Skip to main content

Advertisement

Log in

Assessment of myocardial deformation with CMR: a comparison with ultrasound speckle tracking

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Myocardial deformation integrated with cardiac dimensions provides a comprehensive assessment of cardiac function, which has proven useful to differentiate cardiac pathology from physiological adaptation to situations such as chronic intensive training. Feature tracking (FT) can measure myocardial deformation from cardiac magnetic resonance (CMR) cine sequences; however, its accuracy is not yet fully validated. Our aim was to compare the accuracy and reproducibility of FT with speckle tracking echocardiography (STE) in highly trained endurance athletes.

Methods

Ninety-three endurance athletes (> 12-h training/week during the last 5 years, 52% male, 35 ± 5.1 years old) and 72 age-matched controls underwent resting CMR and transthoracic echocardiography to assess biventricular exercise-induced remodeling and biventricular global longitudinal strain (GLS) by CMR-FT and STE.

Results

Strain values were significantly lower when assessed by CMR-FT compared to STE (p < 0.001), with good reproducibility for the left ventricle (bias = 3.94%, limit of agreement [LOA] = ± 4.27 %) but wider variability for right ventricle strain. Strain values by both techniques proportionally decreased with increasing ventricular volumes, potentially depicting the functional biventricular reserve that characterizes athletes’ hearts.

Conclusions

Biventricular longitudinal strain values were lower when assessed by FT as compared to STE. Both methods were statistically comparable when measuring LV strain but not RV strain. These differences might be justified by the lower in-plane spatial and temporal resolution of FT, which is particularly relevant for the complex anatomy of the RV.

Key Points

Strain values were significantly lower when assessed by FT as compared to STE, which was expected due to the lower in-plane spatial and temporal resolution of FT versus STE.

Both methods were statistically comparable when measuring LV strain but not for RV strain analysis.

Characterizing the normal ranges and reproducibility of strain metrics by FT is an important step toward its clinical applicability, since it can be assessed offline and applied to routinely acquired cine CMR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CMR:

Cardiac magnetic resonance

EDV:

End-diastolic volume

FT:

Feature tracking

GLS:

Global longitudinal strain

LVEF:

Left ventricular ejection fraction

STE:

Speckle tracking echocardiography

References

  1. Bijnens BH, Cikes M, Claus P, Sutherland GR (2009) Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur J Echocardiogr 10(2):216–226. https://doi.org/10.1093/ejechocard/jen323

    Article  PubMed  Google Scholar 

  2. Cikes M, Solomon SD (2016) Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J 37(21):1642–1650. https://doi.org/10.1093/eurheartj/ehv510

    Article  PubMed  Google Scholar 

  3. Russo C, Jin Z, Elkind MSV et al (2014) Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort. Eur J Heart Fail 16(12):1301–1309. https://doi.org/10.1002/ejhf.154

    Article  PubMed  Google Scholar 

  4. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100(21):1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  PubMed  Google Scholar 

  5. Pelliccia A, Caselli S, Sharma S et al (2018) European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. Eur Heart J 39(21):1949–1969. https://doi.org/10.1093/eurheartj/ehx532

    Article  PubMed  Google Scholar 

  6. Medvedofsky D, Maffessanti F, Weinert L et al (2018) 2D and 3D echocardiography-derived indices of left ventricular function and shape. JACC Cardiovasc Imaging 11(11):1569–1579. https://doi.org/10.1016/j.jcmg.2017.08.023

    Article  PubMed  Google Scholar 

  7. Obokata M, Nagata Y, Chien-Chia Wu V et al (2016) Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain. Eur Heart J Cardiovasc Imaging 17(5):525–532. https://doi.org/10.1093/ehjci/jev227

    Article  PubMed  Google Scholar 

  8. Onishi T, Saha SK, Delgado-Montero A et al (2015) Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr 28(5):587–596. https://doi.org/10.1016/j.echo.2014.11.018

    Article  PubMed  Google Scholar 

  9. Pryds K, Larsen AH, Hansen MS et al (2019) Myocardial strain assessed by feature tracking cardiac magnetic resonance in patients with a variety of cardiovascular diseases – a comparison with echocardiography. Sci Rep 9(1):11296. https://doi.org/10.1038/s41598-019-47775-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E (2015) Tissue tracking technology for assessing cardiac mechanics. JACC Cardiovasc Imaging 8(12):1444–1460. https://doi.org/10.1016/j.jcmg.2015.11.00

    Article  PubMed  Google Scholar 

  11. Prior DL, La Gerche A (2012) The athlete’s heart. Heart 98(12):947–955. https://doi.org/10.1136/heartjnl-2011-301329

    Article  PubMed  Google Scholar 

  12. Caselli S, Di Paolo FM, Pisicchio C et al (2011) Three-dimensional echocardiographic characterization of left ventricular remodeling in olympic athletes. Am J Cardiol 108(1):141–147. https://doi.org/10.1016/j.amjcard.2011.02.350

    Article  PubMed  Google Scholar 

  13. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart: a meta-analysis of cardiac structure and function. Circulation 101(3):336–344. https://doi.org/10.1161/01.cir.101.3.336

    Article  CAS  PubMed  Google Scholar 

  14. Sanz-de la Garza M, Giraldeau G, Marin J et al (2017) Influence of gender on right ventricle adaptation to endurance exercise: an ultrasound two-dimensional speckle-tracking stress study. Eur J Appl Physiol 117(3):389–396. https://doi.org/10.1007/s00421-017-3546-8

    Article  PubMed  Google Scholar 

  15. Gabrielli L, Bijnens BH, Butakoff C et al (2014) Atrial functional and geometrical remodeling in highly trained male athletes: for better or worse? Eur J Appl Physiol 114(6):1143–1152. https://doi.org/10.1007/s00421-014-2845-6

    Article  PubMed  Google Scholar 

  16. La Gerche A, Burns AT, D’Hooge J, MacIsaac AI, Heidbüchel H, Prior DL (2012) Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr 25(3):253–262.e1. https://doi.org/10.1016/j.echo.2011.11.023

    Article  PubMed  Google Scholar 

  17. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. Society for Cardiovascular Magnetic Resonance, Board of Trustees Task Force on Standardized Protocols. J Cardiovasc Magn Reson 15(1):91. https://doi.org/10.1186/1532-429X-15-91

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schulz-Menger J, Bluemke DA, Bremerich J et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson 22(1):19. https://doi.org/10.1186/s12968-020-00610-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl 1(8476):307–310

    Article  CAS  Google Scholar 

  20. Pedrizzetti G, Claus P, Kilner PJ, Nagel E (2016) Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 18(1):51. https://doi.org/10.1186/s12968-016-0269-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Altiok E, Tiemann S, Becker M et al (2014) Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography for prediction of global and segmental functional changes after acute myocardial infarction: a comparison with late gadolinium enhancement cardiac magnetic resonance. J Am Soc Echocardiogr 27(3):249–257. https://doi.org/10.1016/j.echo.2013.11.014

    Article  PubMed  Google Scholar 

  22. Marwick TH, Leano RL, Brown J et al (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography. JACC Cardiovasc Imaging 2(1):80–84. https://doi.org/10.1016/j.jcmg.2007.12.007

    Article  PubMed  Google Scholar 

  23. Scatteia A, Baritussio A, Bucciarelli-Ducci C (2017) Strain imaging using cardiac magnetic resonance. Heart Fail Rev 22(4):465–476. https://doi.org/10.1007/s10741-017-9621-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16(8):871–881. https://doi.org/10.1093/ehjci/jev006

    Article  PubMed  Google Scholar 

  25. Morais P, Marchi A, Bogaert JA et al (2017) Cardiovascular magnetic resonance myocardial feature tracking using a non-rigid, elastic image registration algorithm: assessment of variability in a real-life clinical setting. J Cardiovasc Magn Reson 19(1):24. https://doi.org/10.1186/s12968-017-0333-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andre F, Steen H, Matheis P et al (2015) Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 17(1):25. https://doi.org/10.1186/s12968-015-0123-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Augustine D, Lewandowski AJ, Lazdam M et al (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15:8. https://doi.org/10.1186/1532-429X-15-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Amaki M, Savino J, Ain DL et al (2014) Diagnostic concordance of echocardiography and cardiac magnetic resonance-based tissue tracking for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging 7(5):819–827. https://doi.org/10.1161/CIRCIMAGING.114.002103

    Article  PubMed  Google Scholar 

  29. Orwat S, Kempny A, Diller G-P et al (2014) Cardiac magnetic resonance feature tracking: a novel method to assess myocardial strain. Comparison with echocardiographic speckle tracking in healthy volunteers and in patients with left ventricular hypertrophy. Kardiol Pol 72(4):363–371. https://doi.org/10.5603/KP.a2013.0319

    Article  PubMed  Google Scholar 

  30. Padiyath A, Gribben P, Abraham JR et al (2013) Echocardiography and cardiac magnetic resonance-based feature tracking in the assessment of myocardial mechanics in tetralogy of Fallot: an intermodality comparison. Echocardiogr Mt Kisco N 30(2):203–210. https://doi.org/10.1111/echo.12016

    Article  Google Scholar 

  31. Taha K, Bourfiss M, te Riele ASJM et al (2020) A head-to-head comparison of speckle tracking echocardiography and feature tracking cardiovascular magnetic resonance imaging in right ventricular deformation. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeaa088

Download references

Funding

This work was partially funded by grants from AGAUR (M. Sanz-de la Garza, MD, PhD), Plan Nacional I. D, Del Programa Estatal de Fomento De La Investigación Científica y Técnica de Excelencia, Subprograma De Generación Del Conocimiento, Ministerio de Economía y Competitividad 2013 (grant number DEP2013–44923-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Domenech-Ximenos.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Marta Sitges, MD, PhD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in other papers but always with different objectives, in: Domenech-Ximenos, et al Journal of Cardiovascular Magnetic Resonance (2020) 22:62, Domenech-Ximenos, et al Eur J Prev Cardiol 2020 Apr, and M. Sanz-de la Garza, et al Eur J Prev Cardiol 2020 Sep.

Methodology

• prospective

• observational

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domenech-Ximenos, B., Sanz-de la Garza, M., Sepulveda-Martinez, Á. et al. Assessment of myocardial deformation with CMR: a comparison with ultrasound speckle tracking. Eur Radiol 31, 7242–7250 (2021). https://doi.org/10.1007/s00330-021-07857-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-07857-2

Keywords

Navigation