular functionals in order to obtain finally a single
point in T , which will define U(u0). The procedure has been proposed by Cardona and
Kapitanski [20] in the context of continuous trajectories and later adapted to more general
setting by Breit, Feireisl and Hofmanová [14].

Let us consider the functionals Iλ,k, f : T → R defined for every u ∈ T as

Iλ,k, f (u) =
ˆ ∞

0
e−λt f (〈u(t); ek〉)dt, (3.1.5)

where λ > 0, {ek}k∈N is a basis in H and f : R → R is continuous and bounded; this choice
is justified by the fact that for a fixed k ∈ N we can see Iλ,k, f as the Laplace transform of the
function f (〈u(·); ek〉), an useful interpretation for the proof of the existence of the semiflow
U.

The following result asserts the continuity of the map Iλ,k, f .

Proposition 3.1.3. Let λ > 0, k ∈ N and f : R → R be continuous and bounded. Then, the map
Iλ,k, f : T → R defined in (3.1.5) is continuous.

Proof. Let {un}n∈N in T be such that

un → u in T = D([0, ∞); H) (3.1.6)
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as n→ ∞. By Proposition 1.3.9, (3.1.6) implies in particular that

〈un(t); ek〉 → 〈u(t); ek〉 for a.e. t ∈ (0, ∞)

as n→ ∞. Due to continuity and boundedness of f , we get

Iλ,k, f (un) =

ˆ ∞

0
e−λt f (〈un(t); ek〉)dt→

ˆ ∞

0
e−λt f (〈u(t); ek〉)dt = Iλ,k, f (u),

i.e., what we wanted to prove.

We define the selection mapping for every u0 ∈ X as

Iλ,k, f ◦ U (u0) = {u ∈ U (u0) : Iλ,k, f (u) ≤ Iλ,k, f (ũ) for all ũ ∈ U (u0)}. (3.1.7)

Notice, in particular, that the minimum exists since Iλ,k, f is continuous on T and the set
U (u0) is compact.

In the following result we will show that the set–valued mapping Iλ,k, f ◦ U satisfies prop-
erties (P1)–(P5); the proof is an adaptation of Proposition 5.1 in [14].

Proposition 3.1.4. Let λ > 0, k ∈ N and f : R → R be continuous and bounded. If the set–valued
map U : X → 2T satisfies properties (P1)–(P5), then the set–valued map

Iλ,k, f ◦ U : X → 2T ,

defined for any u0 ∈ X as in (3.1.7), enjoys properties (P1)–(P5) as well.

Proof. (P1) Since the map Iλ,k, f is continuous and the set U (u0) is non-empty and compact
for any u0 ∈ X, we get that Iλ,k, f ◦ U (u0) is non-empty for any u0 ∈ X.

(P2) As the set of minima of a continuous function is closed (it is the counterpart of a point)
we get that Iλ,k, f ◦ U (u0) ⊆ U (u0) is closed in a compact set and hence compact itself
for any u0 ∈ X.

(P3) Notice that, since Iλ,k, f ◦ U (u0) is a compact subset of the separable metric space T for
any u0 ∈ X, the Borel-measurability of the multivalued mapping

u0 ∈ X 7→ Iλ,k, f ◦ U (u0) ∈ K ⊂ 2T

corresponds to measurability with respect to the Hausdorff metric on the space of all
compact subsets of T .

In other words, let dH be the Hausdorff metric on the subspace K ⊂ 2T of all the
compact subsets of T :

dH(K1, K2) = inf
ε≥0
{K1 ⊂ Vε(K2) and K2 ⊂ Vε(K1)} for all K1, K2 ∈ K,

where Vε(A) is the ε-neighborhood of the set A in the topology of T ; then, it is enough
to show that the mapping defined for all K ∈ K as

Iλ,k, f [K] = {z ∈ K| Iλ,k, f (z) ≤ Iλ,k, f (z̃) for all z̃ ∈ K} =
{

z ∈ K| min
z∈K

Iλ,k, f (z)
}
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is continuous as a mapping on K endowed with the Hausdorff metric dH. In particular

we want to show that if Kn
dH−→ K with Kn, K ∈ K then Iλ,k, f [Kn]

dH−→ Iλ,k, f [K] as n→ ∞.
More precisely, it is enough to show that for every ε > 0 there exists n0 = n0(ε) such
that

Iλ,k, f [Kn] ⊂ Vε(Iλ,k, f [K]) and Iλ,k, f [K] ⊂ Vε(Iλ,k, f [Kn]) (3.1.8)

for all n ≥ n0. First of all, notice that by the continuity of Iλ,k, f we have

min
Kn

Iλ,k, f → min
K

Iλ,k, f as n→ ∞. (3.1.9)

We start proving the first inclusion of (3.1.8). By contradiction, suppose that exists a
sequence {zn}n∈N such that

zn ∈ Kn, Iλ,k, f (zn) = min
Kn

Iλ,k, f , zn → z ∈ K \Vε(Iλ,k, f [K])

as n→ ∞; in particular, Iλ,k, f (z) > minK Iλ,k, f . By the continuity of Iλ,k, f we have

min
Kn

Iλ,k, f = Iλ,k, f (zn)→ Iλ,k, f (z) > min
K

Iλ,k, f

as n → ∞; but this contradicts (3.1.9). Interchanging the roles of Kn and K we get the
opposite inclusion in (3.1.8).

(P4) We want to prove the shift-invariance: for any T > 0, u0 ∈ X and u ∈ Iλ,k, f ◦ U (u0)

ST ◦ u ∈ Iλ,k, f ◦ U (u(T)).

Let v ∈ U (u(T)); then, since in particular u ∈ U (u0) and U satisfies property (P5), we
get

u∪T v ∈ U (u0).

From the choice of u, which minimizes Iλ,k, f on U (u0), we obtain

Iλ,k, f (u) ≤ Iλ,k, f (u∪T v). (3.1.10)

Hence, using (3.1.10) in the fourth line and the definition of ∪T in the fifth line,

Iλ,k, f (ST ◦ u) =
ˆ ∞

0
e−λt f (〈u(t + T); ek〉)dt

= eλT
ˆ ∞

T
e−λs f (〈u(s); ek〉)ds

= eλT

(
Iλ,k, f (u)−

ˆ T

0
e−λs f (〈u(s); ek〉)ds

)

≤ eλT

(
Iλ,k, f (u∪T v)−

ˆ T

0
e−λs f (〈u(s); ek〉)ds

)

= eλT
ˆ ∞

T
e−λs f (〈v(s− T); ek〉)ds

= eλT
ˆ ∞

0
e−λ(t+T) f (〈v(t); ek〉)dt

= Iλ,k, f (v).

As v ∈ U (u(T)) was arbitrarily chosen, we obtained that ST ◦ u minimizes Iλ,k, f on
U (u(T)) and consequently belongs to Iλ,k, f ◦ U (u(T)) for any T > 0.
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(P5) We want to prove the continuation: for any T > 0, u0 ∈ X, u1 ∈ Iλ,k, f ◦ U (u0) and
u2 ∈ Iλ,k, f ◦ U (u1(T))

u1 ∪T u2 ∈ Iλ,k, f ◦ U (u0).

Using the shift-invariance for U we obtain

ST ◦ u1 ∈ U (u1(T));

since u2 is a minimum of Iλ,k, f on U (u1(T)) we get

Iλ,k, f (u2) ≤ Iλ,k, f (ST ◦ u1). (3.1.11)

Hence, using (3.1.11) in the fourth line,

Iλ,k, f (u1 ∪T u2) =

ˆ T

0
e−λt f (〈u1(t); ek〉)dt +

ˆ ∞

T
e−λt f (〈u2(t− T); ek〉)dt

=

ˆ T

0
e−λt f (〈u1(t); ek〉)dt + e−λT

ˆ ∞

0
e−λs f (〈u2(s); ek〉)ds

=

ˆ T

0
e−λt f (〈u1(t); ek〉)dt + e−λT Iλ,k, f (u2)

≤
ˆ T

0
e−λt f (〈u1(t); ek〉)dt + e−λT Iλ,k, f (ST ◦ u1)

=

ˆ T

0
e−λt f (〈u1(t); ek〉)dt

+ e−λT
ˆ ∞

0
e−λs f (〈u1(s + T); ek〉)ds

=

ˆ T

0
e−λt f (〈u1(t); ek〉)dt +

ˆ ∞

T
e−λt f (〈u1(t); ek〉)dt

= Iλ,k, f (u1).

On the other side, using the continuation property for U we know that u1 ∪T u2 ∈ U (u0)

and, since u1 is a minimum of Iλ,k, f on U (u0), we have

Iλ,k, f (u1) ≤ Iλ,k, f (u1 ∪T u2).

The only possibility is then

Iλ,k, f (u1 ∪T u2) = Iλ,k, f (u1),

which in particular implies that u1 ∪T u2 ∈ Iλ,k, f ◦ U (u0).

We are now ready to prove the existence of the semiflow selection U.

Proof of Theorem 3.1.2. Fixing a smooth, bounded, strictly increasing function f : R → R and
a countable set {λj}j∈N dense in (0, ∞), we consider the functionals Ij,k : T → R such that

Ij,k(u) =
ˆ ∞

0
e−λjt f (〈u(t); ek〉)dt
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for any u ∈ T . Choosing an enumeration {j(i), k(i)}∞
i=1 of the all involved combinations of

indices, we define the maps

U i := Ij(i),k(i) ◦ · · · ◦ Ij(1),k(1) ◦ U , i = 1, 2, . . .

and

U∞ :=
∞⋂

i=1

U i.

We will now show that the set-valued map

X 3 u0 7→ U∞(u0) ∈ 2T

satisfies properties (P1)–(P5) as well.

(P1)-(P2) First, notice that for every fixed initial data u0 ∈ X the sets U j(u0) are nested:

U 1(u0) ⊇ U 2(u0) ⊇ · · · ⊇ U j(u0) ⊇ . . . .

By Proposition 3.1.4 we obtain that U 1(u0) is a non-empty compact subset of T , and
iterating this procedure we can deduce that the same holds for all U j(u0). Since T
is a Hausdorff space, every compact set is closed; thus, the countable intersection of
closed sets U∞(u0) is a closed subset of the compact set U 1(u0). Applying Cantor’s
intersection theorem 1.5.10 we get in particular that U∞(u0) is a non-empty compact
subset of T for every u0 ∈ X fixed.

(P3) As U∞ is an intersection Borel-measurable maps, it is Borel-measurable itself.

(P4) In order to prove the shift-invariance property, let u0 ∈ X and u ∈ U∞(u0); then, in
particular u ∈ U j(u0) for every j. By Proposition 3.1.4, we can deduce that U j satisfies
the shift-invariance property for every j. This implies

ST ◦ u ∈ U j(u(T)), for all j and all T > 0.

Thus
ST ◦ u ∈ U∞(u(T)), for all T > 0.

(P5) In order to prove the continuation property, let T > 0, u0 ∈ X, u1 ∈ U∞(u0) and
u2 ∈ U∞(u1(T)); then, in particular u1 ∈ U j(u0) and u2 ∈ U j(u1(T)) for every j. By
Proposition 3.1.4, we can deduce that U j satisfies the continuation property for every j.
This implies

u1 ∪T u2 ∈ U j(u0) for all j.

Thus
u1 ∪T u2 ∈ U∞(u0).

We now claim that for every u0 ∈ X the set U∞(u0) is a singleton. Indeed, if u1, u2 ∈
U∞(u0) for a fixed u0 ∈ X, then

Ij(i),k(i)(u1) = Ij(i),k(i)(u2)
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for all i = 1, 2, . . . . Since the integrals Ij(i),k(i) can be seen as Laplace transforms of the
functions f (〈u(·); ek〉), we can apply Lerch’s theorem 1.5.7 to deduce that

f (〈u1(t); ek〉) = f (〈u2(t); ek〉)

for all k ∈ N and a.e. t ∈ (0, ∞). Since the function f is strictly increasing, we obtain that

〈u1(t); ek〉 = 〈u2(t); ek〉

for all k ∈ N and a.e. t ∈ (0, ∞); in particular, from (1.3.5) we get that d∞(u1, u2) = 0 and
thus u1 = u2 in T .

Finally, we define the semiflow selection u for all u0 ∈ X as

U(u0) := U∞(u0) ∈ T ;

mesurability follows from the property (P3) for U∞, while the semigroup property follows
from property (P4): for any u0 ∈ X and any t1, t2 ≥ 0

U(u0)(t1 + t2) = St1 ◦U(u0)(t2) = U[U(u0)(t1)](t2).

3.2 non-autonomous system

Let us now consider a general non-autonomous system
∂tv + A(v) = f (t), for (t, x) ∈ (t0,+∞)×Ω,

v = vb(t), for (t, x) ∈ (t0,+∞)× ∂Ω,

v(t0) = v0,

(3.2.1)

where both the force f = f (t, x) and the boundary condition vb = vb(t, x) depend explicitly
on the time variable. The system is then no longer time-shift independent and it is always
necessary to specify the initial time t0 ≥ 0. We would like to point out that actually the
specific form of the system is not important and never used. What really matters are the
axioms satisfied by the solutions, as we have seen in the context of autonomous systems.

If there exists a unique solution v for every fixed initial time t0 ≥ 0, we can define a
semiprocess {Pt0}t0≥0 such that for every initial data v0

Pt0(v0)(t) is the solution of system (3.2.1) evaluated at time t ≥ t0.

If there exists a solution v for every fixed initial time t0 ≥ 0 but it may not be unique, we
can select a semiprocess {Pt0}t0≥0 such that, among all the solutions arising from an initial
data v0, Pt0(v0) is the one satisfying an analogous of the semigroup property for autonomous
systems; more precisely,

Pt0(v0)(t) is the solution of system (3.2.1) evaluated at time t ≥ t0 such that

Pt0(v0)(t2) = Pt1 [Pt0(v0)(t1)](t2) for every t0 ≤ t1 ≤ t2.
(3.2.2)
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3.2.1 Setting and main result

First of all, we will consider the couple h0 = [vb, f ] not as a quantity fixed from the beginning
but as the data along with the initial condition v0. Let

• H be a separable Hilbert space;

• X be the phase space associated to system (3.2.1), which we suppose to be a closed convex
subset of H;

• HD be the data space, which we suppose to be a time-shift invariant subspace of L1
loc([0, ∞); XD)

with XD a given Banach space, i.e., for every h ∈ HD

ST ◦ h(t) = h(t + T) ∈ HD

• Tt0 = D([t0, ∞); H × HD) be the trajectory space for every fixed t0 ≥ 0;

• σt : HD → HD be the operator such that

σt(h0)(r) =

{
h0(t) for 0 ≤ r ≤ t,

h0(r) for r > t;
(3.2.3)

in particular, for any t ≥ 0, σt(h0) is the restriction of h0 on (t, ∞) extended to be the
constant h0(t) on [0, t].

We can now give the following definition.

Definition 3.2.1. Let the spaces H, X, HD, Tt0 and the operator σt be fixed as above. A
generalized semiprocess {Gt0}t0≥0 in X× HD is a family of set–valued functions

Gt0 : X× HD → 2Tt0 for every t0,

such that for every v0 ∈ X and every h0 ∈ HD

Gt0(v0, h0) =

(v, h) ∈ Tt0 :

at any time t ≥ t0, (v(t), h(t)) ∈ X× HD is

the value of a solution of system (3.2.1) with

initial condition v0 and data h(t) = σt(h0)

 ,

satisfying the following properties.

(P1) Existence: for every t0 ≥ 0, every v0 ∈ X and every h0 ∈ HD, there exists at least one
couple (v, h) ∈ Gt0(v0, h0).

(P2) Compactness: for every t0 ≥ 0, every v0 ∈ X and every h0 ∈ HD, Gt0(v0, h0) is a compact
subset of Tt0 .

(P3) Measurability: for every t0 ≥ 0, Gt0 : X× HD → 2Tt0 is Borel-measurable.

(P4) Restriction-invariance: introducing for every ω ∈ Ωt0 the restriction-operator Rt1 , with
t1 ≥ t0, as

Rt1 ◦ω = ω|[t1,∞).

then, for every 0 ≤ t0 ≤ t1, every v0 ∈ X, every h0 ∈ HD and every couple (v, h) ∈
Gt0(v0, h0) we have

Rt1 ◦ (v, h) = (Rt1 ◦ v, Rt1 ◦ h) ∈ Gt1 [v(t1), h(t1)]. (3.2.4)
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Moreover, we say that a generalized semiprocess {Gt0}t0≥0 is exact if the following property
holds.

(P5) Continuation: introduction for every ω1 ∈ Ωt0 , ω2 ∈ Ωt1 and s ≥ t0 the continuation
operator ∪t0,t1 , with 0 ≤ t0 ≤ t1, as

ω1 ∪t0,t1 ω2(s) =

{
ω1(s) for s ∈ [t0, t1],

ω2(s) for s ∈ (t1, ∞).

then, for every 0 ≤ t0 ≤ t1, every v0 ∈ X, every h0 ∈ HD and

(v1, h1) ∈ Gt0(v0, h0),

(v2, h2) ∈ Gt1 [v1(t1), h(t1)],

we have
(v1, h1) ∪t0,t1 (v2, h2) = (v1 ∪t0,t1 v2, h1 ∪t0,t1 h2) ∈ Gt0(v0, h0). (3.2.5)

Remark 3.2.2. The validity of the restriction-invariance and continuation properties is tauto-
logical for the data terms. Indeed,

(P4) for every couple (v, h) ∈ Gt0(v0, h0), every (ṽ, h̃) ∈ Gt1 [v(t1), h(t1)], every t ≥ t1 and
r ≥ 0

h̃(t)(r) = σt (h(t1)) (r) = σt (σt1(h0)) (r) =

{
σt1(h0)(t) = h0(t) for r ∈ [0, t]

σt1(h0)(r) = h0(r) for r ∈ (t, ∞)

and thus
h̃(t) = σt(h0) = Rt1 ◦ h(t) for every t ≥ t1;

(P5) for every (v1, h1) ∈ Gt0(v0, h0) and every (v2, h2) ∈ Gt1 [v1(t1), h1(t1)] we have

h1 ∪t0,t1 h2(t) =

{
h1(t) = σt(h0) for t ∈ [t0, t1],

h2(t) = σt(h1)(t1) = σt(h0) for t ∈ (t1, ∞)

and thus
h1 ∪t0,t1 h2(t) = σt(h0) for every t ≥ t0.

We are now ready to state the following result; the proof is postponed to the next subsec-
tion.

Theorem 3.2.3. Let H be a separable Hilbert space, X a closed convex subset of H, HD a time-shift
invariant subspace of L1

loc([0, ∞); XD) with XD a given Banach space, and let {Gt0}t0∈R be an exact
generalized semiprocess in X × HD in the sense of Definition 3.2.1. Then for every fixed t0 ≥ 0 there
exists a Borel-measurable map

Pt0 : X× HD → D([t0, ∞); H × HD)

such that
Pt0 [v0, h0] ∈ Gt0(v0, h0), for every (v0, h0) ∈ X× HD

satisfying the following property:

Pt0 [v0, h0](t2) = Pt1 [Pt0 [v0, h0](t1)] (t2), (3.2.6)

for any t0 ≤ t1 ≤ t2.
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3.2.2 Proof of the existence of the semiflow

In order to recycle the already existing results for autonomous systems and more precisely,
in order to apply Theorem 3.1.2, we must first convert our initial system (3.2.1) into an
autonomous one starting from 0. To this end, it is sufficient to think of the time t = t(s) as a
dependent variable of a new parameter s such that t(0) = t0; for simplicity, we consider the
following translation {

ṫ(s) = 1

t(0) = t0
⇒ t(s) = s + t0.

Introducing the new variable w = w(s, x) such that w(s, x) = [t(s), u(s, x) = v (t(s), x)], we
have

∂sw = [ṫ, ṫ · ∂tv] = [ṫ, ∂tv] = [1, f −A(v)] ,

w(0, ·) = [t(0), v (t(0), ·)] = [t0, v (t0, ·)] = [t0, v0]

and thus (3.2.1) can be rewritten as
∂sw + B(w) = [0, f (s + t0)], for (s, x) ∈ (0,+∞)×Ω,

w = [0, vb(s + t0)], for (s, x) ∈ [0,+∞)× ∂Ω,

w(0, ·) = w0,

(3.2.7)

with B(w) = [−1, A(v)] and w0 = [t0, v0]. We are now ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. Let

• Y = [0, ∞)× X× HD;

• K = [0, ∞)× H × HD;

• T = D([0, ∞); K) be the Skorokhod space of càglàd functions defined on [0, ∞) and
taking values in K;

• U : Y → 2T be the set–valued map such that for every (t0, v0, h0) ∈ Y

U (t0, v0, h0) =

(t, u, g) ∈ T :

at any time s ≥ 0, (t(s), u(s), g(s)) ∈ Y is

the value of the solution of system (3.2.7)

with initial condition (t0, v0) and data

g(s) = σs+t0(h0)

 . (3.2.8)

In particular, it is easy to check that

(v, h) ∈ Gt0(v0, h0) ⇔ (t, u, g) ∈ U (t0, v0, h0), (3.2.9)

where t(s) = s + t0, u(s) = v(s + t0) and g(s) = h(s + t0) for every s, t0 ≥ 0. Consequently,
we can deduce that U satisfies the following properties.

(P1) Existence: for every (t0, v0, h0) ∈ Y, U (t0, v0, h0) is a non-empty subset of T .

(P2) Compactness: for every (t0, v0, h0) ∈ Y, U (t0, v0, h0) is a compact subset of T .
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(P3) Measurability: the set-valued map U : Y → 2T is Borel-measurable.

(P4) Shift-invariance: for every T > 0, every (t0, v0, h0) ∈ Y and every (t, u, g) ∈ U (t0, v0, h0),
we have

ST ◦ (t, u, g) ∈ U (t(T), u(T), g(T)),

where we recall that the positive shift operator ST is defined as in (3.1.3).

(P5) Continuation: for every T > 0, every (t0, v0, h0) ∈ Y and every

(t1, u1, g1) ∈ U (t0, v0, h0)

(t2, u2, g2) ∈ U (t1(T), u1(T), g1(T))

we have
(t1, u1, g1) ∪T (t2, u2, g2) ∈ U (t0, v0, h0),

where we recall that the continuation operator ∪T is defined as in (3.1.4).

Properties (P1)–(P5) are a direct consequence of {Gt0}t0≥0 being an exact generalized semipro-
cess. Let us check the shift-invariance and continuation properties.

(P4) Let T > 0, (t0, v0, h0) ∈ Y and (t, u, g) ∈ U (t0, v0, h0) be fixed. Introducing v(t) := u(t−
t0) and h(t) := g(t− t0) for every t ≥ t0, from (3.2.9) we obtain that (v, h) ∈ Gt0(v0, h0);
moreover, noticing that for every s ≥ 0 and t = s + t0 + T

ST ◦ (u, g)(s) = (u(s + T), g(s + T))

= (v(s + t0 + T), h(s + t0 + T))

= (v(t), h(t))

= Rt0+T ◦ (v, h)(t)

for every t ≥ t0 + T, from (3.2.4) we have

Rt0+T ◦ (v, h) ∈ Gt0+T(v(t0 + T), h(t0 + T)) = Gt(T)(u(T), g(T)),

and thus, from (3.2.9) we can deduce that

ST ◦ (t, u, g) ∈ U (t(T), u(T), g(T)).

(P5) Let T > 0, (t0, v0, h0) ∈ Y and

(t1, u1, g1) ∈ U (t0, v0, h0),

(t2, u2, g2) ∈ U (t1(T), u1(T), g1(T))

be fixed. Introducing

v1(t) := u1(t− t0), h1(t) := g1(t− t0) for any t ≥ t0,

v2(t) := u2(t− t0 − T), h2(t) := g2(t− t0 − T) for any t ≥ t0 + T,

from (3.2.9) we obtain that

(v1, h1) ∈ Gt0(v0, h0)

(v2, h2) ∈ Gt(T)(u1(T), g1(T)) = Gt0+T(v1(t0 + T), h1(t0 + T)).
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Furthermore, for every s ≥ 0 and t = s + t0

u1 ∪T u2(s) =

{
u1(s) for s ∈ [0, T]

u2(s− T) for s ∈ (T, ∞)
=

{
v1(t) for t ∈ [t0, t0 + T]

v2(t) for t ∈ (t0 + T, ∞)

= v1 ∪t0,t0+T v2(t),

for every t ≥ t0; similarly, for every s ≥ 0 and t = s + t0

g1 ∪T g2(s) = h1 ∪t0,t0+T h2(t).

Then, from (3.2.5) we obtain

(v1, h1) ∪t0,t0+T (v2, h2) ∈ Gt0(v0, h0)

and thus, from (3.2.9) we can deduce that

(t1, u1, g1) ∪T (t2, u2, g2) ∈ U (t0, v0, h0).

We can apply Theorem 3.1.2 to the set–valued map U to get the existence of a Borel-
measurable map

U : Y → T , U(t0, v0, h0) ∈ U (t0, v0, h0) for every (t0, v0, h0) ∈ Y,

satisfying the semigroup property: for any (t0, v0, h0) ∈ Y and any s1, s2 ≥ 0

U(t0, v0, h0)(s1 + s2) = U[U(t0, v0, h0)(s1)](s2).

Writing for every s ≥ 0
U(t0, v0, h0)(s) = (t, u, g)(s),

we can define the restriction mapping

V : [0, ∞)× X× HD −→ D([0, ∞); H × HD)

(t0, v0, h0) 7−→ (u, g)(s),

and thus, to conclude it is enough to define for every (t0, v0, h0) ∈ Y and every t ≥ t0

Pt0(v0, h0)(t) := V(t0, v0, h0)(t− t0).

Indeed, for every t0 ≤ t1 ≤ t2 we have

Pt0(v0, h0)(t2) = V(t0, v0, h0)(t2 − t0)

= V(t0, v0, h0)(t2 − t1 + t1 − t0)

= V[ V(t0, v0, h0)(t1 − t0) ](t2 − t1)

= V[Pt0(v0, h0)(t1)](t2 − t1)

= Pt1 [Pt0(v0, h0)(t1)](t2),

where in the third line we used the fact that u satisfies the semigroup property. We get (3.2.6)
and thus the claim.
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3.2.3 Properties

The inclusion of the data h0 = [vb, f ] appearing in (3.2.1) as part of a semiprocess guarantees
the validity of some useful properties for the correspondent selected semiflow, summarized
in the following result.

Proposition 3.2.4. Let H, X and HD be fixed as in the hypothesis of Theorem 3.1.2. Let {Gt0}t0∈≥0

an exact generalized semiprocess in X × HD in the sense of Definition 3.2.1, and let {P(t0)}t0≥0 be
the semiflow selection associated to {Gt0}t0≥0. Then the following properties hold.

(i) If h0 ∈ HD is independent of time, then Pt0(v0, h0) is independent of t0 for every v0 ∈ X; in
particular, for every 0 ≤ t0 ≤ t1 and every v0 ∈ X we have

Pt0(v0, h0) ≡ St1−t0 ◦ Pt1(v0, h0). (3.2.10)

(ii) If h0 ∈ HD is periodic in time with period T, meaning h0(t + T) = h0(t) for all t ≥ 0, then for
every t0 ≥ 0 and every v0 ∈ X

Pt0(v0, h0) ≡ ST ◦ Pt0+T(v0, h0). (3.2.11)

(iii) If h1, h2 ∈ HD are such that h1(t) = h2(t) for all t ≥ t̃ > 0, then for every t0 ≥ t̃ and every
v0 ∈ X

Pt0(v0, h1) ≡ Pt0(v0, h2). (3.2.12)

Proof. (i) Let Pt1(v0, h0) = (v, h); then, in particular

v(t1) = v0,

h(t) = σt(h0) for all t ≥ t1,

where σt is defined as in (3.2.3). For every t ≥ t0 we have

St1−t0 ◦ Pt1(v0, h0)(t) =
(
St1−t0 ◦ v(t), St1−t0 ◦ h(t)

)
=
(
v(t + t1 − t0), St1−t0 ◦ (σt(h0))

)
= (ṽ(t), σt(h0)) ,

where in the last line we used the fact that h0 is independent of time. Noticing that

ṽ(t0) = v(t0 + t1 − t0) = v(t1) = v0,

we recover that
St1−t0 ◦ Pt1(v0, h0) ∈ Gt0(v0, h0).

Uniqueness of the semiflow selection lead us to (3.2.10).

(ii) Let Pt0+T(v0, h0) = (v, h); then, in particular

v(t0 + T) = v0,

h(t) = σt(h0) for all t ≥ t0 + T.
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Proceeding as before, for every t ≥ t0 we have

ST ◦ Pt0+T(v0, h0)(t) =
(
ST ◦ v(t), ST ◦ h(t)

)
=
(
v(t + T), ST ◦ (σt(h0))

)
=
(
ṽ(t), ST ◦ (σt(h0))

)
.

Noticing that
ṽ(t0) = v(t0 + T) = v0,

and that, using the periodicity of h0, for every r ≥ 0

ST ◦ (σt(h0)) (r) =

{
ST ◦ h0(t) = h0(t + T) = h0(t) for r ∈ [0, t],

ST ◦ h0(r) = h0(r + T) = h0(r) for r ∈ (t, ∞),
= σt(h0)(r),

we recover that
ST ◦ Pt0+T(v0, h0) ∈ Gt0(v0, h0).

Proceeding as in the previous step, we obtain (3.2.11).

(iii) For every t ≥ t0 ≥ t̃, h1(t) = h2(t) and thus, for every r ≥ 0 we have

σt(h1)(r) =

{
h1(t) = h2(t) for r ∈ [0, t]

h1(r) = h2(r) for r ∈ (t, ∞)
= σt(h2)(r);

then, (3.2.12) easily follows.





4
C O M P R E S S I B L E N AV I E R - S T O K E S S Y S T E M

The goal of this chapter is to prove the existence of a semiflow selction for the compressible
Navier-Stokes system in the class of dissipative weak solutions, adapting the abstract ma-
chinery of the previous chapter to this context. Specifically, fixing a separable Hilbert space
H, a proper phase space X and letting T = D([0, ∞; H)) be the trajectory space, our goal is
to show the existence of a Borel-measurable map V : X → T associating to any initial data
[$0, m0] ∈ X the dissipative weak solution V[$0, m0] satisfying the semigroup property: for
any t1, t2 ≥ 0

V[$0, m0](t1 + t2) = V[ V[$0, m0](t1) ](t2).

The chapter is organized as follows. In Section 4.1 we introduce the system, while in
Section 4.2 we recall the definition of a dissipative weak solution, assuming that the energy
equals almost everywhere a càglàd function E, cf. Definition 4.2.1. In Section 4.3 we prove
the existence of a semiflow selection depending on the initial density $0, momentum m0

and energy E0, cf. Theorem 4.3.1; moreover, we show that it is possible to select only the
admissible solutions, i.e. the ones minimizing the total energy, cf. Lemma 4.3.6. Due to the
fact that the energy can be written in terms of the density and momentum at least almost
everywhere, in Section 4.4 we prove the existence of a restricted selection not depending on
E0, cf. Theorem 4.4.1.

4.1 the system

We consider the compressible Navier-Stokes system, described by the following couple of equa-
tions

∂t$ + divx($u) = 0, (4.1.1)

∂t($u) + divx($u⊗ u) +∇x p($) = divx S(∇xu). (4.1.2)

The unknown variables of the system are the density $ = $(t, x) and the velocity u = u(t, x).
The term p = p($) denotes the pressure, which we assume to be of the type

p($) = a$γ (4.1.3)

with a > 0 and the adiabatic exponent

γ >
d
2

,

but more general types of pressure preserving the essential features of (4.1.3) are allowed,
such as

p ∈ C[0, ∞) ∩ C1(0, ∞), p(0) = 0, p′($) > 0 for $ > 0. (4.1.4)

The term S = S(∇xu) denotes the viscous stress tensor, which is supposed to be a linear
function of the velocity gradient, more precisely to satisfy Newton’s rheological law

S(∇xu) = µ

(
∇xu +∇T

x u− 2
d
(divx u)I

)
+ λ(divx u)I, (4.1.5)
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with µ > 0 and λ ≥ 0. We will consider the system on the set

(t, x) ∈ (0, ∞)×Ω,

where Ω ⊂ Rd, d = 2, 3 is a bounded domain with ∂Ω of class C2+ν for a certain ν > 0. As
our goal is to handle a potentially ill–posed problem, we have deliberately omitted the case
d = 1, for which the problem is known to be well posed, see Kazhikhov [52]. Finally, we
impose the no–slip boundary condition for the velocity

u|∂Ω = 0 for all t ∈ [0, ∞), (4.1.6)

and prescribe the initial conditions

$(0, ·) = $0, ($u)(0, ·) = ($u)0. (4.1.7)

4.1.1 Renormalized continuity equation

A crucial step for proving the existence of weak solutions to system (4.1.1)–(4.1.7) consists in
rescaling the state variables in the continuity equation (4.1.1). Formally, we multiply (4.1.1)
by B′($), with B a smooth function, to get

∂tB($) +∇xB($) · u + $B′($)divx u = 0,

which can be rewritten as

∂tB($) + divx(B($)u) + ($B′($)− B($))divx u = 0. (4.1.8)

Equation (4.1.8) is known as renormalized continuity equation. Even if in our analysis we mainly
follow Feireisl [33], the idea of renormalization can be traced back to the pioneering work of
Kružkov [53] and later DiPerna and Lions [30].

4.1.2 Energy balance

We recall that the compressible Navier-Stokes system (4.1.1)–(4.1.7) has already been intro-
duced in Chapter 2. More precisely, multiplying the balance of momentum (4.1.2) by u and
introducing the pressure potential P = P($) as a solution of

$P′($)− P($) = p($), (4.1.9)

in Section 2.2.1 we have recovered the energy balance

d
dt

ˆ
Ω

[
1
2

$|u|2 + P($)
]

dx +

ˆ
Ω

S(∇xu) : ∇xu dx = 0. (4.1.10)

The quantity

E(t) :=
ˆ

Ω

[
1
2

$|u|2 + P($)
]

dx

represents the total mechanical energy of the fluid. Noticing that from (4.1.5) and (4.1.6)
ˆ

Ω
S(∇xu) : ∇xu dx = µ

ˆ
Ω
|∇xu|2dx + (λ + µ)

ˆ
Ω
|divx u|2dx ≥ 0,
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then, from (4.1.10), we can deduce that E = E(t) is a non-increasing function. As the First
law of thermodynamics asserts that the total energy of a closed system is conserved, E(t)
cannot be the total energy of a viscous fluid at time t. In accordance with the Second law
of thermodynamics and (4.1.10), a part of the mechanical energy is irreversibly converted to
another form of internal energy associated with the production of heat as long as the fluid is
in motion. In the framework of our simplified model, the resulting changes of temperature
and their influence on the fluid motion are not taken into account. A mathematical theory
for the full energetically complete system has been developed by Feireisl and Novotný [42].

Moreover, if we deal with the concept of strong solutions, i.e. if $ and u are smooth
functions solving equations (4.1.1) and (4.1.2) pointwise, we may integrate (4.1.10) over (0, τ)

to getˆ
Ω

[
1
2

$|u|2 + P($)
]
(τ) dx +

ˆ τ

0

ˆ
Ω

S(∇xu) : ∇xu dxdt =
ˆ

Ω

[
1

2$0
|($u)0|2 + P($0)

]
dx,

(4.1.11)
for every τ ≥ 0.

4.2 dissipative weak solution

We are now ready to give the definition of a dissipative weak solution to the compressible
Navier-Stokes system.

Definition 4.2.1. The pair of functions $, u is called dissipative weak solution of the Navier-
Stokes system (4.1.1)–(4.1.7) with total energy E and initial data

[$0, ($u)0, E0] ∈ Lγ(Ω)× L
2γ

γ+1 (Ω; Rd)× [0, ∞)

if the following holds:

(i) regularity class:

[$, $u, E] ∈ Cweak,loc([0, ∞); Lγ(Ω))× Cweak,loc([0, ∞); L
2γ

γ+1 (Ω; Rd))×D([0, ∞)),

with $ ≥ 0;

(ii) weak formulation of the renormalized continuity equation: for any τ > 0 and any functions

B ∈ C[0, ∞) ∩ C1(0, ∞), b ∈ C[0, ∞) bounded on [0, ∞),

B(0) = b(0) = 0 and b(z) = zB′(z)− B(z) for any z > 0,

the integral identity[ˆ
Ω

B($)ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[B($)∂t ϕ + B($)u · ∇x ϕ + b($)divx uϕ] dxdt, (4.2.1)

holds for any ϕ ∈ C1
c ([0, ∞)×Ω), with $(0, ·) = $0;

(iii) weak formulation of the balance of momentum: for any τ > 0 the integral identity[ˆ
Ω

$u ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$u · ∂tϕ+ ($u⊗ u) : ∇xϕ+ p($)divx ϕ] dxdt,

−
ˆ τ

0

ˆ
Ω

S(∇xu) : ∇xϕ dxdt
(4.2.2)

holds for any ϕ ∈ C1
c ([0, ∞)×Ω; Rd), with ($u)(0, ·) = ($u)0;
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(iv) energy inequality: the càglàd function E is non-increasing in [0, ∞), satisfiesˆ
Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx = E(τ), (4.2.3)

for a.e. τ ≥ 0, and the energy inequality

[Eψ]t=τ2+
t=τ1− −

ˆ τ2

τ1

E(t)ψ′(t) dt +
ˆ τ2

τ1

ψ

ˆ
Ω

S(∇xu) : ∇xu dxdt ≤ 0 (4.2.4)

holds for any 0 ≤ τ1 ≤ τ2, ψ ∈ C1
c [0, ∞), ψ ≥ 0, with E(0−) = E0.

Notice that conditions (i) of Definition 4.2.1 and E(0−) = E0 come naturally from the
assumption that the total mechanical energy of the system is bounded at the initial time
t = 0, specifically

E(0+) ≤ E0.

The integral identities (4.2.1) and (4.2.2) can be easily deduced multiplying equations (4.1.8)
and (4.1.2) respectively by test functions, integrating over (0, τ)×Ω and performing an inte-
gration by parts.

Regarding condition (iv) of Definition 4.2.1 a preliminary remark is necessary: it is an
outstanding open problem if the energy equality (4.1.11), which has been derived under the
assumption of smoothness of all quantities involved, holds for any weak solution satisfying
(4.2.1) and (4.2.2). The problem is that the mechanical energy dissipation can be enhanced by
singularities and, if this occurs, a non-negative measure must be added to the left-hand side
of (4.1.10). Accordingly, we obtain the mechanical energy inequality in the form

E(τ) +
ˆ τ

0

ˆ
Ω

S(∇xu) : ∇xu dxdt ≤ E(0),

for a.e. τ ≥ 0, or its distributional form expressed by (4.2.4).

4.2.1 Admissible solution

Following Breit, Feireisl and Hofmanová [14], we introduce a subclass of dissipative weak
solutions that reflect the physical principle of minimization of the total energy. At the present
state, we retain the total energy E as an integral part of the solution so we work with the
triples [$, m, E]. Finally, in Section 4.4 we pass to the natural state variables [$, m]. To this
end, let [$i, mi, Ei], i = 1, 2, be two dissipative solutions starting from the same initial data
[$0, m0, E0]. We introduce the relation

[$1, m1, E1] ≺ [$2, m2, E2] ⇔ E1(τ±) ≤ E2(τ±) for any τ ∈ (0, ∞).

Definition 4.2.2. We say that a dissipative weak solution [$, m, E] to problem (4.1.1)–(4.1.7)
starting from the initial data [$0, m0, E0] in the sense of Definition 4.2.1 is admissible if it is
minimal with respect to the relation ≺. Specifically, if

[$̃, m̃, Ẽ] ≺ [$, m, E],

where [$̃, m̃, Ẽ] is another dissipative solution starting from [$0, m0, E0], then

E = Ẽ in [0, ∞).

In particular, such selection criterion guarantees that equilibrium states belong to the class
of dissipative weak solutions (see [14], Section 6.3).
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4.3 semiflow selection

Our goal is to apply the abstract machinery introduced in the previous chapter in order to
show the existence of a semiflow selection for system (4.1.1)–(4.1.7). More precisely, we aim
to prove Theorem 4.3.1 below, fixing first a proper setting.

4.3.1 Set-up

First of all, we must fix the separable Hilbert space H, the phase space X ⊆ H and the map
U introduced at the beginning of Section 3.1.1. In this context

• H := W−k,2(Ω)×W−k,2(Ω; Rd)×R, where the natural number k > d
2 + 1 is fixed. This

particular choice of k guarantees the compact embedding

Lq(Ω) ↪→↪→W−k,2(Ω) for any q ≥ 1,

as clearly noticeable from (1.1.10);

• the phase space X can be chosen as

X :=
{
[$0, m0, E0] ∈ H : $0 ∈ L1(Ω), $0 ≥ 0, m0 ∈ L1(Ω; Rd) satisfying (4.3.1)

}
where ˆ

Ω

[
1
2
|m0|2

$0
+ P($0)

]
dx ≤ E0; (4.3.1)

• U : X → 2T , with the trajectory space

T = D([0, ∞); H),

is the set–valued mapping that associate to every [$0, m0, E0] ∈ X the family of dis-
sipative weak solutions in the sense of Definition 4.2.1 arising from the initial data
[$0, m0, E0]. More precisely, for every [$0, m0, E0] ∈ X

U [$0, m0, E0] =

[$, m, E] ∈ T :

at any time t ≥ 0, [$(t, ·), m(t, ·), E(t)] ∈ X

is a dissipative weak solution of

problem (4.1.1)–(4.1.7) in the sense of

Definition 4.2.1 with initial data [$0, m0, E0]

 .

Notice that everything is well-defined; indeed, denoting with L1
+(Ω) the space of non–

negative integrable functions on Ω, we can rewrite X as

{[$0, m0, E0] ∈ L1
+(Ω)× L1(Ω; Rd)×R : g($0, m0) ≤ E0},

so that it coincides with the epigraph of the function g : L1
+(Ω) × L1(Ω; Rd) → [0,+∞]

defined as

g($0, m0) =

ˆ
Ω

[
1
2
|m0|2

$0
+ P($0)

]
dx.



78 compressible navier-stokes system

From the fact that

[$, m] 7→


0 if m = 0,
|m|2

$ if $ > 0,

∞ otherwise,

we get that the function g is lower semi–continuous and convex and thus, from Theorem 1.5.5,

condition (i), we deduce that its epigraph is a closed convex subset of Lγ(Ω)× L
2γ

γ+1 (Ω; Rd)×
R for all γ > d

2 .
From our choice of k, we can use the Sobolev embedding (1.1.10) with p = 2 to conclude

that
Cweak,loc([0, ∞); Lr(Ω)) ↪→ Cloc([0, ∞); W−k,2(Ω)) ↪→ D([0, ∞); W−k,2(Ω)),

for every r ≥ 1. Furthermore, due to the weak continuity of the density $ and the momentum
m, for every fixed T > 0 and every t ∈ [0, T], from the energy inequality we can deduce that

‖$(t, ·)‖Lγ(Ω) ≤ sup
t∈[0,T]

‖$(t, ·)‖Lγ(Ω) ≤ c sup
t∈[0,T]

‖1 + P($)(t, ·)‖L1(Ω) ≤ c(E0, Ω),

‖m(t, ·)‖
L

2γ
γ+1 (Ω;Rd)

≤ sup
t∈[0,T]

‖m(t, ·)‖
L

2γ
γ+1 (Ω;Rd)

≤ ess sup
t∈(0,T)

∥∥∥∥ m
√

$
(t, ·)

∥∥∥∥
L2(Ω;Rd)

‖√$(t, ·)‖L2γ(Ω) ≤ c(E0, Ω).

Finally, from condition (i) of Definition 4.2.1 we also have that $(t, ·) ≥ 0 for all t ≥ 0,
while relation ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(t, ·) dx ≤ E(t−) = E(t)

holds for all t ≥ 0 since the energy is convex and $ and m are weakly continuous in time. In
particular, we have that for every t ≥ 0

[$(t, ·), m(t, ·), E(t)] ∈ X.

4.3.2 Main result

Keeping in mind the notation introduced in the previous section, we are now ready to state
our main result.

Theorem 4.3.1. The compressible Navier-Stokes system (4.1.1)–(4.1.7) admits a semiflow selection U
in the class of dissipative weak solutions, i.e., there exists a Borel measurable map U : X → T such
that

U[$0, m0, E0] ∈ U [$0, m0, E0] for any [$0, m0, E0] ∈ X

satisfying the semigroup property: for any [$0, m0, E0] ∈ X and any t1, t2 ≥ 0

U[$0, m0, E0](t1 + t2) = U[ U[$0, m0, E0](t1) ](t2).

Theorem 4.3.1 is a consequence of Theorem 3.1.2 once we have verified that U satisfies
properties (P1)–(P5). To this end, we emphasise the following points.
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• Property (P1) is equivalent to showing the existence of a dissipative weak solution in
the sense of Definition 4.2.1 for any fixed initial data [$0, m0, E0] ∈ X. This is the main
result achieved in Feireisl [33], Theorem 7.1, which we report for reader’s convenience.

Proposition 4.3.2. Let [$0, m0, E0] ∈ X be given; then the Navier-Stokes system (4.1.1)–
(4.1.7) admits a dissipative weak solution in the sense of Definition 4.2.1 with the initial data
[$0, m0, E0].

• Properties (P2) and (P3) hold true if we manage to prove the weak sequential stability of
the solution set U [$0, m0, E0] for every [$0, m0, E0] ∈ X fixed, since it will in particular
imply compactness and the closed-graph property of the mapping

X 3 [$0, m0, E0]→ U [$0, m0, E0] ∈ 2T ,

and thus the Borel–measurality of U , cf. Lemma 1.5.9. Again, the weak sequential
stability of the solution set has already been proved in Feireisl [33], Theorems 6.1, 6.2,
which we report for reader’s convenience.

Proposition 4.3.3. Suppose that {$0,n, m0,n, E0,n}n∈N ⊂ X is a sequence of initial data giving
rise to a family of dissipative weak solutions {$n, mn, En}n∈N to problem (4.1.1)–(4.1.7) in the
sense of Definition 4.2.1, that is, [$n, mn, En] ∈ U [$0,n, m0,n, E0,n] for any n ∈ N. Moreover,
we assume that the initial densities converge strongly

$0,n → $0 in Lγ(Ω)

as n→ ∞ and there exists a constant E > 0 such that E0,n ≤ E for any n ∈ N.

Then, passing to suitable subsequences as the case may be,

m0,n ⇀ m0 in L
2γ

γ+1 (Ω; Rd),

E0,n → E0

as n→ ∞, and
$n → $ in Cweak,loc([0, ∞); Lγ(Ω))

mn → m in Cweak,loc([0, ∞); L
2γ

γ+1 (Ω; Rd))

En → E in D([0, ∞); R)

as n→ ∞, where
[$, m, E] ∈ U [$0, m0, E0].

• Property (P4) is equivalent to showing the following lemma.

Lemma 4.3.4. Let [$0, m0, E0] ∈ X and [$, m, E] ∈ U [$0, m0, E0]. Then we have

ST ◦ [$, m, E] ∈ U [$(T), m(T), E(T)]

for any T > 0.

Proof. Clearly, a dissipative weak solution on the time interval (0, ∞) solves also the
same problem on (T, ∞) with the initial data [$(T), m(T), E(T+)]. Shifting the test
functions in the integrals, this implies

ST ◦ [$, m, E] ∈ U [$(T), m(T), E(T+)].
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Since the energy is non-increasing and caglad, we can choose E(T) as initial energy;
indeed, everything will be well defined

ST ◦ E(0−) = E(T) = E(T−) ≥ E(T+).

• Property (P5) is equivalent to showing the following lemma.

Lemma 4.3.5. Let [$0, m0, E0] ∈ X and

[$1, m1, E1] ∈ U [$0, m0, E0], [$2, m2, E2] ∈ U [$1(T), m1(T), E1(T)].

Then
[$1, m1, E1] ∪T [$2, m2, E2] ∈ U [$0, m0, E0].

Proof. We are simply pasting two solutions together at the time T, letting the second
start from the point reached by the first one at the time T; thus the integral identities
remain satisfied. Choosing the initial energy for [$2, m2, E2] equal to E1(T) = E1(T−),
the energy of the solution [$1, m1, E1] ∪T [$2, m2, E2] remains a non-increasing càglàd
function defined on [0, ∞).

4.3.3 Selection of admissible solutions

If we want to select only the admissible solutions in the sense of Definition 4.2.2, it is sufficient
to start the selection considering in (3.1.5) the functional I1,k with the function f strictly
increasing and such that

f (〈u(t); ek〉) = f (E(t)) for all t ≥ 0,

where u(t) = [$(t, ·), m(t, ·), E(t)].

Lemma 4.3.6. Let f : R → R be smooth, bounded and strictly increasing. Suppose that [$, m, E] ∈
U [$0, m0, E0] satisfies ˆ ∞

0
e−t f (E(t)) dt ≤

ˆ ∞

0
e−t f (Ẽ(t)) dt (4.3.2)

for any [$̃, m̃, Ẽ] ∈ U [$0, m0, E0]. Then [$, m, E] is ≺ minimal, meaning, admissible.

Proof. We proceed by contradiction. Let [$̃, m̃, Ẽ] ∈ U [$0, m0, E0] be such that [$̃, m̃, Ẽ] ≺
[$, m, E], that is, Ẽ ≤ E in [0, ∞). Then, since f is strictly increasing, f (Ẽ(t)) ≤ f (E(t)) for
every t ∈ [0, ∞), which implies that e−t[ f (E(t))− f (Ẽ(t))] ≥ 0. Using the monotonicity of
the integral, we obtain ˆ ∞

0
e−t[ f (E(t))− f (Ẽ(t))] dt ≥ 0;

on the other side, condition (4.3.2) tells us that
ˆ ∞

0
e−t[ f (E(t))− f (Ẽ(t))] dt ≤ 0.

The only possibility is to have the equality in both the integral relations above and thus
f (E(t)) = f (Ẽ(t)) for a.e. t ∈ (0, ∞); since f is strictly increasing, this implies E = Ẽ a.e. in
(0, ∞).
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4.4 restriction to semigroup acting only on the initial data

As a matter of fact, the semiflow selection U = U{$0, m0, E0} is determined in terms of the
three state variables: the density $, the momentum m, and the energy E. Introduction of the
energy might be superfluous; indeed, as pointed out in (4.2.3)

E(τ) =
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx for a.e. τ ≥ 0.

The point is that the equality holds with the exception of a zero measure set of times. More
specifically, the energy E(τ) is a càglàd non-increasing function with well-defined right and
left limits E(τ±), while ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx

is defined at any τ in terms of weakly continuous functions t 7→ $(t, ·), t 7→ m(t, ·). Due to
the convexity of the superposition

[$, m] 7→ 1
2
|m|2

$
+ P($)

the function

τ 7→
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx

is lower semi–continuous in τ. In particular,
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx ≤ E(τ±) for any τ,

where equality holds with the exception of a set of times of measure zero.
We may introduce a new selection defined only in terms of the initial data $0, m0; however,

the price to pay is that the semigroup property will hold almost everywhere in time. More
specifically, we can state this final result.

Theorem 4.4.1. Let U : X → T , U = U[$0, m0, E0] be the semiflow selection associated to the
compressible Navier-Stokes system (4.1.1)–(4.1.7) stated in Theorem 4.3.1. Consider the set of initial
data

X̃ =

{
[$0, m0] :

[
$0, m0,

ˆ
Ω

(
1
2
|m0|2

$0
+ P($0)

)
dx
]
∈ X

}
.

Defining V : X̃ → T such that

V[$0, m0](t) = U
[

$0, m0,
ˆ

Ω

(
1
2
|m0|2

$0
+ P($0)

)
dx
]
(t)

for all t ∈ (0, ∞), then V will satisfy the semigroup property only almost everywhere; more precisely,
calling T ⊂ (0, ∞) the set of times defined as

T =

{
τ ∈ (0, ∞) : E(τ) =

ˆ
Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx

}
,

then T is a set of full measure and

V[$0, m0](t1 + t2) = V[ V[$0, m0](t1) ](t2)

holds for all t1, t2 ∈ T.





5
G E N E R A L C O M P R E S S I B L E V I S C O U S F L U I D

In this chapter we aim to prove the existence of a semiflow selection for a compressible non-
Newtonian fluid in the class of dissipative solutions. Specifically, we assume a barotropic
pressure p($) = a$γ, γ ≥ 1, and the viscous stress tensor S to be related to the symmetric
velocity gradient Dxu through a general implicit rheological law. To verify the validity of
Theorem 3.1.2 in this context and more precisely, in order to verify the validity of properties
(P1)–(P5) of Section 3.1.1 for the set-valued map U that associates to every initial data the
family of dissipative solutions emanating from it, there are two main problems to handle:
the weak sequential stability and the existence of dissipative solutions for γ = 1, which may
be of independent interest.

The chapter is organized as follows. In Section 5.1 we introduce the system, while in
Section 2.5 we give the definition of dissipative solution, which can be seen as a dissipative
weak solution of the problem with an extra term appearing in the balance of momentum
and energy inequality, representing a concentration measure. In Section 5.3 we fix a proper
setting and state the existence of a semiflow selection, cf. Theorem 5.3.2. Section 5.4 is
devoted to the proof of the weak sequential stability of the solution set, cf. Theorem 5.4.1,
based on the family of a priori estimates that can deduced assuming the initial energies to
be uniformly bounded. In Section 5.5 we focus on showing the existence of dissipative solu-
tions when the pressure is a linear function of the density, cf. Theorem 5.5.12; more precisely,
we perform a three-level approximation scheme: addition of artificial viscosity terms in the
continuity equation and balance of momentum in order to convert the hyperbolic system
into a parabolic one, regularization of the convex potential to make it continuously differen-
tiable, approximation via the Faedo-Galerkin technique and a family of finite-dimensional
spaces. Finally, in Section 5.6 we study under which conditions it is possible to guarantee
the existence of dissipative weak solutions for γ = 1.

5.1 the system

A mathematical model of compressible viscous fluids can be described by the following
system

∂t$ + divx($u) = 0, (5.1.1)

∂t($u) + divx($u⊗ u) +∇x p($) = divx S. (5.1.2)

Analogously to the compressible Navier-Stokes system examined in the previous chapter, the
unknown variables are the density $ = $(t, x) and the velocity u = u(t, x), while the viscous
stress tensor S is assumed to be connected to the symmetric velocity gradient Dxu through
Fenchel’s identity

S : Dxu = F(Dxu) + F∗(S), (5.1.3)

where, denoting with Rd×d
sym the space of d-dimensional real symmetric tensors,

F : Rd×d
sym → [0, ∞) is convex and lower semi-continuous with F(0) = 0, (5.1.4)



84 general compressible viscous fluid

and F∗ is its conjugate. Furthermore, following [2], Section 2.1.2, we will suppose F to satisfy
relation

F(D) ≥ µ

∣∣∣∣D− 1
d

Tr[D]I

∣∣∣∣q − c for all D ∈ Rd×d
sym, (5.1.5)

for some µ > 0, c > 0 and q > 1. Notice that condition (5.1.3) is equivalent in requiring

S ∈ ∂F(Dxu),

where ∂ denotes the subdifferential of a convex function.
Regarding pressure, for simplicity we will consider the standard isentropic case

p($) = a$γ, γ ≥ 1, (5.1.6)

with a a positive constant; however, more general EOS preserving the essential features of
(5.1.6) such as (4.1.4) can be considered. The pressure potential P, satisfying the ODE

$P′($)− P($) = p($),

will be of the form

P($) =

{
a $ log $ if γ = 1,

a
γ−1 $γ if γ > 1;

(5.1.7)

in particular, this implies that

P is a strictly convex superlinear continuous function on [0, ∞). (5.1.8)

We will study the system on the set

(t, x) ∈ (0, ∞)×Ω,

where the physical domain Ω ⊂ Rd is assumed to be bounded and Lipschitz, on the bound-
ary of which we impose the no–slip condition

u|∂Ω = 0. (5.1.9)

Finally, we fix the initial conditions

$(0, ·) = $0, ($u)(0, ·) = m0. (5.1.10)

We conclude this section with the following result, collecting the significant properties of
the conjugate function F∗.

Proposition 5.1.1. Let the function F satisfy conditions (5.1.4). Then, its conjugate

F∗ : Rd×d
sym → [0, ∞] is convex, lower semi-continuous and superlinear. (5.1.11)

Proof. First of all, we recall that F∗ is defined for every A ∈ Rd×d
sym as

F∗(A) := sup
B∈Rd×d

sym

{A : B− F(B)}.

The non-negativity of F∗ is trivial if F(0) = 0 since

F∗(A) ≥ A : 0− F(0) = 0 for every A ∈ Rd×d
sym.
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It is also well-know that the conjugate is convex and lower semi-continuous as it is the
supremum of a family of affine functions. It remains to prove the superlinearity:

lim
|A|→∞

F∗(A)

|A| = +∞. (5.1.12)

Let BR(0) be the ball centred at origin and radius R > 0; using the fact that for any A ∈ Rd×d
sym

sup
B∈BR(0)

A : B = sup
B∈BR(0)

{A : B− F(B) + F(B)} ≤ F∗(A) + sup
B∈BR(0)

F(B)

we have
F∗(A)

|A| ≥ sup
0<r≤R
|V|≤1

{
r

A

|A| : V

}
− 1
|A| sup

B∈BR(0)
F(B) ≥ R− c

|A| ,

where we used the fact that F(B) is finite for any B ∈ Rd×d
sym. We conclude that

lim inf
|A|→∞

F∗(A)

|A| ≥ R,

and, since R can be chosen arbitrarily large, we obtain (5.1.12).

5.2 dissipative solution

Following the work of Abbatiello, Feireisl and Novotný [2], we introduce to the concept of
dissipative solutions. From now on, it is better to consider the density $ and the momentum
m = $u as state variables, since they are at least weakly continuous in time.

Definition 5.2.1. The pair of functions [$, m] constitutes a dissipative solution to the problem
(5.1.1)–(5.1.10) with the total energy E and initial data

[$0, m0, E0] ∈ Lγ(Ω)× L
2γ

γ+1 (Ω; Rd)× [0, ∞)

if the following holds:

(i) $ ≥ 0 in (0, ∞)×Ω and

[$, m, E] ∈ Cweak,loc([0, ∞); Lγ(Ω))× Cweak,loc([0, ∞); L
2γ

γ+1 (Ω; Rd))×D([0, ∞));

(ii) the integral identity[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$∂t ϕ + m · ∇x ϕ] dxdt (5.2.1)

holds for any τ > 0 and any ϕ ∈ C1
c ([0, ∞)×Ω), with $(0, ·) = $0;

(iii) there exist

S ∈ L1
loc(0, ∞; L1(Ω; Rd×d

sym)) and R ∈ L∞
weak(0, ∞;M+(Ω; Rd×d

sym))
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such that the integral identity[ˆ
Ω

m ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+ 1$>0

m⊗m
$

: ∇xϕ+ p($)divx ϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt +
ˆ τ

0

ˆ
Ω
∇xϕ : dR dt

(5.2.2)
holds for any τ > 0 and any ϕ ∈ C1

c ([0, ∞)×Ω; Rd), ϕ|∂Ω = 0, with m(0, ·) = m0;

(iv) there exists

u ∈ Lq
loc(0, ∞; W1,q

0 (Ω; Rd)) such that m = $u a.e. in (0, ∞)×Ω;

(v) there exist a constant λ > 0 and a càglàd function E, non–increasing in [0, ∞), satisfying

ˆ
Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx +

1
λ

ˆ
Ω

d Tr[R(τ)] = E(τ) (5.2.3)

for a.e. τ > 0, such that the energy inequality

[E(t)ψ(t)]t=τ+
2

t=τ−1
−
ˆ τ2

τ1

E ψ′ dt +
ˆ τ2

τ1

ψ

ˆ
Ω
[F(Dxu) + F∗(S)] dxdt ≤ 0 (5.2.4)

holds for any 0 ≤ τ1 ≤ τ2 and any ψ ∈ C1
c [0, ∞), ψ ≥ 0, with E(0−) = E0 ≥ E(0+).

Remark 5.2.2. As was proved by Abbatiello, Feireisl and Novotný [2], the notion of solution
introduced in Definition 5.2.1 satisfies the weak-strong uniqueness principle: a dissipative so-
lution of (5.1.1)–(5.1.10) coincides with the strong solution of the same problem emanating
from the same initial data as long as the latter exists, cf. Theorem 6.3 in [2].

The notion of dissipative solution introduced in Definition 5.2.1 is a natural generalization
of the original concept of dissipative measure-valued solution, constructed through Young
measure and extensively analysed in the first part of this thesis for the compressible Euler
system with damping, cf. Section 2.4. As clearly explained in Section 5.4, the concentration
measure R, that we may call Reynolds stress, appearing in the weak formulation of the balance
of momentum (5.2.2) arises from possible oscillations and/or concentrations in the convective
and pressure terms

1$>0
m⊗m

$
+ p($)I

when γ > 1, while for γ = 1, i.e. when the pressure is a linear function of the density $, it
is only the convective term that contributes to R. By consistency, we should have introduced
the dissipation defect E ∈ L∞

weak(0, ∞;M+(Ω)) of the total energy arising from possible
concentrations and/or oscillations in the kinetic and potential energy terms

1
2
|m|2

$
+ P($).

Instead of (5.2.3) we would then have

E(τ) =
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx +

ˆ
Ω

dE(τ), (5.2.5)
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satisfying the energy inequality (5.2.4). Choosing a positive constant λ > 0 such that

Tr
[
1$>0

m⊗m
$

+ χ(γ)p($)I
]
=
|m|2

$
+ d(γ− 1)P($) ≤ λ

(
1
2
|m|2

$
+ P($)

)
with

χ(γ) =

{
0 if γ = 1,

1 if γ > 1,

and adapting Lemma 1.4.6, we could recover the compatibility condition

1
λ

Tr[R(τ)] ≤ E(τ) for a.e. τ > 0. (5.2.6)

In this sense, our choice of the energy (5.2.3) makes the problem more general and easier
to handle with only one free quantity instead of two; however, it reduces to (5.2.5) simply
choosing a dissipation defect E of the type

E(τ) :=
1
λ

Tr[R(τ)] for a.e. τ > 0.

5.3 semiflow selection

Our goal is to prove the existence of a semiflow selection for system (5.1.1)–(5.1.10), adapting
the construction of Chapter 3.

5.3.1 Set–up

As for the compressible Navier-Stokes system, we must fix the space H, the phase space
X ⊆ H and the map U introduced at the beginning of Section 3.1.1. Similarly to was done in
Section 4.3.1:

• H := W−k,2(Ω)×W−k,2(Ω; Rd)×R, where the natural number k > d
2 + 1 is fixed;

• the phase space X can be chosen as

X :=
{
[$0, m0, E0] ∈ H : $0 ∈ L1(Ω), $0 ≥ 0, m0 ∈ L1(Ω; Rd) satisfying (5.3.1)

}
where ˆ

Ω

[
1
2
|m0|2

$0
+ P($0)

]
dx ≤ E0; (5.3.1)

• U : X → 2T , with the trajectory space

T = D([0, ∞); H),

is the set–valued mapping that associate to every [$0, m0, E0] ∈ X the family of dissi-
pative solutions in the sense of Definition 5.2.1 arising from the initial data [$0, m0, E0].
More precisely, for every [$0, m0, E0] ∈ X

U [$0, m0, E0] =

[$, m, E] ∈ T :

at any time t ≥ 0, [$(t, ·), m(t, ·), E(t)] ∈ X

is a dissipative solution of

problem (5.1.1)–(5.1.10) in the sense of

Definition 5.2.1 with initial data [$0, m0, E0]

 .
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Notice that everything is well-defined; indeed, proceeding as in Section 4.3.1, X is a closed

convex subset of Lγ(Ω)× L
2γ

γ+1 (Ω; Rd)×R for all γ ≥ 1 and for every t ≥ 0

[$(t, ·), m(t, ·), E(t)] ∈ X.

5.3.2 Main result

Keeping in mind the notation introduced in the previous section, we are now ready to state
our main result.

Theorem 5.3.1. System (5.1.1)–(5.1.10) admits a semiflow selection U in the class of dissipative
solutions, i.e., there exists a Borel measurable map U : X → T such that

U[$0, m0, E0] ∈ U [$0, m0, E0] for every [$0, m0, E0] ∈ X

satisfying the semigroup property: for any [$0, m0, E0] ∈ X and any t1, t2 ≥ 0

U[$0, m0, E0](t1 + t2) = U[ U[$0, m0, E0](t1) ](t2).

Theorem 5.3.1 is a consequence of Theorem 3.1.2 once we have verified that U satisfies
properties (P1)–(P5). To this end, we emphasise the following points.

• Property (P1) is equivalent in showing the existence of a dissipative solution in the sense
of Definition 5.2.1 for any fixed initial data [$0, m0, E0] ∈ X, which, for γ > 1, is the
main result achieved by Abbatiello, Feireisl and Novotný in [2], Section 3.

• Properties (P2) and (P3) hold true if we manage to prove the weak sequential stability of
the solution set U [$0, m0, E0] for every [$0, m0, E0] ∈ X fixed, since it will in particular
imply compactness and the closed-graph property of the mapping

X 3 [$0, m0, E0]→ U [$0, m0, E0] ∈ 2T ,

and thus the Borel–measurality of U , cf. Lemma 1.5.9.

• Properties (P4) and (P5) can be easily checked following the same arguments of Lem-
mas 4.3.4 and 4.3.5, respectively.

In conclusion, we are done if we show the existence of a dissipative solution for every
[$0, m0, E0] ∈ X fixed when γ = 1 and the weak sequential stability of the solution set
U [$0, m0, E0] for every [$0, m0, E0] ∈ X fixed. The proofs being quite elaborated, they are
postponed to the next sections.

Remark 5.3.2. As already pointed out for the compressible Navier-Stokes system in Section
4.3.3, among all the dissipative solutions emanating from the same initial data it is possible
to select only the admissible ones, i.e. satisfying the physical principal of minimizing the total
energy in the sense of Definition 4.2.2. Indeed, it is sufficient to start the selection considering
in (3.1.5) the functional I1,k with the function f such that

f (〈u(t); ek〉) = f (E(t)) for all t ≥ 0,

where u(t) = [$(t, ·), m(t, ·), E(t)]; see Lemma 4.3.6 for more details.



5.4 weak sequential stability 89

5.4 weak sequential stability

This section will be entirely dedicated to the proof of the following result.

Theorem 5.4.1. Let {[$n, mn]}n∈N be a family of dissipative solutions with the corresponding total
energies {En}n∈N and initial data {[$0,n, m0,n, E0,n]}n∈N in the sense of Definition 5.2.1. If

[$0,n, m0,n, E0,n]→ [$0, m0, E0] in H,

then, at least for suitable subsequences,

[$n, mn, En]→ [$, m, E] in D([0, ∞); H), (5.4.1)

where H = W−k,2(Ω)×W−k,2(Ω; Rd)×R with the natural number k > d
2 + 1 fixed, and [$, m] is

another dissipative solution of the same problem with total energy E and initial data [$0, m0, E0].

The proof will be divided in four steps:

1. in Section 5.4.1 we will first deduce a family of uniform bounds and convergences,
including the limits $ of the densities, m of the momenta and u of the velocities;

2. in Section 5.4.2 we will pass to the limit in the weak formulation of the continuity
equation and the balance of momentum;

3. in order to show that m can be written as the product $u, in Section 5.4.3 we will state
and prove Lemma 5.4.2;

4. finally, in Section 5.4.4 we will focus on finding the limit E of the energies.

5.4.1 Uniform bounds and limits establishment

Our first goal is to show the following convergences, passing to suitable subsequences as the
case may be:

$n → $ in Cweak, loc([0, ∞); Lγ(Ω)), (5.4.2)

mn → m in Cweak, loc([0, ∞); L
2γ

γ+1 (Ω; Rd)), (5.4.3)

un ⇀ u in Lq
loc(0, ∞; W1,q

0 (Ω; Rd)) (5.4.4)

Sn ⇀ S in L1
loc(0, ∞; L1(Ω; Rd×d)), (5.4.5)

1$n>0
mn ⊗mn

$n

∗
⇀ 1$>0

m⊗m
$

in L∞(0, ∞;M(Ω; Rd×d
sym)), (5.4.6)

p($n)
∗
⇀ p($) in L∞(0, ∞;M(Ω)) if γ > 1, (5.4.7)

Rn
∗
⇀ R̃ in L∞(0, ∞;M+(Ω; Rd×d

sym)) (5.4.8)

as n→ ∞. From our hypothesis, all the initial energies are uniformly bounded by a positive
constant E independent of n; specifically,

ˆ
Ω

[
1
2
|m0,n|2

$0,n
+ P($0,n)

]
dx ≤ E.
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From (5.2.3) and the energy inequality (5.2.4) it is easy to deduce the following uniform
bounds ∥∥∥∥ mn√

$n

∥∥∥∥
L∞(0,∞;L2(Ω;Rd))

≤ c1 = c1(E), (5.4.9)

‖P($n)‖L∞(0,∞;L1(Ω)) ≤ c(E), (5.4.10)

‖Tr[Rn]‖L∞
weak(0,∞;M+(Ω)) ≤ c(E), (5.4.11)

‖F(Dxun)‖L1((0,∞)×Ω) ≤ c(E), (5.4.12)

‖F∗(Sn)‖L1((0,∞)×Ω) ≤ c(E). (5.4.13)

Convergences of $n and mn

For γ > 1, from (5.1.7), (5.4.10) and the Banach-Alaoglu theorem 1.5.3, we can easily deduce,
passing to a suitable subsequence as the case may be,

$n
∗
⇀ $ in L∞(0, ∞; Lγ(Ω)) (5.4.14)

as n → ∞. Similarly, from (5.4.14), (5.4.9) and the fact that, using Hölder’s inequality (1.1.1)
with r = 2γ

γ+1 , p = 2, q = 2γ, for a.e. t > 0

‖mn(t, ·)‖
L

2γ
γ+1 (Ω;Rd)

≤
∥∥∥∥ mn√

$n
(t, ·)

∥∥∥∥
L2(Ω;Rd)

‖√$n(t, ·)‖L2γ(Ω) ≤ c(E),

passing to a suitable subsequence, we obtain

mn
∗
⇀ m in L∞(0, ∞; L

2γ
γ+1 (Ω; Rd)) (5.4.15)

as n→ ∞.
Since the L1-space is not reflexive, for γ = 1 a more detailed analysis is needed. If we

consider the Young function Φ(z) = z log+ z, the densities {$n}n∈N can be seen as uniformly
bounded in L∞(0, ∞; LΦ(Ω)), where LΦ(Ω) is the Orlicz space associated to Φ; indeed, notic-
ing that

$ log+ $ =

{
0 if 0 ≤ $ < 1,

$ log $ if $ ≥ 1,
and − 1

e
≤ $ log $ ≤ 0 if 0 ≤ $ ≤ 1,

from (5.4.10), for a.e. τ > 0 we have
ˆ

Ω
$ log+ $(τ, ·) dx =

ˆ
{$≥1}

$ log $(τ, ·) dx

≤
ˆ

Ω
$ log $(τ, ·) dx−

ˆ
{0≤$<1}

$ log $(τ, ·) dx

≤ c(E) +
1
e
|Ω|.

As the function Φ satisfies the ∆2-condition (1.2.1), LΦ(Ω) = EΦ(Ω) and it can be seen
as the dual space of the separable space EΨ(Ω), cf. Theorem 1.2.5, where Ψ denotes the
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complementary Young function of Φ; hence by the Banach-Alaoglu theorem 1.5.3, passing to
a suitable subsequence, we get

$n
∗
⇀ $ in L∞(0, ∞; LΦ(Ω)) (5.4.16)

as n → ∞. We are now able to prove the equi-integrability of the sequence {mn(t, ·)}n∈N ⊂
L1(Ω; Rd) for a.e. t > 0. More precisely, we want to show that for every ε > 0 there exists
δ = δ(ε) such that for all n ∈ N and a.e. t > 0

ˆ
M
|mn|(t, ·) dx < ε for all M ⊂ Ω such that |M| < δ.

Fix ε > 0 and choose ε̃ = ε̃(ε) such that ε̃ = (ε/c1)
2, with c1 as in (5.4.9). As a consequence

of De la Vallée–Poussin criterion, cf. Theorem 1.2.10, we deduce that that the sequence
{$n(t, ·)}n∈N ⊂ L1(Ω) is equi-integrable for a.e. t > 0; thus, there exists δ = δ(ε̃) such that
for all n ∈ N and a.e. t > 0,

ˆ
M

$n(t, ·) dx < ε̃ for all M ⊂ Ω such that |M| < δ. (5.4.17)

Fix M ⊂ Ω with |M| < δ; applying Hölder’s inequality (1.1.1) with r = 1 and p = q = 2,
(5.4.9), (5.4.17) and writing

m =
√

$
m
√

$
,

we get that for all n ∈ N and a.e. t > 0

ˆ
M
|mn|(t, ·) dx ≤

(ˆ
M

$n(t, ·) dx
) 1

2
(ˆ

M

|mn|2
$n

(t, ·) dx
) 1

2

< c1 ε̃
1
2 = ε.

Dunford–Pettis theorem 1.5.4 ensures that for a.e. t > 0 the sequence {mn(t, ·)}n∈N ⊂
L1(Ω; Rd) is relatively compact with respect to the weak topology; in particular, we have that

mn ⇀ m in L1
loc(0, ∞; L1(Ω; Rd))

as n → ∞. Next, to get (5.4.2) from (5.4.14) and (5.4.16) we have to show that the family of
t–dependent functions

fn(t) :=
ˆ

Ω
$n(t, ·)φ dx

converges strongly in C([a, b]) for any φ ∈ C∞
c (Ω) and any compact subset [a, b] ⊂ (0, ∞).

Recalling that the densities $n and the momenta mn are weakly continuous in time, the
sequences { fn}n∈N and { f ′n}n∈N are uniformly bounded in [a, b], since for all γ ≥ 1

sup
t∈[a,b]

| fn(t)| ≤ sup
t∈[a,b]

‖$n(t, ·)‖Lγ(Ω)‖φ‖Lγ′ (Ω) ≤ c(φ),

while from the uniform boundedness of the momenta mn in L∞(0, ∞; Lp(Ω; Rd)) with p =
2γ

γ+1 and γ ≥ 1,

sup
t∈[a,b]

| f ′n(t)| ≤ sup
t∈[a,b]

‖mn(t, ·)‖Lp(Ω:Rd)‖∇xφ‖Lp′ (Ω;Rd) ≤ c(φ).
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As a consequence of the Arzelà-Ascoli theorem 1.5.1, we get (5.4.2). A similar argument can
be applied to get (5.4.3).

Finally, notice that, from the compact Sobolev embedding (1.1.10) with p = 2, convergence
(5.4.2) becomes

$n → $ in Cloc([0, ∞); W−k,2(Ω))

as n→ ∞, and thus by Proposition 1.3.9 we get

$n → $ in D([0, ∞); W−k,2(Ω))

as n→ ∞. The same argument can be applied to show that

mn → m in D([0, ∞); W−k,2(Ω; Rd))

as n→ ∞.

Convergences of un and Sn

From (5.1.5) and (5.4.12) we can also deduce that∥∥∥∥Dxun −
1
d
(divx un)I

∥∥∥∥
Lq((0,∞)×Ω;Rd×d)

≤ c(E).

Fixing a compact interval [a, b] ⊂ (0,+∞) and an open bounded interval I such that [a, b] ⊂ I,
the previous inequality combined with the Lq-version of the trace-free Korn’s inequality
(1.1.7) implies

‖∇xun‖Lq(I×Ω;Rd×d) ≤ c(E);

the standard Poincaré inequality (1.1.6) ensures then

‖un‖Lq(I;W1,q
0 (Ω;Rd))

≤ c(E), (5.4.18)

and thus we get convergence (5.4.4).
The superlinearity of F∗ (5.1.11) combined with (5.4.13), the De la Vallée–Poussin criterion

(1.2.10) and the Dunford–Pettis theorem 1.5.4, gives convergence (5.4.5).

Convergences of p($n), 1$n>0
mn⊗mn

$n
and Rn.

Notice that in (5.4.7) we don’t consider the case γ = 1 because it reduces to (5.4.2). On the
other side, when γ > 1, estimates (5.4.9) and (5.4.10), combined with the fact that∣∣∣∣1$>0

m⊗m
$

∣∣∣∣ . |m|2$
, p($) . (1 + P($)) ,

imply that the pressures {p($n(t, ·))}n∈N and the convective terms
{
1$n>0

mn⊗mn
$n

(t, ·)
}

n∈N

are uniformly bounded in the non–reflexive L1–space for a.e. t > 0. The idea is then to see
the L1–space as embedded in the space of bounded Radon measures M(Ω), which in turn
can be identified as the dual space of the separable space C(Ω). Accordingly, introducing
the space L∞

weak(0, ∞;M(Ω)), cf. Definition 1.4.1, we obtain convergences (5.4.6) and (5.4.7).
Finally, estimate (5.4.11) guarantees convergence (5.4.8).
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5.4.2 Limit passage

We are now ready to pass to the limit in the weak formulation of the continuity equation and
the balance of momentum, obtaining that[ˆ

Ω
$ϕ(t, ·) dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$∂t ϕ + m · ∇x ϕ] dxdt

holds τ > 0 and any ϕ ∈ C1
c ([0, ∞)×Ω), with $(0, ·) = $0, and[ˆ

Ω
m ·ϕ(t, ·) dx

]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+ 1$>0

m⊗m
$

: ∇xϕ+ p($)divx ϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt +
ˆ τ

0

ˆ
Ω
∇xϕ : dR̃ dt

holds for any τ > 0 and any ϕ ∈ C1
c ([0, ∞)×Ω; Rd), ϕ|∂Ω = 0, with m(0, ·) = m0. The last

integral identity can be rewritten as[ˆ
Ω

m ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+ 1$>0

m⊗m
$

: ∇xϕ+ p($)divx ϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt +
ˆ τ

0

ˆ
Ω
∇xϕ : dŘ dt

where Ř ∈ L∞
weak(0, ∞;M(Ω; Rd×d

sym)) is such that

dŘ = dR̃+

(
1$>0

m⊗m
$
− 1$>0

m⊗m
$

)
dx +

(
p($)− p($)

)
χ(γ)I dx, (5.4.19)

with

χ(γ) =

{
0 if γ = 1,

1 if γ > 1.

We can prove the stronger condition

Ř ∈ L∞
weak(0, ∞;M+(Ω; Rd×d

sym)); (5.4.20)

more precisely, we want to show that for all ξ ∈ Rd, all open sets B ⊂ Ω and a.e. τ > 0

Ř(τ) : (ξ ⊗ ξ)(B) ≥ 0.

we can rewrite the term on the left–hand side as
ˆ
B
(ξ ⊗ ξ) : dŘ(τ+) = lim

d→0

ˆ τ+d

τ

ˆ
B
(ξ ⊗ ξ) : dŘ(t) dt

= lim
d→0

ˆ ∞

0

ˆ
Ω
1[τ,τ+d]×B (ξ ⊗ ξ) : dŘ(t) dt

Since the indicator function 1[τ,τ+d]×B can be approximated by some non–negative test func-
tions, it is enough to show that

ˆ ∞

0

ˆ
Ω

ϕ (ξ ⊗ ξ) : dŘ(t) dt ≥ 0



94 general compressible viscous fluid

holds for all ϕ ∈ C∞
c ((0, T) × Ω), ϕ ≥ 0. We can notice that the first term on the right–

hand side of (5.4.19) will obviously satisfy the above inequality since R̃ itself belongs to
L∞

weak(0, ∞;M+(Ω; Rd×d
sym)), and

ˆ ∞

0

ˆ
Ω

(
p($)− p($)

)
I : (ξ ⊗ ξ) ϕ dxdt =

ˆ ∞

0

ˆ
Ω

(
p($)− p($)

)
|ξ|2ϕ dxdt ≥ 0,

since $ 7→ p($) is a convex lower semi–continuous function and thus p($) ≥ p($), cf. The-
orem 1.5.5, condition (ii). Finally, following the same idea developed by Feireisl and Hof-
manová [36], Section 3.2, as a consequence of (5.4.6) we can write
ˆ ∞

0

ˆ
Ω

(
1$>0

m⊗m
$
− 1$>0

m⊗m
$

)
: (ξ ⊗ ξ) ϕ dxdt

= lim
n→∞

ˆ ∞

0

ˆ
Ω

(
1$n>0

mn ⊗mn

$n
− 1$>0

m⊗m
$

)
: (ξ ⊗ ξ) ϕ dxdt

= lim
n→∞

ˆ ∞

0

ˆ
Ω

(
1$n>0

|mn · ξ|2
$n

− 1$>0
|m · ξ|2

$

)
ϕ dxdt.

(5.4.21)

The Cauchy–Schwarz inequality allows to write |m · ξ|2 ≤ |m|2|ξ|2, and thus by (5.4.9) we
obtain ∥∥∥∥1$n>0

|mn · ξ|2
$n

∥∥∥∥
L∞(0,∞;L1(Ω))

≤ c(E, ξ);

it is possible then to find the limit

1$n>0
|mn · ξ|2

$n

∗
⇀ 1$>0

|m · ξ|2
$

in L∞(0, ∞;M(Ω))

as n→ ∞, and rewrite the first line in (5.4.21) as
ˆ ∞

0

ˆ
Ω

(
1$>0
|m · ξ|2

$
− 1$>0

|m · ξ|2
$

)
ϕ dxdt.

As in the previous passage, (5.4.20) will now follow from the weak lower semi–continuity on
X of the convex function

[$, m] 7→


0 if m = 0,
|m·ξ|2

$ if $ > 0,

∞ otherwise

for any ξ ∈ Rd fixed. We proved in particular that the pair of functions [$, m] satisfies
conditions (ii) and (iii) of Definition 5.2.1. However, Ř has to be slightly modified in order to
get the energy (5.2.3), as we will see in Section 5.4.4.

5.4.3 Auxiliary lemma

In order to prove that
m = $u a.e. in (0, ∞)×Ω,

and in particular to show that [$, m] satisfy condition (iv) of Definition 5.2.1, we need the
following result.
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Lemma 5.4.2. Let Ω ⊂ Rd be a bounded domain. Suppose

{$n}n∈N to be uniformly bounded in L∞(0, ∞; LΦ(Ω)),

where LΦ(Ω) is the Orlicz space associated to the Young function Φ satisfying the ∆2-condition
(1.2.1), with $n ≥ 0 for all n ∈ N. Suppose also that

{un}n∈N be uniformly bounded in Lq
loc(0, ∞; W1,q(Ω; Rd)), q > 1. (5.4.22)

Moreover, let the sequence {$nun}n∈N be equi–integrable in L1
loc(0, ∞; L1(Ω; Rd)). Then, if

$n → $ in Cweak, loc([0, ∞); L1(Ω)), (5.4.23)

un ⇀ u in Lq
loc(0, ∞; W1,q(Ω; Rd)), (5.4.24)

$nun ⇀ m in L1
loc(0, ∞; L1(Ω; Rd)) (5.4.25)

as n→ ∞, we have
m = $u a.e. in (0, ∞)×Ω. (5.4.26)

Proof. 1. Truncation. Following the same idea developed by Abbatiello, Feireisl and
Novotný in [2], Lemma 8.1, it is enough to suppose that

{un}n∈N is uniformly bounded in L∞
loc(0, ∞; L∞(Ω; Rd)). (5.4.27)

Indeed, let us consider a bounded cut-off function T : Rd → Rd such that

T(−z) = T(z), T(z) = z if |z| ≤ 1 for any z ∈ Rd,

and the family of truncation functions {Tk}k∈N such that

Tk(z) = k T
(z

k

)
for any z ∈ Rd.

Writing

un = Tk(un) +
(
un − Tk(un)

)
,

$nun = $nTk(un) + $n
(
un − Tk(un)

)
,

on one side, for any k ∈ N fixed we have

Tk(un)
∗
⇀ Tk(u) in L∞

loc(0, ∞; L∞(Ω; Rd)),

$nTk(un) ⇀ mk in L1
loc(0, ∞; L1(Ω; Rd))

as n → ∞; on the other side, for every [a, b] ⊂ [0, ∞), using Hôlder’s inequality (1.1.1)
with r = 1, p = q and q = q′,

ˆ b

a

ˆ
Ω
|un − Tk(un)| dxdt ≤ 2

ˆ ˆ
{|un|≥k}

|un| dxdt

≤ 2 |{|un| ≥ k}|
1
q′ ‖un‖Lq((a,b)×Ω;Rd) → 0

as k → ∞, uniformly in n ∈ N, and, in view of the equi–integrability of {$nun}n∈N, cf.
condition (ii) of Theorem 1.5.4,

ˆ b

a

ˆ
Ω

$n|un − Tk(un)| dxdt ≤ 2
ˆ ˆ

{|un|≥k}
$n|un| dxdt→ 0,
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as k→ ∞, uniformly in n ∈ N. Finally, noticing that for every [a, b] ⊂ [0, ∞)

‖u− Tk(u)‖L1((a,b)×Ω;Rd) ≤ lim inf
n→∞

‖un − Tk(un)‖L1((a,b)×Ω;Rd) → 0

as k→ ∞, (5.4.26) reduces to prove that for every k ∈ N fixed

mk = $Tk(u) a.e. in (0, ∞)×Ω.

2. Regularization. We claim that it is sufficient to suppose

{un}n∈N to be uniformly bounded in Lq
loc(0, ∞; Wm,r(Ω; Rd)) (5.4.28)

with q > 1 and m, r arbitrarily large. Seeing all the quantities involved as embedded
in Rd with compact support, we consider regularization in the spatial variable by con-
volution with a family of regularizing kernels {θδ}δ>0, cf. Definition 1.1.1. As in the
previous step, writing

$nun = $n θδ ∗ un + $n(un − θδ ∗ un),

our goal is to show that for every [a, b] ⊂ (0, ∞)

ˆ b

a

ˆ
Ω

$n|un − θδ ∗ un| dxdt→ 0

as δ→ 0, uniformly in n ∈ N. To this end, we introduce the Banach space

X = W1,q
0 ∩ L∞(Ω; Rd)

and observe that, in view of (5.4.22) and (5.4.27),

{‖un‖X}n∈N is uniformly bounded in Lq
loc(0, ∞). (5.4.29)

Consequently, we may write

ˆ b

a

ˆ
Ω

$n|un − θδ ∗ un| dxdt = IM
1 + IM

2

with

IM
1 =

ˆ
{‖un(t,·)‖X≤M}

ˆ
Ω

$n|un − θδ ∗ un| dxdt,

IM
2 =

ˆ
{‖un(t,·)‖X>M}

ˆ
Ω

$n|un − θδ ∗ un| dxdt,

where, in view of (5.4.29) - recall that the functions $n are weakly continuous in time

IM
2 ≤ c sup

t∈[a,b]
‖$n(t, ·)‖L1(Ω)‖un‖L∞((a,b)×Ω;Rd) |{‖un(t, ·)‖X > M}| → 0

as M → ∞, uniformly in n ∈ N and independently of δ > 0. It remains to show small-
ness of the first integral for fixed M. To this end, denoting with Ψ the complementary
Young function of Φ, we consider the Orlicz space LΨ(Ω) that can be identified with
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the dual of LΦ(Ω) as Φ satisfies the ∆2–condition 1.2.1. By Proposition 1.2.9, we recover
the compact embedding

X ↪→↪→ LΨ(Ω; Rd)

which, combined with boundedness of convolution on EΨ(Ω) ⊂ LΨ(Ω), cf. Lemma
1.2.7, gives

IM
1 ≤ sup

t∈[a,b]
‖$n(t, ·)‖LΦ(Ω) sup

‖un(t,·)‖X≤M
‖un − θδ ∗ un‖EΨ(Ω;Rd) → 0

as δ→ 0, uniformly in n ∈ N.

3. Conclusion. Using the compact Sobolev embedding (1.1.10) with k = 1 and p = s > d,
from (5.4.23) we get that

$n → $ in Cloc([0, ∞); W−1,s′(Ω)) for any s > d

as n→ ∞, and thus, to conclude the proof of the Lemma it is sufficient to choose m = 1
and r = s in (5.4.28).

5.4.4 Limit of the energies

From (5.2.3) we can notice that the energies En(τ) are non–increasing and for γ > 1 they are
also non–negative, while for γ = 1 we have

En(τ) ≥
ˆ

Ω

[
1
2
|mn|2

$n
+ 1$n≥1 $ log $

]
(τ, ·) dx +

1
λn

ˆ
Ω

d Tr[Rn(τ)] +

ˆ
{0≤$n<1}

$n log $n dx

≥ “non-negative term”− |Ω|
e

.

for a.e. τ > 0. Hence, for every [a, b] ⊂ (0, ∞) and every n ∈ N

‖En‖L1[a,b] ≤
ˆ b

0
|En(t)| dt ≤ b sup

t∈[0,b]
|En(t)| ≤ b E0,n ≤ c(E),

and, since the functions En are non-increasing, the total variation on [a, b] is given by

Vb
a (En) = En(a)− En(b) ≤

{
E0,n +

|Ω|
e if γ = 1

E0,n if γ > 1
≤ c(E).

We recover that {En}n∈N is locally of bounded variation and by Helly’s theorem 1.1.8, passing
to a suitable subsequence as the case may be, we obtain

En(t)→ E(t) for every t ∈ [0, ∞) (5.4.30)

as n→ ∞, which in particular implies

En → E in D([0, ∞); R) (5.4.31)

as n → ∞, since En : [0, ∞) → R is a monotone function for all n ∈ N and thus, by
Proposition 1.3.9, showing (5.4.31) is equivalent to showing almost everywhere convergence.



98 general compressible viscous fluid

On the other side, from (5.4.9), (5.4.10) and (5.4.11) we get

|mn|2
$n

∗
⇀
|m|2

$
in L∞(0, ∞;M(Ω))

P($n)
∗
⇀ P($) in L∞(0, ∞;M(Ω))

1
λn

Tr [Rn]
∗
⇀ Ẽ in L∞(0, ∞;M+(Ω))

as n→ ∞. We can then write

E(τ) =
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx +

ˆ
Ω

dE(τ) (5.4.32)

for a.e. τ > 0, with

dE = dẼ+
1
2

(
|m|2

$
− |m|

2

$

)
dx +

(
P($)− P($)

)
dx

where, once again, from the convexity of the function P and of the superposition [$, m] 7→
|m|2

$ , we get

E ∈ L∞
weak(0, ∞;M+(Ω)).

As pointed out in Section 5.2, we can choose constant λ > 0 such that

Tr[Ř(τ)] ≤ λE(τ) (5.4.33)

for a.e. τ ∈ (0, T); however, with this choice we only get
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx +

1
λ

ˆ
Ω

d Tr[Ř(τ)] ≤ E(τ)

for a.e. τ ∈ (0, T). To obtain (5.2.3), it is sufficient to define a new defect

R = Ř+ ψ(t)I,

where the function ψ ≥ 0 of time only can be chosen in such a way that
ˆ

Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx +

1
λ

ˆ
Ω

d Tr[R(τ)] = E(τ)

for a.e. τ ∈ (0, T). Clearly, ˆ
Ω
∇xϕ : dR =

ˆ
Ω
∇xϕ : dŘ

for any ϕ ∈ C∞
c ([0, ∞)×Ω; Rd), ϕ|∂Ω = 0, and therefore, the weak formulation of the balance

of momentum (5.2.2) remains valid.
Finally, notice that the couple [$, m] satisfies the energy inequality (5.2.4) due to lower

semi–continuity of the functions F and F∗: for a.e. τ > 0
ˆ τ

0

ˆ
Ω
[F(Dxu) + F∗(S)] dxdt ≤ lim inf

n→∞

ˆ τ

0

ˆ
Ω
[F(Dxun) + F∗(Sn)] dxdt;

in particular, [$, m] satisfies condition (iv) of Definition 5.2.1.
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5.5 existence for linear pressure

As in [2] Abbatiello, Feireisl and Novotný proved the existence of dissipative solutions of
system (5.1.1)–(5.1.10) when γ > 1 in (5.1.6), in this section we aim to show existence for
γ = 1 in (5.1.6). We employ an approximation scheme based on

(i) addition of an artificial viscosity term of the type ε∆x$ in the continuity equation (5.1.1)
in order to convert the hyperbolic equation into a parabolic one and thus recover better
regularity properties of $;

(ii) addition of an extra term of the type ε∇xu · ∇x$ in the balance of momentum (5.1.2) in
order to eliminate the extra terms arising in the energy inequality to save the a priori
estimates;

(iii) regularization of the convex potential F through convolution with a family of regular-
izing kernels to make it continuously differentiable.

More precisely, we will study the following system:

• continuity equation
∂t$ + divx($u) = ε∆x$, (5.5.1)

on (0, T)×Ω, with ε > 0, the homogeneous Neumann boundary condition

∇x$ · n = 0 on ∂Ω, (5.5.2)

and the initial condition

$(0, ·) = $0,n on Ω, $0,n → $0 in L1(Ω) as n→ ∞, (5.5.3)

with $0,n ∈ C(Ω), $0,n > 0 for all n ∈ N.

• momentum equation

∂t($u) + divx($u⊗ u) + a∇x$ + ε∇xu · ∇x$ = divx S (5.5.4)

on (0, T)×Ω, with ε > 0, the no-slip boundary condition

u|∂Ω = 0 on ∂Ω, (5.5.5)

and the initial condition
($u)(0, ·) = m0 on Ω. (5.5.6)

• convex potential
Fδ(D) = (ξδ ∗ F)(D)− inf

D∈Rd×d
sym

(ξδ ∗ F) (5.5.7)

for any D ∈ Rd×d
sym, with {ξδ}δ>0 a family of regularizing kernels in Rd×d

sym as in Definition
1.1.1, the function F satisfying (5.1.4)–(5.1.5), and such that

S : Dxu = Fδ(Dxu) + F∗δ (S). (5.5.8)
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Even if system (5.5.1)–(5.5.8) is of parabolic type, we are forced to perform a further ap-
proximation known as Faedo-Galerkin technique. The reason is that the unknown state variable
u appears multiplied by $ in (5.5.4), which prevents us from applying the already existing
results for parabolic systems that can be found in literature. The idea is to consider a family
{Xn}n∈N of finite-dimensional spaces Xn ⊂ L2(Ω; Rd), such that

Xn := span{wi| wi ∈ C∞
c (Ω; Rd), i = 1, . . . , n},

where wi are orthonormal with respect to the standard scalar product in L2(Ω; Rd), and to
look for approximated velocities

un ∈ C([0, T]; Xn).

Solvability of the approximated problem will be discussed in the following sections.

5.5.1 On the approximated continuity equation

Given u ∈ C([0, T]; Xn), let us focus on identifying that unique solution

$ = $[u]

of system (5.5.1)–(5.5.3). As our domain Ω is merely Lipschitz, we cannot simply repeat
the same passages performed for instance by Feireisl [33] in the context of the compressible
Navier-Stokes system since better regularity for the domain would be required. However,
since Xn is finite-dimensional, all the norms on Xn induced by Wk,p-norms, with k ∈ N and
1 ≤ p ≤ ∞, are equivalent and thus, we deduce that

u ∈ L∞(0, T; W1,∞(Ω; Rd)),

and there exist two constants 0 < n < n < ∞, depending solely on the dimension n of Xn,
such that for any t ∈ [0, T]

n‖u(t, ·)‖W1,∞(Ω) ≤ ‖u(t, ·)‖Xn ≤ n‖u(t, ·)‖W1,∞(Ω). (5.5.9)

It is now enough to apply the following result by Crippa, Donadello and Spinolo [27],
Lemma 3.2, to get the existence of weak solutions.

Lemma 5.5.1. Let Ω ⊂ Rd be a bounded Lipschitz domain. For any given u ∈ C([0, T]; Xn) and
ε > 0, there exists a unique weak solution

$ = $ε,n ∈ L2((0, T); W1,2(Ω)) ∩ C([0, T]; L2(Ω))

of system (5.5.1)–(5.5.3) in the sense that the integral identity[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
($∂t ϕ + $u · ∇x ϕ− ε∇x$ · ∇x ϕ) dx,

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]×Ω), with $(0, ·) = $0,n. Moreover, the norm in the
aforementioned spaces is bounded only in terms of $0,n and

sup
t∈[0,T]

‖u(t, ·)‖Xn .
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Moreover, applying again a result from Crippa, Donadello and Spinolo [27], Lemma 3.4,
we recover the maximum principle.

Lemma 5.5.2. Under the same hypothesis of Lemma 5.5.1, the weak solution $ satisfies

‖$‖L∞((0,τ)×Ω) ≤ $ exp
(

τ‖divx u‖L∞((0,T)×Ω)

)
, (5.5.10)

for any τ ∈ [0, T], with
$ := max

Ω
$0,n. (5.5.11)

With the previous lemma, we got a bound from above of the weak solution $ = $ε,n of
the approximated problem (5.5.1)–(5.5.3); however, in order to recover the existence of the
corresponded u, we need also a bound from below. We can then apply the following result
by Abbatiello, Feireisl and Novotný [2], Corollary 3.4.

Lemma 5.5.3. Under the same hypothesis of Lemma 5.5.1, the weak solution $ satisfies

ess inf
(0,τ)×Ω

$(t, x) ≥ $ exp
(
−τ‖divx u‖L∞((0,T)×Ω)

)
, (5.5.12)

for any τ ∈ [0, T], with
$ := min

Ω
$0,n. (5.5.13)

We conclude this first part with one last result that will be useful in the next section.

Lemma 5.5.4. Let u1, u2 ∈ C([0, T]; Xn) be such that

max
i=1,2
‖ui‖L∞(0,T;W1,∞(Ω;Rd)) ≤ K,

and let $i = $[ui], i = 1, 2 be the weak solutions of the approximated problem (5.5.1)–(5.5.3) sharing
the same initial data $0,n in (5.5.3). Then, for any τ ∈ [0, T] we have

‖($1 − $2)(τ, ·)‖L2(Ω) ≤ c1‖u1 − u2‖L∞(0,τ;W1,∞(Ω;Rd)) (5.5.14)

with c1 = c1(ε, $0, T, K).

Proof. The difference η = $1 − $2 verifies equations

∂tη − ε∆xη = F in (0, T)×Ω (5.5.15)

∇xη · n = 0 in [0, T]× ∂Ω (5.5.16)

η(0) = 0 (5.5.17)

where

−F = divx($1u1 − $2u2) = divx[$1(u1 − u2) + ($1 − $2)u2]

= divx[$1(u1 − u2)] + divx(ηu2)

= $1 divx(u1 − u2) + (u1 − u2) · ∇x$1 + η divx u2 + u2 · ∇xη.

Testing equation (5.5.15) by η, noticing that

η∂tη = ∂t

(
1
2

η2
)

,

η∆xη = η divx∇xη = divx(η∇xη)− |∇xη|2,
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and integrating over (0, τ)×Ω, we obtain

1
2
‖η(τ, ·)‖2

L2(Ω) + ε

ˆ τ

0
‖∇xη‖2

L2(Ω;Rd)dt =
ˆ τ

0

ˆ
Ω

Fη dxdt.

Applying Hölder’s (1.1.1), Young’s (1.1.4) and Poincaré (1.1.6) inequalities, we have∣∣∣∣ˆ
Ω

Fη dx
∣∣∣∣ ≤ ˆ

Ω
|divx(u1 − u2)$1η| dx +

ˆ
Ω
|(u1 − u2) · ∇x$1η| dx

+

ˆ
Ω
|η|2|divx u2| dx +

ˆ
Ω
|ηu2 · ∇xη| dx

≤ ‖u1 − u2‖W1,∞(Ω;Rd)‖$1‖W1,2(Ω)‖η‖L2(Ω) + ‖divx u2‖L∞(Ω)‖η‖2
L2(Ω)

+
1
2ε
‖u2‖2

L∞(Ω;Rd)‖η‖
2
L2(Ω) +

ε

2
‖∇xη‖2

L2(Ω;Rd)

≤ 1
2
‖u1 − u2‖2

W1,∞(Ω;Rd) +
1
2
‖$1‖2

W1,2(Ω)‖η‖
2
L2(Ω) + ‖divx u2‖L∞(Ω)‖η‖2

L2(Ω)

+
1
2ε
‖u2‖2

L∞(Ω;Rd)‖η‖
2
L2(Ω) +

ε

2
‖∇xη‖2

L2(Ω;Rd)

≤ 1
2
‖u1 − u2‖2

W1,∞(Ω;Rd) +

(
1
2
‖$1‖2

W1,2(Ω) + K +
1
2ε

K2
)
‖η‖2

L2(Ω)

+
ε

2
‖∇xη‖2

L2(Ω;Rd).

Therefore, for any τ ∈ [0, T] we get

‖η(τ, ·)‖2
L2(Ω) + ε

ˆ τ

0
‖∇xη‖2

L2(Ω;Rd) dt ≤ τ‖u1 − u2‖2
L∞(0,τ;W1,∞(Ω;Rd))

+

ˆ τ

0

(
‖$1‖2

W1,2(Ω) + 2K +
1
ε

K2
)
‖η‖2

L2(Ω)dt.

Noticing that from Lemma 5.5.1 we have that

sup
t∈[0,T]

‖$1‖L2(Ω) ≤ c($0, K),

the previous inequality can be rewritten as

f (τ) ≤ α(τ) +

ˆ τ

0
c(ε, $0, K) f (t) dt

with

f (τ) = ‖η(τ, ·)‖2
L2(Ω), α(τ) = T‖u1 − u2‖2

L∞(0,τ;W1,∞(Ω;Rd)).

Since α = α(τ) is non-decreasing, we can apply Gronwall Lemma 1.5.2 to get that for any
τ ∈ [0, T]

f (τ) ≤ α(τ)ec(ε,$0,K)τ ≤ α(τ)ec(ε,$0,K)T,

which in particular implies (5.5.14).
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5.5.2 On the approximated balance of momentum

Let us now turn our attention to the approximated problem (5.5.4)–(5.5.8). Following the
same approach performed by Feireisl [33], we will first solve the problem on a time interval
[0, T(n)] via a fixed point argument, where T(n) depends on the dimension n of the finite-
dimensional space Xn. Subsequently we will establish estimates independent of time and
iterate the same procedure to finally obtain, after a finite number of steps, our solution u on
the whole time interval [0, T].

Technical preliminaries

For any $ ∈ L1(Ω), consider the operator M[$] : Xn → X∗n such that

〈M[$]v, w〉 ≡
ˆ

Ω
$v ·w dx, (5.5.18)

with 〈·, ·〉 the L2-standard scalar product. In particular, we have

‖M[$]‖L(Xn,X∗n) = sup
‖v‖Xn ,‖w‖Xn≤1

|〈M[$]v, w〉| ≤ c(n)‖$‖L1(Ω), (5.5.19)

It is easy to see that the operator M is invertible provided $ is strictly positive on Ω, and in
particular we have

‖M−1[$]‖L(X∗n ;Xn) =
1

inf{‖M[$]v‖X∗n : v ∈ Xn, ‖v‖Xn = 1} ≤
c(n)

infΩ $
.

Moreover, the identity

M−1[$1]−M−1[$2] = M−1[$2] (M[$2]−M[$1])M
−1[$1]

can be used to obtain∥∥∥M−1[$1]−M−1[$2]
∥∥∥
L(X∗n ;Xn)

≤ c
(

n, inf
Ω

$1, inf
Ω

$2

)
‖$1 − $2‖L1(Ω) (5.5.20)

for any $1, $2 > 0.

Fixed point argument

The approximate velocities u ∈ C([0, T]; Xn) are looked for to satisfy the integral identity[ˆ
Ω

$u(t, ·) ·ψ dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[($u⊗ u) : ∇xψ + a$ divx ψ]dxdt

−
ˆ τ

0

ˆ
Ω
[∂Fδ(Dxu) : ∇xψ + ε∇x$ · ∇xu ·ψ] dxdt

(5.5.21)

for any test function ψ ∈ Xn and all τ ∈ [0, T]. Now, the integral identity (5.5.21) can be
rephrased for any τ ∈ [0, T] as

〈M[$(τ, ·)](u(τ, ·)), ψ〉 = 〈m∗0 , ψ〉+ 〈
ˆ τ

0
N[$(s, ·), u(s, ·)] ds, ψ〉
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with M[$] : Xn → X∗n defined as in (5.5.18), m∗0 ∈ X∗n such that

〈m∗0 , ψ〉 :=
ˆ

Ω
m0 ·ψ dx

and N[$(s, ·), u(s, ·)] ∈ X∗n such that

〈N[$(s, ·), u(s, ·)], ψ〉 :=
ˆ

Ω
[($u⊗ u− ∂Fδ(Dxu)) : ∇xψ + a$ divx ψ] (s, ·) dx

− ε

ˆ
Ω
∇x$ · ∇xu ·ψ(s, ·) dx.

Here, $ = $[u] is the weak solution uniquely determined by u and thus by Lemmas 5.5.2 and
5.5.3, for any t ∈ [0, T] we have

0 < $ exp
(
−t‖divx u‖L∞((0,T)×Ω)

)
≤ $(t, x) ≤ $ exp

(
t‖divx u‖L∞((0,T)×Ω)

)
, (5.5.22)

where $, $ are defined as in (5.5.11), (5.5.13) respectively. In particular, the operator M is
invertible and hence, for any τ ∈ [0, T], we can write

u(τ, ·) = M−1[$(τ, ·)]
(

m∗0 +
ˆ τ

0
N[$(s, ·), u(s, ·)] ds

)
.

For K and T(n) to be fixed, consider a bounded ball B(0, nK) in the space C([0, T(n)]; Xn),
with n defined as in (5.5.9),

B(0, nK) :=

{
v ∈ C([0, T(n)]; Xn)

∣∣ sup
t∈[0,T(n)]

‖v(t, ·)‖Xn ≤ nK

}
,

and define a mapping
F : B(0, nK)→ C([0, T(n)]; Xn)

such that for all τ ∈ [0, T(n)]

F[u](τ, ·) := M−1[$(τ, ·)]
(

m∗0 +
ˆ τ

0
N[$(s, ·), u(s, ·)] ds

)
.

Notice that for every u ∈ B(0, nK), from (5.5.9) we obtain in particular that for all t ∈ [0, T(n)]

‖u(t, ·)‖W1,∞(Ω;Rd) ≤ K

and thus, from (5.5.22) we obtain that for all t ∈ [0, T(n)]

$e−Kt ≤ $(t, x) ≤ $eKt.

Moreover, it is easy to deduce that for every u ∈ B(0, nK), $ = $[u] and every t ∈ [0, T(n)]

‖N($(t, ·), u(t, ·))‖X∗n ≤ c2($, K, T),

and for every u1, u2 ∈ B(0, nK), $i = $[ui], i = 1, 2 and t ∈ [0, T(n)], making use of (5.5.14),

‖N($1(t, ·), u1(t, ·))−N($2(t, ·), u2(t, ·))‖X∗n ≤ c3($, K, T)‖u1(t, ·)− u2(t, ·)‖W1,∞(Ω;Rd).
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Then, for every u ∈ B(0, nK), $ = $[u] and every t ∈ [0, T(n)]

‖F(u)(t, ·)‖Xn ≤ ‖M−1[$(t, ·)]‖L(X∗n ;Xn)(‖m
∗
0‖X∗n + ‖N($(t, ·), u(t, ·))‖X∗n t)

≤ c(n)
$

eKT(n) (‖m∗0‖X∗n + c2 T(n)
)
,

and for every u1, u2 ∈ B(0, nK), $i = $[ui], i = 1, 2 and t ∈ [0, T(n)],

‖F(u1)(t, ·)− F(u2)(t, ·)‖Xn

≤
∥∥∥∥(M−1[$1(t, ·)]−M−1[$2(t, ·)]

) [ˆ t

0
N($1(s, ·), u1(s, ·)) ds

]∥∥∥∥
Xn

+

∥∥∥∥M−1[$2(t, ·)]
[ˆ t

0
[N($1(s, ·), u1(s, ·))−N($2(s, ·), u2(s, ·))] ds

]∥∥∥∥
Xn

≤ t
∥∥∥M−1[$1(t, ·)]−M−1[$2(t, ·)]

∥∥∥
L(X∗n ;Xn)

‖N($1(t, ·), u1(t, ·))‖X∗n

+ t
∥∥∥M−1[$2(t, ·)]

∥∥∥
L(X∗n ,Xn)

‖N($1(t, ·), u1(t, ·))−N($2(t, ·), u2(t, ·))‖X∗n

≤ c(n)
c2

($)2 e2Ktt ‖$1(t, ·)− $2(t, ·)‖L1(Ω) + c(n)
c3

$
eKtt ‖u1(t, ·)− u2(t, ·)‖W1,∞(Ω;Rd)

≤ c(n)

(
c1c2

($)2 +
c3

$

)
e2Ktt ‖u1(t, ·)− u2(t, ·)‖W1,∞(Ω;Rd)

≤ T(n)
c(n)

n

(
c1c2

($)2 +
c3

$

)
e2KT(n) ‖u1(t, ·)− u2(t, ·)‖Xn .

Now, taking K > 0 sufficiently large and T(n) sufficiently small, so that

c(n)
$

eKT(n) (‖m∗0‖X∗n + c2 T(n)
)
≤ nK,

and

T(n)
c(n)

n

(
c1c2

($)2 +
c3

$

)
e2KT(n) < 1,

we obtain that F is a contraction mapping from the closed ball B(0, nK) into itself. From the
Banach-Cacciopoli fixed point theorem 1.5.8, we recover that F admits a unique fixed point
u ∈ C([0, T(n)]; Xn), which in particular solves the integral identity (5.5.21).

This procedure can be repeated a finite number of times until we reach T = T(n), as long
as we have a bound on u independent of T(n). the next section will be dedicated to establish
all the necessary estimates.

Estimates independent of time

We start with the energy estimates. It follows from (5.5.21) that u is continuously differentiable
and, consequently, the integral identity

ˆ
Ω

∂t($u) ·ψ dx =

ˆ
Ω
[$u⊗ u : ∇xψ + a$ divx ψ− ∂Fδ(Dxu) : ∇xψ]dx

− ε

ˆ
Ω
[∇x$ · ∇xu ·ψ] dx

(5.5.23)
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holds on (0, T(n)) for any ψ ∈ Xn, with $ = $[u]. We recall that in this context the pressure
potential P = P($) is such that

P($) = a $ log $,

and it satisfies the following identity

a$ divx u = −∂tP($)− divx(P($)u) + ε a(log $ + 1)∆x$.

Now, taking ψ = u in (5.5.23) and noticing that
ˆ

Ω
[∂t($u) · u− $u⊗ u : ∇xu] dx =

d
dt

ˆ
Ω

1
2

$|u|2 dx +
1
2

ˆ
Ω
(∂t$ + divx($u))|u|2 dx

=
d
dt

ˆ
Ω

1
2

$|u|2dx +
ε

2

ˆ
Ω

∆x$|u|2 dx,

where, using the boundary condition (5.5.2),

ε

2

ˆ
Ω
|u|2∆x$ dx =

ε

2

ˆ
Ω
|u|2 divx∇x$ dx

=
ε

2

ˆ
Ω

divx(|u|2∇x$) dx− ε

2

ˆ
Ω
∇x$ · ∇xu · 2u dx

=
ε

2

ˆ
∂Ω
|u|2∇x$ · n dSx − ε

ˆ
Ω
∇x$ · ∇xu · u dx

= −ε

ˆ
Ω
∇x$ · ∇xu · u dx,

and
ˆ

Ω
(log $ + 1)∆x$ dx =

ˆ
Ω
(log $ + 1)divx∇x$ dx

=

ˆ
Ω

divx [(log $ + 1)∇x$]dx−
ˆ

Ω
∇x(log $ + 1) · ∇x$ dx

=

ˆ
∂Ω

(log $ + 1)∇x$ · n dSx −
ˆ

Ω

d
d$

(log $ + 1)|∇x$|2 dx

= −
ˆ

Ω

1
$
|∇x$|2 dx = −

ˆ
Ω

P′′($)|∇x$|2 dx,

we finally obtain

d
dt

ˆ
Ω

[
1
2

$|u|2 + P($)
]

dx = −ε

ˆ
Ω

P′′($)|∇x$|2 dx−
ˆ

Ω
∂Fδ(Dxu) : ∇xu dx. (5.5.24)

Note that we got rid of the integral ε
2

´
Ω |un|2∆x$ndx thanks to the extra term ε∇x$n · ∇xun

in (5.5.4). Since all the quantities involved are at least continuous in time, we may integrate
(5.5.24) over (0, τ) in order to get the following energy equality

ˆ
Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx +

ˆ τ

0

ˆ
Ω

[
∂Fδ(Dxu) : ∇xu + εP′′($)|∇x$|2

]
dxdt

=

ˆ
Ω

[
1
2
|m0|2
$0,n

+ P($0,n)

]
dx,

(5.5.25)
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for any time τ ∈ [0, T(n)]. In particular, if we suppose the initial value of the (modified) total
energy

E(0) = En(0) :=
ˆ

Ω

[
1
2
|m0|2
$0,n

+ P($0,n)

]
dx

to be bounded by a constant independent of n > 0, the term on the right-hand side of (5.5.25)
is bounded.

Now, the following result, collecting all the significant properties of the regularized poten-
tial Fδ, is needed.

Proposition 5.5.5. For every fixed δ > 0 and F satisfying hypothesis (5.1.4)–(5.1.5), the function Fδ

defined in (5.5.7) is convex, non-negative, infinitely differentiable and such that

Fδ(D) ≥ ν

∣∣∣∣D− 1
d

Tr[D]I

∣∣∣∣q − c for all D ∈ Rd×d
sym (5.5.26)

with ν > 0, c > 0, q > 1 independent of δ.

Proof. For every fixed δ > 0, the non-negativity of Fδ is trivial while smoothness follows
from the fact that each derivative can be transferred to the mollifiers ξδ, cf. Theorem 1.1.2,
condition (i).

Moreover, for every A, B ∈ Rd×d
sym and every t ∈ [0, 1], denoting

C1 := inf
D∈Rd×d

sym

ˆ
Rd×d

sym

ξδ(|D−Z|)F(Z) dZ

we have

Fδ(tA + (1− t)B)

=

ˆ
Rd×d

sym

F
(
t(A + Z) + (1− t)(B + Z)

)
ξδ(|Z|) dZ + tC1 − (1− t)C1

≤ t

(ˆ
Rd×d

sym

F(A + Z) ξδ(|Z|) dZ + C1

)
+ (1− t)

(ˆ
Rd×d

sym

F(B + Z) ξδ(|Z|) dZ + C1

)
= tFδ(A) + (1− t)Fδ(B),

where we have simply summed and subtracted terms tZ, tC1 in the second line and used the
convexity of F in the third line. In particular, we get that for every fixed δ > 0, Fδ : Rd×d

sym →
[0, ∞) is convex.

Let now D ∈ Rd×d
sym be fixed. From (5.1.5), we have

Fδ(D) =

ˆ
Rd×d

sym

F(D−Z)ξδ(|Z|) dZ− C1

≥ µ

ˆ
Rd×d

sym

∣∣∣∣(D− 1
d

Tr[D]I

)
−
(

Z− 1
d

Tr[Z]I

)∣∣∣∣q ξδ(|Z|) dZ− C1.

Applying Minkowski’s inequality (1.1.2) with

f (Z) :=
[(

D− 1
d

Tr[D]I

)
−
(

Z− 1
d

Tr[Z]I

)]
ξ

1/q
δ (|Z|),

g(Z) :=
(

Z− 1
d

Tr[Z]I

)
ξ

1/q
δ (|Z|),
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we get

ˆ
Rd×d

sym

∣∣∣∣(D− 1
d

Tr[D]I

)
−
(

Z− 1
d

Tr[Z]I

)∣∣∣∣q ξδ(|Z|) dZ

≥

(ˆ
Rd×d

sym

∣∣∣∣D− 1
d

Tr[D]I

∣∣∣∣q ξδ(|Z|)dZ

) 1
q

−
(ˆ

Rd×d
sym

∣∣∣∣Z− 1
d

Tr[Z]I

∣∣∣∣q ξδ(|Z|)dZ

) 1
q
q

;

recalling that for any δ > 0 sufficiently small supp ξδ ⊂ K with K ⊂ Rd×d
sym a compact set and

that for any δ > 0

ˆ
Rd×d

sym

ξδ(|Z|) dZ =
1
δd

ˆ
Rd×d

sym

ξ

(
|Z|
δ

)
dZ =

ˆ
Rd×d

sym

ξ(|Z|) dZ = 1,

we obtain the following inequality

Fδ(D) ≥ µ

∣∣∣∣D− 1
d

Tr[D]I

∣∣∣∣−
(

sup
Z∈K

∣∣∣∣Z− 1
d

Tr[Z]I

∣∣∣∣q
) 1

q
q

− C1.

Now, for every fixed q > 1 and constant c1 > 0, there exist α = α(q, c1) ∈ (0, 1) and
c2 = c2(q, c1) > 0 such that

(y− c1)
q ≥ αyq − c2 for any y ≥ 0;

in particular, we get that for all D ∈ Rd×d
sym

Fδ(D) ≥ µα

∣∣∣∣D− 1
d

Tr[D]I

∣∣∣∣q − (C1 + C2)

and thus (5.5.26) holds choosing ν = µα and c = C1 + C2.

Repeating the procedure that led to (5.4.18), from (5.5.26) and the Lq-version of the trace-
free Korn’s inequality (1.1.7), we can deduce that

u is bounded in Lq(0, T(n); W1,q
0 (Ω; Rd))

by a constant which is independent of n and T(n) ≤ T. Since all norms are equivalent in Xn,
this implies that

u is bounded in Lq(0, T(n); W1,∞(Ω; Rd));

in particular, by virtue of (5.5.10) and (5.5.12), the density $ = $[u] is bounded from below
and above by constants independent of T(n) ≤ T. Since $ is bounded from below, one can use
(5.5.25) to easily deduce uniform boundedness in t of u in the space L2(Ω; Rd). Consequently,
the functions u(t, ·) remain bounded in Xn for any t independently of T(n) ≤ T. Thus we
are allowed to iterate the previous local existence result to construct a solution defined on
the whole time interval [0, T].

Summarizing, so far we proved the following result.
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Lemma 5.5.6. For every fixed δ > 0, ε > 0, n ∈ N, and any $0,n ∈ C(Ω) such that

E0,n :=
ˆ

Ω

[
1
2
|m0|2
$0,n

+ P($0,n)

]
dx

is bounded by a constant independent of n, there exist

$ = $δ,ε,n ∈ L2((0, T); W1,2(Ω)) ∩ C([0, T]; L2(Ω)),

u = uδ,ε,n ∈ C([0, T]; Xn),

such that

(i) the integral identity[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
($∂t ϕ + $u · ∇x ϕ− ε∇x$ · ∇x ϕ) dx

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]×Ω), with $(0, ·) = $0,n;

(ii) the integral identity[ˆ
Ω

$u ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$u · ∂tϕ+ ($u⊗ u) : ∇xϕ+ a$ divx ϕ]dxdt

−
ˆ τ

0

ˆ
Ω

∂Fδ(Dxu) : ∇xϕ dxdt− ε

ˆ τ

0

ˆ
Ω
∇x$ · ∇xu ·ϕ dxdt

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]; Xn), with ($u)(0, ·) = m0;

(iii) introducing

E(τ) = Eδ,ε,n(τ) =

ˆ
Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx

for any t ∈ [0, T], the integral equality

[E(t)]t=τ
t=0 +

ˆ τ

0

ˆ
Ω

∂Fδ(Dxu) : ∇xu dxdt + ε

ˆ τ

0

ˆ
Ω

P′′($)|∇x$|2 dxdt = 0

holds for any time τ ∈ [0, T], with E(0) = E0,n.

5.5.3 Limit δ→ 0

Let now ε > 0 and n ∈ N be fixed, and let {$δ, uδ}δ>0 be the family of weak solutions to
problem (5.5.1)–(5.5.8) as in Lemma 5.5.6. Proceeding as before, we can deduce that

{uδ}δ>0 is unifrmly bounded in Lq(0, T; W1,q
0 (Ω; Rd)).

As n is fixed and all norms are equivalent on the finite-dimensional space Xn, we get that

{∇xuδ}δ>0 is unifrmly bounded in L∞((0, T)×Ω; Rd×d),

and therefore, we are ready to perform the limit δ→ 0. Accordingly, we obtain the following
result.
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Lemma 5.5.7. For every fixed ε > 0, n ∈ N, and any $0,n ∈ C(Ω) such that

E0,n :=
ˆ

Ω

[
1
2
|m0|2
$0,n

+ P($0,n)

]
dx

is bounded by a constant independent of n, there exist

$ = $ε,n ∈ L2((0, T); W1,2(Ω)) ∩ C([0, T]; L2(Ω)),

u = uε,n ∈ C([0, T]; Xn),

such that

(i) the integral identity[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
($∂t ϕ + $u · ∇x ϕ− ε∇x$ · ∇x ϕ) dx (5.5.27)

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]×Ω), with $(0, ·) = $0,n;

(ii) there exists
S = Sε,n ∈ L∞((0, T)×Ω; Rd×d

sym)

such that the integral identity[ˆ
Ω

$u ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$u · ∂tϕ+ ($u⊗ u) : ∇xϕ+ a$ divx ϕ]dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt− ε

ˆ τ

0

ˆ
Ω
∇x$ · ∇xu ·ϕ dxdt

(5.5.28)

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]; Xn), with ($u)(0, ·) = m0;

(iii) introducing

E(τ) = Eε,n(τ) =

ˆ
Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx

for any t ∈ [0, T], the integral inequality

[E(t)]t=τ
t=0 +

ˆ τ

0

ˆ
Ω
[F(Dxu) + F∗(S)] dxdt + ε

ˆ τ

0

ˆ
Ω

P′′($)|∇x$|2 dxdt ≤ 0 (5.5.29)

holds for any time τ ∈ [0, T], with E(0) = E0,n.

5.5.4 Limit ε→ 0

In order to perform the limit ε→ 0, we need the following result.

Lemma 5.5.8. Let n ∈ N be fixed and let {$ε, uε, Sε}ε>0 be as in Lemma 5.5.7. Moreover, let

f($ε) :=
√

ε ∇x$ε

g($ε, uε) :=
√

ε ∇x$ε · ∇xuε.



5.5 existence for linear pressure 111

Then, passing to a suitable subsequences as the case may be, the following convergences hold as ε→ 0.

$ε
∗
⇀ $ in L∞((0, T)×Ω), (5.5.30)

uε
∗
⇀ u in L∞(0, T; W1,∞(Ω; Rd)), (5.5.31)

$εuε
∗
⇀ $u in L∞((0, T)×Ω; Rd), (5.5.32)

$εuε ⊗ uε
∗
⇀ $u⊗ u in L∞((0, T)×Ω; Rd×d), (5.5.33)

Sε ⇀ S in L1((0, T)×Ω; Rd×d), (5.5.34)

f($ε) ⇀ f($) in L2((0, T)×Ω; Rd), (5.5.35)

g($ε, uε) ⇀ g($, u) in L2((0, T)×Ω; Rd). (5.5.36)

Proof. Similarly to the preceding section, we can deduce

‖uε‖Lq(0,T;W1,q(Ω;Rd)) ≤ c1

for some q > 1 and a positive constant c1 independent of ε > 0, yielding, in view of Lemmas
5.5.2 and 5.5.3,

e−c1T$ ≤ $ε(t, x) ≤ ec1T$, for all (t, x) ∈ [0, T]×Ω. (5.5.37)

We recover convergence (5.5.30). From the energy inequality (5.5.29), it is easy to deduce

sup
t∈[0,T]

‖uε(t, ·)‖W1,∞(Ω;Rd) ≤ c2, (5.5.38)

from which convergence (5.5.31) follows. Combining (5.5.37) and (5.5.38), we can recover

$εuε
∗
⇀ m in L∞((0, T)×Ω; Rd).

Now, notice that (5.5.30) can be strengthened to

$ε → $ in Cweak([0, T]; Lp(Ω)) for all 1 < p < ∞

as ε→ 0, so that, relaying on the compact Sobolev embedding (1.1.10) with k = 1 and p = ∞,
we obtain

$ε → $ in C([0, T]; W−1,1(Ω))

as ε→ 0. The last convergence combined with (5.5.31), implies

m = $u a.e. in (0, T)×Ω,

and thus, we get (5.5.32). Similarly, from (5.5.31) and (5.5.32) we can deduce (5.5.33). Con-
vergence (5.5.34) can be deduced repeating the same passages performed for (5.4.5), manly
using the superlinearity of F∗ (5.1.11) combined with the De la Vallée–Poussin criterion 1.2.10

and the Dunford–Pettis theorem 1.5.4. Finally, from (5.5.37) we have in particular that

ec1T$

$(t, x)
≥ 1, for all (t, x) ∈ [0, T]×Ω,

and thus, from the energy inequality (5.5.29),

ε

ˆ τ

0

ˆ
Ω
|∇x$|2 dxdt ≤ ε ec1T$

ˆ τ

0

ˆ
Ω

P′′($)|∇x$|2 dxdt ≤ c($, T).

In this way we get (5.5.35) and, in view of (5.5.38), (5.5.36).
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Remark 5.5.9. It is worth noticing that the limit density $ admits the same upper and lower
bounds as in (5.5.37):

e−c1T$ ≤ $(t, x) ≤ ec1T$, for all (t, x) ∈ [0, T]×Ω.

We are now ready to let ε→ 0 in the weak formulations (5.5.27), (5.5.28); notice in particular
that, in view of (5.5.36), for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]; Xn)

ε

ˆ τ

0

ˆ
Ω
∇x$ · ∇xu ·ϕ dxdt =

√
ε

ˆ τ

0

ˆ
Ω

√
ε ∇x$ · ∇xu ·ϕ dxdt→ 0

as ε→ 0.

Lemma 5.5.10. For every fixed n ∈ N, and any $0,n ∈ C(Ω) such that

E0,n :=
ˆ

Ω

[
1
2
|m0|2
$0,n

+ P($0,n)

]
dx

is bounded by a constant independent of n, there exist

$ = $n ∈ L∞((0, T)×Ω),

u = un ∈ C([0, T]; Xn),

with
e−cT$ ≤ $(t, x) ≤ ecT$, for all (t, x) ∈ [0, T]×Ω,

for a positive constant c, such that

(i) the integral identity [ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
($∂t ϕ + $u · ∇x ϕ) dx (5.5.39)

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]×Ω), with $(0, ·) = $0,n;

(ii) there exists
S = Sn ∈ L1((0, T)×Ω; Rd×d

sym)

such that the integral identity[ˆ
Ω

$u ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$u · ∂tϕ+ ($u⊗ u) : ∇xϕ+ a$ divx ϕ]dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt
(5.5.40)

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]; Xn), with ($u)(0, ·) = m0;

(iii) introducing for a.e. t ∈ [0, T]

E(τ) = En(τ) =

ˆ
Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx, (5.5.41)

the integral inequality

[E(t)]t=τ
t=0 +

ˆ τ

0

ˆ
Ω
[F(Dxu) + F∗(S)] dxdt ≤ 0

holds for any time τ ∈ [0, T], with E(0−) = E0,n ≥ E(0+).
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Remark 5.5.11. In the energy inequality (5.5.41) we used the weak lower semi-continuity in L1

of the functions E, F and F∗, and thus for a.e. τ > 0
ˆ

Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx ≤ lim inf

ε→∞

ˆ
Ω

[
1
2

$ε|uε|2 + P($)
]
(τ, ·) dx,

ˆ τ

0

ˆ
Ω
[F(Dxu) + F∗(S)] dxdt ≤ lim inf

ε→0

ˆ τ

0

ˆ
Ω
[F(Dxuε) + F∗(Sε)] dxdt.

5.5.5 Limit n→ ∞

Let {$n, mn = $nun}n∈N be the family of approximate solutions obtained in Lemma 5.5.10,
with correspondent viscous stress tensor Sn and energy En. At this stage, as the initial
energies are uniformly bounded by a constant independent of n, we can recycle the same
procedure performed in Section 5.4 to get, passing to suitable subsequences as the case may
be, the following family of convergences as n→ ∞:

$n → $ in Cweak([0, T]; L1(Ω)), (5.5.42)

mn → m in Cweak([0, T]; L1(Ω; Rd)), (5.5.43)

un ⇀ u in Lq(0, T; W1,q
0 (Ω; Rd)) (5.5.44)

Sn ⇀ S in L1(0, T; L1(Ω; Rd×d)), (5.5.45)

1$n>0
mn ⊗mn

$n

∗
⇀ 1$>0

m⊗m
$

in L∞(0, T;M(Ω; Rd×d
sym)), (5.5.46)

En(t)→ E(t) for every t ∈ [0, ∞) and in L1(0, T). (5.5.47)

with
m = $u a.e. in (0, T)×Ω,

as a consequence of Lemma 5.4.2.
We are now ready to let n→ ∞ in the weak formulation of the continuity equation (5.5.39)

and the balance of momentum (5.5.40), obtaining that[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$∂t ϕ + m · ∇x ϕ] dxdt

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]×Ω), with $(0, ·) = $0, and[ˆ
Ω

m ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω

[
m · ∂tϕ+ 1$>0

m⊗m
$

: ∇xϕ+ a$ divx ϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt +
ˆ τ

0

ˆ
Ω
∇xϕ : dR dt

(5.5.48)

holds for any τ ∈ [0, T] and any ϕ ∈ C1([0, T]; Xn), with n arbitrary. As clearly explained
by Abbatiello, Feireisl and Novotný [2], Section 3.4, by a density argument it is possible to
extend the validity of the integral identity (5.5.48) for any ϕ ∈ C1([0, T] × Ω), ϕ|∂Ω = 0.
Finally, notice that

R ∈ L∞
weak(0, T;M+(Ω; Rd×d

sym))
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appearing in (5.5.48) has been chosen in such a way that

dR =

(
1$>0

m⊗m
$
− 1$>0

m⊗m
$

)
dx + ψ(t)I,

where the time-dependent function ψ is chosen in such a way to guarantee

ˆ
Ω

[
1
2
|m|2

$
+ P($)

]
(τ, ·) dx +

1
λ

ˆ
Ω

d Tr[R(τ)] = E(τ)

for a.e. τ ∈ (0, T).
We proved the following result.

Theorem 5.5.12. Let γ = 1 in (5.1.6). For every fixed initial data

[$0, m0, E0] ∈ L1(Ω)× L1(Ω; Rd)× [0, ∞),

with ˆ
Ω

[
1
2
|m0|2

$0
+ $0 log $0

]
dx ≤ E0, (5.5.49)

problem (5.1.1)–(5.1.10) admits a dissipative solution in the sense of Definition 5.2.1.

5.6 existence of weak solutions

Choosing q > d in (5.1.5) and γ = 1 in (5.1.6), we get the existence of dissipative weak
solutions to models describing a general viscous compressible fluid (5.1.1)–(5.1.10), or equiv-
alently, the Reynold stress R appearing in Definition 5.2.1 is identically zero. In particular,
we improve the work by Matušů-Nečasová and Novotný [62], where existence was achieved
in the framework of measure-valued solutions.

For an arbitrary T > 0, we can repeat the same procedure performed in Section (5.5) until
we get to Lemma 5.5.10. We can now prove the following crucial result.

Lemma 5.6.1. Let q > d in (5.1.5), γ = 1 in (5.1.6) and let {$n, mn = $nun}n∈N be the family of
approximate solutions obtained in Lemma 5.5.10. Then, passing to a suitable subsequence as the case
may be,

$nun ⊗ un ⇀ $u⊗ u in L1((0, T)×Ω; Rd×d) (5.6.1)

as n→ ∞.

Proof. Proceeding as in Section 5.4.1 and due to Lemma 5.4.2, we have

$n → $ in Cweak([0, T]; L1(Ω)),

$nun → $u in Cweak([0, T]; L1(Ω; Rd))

as n → ∞, where the sequence {$nun(t, ·)}n∈N is equi-integrable in L1(Ω; Rd) for a.e. t ∈
(0, T). Thanks to the De la Vallée–Poussin criterion 1.2.10, there exists a Young function Ψ
satisfies the ∆2-condition (1.2.1) such that

$nun
∗
⇀ $u in L∞(0, T; LΨ(Ω; Rd)),
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Moreover, due to the compact Sobolev embedding (1.1.10) with k = 1 and p = q > d, we can
prove that the sequence {$nun ⊗ un}n∈N is equi-integrable in L1((0, T)×Ω; Rd×d). Indeed,
let ε > 0 be fixed and let the constant c > 0 be such that

‖un‖Lq(0,T;W1,q(Ω;Rd)) ≤ c,

uniformly in n. Let ε̃ = ε̃(ε) > 0 be chosen in such a way that

ε̃ <

(
c T

1
q′

)−1

ε.

From the equi-integrability of the sequence {$nun}n∈N, there exists δ = δ(ε̃) > 0 such that
ˆ

M
|$nun|(t) dx < ε̃, for every M ⊂ Ω s.t. |M| < δ,

for every n ∈ N. Let (t1, t2)×M ⊂ [0, T]×Ω such that

|(t1, t2)×M| < δ.

Then, for every n ∈ N,

ˆ t2

t1

ˆ
M
|$nun ⊗ un| dxdt ≤

ˆ T

0

ˆ
M
|$nun ⊗ un| dxdt

≤ ‖$nun‖Lq′ (0,T;L1(M))‖un‖Lq(0,T;W1,q(M))

≤ c

[ˆ T

0

(ˆ
M
|$nun|(t) dx

)q′

dt

] 1
q′

≤ c ε̃ T
1
q′

< ε.

Consequently, we can adapt Lemma 5.4.2 replacing the sequence of densities {$n}n∈N with
the sequence of momenta {$nun}n∈N to obtain (5.6.1).

Letting n→ ∞ in the weak formulation of the continuity equation (5.5.39) and the balance
of momentum (5.5.40), we obtain the following result.

Theorem 5.6.2. Let q > d in (5.1.5) and γ = 1 in (5.1.6). For every fixed initial data

[$0, m0, E0] ∈ L1(Ω)× L1(Ω; Rd)× [0, ∞),

with ˆ
Ω

[
1
2
|m0|2

$0
+ $0 log $0

]
dx ≤ E0, (5.6.2)

problem (5.1.1)–(5.1.10) admits a dissipative weak solution

[$, $u, E] ∈ Cweak,loc([0, ∞); L1(Ω))× Cweak,loc([0, ∞); L1(Ω; Rd))×D([0, ∞)),

meaning that the following holds.

(i) $ ≥ 0 in (0, ∞)×Ω.
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(i) The integral identity[ˆ
Ω

$ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$∂t ϕ + $u · ∇x ϕ] dxdt

holds for any τ > 0 and any ϕ ∈ C1
c ([0, ∞)×Ω), with $(0, ·) = $0.

(iii) There exists
S ∈ L1

loc(0, ∞; L1(Ω; Rd×d
sym))

such that the integral identity[ˆ
Ω

$u ·ϕ(t, ·) dx
]t=τ

t=0
=

ˆ τ

0

ˆ
Ω
[$u · ∂tϕ+ $u⊗ u : ∇xϕ+ a$ divx ϕ] dxdt

−
ˆ τ

0

ˆ
Ω

S : ∇xϕ dxdt

holds for any τ > 0 and any ϕ ∈ C1
c ([0, ∞)×Ω; Rd), ϕ|∂Ω = 0, with ($u)(0, ·) = m0.

(iv) There exists a càglàd function E, non–increasing in [0, ∞), satisfying
ˆ

Ω

[
1
2

$|u|2 + P($)
]
(τ, ·) dx = E(τ)

for a.e. τ > 0, such that the energy inequality

[E(t)ψ(t)]t=τ+
2

t=τ−1
−
ˆ τ2

τ1

E ψ′ dt +
ˆ τ2

τ1

ψ

ˆ
Ω
[F(Dxu) + F∗(S)] dxdt ≤ 0

holds for any 0 ≤ τ1 ≤ τ2 and any ψ ∈ C1
c [0, ∞), ψ ≥ 0, with E(0−) = E0 ≥ E(0+).
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