
Visuelle Analyse großer Partikeldaten

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tobias Rapp

aus Villingen-Schwenningen

Tag der mündlichen Prüfung: 16. April 2021

Erster Gutachter: Prof. Dr.-Ing. Carsten Dachsbacher

Zweiter Gutachter: Prof. Dr. Rüdiger Westermann

K U R Z FA S S S U N G

Partikelsimulationen sind eine bewährte und weit verbreitete numerische
Methode in der Forschung und Technik. Beispielsweise werden Partikelsi-
mulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen
eingesetzt. Auch die Entstehung des Universums wird durch die Simulation
von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmen-
gen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln,
die sich über die Zeit bewegen und miteinander interagieren.

Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation
und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden
Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit ei-
ner regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei
durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das
lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in
ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes
Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln je-
doch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese
Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem
Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visuali-
sierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise
basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse
großer Partikeldaten.

Lagrange koheränte Strukturen

Im ersten Teil meiner Dissertation erforsche ich neue Methoden zur Analy-
se des zeitabhängigen Verhaltens von Partikeln. Dies erfolgt basierend auf
der Betrachtung der Partikeltrajektorieren über die Zeit als Lösung eines
dynamischen Systems, d.h. einer gewöhnlichen Differentialgleichung. Die Vi-
sualisierung solcher dynamischen Systeme ist ein aktuelles Forschungsthema
mit vielfältigen Anwendungsgebieten, wie beispielsweise zur Visualisierung
von Strömungen in einer Brennkammer oder zur Wettervorhersage. Hierbei
ist die Theorie der lagrange koheränten Strukturen eine etablierte Methodik
zur Identifikation einer robusten Topologie innerhalb eines begrenzten Zeitin-
tervalls. Allerdings ist diese Charakterisierung einer Strömung aufwendig, da
eine große Zahl an Trajektorien numerisch integriert werden müssen. Weiter-
hin gibt es mehrere Parameter, die Anwenderinnen und Anwender explorieren
möchten. Im Rahmen meiner Dissertation stelle ich einen effizienten Algorith-
mus vor, der speziell für Partikeldaten konzipiert ist. Da die Partikel bereits im
lagrangen Bezugsystem gegeben sind, ist keine teure numerische Integration
erforderlich. Stattdessen kann ich bereits existierende Trajektorien interpolie-
ren und die räumliche Deformation benachbarter Trajektorien approximieren.
Mit dem von mir entwickelten GPU beschleunigten Prototypen ist es erstmals

iii

möglich, die lagrange kohärenten Strukturen von Millionen von Partikeln
interaktiv zu identifizieren.

Stochastische Strömungen

Ein weiterer Forschungsgegenstand meiner Arbeit sind Strömungen mit Unsi-
cherheiten, welche ich als stochastische Differenzialgleichungen modelliere.
Diese entstehen beispielwiese aus der mehrfachen Ausführung einer Simula-
tion, einer Messung oder einem expliziten Fehlermodell. Zur Visualisierung
dieser stochastischen Strömungen, identifiziere ich stochastische Transportbar-
rieren und -verstärker ähnlich zu den lagrange koheränten Strukturen. Mit
diesem Ansatz wird eine teure Monte Carlo-Integration von stochastischen
Differentialgleichungen vermieden.

Interaktive visuelle Analyse von Partikelströmungen

Zur Analyse von Partikeln sowie deren zeitabhängigen Verhaltens und physi-
kalischer Attribute habe ich eine interaktive visuelle Analyseumgebung entwi-
ckelt. Dieser Ansatz ermöglicht es, Benutzerinteraktion, Visualisierung und
automatische Analysen zu verbinden. Auf diese Weise können komplexe Zu-
sammenhänge und Prozesse besser verstanden werden. Diese Methodik habe
ich mit mehreren Domänenexperten aus dem Bereich der Strömungsmechanik
evaluiert. Bei der Analyse der Kraftstoffzerstäubung in der Einspritzdüse einer
Flugzeugturbine konnte eine veränderte Geometrie entwickelt werden, welche
zu verringerten CO2 Emissionen führt [54]. Insbesondere die Berechnung und
Visualisierung der lagrange kohärenten Strukturen war hilfreich, die Entste-
hung und Reduktion von Wirbeln und dem dadurch beinflussten Transport
des Kraftstoffes zu verstehen. Angesichts der wachsenden Datenmengen neuer
Simulationen stellen große Partikeldaten jedoch weiterhin ein Problem dar.
Dies betrifft nicht nur die Komplexität der Berechnungen, sondern auch die
menschliche Wahrnehmung. Die effektive visuelle Analyse großer Datenmen-
gen benötigt folglich eine geeignete Abstraktion und Datenreduktion.

Datenreduktion mittels Sampling

Im zweiten Teil meiner Dissertation erforsche ich die Reduktion von Parti-
keldaten zur interaktiven Visualisierung. Die erste Technik die ich vorstelle
verwendet stochastisches Sampling, um einen Datensatz auf eine repräsentati-
ve Menge an Partikeln zu reduzieren. Stratifikation erlange ich durch einen
gierigen Algorithmus, der die räumliche Verteilung der Partikel bzw. der
Trajektorien in Raumzeit optimiert. Hierbei entwickle ich einen parallelen
Algorithmus, der zur Ausführung auf einer GPU geeignet ist und damit die
Optimierung großer Datenmengen ermöglicht. Diese Optimierung lässt sich
auf nicht uniforme Wahrscheinlichkeiten erweitern, welche sich beispielsweise
aus der lokalen Informationskomplexität einer Datendimension definieren. Ab-
schließend präsentiere ich eine effiziente Methode zur Wahl einer geeigneten
Detailstufe während der interaktiven Visualisierung.

iv

Eine probabilistische Datenrepräsentation zur interaktiven visuellen Analyse

Zur visuellen Analyse von Milliarden von Partikeln entwerfe ich eine pro-
babilistische Datenrepräsentation. Diese erlaubt die interaktive Exploration
und Navigation, führt aber auch zu einer sehr starken Datenreduktion und
einem damit einhergehenden Präzisionsverlust. Die Repräsentation basiert
auf der Modellierung der Datendimensionen durch Gaussian Mixture Models.
Hierbei kann ich höherdimensionale Modelle vermeiden, da für die visuelle
Analyse die paarweise Kombination von Marginvalverteilungen ausreichend
ist. Zur Visualisierung dieser Datenrepräsentation verwende ich direkt die
Dichteverteilungen der einzelnen Gauß-Komponenten und vermeide somit
aufwändiges Sampling. Insbesondere leite ich eine analytische Lösung her,
um beliebige drei-dimensionale Gauß-Verteilungen perspektivisch korrekt
auf ein zwei-dimensionales Bild zu projezieren. Somit können auch mehrere
Millionen dieser Gauß-Komponenten interaktiv dargestellt werden.

Bildbasierte Volumenvisualisierung mittels Momenten

Zuletzt präsentiere ich eine bildbasierte Datenrepräsentation zur interaktiven
Volumenvisualisierung von großen Partikeldaten. Diese bildbasierte Daten-
repräsentation wird mit einer im Voraus festgelegten Kamerakonfiguration
erzeugt und modelliert das Signal entlang aller Sichtstrahlen. Mittels verschie-
dener Transferfunktionen können die Daten daraufhin interaktiv exploriert
werden. Hierbei wird das Signal in jedem Pixel in die Fourier Basis trans-
formiert und Fourier Koeffizienten eines beschränkten Signals, sogenannte
beschränkte trigonometrische Momente, werden bestimmt. Mit dem Ziel diese
bildbasierte Repräsentation kompakt zu halten, bestimme ich die Anzahl der
Momente adaptiv und stelle eine neue Kodierungs- und Quantisierungsstrate-
gie vor.

v

A B S T R A C T

Particle simulations are an established computational method used in science
and engineering. For example, particle simulations are employed to investigate
the injection of fuel in turbines or to study the evolution of the universe by
simulating the interaction of dark matter particles. The data that is produced
is enormous, with state-of-the-art simulations tracking trillions of particles
that move and interact over time.

Scientific visualization plays an important role in the exploration, validation,
and analysis of these datasets and their underlying computational models. A
significant amount of research has been focused on structured data with a
regular topology. This is in contrast to the scattered nature of particle data.
In physics, the reference frame of freely moving particles is known as the
Lagrangian frame. Although it is possible to convert data from the Lagrangian
to a regular Eulerian frame, this requires interpolating massive amounts of
particles. This is not only prohibitively expensive, but disregards the inherent
nature of particles moving freely through space and time for subsequent
analysis. In this thesis, we develop visualization techniques specific to the
Lagrangian perspective, which allows us to find novel and efficient ways of
visualizing and analyzing large amounts of particles.

Lagrangian Coherent Structures

In the first part of the thesis, we develop novel methods to visually analyze
and explore time-dependent particle dynamics. To this end, we regard the
trajectories of particles over time as a solution of a dynamical system, i. e. a
differential equation. The visualization of dynamical systems is an active re-
search area with various applications, for example to visualize fluid flows in a
combusion engine or to predict the weather. Most notably, the theory of La-
grangian coherent structures, developed in the field of dynamical systems, has
been well-established to identify and visualize a robust topology of finite-time
flow behavior. This characterization of the flow is computationally demanding
whilst at the same time depends on several parameters that have to be explored
by domain scientists. We develop an efficient algorithm that runs interactively
even for millions of particles. This is due the Lagrangian nature of our data,
which allows us to avoid the expensive numerical integration. Instead, we
interpolate the existing trajectories and approximate the spatial deformation
of neighboring trajectories over time. With our GPU accelerated prototype, we
can thus compute the Lagrangian coherent structures interactively for millions
of particles.

Stochastic Flows

Furthermore, we study the dynamics of uncertain flows, stemming from multi-
ple simulation runs, repeated measurements, or from explicit error models. To

vi

visualize such stochastic flows, we identify stochastic transport barriers and
enhancers similar to the Lagrangian coherent structures. This approach avoids
expensive Monte Carlo integration of the stochastic flow and only advects the
deterministic part of the flow.

Interactive Visual Analysis of Particle-based Flows

To visualize particles, their dynamics, and their associated physical attributes,
we employ an interactive visual analysis approach. This combines user inter-
action, visualization, and automatic analysis to gain insight into the complex
data and processes. With this approach, domain scientists studying the atom-
ization of fuel in jet turbine engines were able to develop a new spray nozzle
geometry with reduced emissions. Most notable, the identified coherent struc-
tures were considered very helpful in visualizing the time-dependent flow
behavior. However, the large amount of particles pose a significant challenge
to this interactive process. This is not only a computational issue since human
perception is also quickly overloaded by displaying too much visual informa-
tion at once. The interactive visual analysis thus requires suitable abstractions
and data reduction to create efficient and clutter free visualizations.

Data Reduction by Sampling

The data reduction of particle data is investigated in the second part of
the thesis. To drastically reduce massive amounts of particles for interactive
exploration, we propose a probabilistic approach. More specifically, we present
a data reduction technique based on statistical sampling to select only a subset
of representative particles. Since our data is always defined in a spatiotemporal
domain, we develop a sampling strategy that finds well distributed samples
in space-time. This stratification stems from a greedy algorithm that optimizes
the distribution of particles or particles trajectories. We further develop a
parallel version of this algorithm that is suitable for GPU acceleration and
thus enables the application to large datasets. In addition, we consider non-
uniform probabilities based on the information in the multivariate value
dimensions and select an appropriate subset of samples interactively during
visual analysis.

Probabilistic Data Representation

We propose a probabilistic data representation to interactively analyze and
explore massive particle datasets, containing over billions of particles. The
compact data representation enables the interactive exploration and navigation,
but also introduces uncertainty that has to be conveyed. Our approach is based
on modeling the particle dimensions using Gaussian mixture models. We
discuss the extension of several visualization techniques to directly employ
this representation instead of resorting to sampling. Among others, we find an
analytic solution for the perspective projection of general three-dimensional
Gaussian components to an two-dimensional image.

vii

Image-based Volume Visualization Using Moments

Lastly, we present a novel image-based representation to interactively visualize
large and arbitrarily structured volumetric data. This image-based representa-
tion is created from a fixed view and models the scalar densities along each
viewing ray. Then, different transfer functions can be explored interactively. In
detail, we transform the density in each pixel to the Fourier basis and store
Fourier coefficients of a bounded signal, i.e. bounded trigonometric moments.
To keep this image-based representation compact, we adaptively determine the
number of moments in each pixel and present a novel coding and quantization
strategy.

viii

P U B L I C AT I O N S

[1] T. F. Dauch, C. Ates, T. Rapp, M. C. Keller, G. Chaussonnet, J. Kaden,
M. Okraschevski, R. Koch, C. Dachsbacher, and H.-J. Bauer. “Analyzing
the Interaction of Vortex and Gas–Liquid Interface Dynamics in Fuel
Spray Nozzles by Means of Lagrangian-Coherent Structures (2D).” In:
Energies (2019). issn: 1996-1073. doi: 10.3390/en12132552.

[2] T. F. Dauch, T. Rapp, G. Chaussonnet, S. Braun, M. C. Keller, J. Kaden, R.
Koch, C. Dachsbacher, and H.-J. Bauer. “Highly Efficient Computation
of Finite-Time Lyapunov Exponents (FTLE) on GPUs Based on Three-
Dimensional SPH Datasets.” In: Computers & Fluids (2018). issn: 0045-
7930. doi: 10.1016/j.compfluid.2018.07.015.

[3] M. Piochowiak, T. Rapp, and C. Dachsbacher. “Stochastic Volume
Rendering of Multi-Phase SPH Data.” In: Computer Graphics Forum 40.1
(2021), pp. 97–109. doi: 10.1111/cgf.14121.

[4] T. Rapp and C. Dachsbacher. “Visualizing Transport and Mixing in
Particle-based Fluid Flows.” In: Vision, Modeling and Visualization. 2019.
isbn: 978-3-03868-098-7. doi: 10.2312/vmv.20191330.

[5] T. Rapp and C. Dachsbacher. “Uncertain Transport in Unsteady Flows.”
In: Proceedings of IEEE Visualization. 2020, pp. 16–20. doi: 10.1109/
VIS47514.2020.00010.

[6] T. Rapp, C. Peters, and C. Dachsbacher. “Image-based Visualization of
Large Volumetric Data Using Moments.” Submitted to IEEE Transac-
tions on Visualization and Computer Graphics. 2020.

[7] T. Rapp, C. Peters, and C. Dachsbacher. “Void-and-Cluster Sampling
of Large Scattered Data and Trajectories.” In: IEEE Transactions on
Visualization and Computer Graphics (Proceedings of IEEE Visualization
2019) 26.1 (2020), pp. 780–789. issn: 077-2626. doi: 10.1109/TVCG.2019.
2934335.

[8] T. Rapp, C. Peters, and C. Dachsbacher. “Visual Analysis of Large Mul-
tivariate Scattered Data using Clustering and Probabilistic Summaries.”
In: IEEE Transactions on Visualization and Computer Graphics (Proceedings
of IEEE Visualization 2020) 27.2 (2021), pp. 1580–1590. issn: 1941-0506.
doi: 10.1109/TVCG.2020.3030379.

[9] G. Simons, S. Herholz, V. Petitjean, T. Rapp, M. Ament, H. Lensch,
C. Dachsbacher, M. Eisemann, and E. Eisemann. “Applying Visual
Analytics to Physically Based Rendering.” In: Computer Graphics Forum
38.1 (2019), pp. 197–208. doi: 10.1111/cgf.13452.

[10] M. Zeidan, T. Rapp, C. Peters, and C. Dachsbacher. “Moment-Based
Opacity Optimization.” In: Eurographics Symposium on Parallel Graphics
and Visualization. 2020. isbn: 978-3-03868-107-6. doi: 10.2312/pgv.
20201072.

ix

https://doi.org/10.3390/en12132552
https://doi.org/10.1016/j.compfluid.2018.07.015
https://doi.org/10.1111/cgf.14121
https://doi.org/10.2312/vmv.20191330
https://doi.org/10.1109/VIS47514.2020.00010
https://doi.org/10.1109/VIS47514.2020.00010
https://doi.org/10.1109/TVCG.2019.2934335
https://doi.org/10.1109/TVCG.2019.2934335
https://doi.org/10.1109/TVCG.2020.3030379
https://doi.org/10.1111/cgf.13452
https://doi.org/10.2312/pgv.20201072
https://doi.org/10.2312/pgv.20201072

Visualization gives you answers to questions
you didn’t know you had.

— Ben Shneiderman

A C K N O W L E D G M E N T S

I would like to thank my advisor, Prof. Dr.-Ing. Carsten Dachsbacher. Carsten,
joining your group in pursuit of a PhD was one of the best decisions I have
made. Thank you for all of the support and advice that is reflected throughout
this thesis.

Furthermore, I want to thank Dr. Christoph Peters for his advice and guidance.
Christoph, thank you for making me a better scientist. This thesis would have
taken a lot longer without you.

Thank you Dr. Johannes Schudeiske, Tobias Zirr, Christoph Schied, Dr. Florian
Reibold, Lorenzo Tessari, Daniel Opitz, Max Piochowiak, Diana Kheil and all
others of my current and former colleagues at the computer graphics group at
the Karlsruhe Institute of Technology.

For going with me on a fantastic journey through computer science, I want
to acknowledge, in no particular order, Daniel Hassler, Pierre Barbera, Jannik
Quehl, Sebastian Krach, Michael Hauber, Michael Jakobi and everyone else
that we have met on our way.

Finally, I wish to thank my parents, Günter and Christa, and my sister Stefanie
for their love and support. Last but not least, I want to thank Fabienne Heinzler
for supporting me throughout this thesis. Without you, all of this would not
have been possible.

xi

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

2 visualizing particle data 5

2.1 Particle Data . 5

2.2 Visualizing Spatiotemporal Data 7

2.3 Visualizing Multivariate Data . 13

2.4 Interactive Visual Analysis . 17

3 data reduction for particle-based visualization 19

3.1 Particle Compression . 19

3.2 Probabilistic Data Modeling . 20

3.3 Data Reduction by Sampling . 25

4 flow visualization 27

4.1 Fluid Dynamics . 27

4.2 Smoothed Particle Hydrodynamics 29

4.3 Flow Visualization . 30

4.4 Uncertain Flow Visualization . 35

i lagrangian flow visualization

5 lagrangian coherent structures 41

5.1 Finite-Time Lyapunov Exponent 41

5.2 Identifying Lagrangian Coherent Structures 44

5.3 Numerical Experiments . 46

5.4 Discussion . 51

6 visual analysis of transport and mixing 53

6.1 Visual Analysis Framework . 54

6.2 Visualizing the Topology of Time-Dependent Flows 55

6.3 Visualizing Mixing in Multiphase Fluid Flows 55

6.4 Case Studies . 55

6.5 Discussion and Domain Expert Feedback 58

7 uncertain transport 59

7.1 Stochastic Flows . 60

7.2 Stochastic Transport Barriers and Enhancers 60

7.3 Modeling Diffusion . 61

7.4 Visualizing Transport Uncertainty 62

7.5 Numerical Experiments . 62

7.6 Discussion . 69

ii data reduction for visual analysis

8 void-and-cluster sampling 73

8.1 The Void-And-Cluster Technique 73

8.2 Void-and-Cluster Sampling for Particle Data 74

8.3 Parallel Implementation . 79

xiii

xiv contents

8.4 Local Error Measure . 80

8.5 Evaluation . 82

8.6 Future Work: Multi-Node Parallelism 91

8.7 Discussion . 91

9 probabilistic summaries 93

9.1 Probabilistic Summaries . 94

9.2 Spatial Visualization . 97

9.3 Visual Analysis . 99

9.4 Evaluation . 103

9.5 Discussion . 113

10 image-based volume visualization using moments 115

10.1 Using Moments to Reconstruct Bounded Densities 116

10.2 Moments of Ray Densities . 118

10.3 Interactive Rendering . 119

10.4 Relations Between Moments . 120

10.5 Determining the Number of Moments 121

10.6 Compression and Quantization 122

10.7 Uncertainty Quantification . 125

10.8 Single Scattering . 126

10.9 View Projection . 126

10.10Evaluation . 127

10.11Discussion . 133

10.12Future Work . 134

11 conclusion 135

iii appendix

a appendix 139

a.1 Void-and-Cluster Sampling Algorithm 139

a.2 Indexing a Lower Tridiagonal Matrix 139

a.3 3D Gaussian Ray Integration . 141

bibliography 143

1
I N T R O D U C T I O N

We first motivate the goals and challenges addressed in this thesis by intro-
ducing several application domains and the data that they produce. We detail
how visualization lets scientists and engineers explore, validate, formulate
models and hypotheses, or communicate their work. Ultimately, our aim is to
support scientists and engineers in gaining insight into large particle data from
a Lagrangian perspective by combining visual and computational methods.
Lastly, we give an overview of this thesis and outline the novel contributions.

1.1 motivation

In the context of this thesis, we define particles as scattered, or unstructured,
data. They move freely through both space and time. In addition, each particle
might contain one or more physical quantities, such as temperature, density,
or pressure. This type of data is most prominently produced in cosmological
simulations, e. g. stemming from N-body or smoothed particle hydrodynamics
(SPH) simulations. For example, cosmologists study the evolution of the
large-scale universe by simulating the interaction of dark matter particles,
see Figure 1.1 (a). Since the introduction of SPH [88, 199] in 1977, it has
been adopted by researchers and engineers to model and study more general
fluid flows. In the example shown in Figure 1.1 (b), engineers simulate the
injection of fuel inside a jet turbine engine to reduce CO2 emissions. Here,
fuel and gasses are represented by particles. Another source of particle data
are molecular dynamics simulations that compute the physical movements
of atoms and molecules. In all of these cases, the study of movement and
interaction, or the dynamics, of particles is the central focus in science and
engineering.

The study of flow dynamics has a long history in science, due to its mani-
fold applications in diverse fields such as aeronautics, industrial engineering,
medicine, and astrophysics. Since its inception in the 20th century, the interdis-
ciplinary science of non-linear dynamical systems has greatly contributed to
the understanding of complex flow behavior. Although slight changes of the
initial conditions of a system can lead to a radically different behavior [198],
there are still patterns in seemingly chaotic flows. The topological analysis
of flow dynamics is a promising approach for effective flow visualization.
Although the topology of time-independent flows is well understood [126], the
topological segmentation of time-dependent flows is still an active area of re-
search [35]. To visualize the dynamics of time-dependent flows, the Lagrangian
frame of reference is considered promising [110]. In this reference frame, the
observer follows the motion of particles through space and time. Whilst most
research is focused on structured data that first needs to be converted into
the Lagrangian frame, it is the natural frame for particle data. Lagrangian

1

2 introduction

(a) The Dark Sky simulation [293] (b) Simulation of a fuel spray nozzle [46]

Figure 1.1: Visualization of large, scattered particle data in a cosmological N-body
simulation of dark matter (a) and in a multiphase SPH simulation of a fuel
spray nozzle (b).

methods then enable a topological segmentation of material transport and
mixing processes. For example, the spread of salinity, temperature, and plank-
ton is tightly linked to eddies in the ocean. The same analysis methods can
be applied to understand the atomization of fuel in a combustion engine. We
extend and apply these methods to particle data. The Lagrangian nature of
particles enables more efficient analysis methods and the application to new
types of flows, such as the multiphase flow shown in Figure 1.1 (b). Lastly, due
to the chaotic nature of flow dynamics, i. e. the sensitive dependence on initial
conditions, the study of uncertainties in the Lagrangian transport remains an
important open problem.

Whilst the growth of data sizes closely resembles Moore’s law [219], i. e. dou-
bles approximately every two years, storage and bandwidth do not increase
at the same rate. This discrepancy forces scientists and engineers to either
capture less data, for example by reducing the temporal resolution, or to
employ data reduction methods. To achieve a meaningful reduction in size,
these approaches are inherently lossy, which is unavoidable due to the high
entropy of continuous scientific data [181]. Moreover, the traditional approach
of performing the visualization and analysis on individual workstations is
no longer feasible for current data sizes. To address this limitation, we study
data reduction techniques specific to particle data. We design these data re-
duction techniques for the visualization on a single workstation, thus enabling
scientists and engineers to interactively explore large-scale particle data.

To visualize particles, their dynamics, and to understand the underlying
physical processes, we propose an interactive visual analysis [324] approach
with a Lagrangian perspective. This combines user interaction, visualization,
and automatic analysis to explore complex data and processes. In detail, we
discuss visualization techniques, domain-specific feature analysis, and efficient
user interaction specific to large particle data. Here, large amount of particles
pose a significant challenge for interactive exploration and analysis. However,
this is not only a memory or computational issue since human perception is
also quickly overloaded by displaying too much visual information at once.

1.2 contributions 3

(a) Halos in the Illustris simulation [225] (b) Simulation of a rotating turbine

Figure 1.2: A cosmological dataset with 2.6 billion particles is represented by 5.3
million halos (a) and can be explored interactively. A volume rendering of
an SPH simulation (b) shows counteracting velocities that rotate a turbine.

The interactive visual analysis thus requires data reduction and abstractions
to create efficient and clutter free visualizations.

Lastly, since particles exist in a spatiotemporal domain, an important part is
the visualization of spatial particle dynamics. This includes transfer-function
based exploration, i.e. how relevant parts of the data can be revealed whilst
avoiding occlusion. We discuss and evaluate different approaches to render
large particle data, including object-order splatting and image-based volume
rendering approaches, cf. Figure 1.2. In all of these methods, we avoid visual
clutter and enable the interactive visual exploration and analysis.

1.2 contributions

We first introduce fundamental concepts and prior work regarding particles
(Chapter 2), data reduction (Chapter 3), and flow visualization (Chapter 4). The
first part of this thesis then considers the visualization of flows represented
by particles. We develop scalable algorithms to identify Lagrangian coherent
structures and propose a visual analysis approach to study the underlying
particle dynamics. Furthermore, we investigate uncertainties in the Lagrangian
transport dynamics. In the second part, we consider the reduction of large
particle data for interactive visual analysis using stochastic sampling, prob-
abilistic data modeling, and with an image-based method. In summary, this
results in the following contributions:

Efficient evaluation of Lagrangian coherent structures (Chapter 5, [55, 253]): We
propose an efficient computational method to evaluate the finite-time Lya-
punov exponent for large, three-dimensional particle data. From this quantity,
the Lagrangian coherent structures are identified using a novel formulation.
Both of these steps are performed interactively using GPU acceleration, thus
avoiding long preprocessing times and enabling the interactive exploration of
the parameter space.

4 introduction

Visual analysis of transport and mixing (Chapter 6, [253]): Based on the identified
Lagrangian coherent structures, we present a visual analysis prototype to
efficiently explore the transport and mixing properties of large particle data.
In addition, we discuss the application to multiphase fluid flows, which are a
prominent type of particle simulation methods. We discuss our approach in
several case studies, one of which has already led to an improved spray nozzle
geometry to be used in jet turbines [54].

Stochastic transport barriers and enhancers (Chapter 7, [254]): We investigate
uncertainties in the Lagrangian transport. To this end, we employ the diffusion
barrier strength to identify transport barriers and enhancers in stochastic flows.
This quantity is similar to the finite-time Lyapunov exponent, but explicitly
considers small-scale stochastic deviations to the flow.

Void-and-cluster sampling (Chapter 8, [256]): To reduce large scattered datasets
using statistical sampling, we propose a novel sampling approach that opti-
mizes the spatial distribution of sampled data points. This greedy optimization,
based on the void-and-cluster technique [314], leads to an optimal spatial dis-
tribution of samples, supports non-uniform probabilities, and is performed in
parallel using GPU acceleration. Lastly, our approach provides a continuous
level-of-detail for interactive visualization.

Probabilistic summaries (Chapter 9, [257]): To explore and visually analyze
extreme-scale datasets, we present a novel probabilistic representation for
scattered data. These probabilistic summaries are based on Gaussian mixture-
models and are applicable to multivariate particle data. Moreover, we develop
novel formulations to interactively visualize the probabilistic representation
without resorting to expensive sampling.

Image-based volume visualization using moments (Chapter 10, [255]): For image-
based volume visualization of large particle data, we present an approach that
decouples the data access and interpolation from the interactive exploration. To
this end, we introduce a compact image-based representation using bounded
trigonometric moments that is efficiently reconstructed during analysis.

2
V I S UA L I Z I N G PA RT I C L E D ATA

In this chapter, we formally introduce particles as scattered data in Section 2.1.
In particular, we discuss the associated multivariate value range and the spatial
interpolation thereof. Then, we discuss approaches for visualizing particles
in space-time in Section 2.2 and the visual analysis of multivariate data in
Section 2.3. These concepts are combined for the interactive visual exploration
and analysis of particle data, which is introduced in Section 2.4.

2.1 particle data

Particle data is a form of scattered or unstructured data without a regular
topology. A particle has a position p ∈ Rd in a d-dimensional spatial domain,
where d is mostly two or three. Each particle references one or more dependent
variables from the multivariate value range V through v : Rd → V. These
variables are discretized physical quantities such as pressure, density, and
velocity.

2.1.1 Scattered Data Interpolation

To reconstruct continuous variables, we employ scattered data interpolation.
This is due to the large data sizes that make the creation of structured grids for
interpolation, e. g. using Delaunay triangulation [56], prohibitively expensive.
Scattered data interpolation methods consider all or a local subset of the
unstructured data points during interpolation. One of the most used scattered
data interpolation techniques is Shepard’s method [286]. The interpolated
function ṽ is thereby defined as:

ṽ(p) = ∑
k

wk(p)
∑j wj(p)

v(pk), (2.1)

with the weighting function

wj(p) = ||p− pj||−ρ.

The parameter ρ controls the shape of the interpolation function, such as its
smoothness and the influence of close and far away points, see Figure 2.1.

Kernel regression, proposed by both Nadaraya[224] and Watson [323], re-
places the weighting function in Equation 2.1 by an arbitrary kernel k with
bandwidth h:

ṽ(p) = ∑
k

k(p− pk, h)
∑j k(p− pj, h)

v(pk). (2.2)

If the kernel does not go to infinity at the origin, the regression approximates
and does not interpolate. For noisy data this is generally preferable due to the

5

6 visualizing particle data

0.0 0.2 0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75
ρ=1

0.0 0.2 0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75
ρ=2

0.0 0.2 0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75
ρ=4

Figure 2.1: Shepard interpolation with different values of ρ.

bias-variance trade-off [22, Section 3.2]. In Section 4.2, we introduce the SPH
framework, which is based on kernel regression.

All interpolation methods based on distance weighting can be limited to
points in a local neighborhood. This makes the interpolation applicable to
large datasets if appropriate acceleration structures, such as a k-d tree, are
used. Some methods additionally compute weighting coefficients for each
data point, which makes their application to large datasets more challenging.
For example, moving least squares approximates a function by locally fitting
polynomials. Interpolation using radial basis functions makes use of radially
symmetric kernels φ

ṽ(p) = ∑
k

wkφ(||p− pk||). (2.3)

The coefficients wk of each data point are hereby determined from the data by
solving a linear system of equations. A linear polynomial term is often added
to faithfully reproduce polynomial functions and to improve extrapolation.

2.1.2 Particle Trajectories

Most commonly, particles move through both space and time. In this case,
the temporal domain is discretized into a sequence of time steps TP :=
(t0, . . . , tN−1), where t0 ≤ · · · ≤ tN−1 ∈ R. A trajectory is only defined in
a time interval (tj, . . . , tk), where 0 ≤ j ≤ k ≤ N − 1. This implies that a trajec-
tory does not necessarily exist over the whole temporal domain, for example,
when particles enter or leave the spatial domain. We define a trajectory τ as
an ordered sequence of points in this time interval with

τ := (ptj , . . . , ptk), with 0 ≤ j ≤ k ≤ N − 1

t0 t1 t8

S
p
a
ce

Time

pt1

pt7

Figure 2.2: Illustration of a trajectory in one-dimensional space and time.

2.2 visualizing spatiotemporal data 7

(a) Spheres (b) Arrows (c) Lines (d) Tubes

Figure 2.3: Different geometric glyphs to visualize particles.

and points pti at time ti. A trajectory is illustrated in Figure 2.2. There are
several ways to reconstruct smooth curves from discrete points pti . We employ
centripetal Catmull-Rom splines [42] in this thesis, but other parametric curves
can be used [34].

2.2 visualizing spatiotemporal data

Since particles are defined in a d-dimensional spatial domain, we directly
visualize their distribution in space. To visualize the temporal component,
we either use animation or visualize the particle trajectories in a fixed time
interval. We use additional visual channels to convey more information about
the dataset. Most commonly, we depict a single value dimension by mapping
each particle to a color and transparency using a transfer function [196]. Other
visual channels, such as length, area, and shape, are used when appropriate.
Different approaches for rendering particles exist, specifically glyph-based
(Section 2.2.1), splatting (Section 2.2.2), direct volume rendering (Section 2.2.3),
image-based rendering (Section 2.2.4), and surface extraction (Section 2.2.5).

2.2.1 Particle Glyphs

Figure 2.3 illustrates different particle glyphs. In the following, we summarize
common glyphs and their respective advantages. More complex glyphs have
been developed [129, 130, 158]. For each glyph, shading and illumination is
used to better convey the spatial arrangement.

spheres In the simplest case, we represent each particles as a sphere.
Spheres are efficient to render and the surface normal is given analytically.

arrows To visualize the velocity of a particle, we can represent it using an
arrow glyph that points in the direction of the velocity vector and is scaled by
the velocity magnitude. However, the increased geometrical complexity of the
glyph quickly leads to visual clutter. We recommend to show only a subset of
arrow glyphs for larger particle data.

8 visualizing particle data

lines To visualize flow fields, trajectories are rendered as curves. By draw-
ing thin lines, we maximize the amount of trajectories. Line illumination [205]
is employed to perform correct shading.

tubes Instead of drawing lines, we can visualize a particle trajectory by
extruding lines to tubes. This makes single trajectories more prominent and
easier to distinguish, but only a small amount of trajectories can be effectively
visualized at once.

Glyphs can be rendered in image-order by casting rays or in object-order
using rasterization. This decision involves different trade-offs, especially re-
garding transparency and scalability. In general, image-order ray casting
methods scale with the image resolution if spatial acceleration structures are
employed. On current GPUs, ray tracing hardware can accelerate ray casting of
particles [92]. Ray casting of semi-transparent points [94, 315], metaballs [160,
302], and lines [115, 163] has been investigated extensively.

With object-order rasterization, rendering times scale with the number
of glyphs. Simple glyphs with an implicit geometric representation can be
rendered by rasterizing a bounding box to produce the required fragments
and then ray casting the implicit geometry [262, 291]. Further improvements
such as culling and deferred shading [96], optimizing the transfer of time-
dependent data [93], as well as ambient occlusion [67, 97, 296] are possible.
See also MegaMol [95] for a particle-based visualization system.

Transparency can reduce occlusion and emphasize important structures,
whilst still showing the context [11, 99]. Whilst the integration of transparency
in image-based ray casting is straightforward, object-order transparency is a
long-standing problem in computer graphics. Specifically, pixel colors and
opacities have to be composited in the correct order. By sorting the geom-
etry from front-to-back or back-to-front, we can perform the required non-
commutative compositing. Although sorting with GPU acceleration is fast,
scaling remains an issue due to the algorithmic complexity of the sorting
operation. Moreover, combining rendering techniques for different types of
geometries is problematic in practice.

Kaehler et al. [157] use an octree to represent the particle data and to cor-
rectly composite them during traversal. To visualize large-scale cosmological
data, the particles are rendered together with a volumetric grid. This combi-
nation of volumetric and particle data is also used by Schatz et al. [277] to
efficiently render trillions of particles. An order-independent transparency
(OIT) approach is employed to render the particle glyphs without sorting.
Although it is possible to store and sort all fragments on a per-pixel basis [41],
this comes at a considerable cost. Current OIT approaches thus only approxi-
mate the transparency [271]. Kern et al. [167] compare different techniques for
object-order transparency and propose improvements.

In this thesis, we employ moment-based order-independent transparency
(MBOIT) [223]. MBOIT renders all semi-transparent geometry twice using
additive blending for both passes. In our case, the first pass renders to so-
called moment buffers with a total of seven channels at 16 bits per channel.
Upon completion, these moment buffers store seven Fourier coefficients of

2.2 visualizing spatiotemporal data 9

(a) Points (b) Points (MBOO) (c) Lines (d) Lines (MBOO)

Figure 2.4: A tornado visualized using points (a) and lines (c) suffers from occlusion.
Our moment-based opacity optimization [341] reveals points (b) and lines
(d) forming the tornado by reducing the opacity of surrounding geometry.

the optical depth as a function of screen-space depth. The core of MBOIT
is a reconstruction based on the theory of moments that uses these Fourier
coefficients to estimate the occlusion of geometry at any depth. The second
pass accumulates fragment colors, multiplying them by the reconstructed
transmittance values. A final full-screen pass normalizes the total brightness
and composites the result with the background color.

In our work [341], we further employ moments and the MBOIT framework
to store and reconstruct a feature importance per-pixel, see Figure 2.4. This is
employed to optimize the opacity to emphasize important regions of the data
and to reduce visual clutter.

2.2.2 Splatting

Object-order splatting of semi-transparent kernels [328, 329] is used to effi-
ciently reconstruct a continuous volume from unstructured data. On modern
GPUs, both rasterization as well as ray tracing hardware [173] can be used to
splat semi-transparent particles. In both cases, kernel functions of particles
are projected and composited to the image plane. Compared to image-based
volume rendering using ray marching, splatting is limited with respect to
quality and flexibility. Specifically, splatting classifies and shades before pro-
jection and the use of different illumination models or transfer functions is
difficult if not impossible. Furthermore, splatting is based on the assumption
that kernels do not overlap, which leads to temporal flickering otherwise. In
general, aliasing is an issue for splatting that should be addressed [221, 301,
346]. However, rendering scattered data using splatting is fast and well suited
for GPU acceleration. In comparison to glyph-based visualization, splatting is
especially useful to render large datasets with a transfer function that maps
large regions as semi-transparent, see Figure 2.5.

Splatting has been studied extensively in the past. For large data sizes, out-
of-core processing and a level-of-detail mechanism is required. Hopf et al. [136]
construct a hierarchical data structure using principal component analysis
(PCA) clustering. During rendering, the data structure is traversed and each
cluster in the hierarchy is either splatted or recursively traversed based on a
maximum screen error measure. In their following work [137], the authors
additionally address rendering of spatiotemporal scattered data. To interpolate

10 visualizing particle data

(a) Sphere glyphs (b) Particle splatting

Figure 2.5: Rendering sphere glyphs (a) and splatting (b) of a large SPH dataset
(Section 6.4.2) using a transfer function.

particle positions in the temporal domain, cubic splines are employed and
the control points are stored in the hierarchy. For rendering particle traces
in large flow simulations, Ellsworth et al. [71] store the particles on disk in
Morton order, also known as a z-curve. This enables efficient retrieval of a 3D
box of particles. Fraedrich et al. [77] employ an octree as a multi-resolution
representation of large cosmological data. Neophytou and Mueller [226] splat
time-varying data encoded in a 4D lattice. Note that all of these approaches
incorporate some form of compression, which is discussed in Section 3.1.

Splatting has also been used to efficiently render large amounts of radial
basis functions (RBFs). To efficiently render unstructured data, Co et al. [50]
create a hierarchy using PCA and fit RBFs using a least-squares approximation.
The work from Jang et al. [151] is applied to large, rectilinear gridded volume
data and similarly uses PCA for clustering. Weiler et al. [326] discuss the
application to multivariate gridded data and feature detection in the radial
basis. Jang et al. [149] propose elliptical basis functions to better model the
data, which requires rendering anisotropic Gaussian kernels. To relax the
limitation of rotational invariant and symmetric kernels, Zwicker et al. [346]
discuss splatting of elliptical Gaussians by approximating the footprint after
perspective projection. Moreover, Neophytou et al. [227] efficiently slice ellip-
tical three-dimensional kernels on the GPU, whilst Juba et al. [156] perform
GPU-based ray casting. Hong et al. [135] discuss the modeling of anisotropic
RBFs specifically for unstructured data, for which weighted least squares
and a Delaunay triangulation is employed. In general, the modeling of RBFs
does not scale to large particle data and is mostly applied to structured and
unstructured meshes. State of the art methods for rendering structured and un-
structured data are usually performed in image-order using ray casting [220]
due to the inherent limitations of both splatting and RBF fitting.

2.2.3 Image-Order Volume Rendering

Direct volume rendering evaluates a physically-based model of light trans-
port [105, 209]. Although volume rendering has been performed in object-order
in the past, current methods perform image-order ray marching of the volumet-

2.2 visualizing spatiotemporal data 11

z-velocity 0.1-0.1

Fluid Turbine

Figure 2.6: Stochastic volume rendering of SPH data with single-scattering illumina-
tion [246]. The counteracting velocities around the turbine blades force the
turbine to rotate.

ric data. To reconstruct a continuous scalar field from the particles, scattered
data interpolation is performed, cf. Section 2.1.1. The unstructured particle
data can be resampled to a regular grid to enable efficient sampling of the
scalar field. For large data, compression [13] and out-of-core rendering tech-
niques [19] are consequently required. For example, Reichl et al. [261] resample
cosmological data to a sparse octree and perform wavelet-based compression
in a time-consuming preprocess. Subsequent volume rendering is then able to
create high-quality visualizations in a reasonable amount of time using GPU
decompression.

Several approaches specific to particle data have been proposed to speed
up the expensive resampling and to reduce storage requirements. In detail,
Jang et al. [150] avoid resampling and directly ray cast particle data on the
GPU using binary space partitioning. To speed up the computation, small
kernel radii are used for interpolation while generating the hierarchical data
structures. Orthmann et al. [231] enhance octrees with topological caches
for fast neighborhood lookup coupled with a level-of-detail mechanism. A
level-of-detail hierarchy is also created by Fraedrich et al. [76]. Based on the
current view frustum, the appropriate levels in the hierarchy are resampled
to a perspective grid that is updated in each frame. Hochstetter et al. [133]
similarly perform volume rendering of particles in a sparse perspective grid.
The grid is traversed in bundles of rays that are adaptively sampled, bounded
by a user-controlled error in screen-space. To render radial basis functions,
Knoll et al. [174] employ ray bundles to traverse a bounding volume hierarchy
on a CPU cluster.

Reichl et al. [260] convert the particle data to a binary voxel representa-
tion encoded in a sparse octree to render photorealistic fluid simulations. In

12 visualizing particle data

contrast, Zirr and Dachsbacher [344] perform on-the-fly voxelization using
a perspective grid. Note that a binary voxel representation limits these ap-
proaches to homogeneous fluids. The methods are well suited for photorealistic
rendering of fluids. In our work [246], we propose a direct rendering of SPH
data, see Figure 2.6. To accelerate the evaluation of the interpolation kernels
during ray marching, we only consider a stochastically sampled subset of
particles. Moreover, we explicitly reconstruct and shade the interfaces between
different types of particles.

To summarize, most of these approaches combine hierarchical space parti-
tioning and level-of-detail for fast, interactive ray marching. The costly resam-
pling is thereby either performed in a preprocess or evaluated on-the-fly.

2.2.4 In Situ and Image-Based Visualization

To visualize massive datasets produced by state-of-the-art supercomputers, in
situ visualization [49] is becoming increasingly popular. Thereby, the simula-
tion is tightly coupled with the visualization pipeline to produce intermediate
results whilst the simulation is still being run. This has the advantage that the
data can be directly processed on the supercomputer. However, exploring or
interacting with the data is more difficult.

Ahrens et al. [5] present the cinema framework for in situ visualization of
extreme scale data by collecting and organizing a large database of images
taken with different parameters. The authors point out that storing a massive
amount of images, e.g. in the order of 106, still leads to a reduced amount of
data compared to state-of-the-art simulations, which are in the order of ≥ 1015.
Lukasczyk et al. [201] additionally generate depth images in situ to determine
a minimal set of images that best approximates the data. This reduces the
number of images in the cinema database and enables the approximation of
views that were not stored. Lukasczyk et al. [200] further present a deferred
rendering framework using geometry buffers that are generated in situ. Lastly,
Woodring et al. [334] extend the cinema framework for data besides images
and provide a relational data model to enable querying.

To enable a change of the transfer function or the lighting configuration,
storing color images is not sufficient for volumetric data. Tikhonova et al. [306–
308] propose explorable images that store image slices to allow modification
of the transfer function by solely relying on image-space operations. Ye et
al. [337] employ explorable images to render pathtubes of flows in situ.

Image-based rendering approaches are an alternative approach to perform
surface [47] or volume rendering [222] from a small, view-dependent proxy
image. These approaches are especially beneficial for scattered or unstructured
data since the generation of the proxy image is costly, but the rendering step is
independent from the data representation. For this reason, Shareef et al. [285]
perform volume rendering on unstructured grids. This representation is based
on layered depth images [283], where each pixel in the proxy image contains
a list of depth-ordered samples. Volumetric depth images [78] partition rays
in image-space into segments consisting of a composited color and opacity,
as well as a depth range. Volumetric depth images have been extended to

2.3 visualizing multivariate data 13

space-time [75], by exploiting both inter-ray and inter-frame coherence. Wang
et al. [319] partition each ray into segments, but subdivide adaptively based on
the Shannon entropy of ray densities. In each segment, the density distribution
is approximated with a histogram, which is storage intensive and introduces
aliasing. Their work has been extended for time-varying data [318]. This image-
based representation is used to interpolate between the raw data at discrete
time steps.

2.2.5 Surface Reconstruction

Surface extraction from particle data has been extensively studied. Most
methods are based on the marching cubes algorithm [197], but use different
scalar fields [2, 230, 294, 343]. The resulting surfaces usually suffer from
bumpiness due to the irregular distribution of particles [7, 339]. Moreover, the
required preprocessing often forms a bottleneck in the visualization pipeline
due to large computational time and memory requirements.

As shown by our work [246], surface reconstruction can be performed during
volume rendering, see Figure 2.6. The costly volumetric interpolation is thereby
performed on-the-fly, as discussed in Section 2.2.3. Although an isosurface
is just a transfer function with a Dirac impulse at the isovalue, it requires
special rendering techniques in practice. Hadwiger et al. [107] use the secant
method for finding isosurfaces. Their approach has been extended by Knoll et
al. [172] who propose peak finding as an alternative to pre-integrated transfer
functions. Igouchkine [142] propose a multi-material volume renderer that
supports physically-based surface models at the interfaces between different
volume components.

2.3 visualizing multivariate data

The visualization of higher-dimensional data is traditionally being studied in
the field of information visualization [193, 195]. In this section, we focus on
multivariate scientific data [38, 165] and the application to large particle data.
The aim is the visual analysis of correlations, trends, and outliers between the
different variables. This type of exploratory data analysis, as first introduced
by Tukey [311], helps in forming and validating hypotheses to ultimately
create new models of the data.

2.3.1 Common Visualizations

We recapitulate several visualization techniques that are employed throughout
this thesis. A scatter plot displays two (or three) variables in a Cartesian
coordinate system, see Figure 2.7 (left). A scatter plot is most commonly used
to visualize correlations between two variables. For higher-dimensional data,
a scatter plot matrix [44] displays all scatter plots of pairwise combinations of
variables in a matrix layout. Since particle data usually contains not more than
ten dimensions, the quadratic scaling of the visualization with regards to the

14 visualizing particle data

10 5 0 5 10 15 20
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

u-
ve

lo
cit

y

Scatter plot

10 5 0 5 10 15 20
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

u-
ve

lo
cit

y

Histogram 2D

Figure 2.7: Scatter plot and (hexagonal) histogram of position and velocity in x-
direction.

Figure 2.8: Parallel coordinate plot. The data dimensions are placed parallel to each
other, with each line representing a single particle. We have selected several
value ranges (red boxes). The corresponding particles are highlighted in
orange.

dimensionality is generally acceptable. Furthermore, scagnostics [80] can be
used to identify interesting scatter plots.

In contrast to a scatter plot, a two-dimensional histogram subdivides the
domain into rectangular (or hexagonal) bins and computes the frequency of
values, see Figure 2.7 (right). The histogram thus scales better with growing
data sizes, but suffers from aliasing and deemphasizes outliers.

A parallel coordinate plot [125], first introduced by Inselberg [145], shows all
data dimensions at once by placing them parallel to each other, see Figure 2.8.
For each dimension an axis is created and for every particle a polyline is drawn
over all axes based on the particles’ values. To enable interaction, every axis
can be brushed to select particles. The polylines of selected particles are then
highlighted in the parallel coordinate plot. Figure 2.8 additionally depicts a
1D histogram on each axis to better convey the distribution in each dimension.

A parallel coordinate plot allows correlating each pair of neighboring dimen-
sions. To this end, the axes can be reordered to compare different dimensions.
Determining the best arrangement, for example with respect to some similarity
measure, is an NP-hard problem [8]. Since particle data is typically limited to
few dimensions, this is less of an issue for our application.

Star coordinate plots [161, 162] arrange the coordinates circular, see Fig-
ure 2.9. A higher dimensional data point v ∈ V is then projected to a two-
dimensional point by summing the unit vectors of each coordinate multiplied
by v. Similar to parallel coordinate plots, rearranging the axes interactively
is crucial. Additionally, the user can modify the orientation and length of
the axes to alter the projection. Since this defines a general affine projection,

2.3 visualizing multivariate data 15

Figure 2.9: A star coordinate plot arranges the coordinates on a circle with the origin
at the center.

strong distortions are possible. To address this, Lehmann and Theisel [185]
extend star coordinates with an orthographic constraint to better preserve the
structure of the dataset in the projection. Star coordinates are used extensively
in the SmoothViz system [215] to visualize particle data.

2.3.2 Multiple Coordinated Views

Most, if not all, visualizations do not scale well with respect to dimension-
ality. The visualization of multivariate data thus requires interactive visual-
izations [310]. Multiple, coordinated views [264] are commonly employed to
enable interaction for data exploration. Different variables are hereby explored
and analyzed in linked views of the data. Each of these views, including
scatter plots, function graphs, histograms, or parallel coordinates, support
interaction by brushing. The linked views thereby highlight the brushed data
values. Additionally, logical combinations of brushes support the creation of
increasingly complex selections. This is often combined with query-driven
visualization [297], where queries can be formulated in SQL [43] or a custom
feature definition language [116].

This interaction scheme, referred to as brushing and linking [16, 206], enables
the intuitive visual exploration and analysis of higher-dimensional data. There
are many variations, for example angular brushing for parallel coordinate
plots [118]. Note that the brushing operation must not be binary. Instead,
a fractional degree of interest d ∈ [0, 1] can be assigned to each data point.
Such a continuous degree of interest can be obtained by smooth brushing [59].
Lastly, focus and context [117] emphasizes brushed data elements, whilst the
surrounding context is still visible.

2.3.3 Clutter Reduction for Large Data

Visualizing large amounts of particle data leads to overdraw and visual clutter,
especially for glyph-based visualizations such as scatter and parallel coordinate

16 visualizing particle data

0.0 0.2 0.4 0.6 0.8 1.0

4

2

0

2

4

(a) Scatter plot

0.0 0.2 0.4 0.6 0.8 1.0
4
3
2
1
0
1
2
3

(b) Scatter plot (5000 samples)

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

(c) Scatter plot with transparency

0.2 0.4 0.6 0.8

3

2

1

0

1

2

3

(d) 2D Histogram

Figure 2.10: For large datasets, glyph-based plots suffer from visual clutter and occlu-
sion (a). By sampling the data, we reveal previously hidden correlations
(b). Plotting semi-transparent points (c) is a simple form of density esti-
mation. In (d), a 2D histogram is used for estimating the density.

plots. Since visual displays are small relative to common data sizes, clutter
reduction is required to create efficient visualizations [70].

One approach to address visual clutter is the use of sampling [58], to
stochastically reduce the number of glyphs that are drawn, see Figure 2.10

(a) and (b). Bertini and Santucci [18] provide a formal model to measure the
overlap in a given area. To reduce overdraw, different sampling strategies are
automatically derived from this model. Reinhardt et al. [263] use stochastic
sampling to improve performance and reduce visual clutter for the visual
debugging of smoothed particle hydrodynamics (SPH) simulations. Ellis et
al. [68, 69] present a sampling lens that restricts the use of sampling to a
movable region, whilst the user is still able to view the context. Sampling for
data reduction is further discussed in Section 3.3.

Instead of drawing discrete glyphs, methods based on density estimation,
such as histograms, reconstruct and visualize the density of data values. For
scatter plots, a simple form of density estimation is to draw individual points
semi-transparently using alpha blending, see Figure 2.10 (c). Histograms and
hexagonal binning are often employed to convey frequency information, see
for example Figure 2.10 (d), but can lead to aliasing due to their discrete nature.
The concept of histograms has also been extended to parallel coordinate space
by drawing a quadrilateral for each bin [9, 229]. Blaas et al. [25] discuss the
application to large datasets. Splatterplots [210] group dense data points and
visualize them as contours, but explicitly sample representative outliers. In
general, outliers are often lost in density-based visualizations and require
special treatment.

2.4 interactive visual analysis 17

(a) FTLE (b) Brushed particles (c) Brushing in the linked views

Figure 2.11: Interactive visual analysis exemplified on an air bubble moving through
water (Section 6.4.2). The FTLE of all particles is shown in (a) using
a transfer function in combination with the extracted phase interface
between air and water particles. In (c), we use a combination of brushes
to select a subset of particles according to statistics and a scatter plot of
the FLTE. The corresponding particles are shown in (b).

Although kernel density estimation would allow for an improved recon-
struction of a continuous density, it is computationally too expensive for large
particle data. In the field of scientific visualization, continuous scatter plots
have been introduced [10] to construct density plots by considering the topol-
ogy and interpolation of data samples in their spatial domain. Continuous
scatter plots have been extended to parallel coordinate space [124]. To improve
computational efficiency, Heinrich et al. [123] progressively sample the spatial
domain with Gaussians kernels to construct continuous scatter and parallel
coordinate plots. Their approach has been extended to arbitrary projections of
the value range and applied to SPH data [214].

2.4 interactive visual analysis

In this section, we review the interactive visual exploration and analysis of
scientific data according to Weber and Hauser [324] and discuss the appli-
cation to large particle data. In detail, a tight coupling of computation, user
interaction, and visualization, provides new insights into the data and enables
the generation and validation of hypotheses. This approach, closely related
to visual analytics [166, 304], combines the advantages of computational and
interactive, human-guided data analysis.

Foremost is the combination of the spatiotemporal views and the multi-
variate value views, as discussed in Section 2.2 and Section 2.3. All views are
thereby connected using brushing and linking and employ a focus and context
visualization to emphasize the brushed values. This enables the seamless
transition between an overview and a detailed view on the data, according
to the mantra of Shneiderman [289]: “Overview first, zoom and filter, then
details-on-demand”.

Lastly, the analysis is supported by computing derived variables, e. g. statis-
tics or domain-specific features. Weber and Hauser [324] identify several
levels:

1. Show and brush,

18 visualizing particle data

2. Relational analysis: combination of brushed and complex queries,

3. Complex analysis: computation of derived variables from statistical and
machine learning techniques,

4. Proprietary analysis: identification and extraction of domain-specific
features.

The application of this method must be tailored to a specific domain. As
an example, we show an SPH simulation of an air bubble moving through
water in Figure 2.11, cf. Section 6.4.2 and Piochowiak et al. [246]. To visualize
the movement of particles, a domain-specific feature, the FTLE (Section 5.1),
has been computed and is visualized using a transfer function. In addition,
the phase interface between the air and water particles is shown in orange.
Using statistics and a scatter plot of the FTLE, we perform a combination of
brushes to select a subset of particles in (c). The corresponding particles are
consequently shown in the linked spatial view (b). This example thus shows
the combination of brushes and queries, the spatial and other linked views,
and the use of derived variables and statistics.

3
D ATA R E D U C T I O N F O R PA RT I C L E - B A S E D
V I S UA L I Z AT I O N

As we have seen in the previous chapter, interactive exploration and analysis
are essential to gain insight into large and complex datasets. However, data
sizes are growing rapidly due to advancements in high-performance com-
puting or increasingly accurate measurement devices. These growing data
sizes are challenging for the interactive visualization and analysis. Moreover,
storage and bandwidth capacities do not increase at the same rate. Data reduc-
tion is thus a necessary means to reduce storage requirements and to enable
subsequent data analysis.

Due to the stochastic nature of continuous scientific data, lossless or near-
lossless compression is generally unable to significantly reduce the data
sizes [188]. Moreover, we are not just interested in compression to reduce
storage requirements, but also for the interactive visualization and explo-
ration of large data. For rendering structured volumes, compression [13] and
multi-resolution [19] approaches exist. A popular family of lossy compres-
sion methods applies transformations, such as the Fourier or discrete cosine
transforms [338], custom transforms [190], or transforms based on tensor
decomposition [12], followed by quantization and encoding of the coefficients
to achieve compression. However, these transform-based methods are only
applicable to uniformly structured data. The compression of particle data is
more difficult since the positions of data points are irregular and not implicitly
defined. Particle compression thus results in a significantly reduced compres-
sion rate [342]. We review several compression methods that are applicable to
particle data (Section 3.1).

To achieve a meaningful reduction in size, probabilistic representations can
be derived from the original data. These representations are much smaller
in size and are specifically tailored for interactive visualization and analysis
tasks, but lead to a bigger loss in accuracy. Specifically, we discuss probabilistic
data models (Section 3.2) and statistical sampling (Section 3.3) to compactly
represent large particle datasets.

3.1 particle compression

Truly lossless compression schemes reconstruct exactly the same data, bit by bit.
Dictionary coding, usually a variant of LZ77 [345], match strings and replace
them by references to a dictionary. Entropy coding exploits non-uniform
probabilities of data values. The data size is reduced by storing variable-length
codewords for each data value, with a length proportional to its probability of
occurrence. The most common entropy encoding techniques are Huffman [138]
and arithmetic [333] coding.

19

20 data reduction for particle-based visualization

Lossy compression does not necessarily match the original data, thus achiev-
ing a larger reduction in size. The simplest form of lossy compression, scalar
quantization, discretizes real numbers in a known interval to a small number
of bins. When the data distribution is non-uniform, the binning scheme can be
adjusted to reflect the distribution. Scalar quantization has been used exten-
sively to quantize the relative positions of particles in a hierarchy [71, 77, 136,
137].

Vector quantization groups vectors with similar values together. Each group
is then represented by its centroid and the mapping scheme is stored in a
codebook. The process of finding a good codebook is thus the most important
part of this method and makes the encoding phase computationally expensive.
In contrast, the decoding is fast since the codebook is simply used as a look-
up table. Fraedrich et al. [77] employ vector quantization to compress the
multivariate attributes of particles.

Predictive coding [146] can be used for both lossless and lossy compression.
For particle data, we can compress the positions and values along a particle
trajectory τ = (pt0 , . . . , ptN−1). The method predicts a value from previous
values and only stores the difference to the actual value, i. e. the residual.
These residuals are more amenable to compression since they exhibit lower
entropy. Linear prediction uses a linear combination of previous values to
predict future ones. While zeroth order prediction determines that the next
position is the same as the previous one, first order prediction assumes that the
particle travels in a straight line. Ellsworth et al. [71] report similar compression
rates for zeroth and first order prediction of particle positions, whilst second
order prediction performed significantly worse. Han et al. [114] test both
zeroth, first, and second order prediction and select the prediction with the
best fit for each value along a trajectory.

More general methods for the compression of floating point data exist. For
example, Fpzip [191] uses the Lorenz predictor [141] and arithmetic coding
of the residuals for lossless compression of floating point data. However, the
Lorenz predictor assumes uniformly structured data. ISABELA [181] uses
B-splines as predictors and additionally pre-conditions the data points by
sorting them before prediction. Although a sorted array can be accurately
modeled using a B-spline, the sorting must be reversed again. More lossless
and lossy compressors for general floating point data exist [40, 336], which
typically chain multiple components together, including pre-conditioners, pre-
diction, and lossless compression coders. Since these methods are developed
for compute clusters and supercomputers, they focus on parallel execution
and high throughput.

3.2 probabilistic data modeling

Probabilistic data models can be used to represent large scientific datasets. The
data is thereby first partitioned. A compact, probabilistic model is then created
for the value distribution in each partition, thus trading data size for accuracy.

3.2 probabilistic data modeling 21

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

De
ns

ity

(a) 10 bins

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

De
ns

ity

(b) 30 bins

Figure 3.1: Two histograms of the same distribution with differing amounts of bins.

3.2.1 Probabilistic Models for Data Reduction

A value distribution might be represented by parametric or non-parametric
probabilistic models. Non-parametric models, such as histograms, explicitly
store frequencies of the probability density function. Parametric models, such
as Gaussian models, estimate a small amount of parameters that define a
continuous density function. We briefly review probabilistic models that are
commonly employed for data reduction.

Histograms

Histograms, credited to Pearson [240], discretize a distribution into a number
of bins and store the frequency or density of values in each bin. Two histograms
are shown in Figure 3.1. Although histograms are a non-parametric model,
they still depend on the number of bins. Whilst few bins reduces noise, a
larger number increases the accuracy. There are several rules to determine
the amount of bins from the data, such as Sturges rule [298], but they often
assume normally distributed data.

Gaussian Models

A univariate Gaussian model N is completely defined by mean µ and standard
deviation σ. The density is given by:

ρN (x) :=
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
. (3.1)

This is a special case of the multivariate Gaussian model defined by mean and
covariance matrix Σ:

ρN (x) :=
1√
|2πΣ|

exp
(
− (x− µ)ᵀΣ−1(x− µ)

2

)
. (3.2)

Scientific data is often normally distributed, i. e. can be modeled by such a
Gaussian. This is due to the central limit theorem, which asserts that when
independent random variables are added, their sum tends toward a Gaussian
distribution in the limit. This holds even if the original random variables
are not normally distributed. Of course, this does not imply that all data is
normally distributed, but it can be a good approximation. Figure 3.2 shows a

22 data reduction for particle-based visualization

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5 GMM, 2 components
Gaussian

Figure 3.2: To the distribution shown by the histogram, we have fitted a Gaussian
(red) and a mixture of two Gaussians (blue).

Gaussian fitted to a distribution that is apparently not normally distributed.
In this case a Gaussian is not a good model of the data distribution.

To test if a dataset is indeed normally distributed, graphical methods as well
as statistical tests of normality exist. For univariate Gaussians, the Shapiro-
Wilk test [284] is generally preferred due to its statistical power [259]. It returns
a likelihood (or p-value), where values between [0.05, 0.1] are often used as a
threshold to decide if the data is normally distributed. If the p-value is above
this threshold, it is reasonable to model the corresponding distribution using
a Gaussian. Normality tests for multivariate distributions exist, but selecting
one is more difficult [127, 212].

Gaussian Mixture Models

Gaussian mixture models (GMMs) are a parametric model that represent
arbitrary distributions as a mixture of Gaussians, see Figure 3.2. More formally,
the density of a GMM G is defined as a weighted combination of K Gaussian
distributions:

ρG(x) :=
K

∑
k=1

wkρN (x), where
K

∑
k=1

wk = 1. (3.3)

In theory, any function can be accurately represented using a GMM, with a
potentially infinite amount of components. In practice, the number of compo-
nents is kept relatively low. Moreover, selecting the best number of components
is an open problem that is closely related to model selection in the field of
machine learning. Too many components will lead to overfitting and large
storage requirements, whilst not enough components lead to a poor fit of
the data. Bayesian model comparison [22, Section 3.4] is commonly used to
compare different models. This implies that all possible GMMs are computed
beforehand. Then, the best model is selected. The Bayesian information crite-
rion (BIC) [280] and the Akaike information criterion (AIC) [6] are commonly
employed to compare GMMs. We make use of the BIC, which rewards a high
likelihood over the training data and penalizes by the number of components.

3.2 probabilistic data modeling 23

Figure 3.3: To represent volumetric data using probabilistic data models, the volume
is partitioned into blocks and the value distribution in each block is then
modeled separately.

It is defined using the number of free parameters p(G) in a GMM G and the
number of samples n as

BIC(G, n) := p(G) log(n)− 2 log(L(G)), (3.4)

where L(G) denotes the likelihood of G. For a d-dimensional GMM, the
number of free parameters is given by

p(G) := K
(

d(d + 1)
2

+ d
)
+ d− 1, (3.5)

i. e. equal to the number of entries in the symmetric covariance matrix, the
mean, and the weights.

Given a number of components, the parameters of a GMM are estimated
using the expectation maximization (EM) procedure [57]. This iterative method
seeks maximum likelihood estimates of the model parameters. It alternates
between an expectation step, which evaluates the log-likelihood of the input
samples using the current parameters, and a maximization step, which com-
putes the parameters by maximizing the expected log-likelihood found in the
expectation step.

3.2.2 Probabilistic Models of Volumetric Data

To compactly represent volumetric data, Thompson et al. [305] first partition a
volume into larger blocks of voxels, see Figure 3.3. Then, histograms are used
to represent the value distribution in each block. The degree of data reduction
is thus determined from the size of a block and the size of the histogram. Dutta
et al. [62, 63] use Gaussian mixture models to represent the value distribution.
Later on the authors [64] improve the data model and thus the reconstruction
by partitioning the data into irregular, homogeneous regions. This increases
spatial coherency and thus minimizes variance in the partitions.

A fixed number of Gaussian components is used for these mixture models.
However, the value distribution is tested for normality and might be modeled
by a single Gaussian. Since only the value distribution is modeled inside a
block, the spatial correlations are left out. Wang et al. [317] use GMMs to
represent the spatial distribution in each data block. This improves the quality
of the reconstruction, but would require storing 4D distributions. To avoid
modeling 4D GMMs, the value range is discretized and a 3D GMM is modeled

24 data reduction for particle-based visualization

in each bin. To reduce storage size, the number of GMM components is chosen
adaptively by brute force computation of GMMs and selection based on the
BIC. In the context of multi-resolution volume rendering, Sicat et al. [290]
directly model 4D distributions of the spatial and data domain using GMMs.
Their approach utilizes a multi-resolution hierarchy to model and simplify the
GMMs.

For parameter studies in cosmological simulations, Wang et al. [320] store
GMMs as compact prior knowledge to reconstruct high-resolution datasets
from multiple simulations runs. Li et al. [187] reduce unstructured cosmo-
logical simulation data in situ by subdividing space using a k-d tree and
estimating particle density using a GMM in each leaf node. The number of
GMM components is determined from the data, but is applied to all GMMs for
a dataset. To this end, the Akaike information criterion (AIC) is employed and
extended to account for all parameters and likelihoods in the dataset. After-
wards, GMMs with a low likelihood are refined by further subdividing space
and then using multiple GMMs. Lastly, during the analysis stage particles are
sampled from the GMMs using a Monte Carlo approach.

Hazarika et al. [119] propose a copula-based uncertainty modeling approach
to represent a multivariate distribution using different types of univariate dis-
tributions, including GMMs, separately from their interrelation. To summarize
large-scale multivariate volumetric data, a copula-based analysis framework
has been introduced [121]. This approach is the first to address the modeling
of multivariate data, but the Gaussian copula function limits the correlations
between dimensions to a single Gaussian. Moreover, the visualization of this
representation requires sampling, which hinders its applicability to interactive
visual analysis, especially for rendering scattered data.

Although probabilistic data models achieve a significant reduction in data
size, they are difficult to extend to high-dimensional data due to the curse of
dimensionality. This refers to the observation that when the dimensionality
increases, the volume of space and thus also the required amount of data
grows exponentially. In high-dimensional space, everything thus appears to
be sparse and dissimilar.

Most probabilistic data models have been developed for uniformly struc-
tured data. While scattered data can be visualized by first reconstructing a
structured representation [76, 261], this approach has its own drawbacks and
is not an option for all analysis techniques. As shown throughout this thesis,
particle-based visualizations benefit from specific visualization and analysis
techniques. However, sampling a probabilistic data model to create particle
data leads to large data sizes and is performance intensive [187]. Still, many
feature-based and query-driven analysis and visualization tasks rely on com-
puting local statistics [90, 203] or are inherently distribution-based [45, 62, 63,
322]. In this case, probabilistic data models are a suitable choice for compact
data representation.

3.3 data reduction by sampling 25

(a) Random sampling (b) Stratified sampling

Figure 3.4: Whilst random sampling (a) chooses samples (red) by random, stratified
sampling (b) ensures a more uniform spatial distribution of the samples
by sampling each strata separately.

3.3 data reduction by sampling

Statistical sampling of data is gaining popularity in the field of scientific
visualization [58]. Sampling is useful for both data reduction and to create
clutter free visualizations. For data reduction, a representative subset of the
original dataset is selected and used for subsequent visualizations and general
data analysis.

The sampling strategy directly controls the quality of the representation.
Although simple random sampling selects an unbiased subset, stratification
generally increases the precision of subsequent estimates [51], see Figure 3.4.
For particle data, we typically want to stratify at least in the spatial domain
and possibly in the temporal and value domains.

Woodring et al. [335] describe a simulation-time stratified sampling strategy
for large-scale particle data. Here the sampling is performed in situ, i.e. whilst
the simulation is being executed, and only the sampled data is stored. For
stratification, the authors construct a k-d tree from the data that is also used
as a level-of-detail representation. As shown by Kumar et al. [178], data
management and especially the order of read and write operations is an
important factor when storing and accessing particle data. Reordering the
particles can not only improve I/O performance, but can be leveraged as a
level-of-detail mechanism.

Su et al. [299] stratify both in the spatial and the value domain. Sampling
is performed on the server, when a client queries the data. Bitmap indices
are employed to support efficient subsetting. Wei et al. [325] extend their ap-
proach with an information-guided sampling strategy and recovery technique.
During sampling, they measure the information per stratum by computing
the entropy of a value distribution. The amount of samples that are drawn
is then proportional to the entropy. Biswas et al. [24] similarly employ an
information-guided sampling strategy in an in situ setting, but use a global
histogram for the entropy computation. In their follow-up work, Biswas et
al. [23] present a generic data-driven importance-based sampling algorithm
using both local and global properties.

26 data reduction for particle-based visualization

These approaches are limited to univariate data since they consider only a
single variable for information-guided sampling. Dutta et al. [61] present a
sampling strategy that explicitly considers multivariate data. The authors as-
sign importance to each data point based on the pointwise mutual information
and multi-variable generalizations thereof. In contrast, Hazarika et al.[120]
partition the spatial domain, transform each partition using PCA, and then
perform sampling. Since only a subset of principal components is kept, the
dimensionality of samples is reduced. At the same time, correlations between
variables are preserved for subsequent multivariate data analysis.

A desirable property of point distributions is the blue noise character-
istic [313], which leads to large mutual distances between points without
noticeable regularity artifacts. This implies an optimal stratification in the spa-
tial domain. Balzer et al. [14] compute capacity-constrained Voronoi diagrams
(CCVD) to optimize the blue noise property of point distributions, which
allows adapting the point distributions to a given density function. To find rep-
resentative particles, Frey et al. [79] propose loose capacity-constrained Voronoi
diagrams (LCCVD) that relax the capacity-constraints of the CCVD method
and are computed on the GPU. All methods based on capacity-constrained
Voronoi diagrams can be used to sample scattered data, but are computation-
ally demanding. Bridson [29] presents a Poisson disk sampling technique to
generate blue noise samples in arbitrary dimensions by enforcing a minimal
and maximal distance between nearest neighbors. However, the technique
is designed to produce entirely new sample sets, not to reduce an existing
sample set.

4
F L O W V I S UA L I Z AT I O N

In this chapter, we first introduce fluid dynamics in Section 4.1. In this thesis,
we focus on time-dependent Lagrangian flows given by the motion of particles
in space and time. This Lagrangian frame of reference on the data offers a
different perspective compared to the more common visualization of struc-
tured velocity fields. We introduce smoothed particle hydrodynamics (SPH),
a prominent particle-based fluid flow simulation method, in Section 4.2. The
state of the art of flow visualization is recapitulated in Section 4.3. Lastly, we
discuss uncertain flows in Section 4.4.

4.1 fluid dynamics

Fluid dynamics are studied in physics, engineering, and are an important topic
in the field of scientific visualization. Applications range from aerodynamics,
meteorology, and medical visualization to the formation of galaxies and cosmic
nebulae. Already in 1509, Leonardo da Vinci systematically studied turbulent
flows using hand drawn visualizations, see Figure 4.1. However, research on
fluid dynamics is still ongoing. Especially turbulency still remains as one of
the greatest scientific challenges to date [65].

There are different sources of flow data, both from physical and numerical
experiments. The former can be obtained, for example, using particle image
velocimetry (PIV). Thereby, seeding particles are inserted and tracked in
the fluid under investigation and their velocity is measured with a camera
and a laser. In contrast, numerical experiments are performed in the field of
computational fluid dynamics (CFD). The Navier-Stokes equations of fluid
motion are thereby solved by discretizing the input domain. An example of
a numerical simulation is shown in Figure 4.2, where water is heated from
below leading to a Rayleigh-Bénard convection [87].

CFD simulations are most commonly performed in the Eulerian frame of
reference. The velocity of the flow is thereby measured at fixed locations in
space and time, cf. Figure 4.3 (a). In contrast, we use a Lagrangian frame
of reference by following the motion of particles through space and time,
cf. Figure 4.3 (b). To change the frame of reference from the Lagrangian to the
Eulerian frame, particle values can be interpolated at fixed locations in space
and time. Inversely, tracer particles can be integrated in the velocity field by
solving an ordinary differential equation:

dL(t)
dt

= v(L(t), t), L(0) = p0, (4.1)

with velocity field v, integral line L parameterized by time t, and the initial
value p0. This equation can be solved by numerical integration. The velocity
field of the Rayleigh-Bénard convection and the corresponding integrated

27

28 flow visualization

Figure 4.1: Visualization of a turbulence wake as water streams past an obstacle,
drawn by Leonardo da Vinci [207].

(a) Velocity magnitude

(b) Streamlines

Figure 4.2: Velocity magnitude (a) and integrated streamlines (b) from a Rayleigh-
Bénard convection. The domain is filled with water, while a plate on the
bottom is heated. This leads to the formation of several convection cells.

x

y

(a) Eulerian frame of reference
x

y

(b) Lagrangian frame of reference

Figure 4.3: In the Eulerian frame (a), we observe the fluid at fixed positions in space
and time. In the Lagrangian frame (b), we follow the motion of fluid
particles as they move through space and time.

4.2 smoothed particle hydrodynamics 29

pi

h

(a) Neighborhood N (pi) and smooth-
ing length h

(b) Particle neighborhood and kernel function [46]

Figure 4.4: Illustration of the particle neighborhood and the relation to the smoothing
kernel.

streamlines, computed using an embedded Runge-Kutta [180] solver, are
shown in Figure 4.2.

4.2 smoothed particle hydrodynamics

The smoothed particle hydrodynamics (SPH) method originates from astro-
physics [88, 199], but is becoming increasingly popular in different disciplines
of science and engineering, for example in computer graphics [144] or in
computational fluid dynamics. The SPH method is especially well-suited for
free-surface [218] and multiphase flows [175]. In contrast to the majority of
current grid-based CFD approaches, it is a Lagrangian and mesh-free method
based on a discretization of the computational domain using moving particles.
The method is derived by first representing a function f as a convolution:

f (p) =
∫

f (p′)δ(p− p′) dp′,

for position p ∈ Rd and with the Dirac function δ. The Dirac function is then
approximated by a smoothing function or kernel W(p− p′, h), parametrized
by the smoothing length h, which leads to:

f (p) u
∫

f (p′)W(p− p′, h) dp′.

Finally, the integral is approximated by a finite sum resulting in the quadrature:

f (pi) u ∑
j

f (pj)W(pi − pj, h)Vj, (4.2)

where we have added the volume Vj of particle j. If the kernel W is compact,
the approximation depends only on the neighboring particles pj ∈ N (pi). The
size of the neighborhood is defined by the smoothing length h, as illustrated
in Figure 4.4.

Spatial derivatives are approximated by differentiating the kernel function:

∇ f (pi) u ∑
j

f (pj)∇W(pj − pi, h)Vj. (4.3)

30 flow visualization

Although it is possible to compute second derivatives the same way, this is
discouraged. Instead, we use the following approximation [31]:

∇2 f (pi) u ∑
j
(f (pj)− f (pi))

(pj − pi)
ᵀ∇W(pj − pi, h)
||pj − pi||

Vj. (4.4)

The SPH method is most commonly employed to solve the Navier-Stokes equa-
tions of fluid motion. This involves the repeated computation of attracting and
repelling forces and the advection of particles over time. In this thesis, we focus
on the analysis and visualization based on the introduced approximations.

4.3 flow visualization

The visualization of fluid flows is a mature, but active research topic. Existing
methods can be categorized by the dimensionality of the flow in both space
and time. In the spatial domain, we typically differentiate between two- and
three-dimensional datasets. Flows defined on a two-dimensional manifold
embedded in 3D are often referred to as 2.5D, but are untypical for particle
data. In the temporal domain, we differentiate between stationary (steady)
flows and time-dependent (unsteady) flows. The visualization of steady flows
is considerably simplified since integrating over time does not change the
behavior of the flow. This enables a compact classification of the vector field
topology [184], which cannot be extended to unsteady flows. Since particle-
based flows are inherently time-dependent, we will focus only on the unsteady
case (Section 4.3.1). Lagrangian coherent structures are a well established topo-
logical segmentation of an unsteady flow in a finite-time interval (Section 4.3.2).
Geometric approaches visualize the flow behavior by placing and integrating
geometric primitives (Section 4.3.3). Lastly, there are several methods specific
to particle-based flows (Section 4.3.4).

4.3.1 Unsteady Vector Field Topology

Topological approaches segment the flow domain into regions of different
flow behavior, thus providing a compact description. For steady flows, critical
points, separatrices, and closed orbits are found. Based on these features, a
small set of integral lines is able to compactly represent a two-dimensional
flow [126]. Although three-dimensional flows contain separating stream sur-
faces, the visualization becomes cluttered and difficult to understand, requiring
more suitable abstractions [327]. In general, this topological segmentation is
based on the flow behavior at the temporal limits of ±∞. This limit does not
exist for unsteady data that are restricted to a finite-time interval, making such
asymptotic assumptions problematic.

In addition, vector field topology is always relative to a reference frame [241].
This implies that the movement of an observer influences the resulting char-
acterization of flow features. A desired property of features is that they are
objective, i. e. independent of the reference frame. Hadwiger et al. [106] propose
a global optimization of the reference frame to extract an observer invariant

4.3 flow visualization 31

(a) Transport of warm water in the Gulf stream [179] (b) Vortex shedding around the canary
islands [179]

Figure 4.5: The transport of warm water in the Gulf stream current is revealed by the
sea surface temperature (a). A satellite image of the canary islands reveals
several von Kármán vortex street in the movement of clouds (b). Images
are courtesy of NASA.

velocity field. Their work and the definition of objectivity has been extended
to curved spaces in 2D [258]. Kim and Günther [168] employ convolutional
neural networks to extract an observer independent reference frame. Baeza
Rojo and Günther [265] split unsteady vector fields in two components: a
vector field in which the flow becomes steady, and the remaining ambient
flow that describes the motion of the topological features. A local optimization
is performed to find a locally observer independent reference frame. These
approaches thus enable the application of steady vector field topology to the
visualization of unsteady flows.

There are more approaches to unsteady flow topology [35, 247, 321] based on
feature extraction [100, 249] or space-time [82, 164, 269, 312]. Most approaches
are defined in the Lagrangian frame since they characterize the behavior of
time-dependent integral lines or surfaces. Lagrangian methods are generally
objective, i. e. do not depend on the observer. The most prominent approach is
the theory of Lagrangian coherent structures.

4.3.2 Lagrangian Coherent Structures

Although the trajectories of particles are seemingly chaotic, patterns can be
observed even in complex flows, see Figure 4.5. These patterns are governed
by Lagrangian coherent structures (LCS), a robust topological skeleton of
Lagrangian particle dynamics. They are the most repelling, attracting, and
shearing material surfaces in a flow. The detection of these structures from
experimental or numerical flows promises a simplified understanding of the
overall flow topology and the global transport and mixing behavior. Although
the existence of these structures can be observed, their mathematical de-
scription is still being investigated for unsteady flows, see Shadden [281] or
Haller [110] for a recent overview.

32 flow visualization

Figure 4.6: Forward finite-time Lyapunov exponent of the analytic Bickley jet [21]
flow. A high FTLE indicates strong separation in the flow. Here, height
ridges indicate Lagrangian coherent structures.

Finite-Time Lyapunov Exponent

In order to identify LCS, the finite-time Lyapunov exponent (FTLE) has been
proposed in the seminal work by Haller [113]. This scalar measure describes the
rate of separation (or attraction) with respect to infinitesimally close particles
over a finite-time interval, see Figure 4.6. More specifically, let the flow map
φt1

t0
(p) be the map from a position p of a particle at time t0 to its position

at time t1. The flow map can be computed by numerical integration using
Equation 4.1. With the spatial gradient ∇φt1

t0
(p), the right Cauchy-Green strain

tensor is given as

C(p, t0, t1) := ∇φt1
t0
(p)ᵀ∇φt1

t0
(p). (4.5)

Using the largest eigenvalue λmax of C, the FTLE is defined as:

σ(p, t0, t1) :=
1

|t1 − t0|
ln
(√

λmax (C(p, t0, t1))

)
. (4.6)

The FTLE thus describes the average exponential stretching of an infinitesi-
mally close particle neighborhood at time t0 when the flow is integrated to
t1. The FTLE that is computed by integrating forward in time from t0 to t1

consequently measures the rate of separation. By integrating backward in time,
the rate of attraction is computed instead, which is referred to as the backward
FTLE.

Computational Efficiency and Approximation

There has been a lot of research to reduce the computational effort of the
FTLE [15, 33, 52, 148, 268]. Most of the effort in the computation of the
FTLE stems from the dense integration of tracer particles that is required to
approximate the spatial gradient ∇φt1

t0
. For Lagrangian flows, this integration

4.3 flow visualization 33

can be replaced by computing the derivative from existing pathlines. More
specifically, Agranovsky et al. [4] integrate a sparse set of particles and employ
moving least squares to compute the derivatives necessary for the computation
of FTLE. Shi et al. [288] solve a least square fitting problem to compute the
FTLE for particle data. Sun et al. [300] derive a SPH formulation for the FTLE
computation, where the derivatives are obtained by deriving the smoothing
kernels. However, the authors note that the computation is still expensive and
not suited for large, three-dimensional datasets. In Chapter 5, we extend their
approach to large, three-dimensional particle datasets.

Extracting Lagrangian Coherent Structures

Lagrangian coherent structures are material surfaces that remain coherent over
time, although different definitions of coherency exist [104]. Here, we limit the
discussion to the extraction of LCS based on the FTLE and the strain tensor.
Haller [110] reviews further approaches to identify LCS.

Locally maximizing surfaces in at least one dimension of the FTLE field,
referred to as height ridges, are commonly used to define Lagrangian coherent
structures [108, 282]. For example, the visible ridges in Figure 4.6 indicate
LCS. The extraction of LCS as height ridges of the FTLE can be performed
with the Marching Ridges algorithm [83]. Sadlo and Peikert [266, 267] discuss
the application of Marching Ridges and describe filter operations that are
used to avoid the amplification of noise. Garth et al. [86] propose an efficient
approximation of the FTLE field, but prefer a direct visualization instead of
ridge extraction. The authors discuss the challenge of ridge extraction from
intrinsically noisy FTLE fields. Kindlmann et al. [169] propose a domain-
specific language to separate the definition of complicated mathematical
features from the numerical computation. Ridge extraction is one example
that the authors investigate.

In several examples, Haller [109] shows that observable LCS are not neces-
sarily FTLE ridges and vice versa. Instead, Haller proposes the definition of
weak LCS. This definition is not only based on the FTLE and its derivatives,
but directly on the strain tensor C. Schindler et al. [278] propose a similar
ridge concept based on the strain tensor, which they call C-Ridges.

4.3.3 Geometry-based Flow Visualization

To visualize flow behavior, geometric primitives such as vector glyphs, integral
lines and surfaces can be employed [211]. Aside from simple vector glyphs,
such as the arrow glyphs in Figure 4.7 (a), these geometric primitives are based
on the numerical integration of the vector field, as given by Equation 4.1. For
Lagrangian flows, we can directly encode the trajectories of particles or create
new ones by interpolation [3, 34]. The placement of glyphs and integral lines
is a longstanding research topic [273].

Integral lines can be represented as lines, tubes, or ribbons that addition-
ally encode the rotational component. Figure 4.7 (b) shows streamtubes in a
three-dimensional Rayleigh-Bénard convection. For three-dimensional datasets,

34 flow visualization

(a) Arrow glyphs

(b) Streamtubes

Figure 4.7: Visualization of a three-dimensional Rayleigh-Bénard convection using
glyphs (a) and integral lines extruded to streamtubes (b).

illumination has been shown to greatly improve the perception of shape and
depth [205]. Surface-based techniques [66] are also commonly employed to
visualize three-dimensional flows, but are not directly applicable to particle
data.

4.3.4 Particle-Based Flow Visualization

Several particle tracing systems have been proposed, where particles are
advected to visualize unsteady flows, see Figure 4.8. The first particle tracing
system has been presented by Lane [183]. Bruckschen et al. [32] precompute
a large number of particles and store them on disk using a space-filling
curve. The data is then streamed on-demand to render them in real-time
as spherical glyphs. Their system has been extended to advect particles on
compute clusters and to scale the out-of-core visualization to up to 293 billion
particles on contemporary hardware [71].

Krüger et al. [177] present a particle tracing system for steady flows that
interactively integrates particles in a vector field using GPU acceleration
and displays them using different glyphs, streamlines, and streamribbons.
Additionally, derived variables, such as divergence or the λ2 criterion [152],
are computed and encoded with color. Bürger et al. [37] trace particles in
unsteady flows and employ focus and context visualization. Based on this

4.4 uncertain flow visualization 35

(a) Sphere glyphs (b) Streamtubes

Figure 4.8: Interactive particle tracing is used to visualize the Lorenz system [198]
using animated spherical glyphs (a) and streamtubes (b).

system, Bürger et al. [36] propose an importance measure to reveal important
structures of flows. Similar to their work, we use derived variables and focus
and context visualization to emphasize important flow structures.

To visualize multivariate particle data, Jones et al. [155] employ transparent
glyphs and pathlines. The authors emphasize the advantages of using multiple
coordinated views, such as a parallel coordinate plot together with a spatial
visualization, for visually analyzing particle data. To visually debug SPH
simulations, Reinhardt et al. [263] similarly combine a spatial 3D view with
additional views, such as scatter and parallel coordinate plots. Molchanov et
al. present the SmoothViz [215] system to visualize SPH data. These studies
emphasize the use of interaction and the combination of spatial and abstract
views of the particle data, as discussed in Chapter 2.

To visually analyze particle trajectories over time, Salzbrunn et al. [272]
propose pathline predicates, which filter a set of pathlines according to prop-
erties that are of interest to the user. Shi et al. [287] analyze unsteady 3D flow
fields by computing multiple properties of selected pathlines. The resulting
multivariate data is analyzed with a set of linked views, including brushing
and a focus and context visualization. Lež et al. [186] further extend this
analysis of pathlines.

4.4 uncertain flow visualization

Uncertainty visualization has been an active research topic in the field of
visualization for more than two decades [154]. Several surveys [27, 30, 238, 251]
motivate uncertainty visualization, introduce its challenges, and the different
sources of uncertainty. Here, we focus on the visualization of uncertain flows.

As an example, Figure 4.9 shows the longitudinal velocity of a climate
simulation from the European Centre for Medium Range Weather Forecasts
(ECMWF). Since climate and weather simulation models are known to be
chaotic [198], ten ensemble runs with perturbed initial conditions have been
performed in this example. The survey by Wang et al. [316] studies ensem-

36 flow visualization

(a) Mean longitudinal velocity (b) Variance of longitudinal velocity

Figure 4.9: Mean and variance of longitudional velocity estimated from an ECMWF
climate simulation [128].

ble data in more detail. Uncertainty might also stem from an explicit error
model or it might be introduced in any step of the visualization pipeline [53].
For uncertain flows, Bhatia et al. [20] analyze and quantify the uncertainty
introduced by streamline integration. Chen et al. [48] and Hummel et al. [139]
model the error introduced by integrating pathlines in unsteady flows.

Depending on the source of uncertainties, different representations of an
uncertain flow are possible. An uncertain flow can be represented by storing
individual ensemble members or by modeling parametric or non-parametric
probability distributions. Due to the central limit theorem, Gaussian flow fields
are often employed. We refer to the discussion in Section 3.2 since modeling
data distributions for data reduction is closely related to modeling uncertain
data.

To visualize uncertain flows, glyph [131] and texture-based methods [28,
232] have been proposed. These approaches consider only the local uncertainty,
but not the global uncertainty of the flow.

For uncertain steady flows, Otto et al. [233–235] introduce uncertain vector
field topology. Here, critical points, closed orbits, and streamlines are gen-
eralized, leading to an uncertain topological segmentation. A Monte Carlo
approach is employed to stochastically integrate particles. Moreover, Otto and
Theisel [236] study the extraction and visualization of vortices in uncertain
vector fields. Petz et al. [245] use Monte Carlo estimation in Gaussian flow
fields to extract probabilistic local features. In contrast, Pöthkow et al. [250]
investigate non-parametric models of uncertainty, e. g. to compute probabilities
for the occurrence of features.

Uncertain Transport

In uncertain flows, particles are advected stochastically. The flow map φ

thus describes a distribution of positions where particles might be advected,
see Figure 4.10. Schneider et al. [279] estimate this stochastic flow map using a
Monte Carlo approach. The authors then estimate the variance in the stochastic
flow map, which defines the finite-time variance analysis (FTVA), a FTLE-
like metric. Hummel et al. [140] discuss the comparative visual analysis of
Lagrangian transport in CFD ensembles based on the FTVA. Hollister et
al. [134] cluster ensemble members to investigate similarities in the transport.

4.4 uncertain flow visualization 37

pt0

pt1

(a) Flow map

pt0

p2
t1

p1
t1

p4
t1

p3
t1

(b) Stochastic flow map

Figure 4.10: A deterministic flow map (a) maps a particle pt0 to a position pt1 . A
stochastic flow map (b) describes a probability distribution of possible
end positions.

Guo et al. [103] quantify variations in pathlines integrated from different
ensemble members.

Guo et al. [101] propose two extensions of the FTLE: either by estimating
the expectation of the strain tensor and then computing a single FTLE value
(FTLE-D), or by estimating a distribution of FTLEs (D-FTLE). Both approaches
depend on Monte Carlo estimation of the stochastic flow [102]. In Chapter 7,
we introduce and discuss a quantity that does not require expensive Monte
Carlo estimation and is built upon a more solid theoretical foundation.

Part I

L A G R A N G I A N F L O W V I S UA L I Z AT I O N

5
L A G R A N G I A N C O H E R E N T S T R U C T U R E S

In this chapter, we discuss the efficient identification of Lagrangian coherent
structures (LCS) from particle data. The finite-time Lyapunov exponent (FTLE),
introduced in Section 4.3.2, is commonly employed to visualize and identify
the LCS. To compute the FTLE, the spatial gradient of the flow map must be
approximated, which requires a costly, dense numerical integration. In con-
trast, we propose an efficient algorithm to compute the finite-time Lyapunov
exponent for particle data (Section 5.1). We then employ the FTLE to efficiently
and robustly identify Lagrangian coherent structures (Section 5.2). This fast
characterization of the finite-time flow dynamics enables the interactive explo-
ration of particle datasets, but also to explore the parameter space. We validate
our approach in several numerical experiments (Section 5.3).

5.1 finite-time lyapunov exponent

We first review a computational SPH scheme for the evaluation of the FTLE.
Afterwards, we present a scalable algorithm that uses GPU acceleration. We
can thus compute the FTLE interactively even for large, three-dimensional
data.

5.1.1 FTLE in the SPH Framework

Since our data already consists of particle trajectories, the numerical integration
of tracer particles to compute the flow map is not necessary. Instead, we
employ the regular SPH quadrature for interpolating quantities and their
spatial derivatives. In detail, we build upon the method from Sun et al. [300]
to evaluate the finite-time Lyapunov exponent.

The computation of the FTLE in the time interval [t0, t1] depends only on
the particle positions at time t0 and t1. Intuitively, the FTLE then measures
the deformation of the particle neighborhood over the time interval. In the
following, we denote the position of a generic neighboring particle j in time t
as pt,j. Similarly, the volume of particle j in time t is referred to as Vt,j.

With the following formula from Sun et al. [300], the spatial derivative of
the flow map is computed as follows:

∇φt1
t0
(pi) u ∑

j
(pt1,i − pt1,j)⊗L(pt0,i)∇W(pt0,i − pt0,j, h)Vt0,j, (5.1)

L(pt0,i) u
[
∑

j
(pt1,i − pt1,j)⊗∇W(pt0,i − pt0,j, h)Vt0,j

]−1

. (5.2)

The symbol ⊗ denotes the dyadic product. The tensor L is used for correcting
the kernel depending on the particle arrangement [26]. Once ∇φt1

t0
is known,

41

42 lagrangian coherent structures

the FTLE is computed using Equation 4.6. Note that the backward FTLE can
be determined by simply reversing the time interval.

5.1.2 Computational Complexity

When computing fields of the FTLE on grid-based data, a transformation
from the Eulerian to the Lagrangian frame has to be performed. Since SPH
datasets are inherently Lagrangian, this computational step is not needed.
However, SPH simulations typically contain a large amount of particle data
and an inefficient implementation will not scale well with the data size. In
order to realize an efficient and scalable implementation, the data structures
and algorithms have to be carefully selected. The whole procedure of the
FTLE computation used in this thesis is illustrated in Fig. 5.1. Although the
procedure shares some commonalities with traditional SPH simulation codes,
it still addresses a unique problem: neighboring particles at time step t0 have
to be efficiently queried and located at any other time step t1.

GPU

SPH
Data

Copy pt0 and pt1

to GPU Memory
Create Search Grid - pt0

Find Particles at t0

Sort pt1 by
unique ID

Binary Search at t1

for neighbors at t0

Compute FTLE

CPU

Figure 5.1: Illustration of the steps to compute the FTLE.

To efficiently employ the SPH weighting kernels, all neighbors contained
in the support domain of each particle in step t0 need to be identified as
indicated on the left hand side of Fig. 5.2. This is similar to the neighborhood
search performed during a SPH simulation. However, it has to be performed
only once for every particle for the first time step. Similar to search grids
used for SPH simulations (see e.g. Ihmsen et al [144] for an overview) the
computational domain is represented by a uniform grid, where each particle
is assigned to one cell. Since the cell size is equal to the kernel support, only
the direct neighbors have to be queried during the neighborhood search. To
create the grid in parallel, the particles are sorted according to their cell index
and a unique key is assigned to each cell [159, 252]. For each grid cell only a
reference to the first particle in the sorted list is stored. To improve the spatial

5.1 finite-time lyapunov exponent 43

t0

Location of i-th neighbor Location of i-th neighbor

t1

Figure 5.2: Configuration of particles and search grid at time t0 and t1.

locality of neighboring cells, the cell index is computed using a space-filling
Z-curve similar to the methods presented by Goswami et al. [91] and Ihmsen
et al. [143]. A requirement for this approach is that every particle is uniquely
identified at each time step, because for every particle in step t0, the same
particle has to be located for step t1 as illustrated in Fig. 5.2.

If the particles are not sorted, the whole set of particles in time t1 has to
be searched for the corresponding particle for every particle in t0. Moreover,
if particles are entering or leaving the domain, there can be particles in step
t0 that do not exist anymore in t1 and vice versa. Hence, as a pre-process, in
time step t0 an index is assigned to the matching particle in t1. By first sorting
the particles in time step t1 according to its identifier, this mapping can be
efficiently computed by a binary search.

5.1.3 GPU Acceleration

CUDA [228] is a programming model that enables the use of GPUs for general
purpose computations. A GPU is a highly parallel multi-core processor that
can significantly outperform a CPU on tasks that can be executed in parallel. In
both workstations and computing clusters, GPUs are employed as accelerators
to which suitable workloads can be offloaded. Since most GPUs can only
address their dedicated memory, memory allocation and transfer of data has
to be managed by means of CUDA. All computations are defined in CUDA
kernels that are run by millions of threads in parallel.

The computation of the FTLE is inherently parallel since the value of the
FTLE of one particle does not rely on the one of others. Thus, a CUDA kernel
can be used for every particle at the time t0 to perform all computations in
parallel. During the computation, the previously created uniform grid and the
particle mapping from t0 to t1 are used.

The uniform grid is created on the GPU using a kernel to assign a cell index
to each particle in step t0. Afterwards, the particles are sorted according to this
cell index and their positions are written to the grid cells in another kernel.
With the list of sorted particles and the grid cells, containing references to the
sorted particles, all neighbors of a given particle can efficiently be identified.

44 lagrangian coherent structures

To find matching particles on the GPU, the particles in t1 are sorted by their
unique identifier. Subsequently, a kernel is executed for every particle in t0 to
perform the binary search in parallel.

5.2 identifying lagrangian coherent structures

As previously discussed, height ridges can be defined as Lagrangian coherent
structures [108, 282]. Additionally, we consider the concept of weak LCS, as
introduced by Haller [109].

5.2.1 Definitions

To detect LCS as (d− 1)-dimensional height ridges within the d-dimensional
FTLE field σ at position p, we compute the gradient ∇σ(p) and Hessian Hσ(p),
the smallest eigenvalue emin and corresponding eigenvector vmin of Hσ(p). The
following two criteria must hold:

ch
1(p) := ∇σ(p) · vmin = 0, (5.3)

ch
2(p) := emin ≤ 0. (5.4)

Note that we relax the inequality in the second criterion to include thick ridges,
similar to Farazmand and Haller [73].

We also use the more accurate definition of weak LCS, but reformulate it
to fit into two criteria. To this end, we require the strain tensor C(p, t0, t1)

that is used to compute the FTLE. Specifically, we compute eigenvalues λi of
C(p, t0, t1), with λ1 ≤ · · · ≤ λi ≤ · · · ≤ λd, and the corresponding eigenvectors
ξi. Since the major eigenvector ξd of C(p, t0, t1) is equal to the direction of
maximal stretching, it must be orthogonal to the LCS:

cw
1 (p) := 〈∇λd, ξd〉 = 0. (5.5)

For the second criterion, we reformulate Equation 5.4 since LCS must occur
at a local maximum in direction ξd. An additional condition ensures that the
normal repulsion rate is larger than the tangential stretch, typically caused by
shearing in the flow. To summarize, we compute the second criterion as:

cw
2 (p) := 〈ξd,∇2λdξd〉 ≤ 0∧ λd−1 6= λd ∧ λd > 1. (5.6)

With these criteria, we fulfill three of the conditions necessary for a weak LCS
(cf. Haller [109], theorem 7). Note that the height ridge definition only fulfills
two of those conditions, but does not depend on the strain tensor. We can
make use of both definitions and thus refer to the criteria simply as c1 and c2.

5.2.2 Grid Extraction

We shortly recapitulate the extraction of LCS for uniformly structured data
using Marching Ridges. Here, the locations where the first criteria c1 are met
is found using Marching Cubes [197], i.e. computed at the grid vertices and

5.2 identifying lagrangian coherent structures 45

Figure 5.3: Illustration of the per-particle LCS distance (increasing from red to green
over yellow), and the corresponding LCS created by marching ridges
(blue).

approximated using linear interpolation inside of each grid cell. Note that
the orientation of eigenvectors in a cell must be made consistent, which can
be performed using principal component analysis. Afterwards, a triangle is
created only if the second criterion c2 is met for the corresponding edges.

5.2.3 LCS from Particle Data

Performing Marching Ridges on particle data would require resampling the
FTLE to a grid and computing the derivatives afterwards. This step is compu-
tationally inefficient and is prone to amplify noise in the derivatives. Instead,
we compute the derivatives and evaluate the LCS criteria for each particle
using its local neighborhood. Similar to Marching Ridges, we compute zero
crossings of the first criteria from a particle with respect to its neighboring
particles; however, we cannot triangulate the zero crossings. Instead, we com-
pute the minimal distance to any LCS in its neighborhood for each particle, cf.
Figure 5.3. In the following, we discuss this procedure in detail.

Given a particle at position p ∈ Rd, we compute the distance from p to
the nearest LCS in its neighborhood N (p), which contains all particles inside
radius r around p. First, we make the orientation of eigenvectors for the
particle and its neighbors consistent using PCA. Afterwards, we check each
neighboring particle pj ∈ N (x) if c1(pj) has a different sign than c1(p). In this
case, the position of the zero crossing LCS(p, pj) between the two particles can
be determined using linear interpolation. Finally, if the zero crossing exists,
and both particles additionally fulfill criterion c2, we obtain the distance to p
as:

dLCS(p, pj) :=

∞ if ¬

(
c2(p) ∧ c2(pj)

)
,

∞ if sign(c1(p)) = sign(c1(pj)),

||LCS(p, pj)− p|| otherwise.

(5.7)

We define the LCS distance for p as the minimal distance to the LCS towards
all neighboring particles:

d(p) := min
pj∈N (p)

dLCS(p, pj). (5.8)

46 lagrangian coherent structures

(a) FTLE (b) Height ridge LCS (c) Weak LCS

Figure 5.4: The forward FTLE of the double gyre computed from the integrated
particle trajectories is shown in (a). The LCS distance mapped to color is
shown in (b) using the height ridge criteria and in (c) using the weak LCS
criteria.

This function defines an unsigned distance field. Even though we can compute
points on the LCS using linear interpolation, an extraction of a surface is in
general not possible since the distances are unsigned. Instead, we store for
each particle the distance to the closest LCS. These per-particle distances can
be added to the dataset and used for further analysis and visualization. Lastly,
we normalize the distance using the radius r of the particle neighborhood:

L(x) :=
d(p)

r
. (5.9)

5.2.4 GPU Acceleration

We perform all computations on the particles in parallel on the GPU by
splitting them in two steps: first, we compute the spatial derivatives and
evaluate the LCS criteria for every particle using its local neighborhood. In the
second step, we compute the LCS distance for each particle. For a particle at
position p, given either vector vmin to detect height ridges or ξd for the weak
LCS definition, we determine the mean vector and the covariance matrix from
the local neighborhood N (p). Then we extract the major eigenvector of the
covariance matrix, according to which we orient the vectors of all particles
in the neighborhood. Lastly, we evaluate the zero crossings and compute the
distance from p to the closest LCS.

5.3 numerical experiments

In this section, we validate the computation of the FTLE and the extraction of
LCS in several experiments. The numerical setup and validation of the flow
around a cylinder in 2D (cf. Section 5.3.2) and a surface-mounted cylinder in
3D (cf. Section 5.3.3) are described in more detail in our publication [55]. As
kernel function, we use a quintic spline [192].

5.3 numerical experiments 47

5.3.1 Double Gyre

The double gyre is a two-dimensional periodic unsteady vector field that
describes two counter rotating gyres. It is commonly used for the validation
of FTLE and LCS. We use the following definition:

v(x, y, t) =

(
−πA sin(f (x, t)π) cos(yπ)

πA cos(f (x, t)π) sin(yπ) ∂
∂x f (x, t)

)
, (5.10)

where

f (x, t) = a(t)x2 + b(t)x

a(t) = ε sin(ωt)

b(t) = 1− 2ε sin(ωt).

We set A = 0.1, ω = 2π/10, and ε = 0.1. We convert this analytic vector field
into a particle-based representation by integrating particles using a fourth
order Runge-Kutta scheme and sampling the trajectories at fixed time steps of
0.1. The particles are uniformly seeded in the domain [0, 2]× [0, 1], but jittering
is applied to reduce aliasing artifacts. In total, this leads to 2048× 1024 particles.
Then, we compute the forward FTLE over the time interval [0, 20]. We apply
an FTLE threshold of 0.08 to compute the LCS distance.

Figure 5.4 shows FTLE and LCS distance by applying a linear color map.
The FTLE shows the presence of the two counter rotating gyres. The LCS
distance visualizations in (b) and (c) depict the expected coherent structures,
cf. Farazmand and Haller [73]. The ridges can also be visually inferred from
the FTLE field. As expected, the height ridge and weak LCS criteria identify
the same coherent structures, but the height ridge LCS are thicker.

5.3.2 Flow Around a Circular Cylinder in 2D

The flow around circular cylinders is relevant to a variety of technical ap-
plications, as discussed by Zdravkovich [340]. In our numerical experiment,
particles enter a rectangular domain on the left side and exit on the right,
where each time step contains approximately 5 million particles. The circular
cylinder in the middle of the domain causes vortex shedding downstream
of the cylinder. The resulting von Kármán vortex street is revealed by the
(attracting) Lagrangian coherent structures. In Figure 5.5, we compare an
experimental result from Taneda [303] in (a) with the backward FTLE (b) and
the weak LCS distance (c). Compared to the experimental results, the FTLE
and LCS reveal qualitatively similar structures. Although the LCS distance
identifies the transport barriers in the flow, it leads to a reduced accuracy
compared to the FTLE. From experiments with a higher resolution we have
confirmed that this loss of accuracy is due to the resolution. This result is not
surprising considering the use of second order derivatives in the computation
of the LCS distance.

48 lagrangian coherent structures

Greyscale/-
1.0

0.9

0.8

0.7

0.6

(a) Experimental result

FTLE−/s−1

60

45

30

15

0

(b) Backward FTLE

LCS dist./-
0.0

0.25

0.5

0.75

1.0

(c) LCS distance

Figure 5.5: Comparison of the experimental visualization result from Taneda [303] (a),
backward FTLE (b), and LCS distance (c).

5.3 numerical experiments 49

5.3.3 Surface-Mounted Cylinder in 3D

This flow consists of a surface-mounted, circular cylinder with a free end. The
cylinder is placed on the bottom of a box-shaped channel. The particles move
through this channel, entering on one and leaving on the other side, leading
to approximately 46 million particles per time step. Figure 5.6 shows a sketch
of the different vortices occurring in such a flow. The volume rendering of the
FTLE field shown in Figure 5.7 identifies similar structures in our numerical
experiment. Most notable is the horseshoe vortex that forms in front of the
cylinder. On top of the cylinder, the two tip vortices lead to an indented wake
downstream of the cylinder.

The LCS distance also indicates the existence of these structures. Moreover,
we can use the LCS distance to select particle close to coherent structures and
visualize, for example, arrow glyphs and pathlines, see Figure 5.8. In contrast
to the FTLE, this visualization shows the presence of the arch vortex directly
behind the cylinder in flow direction.

5.3.4 Performance and Scalability

In order to evaluate the computational efficiency of our method and imple-
mentation, the time for the computation of the backward FTLE is measured.
The datasets used for the assessment are the 2D and 3D cylinder flows in
different resolutions.

The runtime required by the GPU implementation is compared to the run-
time required by a multi-threaded shared-memory CPU implementation. The
GPU and the CPU implementation are based on the same algorithms in order
to enable a fair comparison. All measurements are performed on a Nvidia GTX
1080Ti with 11GB of dedicated memory and an Intel Core i7-6000 featuring
four physical cores with additional hyper-threading. The measurement results
are shown in Table 5.1 for 2D and 3D cases at different spatial resolutions. The
previously outlined steps of the method are included: creation of the uniform
grid, mapping of the time steps, and computation of the FTLE. Note that the
execution times of the individual steps of the method do not sum up to the
total time since there is additional time required for memory allocation and
copying to the GPU. The execution time of the GPU implementation is at
least one order of magnitude faster than the CPU implementation. Per GB
memory on the GPU around 27 Mio. of particles can be handled as follows
from the peak memory allocation. This value is approximately constant for all
domain sizes. However, on our and newer hardware we use virtual addressing
and automatic page migration to automatically migrate non-resident memory
to the GPU. We were thus able to apply our implementation to data sets
containing over 300 million particles per time-step.

In Figure 5.9 (a) the runtime of the different implementations is presented
for the 2D case in order to demonstrate scalability. The GPU implementation is
not only significantly faster, but also scales better with respect to the number of
particles. Therefore one can conclude that the GPU implementation is suitable
for the aspired use case. It is expected that the scalability persists also for even

50 lagrangian coherent structures

Tip Vortices
Downwash

Rear SP
Arch Vortex

Horseshoe Vortex

Front SP

Reverse Flow
Flowdirection

Figure 5.6: Vortices occuring at the surface-mounted cylinder according to Pattenden
et al. [239].

Coherent Structure

Horseshoe - Vortex
40

90

65

Wake as

FTLE−/s−1

Main Flow Direction

30

100

65

FTLE−/s−1

Figure 5.7: The backward FTLE of the surface-mounted cylinder in 3D depicts the
expected coherent structures, including the prominent horseshoe vortex
that forms in front of the cylinder and the tip vortices that indent the wake
behind the cylinder.

Figure 5.8: Arrow glyphs and pathlines created from particles close to the attracting
coherent structures give a different perspective on the flow and reveal the
arch vortex behind the cylinder.

5.4 discussion 51

Table 5.1: Run-time measurements of the FTLE computation.

Execution time (GPU)

Dim. Particles t0 Memory Grid Mapping FTLE Total Total CPU

2D 317, 093 11.7 MB 2.9 ms 1.2 ms 0.3 ms 8 ms 54 ms

2D 1, 257, 697 46.5 MB 4.3 ms 1.9 ms 3.0 ms 18 ms 202 ms

2D 5, 001, 649 185.5 MB 6.7 ms 5.1 ms 21.8 ms 64 ms 1, 401 ms

2D 19, 929, 578 704.7 MB 20.7 ms 18.5 ms 93 ms 241 ms 7, 534 ms

3D 17, 043, 633 622.5 MB 18 ms 16 ms 68 ms 195 ms 6, 445 ms

3D 46, 610, 372 1702.9 MB 48 ms 43 ms 233 ms 585 ms 23, 438ms

3D 58, 019, 422 2088.2 MB 56 ms 53 ms 181 ms 604 ms 40, 420 ms

larger data sets. Even though there is no inherent restriction to the size of
the data for the GPU method, the implementation is simplified if all of the
data fits into the GPU memory at the same time, which is the case for all
the simulations considered in this thesis. Figure 5.9 (b) compares the GPU
runtime of the FTLE computation and the LCS identification. Computing first
and second-order spatial derivatives to identify the LCS is fast and is similarly
well-suited for GPU acceleration.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Particles [Mio.]

0

5

10

15

20

25

30

To
ta

l R
un

tim
e

[s
]

FTLE: CPU and GPU Comparison
GPU
CPU Multi-threaded
CPU Single-threaded

(a) FTLE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Particles [Mio.]

0

50

100

150

200

250

To
ta

l R
un

tim
e

[m
s]

FTLE and LCS
FTLE (GPU)
LCS (GPU)

(b) LCS

Figure 5.9: Run-time measurements on the flow around a circular cylinder in 2D. In
(a), we compare the runtime of the FTLE computation on the CPU and
GPU. The GPU runtimes of the FTLE and LCS are illustrated in (b).

5.4 discussion

In this chapter, we introduce a novel computational method to efficiently
compute the FTLE and LCS from particle data. Although our method is based
on the SPH framework to perform interpolation, it is not inherently limited to
SPH data. In fact, the interpolation method could be easily replaced with a
different method such as moving least squares [4].

Although the computation on particle data does not depend on numerical
integration, irregular data requires fast neighborhood queries and efficient

52 lagrangian coherent structures

data management. In contrast to well established numerical methods for flow
integration, this currently requires custom software. However, our method
enables an extremely fast computation of the FTLE and LCS. Since flow
visualization requires the evaluation of several parameters, such as the time
interval, the computational efficiency is important for interaction. In practice,
loading the data from disk is by far the biggest bottleneck of our method,
emphasizing the need for data reduction specific to particle data.

6
V I S UA L A N A LY S I S O F T R A N S P O RT A N D M I X I N G

In this chapter, we discuss the visual analysis of particle-based flows using
the finite-time Lyapunov exponent and the distance to the nearest Lagrangian
coherent structure, as introduced in the previous chapter. We discuss the
integration of these Lagrangian flow features into a visual analysis framework.
This enables domain scientists to explore the correlation of these Lagrangian
flow features to the multivariate particle data and thus to gain insight into
complex flow behavior.

For an effective particle-based flow visualization, the amount of visual
occlusion has to be reduced to make important parts of the flow visible. This
is crucial for particle data where datasets contain millions of particles, most
of which are not of immediate interest to the user. We employ the FTLE, LCS
distance, and the multivariate particle data to select particles of interest in
multiple linked views on the data, as discussed in Chapter 2. For example,
Figure 6.1 depicts a parallel coordinate plot, where a low LCS distance has
been brushed. Consequently, particles near a LCS are selected and we can
immediately see how these particles are correlated to and distributed in other
dimensions. We discuss our visual analysis framework in Section 6.1. We
extend this concept to particle trajectories in Section 6.2.

In Section 6.3, we specifically consider the application to multiphase fluid
flows, which are a prominent application of particle-based methods. Multi-
phase fluid flows contain two or more distinct fluid phases, for example a
liquid and a gas phase. We apply our approach to visualize the transport and
mixing of the different flow phases. Since the Lagrangian coherent structures
act as transport barriers that are minimally diffusive, they are closely related
to the interface between two phases, e.g. liquid and gas particles, and their
mixing properties [208]. By correlating the phase interface with the LCS, we
find an effective visualization of the mixing behavior in multiphase flows.

The potential of combining visual analysis and feature extraction has already
been demonstrated in previous work [39, 186, 287]. Our findings indicate that
the visual analysis based on Lagrangian coherent structures is an effective ap-
proach to study the transport behavior in particle flows. In collaboration with

Figure 6.1: The parallel coordinate plot shows all variables of each particle at once.
Here, particles close to a LCS are brushed (red) on the corresponding axis.
The brushed lines, highlighted in orange, allows correlating particles near
a LCS to the other dimensions, for example to the FTLE (on the right of
the brushed axis) or to LCS over a different time interval (on the left).

53

54 visual analysis of transport and mixing

Figure 6.2: The spatial view (top), transfer function editor (bottom left) and a view
of the currently active brushes, i. e. range queries performed on the data
(bottom right).

domain experts, the proposed methodology has been successfully employed
to discover and validate a modified spray nozzle geometry in a jet engine that
leads to reduced emissions [54]. We present this and another case study in
Section 6.4.

6.1 visual analysis framework

We now introduce our visual analysis approach to support scientists and
engineers in gaining insight into large particle-based flows. Most prominent is
the spatial view that displays particles or their trajectories using glyphs (cf.
Section 2.2.1) or splatting (cf. Section 2.2.2). A transfer function is employed to
map a selected variable to color and opacity. Both of these views are depicted
in Figure 6.2. To visualize the multivariate value domain and derived variables,
we use multiple coordinated views. These are all linked so that brushing in
one view is reflected in all of the others. To add or refine brushes, we also
offer a view to directly enter or modify the queries, see Figure 6.2. Brushed
values are highlighted differently in each view, for example using color in
Figure 6.1. The spatial view shows only brushed particles, which is necessary
to reduce clutter and occlusion. Especially for three-dimensional datasets, we
found that drastically reducing the number of visible particles is necessary to
make regions and features of interest visible. Derived variables and features,
coupled with interaction, efficiently support this exploration.

6.2 visualizing the topology of time-dependent flows 55

6.2 visualizing the topology of time-dependent flows

We now discuss the visualization of unsteady flows by selecting a sparse set
of particles and their trajectories that best represent the flow topology. For
particle-based flows, trajectories are obtained by interpolating between the
positions of particles over time. Note that these are not necessarily equivalent
to massless tracer particles integrated in a velocity field. In particular, these
particles are less affected by the exponential error growth near LCS. This
is due to the particle-based simulations that apply attracting and repelling
forces to the particles that enforce a uniform discretization of the domain.
Moreover, these trajectories are well-suited to visualize particle-based fluid
flows since they depict the actual movement of particles and do not depend on
numerical integration. By brushing and linking, particles and trajectories can
be selected intuitively using any of the views. Using the proposed per-particle
LCS distance, trajectories near LCS are thus easily selected and visualized.

6.3 visualizing mixing in multiphase fluid flows

Multiphase fluid simulations contain particles of different types. By color
mapping each particle according to its type, the distinct phases and their
interface become visible, cf. Figure 6.3. The visualization strongly indicates
the presence of vortices and separatrices, i.e. separating lines with little cross
flux, that are strongly related to the mixing behavior. To gain insight into the
dynamics of the phase interface and the mixing regions over time, we identify
the transport barriers in the form of LCS. As shown in Figure 6.3, we can
display LCS together with the phase interface by emphasizing particles near a
LCS. Although the FTLE also indicates the transport behavior, cf. Figure 6.3
(a), the sparse representation of the coherent structures significantly reduces
visual clutter. Since the LCS are minimally diffusive, little to no mixing should
occur across the boundaries. Accordingly, the separatrices coincide with the
LCS, whilst vortices near phase interfaces indicate possible mixing regions.
The LCS further show the behavior of the flow surrounding the interface,
which influences the evolution of the interface over time.

6.4 case studies

To detail the visual analysis in two case studies, we make use of a two- and a
three-dimensional SPH dataset.

6.4.1 Fuel Spray

This two-dimensional dataset from a simulation of a fuel spray contains about
12.6 million particles per time step. As shown in Figure 6.3 (b), fuel particles
(yellow) are injected on the top left and mix with two distinct gas phases (light
and dark blue). The atomization of the fuel into a spray of fine particles in the

56 visual analysis of transport and mixing

0.350.0

FTLE

(a) Backward finite-time Lyapunov exponent

Fuel

Gas

Gas

Boundary

(b) Multiphase visualization

Figure 6.3: The backward finite-time Lyapunov exponent (a) and a visualization of
the different fluid phases (b) in the spray nozzle dataset.

Fuel

Gas

Gas

Boundary

Figure 6.4: We visualize time-dependent transport and mixing in a multiphase fluid
simulation of a fuel spray nozzle. The different fluid types are illustrated
together with particles close to Lagrangian coherent structures (black).

surrounding gas phase is investigated by domain scientists to determine the
quality and characteristics of the spray.

Figure 6.3 (a) shows the backward FTLE. The LCS together with the fluid
phases are depicted in Figure 6.4. The LCS capture most of the ridges in the
FTLE field and give a clear indication of the global transport and mixing
behavior. On smaller scales, the LCS seem to lose some accuracy compared to
the FTLE, indicating a lack of resolution.

Since the computation of the FTLE and LCS is fast, it is possible to quickly
explore different time intervals. As shown in Figure 6.5 (a) and (b), a large
interval smooths out short-lived structures, whilst a small time interval em-
phasizes these, but might fail to detect longer-lived structures. We further
correlate the LCS over different time intervals, for example using the parallel
coordinate plot in Figure 6.1, to determine which structures exist in one or
both time scales. From the LCS in different time scales shown in Figure 6.5

6.4 case studies 57

(a) Small time interval (b) Large time interval

Figure 6.5: Comparing the coherent structures in a small (a) and large (b) time interval.

(a) and (b) and the parallel coordinate plot, we gather that the vortical region
(red) is short lived. The fluid phase visualization in Figure 6.3 (b) indicates
strong mixing in this region caused by this vortex. However, the longer lived
transport barriers in the middle of the complete flow show little cross flux and
thus completely separate the phases. On the right, the transport barrier itself
starts to swirl. Even though it still shows little cross flux, the phases start to
mix on a greater scale.

6.4.2 Air Bubble in Water

The Bubble dataset is a laminar two-phase flow of an air bubble moving
through water. The dataset can be reproduced with the GPUSPH [85] sim-
ulation code. The domain is 6 times the size of the spherical bubble and is
discretized using 4.3 million particles in each of the 50 discrete time steps in
the interval [0, 0.5].

Figure 6.6 shows the backward FTLE (a) and particles close to the corre-
sponding height ridge LCS (b), which we color according to the fluid type.
The LCS correspond to the ridges of the FTLE, but without the small-scale
disturbances visible in the FTLE. The attracting coherent structures convey the
transport of the air bubble that moves from left to right and starts to split. By
visualizing both LCS and the fluid phases, the splitting of the air bubble in
smaller bubbles becomes clearly visible.

In (c), we visualize particles trajectories, chosen by random from the whole
dataset and colored according to their phase. Although the different fluid
phases become visible, the visualization suffers from significant amount of
clutter due to a large number of short and relatively uninteresting trajectories.
By creating trajectories from particles near LCS, these trajectories are effectively
filtered out in (d). The movement and splitting of the air bubble is better visible.
In total, this reveals the major flow features with respect to the air particles
and how they mix with the surrounding fluid.

58 visual analysis of transport and mixing

(a) Backward FTLE (b) Particles near LCS

(c) Trajectories (d) Trajectories near LCS

Figure 6.6: Visualization of the Bubble dataset using the backward FTLE (a), particles
near LCS (b), particle trajectories (c), and trajectories created from particles
near LCS (d).

6.5 discussion and domain expert feedback

In this chapter, we present a visual analysis framework for the visualization
of transport and mixing behavior in particle-based flows. Domain experts
have evaluated the approach and were especially impressed by the concept of
brushing in the coordinated views. Interactive exploration was not possible
for their data beforehand and was thus quickly integrated in their workflow.
Whilst our analysis framework was mostly oriented towards qualitative analy-
sis and exploration, the need for more detailed quantitative analysis tasks was
identified. For example, support for more sophisticated queries, plots, and
custom derived variables was requested.

Lastly, the big particle data sizes proved challenging for the interactive
visualization and analysis. This is in part due to the required visualization
and data management techniques, but also due to more practical concerns.
For example, copying the data from a compute cluster to a workstation is time
and storage intensive, if possible at all. Moreover, the largest data sets the
domain experts had available were simply too big for interactive exploration
on current workstations. This again emphasizes the need for data reduction
closely integrated with the visual analysis.

7
U N C E RTA I N T R A N S P O RT

Although most experiments and simulations produce deterministic data, un-
certainty exists in all measured or simulated flows. This uncertainty might
be estimated from repeated simulation runs or measurements, it might be
introduced by data processing and reduction, or it can be explicitly modeled.
Studying uncertainty is especially relevant in unsteady flows, where small
variations in the initial conditions can cause dramatic changes to the flow [198].
In this chapter, we investigate uncertainties in the Lagrangian transport, i.e.
the advection of a material by the flow. Since our approach is applicable to all
flow data, we do not limit it specifically to particle data.

As discussed previously, the Lagrangian coherent structures identify a
topological skeleton of the flow dynamics in a finite-time interval. LCS are
material surfaces that remain coherent over time, although different definitions
of coherency exist. Recent work has extended the definitions of coherent
structures to uncertain flows. The probabilistic [101] or averaged [279] transport
is estimated using a Monte Carlo approach, i.e. by stochastically advecting
a large amount of particles. While the LCS are theoretically well established,
this is, to our knowledge, not the case for probabilistic extensions.

Based on recent work from Haller, Karrasch, and Kogelbauer [111, 112], we
employ the diffusion barrier strength (DBS) to identify transport barriers and
enhancers to stochastic flows. These are material surfaces that show minimal
or maximal stochastic cross flux. By assuming only small stochastic deviations,
Monte Carlo integration is avoided and only the deterministic part of the
flow has to be advected. To this end, we first define uncertain unsteady flows
as stochastic differential equations that consist of an advective component
and an added stochastic component modeled as a Gaussian. The central
limit theorem makes this assumption reasonable in practice. Moreover, we
discuss how to model uncertainty information in this stochastic differential
equation, e.g. due to data reduction, to model small-scale deviations, or to
model aggregated ensemble members. To complement the visualization of
stochastic transport barriers and enhancers, which is based on the assumption
of small-scale deviations, we propose a novel visualization of the scale of
uncertainties encountered during advection.

In this chapter, we first define uncertain flows as stochastic differential
equations in Section 7.1. In Section 7.2, we introduce the theory of stochastic
transport barriers and enhancers, which leads to the definition of the diffusion
barrier strength. We describe how to model stochastic flows from Gaussian
flow fields in Section 7.3. Lastly, we visualize uncertain transport in real-world
datasets. In several experiments, we investigate the relationship between the
stochastic transport barriers and enhancers, Lagrangian coherent structures,
and its probabilistic extensions in Section 7.5.

59

60 uncertain transport

7.1 stochastic flows

To visualize uncertainty in the transport in unsteady flows, we first define a
stochastic flow as a deterministic flow with small stochastic deviations. More
formally, we model an uncertain flow by a stochastic differential equation
(SDE), i.e. we extend the ordinary differential equation from Equation 4.1 with
a stochastic component

dx(t) = v(x(t), t)dt︸ ︷︷ ︸
deterministic

+
√

sB(x(t), t)dW(t)︸ ︷︷ ︸
stochastic

. (7.1)

Here, W(t) is an d-dimensional Wiener process with disturbance
√

sB(x(t), t).
The Wiener process W consists of independent standard Gaussian distributions
at every time t. The notation dW(t) represents a random variable that is
distributed with respect to a standard, multivariate Gaussian. The disturbance,
which controls the scaling and anisotropy, is separated into a scaling parameter
s > 0 and a scale-independent matrix B ∈ Rd×d. In the following, we will
assume only small deviations, i.e. s is small.

numerical integration In general, SDEs can be solved by numerical in-
tegration, for example using the Euler-Marayuma or the Runge-Kutta methods
for SDEs [170]. These Markov chain Monte Carlo strategies involve sampling of
the stochastic component. The numerical integration is thus significantly more
involved compared to deterministic flows since it requires a large amount of
stochastically integrated particles. At the same time, it is non-trivial to decide
how many particles should be integrated. For these reasons, we want to avoid
the numerical integration of stochastic flows.

7.2 stochastic transport barriers and enhancers

In this section, we introduce stochastic transport barriers and enhancers.
We give an intuitive introduction and refer to the work of Haller, Karrasch,
and Kogelbauer for the formal derivation [111, 112]. Transport barriers are
inhibitors of the spread of substances in a flow, whilst transport enhancers
maximize such diffusion or mixing processes. Remarkably, these barriers
and enhancers do not depend on the actual value of the diffusivities, i.e. the
scaling parameter s. They are also well-defined for deterministic flows when
we consider the case of s→ 0. In this case, they present an alternative to the
Lagrangian coherent structures, but do not depend on any specific definition
of coherency. The diffusion barrier strength (DBS) visualizes the barriers and
enhancers, which can be defined as ridges of the DBS, similar to the LCS that
can be defined as ridges of the FTLE.

The DBS is computed from a deterministic flow v and a diffusion component
that describes the amount and anisotropy of diffusion at each point in space
and time. First, we introduce the tensor T from the gradient of the flow map
∇φ and the diffusion D ∈ Rd×d as

T(x, t0, t) := [∇φ(x, t0, t)]−1 D(x, t) [∇φ(x, t0, t)]−T . (7.2)

7.3 modeling diffusion 61

If the diffusion is isotropic, i.e. D ≡ I, then

T(x, t0, t) = C(x, t0, t)−1.

However, we have to incorporate the diffusion D(x, t) at every time in the
interval [t0, t1], in contrast to the FTLE that only considers the deformation at
the end of the time interval. Therefore, the time-averaged, diffusivity weighted
right Cauchy-Green strain tensor C̄ is computed as

C̄(x0, t0, t1) :=
1

|t1 − t0|

∫ t1

t0

det(D(x, t))T(x, t0, t)−1 dt, (7.3)

where x is the position during integration at time t, i.e. x = φ(x0, t0, t). Since
we require only the inverse of T, we compute

T(x, t0, t)−1 = [φ(x, t0, t)]ᵀ D(x, t)−1 [∇φ(x, t0, t)] (7.4)

instead of Equation 7.2. Lastly, Haller et al. [111] define the DBS as the trace of
C̄. Since this quantity is exponential, we take the logarithm for visualization:

DBS(x0, t0, t1) := log
(
tr(C̄(x0, t0, t1))

)
. (7.5)

Although the integral in Equation 7.3 might seem daunting at first, we are
already performing this integration when computing the flow map φ. Thus,
to compute the DBS, we integrate the deterministic flow v and at each step
evaluate T−1 to accumulate the diffusivity weighted and time-averaged strain
tensor C̄.

7.3 modeling diffusion

To compute the DBS, we require a scale-independent diffusion component D.
For completely deterministic flows, we set the diffusion to the identity matrix,
i.e. D = I. For stochastic flows, with a scale-independent disturbance B (cf.
Equation 7.1), the diffusion is defined as

D :=
1
2

BBᵀ. (7.6)

For uncertain and unsteady flows modeled by Gaussians, we now discuss
how to obtain B. The scale-independent disturbance represents the anisotropy
and the scaling relative to other regions of the flow. Given a Gaussian with
covariance C(x, t), we want to separate it into a global scaling parameter s and
a disturbance B(x, t).

Since the disturbance should be, on average, centered around the identity
matrix I, we standardize all covariance matrices. That is, given the set of all
covariance matrices C, we subtract the mean of all variances, i.e. the diagonal
elements of each covariance matrix C ∈ C. Then, we divide out the maximal
standard deviation over all dimensions:

B(x, t) =
C(x, t)− IµC

σmax
C

, (7.7)

62 uncertain transport

where µC is the mean of all variances:

µC :=

E[C0,0]

...

E[Cn−1,n−1]

 (7.8)

and σmax
C is the maximum of the standard deviation of all variances in C:

σmax
C := max

(√
E[Ci,i − µCi,i]

)
, where i = 0 . . . n− 1. (7.9)

Although a different scaling than σmax
C could be used since it is canceled out

in Equation 7.3, our definition increases the numerical stability.

7.4 visualizing transport uncertainty

By design, the diffusion barrier strength ignores the absolute scale of stochas-
ticity, i.e. the amount of uncertainty of the transport. However, this quantity is
still relevant, especially if the amount of stochastic deviations varies strongly
in the flow. To this end, we propose a visualization that complements the DBS
by directly conveying the scale of stochastic deviations.

Although it is possible to directly visualize the time-dependent variance of
a Gaussian flow field, we are interested in the uncertainty of the transport,
which is inherently defined in a Lagrangian frame. We propose to measure the
uncertainty encountered during the integration of a tracer particle. In other
words, this visualizes the transport of uncertainty in the flow. Moreover, this
enables us to integrate only the deterministic part of the stochastic flow and
avoid stochastic numerical integration.

First, we discuss how to measure the uncertainty of a Gaussian flow with
covariance C(x, t) at a single point in time and space. Since we are not inter-
ested in the variance along individual dimensions, we employ the generalized
variance [330, 331] defined as |det(C(x, t))|. Intuitively, this measures the
multidimensional scatter of a Gaussian. To enable comparisons in different di-
mensions, we standardize this quantity by taking the d-th root in d-dimensional
space. Lastly, we average this measure over time during the material transport:

σT(x0, t0, t1) :=
1

|t1 − t0|

∫ t1

t0

|det(C(x, t))| 1d dt, (7.10)

where x = φ(x0, t0, t).

7.5 numerical experiments

In this section, we study the uncertain transport in a synthetic and three
real-world datasets.

7.5 numerical experiments 63

7.5.1 Double Gyre

This two-dimensional synthetic and time-dependent vector field describes
two counter-rotating gyres and has been introduced in Section 5.3.1. In the
following, we study the time interval [0, 10] and integrate forward in time.

The forward FTLE of this flow is shown in Figure 7.1 (a) and the forward
DBS is shown in (b). Now, we add different amounts of isotropic Gaussian
noise. The transport uncertainty is thus constant everywhere and the DBS is
not affected by changing the absolute scale of noise. However, for increasing
amounts of noise the assumption of small deviations is no longer valid. The
behavior of the uncertain flow is visualized by stochastic integration of a
large amount of particles and mapping their density in (c), (g), and (k). By
integrating backwards in time, this illustrates the separatrices in the flow.
For small deviations, this visualization aligns with the DBS. With increasing
amounts of noise, the visualization deviates more. The FTLE-D, obtained by
averaging the right Cauchy-Green strain tensor, and the probabilistic D-FTLE
from Guo et al. [101] similarly illustrate the influence of adding more noise.

We now reduce the dataset to a discrete grid of size [256× 128× 10] and
estimate a Gaussian error model. The resulting variance and covariance aver-
aged over time are visualized in Figure 7.2. The amount of variance (d, e) and
covariance (f) varies periodically. In contrast, the transport uncertainty shown
in the Figure 7.3 (c) directly visualizes the impact of the uncertainty on the
advected tracer particles.

In Figure 7.3 (a), we have stochastically advected a large amount of randomly
distributed particles to visualize separating manifolds in the flow. The DBS
shown in (b) clearly corresponds to these structures. The uncertainty of the
transport is visualized in (c) and indicates a high uncertainty in the midst of
both gyres. The DBS is low in these regions. Note that the FTLE of the mean
flow in Figure 7.1 (a) does not consider the stochastic component of the flow.
The FTLE indicates the presence of several smaller features around the two
gyres that are not depicted in the density visualization in (a) or the DBS (b)
and are located in regions of high uncertainty (c).

The FTLE-D and the mean D-FTLE from Guo et al. [101] shown in (d) and
(e) indicate a larger amount of structures. The center of the left gyre even
shows additional structures that are not present in the FTLE or the advected
particles (a). The transport uncertainty indicates a high uncertainty in this
area (c). However, the variance of the D-FTLE (f) is only high near the central
barrier of the flow. At the same time, the presence of this barrier is far from
uncertain. A high variance in the D-FTLE thus does not necessarily imply
uncertainty of the transport barriers.

7.5.2 Red Sea

This dataset from the SciVis contest 2020 is an ensemble simulation of the
circulation dynamics in the Red Sea [274]. Eddies in the ocean play a major
role in the transport of energy and particles. Uncertainty is estimated from
50 ensemble members created from perturbed initial conditions. Here, we

64 uncertain transport

D
et

er
m

in
is

ti
c

Fl
ow

0.0

0.1

0.2

0.3

0.4

0.5

(a) FTLE

0

2

4

6

8

(b) DBS

σ
=

0.
01

0

100

200

300

(c) Particle density
0.0

0.1

0.2

0.3

0.4

(d) FTLE-D
0.0

0.1

0.2

0.3

0.4

(e) D-FTLE (mean)
0.00

0.05

0.10

0.15

0.20

(f) D-FTLE (variance)

σ
=

0.
03

0

50

100

150

200

(g) Particle density
0.0

0.1

0.2

0.3

0.4

(h) FTLE-D
0.0

0.1

0.2

0.3

0.4

(i) D-FTLE (mean)
0.00

0.05

0.10

0.15

(j) D-FTLE (variance)

σ
=

0.
05

0

50

100

150

200

(k) Particle density
0.0

0.1

0.2

0.3

(l) FTLE-D
0.0

0.1

0.2

0.3

0.4

(m) D-FTLE (mean)
0.00

0.02

0.04

0.06

0.08

(n) D-FTLE (variance)

Figure 7.1: The double gyre dataset with different amounts of isotropic Gaussian
noise. In (a) and (b) the FTLE and DBS of the deterministic flow are shown.
Note that the DBS is not affected by changing the amount of isotropic
noise since it assumes only small deviations.

0.0000

0.0002

0.0004

(a) Average variance u

0.0000

0.0002

0.0004

(b) Average variance v

−0.0001

0.0000

0.0001

(c) Average Covariance

0 2 4 6 8
Time

0

1

2

Va
ria

nc
e

u

1e−4

(d) Variance u over time

0 2 4 6 8
Time

0

1

2

Va
ria

nc
e

v

1e−4

(e) Variance v over time

0 2 4 6 8
Time

−4
−3
−2
−1
0
1

Co
va

ria
nc
e

1e−7

(f) Covariance over time

Figure 7.2: Gaussian error model of the double gyre reduced to a resolution of [256×
128× 10].

7.5 numerical experiments 65

0

50

100

150

200

250

300

350

(a) Density of advected particles
0

2

4

6

8

(b) DBS
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

(c) Transport uncertainty

0.0

0.1

0.2

0.3

0.4

(d) FTLE-D
0.0

0.1

0.2

0.3

0.4

(e) D-FTLE (mean)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(f) D-FTLE (variance)

Figure 7.3: The Double Gyre dataset with uncertainty estimated during data reduction
to a grid of size [256× 128× 10].

estimate the mean and covariance from the individual members and analyze
the resulting uncertain flow. Since the depth of the dataset is irregularly
spaced, we have resampled it to a grid of size 500× 500× 150 with 60 time
steps. To aid the understanding of the dataset, we have added topography and
bathymetry [84] to the visualizations in Figure 7.4.

Figure 7.4 (a) shows the backward DBS over a time interval of 182 hours
that indicates enhancers to stochastic transport. In (b) and (c) we visualize
the diffusion of the temperature over time near the surface. Note that this
diffusion corresponds to the enhancers indicated by the DBS. The forward
DBS of the Red Sea dataset is shown in Figure 7.4 (d), integrated over the
same 182 hours. Additionally, we visualize the mean concentration of salinity
in the upper layers of the ocean at the beginning (d) and the end of the time
interval (e). The diffusion of salinity visibly aligns with the most significant
transport barriers identified by the forward DBS.

The DBS visualizes the transport of the aggregated stochastic flow, but does
not consider individual ensemble members and assumes only small-scale
deviations. Although this is a limitation, visualizing unsteady flows with
large uncertainties is generally difficult if not infeasible due to non-linear
flow dynamics. Lastly, a prior clustering of the ensemble members could be
performed if the Gaussian assumption of the ensemble members is considered
problematic, which was not the case for the Red Sea dataset.

Figure 7.5 (b), (c), (e), and (f) illustrate the time averaged variance of velocity,
salinity, and temperature. Variance in w-direction, i.e. along the depth axis, is
not shown here since it is close to zero. For most quantities, the variance is
highest in the gulf of Aden, the lower right part of the dataset. Nonetheless,
the DBS depicts strong transport barriers and enhancers in this region that
correspond to the diffusion of salinity and temperature.

The forward FTLE of the mean flow is shown in Figure 7.5 (a). Although the
FTLE contains more noise than the DBS in Figure 7.4 (d), it indicates similar
structures in the Red Sea. In the higher variance region in the Gulf of Aden,
the differences are more pronounced. Since the FTLE only uses the mean

66 uncertain transport

(a) Backward DBS (b) Temperature t0 (c) Temperature t1

(d) Forward DBS (e) Salinity t0 (f) Salinity t1

Figure 7.4: The DBS in (a) and (d) visualize enhancers and barriers to stochastic
transport. The mean temperature distribution in t0 (b) and t1 (c) visualizes
the diffusion of temperature. The salinity concentration at time t0 and t1 is
shown in (e) and (f).

(a) Forward FTLE (b) Variance u (c) Variance v

(d) Forward FTLE-D (e) Variance of temperature (f) Variance of salinity

Figure 7.5: The forward FTLE of the mean flow is shown in (a) and the FTLE-D of the
stochastic flow is visualized in (d). The time-averaged variance in the Red
Sea dataset estimated from the ensemble members is shown in (b), (c), (e),
and (f).

7.5 numerical experiments 67

flow, the results do not take the uncertainty into account. In comparison, the
FTLE-D in Figure 7.5 (d) is computed from the stochastic flow. The FTLE-D is
not as noisy as the FTLE, but requires a significant amount of computational
effort to achieve this. In the gulf of Adan, the FTLE-D shows a large amount of
finer features. The visible structures in the temperature and salinity are barely,
if at all, present.

7.5.3 Heated Cylinder

This dataset consists of a 2D time-dependent flow generated by a heated
cylinder using the Boussinesq approximation. The dataset is due to Günther
et al. [98] and was simulated using the Gerris flow solver [248]. It shows a
turbulent plume that contains several small vortices rotating around each
other. The dataset is stored in a regular grid of resolution [150× 450× 2001].

The backward FTLE of the time interval [10, 0] is shown in Figure 7.6 (d).
We have reduced the temporal resolution of the data set to 100 time steps
and estimated the mean and covariance matrix in each grid cell. We visualize
attractors in the uncertain flow in (a) by integrating particles forward in time
and visualizing their density. The DBS of the stochastic flow is shown in (b)
and the transport uncertainty in (c). The mean and variance of the D-FTLE is
shown in (e) and (f). The FTLE-D is not shown here, but corresponds closely
to the D-FTLE.

The uncertain flows indicates a changed flow behavior compared to the
FTLE in (d) since some vortices have been stretched or rotated. Since the DBS
incorporates the relative scaling and anisotropy, these changes are taken into
account without requiring stochastic numerical integration. Moreover, the DBS
tends to smooth out the center of vortical regions, in correspondence to the
density visualization shown in (a) and the transport uncertainty in (c), which
is not the case for the FTLE-D.

7.5.4 Flow Around Corners

This flow around two cylinders and corners has been simulated using the
Gerris flow solver [248] and is due to Baeza Rojo and Günter [265]. Here, we
visualize the deterministic flow without explicitly constructing an error model,
i.e. we set D = I and assume s→ 0. Figure 7.7 shows the backward FTLE (a)
and the DBS (b) in the time interval [10, 5]. The quantities are similar, but not
identical. For example, the DBS smooths out fine-scale features inside vortical
regions.

7.5.5 Performance

All of our evaluations were performed using GPU acceleration on an NVIDIA
Quadro RTX 8000 with CUDA. To integrate deterministic flows, a fourth-
order Runge-Kutta scheme is used. Stochastic flows are integrated using the
Euler-Maruyama method with a constant number of 100 Monte Carlo runs.

68 uncertain transport

(a) Particle density (b) DBS (c) Transport uncertainty

(d) Deterministic FTLE (e) D-FTLE (mean) (f) D-FTLE (variance)

Figure 7.6: The heated cylinder dataset with uncertainty estimated during data reduc-
tion to a grid of size [150× 450× 100].

7.6 discussion 69

(a) FTLE

(b) DBS

Figure 7.7: The backward FTLE (a) and DBS (b) of the deterministic flow around
corners.

Table 7.1: Performance measurements of our datasets.

Dataset Resolution FTLE DBS FTLE-D

Double Gyre 1024× 512 4.1ms 7.4ms 2173ms

Red Sea 15002 × 150 2739ms 5193ms 2,129,030ms

Heated Cylinder 600× 1800 258.7ms 680.0ms 143,243ms

Flow Around Corners 2250× 750 110.8ms 456.2ms 220,309ms

Performance measurements for different datasets are shown in Table 7.1.
Computing the DBS requires evaluating Equation 7.4 during each integration
step. Computing the DBS thus takes two to four times longer than the FTLE.
In comparison, methods that depend on stochastic integration increase the
runtimes by several orders of magnitude.

7.6 discussion

Our results show that the DBS is significantly faster to compute than prob-
abilistic extensions of the FTLE since no stochastic integration is performed.
In our experiments, the DBS closely aligns with the density of stochastically
advected particles, whilst many features from the FTLE and its probabilistic
extensions are not visible. In fact, probabilistic extensions of the FTLE show

70 uncertain transport

features of possible realizations of an uncertain flow. In contrast, the DBS
indicates features that exist in an inherently stochastic flow. Although both
approaches have merit, it makes the probabilistic D-FTLE hard to interpret.
At first glance, the variance of the D-FTLE might suggest uncertainties of
the transport barriers and enhancers, however, this is not the case. Indeed,
none of the approaches convey the actual amount of uncertainty encountered
during integration. Our visualization of the transport uncertainties efficiently
illustrates this uncertainty in the Lagrangian frame, thus providing additional
insights.

Lastly, note that all of the results in this chapter are applicable to particle
data. In fact, we could extend our method from Chapter 5 to compute the DBS,
but this would require loading all time steps in the interval [t0, t1], leading to
a more costly computation.

Part II

D ATA R E D U C T I O N F O R V I S UA L A N A LY S I S

8
V O I D - A N D - C L U S T E R S A M P L I N G

In this chapter, we investigate the use of statistical sampling to reduce large
data sets to a representative subset. As discussed in Section 3.3, sampling scales
to higher dimensional data and is well-suited for scattered data. Although
simple random sampling gives decent results, recent work improves upon this
using stratified [299, 335] and information-guided sampling [24, 325]. These
results emphasize the significance of stratification in the spatial domain and
adaptive sampling guided by the value domain.

We propose a sampling strategy for scattered data (Section 8.2) generalizing
the void-and-cluster technique from Ulichney [314] (Section 8.1) that stratifies
optimally in the spatial domain. Specifically, we find samples that are well
distributed with respect to the blue noise property, which implies large mutual
distances between samples without causing regularity artifacts. Additionally,
we discuss how to adapt the sampling strategy to the value dimensions by
better sampling regions of value distributions with high entropy. Moreover, the
sampling technique implicitly defines an ordering on the samples that enables
progressive data loading and continuous level-of-detail during visualization
and analysis. Our proposed algorithm is fast, scalable, and well-suited for
GPU acceleration (Section 8.3). Therefore, it is applicable in situ, i.e. while a
simulation is running, but also as a traditional post-processing step.

Furthermore, we extend our sampling technique to time-dependent particle
data. Instead of considering each time step independently, we sample particle
trajectories. We find representative trajectories that evenly cover the spatiotem-
poral domain based on an efficient iterative extension of the void-and-cluster
technique.

Lastly, we introduce an error measure to quantify how well a set of samples
represents the data with respect to both the spatial and the value domain
(Section 8.4). In particular, we derive a continuous error measure that quantifies
the difference in the value distributions for every point in the dataset. This
error measure integrates well into our sampling technique, where we use it to
determine when a sufficient number of samples has been taken. We evaluate
the quality of our proposed sampling technique on different synthetic and real-
word datasets using this error measure and other derived quantities, such as
the quality of scattered data interpolation (Section 8.5). Finally, we investigate
the performance and scalability of our proposed sampling technique and
compare it to related approaches.

8.1 the void-and-cluster technique

Ulichney [314] introduces the void-and-cluster sampling technique in the
context of halftoning and dithering. The technique ranks all pixels in a rastered
image, thus producing a dithering mask. If we think of all pixels that are

73

74 void-and-cluster sampling

already ranked as white and mark the others black, applying a Gaussian
filter yields an image that indicates the local density of ranked pixels. The
tightest cluster is brightest, the largest void is darkest. The void-and-cluster
technique goes through three phases to fill large voids and reduce tight clusters
greedily. The order of greedy additions implies an order on the sample set
such that each prefix has good blue noise characteristics. In the end, all pixels
are ranked and the resulting dithering patterns have blue noise characteristics.
In the next sections, we discuss the extension of this technique to scattered
data, augment it with non-uniform sampling densities, and propose a parallel
implementation.

8.2 void-and-cluster sampling for particle data

Ulichney’s algorithm is restricted to uniform grids and produces samples with
a uniform density. In this section, we generalize the approach to scattered
data with a non-uniform spatial distribution. To preserve the spatial density,
we compute a density estimate on the whole dataset. Our generalized void-
and-cluster sampling works on scattered data and enforces the given density
(Section 8.2.1). Like the original algorithm, it orders all sample points to enable
level of detail and progressive data loading (Section 8.2.2). The algorithm
is efficient because each iteration only requires local updates with compact
kernels (Section 8.2.3). Our parallel implementation in Section 8.3 further
exploits this locality. Supporting arbitrary sampling densities lets us emphasize
regions of high entropy in the value domain (Section 8.2.4). Finally, we extend
our technique to the sampling of time-dependent trajectories (Section 8.2.5).

8.2.1 Void-and-Cluster Sampling

Assume we have a dataset with points P ⊂ Rd in a d-dimensional spatial
domain. Each sample is mapped to a value in the possibly multivariate value
range V through v : P→ V. Among these points, we want to pick a represen-
tative subset S ⊂ P. Therefore, we optimize the placement of samples in the
spatial domain by estimating the density of selected samples λS : P→ R+ for
each point p ∈ P. A high sample density indicates a large number of nearby
samples, whilst a low density indicates few. We want to place samples such
that dense regions (clusters) and empty regions (voids) are avoided. Or, in
other words, reduce the maximum of the sample density λS and increase its
minimum.

This does not work for spatially non-uniformly distributed data points since
we have to account for the original distribution in the spatial domain. Even
for uniformly distributed points the border region of the spatial domain is
less densely populated. We account for the spatial distribution of the points
by first computing a point density ρP for each p ∈ P:

ρP(p) := ∑
pi∈P

k(‖p− pi‖), (8.1)

8.2 void-and-cluster sampling for particle data 75

Sample

(a) Initial random
sampling

smax

pmin

(b) Find pmin and smax

pmin

smax

(c) Exchange pmin and
smax

pmin

(d) Find and add the
next pmin

Figure 8.1: Overview of the void-and-cluster sampling technique for scattered data.
After initial random sampling (a), the samples are optimized by finding
(b) and exchanging (c) the largest void pmin with the tightest cluster smax
until pmin = smax. We then iteratively find and add (d) the largest void
pmin until we have enough samples.

using a kernel function k. Given a subset of samples S ⊂ P, the sample density
at p ∈ P is then defined as:

λS(p) := ∑s∈S k(‖p− s‖)
ρP(p)

. (8.2)

We will now describe a strategy to find the optimal set of samples in the spatial
domain with respect to the sample density λS, by extending the void-and-
cluster algorithm. This is an iterative and greedy algorithm that at each step
finds a locally optimal distribution of samples. An overview of our modified
void-and-cluster sampling technique is depicted in Figure 8.1.

Initially, we take a fixed number of random samples. Although the point
density ρP stays constant, we have to update λS when we change the set of
samples. The sample density is computed incrementally when a sample s is
added (or removed), by adding to (or subtracting from) the density λS(p) for
all points.

We then optimize these initial samples by removing the tightest cluster

smax = arg max
s∈S

λS(s) ∈ S, (8.3)

i.e. the sample with largest λS. Then, we add the largest void

pmin = arg min
p∈P\S

λS(p) ∈ P \ S, (8.4)

i.e. the point with the lowest λS that is not a sample yet. Since we add and
remove a sample, we have to update the sample densities accordingly. The
optimization stops once the tightest cluster that we remove then becomes the
largest void, that is smax = pmin.

After construction of the optimal initial sampling, we iteratively find and
add the largest void to the set of samples until we have reached the desired
amount of samples. We provide detailed pseudocode of the entire algorithm
in the appendix, see Section A.1.

76 void-and-cluster sampling

8.2.2 Ordering of Samples

A positive side-effect of the greedy approach is that the void-and-cluster
strategy implicitly defines an ordering of the samples. With respect to this
ordering, any prefix of the sample set S still has good blue noise characteristics.
Ulichney [314] denotes it as the rank r : P → N, where r(p) = ∞ for all
p ∈ P \ S. To compute this ordering, we assign and increment the rank when
adding a sample during the initial random sampling or the void filling steps.
For a sample si that is added as the i-th sample, we set r(si) = i. During the
void-and-cluster optimization, when we exchange the tightest cluster smax

with the largest void pmin, we have to swap the rank accordingly, i.e. we set
r(pmin) = r(smax) and r(smax) = ∞.

We re-order (or index) the samples according to this mapping. We can use
this ordering for continuous level-of-detail and for progressive data loading
during the subsequent visualization and analysis.

8.2.3 Compact Kernels

If the kernel k is compact, i.e. has a finite extent, only a local neighborhood
has to be considered when updating the densities of samples and points. For
compact kernels, the optimization is thus defined locally. In our experiments,
we found that the choice of kernel does influence the distribution of samples
and the quality of the blue noise. Nonetheless, we always achieved good
results as long as the kernel size hP was in a reasonable order of magnitude
with respect to the spatial domain. If we take a fraction of all samples |S| < |P|,
we have to increase the kernel size h used for sampling accordingly:

h := hP
d

√
|P|
|S| , (8.5)

using the spatial dimension d. Although we did experiment with a Gaussian
kernel, we use a cubic spline [217] in the remainder of this work since it yields
similar results, but is compact. Lastly, we denote points in the support of
kernel k at point p ∈ P as its neighborhood N (p) ⊂ P.

8.2.4 Adaptive Sampling

So far we have taken all samples with equal probability and proportional to
the spatial density. Now, we discuss the use of non-uniform probabilities to
better capture complicated behavior in the value dimensions.

In general, we would like to take samples S ⊂ P according to the probability
mass function φ : P → [0, 1]. To sample a representative subset, we must
re-weight all samples s ∈ S proportionally to the reciprocal φ−1(s). With our
void-and-cluster approach, we implement this adaptation by using a modified
density:

ρ̃P(p) := ρP(p)φ(p). (8.6)

8.2 void-and-cluster sampling for particle data 77

d2

d1
k(d2)

Fr
e
q
u
e
n
cy

Value

k(d1)

Figure 8.2: We compute the entropy of a point in its local neighborhood from a
histogram of the value distribution, weighted by the radially symmetric
kernel k.

Thus, any normalized importance measure, for example a computed feature
or derived variable, can be used to guide the placement of samples.

entropy sampling Similar to recently proposed sampling techniques [24,
325], we place more samples in regions with a high entropy, i.e. value distribu-
tions of high complexity.

For each point p ∈ P we compute the entropy using its local neighborhood
N (p), see Figure 8.2. Specifically, we create a histogram of the value distri-
bution of all points in the neighborhood. We use the global value range for
the computation of the histogram to ensure that the entropy is consistent
everywhere. To obtain a continuous entropy in the spatial domain, we weight
the contribution of each neighbor with respect to its distance to p using the
kernel k. From the weighted and normalized histogram hp of size Nbins, we
compute the entropy:

H(p) := −
Nbins−1

∑
i=0

hp(i) log2 hp(i). (8.7)

Similar to Wei et al. [325], we derive a sampling probability that is independent
of the size of the histogram as

φH(p) :=
2H(p)

Nbins
(8.8)

and then derive a correctly normalized probability mass function as

φ(p) =
φH(p)

∑pi∈P φH(pi)
. (8.9)

For multivariate data, we have to construct a single probability from multi-
ple value dimensions. Hence, we compute the entropy individually in each
dimension and use the maximal entropy at each point. Intuitively, we consider
a data point relevant if at least one dimension shows high entropy. Dependent
on the application, we could also select a subset of the value dimensions to
guide the entropy sampling.

78 void-and-cluster sampling

t0 t1 t2 t0 t1 t2(a) (b)

Figure 8.3: In (a), we sample trajectories that bundle and separate over time. We
optimize the distribution of sampled trajectories in (b), by stopping (blue)
and starting (red) trajectories in t1.

8.2.5 Trajectory Sampling

In addition to sampling a single time step, we extend our sampling technique
to time-dependent data. Specifically, we consider trajectories of scattered data
points in discrete time steps t0, ..., tN−1 ∈ R. A trajectory is then defined as a
sequence of points over time τ := (ptj , . . . , ptk) with 0 ≤ j ≤ k ≤ N − 1 and
points pti ∈ Pti at time ti, cf. Section 2.1.2. We now discuss how to sample a
subset T from the set of all trajectories.

To avoid an optimization of trajectories over all time steps, we sample
iteratively. In the first time step, we employ our void-and-cluster sampling
strategy to sample a subset St0 ⊂ Pt0 that defines an initial set of trajectories T.
In the next time step, a number of trajectories could end, i.e. no longer exist
in the following steps. We first compute the point density ρP and the sample
density λS from the trajectories T that still exist in the current time step. For n
ending trajectories, we then add the trajectories from the n largest voids to T
and thus start new trajectories from this time step. To start a trajectory τ in
time step ti means that we create a new trajectory τs := (pti , . . . , ptk).

Hlawatsch et al. [131] observed that longer trajectories have greater accuracy
than a series of shorter trajectories. However, longer trajectories may bundle
together or move away and create regions with little coverage, see Figure 8.3.
Thus, we forcefully stop up to a user-defined amount of trajectories εT in
each time step ti. To stop a trajectory τ in time step ti, we take the prefix
τe := (ptj , . . . , pti) instead of τ. The parameter εT depends on the dataset and
the specific application. In general, it should be inversely proportional to the
amount of trajectories ending. In datasets where all trajectories exist in all
time steps, εT should be high. To select which trajectories to stop and which
to start in time step ti, we perform the void-and-cluster optimization. That
is, we exchange the tightest cluster with the largest void up to εT times or
until the sample distribution is optimal, i.e. the tightest cluster is equal to the
largest void, and start or stop the corresponding trajectories. Note that longer
trajectories may again be obtained by interpolation from shorter ones [3].

8.3 parallel implementation 79

8.3 parallel implementation

In this section, we discuss the parallel implementation of the sampling tech-
nique, specifically the computation of the point and sample densities, and the
parallelization of the void filling step.

8.3.1 Computing the Densities

One of the most computationally demanding parts of the algorithm is creating
the density ρP and updating λS. Each point p has to scatter its density, weighted
by the distance and kernel function, to all neighboring points N (p). This is an
embarrassingly parallel task and is especially well-suited for GPU acceleration.
If the kernel function is compact, data structures, such as a k-d tree or a regular
grid, should be employed to efficiently retrieve the neighborhood of a point or
sample.

In our implementation, we use a uniform grid of cell size h. To find the
neighborhood N (p) of p, we thus have to query 3d cells around p. To speed-up
the neighborhood search, we layout all cells in memory using a space-filling
Z-curve to optimize memory access to neighboring cells.

8.3.2 Parallel Void Filling

The void filling step seems to enforce a sequential bottleneck: in each step, we
find the sample p ∈ P \ S with the smallest sample density λS(p). Then we add
p to the sample set S and increase sample densities in the neighborhood before
we search the smallest sample density again. To overcome this sequential
dependency, we store each added sample p alongside the sample density
λS(p) that it has when it is added. Since we only ever add to the densities and
pick the minimum in each step, these densities grow monotonically. If we can
guarantee that they are computed correctly for each added sample, sorting by
the densities guarantees that we rank all selected samples correctly.

To provide this guarantee, we must never add a sample too early. All samples
in a neighborhood pn ∈ N (p) with a rank r(pn) < r(p) must have contributed
to the sample density λS(p) before we add p ∈ P \ S and store λS(p). We
can be certain that this is the case if p has the smallest sample density in its
neighborhood, i.e.

λS(p) ≤ min
pn∈N (p)

λS(pn). (8.10)

By selecting the sample p ∈ P \ S that minimizes λS(p) globally, we will never
select another sample in N (p) before p. Hence, we know that the rank r(p) is
also minimal within the neighborhood N (p).

This principle enables our parallel implementation. We first sort all p ∈
P \ S in ascending order by their density λS(p) and take the first n points

80 void-and-cluster sampling

p0, p1, . . . , pn−1 in each iteration. Then we compute an adjacency matrix in
parallel using the kernel size h:

A :=

0 0 . . . 0

‖p1 − p0‖ − h 0 . . . 0
...

.
...

‖pn−1 − p0‖ − h . . . ‖pn−1 − pn−2‖ − h 0

 .

A negative entry in the i-th row and j-th column with i > j indicates that pi
is in the neighborhood of pj. Since λS(pi) ≥ λS(pj) due to the sorting, this
means that pi might not satisfy Equation (8.10) and it is flagged accordingly.
Once the process is complete, all points that have not been flagged satisfy
Equation (8.10). They are added to the sample set and their densities are stored.
Note that the matrix A is never stored. We only need the flags.

Although we can parallelize this computation, the workload is unevenly
distributed. The i-th row of A has i non-zero entries. Therefore, we index
the non-zero entries of A with a single linear index k ∈ {0, . . . , n(n−1)

2 }. In
Section A.2, we show that row and column indices can be computed from this
flat index through

i =

⌊
1
2
+

√
1
4
− 2k

⌋
, j = k− (i− 1)i

2
. (8.11)

For large k, the square root has to be evaluated in double-precision to avoid
rounding errors.

Thanks to the sorting by density, the procedure described above guarantees
a correct relative rank of selected samples. However, samples may be missing
if we just terminate after a particular iteration. For a complete result, we
perform additional iterations. If the largest density of a sample added in the
last proper iteration was λmax, we continue iterating until the smallest sample
density in P \ S is greater than λmax. At this point, we can be certain that
we have not missed a sample that should have been added up until the last
proper iteration. This way, we guarantee that we take the same samples as the
sequential algorithm.

8.4 local error measure

In this section, we discuss an error measure to quantify how well a set of
samples represents a dataset. We propose a measure that takes not only the
spatial domain into account, but also how well the value domain is represented
in each region of the dataset. To this end, we first discuss how such a local
error can be defined, before we discuss how to compare value distributions.
Lastly, we discuss an error guided sampling strategy that relies on an efficient
iterative error estimation to sample just below a given error threshold, instead
of drawing a fixed amount of samples.

8.4 local error measure 81

8.4.1 Locality and Continuity

We derive a local error measure that compares the value distribution VS ⊂ V
of the sampled dataset with the value distribution V of the original dataset.
Specifically, we propose to compare value distributions in the local neighbor-
hood N (p) for each corresponding p ∈ P. This method implicitly accounts for
non-uniformly distributed data points. Additionally, we weight the contribu-
tion of each pi ∈ N (p) to the value distribution by its distance k(‖p− pi‖) so
that the error varies smoothly over the spatial domain.

8.4.2 Wasserstein Distance

To measure the difference between the original value distribution given by
values V = {X0, ..., Xn−1} and a sampled subset VS ⊂ V, we use the corre-
sponding cumulative distribution functions (CDFs) FV and FS. The CDF at a
point p ∈ P is estimated as

FV(p, t) =
1

∑n−1
i=0 k(‖p− pi‖)

n−1

∑
i=0

k(‖p− pi‖) if Xi ≤ t,

0 otherwise.
(8.12)

In practice, this implies that we need to sort the Xi before accumulating them.
Since the samples are a subset VS ⊂ V, it is sufficient to sort the values V to
estimate both CDFs. Alternatively, we estimate the CDFs based on a histogram
of V and VS, which introduces a discretization, but is more efficient to evaluate.

To measure the distance, we found the Wasserstein distance [237], or earth
movers distance, to be a good choice. In the one-dimensional case, it is defined
as the L1-norm between the two CDFs:

W(p, FV , FS) :=
∫ ∞

−∞
|FV(p, x)− FS(p, x)| dx. (8.13)

In contrast, we found the Kolmogorov-Smirnov distance, defined as the infinity
norm between the CDFs, to be unsuited since it is not robust to small shifts in
the value dimension.

Note that this definition of the Wasserstein distance is only valid for one-
dimensional value distributions. Thus, we compute a separate error for each
value dimension. We can further deduce the error across dimensions, e.g. by
taking the mean or maximum. In the following we will use the maximum;
however, this is an application and data specific decision.

8.4.3 Error Guided Sampling

During void-and-cluster sampling, we efficiently keep track of the error distri-
bution, for example to stop sampling if the average error falls below a given
threshold. In detail, we compute the error for all samples after the initial
void-and-cluster optimization. When adding a sample pmin, we compute the
error of pmin and additionally update the error for all neighbors N (pmin) since
these have changed as well.

82 void-and-cluster sampling

1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
Number of samples

0.000

0.001

0.002

0.003

W
as

se
rs

te
in

 d
ist

an
ce

Sinc
Random
Entropy Random
kd-Tree Stratified
Poisson Disk
LCCVD
V&C Uniform
V&C Entropy

0 1000 2000 3000
Void filling iteration

0.0

0.1

0.2

0.3

W
as

se
rs

te
in

 d
ist

an
ce

Sinc: Iterative error
V&C Uniform
V&C Entropy

Figure 8.4: Left: Comparison of different sampling strategies using our proposed error
measure. Right: Error measured during sampling.

Random 19.75 SNR (DB) Entropy Random 21.9 SNR (DB) kd-Tree Stratified 19.8 SNR (DB) Poisson Disk 26.02 SNR (DB)

LCCVD Uniform 22.89 SNR (DB) V&C Uniform 29.33 SNR (DB) V&C Entropy 29.58 SNR (DB)

Figure 8.5: Reconstruction of the sinc dataset using scattered data interpolation after
taking 5000 samples with different strategies.

To describe the distribution of errors during sampling, we found the average
error to be a robust statistic that is efficient to compute. In contrast, the
maximal error does not decrease smoothly with respect to the number of
samples and is not robust against outliers, e.g. stemming from small, but
complex value regions.

8.5 evaluation

In this section, we evaluate our sampling technique using four real-world
datasets and the synthetic sinc signal.

8.5.1 Synthetic Data: Sinc

We have created the sinc dataset by randomly placing 500,000 points in the
domain [−5, 5]2 and by evaluating for each point p ∈ [−5, 5]2 the function

sinc(‖p‖) = sin(π‖p‖)
π‖p‖ . (8.14)

8.5 evaluation 83

−100 −50 0 50
−100

−50

0

50

100
V&C Uniform

−100 −50 0 50

LCCVD

−100 −50 0 50 100

Poisson Disk

0

2

4

6

8

10

Figure 8.6: Fourier transform of the sinc dataset after taking 5000 samples using
our uniform void-and-cluster method, loose capacity constrained Voronoi
diagrams (LCCVD), and Poisson disk sampling.

Figure 8.4 (left) compares different sampling strategies and shows the mean
Wasserstein distance. We employ simple random sampling and random sam-
pling with non-uniform probabilities based on the entropy. Moreover, we
compare to stratified sampling utilizing a k-d tree based on a median split,
similar to Woodring et al. [335]. Lastly, we employ Poisson disk sampling [29]
and loose capacity constrained Voronoi diagrams (LCCVD, [79]). For an in-
creasing number of samples, the error from most strategies converges to zero,
which implies that these strategies sample a representative subset. However,
Bridson’s Poisson disk sampling [29] lacks explicit control over the sample
count, which is instead steered by the enforced minimal and maximal distance.
The technique is unable to surpass a certain sample count for this dataset.
Our proposed void-and-cluster sampling strategies perform consistently better
for all sample counts. The entropy-based strategies perform similar to their
uniform counter parts.

In Figure 8.4 (right), the mean error has been computed iteratively during
sampling until the error was less than ε = 0.0065, which led to a sampling
percentage of 34.1 %. The error first falls rapidly then converges asymptotically
to zero. Initially, we sample 5000 and iteratively add the remaining samples.
In each void filling step, we take only 32 samples in parallel to still keep the
error up to date. In comparison, we take up to 12,288 voids in parallel if we
do not perform error guided sampling.

We use scattered data interpolation to interpolate the sampled data values
to a grid of size 10242, see Figure 8.5. Our void-and-cluster strategies show
a major improvement compared to the other sampling strategies. The signal-
to-noise (SNR) ratios shown in the logarithmic decibel scale support this
assessment. Note that the LCCVD and Poisson disk sampling strategies also
achieve good results, but are still worse than our proposed methods. For
reconstruction, the entropy-based sampling strategies perform slightly better
compared to the uniform approaches. For all sampling strategies, the quality
of the reconstruction agrees with the error measure.

Lastly, Figure 8.6 shows the spectrum of the sinc dataset reduced to a subset
of 1 % with our uniform void-and-cluster strategy, LCCVD, and with Poisson
disk sampling. The Fourier transform shows the blue noise property for
these methods. Low frequencies are substantially weaker and the spectrum is

84 void-and-cluster sampling

0 1×10⁶ 2×10⁶ 3×10⁶ 4×10⁶ 5×10⁶
Number of samples

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

W
as

se
rs

te
in

 d
ist

an
ce

Von Kármán vortex street
Random
Entropy Random
kd-Tree Stratified
Poisson Disk
V&C Uniform
V&C Entropy

5 10 15 20
Time step

0.0000

0.0005

0.0010

0.0015

W
as

se
rs

te
in

 d
ist

an
ce

Time-dependent error

Random
Random Entropy
V&C Uniform
V&C Entropy

Figure 8.7: Comparison of the local error measure after sampling a single time step of
the von Kármán vortex street (left) and over all time steps (right).

isotropic. However, LCCVD has more energy in low frequencies than our void-
and-cluster strategy. Poisson disk sampling has less energy in low frequencies,
but contains a noticeable spike near zero. Note that the random and stratified
sampling strategies do not have this property, which suggests that the blue
noise property is desirable for scattered data interpolation. Indeed, the error of
kernel estimation has been shown to depend on the disorder of particles [216].

8.5.2 Von Kármán Vortex Street

The von Kármán vortex street is a time-dependent SPH dataset. It contains
about 5 million particles in each time step. Since the particles enter the domain
on the left side and exit on the right, the amount of particles per step changes.
A circular boundary in the mid of the domain causes a repeating pattern of
swirling vortices, the vortex street.

We compare the error measured from the different techniques for sampling
the first time step in Figure 8.7 (left). Since the original dataset already contains
well distributed samples, as a result of the SPH simulation, the Poisson disk
sampling can correctly sample the dataset even for large sample counts. Still,
the void-and-cluster techniques consistently lead to the lowest error. The
decreased error of stratified k-d tree sampling and entropy random sampling
compared to naive random sampling implies that both stratification and
entropy-based sampling are beneficial for this dataset.

We sample 10 % of the trajectories in the discrete time interval [0, 20]. Since
particles frequently enter and exit the domain, we do not explicitly stop
trajectories to sample new ones. In Figure 8.7 (right) we plot the error over
time for the different sampling strategies. The void-and-cluster strategy is not
only consistently better, but also stays nearly constant over time. In contrast, we
observe an increase of the error over time for the random sampling techniques.
Lastly, the entropy-based sampling strategies show a noticeable improvement
for this dataset because they are able to focus more samples on the difficult
vortex and boundary regions.

A comparison between random sampling, uniform, and entropy void-and-
cluster sampling after 10 time steps is shown in Figure 8.8. Although all
sampling strategies deteriorate slightly over time, the samples are still well
distributed for the uniform void-and-cluster sampling approach. We recon-

8.5 evaluation 85

Random 5.57 SNR (DB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) Random sampling in t10

V&C Uniform 7.85 SNR (DB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) Void-and-cluster uniform sampling in t10

V&C Entropy 8.82 SNR (DB)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(c) Void-and-cluster entropy sampling in t10 (d) Entropy sampling
error in t10

(e) Entropy sampling
distribution in t1

Figure 8.8: The von Kármán vortex street after ten time steps using random (a),
uniform (b), and entropy (c) void-and-cluster trajectory sampling. The
corresponding u-velocity fields are shown, which have been created using
scattered data interpolation. Our error measure is shown in (d). The
entropy void-and-cluster sample distribution in the first time step is shown
in (e).

struct the u-velocity field using scattered data interpolation. The results are
considerably better for the void-and-cluster approaches. Moreover, the entropy
sampling strategy leads to a better reconstruction compared to the uniform
void-and-cluster technique. Our error measure of the entropy strategy is shown
in (d). Although the entropy strategy already places most samples near the
vortex street, the lower boundary, and the upper boundary, the error is still
highest in these regions.

We illustrate the sample distribution for the entropy sampling technique
in the first time step in Figure 8.8 (e). More samples are placed behind the
circular boundary, where vortex shedding occurs, and near the bottom and
top of the domain. In these regions, the velocity differs considerably. The
sampling distribution in the tenth time step has deteriorated considerably for
the entropy strategy, but still leads to better results. The entropy strategy thus
seems to require shorter trajectories to accurately place samples with respect
to the entropy.

8.5.3 Surface-Mounted Cylinder

This dataset stems from a 3D SPH simulation that simulates the flow around a
surface-mounted cylinder (cf. Section 5.3.3). In detail, particles move through
a wall-bounded box where an empty cylinder is placed on the bottom. The
dataset contains about 46 million particles in each time step, each of which
has a position, velocity, and pressure and either belongs to the static domain

86 void-and-cluster sampling

1×10⁷ 2×10⁷ 3×10⁷ 4×10⁷
Number of samples

0.0000

0.0025

0.0050

0.0075

0.0100

W
as

se
rs

te
in

 d
ist

an
ce

Surface-mounted cylinder
Random
Entropy Random
kd-Tree Stratified
Poisson Disk
V&C Uniform
V&C Entropy

Figure 8.9: Comparison of the local error measure of the surface-mounted cylinder.

boundary or the simulated fluid. In Figure 8.9, we compare the error of the
different sampling techniques. Most notably, the entropy-based techniques
show a larger error for smaller sample counts.

We sample 1 % of the dataset and visualize the particles as sphere and
arrow glyphs in Figure 8.10 (a). We map u-velocity to color, i.e. velocity in

-1.0 2.0
u

(a) We visualize the particles using sphere and arrow glyphs with our level-of-detail
representation

(b) Uniform sampling (c) Entropy sampling

Figure 8.10: The surface-mounted cylinder, after sampling 466, 103 particles, is shown
in (a). We use the continuous level-of-detail, in addition to a transfer
function, to further reduce the amount of particles. Slices of the dataset
using the uniform (b) and entropy (c) sampling illustrate the difference
between the sampling strategies. The entropy strategy samples the less
interesting region above the empty cylinder less densely.

8.5 evaluation 87

0.0 0.5 1.0 1.5 2.0 2.5
u-velocity

0.0

0.5

1.0

1.5
Fr

eq
ue

nc
y

Void-and-cluster 1%
Reference

(a) Histogram (466,103 samples)

0.0 0.5 1.0 1.5 2.0 2.5
u-velocity

0.0

0.5

1.0

1.5

Fr
eq

ue
nc

y

Void-and-cluster 1% LOD
Reference

(b) Histogram (10,000 samples)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
x

−0.4

−0.2

0.0

0.2

0.4

v-
ve

lo
cit

y

(c) Scatter plot (466,103 samples)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
x

−0.4

−0.2

0.0

0.2

0.4

v-
ve

lo
cit

y
(d) Scatter plot (10,000 samples)

Figure 8.11: We create a histogram (a) and a scatter plot (c) of the surface-mounted
cylinder, after sampling 466,103 particles using the void-and-cluster en-
tropy strategy. With our level-of-detail, we select a subset of 10,000 parti-
cles and create a histogram (b) and scatter plot (d).

the principal flow direction. Since the sampled subset still contains a large
amount of particles, we make use of the continuous level-of-detail in addition
to a transfer function, which maps fast particles to transparent, to further
reduce the amount of visual clutter. The vortex shedding in the wake of
the cylinder thus becomes visible. Furthermore, we illustrate the difference
between uniform and entropy void-and-cluster sampling in Figure 8.10 (b)
and (c). The entropy strategy samples the regions near the wall and close to
the cylinder more densely due to fluctuating velocities, but also due to the
interface between fluid and boundary particles that leads to a high entropy. In
contrast, the regions above and next to the cylinder contain a large amount of
particles that move unobstructed through the domain.

In Figure 8.11, we create a histogram of u-velocity (a) and a scatter plot of x
and v-velocity (c) of the dataset sampled with the entropy void-and-cluster
technique. We use our level-of-detail mechanism to create a subset of 10,000
particles and compute similar plots in (b) and (d). The histograms in (a) and
(b) are similar, even though we reduce the amount of samples considerably.
In the scatter plot (d), the amount of clutter is significantly reduced. The
periodic changes in v-velocity, caused by the swirling vortices in the wake of
the cylinder, then become visible. Lastly, the ordering of samples allows us to
optimize loading times and latency. In particular, when opening a new file or
time step, we initially load only a small subset and asynchronously continue
to load more samples to reduce the latency. Especially for larger datasets, we
found working with a small subset of the data to be preferable due to the fast
and less cluttered visualizations.

88 void-and-cluster sampling

(a) 50,000 pathlines (b) 500 pathlines

Figure 8.12: We have sampled pathlines of the ABC flow with our technique, which
implicitly defines a continuous level-of-detail, to render a greater (a) and
smaller subset (b) of the trajectories.

(a) Reference (b) Random (c) Void-and-cluster

Figure 8.13: Slices of the finite-time Lyapunov exponent (FTLE) from the ABC flow.
The reference, computed on all trajectories, is shown in (a). We have
computed the FTLE after sampling 10 % of the trajectories by random
sampling (b) and using the uniform void-and-cluster (c) technique.

8.5.4 The ABC Flow

The Arnold-Beltrami-Childress (ABC) flow is a three-dimensional, steady
velocity field:

ẋ = A sin z + C cos y

ẏ = B sin x + A cos z

ż = C sin y + B cos x.

We set A =
√

3, B =
√

2, C = 1. We represent the flow in the Lagrangian basis
with 134,217,728 trajectories that start in the spatial domain [0, 2π]3 and are
integrated using a 4th-order Runge-Kutta scheme over the time interval [0, 10].
We then sample 10 % of the trajectories, without stopping and starting new
trajectories.

In Figure 8.12, 50,000 and 500 trajectories are shown as illuminated pathtubes
using the continuous level-of-detail that is implicitly given by the rank of our
sampling strategy. Since we reorder the samples by their rank, we only have
to load the first samples for visualization and can load additional samples
progressively.

8.5 evaluation 89

(a) (c)

(b)

Figure 8.14: The Dark Sky dataset reduced to 5 % using the uniform void-and-cluster
technique (a). A slice of the dataset is shown in (b), with the correspond-
ing slice from the original dataset in (c).

After random sampling and uniform void-and-cluster sampling, we have
computed the (forward) finite-time Lyapunov exponent. A slice of the FTLE is
shown in Figure 8.13. Computing the FTLE after sampling with the uniform
void-and-cluster strategy yields better results compared to random sampling,
even though the same number of samples have been taken.

8.5.5 Dark Sky

The Dark Sky simulations are a series of cosmological N-body simulations
of the evolution of the large-scale universe [293]. We study a subset that
consists of 111 million particles with a position, velocity, and unique identifier.
Figure 8.14 shows a visualization of the dataset reduced to 5 %. Since the
simulations investigate the clustering of particles into galaxies, filaments, and
the emergence of cosmic voids, the spatial distribution of the particles is
strongly non-uniform. Consequently, a sampled subset of the data should
preserve this distribution of cosmological mass. This is not possible using
Poisson disk sampling or entropy-based adaptive sampling. In contrast, our
uniform void-and-cluster technique optimizes the blue noise property with
respect to the spatial density of particles in the dataset. The spatial distribution
is thus preserved, whilst the samples are optimally stratified.

8.5.6 Performance and Scalability

To assess the performance of our algorithm, we compare the run time of
different sampling strategies. For the measurements, we use an Intel Core

90 void-and-cluster sampling

0 5.0×10⁵ 1.0×10⁶ 1.5×10⁶ 2.0×10⁶ 2.5×10⁶
Number of samples

2

4

6

8

Ru
n

tim
e

(s
)

Von Kármán vortex street
Random (CPU)
Random Entropy (CPU/GPU)
kd-Tree Stratified (CPU)
Poisson Disk (CPU)
V&C Uniform (GPU)
V&C Entropy (GPU)

0 5.0×10⁶ 1.0×10⁷ 1.5×10⁷ 2.0×10⁷
Number of samples

50

100

150

200

250

300

Ru
n

tim
e

(s
)

Surface-mounted cylinder
Random (CPU)
Random Entropy (CPU/GPU)
kd-Tree Stratified (CPU)
Poisson Disk (CPU)
V&C Uniform (GPU)
V&C Entropy (GPU)

0 1×10⁷ 2×10⁷ 3×10⁷ 4×10⁷ 5×10⁷ 6×10⁷
Number of samples

0

200

400

600

800

1000

Ru
n

tim
e

(s
)

ABC Flow
Random (CPU)
Random Entropy (CPU/GPU)
kd-Tree Stratified (CPU)
Poisson Disk (CPU)
V&C Uniform (GPU)
V&C Entropy (GPU)

0 1×10⁷ 2×10⁷ 3×10⁷ 4×10⁷ 5×10⁷
Number of samples

0

200

400

600

800

1000

1200

Ru
n

tim
e

(s
)

Dark Sky
Random (CPU)
kd-Tree Stratified (CPU)
V&C Uniform (GPU)

Figure 8.15: The sampling performance on the von Kármán vortex street, the surface-
mounted cylinder, the ABC flow, and the Dark Sky dataset.

i7-6700 and an Nvidia Quadro RTX 8000. We enable GPU acceleration where
possible.

Measurements for all of our datasets are shown in Figure 8.15. We were not
able to measure our implementation of LCCVD for larger datasets since it is
computationally demanding and we did not parallelize it. Although Poisson
disk sampling is a linear time algorithm, it is inherently sequential and leads
to long run times for large data sizes. Random and stratified sampling are
fast even though no GPU acceleration is used. In comparison, the void-and-
cluster techniques are slower, but considering the data sizes we argue that
the performance is acceptable. For example, we take 1,342,177 samples out of
134 million from the ABC flow dataset in 68 seconds. Due to the non-uniform
input data of the Dark Sky simulation, a large kernel support is required that
leads to a significantly increased run time. The use of adaptive kernel sizes or
better suited data structures could potentially improve the efficiency of the
neighborhood search for non-uniformly distributed datasets.

The uniform and entropy-based sampling strategies perform similar. How-
ever, for small sampling percentages the entropy computation is noticeably
slower since the computation depends on the kernel size h, which increases
for smaller sampling percentages, and scales with the input data size. This
is especially visible in the ABC flow where the run-time of the entropy com-
putation increases dramatically for smaller sampling percentages due to the
neighborhood lookup limiting the GPU efficiency. In general, the run-time
increases when a larger number of samples is taken, which indicates that the
void filling step is the bottleneck.

8.6 future work : multi-node parallelism 91

2×10⁵ 4×10⁵ 6×10⁵ 8×10⁵ 1×10⁶
Dataset size

0.2

0.4

0.6

0.8

1.0
Ru

n
tim

e
(s

)

Scaling (GPU)
Random (CPU ST)
Random Entropy (CPU/GPU)
kd-Tree Stratified (CPU MT)
Poisson Disk (CPU ST)
V&C Uniform (GPU)
V&C Entropy (GPU)

2×10⁵ 4×10⁵ 6×10⁵ 8×10⁵ 1×10⁶
Dataset size

0

50

100

150

200

Ru
n

tim
e

(s
)

Scaling (single-threaded)
Random (ST)
Random Entropy (ST)
kd-Tree Stratified (ST)
LCCVD (ST)
Poisson Disk (ST)
V&C Uniform (ST)
V&C Entropy (ST)

Figure 8.16: We evaluate the scalability of our algorithm using differently sized sinc
datasets, whilst always sampling 10 %.

Lastly, to measure the time complexity and scalability of the algorithm, we
measure GPU and single-threaded CPU performance with differently sized
sinc datasets. The measurements are shown in Figure 8.16. Although our GPU
implementation is competitive with random and stratified sampling, the single-
threaded CPU implementation is considerably slower. This highlights the
benefits of parallelization and GPU acceleration for our algorithm. Compared
to LCCVD our single-threaded implementation achieves an enormous speed-
up. Although not shown in the plot, LCCVD took more than 2500 seconds to
sample a dataset of size 106.

8.6 future work : multi-node parallelism

An important use case that has not been addressed so far is the parallel imple-
mentation for distributed memory systems. To scale the sampling technique
to multiple nodes on a compute cluster, the spatial domain could be subdi-
vided into uniform tiles. Each compute node then performs void-and-cluster
sampling of one tile. Although this will produce tiles that are well distributed
according to the blue noise property, the samples in the border region between
two or more tiles are not necessarily well separated. If this is not acceptable,
then the cluster-and-void optimization step can be applied again to the whole
dataset. However, this would have to be performed on a single node which
might not be possible, for example due to memory constraints. The extension
of the proposed algorithm for multi-node parallelism is thus still an open
problem.

8.7 discussion

In this chapter, we introduce a novel sampling strategy for reducing large
scattered data and trajectories. Our void-and-cluster technique optimizes
sample distributions with respect to the blue noise property and thus produces
samples that evenly cover the spatiotemporal domain. In addition, we discuss
adaptive sampling, for example based on the entropy of the value domain.
Compared to prior work, our technique is thus able to improve the accuracy
of operations such as scattered-data interpolation.

92 void-and-cluster sampling

Our technique can be employed in situ or as a preprocess to reduce large
datasets to more manageable, but representative datasets. Compared to other
approaches to data reduction (Section 3.2), this avoids the curse of dimen-
sionality and still allows for computing derived variables, such as the FTLE.
Additionally, the introduced ordering of samples enables progressive data
loading and a continuous level of detail that is used for interactive visualiza-
tion. As our results show, this is also effective in reducing visual clutter in
glyph-based visualizations.

9
P R O B A B I L I S T I C S U M M A R I E S

To deal with large amounts of data, recent approaches employ probabilistic
data summaries to represent blocks of volumetric data as probability distribu-
tions, cf. Section 3.2. These approaches have been mostly limited to univariate,
volumetric data. In this chapter, we present a representation that supports
arbitrarily structured, time-dependent, and multivariate data defined in a two-
or three-dimensional spatial domain. Compared to our sampling approach
presented in Chapter 8, this probabilistic representation limits the computa-
tion of derived variables, such as the FTLE, but enables the interactive visual
analysis of extreme-scale data, for example those produced from state-of-the
art cosmological simulations.

To this end, the data needs to be partitioned, i.e. clustered into spatially
coherent regions. In each cluster, we make use of Gaussian mixture models
(GMMs) to compactly represent a probability distribution of the data using
a weighted combination of Gaussian components. However, multivariate
data requires modeling high-dimensional distributions, which suffer from
the curse of dimensionality. Our approach is based on the observation that
representations of low-dimensional marginal distributions suffice to visualize
the data. All common visualizations, such as scatter plots, histograms, and
parallel coordinate plots, require only 1D or 2D distributions. The exception
is the spatial domain of scattered data in 3D for which we employ a 3D
distribution. Thus, we represent the marginal distributions of all individual
dimensions and pairs of dimensions as well as the spatial 3D distribution. We
introduce our approach formally in Section 9.1.

For large data, common item-based visualizations, such as scatter and par-
allel coordinate plots, are challenged by overdraw and cluttering. Frequency-
based visualizations are a viable alternative in this case [182, 229]. Density
estimation [292] is a frequency-based approach commonly used in statistics.
However, its usage in interactive visualization has been limited due to perfor-
mance considerations. Although our approach supports all common visualiza-
tion techniques, it is especially well suited to density-based techniques since
our modeled distributions are already an estimate of density. In Section 9.3,
we discuss the efficient visualization and interaction with density-based plots
using our compact representation. Additionally, we consider time-dependent
histograms that would otherwise be infeasible to produce for large datasets.
In this view, we can interactively brush over different time steps.

To visualize the uncertainty introduced by our data representation, we
propose an error metric based on the cumulative distribution function, similar
to statistical goodness of fit tests. A level-of-detail mechanism allows scientists
to drill down on interesting or uncertain regions in the data. Finally, we
discuss the explicit visualization of outliers, which are not handled well by
density-based visualizations.

93

94 probabilistic summaries

(a) Clustered data (b) Scatter plot matrix

Figure 9.1: From a given clustering of the data (a), we model each cluster using
combinations of low-dimensional distributions, similar to a scatter plot
matrix (b).

Our last contribution is the visualization of spatial density distributions
(Section 9.2). Since drawing and rendering samples from the GMMs would
be infeasible for large, scattered datasets, we directly render 3D Gaussians.
We derive a closed-form solution to integrate anisotropic Gaussians using
a splatting approach. Back-to-front splatting has the disadvantage that it
assumes non-overlapping Gaussians. Therefore, we employ moment-based
order-independent transparency [223] for datasets where this is not an accept-
able assumption.

Lastly, we apply and evaluate our approach on a synthetic and three real-
world datasets (Section 9.4).

9.1 probabilistic summaries

We now describe the creation of probabilistic data summaries for multivariate,
scattered data. We assume that the data is clustered into spatially coherent
regions, see Figure 9.1. In Section 9.4, we discuss both domain specific and
standard clustering techniques for scattered data. Similar to previous work,
we employ Gaussian mixture models to represent data distributions in each
cluster. However, these have not been applied to multivariate data. High-
dimensional Gaussian mixture models require immense computational effort
and due to the curse of dimensionality, there are not enough samples to cover
a multi-dimensional space extensively.

Our approach is based on the observation that we do not require more than
three data-dimensions at once to employ common interactive visual analysis
techniques. In fact, the visualization of the spatial distribution is the only aspect
considering correlations of three dimensions. Therefore, our approach is to
only generate GMMs for the relevant combinations of dimensions. By default,
these are all individual dimensions, all pairs of dimensions (cf. Figure 9.1)

9.1 probabilistic summaries 95

and all vectorial attributes. As for high-dimensional GMMs, the storage cost
grows quadratically with the number of dimensions. To better reason about
our approach, we first introduce it more formally.

9.1.1 Data Model

Our data consists of n ∈N samples, where each sample has a position p ∈ Rd.
In this chapter, we assume d = 3, although the approach is also applicable
to the simplified case of scattered data in 1D or 2D space. Additionally,
each sample references mv − 1 ∈ N0 vectorial attributes and ms ∈ N0 scalar
attributes from the multivariate value range V. We denote the data for sample
i ∈ {0, . . . , n− 1} by:

• vi,0 ∈ R1×3 for the position,

• vi,j ∈ R1×3 for vectorial attribute j ∈ {1, . . . , mv − 1},

• si,j ∈ R for scalar attribute j ∈ {0, . . . , ms − 1}.

To define our probabilistic summaries, we concatenate all attributes for sample
i ∈ {0, . . . , n− 1} into a single vector with mu := 3mv + ms entries to enable
linear indexing:

ui := (vi,0, vi,1, . . . , vi,mv−1, si,0, . . . , si,ms−1) ∈ R1×mu .

GMMs are generated for each given cluster I ⊆ {0, . . . , n− 1} and for each
relevant combination of dimensions. First, we generate 1D models for each
attribute j ∈ {0, . . . , mu − 1}:

(ui,j)i∈I ∈ R|I|×1.

Then, we generate 2D models for each pair of dimensions
j, k ∈ {0, . . . , mu − 1} with j < k:

(ui,j, ui,k)i∈I ∈ R|I|×2.

Finally, we generate 3D models for each vectorial attribute
j ∈ {0, . . . , mv − 1}:

(vi,j)i∈I ∈ R|I|×3.

Of course, the generation of GMMs for particular combinations of attributes
may be skipped if the analysis of their mutual dependence is of no interest in
a specific application.

Our probabilistic summary is the combination of all these low-dimensional
GMMs for all clusters. They capture all information needed for common inter-
active visual analysis techniques but limit the analysis of higher dimensional
correlations. By modeling only low-dimensional distributions, the curse of
dimensionality does not apply. Ultimately, this limitation enables us to create
reliable models of multivariate data.

96 probabilistic summaries

9.1.2 Gaussian Mixture Models

We use GMMs because they offer a compact and efficient representation of the
target distributions, see Section 3.2. In the following, we provide more details
on our fitting procedure.

We generate a GMM for each combination of a cluster I and a relevant
subset of attributes J ⊆ {0, . . . , mu − 1}. As explained above, the number of
attributes |J| is one, two, or three. A GMM is indexed by a pair g := (I, J) and
consists of ng ∈N weighted Gaussians. Gaussian l ∈ {0, . . . , ng − 1} is given
by its weight wg,l > 0, its mean µg,l ∈ R|J|, and its covariance Σg,l ∈ R|J|×|J|.
The density of a GMM at p ∈ R|J| is the weighted sum of the individual
Gaussian densities:

ρg(p) :=
ng−1

∑
l=0

wg,l√
|2πΣg,l |

exp

(
−
(p− µg,l)

TΣ−1
g,l (p− µg,l)

2

)
.

We compute the parameters of a GMM from a sequence of input samples
with the expectation maximization (EM) procedure.

9.1.3 Fast Selection of GMM Components

The EM algorithm takes the number of Gaussian components ng as input. With
more components, the target distribution can be modeled better. However,
too many components may not significantly improve the model, but increase
the storage overhead. We adaptively select the appropriate number of compo-
nents, but propose approximations to significantly reduce the computational
complexity.

We iteratively fit GMMs with an increasing number of components up
to a user specified maximum and select the GMM with the best Bayesian
information criterion (BIC) [280]. For our data model, the BIC is defined using
the number of free parameters kGMM in the GMM as

kGMM log |I| − 2 log(Lp),

where Lp denotes the maximized likelihood and kGMM is given by

kGMM := ng

(
|J|(|J|+ 1)

2
+ |J|

)
+ |J| − 1.

The iterative computation of GMMs with different numbers of components
is computationally challenging, especially for large clusters. To speed up the
selection of the best ng, we propose two approximations: First, we take a
random subset IS ⊂ I of our cluster whilst iteratively estimating the GMMs.
After we have selected the best ng based on the BIC, we recompute the GMM
with ng components for the whole cluster I.

Second, after we have selected the number of components {n0, . . . , nmu−1}
for all one-dimensional GMMs, we use them as lower and upper bounds for

9.2 spatial visualization 97

the two- and three-dimensional GMMs. In detail, for a subset of attributes
J ⊆ {0, . . . , mu − 1}, we define the lower bound as

nmin
I,J := min

j∈J
nI,{j}

and an approximate upper bound as

nmax
I,J := Πj∈JnI,{j}.

This implies that the higher-dimensional GMMs include at least the complexity
of lower dimensions, whilst being bound by all combinations of all lower
dimensional Gaussian components. In Section 9.4.5, we show that the bounds
introduce no error, whilst the subsampling introduces a small error on our
datasets.

Lastly, it is possible that some clusters contain only a small number of data
samples. Although such a clustering may not seem optimal, it is quite likely to
occur for scattered data. For very small clusters, e.g. |I| ≤ 20, fitting a GMM
is problematic since the target distribution may be underdetermined. In this
case, we fit a single Gaussian to these clusters.

9.2 spatial visualization

In this section, we discuss the visualization of the spatial density distribution.
Although we could reconstruct the original data by drawing samples from
the GMM of each cluster, this would require rendering a large amount of
scattered data. Instead, we derive an efficient formulation to directly splat
three-dimensional Gaussians. Additionally, we consider the application of a
transfer function to a one-dimensional value distribution in each cluster.

9.2.1 Integrating Visibility for Gaussians

To render a trivariate Gaussian distribution, we integrate along a view ray
o + xd starting at o ∈ R3 in normalized direction d ∈ R3 with x ∈ R. The
Gaussian is given by its weight w := wg,l , mean µ := µg,l ∈ R3, and covariance
Σ := Σg,l ∈ R3×3. To derive a general solution, we integrate over [a, b] by
substituting the ray equation into the trivariate Gaussian distribution:

I(a, b) :=
∫ b

a

1√
|2πΣ|

exp
(
− (o + xd− µ)TΣ−1(o + xd− µ)

2

)
dx.

Through integration by substitution, see Section A.3, we obtain the following
closed-form solution:

I(a, b) = c
√

π
√cd,d

[
1
2

erf(y)
]√cd,d

(
b+

co,d
cd,d

)
√cd,d

(
a+

co,d
cd,d

) , (9.1)

98 probabilistic summaries

with

cd,d :=
1
2

dTΣ−1d,

co,d :=
1
2
(o− µ)TΣ−1d,

c :=
1√
|2πΣ|

exp

(
−1

2
(o− µ)TΣ−1(o− µ) +

c2
o,d

cd,d

)
.

When integrating over all of R, this result simplifies to

I(−∞, ∞) = c
√

π
√cd,d

. (9.2)

We could use this result inside a ray tracer, possibly with ray tracing GPUs [173].
It only has to identify relevant Gaussians per pixel, ray marching for integra-
tion becomes unnecessary. In the following, we discuss our approach using
GPU rasterization, which works efficiently on widely available hardware.

9.2.2 Back-to-Front Splatting

To splat scattered 3D Gaussians, we sort them from back-to-front based on
their mean distance to the camera. Then, we integrate the Gaussians along the
viewing direction using Equation 9.2. Integrating from −∞ to ∞ is generally
a reasonable approximation, but it is possible that we incorrectly evaluate
a Gaussian if the camera is positioned within its support. Alternatively, we
could employ Equation 9.1, but this is far more expensive and only gives a
benefit in rare cases.

To render a single 3D Gaussian, we first compute the principal components
of the distribution to fit a bounding box along the principal axes. By default, we
limit the size of the bounding box in each dimension by 3 standard deviations.
This box is then rasterized and for each resulting fragment, we integrate the
Gaussian along the viewing direction in a fragment shader using Equation 9.2.
Finally, we tone-map the resulting density (see Equation 9.4) to better convey
the high-dynamic range.

We did experience some numerical issues with some of our datasets due to
very large or small spatial and value domains. We were able to address these
issues by switching to a more numerically stable eigen decomposition [89,
Algorithm 8.2.3]. Lastly, we make use of the Cholesky decomposition to
invert covariance matrices, which behaves robustly even for nearly singular
matrices [309, p. 176].

9.2.3 Order-Independent Transparency

The splatting approach assumes that distributions do not overlap since this
could lead to visible flickering between frames when the order changes. De-
pending on the clustering of the data, this assumption is not always acceptable.
For this reason, we propose the use of an order-independent transparency
(OIT) approach to avoid sorting semi-transparent Gaussians. Although, a large

9.3 visual analysis 99

number of Gaussians are problematic for most OIT approaches, moment-
based order-independent transparency (MBOIT) [223] is well-suited for this
application.

9.2.4 Uncertainty Transfer Function

Lastly, we discuss how to apply a transfer function to the distribution of an
attribute j ∈ {n0, . . . , nmu−1} to obtain a color and opacity for each cluster I.
The one-dimensional value dimension is modeled separately from the cluster
as a GMM g = (I, {j}) with ng components. For each cluster, we compute an
expected color and opacity [270] by convolving the transfer function f with
the value distribution:

E[f |g] :=
∫ ∞

−∞
f (p)ρg(p)dp.

We insert the Gaussian mixture model into this equation and rearrange:

E[f |g] =
ng−1

∑
l=0

wg,l

∫ ∞

−∞
f (p)

1√
2πσ2

g,l

exp

(
−
(p− µg,l)

2

2σ2
g,l

)
dp. (9.3)

We efficiently evaluate this equation by precomputing the integrand, which is
simply a convolution of the transfer function with differently parametrized
Gaussians. The resulting 2D lookup table thus depends on the transfer function
and is parameterized by mean and variance.

9.3 visual analysis

Now that we are able to render the spatial distribution of our data, we move
on to the visual exploration and analysis of additional data dimensions using
our representation. This includes multiple views with brushing and linking
coupled with a focus and context visualization to emphasize brushed values.

9.3.1 Sample-Based Visualization

Although we mostly focus on density-based visualization techniques due
to their advantages for visualizing large datasets, we also want to support
common item-based visualizations. Specifically, we obtain scatter and parallel
coordinate plots by drawing samples from our probability distributions, see
Figure 9.10 (c).

Since the clusters may have originally contained a different amount of data
samples, we weight the number of samples that we generate for each cluster
accordingly. The total number of samples to generate is surprisingly hard
to determine. Although we want to avoid drawing too many samples for
a faster and less cluttered visualization, we have to draw enough samples
to appropriately represent the data distributions. Since an optimal choice is
dependent on the data, we set the total number of samples to the original
number of data samples n times a user-defined factor between 0 and 1. We

100 probabilistic summaries

further create frequency-based visualizations, such as the 2D histogram in
Figure 9.10 (c), from the generated samples or alternatively using density
estimation.

9.3.2 Density-Based Visualization

Since we already have an estimate of density in the form of our GMMs, we
efficiently construct density-based visualizations that are costly to compute
otherwise. To obtain the density, we evaluate and accumulate the Gaussian
distributions from the GMMs in all clusters. Since the distribution in each
cluster is normalized, we additionally weight each cluster I by the normalized
number of samples it represents 1

n |I|.

9.3.2.1 Density Plots

To compute a density in 1D or 2D, we evaluate and accumulate the Gaussian
distributions, see Figure 9.7 (b) and (c). Since this operation can be parallelized
trivially, we make use of GPU acceleration. In the one-dimensional case, we
evaluate 1D Gaussians on the GPU and plot a probability density function. For
a 2D plot, we render a quadrilateral for each Gaussian, evaluate the Gaussian
for each fragment, and additively accumulate the results.

9.3.2.2 Parallel Coordinate Plots

Miller and Wegman [213] formulate parallel coordinate plots for bivariate
Gaussian distributions. With this formulation, we splat the 2D distributions for
each pair of consecutive dimensions in parallel coordinate space. Specifically,
for each pair of axes we draw a quad for each Gaussian by truncating its
support to three standard deviations. In the fragment shader, we evaluate
the density in parallel coordinate space and additively blend the result with
all other Gaussians. A density-based parallel coordinate plot is shown in
Figure 9.7 (d).

9.3.2.3 Mapping Density

The density-based visualizations described above and the spatial visualization
in Section 9.2 all produce a single density ρ per Gaussian and per pixel.
For large datasets, this density will have a high dynamic range and needs
to be mapped to an opacity between zero and one through a non-linear
mapping [153]. We choose a mapping that interprets the density, scaled by a
user-controllable parameter λ > 0, as optical depth. The resulting opacity is

1− exp(−λρ). (9.4)

With this mapping, multiplying the density of a Gaussian by an integer factor k
produces the same result as rendering it k times with alpha blending, which is
an intuitive behavior. At the same time, it retains detail even for large densities.

9.3 visual analysis 101

a b μ

(a) Brushing (mean)

μa b
(b) Brushing (mean)

a b
(c) Brushing (distribution)

Figure 9.2: Brushing of a value range [a, b] applied to several distributions. Brushing
only based on the mean value µ would lead to confusing results (a), espe-
cially if the distribution is represented by multiple Gaussian components
(b). We compute the degree of interest of the brushing operation as the
ratio between the integrand (gray) and the total area under the curve (c).

9.3.3 Brushing Distributions

To brush a value range of a dimension with our data representation and reflect
this in all linked views, we use the clustering information. Although we could
brush based on the cluster mean value, this is confusing and not very intuitive,
especially when considering a dimension represented by multiple Gaussian
components, see Figure 9.2 (a) and (b).

Feng et al. [74] discuss user interaction based on Gaussian distributions
in the context of uncertainty visualization. We generalize their work and the
concept of smooth brushing [59] to Gaussian mixture models. In detail, we
compute the amount a cluster is in focus, the degree of interest, as the ratio
between the integrand of the brushed regions of the GMM and the total area,
see Figure 9.2 (c). For clusters that contain multiple Gaussian components, we
compute the degree of interest as the weighted sum of all components.

9.3.4 Time-Dependent Visualization

Brushing in different time steps is a powerful tool for the interactive explo-
ration of time-dependent data [132], but is not practical for large datasets since
all time steps have to be processed. Our compact data summaries enable us to
interact with multiple time steps at once. We support this interaction in a time
histogram [176] where we depict a time-series of a selected dimension as a
series of 1D histograms, see Figure 9.9.

If the clustering is fixed over time, we can trivially extend the brushing
operation to time-dependent data. This is not possible when clusters change
over time, e.g. merge together into larger, or split into smaller clusters. In this
case, the relationship of clusters in different time steps has to be explicitly
modeled and stored.

For brushing, we need to reassign degrees of interest from frame to frame.
To this end, we transfer the degrees of interest to the individual samples
uniformly and then reassign them to clusters. Say we have nt ∈ N clusters
It,0, . . . , It,nt−1 ⊆ {0, . . . , n− 1} in frame t and analogously for frame t + 1. The
clusters in frame t have associated degrees of interest dt,0, . . . , dt,nt−1 ∈ [0, 1].

102 probabilistic summaries

Then we define the degree of interest of cluster k ∈ {0, . . . , nt+1 − 1} in frame
t + 1 as

dt+1,k :=
nt−1

∑
l=0

|It,l ∩ It+1,k|
|It+1,k|

dt,l ∈ [0, 1].

The quotient in this sum is the fraction of samples in cluster It+1,k that was
part of cluster It,l in the previous frame. Interest is inherited from the cluster
in the previous frame in proportion to that quotient. Note that this method
defines a simple linear transform. There is no need to consider all samples at
run time. Instead, the transfer coefficients for the degrees of interest can be
precomputed and stored in a sparse matrix.

9.3.5 Uncertainty Visualization

We introduce an error estimate to convey the uncertainty of the data summaries.
By computing and storing an error for each cluster, we are able to visualize the
uncertainty interactively during the visual analysis and to support brushing
and linking. Prior work measures the error directly between the density of the
Gaussian mixture model and the original data. However, this is not robust and
suffers from aliasing due to the necessary use of histograms. Instead, we define
the error between a Gaussian mixture model and the samples of a cluster I for
a dimension j ∈ {0, . . . , mu − 1} similar to common statistical goodness of fit
tests and our error measure in Section 8.4. In detail, we compute the empirical
cumulative distribution functions (CDF) of the data samples

FI(p) :=
1
|I|∑i∈I

1 if ui,j ≤ p,

0 otherwise
(9.5)

and compare it to the CDF Fg of the Gaussian mixture model using the
Wasserstein distance [237]:

W(FI, Fg) :=
∫ ∞

−∞

∣∣FI(p)− Fg(p)
∣∣dp. (9.6)

To visualize the Wasserstein distance, we visualize it together with the CDF,
cf. Figure 9.6 (b). A high Wasserstein distance consequently indicates a high
uncertainty of the data model.

9.3.6 Level of Detail and Outliers

By design, our representation is a simplified model of the data. During the
exploration and analysis process, a scientist might want to investigate a subset
of the data more closely. For this purpose, we substitute brushed clusters
by their original data values. To integrate the data distributions into our
frequency-based views, we perform kernel density estimation using Gaussian
kernels. We can thus avoid differentiating between the modeled and original
data distributions.

9.4 evaluation 103

-0.2 0.0 0.5 1.0μ0 μ1

0

1

2

GMM
Samples
Outlier

Figure 9.3: To rank samples by their outlyingness, we evaluate the Mahalanobis dis-
tance to the closest Gaussian. This measures how many standard deviations
a sample is away from the mean of the closest Gaussian.

Moreover, outliers, i.e. isolated samples in regions of low density, tend to
get lost in density-based visualizations [210, 229]. To explicitly add outliers to
our visualizations, we sort all samples in a cluster in a preprocess according
to a measure of outlyingness. Although any measure between a sample and a
GMM could be used, we employ the Mahalanobis distance [204] to the closest
Gaussian component. This effectively measures how many standard deviations
a sample is away from the mean of the closest Gaussian, see Figure 9.3. To
visualize outliers, we then take a fixed percentage po of outliers from a cluster
I by loading the first po|I| samples. Figure 9.4 (c) shows a spatial visualization
with 2% of outliers.

9.4 evaluation

In this section, we apply our approach to a synthetic and three real-world
datasets.

9.4.1 Synthetic Data

We first apply our approach to a small synthetic dataset consisting of 10
clusters from a total of 100,000 points. The dataset contains 9 dimensions.
The three spatial dimensions in each cluster are normally distributed, but
10 % of the points are distributed uniformly to add noise to the distributions.
Figure 9.4 (a) shows this dataset. The 3D Gaussians are shown in Figure 9.4
(b) and in (c) where we explicitly add 2% of outliers from all clusters.

We compare the uncertainty transfer function to a 1D transfer function
based on mean values in Figure 9.5. In (a), we set the opacity of the transfer
function, where the peak coincides with the mean value. The synthetic dataset
in (b) shows the resulting rendering. For our data summaries in (c), the opacity
is similarly reduced. This is due to the uncertainty transfer function since
it computes the expected opacity with respect to the value distribution. In
comparison, the opacity of the Gaussians in (d) using a mean transfer function
does not change since the opacity of the mean value is still set to opaque in
(a). Thus, changing any of the opacity (or color) values of the transfer function
has no influence except if the mean value is changed. An alternative would be

104 probabilistic summaries

(a) Synthetic data (b) GMMs (c) GMMs & outliers

Figure 9.4: Rendering of Gaussians from the synthetic dataset using kernel density
estimation (a), with our data model (b), and with 2% of outliers (c).

-0.4 0.40.0

w

(a) Transfer function

(b) Synthetic data (c) Expected opacity (d) Mean opacity

Figure 9.5: We set the opacity of the transfer function (a) to visualize the synthetic
dataset (b). Our uncertainty transfer function (c) computes the expected
opacity (i.e. the integral of the opacity curve), while a 1D transfer function
based on the mean value (d) sets all Gaussians to opaque.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
Probabilistic summary
Particles

(a) Probability density function

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Probabilistic summary
Particles
Wasserstein distance

(b) Cumulative distribution function

Figure 9.6: The exponentially distributed dimension (a) is hard to model using Gaus-
sian components. The cumulative distribution function in (b) conveys the
error to the user.

9.4 evaluation 105

Table 9.1: Overview of the cosmological data from the Illustris simulation.

Dataset # Dim. # Particles # Clusters Data size Summaries Wasserstein dist.

I-3 Gas 15 16, 039, 182 110, 000 2 GB 200 MB 1.77× 10−6

I-2 DM 7 319, 324, 195 841, 639 11.3 GB 617 MB 3.10× 10−7

I-1 DM 6 2, 635, 739, 426 5, 352, 571 72.2 GB 1.5 GB 4.56× 10−8

the use of a 2D transfer function [171] that offers increased control over the
classification, but complicates user interaction.

In Figure 9.6 (a) we illustrate an exponentially distributed dimension of
the dataset, which is difficult to model using only Gaussian components.
The cumulative distribution function shown in (b), illustrates this error as
measured by the Wasserstein distance. By quantifying the error, we can decide
if this error is acceptable, or brush and use the level-of-detail mechanism to
directly load a subset of the data with a high error.

9.4.2 Cosmological Data

The Illustris simulation [225] is a large-scale cosmological hydrodynamical
simulation of galaxy formation that aims to predict both dark and baryonic
components of matter. In detail, the dynamics of dark matter and gas are
simulated with the quasi-Lagrangian code AREPO [295], which employs an
unstructured Voronoi tessellation of the domain. After simulation, only the
center points of the Voronoi cells are kept and are referred to as particles.
Since the simulation has been run in different resolutions and we want to
show both dark and baryonic matter, we study multiple separate datasets as
shown in Table 9.1. We compare the data based on the 100th time step without
descendant or ancestor information.

The Illustris datasets have been clustered into halos using a domain specific
approach. The sizes of clusters are extremely irregular and range in between a
single particle and up to millions of particles per cluster. Since we cannot fit a
GMM to very small clusters, we fit a single Gaussian for clusters of size below
20.

With our approach, we are able to interactively visualize and explore these
massive datasets that might not even fit into memory otherwise. Figure 9.7
shows several interactive, linked views of the Illustris-1 dataset. We have
brushed the x-, y-, and z-axis in the parallel coordinate plot (d). The brushed
regions (green) are then highlighted in red in all other views. The density-based
views are free of clutter and clearly show trends and correlations between the
dimensions. For example, the parallel coordinate plot in (d) indicates that the
brushed values have velocity components that are distributed around zero and
are linearly correlated. The spatial visualization depicts 5.3 million clusters
that we render and navigate interactively.

Figure 9.8 compares our probabilistic summaries with the original particle
data of Illustris-3 Gas. Note that the interactive visualization of Illustris-1 and
2 is not possible on our system due to their data sizes. Although we clearly

106 probabilistic summaries

Velocity (u)
200-200

km/s

(a)

2679
km/s

-2826
km/s

0 ckpc/h 75000 ckpc/hX

U

X (ckpc/h)

D
e
n
sity

0

0.0095

(c)

(b)

0 ckpc/h

75000 ckpc/h

0 ckpc/h 0 ckpc/h

75000 ckpc/h 75000 ckpc/h

-2826 km/s

2679 km/s 3026 km/s 2592 km/s

-2986 km/s-2846 km/s
x y z u v w

(d)

0 ckpc/h 75000 ckpc/h

Figure 9.7: Our data representation allows us to interactively visualize the position
of particles in the Illustris-1 dataset by splatting 3D Gaussians (a) and to
create density-based 1D and 2D plots, depicted in (b) and (c). A density-
based parallel coordinate plot is shown in (d). All of those views support
interactive navigation and exploration by brushing (red) and linking.

(a) (b) (c) (d)
-2.6e6

(km/s)2/a

Potential

2.7e5

Figure 9.8: The Illustris-3 Gas dataset rendered by splatting particles (a) and 3D
Gaussians (b). In (c) we have brushed a region and clusters that are not in
focus are shown in a desaturated gray. We load the original particle data
of the brushed region and render them together with the context (d).

Electron

1.0

0.0

94 t 10097 103

Density

1.2

0.0

abund-
ance

(a) Time histogram

Velocity (u)
km/s

-100

100

(b) Brushed clusters in the 100th time step

Figure 9.9: A time-histogram of electron abundance in the Illustris-3 Gas dataset is
shown in (a). We have brushed (red) in the 94th time step, which affects
all linked views in the current, 100th time step. The spatial visualization
that highlights the brushed values in the 100th time step is shown in (b).
Note that Gaussians are shown as saturated or desaturated, depending on
how much they are in focus.

9.4 evaluation 107

Table 9.2: Overview of the spray nozzle dataset. We show the absolute summary size,
relative to the original data size, the average number of GMM components,
and the average Wasserstein distance.

Clusters Summaries Rel. size GMM comp. Wasserstein dist.

2, 000 6.7 MB 0.006% 1.7± 1.19 5.54× 10−5

8, 000 19.9 MB 0.017% 1.4± 0.85 1.57× 10−5

32, 000 47.5 MB 0.036% 1.2± 0.61 4.64× 10−6

miss some details in the spatial visualization, we still manage to convey the
general structure of the data and the distribution of color-mapped values.
Whilst sorting and rendering all 16 million particles as isotropic Gaussians
takes 61 ms on our system, the clusters require only 2 ms. Note that for this
dataset, the 110, 000 clusters are represented by a total of 357, 512 Gaussians in
3D. In Figure 9.8 (c), we have brushed a spatial region on the right side which
is consequently put into focus. In (d) we have loaded the original particle data
of the brushed clusters. Note that all of the linked views are also updated
by this operation. Since we only load an additional 240, 000 particles, the
interactive visualization still takes only 3.8 ms to render. Although other forms
of level of detail are possible, this is a powerful way to drill-down from an
overview to a detailed view of the data.

Since the clusters split and merge over time in this dataset, we have precom-
puted the transfer coefficients for time-dependent visualizations. Figure 9.9
depicts a time-histogram of a selected attribute over several time steps. We
have brushed the 94th time step, which is reflected in all views in the current,
100th time step. The spatial visualization in (b) highlights those brushed val-
ues. Due to our brush, mostly smaller clusters are in focus. This brushing
and linking over time thus allows exploring the selected dimension and its
time-dependent behavior. With our data summaries, we can compute the
whole time-histogram in just under a second. In comparison, computing a
time-histogram from the particle data takes 34 s and is severely I/O limited
since the complexity scales with respect to the number of particles instead of
the amount of clusters.

9.4.3 Spray Nozzle

We have applied our technique to a smoothed particle hydrodynamics (SPH)
dataset of a fuel spray nozzle simulation [46]. In the context of renewable
energy production, biomass is converted into fuel by a gasification process.
The quality of the spray is analyzed since it is critical for the efficiency of
the gasification. However, the size of the time-dependent data prevents the
usage of common interactive visual analysis techniques. In detail, the dataset
contains about 43 million particles per time step. Each particle contains a
position, velocity, pressure, density, and fluid type for a total of 9 separate

108 probabilistic summaries

u
-40 m/s 40 m/s

(a) Splatting 3D Gaussians (k-means 32.000)

u
-40 m/s 40 m/s

(b) Splatting all particles

(c) Histogram from samples (d) PCP from samples

(e) Histogram from all particles (f) PCP from all particles

Figure 9.10: Visualization of a spray nozzle using our approach with the k-means
32.000 clustering by splatting 3D Gaussians (a) and by drawing samples
from the GMMs to create a 2D histogram (c) and a parallel coordinate
plot (d). In (b), (e), and (f) the corresponding visualizations using the
original SPH particle data are shown.

9.4 evaluation 109

dimensions. The fluid type describes four different categories, including fluid,
gas, and two types of boundaries.

We have partitioned the data using a k-means clustering based on the spatial
position, fluid type, and velocity magnitude. Table 9.2 shows the data size
reduction and average number of GMM components for different numbers of
clusters. For this dataset, we fix the maximum number of GMM components to
6. The size of the data summaries increases with the number of clusters. At the
same time, the average number of GMM components decreases. This shows
that the number of GMM components adapts to the less complex clusters.
Moreover, the average Wasserstein distance is reduced for a larger number of
clusters.

Figure 9.10 depicts several visualizations created from our representation
and from the original SPH data. The spatial visualizations in (a) and (b) depict
velocity in u-direction. Our approach does lose some details, especially on the
finer structures on the right side of the cylindrical domain. Since item-based
visualizations of 43 million particles suffer from strong overdraw and visual
clutter, density-based visualizations are preferable for this dataset. These are
fast and efficient to create using our representation that is already an estimate
of density. The 2D histogram in (b) and the parallel coordinate plot in (c) have
been created from samples drawn from the GMMs. Compared to the reference
plots in (e) and (f), we achieve nearly identical results. Moreover, it is possible
to vary the number of samples, which could be used to create less cluttered
visualizations, e. g. for scatter and parallel coordinate plots.

We represent the fluid type, i. e. the categorical dimension, by interpreting it
as a scalar dimension. This is possible since the data only consists of four fluid
types that we model using an appropriate number of Gaussian components.
We could have increased the maximum number of components for all marginal
distributions containing a categorical dimension, but this was not necessary for
this dataset. Although a small number of categories is common in multiphase
fluid simulations, in general, representing categorical dimensions with GMMs
does not scale.

9.4.4 Hurricane Isabel

The Hurricane Isabel dataset is an atmospheric simulation from the IEEE
Visualization Contest 2004, produced by the Weather Research and Forecast
(WRF) model. Besides an implicit spatial position and a velocity vector, the
time-dependent dataset contains 9 additional scalar quantities on a uniform
grid of size 500× 500× 100. Since we formulated our approach for scattered
data and did not consider the important but special case of gridded data, we
disregard the topology of the dataset.

To apply our approach, we either define clusters through uniform blocks or
apply k-means clustering based on the spatial position and velocity magnitude.
Both clustering procedures require a fixed number of clusters as input. Inde-
pendent from the clustering, we always store 3D distributions for the spatial
position and the velocity vector and compute the respective 2D marginal
distribution from these. Apart from that, we model and store all pairwise

110 probabilistic summaries

Table 9.3: Overview of the different clustering procedures of the Hurricane Isabel
dataset. We show the resulting absolute and relative data size and the
average Wasserstein distance.

Model Clustering # Clusters Summaries Rel. size Wasserstein dist.

Our Blocks 1, 000 12.1 MB 1.4% 1.20× 10−4

HD Blocks 1, 000 5.2 MB 0.6% 1.21× 10−4

Our Blocks 8, 000 82.6 MB 9.0% 1.58× 10−5

HD Blocks 8, 000 34.7 MB 4.8% 1.56× 10−5

Our Blocks 16, 000 146.8 MB 14.8% 8.49× 10−6

HD Blocks 16, 000 50.0 MB 5.1% 8.24× 10−6

Our k-means 1, 000 12.1 MB 1.4% 1.23× 10−4

HD k-means 1, 000 5.4 MB 0.6% 1.26× 10−4

Our k-means 8, 000 80.5 MB 8.8% 1.66× 10−5

HD k-means 8, 000 33.8 MB 3.7% 1.57× 10−5

Our k-means 16, 000 143.9 MB 14.7% 8.75× 10−6

HD k-means 16, 000 48.5 MB 5.0% 8.01× 10−6

2D distributions and all 15 one-dimensional distributions. Additionally, we
compare our representation to modeling each cluster with a high-dimensional
Gaussian mixture model.

Table 9.3 shows the data summaries we have created with both cluster-
ing procedures, with different cluster sizes, with our approach and using
high-dimensional Gaussian mixture models. We have chosen a maximum
number of 6 GMM components for the low-dimensional and 32 for the high-
dimensional models to achieve a comparable quality. Note that creating the
high-dimensional model took nearly 43 hours, cf. Table 9.5. Both approaches
can model the data well even though some dimensions are quite challeng-
ing. The high-dimensional model performs surprisingly well for this dataset,
considering the dimensionality, which is due to high correlations in the di-
mensions. The low-dimensional representation requires more storage since it
cannot make use of these higher-dimensional correlations. In both cases, the
two clustering procedures lead to similar results.

Figure 9.11 shows a visualization of wind speed from west to east, i.e. u-
velocity, by splatting the original data and with our approach. Although our
representation loses some details, it conveys the major features of the dataset.
Whilst the low-dimensional representation models the spatial position sepa-
rately, the high-dimensional GMM takes correlations between all dimensions
into account. The marginal distribution of the spatial positions is thus also
influenced by the other dimensions, which leads to the artifacts in Figure 9.11

(c). This reduces trust in the high-dimensional model since it is unclear if
these correlations actually exist in the data or not. Lastly, the high-dimensional

9.4 evaluation 111

(a) Original data (b) Our low-dim. GMMs (c) High-dim. GMMs
-25

25

U

Figure 9.11: Visualization of wind speed from west to east (U) in the Hurricane Isabel
data by splatting the original data (a), with the k-means 16.000 clustering
of the low-dimensional model (b), and the high-dimensional model (c).

model contains over five times the amount of Gaussian components, which in-
creases the complexity of all visualizations. In comparison, our representation
consists of low-dimensional models that are easier to understand and more
robust.

9.4.5 Fast Selection of GMM Components

We propose a fast selection of GMM components by formulating lower und
upper bounds and using subsampling. In Figure 9.12, we illustrate the impact
of this approximation on the Spray Nozzle (a) and the Hurricane Isabel (b)
dataset compared to a brute-force selection of GMM components. Using only
the bounds does not introduce an error. However, using both bounds and the
subsampling does lead to a slightly increased error. Not that for subsampling
we always take a fixed amount of 200 samples from each cluster. By increasing
this fixed number of samples, we lower this error, at the cost of additional
computational effort.

Brute Force Bounds Bounds & Subsampling
Method

0.00004

0.00006

0.00008

0.00010

0.00012

W
as

se
rs

te
in

 d
ist

an
ce

(a) Spray Nozzle k=2000

Brute Force Bounds Bounds & Subsampling
Method

0.00005

0.00010

0.00015

0.00020

0.00025

W
as

se
rs

te
in

 d
ist

an
ce

(b) Hurricane Isabel k=1000

Figure 9.12: Comparison of our fast selection of GMM components with the brute-
force approach on the Spray Nozzle (a) and the Hurricane Isabel (b)
dataset.

112 probabilistic summaries

Table 9.4: Performance of visualizations with our data summaries.

Dataset Splatting PCP Density Brushing

Sorting OIT (x, u)

Illustris-3 Gas 3.9ms 4.3ms 439ms 1.0ms 4ms

Illustris-2 DM 31ms 14ms 421ms 3.6ms 28ms

Illustris-1 DM 196ms 28ms 1241ms 11.2ms 160ms

Hurricane Isabel k=8000 4.6ms 20ms 99ms 1.1ms 2ms

Spray Nozzle k=8000 4.4ms 23ms 47ms 1.4ms 2ms

Table 9.5: Measurements of the data summary preprocessing.

Dataset Our GMMs Low-dim. GMMs High-dim. GMMs

Hurricane Isabel k=1000 2h 54min 9h 31min 42h 55min

Spray Nozzle k=2000 1h 43min 8h 13min 14h 51min

9.4.6 Performance

Our evaluations were performed on an Intel i7-6700 with 32 GB of system
memory and an NVIDIA GTX 1080 Ti graphics card providing 11 GB of video
memory. For GPU acceleration, we make use of both CUDA for general pur-
pose computations and OpenGL for rendering. For our spatial visualization,
we have used a screen resolution of 1920× 1080. The resolution of our 2D
density plots was 200× 200 and 800× 300 for the parallel coordinate plot
(PCP).

Timings for several visualizations are shown in Table 9.4. In general, our
prototype allows interactive navigation and creation of all visualizations intro-
duced above. The Illustris-1 and 2 datasets are the most demanding, due to
the large number of clusters. Note that the performance of our approach scales
with the number of clusters and Gaussian components, not the original data
size. The order-independent transparency (OIT) approach performs very well
on the cosmological datasets compared to the back-to-front splatting using
sorting. Note that the speed varies depending on the number of covered pixels.
The sorting approach is faster on the smaller and spatially more compact
datasets.

We create our probabilistic data summaries in a preprocessing step using
the Python scikit-learn library. This process is trivial to parallelize since all
time steps, clusters, and distributions can be processed independently. Due to
inherent restrictions imposed by our Python prototype, an implementation in a
native language is expected to be significantly faster. The measurements for our
prototype are shown in Table 9.5. Our fast GMM component estimation (Sec-
tion 9.1.2) leads to a significant speedup. Lastly, computing high-dimensional
GMMs requires significantly more preprocessing time, making it unsuited for

9.5 discussion 113

use in practice. Note that our approximations for a fast estimation of GMM
components cannot be used for the high-dimensional data.

9.5 discussion

We introduce probabilistic data summaries for multivariate scattered data.
They enable the interactive visual analysis of large datasets on a single work-
station that would not be possible otherwise due to limitations of memory or
compute. Although this data representation is a simplified model of the data,
we inform the user about this uncertainty and present a level-of-detail and
outlier visualization for more detailed investigations. In comparison to the
sampling approach introduced in Chapter 8, this representation is significantly
more compact and the density-based visualizations are efficient to construct
and well suited to visualize massive datasets.

The core insight of our approach is that we only have to model combi-
nations of low-dimensional distributions for visual analysis, which avoids
the complexity of modeling high-dimensional distributions. This avoids the
curse of dimensionality, but limits higher-dimensional correlations that are
still captured using our sampling-based approach. This further limits the
computation of derived variables, such as the FTLE, which must be performed
on the original dataset.

Although the data must be clustered, we do not make any restrictive assump-
tions about the clustering procedure. In fact, our evaluation shows that the
impact of the clustering on the quality of the representation is less pronounced
than expected and is largely offset by the adaptive modeling of GMMs. Note
that our sampling technique in Chapter 8 could also be used to construct a
clustering procedure.

10
I M A G E - B A S E D V O L U M E V I S UA L I Z AT I O N U S I N G
M O M E N T S

Continuing progress in high performance computing enables scientists to
perform complex simulations in a high spatial and temporal resolution. Ex-
ploring and analyzing the resulting datasets is a daunting task. The traditional
approach to transfer and analyze the data on an individual workstation is
no longer feasible for large datasets due to storage, bandwidth, and compute
constraints. In situ visualization [49], where the simulation is tightly coupled
with the visualization pipeline, addresses this limitation, but limits explo-
ration and interaction. Image-based approaches (Section 2.2.4) combine in
situ visualization with the analysis on low-cost machines. There, the data is
represented by images produced from fixed views and predefined parameters.
Image-based approaches are also employed to render large or unstructured
volumetric data [285] that could not be interactively visualized otherwise.
However, the transfer function based exploration of volumetric data is difficult
to integrate into image-based approaches as it requires a compact and accurate
representation of the signal along each view ray.

In this chapter, we present a novel image-based data representation to visu-
alize large structured and unstructured volumetric data. This representation
allows us to store and reconstruct the scalar density along a viewing ray, thus
enabling a change of the transfer function similar to recent work [75, 78, 318,
319]. We avoid storing discrete samples or modeling distributions along a
ray, instead we compactly represent the density in the Fourier basis. We store
Fourier coefficients of a signal bounded between zero and one, also referred
to as bounded trigonometric moments. This leads to a sparse and quantizable
representation that can be linearly interpolated in space and time. However,
reconstructing a signal using a truncated Fourier series causes well-known
ringing artifacts. We employ the recently introduced bounded MESE [244] for
an efficient and accurate reconstruction of a bounded signal from its moments.

To create a compact representation, we adaptively determine the number of
moments per pixel. Specifically, we first ray march the dataset only once and
generate a fixed number of moments. We then select an appropriate amount
of moments per pixel by utilizing an error measure between all and a prefix of
moments. In addition, we introduce a novel coding strategy to compactly store
the moments in each pixel. This coding scheme uses information from the
lower-order moments in a pixel to predict the next moment. Therefore, we only
need to store differences to the actual moments, which are more amenable to
quantization and compression. Accounting for the trade-off between quality
and data size, we present a parameterizable quantization curve that is pareto
optimal. After compression, we store between 20 and 60 bytes per pixel, when
using up to 100 moments.

115

116 image-based volume visualization using moments

Compute cluster Analysis machine

Dataset Transfer function
Camera, parameters

Ray marching:
Compute moments

(Sec. 3.2)

Ray marching:
Reconstruct density

(Sec. 3.3)

Determine number
of moments
(Sec. 3.5)

Prepare moments
(Sec. 3.3)

Quantization and
compression

(Sec. 3.6)

Decompression and
dequantization

(Sec. 3.6)

Estimate error
(Sec. 3.7)

Figure 10.1: A moment image is generated on the compute cluster (left) and is used
for interactive volume rendering on the analysis machine (right).

Figure 10.1 gives an overview of our proposed method. Our proxy repre-
sentation, which we refer to as moment image, is generated on a system with
access to the data. The moment image then enables the interactive exploration
with a user-controllable transfer function on a low-cost analysis machine.

We begin by reviewing the reconstruction of bounded densities using mo-
ments (Section 10.1), before we discuss the computation of moments during
ray marching (Section 10.2) to create a moment image. Then, we examine
ray marching using a moment image (Section 10.3). Afterwards, we analyze
relations between valid sequences of moments (Section 10.4). We employ
these insights to select an appropriate number of moments for each pixel
(Section 10.5) and for our coding and quantization scheme (Section 10.6). We
discuss uncertainty quantification (Section 10.7), single scattering (Section 10.8),
and changing the view configuration (Section 10.9). Lastly, we evaluate our
approach qualitatively and quantitatively in Section 10.10 on two volumetric
and an SPH dataset.

10.1 using moments to reconstruct bounded densities

To represent the densities along a viewing ray, we map the length of the ray in
the volume to [−π, 0] linearly and we assume that the densities are bounded
in [0, 1]. Since this signal is generally not periodic, we mirror the signal in
[−π, 0] to a periodic signal in [−π, π]. We represent this signal in the Fourier
basis using m + 1 ∈ N Fourier coefficients. The Fourier basis, written as a
vector, is

c(ϕ) :=
1

2π
(exp(−ijϕ))m

j=0 ∈ Cm+1

10.1 using moments to reconstruct bounded densities 117

−π −π/2 0
0.0

0.2

0.4

0.6

0.8

1.0
Reference
Bd. MESE
Fourier

Figure 10.2: Truncated Fourier and bounded MESE reconstruction from the same
coefficients.

q = C-1(γ) e0

Bounded trig.
moments

Exponential
moments

Evaluation
polynomial

Lagrange
multipliers

c0, ..., cm λ0, ..., λmγ0, ..., γm

Figure 10.3: Given bounded trigonometric moments, we compute the corresponding
exponential moments, solve a linear system, and finally compute La-
grange multipliers, from which we can efficiently reconstruct a bounded
signal.

and the Fourier coefficients are

c :=
∫ π

−π
s(ϕ)c(ϕ)dϕ ∈ Rm+1.

Note that the coefficients are real since the mirroring makes the signal even.
These Fourier coefficients compactly approximate a signal. However, the
reconstruction of a truncated Fourier series does not guarantee bounded
values and exhibits well-known ringing artifacts as shown in Figure 10.2.

The Fourier coefficients of a bounded signal are also known as bounded
trigonometric moments, or simply moments in the scope of this paper. Pe-
ters et al. [244] introduce the bounded maximum entropy spectral estimate
(MESE), which reconstructs a signal from bounded trigonometric moments.
As illustrated in Figure 10.3, the bounded trigonometric moments are first
transformed to exponential moments γ ∈ Cm+1. For this we define

γ̌0 :=
1

4π
exp

(
πi
(

c0 −
1
2

))
∈ C.

Let <z denote the real part of a complex number z ∈ C. Then, the exponential
moments are defined as

γ0 := 2<γ̌0 ∈ R,

γl :=
2πi

l

(
lγ̌0cl +

l−1

∑
j=1

(l − j)γjcl−j

)
∈ C,

(10.1)

where l ∈ {1, . . . , m}. The exponential moments γ are the trigonometric
moments of an unbounded signal, which is dual to our bounded signal s. This
transformation is invertible.

118 image-based volume visualization using moments

The next steps utilize the Hermitian Toeplitz matrix

C(γ) :=
1

2π

γ0 γ1 . . . γm

γ1 γ0
. . .

...
...

. γ1

γm . . . γ1 γ0

 ∈ C(m+1)×(m+1).

We can reconstruct a valid unbounded density from the exponential moments
γ if and only if C(γ) is positive definite. In this case, the evaluation polynomial
q := C−1(γ)e0, with e0 := (1, 0, . . . , 0)T holds coefficients for an unbounded
density known as MESE [242].

The bounded MESE is the bounded dual of the MESE [244]. To evaluate it
efficiently, we transform the evaluation polynomial into Lagrange multipliers
λ ∈ Rm+1. We denote γ̌j = γj for all j ∈ {1, . . . , m}. Then for all l ∈ {0, . . . , m}

λl :=
1

πiq0

m−l

∑
k=0

γ̌k

m−k−l

∑
j=0

qj+k+lqj ∈ R. (10.2)

Now, the bounded MESE is given by

ŝ(ϕ) =
1
π

arctan

(
<λ0 + 2<

m

∑
l=1

λl exp(−ilϕ)

)
+

1
2

. (10.3)

Since arctan maps to (−π
2 , π

2), the reconstructed density ŝ is always in (0, 1).
Moreover, the Lagrange multipliers are constructed to ensure that∫ π

−π
ŝ(ϕ)c(ϕ)dϕ = c, (10.4)

i.e. the bounded trigonometric moments are accounted for exactly. A truncated
Fourier series also satisfies Equation 10.4 but does not exploit knowledge about
the bounds. As shown in Figure 10.2 the bounded MESE captures complicated
signals well while being less prone to ringing than a truncated Fourier series.

10.2 moments of ray densities

We now discuss the creation of our proxy representation, the moment image.
For every pixel, this image contains the moments of a scalar density sam-
pled during ray marching, see Figure 10.4. To this end, we first compute the
intersections t0 and t1 of a viewing ray r(t) with the volume. We map the
parameterized ray r(t) with t ∈ [t0, t1] to phase space [−π, 0] linearly and
sample the volume at ϕ0, . . . , ϕn−1, giving us the densities s0, . . . , sn−1 ∈ [0, 1].

To compute m + 1 bounded trigonometric moments during ray marching,
we assume linear interpolation and perform a quadrature [244, Appendix C].
At each ray marching step, we compute the gradient al and y-intercept bl :

al :=
sl+1 − sl

ϕl+1 − ϕl
, bl := sl − al ϕl .

10.3 interactive rendering 119

t0
t1

-π 00

1

s0

φ0 φ1 φ2

s1 s2

Figure 10.4: During ray marching, we sample a scalar density along the ray parame-
terized by [−π, 0]. We compute m + 1 moments from this signal.

Then the interpolated signal for all ϕ ∈ [ϕl , ϕl+1] is

s(ϕ) := al ϕ + bl .

The bounded trigonometric moments are iteratively computed as:

c0 :=
1
π

n−2

∑
l=0

[al

2
ϕ2 + bl ϕ

]ϕl+1

ϕl

∈ R,

cj :=
1
π
<

n−2

∑
l=0

[(
al

1 + ijϕ
j2

+ bl
i
j

)
exp(−ijϕ)

]ϕl+1

ϕl

∈ R.

Since we mirror the signal, the moments are real and we do not have to
compute or store the imaginary parts.

Lastly, we compute a lower bound smin ≤ s(ϕ)− ε and an upper bound
s(ϕ) + ε ≤ smax during ray marching. Here, ε is a small number to relax
the bounds. For example, we set ε = 0.005 for our datasets. This relaxation
improves the reconstruction since it stays away from 0 and 1, see Equation 10.3.
After ray marching, we transform the moments to these bounds:

ct
0 :=

c0 − smin

smax − smin
,

ct
j :=

cj

smax − smin
.

(10.5)

Although we have to store the bounds for each pixel to invert this transfor-
mation after reconstruction, we found that it improves the reconstruction and
enables a more aggressive quantization of the moments (Section 10.6).

10.3 interactive rendering

To render using a moment image, we first note that it is possible to linearly
interpolate the moments of neighboring pixels or even between different time
steps. For example, we can increase the resolution of the moment image using
bilinear interpolation to render in a higher resolution. Although other types
of interpolation are possible, negative weights in filter kernels may invalidate
moments and should be avoided.

120 image-based volume visualization using moments

To ray march a moment image, we compute the Lagrange multipliers for
each pixel upon loading. Subsequently, we perform ray marching using a ray
r(t) in the interval [t0, t1], which we map to [−π, 0]. During ray marching,
we use the Lagrange multipliers to efficiently reconstruct a density at each
ϕ ∈ [−π, 0] by evaluating Equation 10.3. Afterwards, we invert the transforma-
tion from Equation 10.5 using the bounds [smin, smax], apply a transfer function,
and perform compositing. We employ a preintegrated transfer function [72].
Ray marching a moment image is fast, taking only a few milliseconds (cf. Ta-
ble 10.1), which enables the interactive exploration with different transfer
functions.

10.4 relations between moments

It is viable to store moment images using one 32-bit float per moment but
storage requirements are considerable. Thus, we strive to reduce the number
of moments adaptively and to quantize the remaining moments to only a
few bits. Our methods benefit from the underlying theory of the bounded
MESE [244]. In this section, we cover the relevant mathematical results.

Recall from Section 10.1 that we construct the evaluation polynomial q :=
C−1(γ)e0 from the exponential moments γ ∈ Cm+1. The Toeplitz matrix C has
a special structure. Levinson’s algorithm exploits this structure to solve for q in
time O(m2) instead of O(m3) [243]. At the same time, it produces intermediate
results that aid our quantization scheme. For all l ∈ {1, . . . , m} Levinsons’s
algorithm computes:

q(0)0 :=
1

γ0
, (10.6)

u(l) :=
l−1

∑
k=0

q(l−1)
k γl−k, (10.7)

q(l) :=

(
q(l−1)

0 , . . . , q(l−1)
l−1 , 0

)
− u(l)

(
0, q(l−1)

l−1 , . . . , q(l−1)
0

)
1− |u(l)|2

. (10.8)

Then

q = C−1(γ)e0 = 2π
(

q(m)
0 , . . . , q(m)

m

)
.

Since the Toeplitz matrix is positive definite, we know |u(l)| < 1 [243].
Combined with Equation 10.7, this inequality forces γl to reside in a disk of
radius

rl :=
1

q(l−1)
0

,

with center

γ̊l := − 1

q(l−1)
0

l−1

∑
k=1

q(l−1)
k γl−k ∈ C.

10.5 determining the number of moments 121

Inverting Equation 10.1 shows that the bounded trigonometric moment

cl =
γl

2πiγ̌0
− 1

lγ̌0

l−1

∑
j=1

(l − j)γjcl−j (10.9)

lies in a disk as well. We base our coding strategy in Section 10.6 on this
observation.

Incidentally, the center of this disk also has a compelling relation to the
bounded MESE ŝ. In the case l = m + 1, we find

c̊l :=
γ̊l

2πiγ̌0
− 1

lγ̌0

l−1

∑
j=1

(l − j)γjcl−j =
1

2π

∫ π

−π
ŝ(ϕ) exp(−ilϕ)dϕ.

In other words, the bounded MESE places every unknown moment in the
center of the disk where it must reside [244, Lemma B.2]. This behavior is in
stark contrast to a truncated Fourier series, which just sets unknown Fourier
coefficients to zero.

Applying this insight repeatedly lets us compute the full Fourier expansion
of the bounded MESE [244, Proposition B.3]. In terms of the exponential
moments, we obtain the linear recurrence

γm+1+k = −
1
q0

m

∑
j=0

γj+kqm+1−j, (10.10)

for all k ∈ N. Mapping these exponential moments to bounded moments
through Equation 10.9, we obtain all unknown moments of the bounded
MESE ŝ.

10.5 determining the number of moments

To adaptively reduce the number of moments per pixel, we measure the
error between a prefix of c0, . . . , cn moments and the full vector of moments
c0, . . . , cm, where n < m. Based on the assumption that the full set of m +

1 moments accurately captures the signal, we compute the error without
accessing the original data or ray marching the dataset again.

To this end, we use the recurrence from Equation 10.10 and Equation 10.9
to compute the missing m− n moments from the prefix of n + 1 moments. In
this manner, we obtain the exact moments ĉn+1, . . . , ĉm of the bounded MESE
ŝ, assuming that the moments cn+1, . . . , cm have been discarded. We measure
the error introduced by discarding these moments using the relative RMSE

rRMSE((cn+1, . . . , cm), (ĉn+1, . . . , ĉm)) =
1
c0

√
m

∑
i=n+1

(ci − ĉi)2.

The rRMSE normalizes the root mean squared error (RMSE) with respect to
the average value of the signal, i.e. the zeroth moment c0.

To determine the number of moments for each pixel, we find a value of n
so that the error is just below a user-defined threshold. We keep only the first
n + 1 moments per pixel to create a compact moment image. Computing the

122 image-based volume visualization using moments

moments of the bounded MESE ĉn+1, . . . , ĉm takes time O(m(m− n)) and we
have to redo this work for each value of n that we try. To keep the overall cost
low, we use bisection. It finds a suitable n in O(log m) trials. Since the error is
not guaranteed to decrease monotonically with n, the found n is not known to
be minimal but it certainly satisfies the requested error threshold.

10.6 compression and quantization

Moment images might be produced and archived in large quantities and are
transferred over network to the analysis machine. Therefore, small file sizes
are paramount. A baseline approach directly quantizes bounded trigonometric
moments c0 ∈ [0, 1] and cj ∈ [− 1

π , 1
π]. Since the representation of moments is

essential to reduce storage requirements, we propose a novel coding scheme,
a pareto optimal quantization curve, and discuss lossless compression to pack
more information into significantly fewer bits.

10.6.1 Coding

In Section 10.4 we observed that each exponential moment γl lies in a disk
characterized by the previous moments γ0, . . . , γl−1. We exploit this constraint
in our coding strategy by only storing the difference to the center of the disk.
These differences exhibit lower entropy compared to the moments and are
better suited for quantization and compression.

First, we explicitly store c0, then we transform the bounded trigonometric
moments c to exponential moments γ. We execute Levinson’s algorithm and
at each step store the difference between γl and the center of the disk γ̊l given
by the previous exponential moments, scaled relative to the radius rl :

u(l) =
γl − γ̊l

rl
∈ C.

To revert this encoding, we simply execute Levinson’s algorithm with γ0 and
the stored values of u(l) to solve the system for q. Furthermore, we reconstruct
the exponential moments as

γl = γ̊l + rlu(l).

10.6.2 Transformation

We perform two important transformations that enable a more aggressive
quantization. First, for real moments, the corresponding u(l) ∈ C with l > 0
vary only along the axis aligned with iγ̌0. We transform u(l) to the real axis:

u(l)
T := u(l) |iγ̌0|

iγ̌0
∈ (−1, 1).

The values for u(l)
T ∈ (−1, 1) are distributed mostly around zero, see Fig-

ure 10.5. Therefore, we compute min(u(l)
T) and max(u(l)

T) for each l ∈ [1, m]

10.6 compression and quantization 123

0 20 40 60 80 100
Moment index l

−1.0

−0.5

0.0

0.5

1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Figure 10.5: Distribution of values u(l)
T that we store for each moment at index l.

0 20 40 60 80 100 120
Moment index l

0.00

0.01

0.02

0.03

0.04

0.05

rR
M

SE

Bits
8
9
10

Figure 10.6: We quantize only a single moment index l at a time and measure the
resulting error. This shows that the error from quantization depends on
the index l.

once per moment image and transform the u(l)
T from this range to (0,1) before

quantization. Especially for large l, this transformation leads to a significantly
more accurate representation.

10.6.3 Quantization

First, we quantize the zeroth moment c0 to 16-bit in [0, 1]. Although we might
be able to use fewer bits in some cases, the quality can deteriorate quickly. In
general, quantization errors are amplified from coefficients with a lower to
a higher index. This is shown in Figure 10.6, where we apply quantization
to only a single moment at a time. Then, we measure the rRMSE between
the bounded trigonometric moments of the quantized and the original image.
Consequently, this shows how much each moment influences the error of the
reconstruction. We use this observation to determine the number of bits for
quantizing a moment at index l ∈ [1, m]. Specifically, we want to quantize such
that at each index we apply approximately the same error. The quantization
curve, i.e. the number of bits used to quantize each index is thus determined
from the errors shown in Figure 10.6.

Depending on the trade-off between acceptable error and image size, we
want to use a different quantization curve. By selecting the number of bits b1

to quantize the moment at index 1, the resulting error determines the whole

124 image-based volume visualization using moments

Algorithm 1 Computing a quantization curve
procedure QuantizationCurve(Moment image M, b1)

Quantization table t
t[0]← 16
t[1]← b1

M′ ← quantize(M, 1, b1)
eT ← rRMSE(moments(M), moments(M′)) . Determine error threshold
for l ← 2, m do

t[l]← t[l − 1] . Reduce number of bits until we reach the threshold
for all b ∈ {t[l − 1], . . . , 1} do

M′ ← quantize(M, l, b) . Quantize index l with b bits
e← rRMSE(moments(M), moments(M′))
if e ≥ eT then

break
end if
t[l]← b

end for
end for
return t

end procedure

curve. We thus employ b1 as a parameter to create different quantization curves.
The algorithm to determine a quantization curve is illustrated in Algorithm 1.
At each index l, the algorithm tries to decrease the number of bits as much as
possible, buts stays below the error threshold determined from b1.

We illustrate several quantization curves in Figure 10.7. To determine
whether these curves are optimal, we sample randomly perturbed quanti-
zation curves and plot the total number of bits against the error in Figure 10.8.
This shows that our proposed quantization curves are pareto optimal, i.e. no
change of the curve leads to a reduction in both error and size.

Although the quantization curves are always qualitatively similar, they still
differ between different datasets and view configurations. We thus determine
an optimal quantization curve for each moment image that we generate using
Algorithm 1. For moment images with a large resolution, this computation can

0 20 40 60 80 100 120
Moment index l

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N
um

. b
its

Bits
7
8
9
10
11
12

Figure 10.7: Quantization curves for different parameter values.

10.7 uncertainty quantification 125

600 700 800 900 1000 1100 1200 1300
Total num. bits

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

rR
M

SE

Sampled curves
Our quantization curves

Figure 10.8: Comparison of our pareto optimal quantization curves (see Figure 10.7)
and randomly perturbed curves.

be quite expensive. Therefore, we recommend to use a downsampled image
of size 64× 64, which gives nearly identical results and is fast to compute.

10.6.4 Compression

To further reduce the size of a moment image, we apply lossless compression
to the quantized coefficients. Figure 10.5 shows that the frequency of values
for each moment is non-uniform. Thus, entropy encoding can reduce the
data size by storing variable-length codewords for each coefficient at index l
containing 2bl symbols. The length of the codewords is selected proportional
to the frequency of occurrence. We employ arithmetic coding [333], which
can estimate the frequencies during encoding. Although the compression rate
depends on the dataset and quantization, we achieve a 20− 40% reduction in
size. Lastly, we perform fast dictionary coding on the resulting byte stream
using the LZ4 [1] library, further reducing the image size (cf. Table 10.2).

10.7 uncertainty quantification

Since our approach introduces information loss, we want to convey the result-
ing uncertainty. For example, we visualize the uncertainty using a heat map,
temporal animation [194, 202], or by integrating the uncertainty in the transfer
function classification [270].

Due to space constraints, we are limited to few statistics about the distribu-
tion of errors along a viewing ray in each pixel. Computing these statistics is
the only step, and an optional one, of our method that requires ray marching
the dataset a second time. In detail, at each step during ray marching, the
signal is reconstructed from our representation and is compared to the original
dataset.

Although the root-mean squared error (RMSE) can be used to measure the
average error, it gives little guarantees about the distribution of errors. In
contrast, the maximum error is a conservative bound, but is not robust to

126 image-based volume visualization using moments

−π −π/2 0
0.0

0.2

0.4

0.6

0.8

1.0
Reference
99% bound
95% bound
90% bound

Figure 10.9: We compute error percentiles for the bounded MESE from Figure 10.2
and visualize these as error bounds along the reconstructed signal.

small outliers. We found that this makes the error bounds too conservative
and thus not informative. Instead, we propose to compute a single or select
percentiles of the error. These order statistics can be used to create robust
and expressive error bounds, see Figure 10.9. However, order statistics are
expensive to compute and would require O(n) space during ray marching,
which is problematic for parallel computation on a cluster or GPU. Therefore,
we employ the heuristic P2-algorithm [147]. This algorithm performs online
estimation of a percentile with fixed storage requirements.

10.8 single scattering

Volumetric shadows can improve the perception of spatial depth in direct
volume visualizations [189]. Although different illumination models exist, the
physically-based single scattering model [209] is often employed. At each step
during ray marching, this requires evaluating the transmittance to the light
sources.

To incorporate single scattering, we create a moment image from the per-
spective of the light source similar to shadow mapping [332]. For directional
light sources, we use an orthographic view projection. Moreover, we recom-
mend to use a smaller number of moments and a lower resolution since single
scattering illumination is generally of lower frequency. During rendering, we
could ray march along secondary rays from the single scattering moment
image to each sample point, but this is computationally expensive. Instead, we
ray march the single scattering image, compute the transmittance, and cache
it on a regular grid. Then, we sample the cached transmittance during ray
marching.

10.9 view projection

The method presented thus far is limited to a static camera. However, a
moment image encodes the entire volume within the view frustum. We exploit
this insight to enable the exploration of different views. In detail, we ray march
starting from the changed camera and project each point that is inside the view
frustum to the moment image. Then, we perform bilinear interpolation of the
Lagrange multipliers and reconstruct a density. The interpolation makes the

10.10 evaluation 127

(a) Reference (b) Ours (Bounded MESE) (c) Ours (Fourier)
1 0

0.0

0.25

0.5

0.75

1.0

Figure 10.10: Entropy field of a Richtmyer-Meshkov instability rendered with direct
volume rendering (a), with our approach using the bounded MESE
reconstruction (b), and using the Fourier reconstruction (c).

(a) Reference (b) Ours (Bounded MESE) (c) Ours (Fourier)
1 0

1.0

1.5

2.0

2.5

3.0

Figure 10.11: The Rayleigh-Taylor instability shows the density of two mixing fluids.
We render a ray marching reference (a), our approach with the bounded
MESE reconstruction (b), and with Fourier reconstruction (c).

rendering quite expensive, but is necessary to avoid aliasing artifacts. For faster
rendering at the expense of memory requirements, we resample a moment
image to a regular grid. To avoid aliasing, we either require a sufficiently high
image resolution or we upsample the moment image.

10.10 evaluation

We evaluate our approach on three real-world datasets. The entropy field
of a Richtmyer-Meshkov instability (Figure 10.10) is given in a resolution of
2048× 2048× 1920 with 8 bits per cell. The Rayleigh-Taylor instability dataset
(Figure 10.11) consists of a density field showing two mixing fluids. It is
stored in single-precision in a resolution of 10243. Lastly, the Turbine dataset
stems from a smoothed particle hydrodynamics (SPH) simulation [60] of 100
million particles per time step, where each particle consists of a position and a
scalar value in single-precision. We sample the scattered data by performing
SPH interpolation with a cubic spline kernel. We employ a uniform grid for
accelerating the neighborhood search during ray marching.

We evaluate our approach on these datasets qualitatively (Section 10.10.1),
quantitatively (Section 10.10.2), and discuss the performance (Section 10.10.3).
We compare the bounded MESE with the truncated Fourier reconstruction,
which are both applicable to our moment images. Furthermore, we compare
our approach to the ray-histogram approach by Wang et al. [319].

128 image-based volume visualization using moments

If not noted otherwise, we use an image resolution of 1024× 768 with a
maximum of 100 moments per pixel. We employ our novel coding technique
and quantize the moments as discussed in Section 10.6 with the quantization
curve given by b1 = 10. We further evaluate the impact of our coding and
quantization scheme (Section 10.10.4), and discuss selecting the number of
moments (Section 10.10.5).

10.10.1 Qualitative Evaluation

The Richtmyer-Meshkov instability is shown in Figure 10.10 using direct
volume rendering (a), our approach using the bounded MESE (b), and with
the Fourier reconstruction (c). This complicated dataset is difficult to represent,
see e.g. the reconstruction of a single pixel in Figure 10.2. Although the Fourier
reconstruction generally leads to good results, it introduces strong ringing
artifacts for this dataset. Figure 10.11 shows the Rayleigh-Taylor instability
rendered with direct volume rendering (a), with our approach (b), and with
the Fourier reconstruction (c). Here, the Fourier method and the bounded
MESE produce visually similar results.

The Turbine dataset is shown in Figure 10.12 using direct volume rendering
(a), with our approach (b), and with ray-histograms (c). The transfer function,
illustrated on the right, maps low and high velocities to non-zero opacities.
This reveals the rotating turbine blades and indicates the presence of several
vortices. Whilst our approach shows no obvious artifacts, the ray-histogram in
(c) contains noise, for example on the upper right side. These artifacts might be
due to the depth ordering of samples that is not considered in their approach.
They might also stem from quantization of the floating point values due the
use of histograms. Note that our approach does not quantize the sampled
densities. Instead, we quantize the moments from which we reconstruct a
smooth signal.

In Figure 10.12 (d), we change the transfer function to show two small
intervals. Our bounded MESE (e) and Fourier (f) reconstructions accurately
incorporate this transfer function and lead to results that are nearly indistin-
guishable from the reference. Note that the transfer function can be changed
interactively, whilst the reference performs expensive SPH interpolation dur-
ing rendering. The image-based approaches enable the interactive exploration
of this large dataset.

We use a single moment image to render Figure 10.13 (a). Then, we rotate
the view to the other side of the volume (b). We reproject our moment image
(c), which still leads to accurate results. Some regions of the volume are outside
the view frustum of the moment image. These regions are shown in green
since we do not have any information in these areas.

In Figure 10.14 we show the Turbine dataset with direct volume rendering
and single scattering using brute-force ray marching (a), using a moment
image for single scattering (b), and using moment images for both single
scattering and volume rendering (c). The single scattering moment image is
computed in a resolution of 5122 with a maximum of 50 moments. Using our

10.10 evaluation 129

(a) Reference (b) Ours (Bounded MESE) (c) Ray-histograms
1 0

-0.5

-0.25

0.0

0.25

0.5

(d) Reference (e) Ours (Bounded MESE) (f) Ours (Fourier)
1 0

-0.5

-0.25

0.0

0.25

0.5

Figure 10.12: The Turbine dataset with direct volume rendering (a), using our ap-
proach (b), and using ray-histograms (c). We change the transfer function
and render with direct volume rendering (d), using our approach (e),
and using Fourier reconstruction (f).

(a) Ours (original view) (b) Reference (changed view) (c) Ours (changed view)
1 0

-0.5

-0.25

0.0

0.25

0.5

Figure 10.13: We create a single moment image of the Turbine (a), change the view
configuration (b), and use the moment image to render from this view
(c). Regions of the volume that are outside the view frustum in (a) cannot
be reconstructed and are shown in green in (c).

(a) Reference (b) Reference, bounded MESE
single scattering

(c) Ours (Bounded MESE)
1 0

-0.1

-0.05

0.0

0.05

0.1

Figure 10.14: The Turbine dataset with direct volume rendering and single scattering
using brute-force ray marching (a), using a moment image to compute
single scattering from the directional light source (b), and using moment
images for both (c).

130 image-based volume visualization using moments

0.00

0.05

0.10

0.15

(a) Richtmyer-Meshkov

0.00

0.02

0.04

(b) Rayleigh-Taylor

0.000

0.002

0.004

0.006

0.008

(c) Turbine

Figure 10.15: Visualization of the 90th error percentile for our datasets.

R.-M. R.-T. Turbine
Dataset

0

100

200

300

Si
ze

 (m
b)

Ours
Fourier
Ray-hist.

(a) Proxy image sizes

R.-M. R.-T. Turbine
Dataset

0

5

10

15

20

R
ay

 d
en

si
tie

s
SN

R
 (d

b) Ours
Fourier
Ray-hist.

(b) Accuracy of ray densities

R.-M. R.-T. Turbine
Dataset

0

10

20

30

C
ol

or
 im

ag
e

SN
R

 (d
b) Ours

Fourier
Ray-hist.

(c) Accuracy of images

Figure 10.16: Comparison of proxy image sizes (a), the accuracy of reconstructed
densities (b), and the quality of composited color images (c).

coding and quantization scheme it is only 5.3 MB in file size, but the single
scattering is nearly indistinguishable from the reference.

We visualize the 90th error percentile in Figure 10.15 for all three datasets.
Compared to the Rayleigh-Taylor and Turbine datasets, the Richtmyer-Meshkov
dataset shows a higher error, due to its higher complexity.

10.10.2 Quantitative Evaluation

Figure 10.16 compares the image storage size (a), the quality of reconstructed
densities (b), and the quality of the composited images (c). We use the signal-
to-noise ratio (SNR) in the logarithmic scale (db) to assess the quality. The
original size of the Richtmyer-Meshkov dataset is 8193 MB, the Rayleigh-Taylor
dataset is 4294 MB, and the Turbine 1609 MB for a single time step.

Compared to the original data, our moment images are between two and
three orders of magnitude smaller in size. Our moment images are also
significantly smaller compared to the ray-histogram approach. At the same
time, the accuracy of our approach is better, as shown in Figure 10.16 (b).
Depending on the transfer function, the quality of the composited images is
more similar, see Figure 10.16 (c). Lastly, the Fourier reconstruction generally
performs similarly to the bounded MESE, but leads to the best results for the
Turbine dataset.

10.10 evaluation 131

Table 10.1: Run-time measurements from our datasets.

Richtmyer-Meshkov

Reference Ray marching 28.8 ms

Generation Ray marching 1025.6 ms

Determining moment subset 1722.7 ms

Coding 924.0 ms

Quantization curve 930.3 ms

Lossless encoding 281.1 ms

Reconstruction Lossless decoding 510.7 ms

Moment preparation 848.1 ms

Ray marching 135.9 ms

Rayleigh-Taylor

Reference Ray marching 21.0 ms

Generation Ray marching 183.5 ms

Determining moment subset 836.0 ms

Coding 424.0 ms

Quantization curve 432.6 ms

Lossless encoding 137.2 ms

Reconstruction Lossless decoding 266.8 ms

Moment preparation 391.6 ms

Ray marching 16.2 ms

Turbine

Reference Ray marching 6203.1 ms

Generation Ray marching 18678.0 ms

Determining moment subset 1798.5 ms

Coding 822.3 ms

Quantization curve 849.5 ms

Lossless encoding 319.0 ms

Reconstruction Lossless decoding 557.9 ms

Moment preparation 765.9 ms

Ray marching 48.9 ms

132 image-based volume visualization using moments

20 40 60
Size (mb)

10

15

SN
R

 (d
b)

Naive
Ours

(a) Richtmyer-Meshkov dataset

10 20 30
Size (mb)

5

10

15

20

SN
R

 (d
b)

Naive
Ours

(b) Rayleigh-Taylor dataset

20 30 40 50
Size (mb)

10

20

SN
R

 (d
b)

Naive
Ours

(c) Turbine dataset

Figure 10.17: Comparison of our coding and compression scheme with a naive ap-
proach that quantizes and compresses the coefficients.

10.10.3 Performance Analysis

For comparability, we measure the generation and reconstruction steps of our
approach on the same system: An AMD Ryzen 5 3600 with 16GB RAM and a
NVIDIA GeForce 1080Ti. We accelerate all steps using CUDA, except for the
lossless compression. The performance measurements are shown in Table 10.1.

In comparison to a reference ray marching implementation, the generation of
a moment image is several times slower. Since each step is trivial to parallelize,
generating the moment images on a compute cluster would be significantly
faster or could produce multiple images in parallel. Moreover, ray marching
SPH data is extremely costly and not suited for interactive rendering. With
our approach, the rendering step is decoupled from data access and the SPH
interpolation and is thus interactive. Note that the performance of the Fourier
reconstruction is comparable to our approach.

10.10.4 Quantization and Compression

Figure 10.17 compares our coding scheme to a naive approach that quan-
tizes the coefficients with a fixed number of bits and then performs lossless
compression. We vary the amount of quantization and compare the resulting
image size and accuracy.

A moment image of the Richtmyer-Meshkov dataset without compression
or quantization is 294.7 MB in size. The naive quantization reduces the image
size to 27.3 or up to 71.9 MB, depending on the quantization. Our approach
achieves between 13.9 and 56.3 MB at a consistently better quality. A moment
image without compression or quantization is 133.5 MB for the Rayleigh-Taylor
dataset and 266.6 MB for the Turbine. As shown in Figure 10.17 (b) and (c),
our quantization scheme significantly reduces the data sizes for both datasets.
In comparison to a naive quantization approach, our coding scheme achieves
a reduction in size as well as an increase in accuracy.

Table 10.2 shows the effect of lossless compression methods on moment im-
ages quantized with our approach. Whilst the fast dictionary coding using lz4
achieves mostly a small reduction in size, the entropy coding achieves a greater
compression. However, the entropy coding is computationally more expensive
to compute. We combine both methods to achieve the best compression rate.

10.11 discussion 133

Table 10.2: Image storage size after entropy coding, dictionary coding, and using both
lossless compression methods.

Dataset Entropy Dictionary Combined

Rayleigh-Taylor 78.3% 91.3% 69.6%

Richtmyer-Meshkov 58.5% 69.4% 50.6%

Turbine 82.7% 99.2% 81.9%

20

40

60

80

Figure 10.18: Number of moments per pixel in the Turbine dataset.

10.10.5 Number of Moments

Figure 10.18 illustrates the number of moments in each pixel in the moment
image of the Turbine dataset. The amount of moments adapts to the complexity
of the data. For example the turbine blade and swirling regions require
more moments, whilst the surrounding volume requires fewer. Note that this
adaptation is independent of the employed transfer function.

In Figure 10.19, we change the maximum number of moments for all datasets
and measure the error. As the maximal number of moments is increased, the
accuracy also improves. We recommend to use at least 50 moments to achieve
sufficient quality. Otherwise, this parameter is a trade-off between the required
computational effort and the accuracy of the representation.

10.11 discussion

Our image-based representation enables the interactive exploration of large
and arbitrarily structured volumetric data by decoupling the access to the
data from interactive rendering and exploration. Our evaluation shows that
our proposed moment image representation is both compact and accurate.
Selecting the number of moments per pixel, encoding, and quantizing the
moments is key to achieve small image sizes. Our technique enables scientists

134 image-based volume visualization using moments

20 40 60 80 100 120 140
Max. moments

5

10

15

20

25

SN
R

 (d
b)

Richtmyer-Meshkov
Rayleigh-Taylor
Turbine

Figure 10.19: The error from using a different maximum number of moments.

to create a large amount of images from different views or simulation time
steps.

Compared to ray-histograms [319], our representation is both smaller and
more accurate since we do not store distributions, which cannot reconstruct the
ordering of densities. Compared to the bounded MESE, Fourier reconstruction
yields surprisingly good results, especially for smooth signals such as the
SPH dataset. However, ringing can cause strong artifacts for the Fourier
reconstruction. In comparison, the bounded MESE yields good and more
predictable results. Therefore, we recommend the Fourier reconstruction for
known smooth datasets, such as SPH data, and the bounded MESE otherwise.
Note that most of the concepts discussed in this paper, including our coding
and quantization strategy, are equally applicable to the Fourier reconstruction.

We have shown that moment images can be used for single scattering
illumination. Since that requires less accuracy, the corresponding moment
images take only few megabytes. Lastly, we were surprised how changing
the view configuration still leads to accurate results. This shows that our
representation is a volumetric representation, but compactly encoded in an
image.

10.12 future work

In the future, we want to investigate whether subdividing a ray into less
complex signals can increase the accuracy or decrease the total number of
moments per pixel. Moreover, less complex signals could give more guarantees
about the accuracy, which would help in constructing tighter error bounds.

Lastly, multiple moment images could be combined to reconstruct a com-
plete volume with high accuracy. This would require choosing a minimal set
of images, e. g. using an approach similar to Lukasczyk et al. [201]. Then, a
volumetric representation could be reconstructed in a preprocess or on-the-fly
during rendering.

11
C O N C L U S I O N

In this thesis, we discuss the visual analysis of particle data to facilitate
knowledge discovery in large and unstructured datasets. To this end, we
present novel methods for Lagrangian flow visualization and data reduction.

Parts of our flow visualization methods have been developed and evaluated
together with domain experts working in the field of thermal turbomachinery.
This has already spawned an exciting publication [54]. We believe that other
fields where particle data is generated can similarly benefit from our proposed
analysis methods. For example, our flow visualization methods could offer
new and interesting insights in cosmological simulations, such as the Illustris
simulations [225]. This simulation code studies both dark matter and baryonic
components in the evolution of the universe. Our method can visualize these
different components, similar to multiphase fluid simulations [246]. Whilst
the concept of Lagrangian coherent structures has already been applied to cos-
mological data resampled to a volume [81], our novel formulation (Chapter 5)
should be able to produce faster and more accurate results.

Although our flow visualization and analysis technique approach is already
employed to understand complex real-world flows (Chapter 6), we believe
that the visualization of uncertainties in unsteady flows is pivotal in under-
standing the chaotic nature of turbulent flows. Our proposed visualization of
uncertainties in the transport and mixing behavior (Chapter 7) is only a first
step in this direction. Especially the sensitivity of the flow dynamics with re-
spect to slight changes in the initial or boundary conditions is only addressed
partially. Recent work explore the parameter space of ensemble simulations by
learning a continuous parameter space [17, 122]. The application to transport
and mixing behavior seems promising. Due to the inherent difficulties that
arise in the visualization of uncertain and ensemble data, more research is
needed.

By researching and developing these visualization methods specific to par-
ticle data, scientists and engineers are more likely to consider particle simu-
lations for solving their problems. Furthermore, Lagrangian representations
are becoming popular as a compact representation to store and post-process
unsteady flows [3, 34]. The Lagrangian representation is advantageous since no
numerically sensitive integration has to be performed, thus allowing lower tem-
poral and spatial resolutions. However, common data reduction approaches are
often limited to volumetric data. This emphasizes the need for data reduction
techniques specific to the Lagrangian representation.

For large-scale simulations, performing the simulation on a supercomputer
and the post-processing and analysis on individual workstations is no longer
practical. The presented probabilistic data reduction methods (Chapter 8,
Chapter 9) address this by creating a compact representation that is well-
suited for interactive visualization of large particle data. These techniques

135

136 conclusion

achieve a meaningful reduction in data size by omitting some information,
which introduces uncertainty. By measuring and visualizing these uncertainties
and by representing probabilistic data our work is thus in large parts also
applicable to visualize uncertain data. The visualization of uncertain data is
still a challenging topic in the field of scientific visualization [27, 30, 251, 316].
In the future, we would like to apply and extend our methods to uncertain
and specifically ensemble data.

In comparison to these probabilistic data reduction methods, we also intro-
duce an image-based approach (Chapter 10) to visualize large-scale particle
data. This approach represents a dataset from a fixed view. Although our
image-based proxy representation enables transfer function exploration for un-
structured volumetric data, it is still limited in comparison to object-space data
reduction. However, it is especially well-suited for in situ visualization, where
the images are created on a compute cluster whilst the simulation executes
and the data can be immediately explored on low-cost analysis machines. The
image-based paradigm is also beneficial to compactly summarize ensemble
data, where a small set of images might be able to sufficiently represent an
ensemble member. Additionally, particle data that requires costly interpolation
during volume rendering strongly benefits from image-based approaches.

Lastly, whilst we expect simulations and measurement devices to continue to
produce growing data sizes, we also expect them to become more complex. In
the future, we expect multifaceted data [165] to become even more prominent.
Especially fluid simulations can benefit from both the Lagrangian and Eulerian
point of view [275, 276, 295]. This heterogeneity presents new challenges as
well as opportunities for visualization and analysis methods.

Part III

A P P E N D I X

A
A P P E N D I X

a.1 void-and-cluster sampling algorithm

Our void-and-cluster sampling algorithm for scattered data is shown in detail
in Algorithm 2. We split the sampling algorithm into the initial random
sampling, optimization, and the void filling steps.

a.2 indexing a lower tridiagonal matrix

We derive how to index the non-zero elements of a lower tridiagonal matrix
A ∈ Rn×n given a linear index k ∈ {0, . . . , n(n−1)

2 }. We define i as the i-th
column and j as the j-th row of the lower tridiagonal matrix A, i.e. the non-
zero elements. Note that going from i and j to the linear index k is easier:
k = (i−1)i

2 + j. We re-order and solve the equation for i:

(i− 1)i
2

+ j = k

⇒ (i− 1)i = 2(k− j)

⇒ i2 − i = 2(k− j)

⇒ i2 − i− 2(k− j) = 0

⇒ i =
1
2
±
√

1
4
− 2(k− j).

Only the positive solution is of interest to us. Now, we can compute i by setting
j = 0 and using the floor function since i must be a natural number:

i =

⌊
1
2
+

√
1
4
− 2k

⌋
. (A.1)

Finally, we insert i in the equation we started from to compute j:

j = k− (i− 1)i
2

. (A.2)

Due to floating point inaccuracies for large k, we evaluate the square root in
double-precision.

139

140 appendix

Algorithm 2 Void-and-cluster sampling algorithm

procedure VoidAndCluster(P ⊂ Rd, v : P→ V, hP, q ∈ (0, 1])

h← d
√

hP
q . Kernel size for samples

n← q|P| . Number of samples
φ← Importance(v, h) . From entropy or const.
S, r, ρP, λS ← InitialRandomSampling(P, φ, h)
OptimizeSamples(S, r, λS, ρP, h)
VoidFilling(S, r, λS, ρP, h, n)
return S, 1

φ , r . Return samples, weights, and rank
end procedure

procedure InitialRandomSampling(P, φ, h)
for all p ∈ P do . Compute point density ρP

ρP ← AddDensity(φ(p), h)
end for
S, r ← RandomSampling(φ)
for all s ∈ S do . Compute sample density λS

λS ← AddDensity(ρP(s)−1, h)
end for
return S, r, ρP, λS

end procedure

procedure OptimizeSamples(S, r, λS, ρP, h)
while true do

smax ← arg maxs∈S{λS(s)} . Find tightest cluster
λS ← AddDensity(−ρP(smax)−1, h)
pmin ← arg minp∈P\S{λS(p)} . Find largest void
λS ← AddDensity(ρP(pmin)−1, h)
r[pmin]← r[smax], r[smax]← ∞ . Exchange rank
if pmin = smax then

break
end if

end while
end procedure

procedure VoidFilling(S, r, λS, ρP, h, n)
for i← |S|, n do

pmin ← arg minp∈P\S{λS(p)} . Find largest void
λS ← AddDensity(ρP(pmin)−1, h)
S← S ∪ pmin . Add sample
r[pmin]← i

end for
end procedure

A.3 3d gaussian ray integration 141

a.3 3d gaussian ray integration

We integrate a trivariate Gaussian distribution along a ray o + xd starting at
o ∈ R3 in normalized direction d ∈ R3 with x ∈ R. The Gaussian is given
by its mean µ ∈ R3 and covariance Σ ∈ R3×3. To derive a general solution,
we integrate over [a, b] by substituting the ray equation into the trivariate
Gaussian distribution:

I(a, b) :=
∫ b

a

1√
|2πΣ|

exp
(
− (o + xd− µ)TΣ−1(o + xd− µ)

2

)
dx. (A.3)

Note that |2πΣ| = (2π)3|Σ| for trivariate Gaussians, which we prefer due to
its compactness. We start by simplifying the equation:

I(a, b) =
∫ b

a

1√
|2πΣ|

exp
(
− ((o− µ) + xd)TΣ−1((o− µ) + xd)

2

)
dx

=
∫ b

a

1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)

exp

−2x
1
2
(o− µ)TΣ−1d︸ ︷︷ ︸

co,d

 exp

−x2 1
2

dTΣ−1d︸ ︷︷ ︸
cd,d

 dx

=
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

) ∫ b

a
exp

(
−2xco,d − x2cd,d

)
dx.

(A.4)

We substitute r := x +
co,d
cd,d

and thus rewrite and simplify the integrand as
follows:

I(a, b) =
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)
∫ b+

co,d
cd,d

a+
co,d
cd,d

exp

(
−2
(

r− co,d

cd,d

)
co,d −

(
r− co,d

cd,d

)2

cd,d

)
dr

=
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)
∫ b+

co,d
cd,d

a+
co,d
cd,d

exp

(
−2rco,d + 2

c2
o,d

cd,d
− r2cd,d + 2rco,d −

c2
o,d

cd,d

)
dr

=
1√
|2πΣ|

exp
(
−(o− µ)TΣ−1(o− µ)

)
exp

(
c2

o,d

cd,d

)
︸ ︷︷ ︸

c

∫ b+
co,d
cd,d

a+
co,d
cd,d

exp
(
−r2cd,d

)
dr.

(A.5)

Now, we perform another substitution using p := r√cd,d:

I(a, b) = c
1
√cd,d

∫ √cd,d

(
b+

co,d
cd,d

)
√cd,d

(
a+

co,d
cd,d

) exp(−p2)dp. (A.6)

142 appendix

The integrand can now be expressed by its antiderivative, which leads us to
the following solution:

I(a, b) = c
1
√cd,d

[√
π

2
erf(p)

]√cd,d

(
b+

co,d
cd,d

)
√cd,d

(
a+

co,d
cd,d

) . (A.7)

Although no closed-form solution exists for the error function, fast and ac-
curate numerical approximations of this well known function are available.
Lastly, when integrating over (−∞, ∞), the error function disappears:[√

π

2
erf(p)

]∞

−∞
=
√

π,

which leads to

I(−∞, ∞) = c
√

π
√cd,d

. (A.8)

B I B L I O G R A P H Y

[1] LZ4. Accessed: 30. Sept. 2020. url: https://lz4.github.io/lz4 (cit.
on p. 125).

[2] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. “Adaptively Sampled
Particle Fluids.” In: ACM Transactions on Graphics 26.3 (2007). issn:
0730-0301. doi: 10.1145/1275808.1276437 (cit. on p. 13).

[3] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and H. Childs.
“Improved Post Hoc Flow Analysis via Lagrangian Representations.”
In: IEEE 4th Symposium on Large Data Analysis and Visualization. 2014,
pp. 67–75. doi: 10.1109/LDAV.2014.7013206 (cit. on pp. 33, 78, 135).

[4] A. Agranovsky, C. Garth, and K. I. Joy. “Extracting Flow Structures
Using Sparse Particles.” In: Vision, Modeling, and Visualization. 2011,
pp. 153–160. doi: 10.2312/PE/VMV/VMV11/153-160 (cit. on pp. 33, 51).

[5] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M.
Petersen. “An Image-based Approach to Extreme Scale in Situ Visual-
ization and Analysis.” In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC ’14.
2014, pp. 424–434. isbn: 978-1-4799-5500-8. doi: 10.1109/SC.2014.40
(cit. on p. 12).

[6] H. Akaike. “A New Look at the Statistical Model Identification.” In:
IEEE Transactions on Automatic Control 19.6 (1974), pp. 716–723. doi:
10.1109/TAC.1974.1100705 (cit. on p. 22).

[7] G. Akinci, N. Akinci, M. Ihmsen, and M. Teschner. “An Efficient Sur-
face Reconstruction Pipeline for Particle-Based Fluids.” In: Workshop
on Virtual Reality Interaction and Physical Simulation. 2012. isbn: 978-3-
905673-96-8. doi: 10.2312/PE/vriphys/vriphys12/061-068 (cit. on
p. 13).

[8] M. Ankerst, S. Berchtold, and D. A. Keim. “Similarity Clustering of
Dimensions for an Enhanced Visualization of Multidimensional Data.”
In: Proceedings IEEE Symposium on Information Visualization. 1998, pp. 52–
60. doi: 10.1109/INFVIS.1998.729559 (cit. on p. 14).

[9] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz. “Uncovering
Clusters in Crowded Parallel Coordinates Visualizations.” In: IEEE
Symposium on Information Visualization. 2004, pp. 81–88. doi: 10.1109/
INFVIS.2004.68 (cit. on p. 16).

[10] S. Bachthaler and D. Weiskopf. “Continuous Scatterplots.” In: IEEE
Transactions on Visualization and Computer Graphics 14.6 (2008), pp. 1428–
1435. issn: 1077-2626. doi: 10.1109/TVCG.2008.119 (cit. on p. 17).

143

https://lz4.github.io/lz4
https://doi.org/10.1145/1275808.1276437
https://doi.org/10.1109/LDAV.2014.7013206
https://doi.org/10.2312/PE/VMV/VMV11/153-160
https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.2312/PE/vriphys/vriphys12/061-068
https://doi.org/10.1109/INFVIS.1998.729559
https://doi.org/10.1109/INFVIS.2004.68
https://doi.org/10.1109/INFVIS.2004.68
https://doi.org/10.1109/TVCG.2008.119

144 bibliography

[11] I. Baeza Rojo, M. Gross, and T. Günther. “Fourier Opacity Optimization
for Scalable Exploration.” In: IEEE Transactions on Visualization and
Computer Graphics (2019), pp. 1–1. doi: 10.1109/TVCG.2019.2915222
(cit. on p. 8).

[12] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. “TTHRESH: Tensor
Compression for Multidimensional Visual Data.” In: IEEE Transactions
on Visualization and Computer Graphics 26.9 (2020), pp. 2891–2903. doi:
10.1109/TVCG.2019.2904063 (cit. on p. 19).

[13] M. Balsa Rodríguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya,
F. Marton, R. Pajarola, and S. K. Suter. “State-of-the-Art in Compressed
GPU-Based Direct Volume Rendering.” In: Computer Graphics Forum
33.6 (2014), pp. 77–100. doi: 10.1111/cgf.12280 (cit. on pp. 11, 19).

[14] M. Balzer, T. Schlömer, and O. Deussen. “Capacity-constrained Point
Distributions: A Variant of Lloyd’s Method.” In: ACM Transactions on
Graphics 28.3 (2009), 86:1–86:8. issn: 0730-0301. doi: 10.1145/1531326.
1531392 (cit. on p. 26).

[15] S. Barakat, C. Garth, and X. Tricoche. “Interactive Computation and
Rendering of Finite-Time Lyapunov Exponent Fields.” In: IEEE Transac-
tions on Visualization and Computer Graphics 18.8 (2012), pp. 1368–1380.
issn: 1077-2626. doi: 10.1109/TVCG.2012.33 (cit. on p. 32).

[16] R. A. Becker and W. S. Cleveland. “Brushing Scatterplots.” In: Technomet-
rics 29.2 (1987), pp. 127–142. doi: 10.1080/00401706.1987.10488204
(cit. on p. 15).

[17] W. Berger, H. Piringer, P. Filzmoser, and E. Gröller. “Uncertainty-
Aware Exploration of Continuous Parameter Spaces Using Multivariate
Prediction.” In: Computer Graphics Forum 30.3 (2011), pp. 911–920. doi:
10.1111/j.1467-8659.2011.01940.x (cit. on p. 135).

[18] E. Bertini and G. Santucci. “Give Chance a Chance: Modeling Density
to Enhance Scatter Plot Quality through Random Data Sampling.” In:
Information Visualization 5.2 (2006), pp. 95–110. doi: 10.1057/palgrave.
ivs.9500122 (cit. on p. 16).

[19] J. Beyer, M. Hadwiger, and H. Pfister. “State-of-the-Art in GPU-Based
Large-Scale Volume Visualization.” In: Computer Graphics Forum 34.8
(2015), pp. 13–37. doi: 10.1111/cgf.12605 (cit. on pp. 11, 19).

[20] H. Bhatia, S. Jadhav, P. Bremer, G. Chen, J. A. Levine, L. G. Nonato, and
V. Pascucci. “Flow Visualization with Quantified Spatial and Temporal
Errors Using Edge Maps.” In: IEEE Transactions on Visualization and
Computer Graphics 18.9 (2012), pp. 1383–1396. issn: 2160-9306. doi:
10.1109/TVCG.2011.265 (cit. on p. 36).

[21] W. G. Bickley. “LXXIII. The Plane Jet.” In: The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 23.156 (1937), pp. 727–
731. doi: 10.1080/14786443708561847 (cit. on p. 32).

[22] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006

(cit. on pp. 6, 22).

https://doi.org/10.1109/TVCG.2019.2915222
https://doi.org/10.1109/TVCG.2019.2904063
https://doi.org/10.1111/cgf.12280
https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1109/TVCG.2012.33
https://doi.org/10.1080/00401706.1987.10488204
https://doi.org/10.1111/j.1467-8659.2011.01940.x
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1111/cgf.12605
https://doi.org/10.1109/TVCG.2011.265
https://doi.org/10.1080/14786443708561847

bibliography 145

[23] A. Biswas, S. Dutta, E. Lawrence, J. Patchett, J. C. Calhoun, and J.
Ahrens. “Probabilistic Data-Driven Sampling via Multi-Criteria Im-
portance Analysis.” In: IEEE Transactions on Visualization and Computer
Graphics (2020), pp. 1–1. issn: 1941-0506. doi: 10.1109/TVCG.2020.
3006426 (cit. on p. 25).

[24] A. Biswas, S. Dutta, J. Pulido, and J. Ahrens. “In Situ Data-Driven
Adaptive Sampling for Large-Scale Simulation Data Summarization.”
In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization. ACM. 2018, pp. 13–18. doi:
10.1145/3281464.3281467 (cit. on pp. 25, 73, 77).

[25] J. Blaas, C. Botha, and F. Post. “Extensions of Parallel Coordinates for
Interactive Exploration of Large Multi-Timepoint Data Sets.” In: IEEE
Transactions on Visualization and Computer Graphics 14.6 (2008), pp. 1436–
1451. issn: 1077-2626. doi: 10.1109/TVCG.2008.131 (cit. on p. 16).

[26] J. Bonet and T.-S.L. Lok. “Variational and Momentum Preservation
Aspects of Smooth Particle Hydrodynamic Formulations.” In: Computer
Methods in Applied Mechanics and Engineering 180.1 (1999), pp. 97 –115.
issn: 0045-7825. doi: 10.1016/S0045-7825(99)00051-1 (cit. on p. 41).

[27] G.-P. Bonneau, H.-C. Hege, C. R. Johnson, M. M. Oliveira, K. Potter,
P. Rheingans, and T. Schultz. “Overview and State-of-the-Art of Uncer-
tainty Visualization.” In: Scientific Visualization: Uncertainty, Multifield,
Biomedical, and Scalable Visualization. Springer London, 2014, pp. 3–27.
isbn: 978-1-4471-6497-5. doi: 10.1007/978-1-4471-6497-5_1 (cit. on
pp. 35, 136).

[28] R. P. Botchen, D. Weiskopf, and T. Ertl. “Texture-based Visualization of
Uncertainty in Flow Fields.” In: IEEE Visualization. 2005, pp. 647–654.
doi: 10.1109/VISUAL.2005.1532853 (cit. on p. 36).

[29] R. Bridson. “Fast Poisson Disk Sampling in Arbitrary Dimensions.” In:
ACM SIGGRAPH 2007 Sketches. SIGGRAPH 2007. ACM, 2007, p. 22.
doi: 10.1145/1278780.1278807 (cit. on pp. 26, 83).

[30] K. Brodlie, R. A. Osorio, and A. Lopes. “A Review of Uncertainty in
Data Visualization.” In: Expanding the Frontiers of Visual Analytics and
Visualization. Springer London, 2012, pp. 81–109. isbn: 978-1-4471-2804-
5. doi: 10.1007/978-1-4471-2804-5_6 (cit. on pp. 35, 136).

[31] L. Brookshaw. “A Method of Calculating Radiative Heat Diffusion
in Particle Simulations.” In: Publications of the Astronomical Society of
Australia 6.2 (1985), pp. 207–210 (cit. on p. 30).

[32] R. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy. “Real-Time Out-of-
Core Visualization of Particle Traces.” In: Proceedings of the Symposium
on Parallel and Large-Data Visualization and Graphics. 2001, pp. 45–149

(cit. on p. 34).

[33] S. L. Brunton and C. W. Rowley. “Fast Computation of Finite-Time
Lyapunov Exponent fields for Unsteady Flows.” In: Chaos: An In-
terdisciplinary Journal of Nonlinear Science 20.1 (2010), p. 017503. doi:
10.1063/1.3270044 (cit. on p. 32).

https://doi.org/10.1109/TVCG.2020.3006426
https://doi.org/10.1109/TVCG.2020.3006426
https://doi.org/10.1145/3281464.3281467
https://doi.org/10.1109/TVCG.2008.131
https://doi.org/10.1016/S0045-7825(99)00051-1
https://doi.org/10.1007/978-1-4471-6497-5_1
https://doi.org/10.1109/VISUAL.2005.1532853
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1007/978-1-4471-2804-5_6
https://doi.org/10.1063/1.3270044

146 bibliography

[34] R. Bujack and K. I. Joy. “Lagrangian Representations of Flow Fields
with Parameter Curves.” In: IEEE 5th Symposium on Large Data Analysis
and Visualization. 2015, pp. 41–48. doi: 10.1109/LDAV.2015.7348070
(cit. on pp. 7, 33, 135).

[35] R. Bujack, L. Yan, I. Hotz, C. Garth, and B. Wang. “State of the Art in
Time-Dependent Flow Topology: Interpreting Physical Meaningfulness
Through Mathematical Properties.” In: Computer Graphics Forum (2020).
issn: 1467-8659. doi: 10.1111/cgf.14037 (cit. on pp. 1, 31).

[36] K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann. “Importance-
Driven Particle Techniques for Flow Visualization.” In: IEEE Pacific
Visualization Symposium. 2008, pp. 71–78. doi: 10.1109/PACIFICVIS.
2008.4475461 (cit. on p. 35).

[37] K. Bürger, J. Schneider, P. Kondratieva, J. H. Krüger, and R. West-
ermann. “Interactive Visual Exploration of Unsteady 3D Flows.” In:
Eurographics/IEEE-VGTC Symposium on Visualization. 2007, pp. 251–258.
doi: 10.2312/VisSym/EuroVis07/251-258 (cit. on p. 34).

[38] R. Bürger and H. Hauser. “Visualization of Multivariate Scientific
Data.” In: Eurographics 2007 - State of the Art Reports. The Eurographics
Association, 2007. doi: 10.2312/egst.20071057 (cit. on p. 13).

[39] R. Bürger, P. Muigg, H. Doleisch, and H. Hauser. “Interactive Cross-
Detector Analysis of Vortical Flow Data.” In: Fifth International Confer-
ence on Coordinated and Multiple Views in Exploratory Visualization. 2007,
pp. 98–110. doi: 10.1109/CMV.2007.12 (cit. on p. 53).

[40] M. Burtscher, H. Mukka, A. Yang, and F. Hesaaraki. “Real-Time Syn-
thesis of Compression Algorithms for Scientific Data.” In: SC ’16: Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 2016, pp. 264–275. doi: 10.1109/SC.
2016.22 (cit. on p. 20).

[41] L. Carpenter. “The A-Buffer, an Antialiased Hidden Surface Method.”
In: Proceedings of the 11th Annual Conference on Computer Graphics and In-
teractive Techniques. SIGGRAPH. Association for Computing Machinery,
1984, pp. 103–108. doi: 10.1145/800031.808585 (cit. on p. 8).

[42] E. Catmull and R. Rom. “A Class of Local Interpolating Splines.” In:
Computer Aided Geometric Design. Academic Press, 1974, pp. 317 –326.
isbn: 978-0-12-079050-0. doi: 10.1016/B978-0-12-079050-0.50020-5
(cit. on p. 7).

[43] D. D. Chamberlin and R. F. Boyce. “SEQUEL: A Structured English
Query Language.” In: Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control. SIGFIDET
’74. 1974, pp. 249–264. isbn: 9781450374156. doi: 10.1145/800296.
811515 (cit. on p. 15).

[44] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graph-
ical Methods for Data Analysis. Wadsworth & Brooks/Cole Publishing
Company, 1983 (cit. on p. 13).

https://doi.org/10.1109/LDAV.2015.7348070
https://doi.org/10.1111/cgf.14037
https://doi.org/10.1109/PACIFICVIS.2008.4475461
https://doi.org/10.1109/PACIFICVIS.2008.4475461
https://doi.org/10.2312/VisSym/EuroVis07/251-258
https://doi.org/10.2312/egst.20071057
https://doi.org/10.1109/CMV.2007.12
https://doi.org/10.1109/SC.2016.22
https://doi.org/10.1109/SC.2016.22
https://doi.org/10.1145/800031.808585
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515

bibliography 147

[45] A. Chaudhuri, T. H. Wei, T. Y. Lee, H. W. Shen, and T. Peterka. “Ef-
ficient Range Distribution Query for Visualizing Scientific Data.” In:
IEEE Pacific Visualization Symposium. 2014, pp. 201–208. doi: 10.1109/
PacificVis.2014.60 (cit. on p. 24).

[46] G. Chaussonnet, S. Braun, T. Dauch, M. Keller, J. Kaden, C. Schwitzke, T.
Jakobs, R. Koch, and H.-J. Bauer. “Three-Dimensional SPH Simulation
of a Twin-Fluid Atomizer Operating at High Pressure.” In: 14th Triennial
International Conference on Liquid Atomization and Spray Systems (2018)
(cit. on pp. 2, 29, 107).

[47] B. Chen, A. Kaufman, and Q. Tang. “Image-Based Rendering of Surfaces
from Volume Data.” In: Volume Graphics. The Eurographics Association,
2001. isbn: 3-211-83737-X. doi: 10.2312/VG/VG01/281-299 (cit. on
p. 12).

[48] C.-M. Chen, A. Biswas, and H. Shen. “Uncertainty Modeling and Error
Reduction for Pathline Computation in Time-Varying Flow Fields.” In:
IEEE Pacific Visualization Symposium. 2015, pp. 215–222. doi: 10.1109/
PACIFICVIS.2015.7156380 (cit. on p. 36).

[49] H. Childs. “Data Exploration at the Exascale.” In: Supercomputing fron-
tiers and innovations 2.3 (2015), pp. 5–13. doi: 10.14529/jsfi150301
(cit. on pp. 12, 115).

[50] C. S. Co, B. Heckel, H. Hagen, B. Hamann, and K. I. Joy. “Hierarchical
Clustering for Unstructured Volumetric Scalar Fields.” In: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03). 2003, pp. 43–. isbn: 0-7695-
2030-8. doi: 10.1109/VISUAL.2003.1250389 (cit. on p. 10).

[51] W. G. Cochran. Sampling Techniques. 3rd edition. John Wiley & Sons,
1977 (cit. on p. 25).

[52] C. Conti, D. Rossinelli, and P. Koumoutsakos. “GPU and APU Com-
putations of Finite Time Lyapunov Exponent fields.” In: Journal of
Computational Physics 231.5 (2012), pp. 2229–2244. issn: 0021-9991. doi:
10.1016/j.jcp.2011.10.032 (cit. on p. 32).

[53] C. D. Correa, Y. H. Chan, and K. L. Ma. “A Framework for Uncertainty-
Aware Visual Analytics.” In: IEEE Symposium on Visual Analytics Science
and Technology. 2009, pp. 51–58. doi: 10.1109/VAST.2009.5332611
(cit. on p. 36).

[54] T. F. Dauch, C. Ates, T. Rapp, M. C. Keller, G. Chaussonnet, J. Kaden,
M. Okraschevski, R. Koch, C. Dachsbacher, and H.-J. Bauer. “Analyzing
the Interaction of Vortex and Gas–Liquid Interface Dynamics in Fuel
Spray Nozzles by Means of Lagrangian-Coherent Structures (2D).”
In: Energies (2019). issn: 1996-1073. doi: 10.3390/en12132552 (cit. on
pp. iv, 4, 54, 135).

[55] T. F. Dauch, T. Rapp, G. Chaussonnet, S. Braun, M. C. Keller, J. Kaden, R.
Koch, C. Dachsbacher, and H.-J. Bauer. “Highly Efficient Computation
of Finite-Time Lyapunov Exponents (FTLE) on GPUs Based on Three-
Dimensional SPH Datasets.” In: Computers & Fluids (2018). issn: 0045-
7930. doi: 10.1016/j.compfluid.2018.07.015 (cit. on pp. 3, 46).

https://doi.org/10.1109/PacificVis.2014.60
https://doi.org/10.1109/PacificVis.2014.60
https://doi.org/10.2312/VG/VG01/281-299
https://doi.org/10.1109/PACIFICVIS.2015.7156380
https://doi.org/10.1109/PACIFICVIS.2015.7156380
https://doi.org/10.14529/jsfi150301
https://doi.org/10.1109/VISUAL.2003.1250389
https://doi.org/10.1016/j.jcp.2011.10.032
https://doi.org/10.1109/VAST.2009.5332611
https://doi.org/10.3390/en12132552
https://doi.org/10.1016/j.compfluid.2018.07.015

148 bibliography

[56] B. Delaunay. “Sur la Sphère Vide.” French. In: Bull. Acad. Science URSS
6 (1934), pp. 793–800 (cit. on p. 5).

[57] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood
from Incomplete Data Via the EM Algorithm.” In: Journal of the Royal
Statistical Society: Series B (Methodological) 39.1 (1977), pp. 1–22. doi:
10.1111/j.2517-6161.1977.tb01600.x (cit. on p. 23).

[58] A. Dix and G. Ellis. “By Chance Enhancing Interaction with Large
Data Sets Through Statistical Sampling.” In: Proceedings of the Working
Conference on Advanced Visual Interfaces. 2002, pp. 167–176. isbn: 1-58113-
537-8. doi: 10.1145/1556262.1556289 (cit. on pp. 16, 25).

[59] H. Doleisch and H. Hauser. “Smooth Brushing For Focus+Context
Visualization Of Simulation Data In 3D.” In: Journal of WSCG. 2001,
pp. 147–154 (cit. on pp. 15, 101).

[60] DualSPHysics. https://dual.sphysics.org/. Accessed: 2021-01-14

(cit. on p. 127).

[61] S. Dutta, A. Biswas, and J. Ahrens. “Multivariate Pointwise Information-
Driven Data Sampling and Visualization.” In: Entropy 21.7 (2019), p. 699

(cit. on p. 26).

[62] S. Dutta, C. M. Chen, G. Heinlein, H. W. Shen, and J. P. Chen. “In
Situ Distribution Guided Analysis and Visualization of Transonic Jet
Engine Simulations.” In: IEEE Transactions on Visualization and Computer
Graphics 23.1 (2017), pp. 811–820. issn: 1077-2626. doi: 10.1109/TVCG.
2016.2598604 (cit. on pp. 23, 24).

[63] S. Dutta and H. W. Shen. “Distribution Driven Extraction and Tracking
of Features for Time-varying Data Analysis.” In: IEEE Transactions
on Visualization and Computer Graphics 22.1 (2016), pp. 837–846. issn:
1077-2626. doi: 10.1109/TVCG.2015.2467436 (cit. on pp. 23, 24).

[64] S. Dutta, J. Woodring, H. W. Shen, J. P. Chen, and J. Ahrens. “Homogene-
ity Guided Probabilistic Data Summaries for Analysis and Visualization
of Large-Scale Data Sets.” In: IEEE Pacific Visualization Symposium. 2017,
pp. 111–120. doi: 10.1109/PACIFICVIS.2017.8031585 (cit. on p. 23).

[65] I. Eames and J. B. Flor. “New Developments in Understanding Interfa-
cial Processes in Turbulent Flows.” In: Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 369.1937

(2011), pp. 702–705. doi: 10.1098/rsta.2010.0332 (cit. on p. 27).

[66] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and C.
Ware. “Surface-Based Flow Visualization.” In: Computers & Graphics 36.8
(2012). Graphics Interaction Virtual Environments and Applications
2012, pp. 974 –990. issn: 0097-8493. doi: 10.1016/j.cag.2012.07.006
(cit. on p. 34).

https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1145/1556262.1556289
https://dual.sphysics.org/
https://doi.org/10.1109/TVCG.2016.2598604
https://doi.org/10.1109/TVCG.2016.2598604
https://doi.org/10.1109/TVCG.2015.2467436
https://doi.org/10.1109/PACIFICVIS.2017.8031585
https://doi.org/10.1098/rsta.2010.0332
https://doi.org/10.1016/j.cag.2012.07.006

bibliography 149

[67] S. Eichelbaum, G. Scheuermann, and M. Hlawitschka. “PointAO - Im-
proved Ambient Occlusion for Point-based Visualization.” In: EuroVis
Short Papers. The Eurographics Association, 2013. isbn: 978-3-905673-99-
9. doi: 10.2312/PE.EuroVisShort.EuroVisShort2013.013-017 (cit. on
p. 8).

[68] G. Ellis, E. Bertini, and A. Dix. “The Sampling Lens: Making Sense of
Saturated Visualisations.” In: CHI 2005 Extended Abstracts on Human
Factors in Computing Systems. CHI EA ’05. Association for Comput-
ing Machinery, 2005, pp. 1351–1354. isbn: 1595930027. doi: 10.1145/
1056808.1056914 (cit. on p. 16).

[69] G. Ellis and A. Dix. “Enabling Automatic Clutter Reduction in Parallel
Coordinate Plots.” In: IEEE Transactions on Visualization and Computer
Graphics 12.5 (2006), pp. 717–724. doi: 10.1109/TVCG.2006.138 (cit. on
p. 16).

[70] G. Ellis and A. Dix. “A Taxonomy of Clutter Reduction for Information
Visualisation.” In: IEEE Transactions on Visualization and Computer Graph-
ics 13.6 (2007), pp. 1216–1223. doi: 10.1109/TVCG.2007.70535 (cit. on
p. 16).

[71] D. Ellsworth, B. Green, and P. Moran. “Interactive Terascale Particle
Visualization.” In: IEEE Visualization. 2004, pp. 353–360. doi: 10.1109/
VISUAL.2004.55 (cit. on pp. 10, 20, 34).

[72] K. Engel, M. Kraus, and T. Ertl. “High-Quality Pre-Integrated Volume
Rendering Using Hardware-Accelerated Pixel Shading.” In: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware. HWWS ’01. Association for Computing Machinery, 2001, pp. 9–16.
doi: 10.1145/383507.383515 (cit. on p. 120).

[73] M. Farazmand and G. Haller. “Computing Lagrangian Coherent Struc-
tures from their Variational Theory.” In: Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 22.1 (2012), p. 013128. doi: 10.1063/1.3690153
(cit. on pp. 44, 47).

[74] D. Feng, L. Kwock, Y. Lee, and R. Taylor. “Matching Visual Saliency
to Confidence in Plots of Uncertain Data.” In: IEEE Transactions on
Visualization and Computer Graphics 16.6 (2010), pp. 980–989. doi: 10.
1109/TVCG.2010.176 (cit. on p. 101).

[75] O. Fernandes, S. Frey, F. Sadlo, and T. Ertl. “Space-Time Volumetric
Depth Images for In-Situ Visualization.” In: IEEE 4th Symposium on
Large Data Analysis and Visualization. 2014, pp. 59–65. doi: 10.1109/
LDAV.2014.7013205 (cit. on pp. 13, 115).

[76] R. Fraedrich, S. Auer, and R. Westermann. “Efficient High-Quality
Volume Rendering of SPH Data.” In: IEEE Transactions on Visualization
and Computer Graphics 16.6 (2010), pp. 1533–1540. issn: 1077-2626. doi:
10.1109/TVCG.2010.148 (cit. on pp. 11, 24).

https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.013-017
https://doi.org/10.1145/1056808.1056914
https://doi.org/10.1145/1056808.1056914
https://doi.org/10.1109/TVCG.2006.138
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/VISUAL.2004.55
https://doi.org/10.1109/VISUAL.2004.55
https://doi.org/10.1145/383507.383515
https://doi.org/10.1063/1.3690153
https://doi.org/10.1109/TVCG.2010.176
https://doi.org/10.1109/TVCG.2010.176
https://doi.org/10.1109/LDAV.2014.7013205
https://doi.org/10.1109/LDAV.2014.7013205
https://doi.org/10.1109/TVCG.2010.148

150 bibliography

[77] R. Fraedrich, J. Schneider, and R. Westermann. “Exploring the Millen-
nium Run - Scalable Rendering of Large-Scale Cosmological Datasets.”
In: IEEE Transactions on Visualization and Computer Graphics 15.6 (2009),
pp. 1251–1258. issn: 1941-0506. doi: 10.1109/TVCG.2009.142 (cit. on
pp. 10, 20).

[78] S. Frey, F. Sadlo, and T. Ertl. “Explorable Volumetric Depth Images
from Raycasting.” In: XXVI Conference on Graphics, Patterns and Images.
2013, pp. 123–130. doi: 10.1109/SIBGRAPI.2013.26 (cit. on pp. 12,
115).

[79] S. Frey, T. Schlömer, S. Grottel, C. Dachsbacher, O. Deussen, and T.
Ertl. “Loose Capacity-Constrained Representatives for the Qualitative
Visual Analysis in Molecular Dynamics.” In: IEEE Pacific Visualization
Symposium. 2011, pp. 51–58. doi: 10.1109/PACIFICVIS.2011.5742372
(cit. on pp. 26, 83).

[80] J. H. Friedman and W. Stuetzle. “John W. Tukey’s Work on Interactive
Graphics.” In: The Annals of Statistics 30.6 (2002), pp. 1629–1639. issn:
00905364. url: http://www.jstor.org/stable/1558733 (cit. on p. 14).

[81] L. Fritschi, I. B. Rojo, and T. Günther. “Visualizing the Temporal Evolu-
tion of the Universe from Cosmology Simulations.” In: IEEE Scientific
Visualization Contest. 2019. doi: 10.1109/SciVis47405.2019.8968943
(cit. on p. 135).

[82] R. Fuchs, J. Kemmler, B. Schindler, J. Waser, F. Sadlo, H. Hauser, and
R. Peikert. “Toward a Lagrangian Vector Field Topology.” In: Computer
Graphics Forum 29.3 (2010), pp. 1163–1172. doi: 10.1111/j.1467-
8659.2009.01686.x (cit. on p. 31).

[83] J. D. Furst and S. M. Pizer. “Marching Ridges.” In: IASTED International
Conference on Signal and Image Processing. 2001 (cit. on p. 33).

[84] GEBCO Bathymetric Compilation Group 2019. “The GEBCO 2019 Grid
- a Continuous Terrain Model for Oceans and Land at 15 Arc-Second
Intervals.” In: (2019). doi: 10 . 5285 / 836f016a - 33be - 6ddc - e053 -
6c86abc0788e (cit. on p. 65).

[85] GPUSPH. http://www.gpusph.org. Accessed: 2018-03-26 (cit. on p. 57).

[86] C. Garth, F. Gerhardt, X. Tricoche, and H. Hans. “Efficient Computation
and Visualization of Coherent Structures in Fluid Flow Applications.”
In: IEEE Transactions on Visualization and Computer Graphics 13.6 (2007),
pp. 1464–1471. doi: 10.1109/TVCG.2007.70551 (cit. on p. 33).

[87] A. V. Getling. Rayleigh-Bénard Convection. World Scientific, 1998. doi:
10.1142/3097 (cit. on p. 27).

[88] R. A. Gingold and J.J. Monaghan. “Smoothed Particle Hydrodynamics:
Theory and Application to Non-Spherical Stars.” In: Monthly notices
of the royal astronomical society 181.3 (1977), pp. 375–389. doi: 10.1093/
mnras/181.3.375 (cit. on pp. 1, 29).

[89] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hop-
kins University Press, 1993 (cit. on p. 98).

https://doi.org/10.1109/TVCG.2009.142
https://doi.org/10.1109/SIBGRAPI.2013.26
https://doi.org/10.1109/PACIFICVIS.2011.5742372
http://www.jstor.org/stable/1558733
https://doi.org/10.1109/SciVis47405.2019.8968943
https://doi.org/10.1111/j.1467-8659.2009.01686.x
https://doi.org/10.1111/j.1467-8659.2009.01686.x
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e
http://www.gpusph.org
https://doi.org/10.1109/TVCG.2007.70551
https://doi.org/10.1142/3097
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1093/mnras/181.3.375

bibliography 151

[90] L. J. Gosink, C. Garth, J. C. Anderson, E. W. Bethel, and K. I. Joy. “An
Application of Multivariate Statistical Analysis for Query-Driven Visu-
alization.” In: IEEE Transactions on Visualization and Computer Graphics
17.3 (2011), pp. 264–275. issn: 1077-2626. doi: 10.1109/TVCG.2010.80
(cit. on p. 24).

[91] P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. “Interactive
SPH Simulation and Rendering on the GPU.” In: Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2010,
pp. 55–64. doi: 10.2312/SCA/SCA10/055-064 (cit. on p. 43).

[92] P. Gralka, I. Wald, S. Geringer, G. Reina, and T. Ertl. “Spatial Partition-
ing Strategies for Memory-Efficient Ray Tracing of Particles.” In: IEEE
10th Symposium on Large Data Analysis and Visualization. 2020 (cit. on
p. 8).

[93] C. P. Gribble. “Interactive Particle Visualisation.” In: Trends in Interactive
Visualization: State-of-the-Art Survey. London: Springer London, 2009,
pp. 79–97. isbn: 978-1-84800-269-2 (cit. on p. 8).

[94] C. P. Gribble, T. Ize, A. Kensler, I. Wald, and S. G. Parker. “A Coher-
ent Grid Traversal Approach to Visualizing Particle-Based Simulation
Data.” In: IEEE Transactions on Visualization and Computer Graphics 13.4
(2007), pp. 758–768. issn: 2160-9306. doi: 10.1109/TVCG.2007.1059
(cit. on p. 8).

[95] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. “MegaMol –
A Prototyping Framework for Particle-based Visualization.” In: IEEE
Transactions on Visualization and Computer Graphics 21.2 (2015), pp. 201–
214. issn: 1077-2626. doi: 10.1109/TVCG.2014.2350479 (cit. on p. 8).

[96] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl. “Coherent Culling and
Shading for Large Molecular Dynamics Visualization.” In: Computer
Graphics Forum 29.3 (2010), pp. 953–962. doi: 10.1111/j.1467-8659.
2009.01698.x (cit. on p. 8).

[97] D. Groß and S. Gumhold. “Advanced Rendering of Line Data with
Ambient Occlusion and Transparency.” In: IEEE Transactions on Visu-
alization and Computer Graphics (2020). issn: 1941-0506. doi: 10.1109/
TVCG.2020.3028954 (cit. on p. 8).

[98] T. Günther, M. Gross, and H. Theisel. “Generic Objective Vortices for
Flow Visualization.” In: ACM Transactions on Graphics (Proc. SIGGRAPH)
36.4 (2017), 141:1–141:11. doi: 10.1145/3072959.3073684 (cit. on p. 67).

[99] T. Günther, C. Rössl, and H. Theisel. “Opacity Optimization for 3D
Line Fields.” In: ACM Transactions on Graphics 32.4 (2013), 120:1–120:8.
issn: 0730-0301. doi: 10.1145/2461912.2461930 (cit. on p. 8).

[100] T. Günther and H. Theisel. “The State of the Art in Vortex Extraction.”
In: Computer Graphics Forum 37.6 (2018), pp. 149–173. doi: 10.1111/cgf.
13319 (cit. on p. 31).

https://doi.org/10.1109/TVCG.2010.80
https://doi.org/10.2312/SCA/SCA10/055-064
https://doi.org/10.1109/TVCG.2007.1059
https://doi.org/10.1109/TVCG.2014.2350479
https://doi.org/10.1111/j.1467-8659.2009.01698.x
https://doi.org/10.1111/j.1467-8659.2009.01698.x
https://doi.org/10.1109/TVCG.2020.3028954
https://doi.org/10.1109/TVCG.2020.3028954
https://doi.org/10.1145/3072959.3073684
https://doi.org/10.1145/2461912.2461930
https://doi.org/10.1111/cgf.13319
https://doi.org/10.1111/cgf.13319

152 bibliography

[101] H. Guo, W. He, T. Peterka, H. Shen, S. M. Collis, and J. J. Helmus.
“Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures
in Uncertain Unsteady Flows.” In: IEEE Transactions on Visualization
and Computer Graphics 22.6 (2016), pp. 1672–1682. issn: 2160-9306. doi:
10.1109/TVCG.2016.2534560 (cit. on pp. 37, 59, 63).

[102] H. Guo, W. He, S. Seo, H. Shen, E. M. Constantinescu, C. Liu, and
T. Peterka. “Extreme-Scale Stochastic Particle Tracing for Uncertain
Unsteady Flow Visualization and Analysis.” In: IEEE Transactions on
Visualization and Computer Graphics 25.9 (2019), pp. 2710–2724. issn:
2160-9306. doi: 10.1109/TVCG.2018.2856772 (cit. on p. 37).

[103] H. Guo, X. Yuan, J. Huang, and X. Zhu. “Coupled Ensemble Flow
Line Advection and Analysis.” In: IEEE Transactions on Visualization
and Computer Graphics 19.12 (2013), pp. 2733–2742. issn: 1941-0506. doi:
10.1109/TVCG.2013.144 (cit. on p. 37).

[104] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, and G.
Haller. “A Critical Comparison of Lagrangian Methods for Coherent
Structure Detection.” In: Chaos: An Interdisciplinary Journal of Nonlinear
Science 27.5 (2017), p. 053104. doi: 10.1063/1.4982720 (cit. on p. 33).

[105] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel.
Real-time Volume Graphics. A. K. Peters, Ltd., 2006. isbn: 1568812663

(cit. on p. 10).

[106] M. Hadwiger, M. Mlejnek, T. Theußl, and P. Rautek. “Time-Dependent
Flow seen through Approximate Observer Killing Fields.” In: IEEE
Transactions on Visualization and Computer Graphics 25.1 (2019), pp. 1257–
1266. issn: 2160-9306. doi: 10.1109/TVCG.2018.2864839 (cit. on p. 30).

[107] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. “Real-
time Ray-Casting and Advanced Shading of Discrete Isosurfaces.” In:
Computer Graphics Forum. Vol. 24. 3. Wiley Online Library. 2005, pp. 303–
312. doi: 10.1111/j.1467-8659.2005.00855.x (cit. on p. 13).

[108] G. Haller. “Distinguished Material Surfaces and Coherent Structures in
Three-Dimensional Fluid Flows.” In: Physica D: Nonlinear Phenomena
149.4 (2001), pp. 248–277. doi: 10.1016/S0167-2789(00)00199-8 (cit.
on pp. 33, 44).

[109] G. Haller. “A Variational Theory of Hyperbolic Lagrangian Coherent
Structures.” In: Physica D: Nonlinear Phenomena 240.7 (2011), pp. 574

–598. issn: 0167-2789. doi: 10.1016/j.physd.2010.11.010 (cit. on
pp. 33, 44).

[110] G. Haller. “Lagrangian Coherent Structures.” In: Annual Review of
Fluid Mechanics 47 (2015), pp. 137–162. doi: 10.1146/annurev-fluid-
010313-141322 (cit. on pp. 1, 31, 33).

[111] G. Haller, D. Karrasch, and F. Kogelbauer. “Material Barriers to Diffu-
sive and Stochastic Transport.” In: Proceedings of the National Academy
of Sciences 115.37 (2018), pp. 9074–9079. issn: 0027-8424. doi: 10.1073/
pnas.1720177115 (cit. on pp. 59–61).

https://doi.org/10.1109/TVCG.2016.2534560
https://doi.org/10.1109/TVCG.2018.2856772
https://doi.org/10.1109/TVCG.2013.144
https://doi.org/10.1063/1.4982720
https://doi.org/10.1109/TVCG.2018.2864839
https://doi.org/10.1111/j.1467-8659.2005.00855.x
https://doi.org/10.1016/S0167-2789(00)00199-8
https://doi.org/10.1016/j.physd.2010.11.010
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1073/pnas.1720177115
https://doi.org/10.1073/pnas.1720177115

bibliography 153

[112] G. Haller, D. Karrasch, and F. Kogelbauer. “Barriers to the Transport of
Diffusive Scalars in Compressible Flows.” In: SIAM Journal on Applied
Dynamical Systems 19.1 (2020), pp. 85–123. doi: 10.1137/19M1238666
(cit. on pp. 59, 60).

[113] G. Haller and G. Yuan. “Lagrangian Coherent Structures and Mixing in
Two-Dimensional Turbulence.” In: Physica D: Nonlinear Phenomena 147.3
(2000), pp. 352–370. doi: 10.1016/S0167-2789(00)00142-1 (cit. on
p. 32).

[114] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. “Flow Field
Reduction Via Reconstructing Vector Data From 3D Streamlines Using
Deep Learning.” In: IEEE Computer Graphics and Applications 39.4 (2019),
pp. 54–67. issn: 1558-1756. doi: 10.1109/MCG.2018.2881523 (cit. on
p. 20).

[115] M. Han, I. Wald, W. Usher, Q. Wu, F. Wang, V. Pascucci, C. D. Hansen,
and C. R. Johnson. “Ray Tracing Generalized Tube Primitives: Method
and Applications.” In: Computer Graphics Forum 38.3 (2019), pp. 467–478.
doi: 10.1111/cgf.13703 (cit. on p. 8).

[116] P. Hanrahan. “VizQL: A Language for Query, Analysis and Visualiza-
tion.” In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’06. Association for Computing Ma-
chinery, 2006, p. 721. isbn: 1595934340. doi: 10.1145/1142473.1142560
(cit. on p. 15).

[117] H. Hauser. “Generalizing Focus+Context Visualization.” In: Scientific
Visualization: The Visual Extraction of Knowledge from Data. Springer Berlin
Heidelberg, 2006, pp. 305–327. isbn: 978-3-540-30790-7. doi: 10.1007/3-
540-30790-7_18 (cit. on p. 15).

[118] H. Hauser, F. Ledermann, and H. Doleisch. “Angular Brushing of
Extended Parallel Coordinates.” In: Proceedings of the IEEE Symposium
on Information Visualization. InfoVis ’02. IEEE Computer Society, 2002,
p. 127. isbn: 076951751X. doi: 10.1109/INFVIS.2002.1173157 (cit. on
p. 15).

[119] S. Hazarika, A. Biswas, and H. W. Shen. “Uncertainty Visualization
Using Copula-Based Analysis in Mixed Distribution Models.” In: IEEE
Transactions on Visualization and Computer Graphics 24.1 (2018), pp. 934–
943. issn: 1077-2626. doi: 10.1109/TVCG.2017.2744099 (cit. on p. 24).

[120] S. Hazarika, A. Biswas, P. Wolfram, E. Lawrence, and N. Urban. “Relationship-
aware Multivariate Sampling Strategy for Scientific Simulation Data.”
In: IEEE VIS Short Papers. 2020. url: https://arxiv.org/abs/2008.
13306 (cit. on p. 26).

[121] S. Hazarika, S. Dutta, H. Shen, and J. Chen. “CoDDA: A Flexible
Copula-based Distribution Driven Analysis Framework for Large-Scale
Multivariate Data.” In: IEEE Transactions on Visualization and Computer
Graphics (2019), pp. 1–1. issn: 1077-2626. doi: 10.1109/TVCG.2018.
2864801 (cit. on p. 24).

https://doi.org/10.1137/19M1238666
https://doi.org/10.1016/S0167-2789(00)00142-1
https://doi.org/10.1109/MCG.2018.2881523
https://doi.org/10.1111/cgf.13703
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.1007/3-540-30790-7_18
https://doi.org/10.1007/3-540-30790-7_18
https://doi.org/10.1109/INFVIS.2002.1173157
https://doi.org/10.1109/TVCG.2017.2744099
https://arxiv.org/abs/2008.13306
https://arxiv.org/abs/2008.13306
https://doi.org/10.1109/TVCG.2018.2864801
https://doi.org/10.1109/TVCG.2018.2864801

154 bibliography

[122] W. He, J. Wang, H. Guo, K. Wang, H. Shen, M. Raj, Y. S. G. Nashed,
and T. Peterka. “InSituNet: Deep Image Synthesis for Parameter Space
Exploration of Ensemble Simulations.” In: IEEE Transactions on Visu-
alization and Computer Graphics 26.1 (2020), pp. 23–33. issn: 1941-0506.
doi: 10.1109/TVCG.2019.2934312 (cit. on p. 135).

[123] J. Heinrich, S. Bachthaler, and D. Weiskopf. “Progressive Splatting
of Continuous Scatterplots and Parallel Coordinates.” In: Computer
Graphics Forum 30.3 (2011), pp. 653–662. issn: 1467-8659. doi: 10.1111/
j.1467-8659.2011.01914.x (cit. on p. 17).

[124] J. Heinrich and D. Weiskopf. “Continuous Parallel Coordinates.” In:
IEEE Transactions on Visualization and Computer Graphics 15.6 (2009),
pp. 1531–1538. issn: 1077-2626. doi: 10.1109/TVCG.2009.131 (cit. on
p. 17).

[125] J. Heinrich and D. Weiskopf. “State of the Art of Parallel Coordinates.”
In: Eurographics 2013 - State of the Art Reports. The Eurographics As-
sociation, 2013. doi: 10.2312/conf/EG2013/stars/095-116 (cit. on
p. 14).

[126] J. Helman and L. Hesselink. “Representation and Display of Vector
Field Topology in Fluid Flow Data Sets.” In: Computer 22.08 (1989),
pp. 27–36. issn: 0018-9162. doi: 10.1109/2.35197 (cit. on pp. 1, 30).

[127] N. Henze. “Invariant Tests for Multivariate Normality: A Critical Re-
view.” In: Statistical papers 43.4 (2002), pp. 467–506 (cit. on p. 22).

[128] H. Hersbach, C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee.
“ERA-20CM: A Twentieth-Century Atmospheric Model Ensemble.”
In: Quarterly Journal of the Royal Meteorological Society 141.691 (2015),
pp. 2350–2375. doi: 10.1002/qj.2528 (cit. on p. 36).

[129] M. Hlawatsch, P. Leube, W. Nowak, and D. Weiskopf. “Flow Radar
Glyphs - Static Visualization of Unsteady Flow with Uncertainty.” In:
IEEE Transactions on Visualization and Computer Graphics 17.12 (2011),
pp. 1949–1958. issn: 2160-9306. doi: 10.1109/TVCG.2011.203 (cit. on
p. 7).

[130] M. Hlawatsch, F. Sadlo, H. Jang, and D. Weiskopf. “Pathline Glyphs.”
In: Computer Graphics Forum 33.2 (2014), pp. 497–506. doi: 10.1111/cgf.
12335 (cit. on p. 7).

[131] M. Hlawatsch, F. Sadlo, and D. Weiskopf. “Hierarchical Line Integra-
tion.” In: IEEE Transactions on Visualization and Computer Graphics 17.8
(2011), pp. 1148–1163. issn: 1077-2626. doi: 10.1109/TVCG.2010.227
(cit. on pp. 36, 78).

[132] H. Hochheiser and B. Shneiderman. “Dynamic Query Tools for Time
Series Data Sets: Timebox Widgets for Interactive Exploration.” In:
Information Visualization 3.1 (2004), pp. 1–18. doi: 10.1057/palgrave.
ivs.9500061 (cit. on p. 101).

https://doi.org/10.1109/TVCG.2019.2934312
https://doi.org/10.1111/j.1467-8659.2011.01914.x
https://doi.org/10.1111/j.1467-8659.2011.01914.x
https://doi.org/10.1109/TVCG.2009.131
https://doi.org/10.2312/conf/EG2013/stars/095-116
https://doi.org/10.1109/2.35197
https://doi.org/10.1002/qj.2528
https://doi.org/10.1109/TVCG.2011.203
https://doi.org/10.1111/cgf.12335
https://doi.org/10.1111/cgf.12335
https://doi.org/10.1109/TVCG.2010.227
https://doi.org/10.1057/palgrave.ivs.9500061
https://doi.org/10.1057/palgrave.ivs.9500061

bibliography 155

[133] H. Hochstetter, J. Orthmann, and A. Kolb. “Adaptive Sampling for
On-The-Fly Ray Casting of Particle-based Fluids.” In: Eurographics /
ACM SIGGRAPH Symposium on High Performance Graphics. 2016. isbn:
978-3-03868-008-6. doi: 10.2312/hpg.20161199 (cit. on p. 11).

[134] B. E. Hollister and A. Pang. “Visual Analysis of Transport Similarity in
2D CFD Ensembles.” In: Electronic Imaging 2016.1 (2016), pp. 1–11. doi:
10.2352/ISSN.2470-1173.2016.1.VDA-508 (cit. on p. 36).

[135] W. Hong, N. Neophytou, K. Mueller, and A. Kaufman. “Constructing
3D Elliptical Gaussians for Irregular Data.” In: Mathematical Foundations
of Scientific Visualization, Computer Graphics, and Massive Data Exploration.
Springer Berlin Heidelberg, 2009, pp. 213–225. isbn: 978-3-540-49926-8.
doi: 10.1007/b106657_11 (cit. on p. 10).

[136] M. Hopf and T. Ertl. “Herarchical Splatting of Scattered Data.” In: IEEE
Visualization. 2003, pp. 433–440. doi: 10.1109/VISUAL.2003.1250404
(cit. on pp. 9, 20).

[137] M. Hopf, M. Luttenberger, and T. Ertl. “Hierarchical Splatting of Scat-
tered 4D Data.” In: IEEE Computer Graphics and Applications 24.4 (2004),
pp. 64–72. issn: 1558-1756. doi: 10.1109/MCG.2004.7 (cit. on pp. 9, 20).

[138] D. A. Huffman. “A Method for the Construction of Minimum-Redundancy
Codes.” In: Proceedings of the IRE 40.9 (1952), pp. 1098–1101. issn: 2162-
6634. doi: 10.1109/JRPROC.1952.273898 (cit. on p. 19).

[139] M. Hummel, R. Bujack, K. I. Joy, and C. Garth. “Error Estimates for
Lagrangian Flow Field Representations.” In: Proceedings of the Eurograph-
ics / IEEE VGTC Conference on Visualization: Short Papers. EuroVis ’16.
Eurographics Association, 2016, pp. 7–11. doi: 10.2312/eurovisshort.
20161153 (cit. on p. 36).

[140] M. Hummel, H. Obermaier, C. Garth, and K. I. Joy. “Comparative
Visual Analysis of Lagrangian Transport in CFD Ensembles.” In: IEEE
Transactions on Visualization and Computer Graphics 19.12 (2013), pp. 2743–
2752. issn: 2160-9306. doi: 10.1109/TVCG.2013.141 (cit. on p. 36).

[141] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. “Out-of-
Core Compression and Decompression of Large n-Dimensional Scalar
Fields.” In: Computer Graphics Forum 22.3 (2003), pp. 343–348. doi:
10.1111/1467-8659.00681 (cit. on p. 20).

[142] O. Igouchkine, Y. Zhang, and K. Ma. “Multi-Material Volume Rendering
with a Physically-Based Surface Reflection Model.” In: IEEE Transactions
on Visualization and Computer Graphics 24.12 (2018), pp. 3147–3159. issn:
1941-0506. doi: 10.1109/TVCG.2017.2784830 (cit. on p. 13).

[143] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner. “A Parallel SPH
Implementation on Multi-Core CPUs.” In: Computer Graphics Forum 30.1
(2011), pp. 99–112. doi: 10.1111/j.1467-8659.2010.01832.x (cit. on
p. 43).

https://doi.org/10.2312/hpg.20161199
https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-508
https://doi.org/10.1007/b106657_11
https://doi.org/10.1109/VISUAL.2003.1250404
https://doi.org/10.1109/MCG.2004.7
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.2312/eurovisshort.20161153
https://doi.org/10.2312/eurovisshort.20161153
https://doi.org/10.1109/TVCG.2013.141
https://doi.org/10.1111/1467-8659.00681
https://doi.org/10.1109/TVCG.2017.2784830
https://doi.org/10.1111/j.1467-8659.2010.01832.x

156 bibliography

[144] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner.
“SPH Fluids in Computer Graphics.” In: Eurographics 2014 - State of the
Art Reports. The Eurographics Association, 2014. doi: 10.2312/egst.
20141034 (cit. on pp. 29, 42).

[145] A. Inselberg. “The Plane with Parallel Coordinates.” In: The visual
computer 1.2 (1985), pp. 69–91. doi: 10.1007/BF01898350 (cit. on p. 14).

[146] M. Isenburg, P. Lindstrom, and J. Snoeyink. “Lossless Compression of
Predicted Floating-Point Geometry.” In: Computer-Aided Design 37.8
(2005), pp. 869–877. issn: 0010-4485. doi: 10.1016/j.cad.2004.09.015
(cit. on p. 20).

[147] R. Jain and I. Chlamtac. “The P2 Algorithm for Dynamic Calculation of
Quantiles and Histograms without Storing Observations.” In: Commu-
nications of the ACM 28.10 (1985), pp. 1076–1085. issn: 0001-0782. doi:
10.1145/4372.4378 (cit. on p. 126).

[148] J. Jakob, M. Gross, and T. Günther. “A Fluid Flow Data Set for Machine
Learning and its Application to Neural Flow Map Interpolation.” In:
IEEE Transactions on Visualization and Computer Graphics (2020), pp. 1–1.
issn: 1941-0506. doi: 10.1109/TVCG.2020.3028947 (cit. on p. 32).

[149] Y. Jang, R. P. Botchen, A. Lauser, D. S. Ebert, K. P. Gaither, and T.
Ertl. “Enhancing the Interactive Visualization of Procedurally Encoded
Multifield Data with Ellipsoidal Basis Functions.” In: Computer Graphics
Forum 25.3 (2006), pp. 587–596. doi: 10.1111/j.1467- 8659.2006.
00978.x (cit. on p. 10).

[150] Y. Jang, R. Fuchs, B. Schindler, and R. Peikert. “Volumetric Evaluation of
Meshless Data From Smoothed Particle Hydrodynamics Simulations.”
In: IEEE/ EG Symposium on Volume Graphics. 2010. isbn: 978-3-905674-
23-1. doi: 10.2312/VG/VG10/045-052 (cit. on p. 11).

[151] Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, K. P. Gaither, and
T. Ertl. “Interactively Visualizing Procedurally Encoded Scalar Fields.”
In: Proceedings of the Sixth Joint Eurographics - IEEE TCVG Conference
on Visualization. VISSYM’04. 2004, pp. 35–44. isbn: 3-905673-07-X. doi:
10.2312/VisSym/VisSym04/035-044 (cit. on p. 10).

[152] J. Jeong and F. Hussain. “On the Identification of a Vortex.” In: Journal of
Fluid Mechanics 285 (1995), pp. 69–94. doi: 10.1017/S0022112095000462
(cit. on p. 34).

[153] J. Johansson, P. Ljung, M. Jern, and M. Cooper. “Revealing Structure
Within Clustered Parallel Coordinates Displays.” In: IEEE Symposium on
Information Visualization, 2005. 2005, pp. 125–132. doi: 10.1109/INFVIS.
2005.1532138 (cit. on p. 100).

[154] C. R. Johnson and A. R. Sanderson. “A Next Step: Visualizing Errors
and Uncertainty.” In: IEEE Computer Graphics and Applications 23.5
(2003), pp. 6–10. issn: 1558-1756. doi: 10.1109/MCG.2003.1231171
(cit. on p. 35).

https://doi.org/10.2312/egst.20141034
https://doi.org/10.2312/egst.20141034
https://doi.org/10.1007/BF01898350
https://doi.org/10.1016/j.cad.2004.09.015
https://doi.org/10.1145/4372.4378
https://doi.org/10.1109/TVCG.2020.3028947
https://doi.org/10.1111/j.1467-8659.2006.00978.x
https://doi.org/10.1111/j.1467-8659.2006.00978.x
https://doi.org/10.2312/VG/VG10/045-052
https://doi.org/10.2312/VisSym/VisSym04/035-044
https://doi.org/10.1017/S0022112095000462
https://doi.org/10.1109/INFVIS.2005.1532138
https://doi.org/10.1109/INFVIS.2005.1532138
https://doi.org/10.1109/MCG.2003.1231171

bibliography 157

[155] C. Jones, K.-L. Ma, S. Ethier, and W.-L. Lee. “An Integrated Exploration
Approach to Visualizing Multivariate Particle Data.” In: Computing in
Science & Engineering 10.4 (2008), pp. 20–29. doi: 10.1109/MCSE.2008.
88 (cit. on p. 35).

[156] D. Juba and A. Varshney. “Modelling and Rendering Large Volume
Data with Gaussian Radial Basis Functions.” In: University of Maryland,
Technical Report No. UMIACS-TR-2007-22 (2007) (cit. on p. 10).

[157] R. Kaehler, T. Abel, and H.-C. Hege. “Simultaneous GPU-Assisted
Raycasting of Unstructured Point Sets and Volumetric Grid Data.”
In: Eurographics/IEEE VGTC Symposium on Volume Graphics. 2007. isbn:
978-3-905674-03-3. doi: 10.2312/VG/VG07/049-056 (cit. on p. 8).

[158] F. Kahlert and S. Gumhold. “Partial Matching of Trajectories with
Particle Orientation for Exploratory Trajectory Visualization.” In: Vision,
Modeling, and Visualization. The Eurographics Association, 2020. isbn:
978-3-03868-123-6. doi: 10.2312/vmv.20201193 (cit. on p. 7).

[159] J. Kalojanov and P. Slusallek. “A Parallel Algorithm for Construction
of Uniform Grids.” In: Proceedings of the Conference on High Performance
Graphics 2009. HPG ’09. ACM, 2009, pp. 23–28. isbn: 978-1-60558-603-8.
doi: 10.1145/1572769.1572773 (cit. on p. 42).

[160] Y. Kanamori, Z. Szego, and T. Nishita. “GPU-based Fast Ray Casting
for a Large Number of Metaballs.” In: Computer Graphics Forum 27.2
(2008), pp. 351–360. doi: 10.1111/j.1467-8659.2008.01132.x (cit. on
p. 8).

[161] E. Kandogan. “Star Coordinates: A Multi-dimensional Visualization
Technique with Uniform Treatment of Dimensions.” In: In Proceedings
of the IEEE Information Visualization Symposium, Late Breaking Hot Topics.
2000, pp. 9–12 (cit. on p. 14).

[162] E. Kandogan. “Visualizing Multi-Dimensional Clusters, Trends, and
Outliers Using Star Coordinates.” In: Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’01. 2001, pp. 107–116. isbn: 158113391X. doi: 10.1145/502512.
502530 (cit. on p. 14).

[163] M. Kanzler, M. Rautenhaus, and R. Westermann. “A Voxel-Based Ren-
dering Pipeline for Large 3D Line Sets.” In: IEEE Transactions on Visual-
ization and Computer Graphics 25.7 (2019), pp. 2378–2391. issn: 1941-0506.
doi: 10.1109/TVCG.2018.2834372 (cit. on p. 8).

[164] G. K. Karch, F. Sadlo, D. Weiskopf, and T. Ertl. “Visualization of 2D
Unsteady Flow Using Streamline-Based Concepts in Space-Time.” In:
Journal of Visualization 19.1 (2016), pp. 115–128. issn: 1875-8975. doi:
10.1007/s12650-015-0284-z (cit. on p. 31).

[165] J. Kehrer and H. Hauser. “Visualization and Visual Analysis of Multi-
faceted Scientific Data: A Survey.” In: IEEE Transactions on Visualization
and Computer Graphics 19.3 (2013), pp. 495–513. issn: 1077-2626. doi:
10.1109/TVCG.2012.110 (cit. on pp. 13, 136).

https://doi.org/10.1109/MCSE.2008.88
https://doi.org/10.1109/MCSE.2008.88
https://doi.org/10.2312/VG/VG07/049-056
https://doi.org/10.2312/vmv.20201193
https://doi.org/10.1145/1572769.1572773
https://doi.org/10.1111/j.1467-8659.2008.01132.x
https://doi.org/10.1145/502512.502530
https://doi.org/10.1145/502512.502530
https://doi.org/10.1109/TVCG.2018.2834372
https://doi.org/10.1007/s12650-015-0284-z
https://doi.org/10.1109/TVCG.2012.110

158 bibliography

[166] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G.
Melançon. “Visual Analytics: Definition, Process, and Challenges.”
In: Information Visualization: Human-Centered Issues and Perspectives.
Springer Berlin Heidelberg, 2008, pp. 154–175. isbn: 978-3-540-70956-5.
doi: 10.1007/978-3-540-70956-5_7 (cit. on p. 17).

[167] M. Kern, C. Neuhauser, T. Maack, M. Han, W. Usher, and R. West-
ermann. “A Comparison of Rendering Techniques for 3D Line Sets
with Transparency.” In: IEEE Transactions on Visualization and Computer
Graphics (2020), pp. 1–1. doi: 10.1109/TVCG.2020.2975795 (cit. on p. 8).

[168] B. Kim and T. Günther. “Robust Reference Frame Extraction from
Unsteady 2D Vector Fields with Convolutional Neural Networks.” In:
Computer Graphics Forum 38.3 (2019), pp. 285–295. doi: 10.1111/cgf.
13689 (cit. on p. 31).

[169] G. Kindlmann, C. Chiw, T. Huynh, A. Gyulassy, J. Reppy, and P.-T.
Bremer. “Rendering and Extracting Extremal Features in 3D Fields.”
In: Computer Graphics Forum 37.3 (2018), pp. 525–536. doi: 10.1111/cgf.
13439 (cit. on p. 33).

[170] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations. Vol. 23. Springer Science & Business Media, 2013 (cit. on
p. 60).

[171] J. Kniss, G. Kindlmann, and C. Hansen. “Multidimensional Transfer
Functions for Interactive Volume Rendering.” In: IEEE Transactions
on Visualization and Computer Graphics 8.3 (2002), pp. 270–285. doi:
10.1109/TVCG.2002.1021579 (cit. on p. 105).

[172] A. Knoll, Y. Hijazi, R. Westerteiger, M. Schott, C. Hansen, and H. Hagen.
“Volume Ray Casting with Peak Finding and Differential Sampling.”
In: IEEE Transactions on Visualization and Computer Graphics 15.6 (2009),
pp. 1571–1578. issn: 1941-0506. doi: 10.1109/TVCG.2009.204 (cit. on
p. 13).

[173] A. Knoll, R. K. Morley, I. Wald, N. Leaf, and P. Messmer. “Efficient
Particle Volume Splatting in a Ray Tracer.” In: Ray Tracing Gems: High-
Quality and Real-Time Rendering with DXR and Other APIs. Apress, 2019.
Chap. 29, pp. 533–541. isbn: 978-1-4842-4427-2. doi: 10.1007/978-1-
4842-4427-2_29 (cit. on pp. 9, 98).

[174] A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M. E. Papka, and K.
Gaither. “RBF Volume Ray Casting on Multicore and Manycore CPUs.”
In: Computer Graphics Forum 33.3 (2014), pp. 71–80. doi: 10.1111/cgf.
12363 (cit. on p. 11).

[175] R. Koch, S. Braun, L. Wieth, G. Chaussonnet, T. Dauch, and H.-J.
Bauer. “Prediction of Primary Atomization using Smoothed Particle
Hydrodynamics.” In: European Journal of Mechanics - B/Fluids 61, Part 2

(2017). Rotating Flows, pp. 271–278. issn: 0997-7546. doi: 10.1016/j.
euromechflu.2016.10.007 (cit. on p. 29).

https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1109/TVCG.2020.2975795
https://doi.org/10.1111/cgf.13689
https://doi.org/10.1111/cgf.13689
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1111/cgf.13439
https://doi.org/10.1109/TVCG.2002.1021579
https://doi.org/10.1109/TVCG.2009.204
https://doi.org/10.1007/978-1-4842-4427-2_29
https://doi.org/10.1007/978-1-4842-4427-2_29
https://doi.org/10.1111/cgf.12363
https://doi.org/10.1111/cgf.12363
https://doi.org/10.1016/j.euromechflu.2016.10.007
https://doi.org/10.1016/j.euromechflu.2016.10.007

bibliography 159

[176] R. Kosara, F. Bendix, and H. Hauser. “Time Histograms for Large, Time-
Dependent Data.” In: Proceedings of the Sixth Joint Eurographics-IEEE
TCVG conference on Visualization. 2004, pp. 45–54 (cit. on p. 101).

[177] J. Krüger, P. Kipfer, P. Konclratieva, and R. Westermann. “A Particle
System for Interactive Visualization of 3D Flows.” In: IEEE Transactions
on visualization and computer graphics 11.6 (2005), pp. 744–756. doi:
10.1109/TVCG.2005.87 (cit. on p. 34).

[178] S. Kumar, S. Petruzza, W. Usher, and V. Pascucci. “Spatially-Aware
Parallel I/O for Particle Data.” In: Proceedings of the 48th International
Conference on Parallel Processing. ICPP 2019. Association for Computing
Machinery, 2019. isbn: 9781450362955. doi: 10.1145/3337821.3337875
(cit. on p. 25).

[179] Norman Kuring. 2005. url: https://earthobservatory.nasa.gov/
images/5432/the-gulf-stream (cit. on p. 31).

[180] W. Kutta. “Beitrag zur Näherungsweisen Integration Totaler Differen-
tialgleichungen.” In: Zeitschrift für Mathematik und Physik. 46 (1901),
pp. 435–453 (cit. on p. 29).

[181] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C. S. Chang, S.
Klasky, R. Latham, R. Ross, and N. F. Samatova. “ISABELA for Effective
In Situ Compression of Scientific Data.” In: Concurrency and Computation:
Practice and Experience 25.4 (2013), pp. 524–540. doi: 10.1002/cpe.2887
(cit. on pp. 2, 20).

[182] O. D. Lampe and H. Hauser. “Interactive Visualization of Streaming
Data with Kernel Density Estimation.” In: IEEE Pacific Visualization
Symposium. 2011, pp. 171–178. doi: 10.1109/PACIFICVIS.2011.5742387
(cit. on p. 93).

[183] D. A. Lane. “UFAT - A Particle Tracer for Time-Dependent Flow Fields.”
In: Proceedings Visualization ’94. 1994, pp. 257–264. doi: 10.1109/VISUAL.
1994.346311 (cit. on p. 34).

[184] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. “Topology-Based
Flow Visualization, The State of the Art.” In: Topology-based Methods
in Visualization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 1–19. isbn: 978-3-540-70823-0. doi: 10.1007/978-3-540-70823-0_1
(cit. on p. 30).

[185] D. J. Lehmann and H. Theisel. “Orthographic Star Coordinates.” In:
IEEE Transactions on Visualization and Computer Graphics 19.12 (2013),
pp. 2615–2624. issn: 1941-0506. doi: 10.1109/TVCG.2013.182 (cit. on
p. 15).

[186] A. Lež, A. Zajic, K. Matković, A. Pobitzer, M. Mayer, and H. Hauser.
“Interactive Exploration and Analysis of Pathlines in Flow Data.” In:
Proceedings of the 19th International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision (2011), pp. 17–24 (cit. on
pp. 35, 53).

https://doi.org/10.1109/TVCG.2005.87
https://doi.org/10.1145/3337821.3337875
https://earthobservatory.nasa.gov/images/5432/the-gulf-stream
https://earthobservatory.nasa.gov/images/5432/the-gulf-stream
https://doi.org/10.1002/cpe.2887
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/VISUAL.1994.346311
https://doi.org/10.1109/VISUAL.1994.346311
https://doi.org/10.1007/978-3-540-70823-0_1
https://doi.org/10.1109/TVCG.2013.182

160 bibliography

[187] G. Li, J. Xu, T. Zhang, G. Shan, H. Shen, K. Wang, S. Liao, and Z. Lu.
“Distribution-Based Particle Data Reduction for In-situ Analysis and
Visualization of Large-scale N-body Cosmological Simulations.” In:
IEEE Pacific Visualization Symposium. 2020, pp. 171–180. doi: 10.1109/
PacificVis48177.2020.1186 (cit. on p. 24).

[188] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. Clyne, and H. Childs.
“Data Reduction Techniques for Simulation, Visualization and Data
Analysis.” In: Computer Graphics Forum 37.6 (2018), pp. 422–447. doi:
10.1111/cgf.13336 (cit. on p. 19).

[189] F. Lindemann and T. Ropinski. “About the Influence of Illumination
Models on Image Comprehension in Direct Volume Rendering.” In:
IEEE Transactions on Visualization and Computer Graphics 17.12 (2011),
pp. 1922–1931. issn: 1941-0506. doi: 10.1109/TVCG.2011.161 (cit. on
p. 126).

[190] P. Lindstrom. “Fixed-Rate Compressed Floating-Point Arrays.” In: IEEE
Transactions on Visualization and Computer Graphics 20.12 (2014), pp. 2674–
2683. doi: 10.1109/TVCG.2014.2346458 (cit. on p. 19).

[191] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of
Floating-Point Data.” In: IEEE Transactions on Visualization and Computer
Graphics 12.5 (2006), pp. 1245–1250. issn: 1941-0506. doi: 10.1109/TVCG.
2006.143 (cit. on p. 20).

[192] M. B. Liu and G. R. Liu. “Smoothed Particle Hydrodynamics (SPH):
An Overview and Recent Developments.” In: Archives of Computational
Methods in Engineering 17.1 (2010), pp. 25–76. doi: 10.1007/s11831-
010-9040-7 (cit. on p. 46).

[193] S. Liu, W. Cui, Y. Wu, and M. Liu. “A Survey on Information Visu-
alization: Recent Advances and Challenges.” In: The Visual Computer
30.12 (2014), pp. 1373–1393. issn: 1432-2315. doi: 10.1007/s00371-013-
0892-3 (cit. on p. 13).

[194] S. Liu, J. A. Levine, P. T. Bremer, and V. Pascucci. “Gaussian Mixture
Model Based Volume Visualization.” In: IEEE 2nd Symposium on Large
Data Analysis and Visualization. 2012, pp. 73–77. doi: 10.1109/LDAV.
2012.6378978 (cit. on p. 125).

[195] S. Liu, D. Maljovec, B. Wang, P. Bremer, and V. Pascucci. “Visualizing
High-Dimensional Data: Advances in the Past Decade.” In: IEEE Trans-
actions on Visualization and Computer Graphics 23.3 (2017), pp. 1249–1268.
issn: 1077-2626. doi: 10.1109/TVCG.2016.2640960 (cit. on p. 13).

[196] P. Ljung, J. Krüger, E. Groller, M. Hadwiger, C. D. Hansen, and A.
Ynnerman. “State of the Art in Transfer Functions for Direct Volume
Rendering.” In: Computer Graphics Forum. Vol. 35. 3. Wiley Online
Library. 2016, pp. 669–691. doi: 10.1111/cgf.12934 (cit. on p. 7).

[197] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm.” In: SIGGRAPH Computer Graphics
21.4 (1987), pp. 163–169. issn: 0097-8930. doi: 10.1145/37402.37422
(cit. on pp. 13, 44).

https://doi.org/10.1109/PacificVis48177.2020.1186
https://doi.org/10.1109/PacificVis48177.2020.1186
https://doi.org/10.1111/cgf.13336
https://doi.org/10.1109/TVCG.2011.161
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2006.143
https://doi.org/10.1109/TVCG.2006.143
https://doi.org/10.1007/s11831-010-9040-7
https://doi.org/10.1007/s11831-010-9040-7
https://doi.org/10.1007/s00371-013-0892-3
https://doi.org/10.1007/s00371-013-0892-3
https://doi.org/10.1109/LDAV.2012.6378978
https://doi.org/10.1109/LDAV.2012.6378978
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1111/cgf.12934
https://doi.org/10.1145/37402.37422

bibliography 161

[198] E. N. Lorenz. “Deterministic Nonperiodic Flow.” In: Journal of the
Atmospheric Sciences 20.2 (1963), pp. 130–141 (cit. on pp. 1, 35, 59).

[199] L. B. Lucy. “A Numerical Approach to the Testing of the Fission
Hypothesis.” In: The Astronomical Journal 82 (1977), pp. 1013–1024. doi:
10.1086/112164 (cit. on pp. 1, 29).

[200] J. Lukasczyk, C. Garth, M. Larsen, W. Engelke, I. Hotz, D. Rogers, J.
Ahrens, and R. Maciejewski. “Cinema Darkroom: A Deferred Render-
ing Framework for Large-Scale Datasets.” In: IEEE 10th Symposium on
Large Data Analysis and Visualization. 2020. url: https://arxiv.org/
abs/2010.03936 (cit. on p. 12).

[201] J. Lukasczyk, E. Kinner, J. Ahrens, H. Leitte, and C. Garth. “VOIDGA: A
View-Approximation Oriented Image Database Generation Approach.”
In: IEEE 8th Symposium on Large Data Analysis and Visualization. 2018,
pp. 12–22. doi: 10.1109/LDAV.2018.8739204 (cit. on pp. 12, 134).

[202] C. Lundström, P. Ljung, A. Persson, and A. Ynnerman. “Uncertainty
Visualization in Medical Volume Rendering Using Probabilistic Anima-
tion.” In: IEEE Transactions on Visualization and Computer Graphics 13.6
(2007), pp. 1648–1655 (cit. on p. 125).

[203] C. Lundström, P. Ljung, and A. Ynnerman. “Local Histograms for
Design of Transfer Functions in Direct Volume Rendering.” In: IEEE
Transactions on Visualization and Computer Graphics 12.6 (2006), pp. 1570–
1579. issn: 1077-2626. doi: 10.1109/TVCG.2006.100 (cit. on p. 24).

[204] P. C. Mahalanobis. “On the Generalized Distance in Statistics.” In:
National Institute of Science of India. 1936 (cit. on p. 103).

[205] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo. “Illuminated Lines Revis-
ited.” In: IEEE Visualization. 2005, pp. 19–26. doi: 10.1109/VISUAL.
2005.1532772 (cit. on pp. 8, 34).

[206] A. R. Martin and M. O. Ward. “High Dimensional Brushing for In-
teractive Exploration of Multivariate Data.” In: Proceedings of the 6th
Conference on Visualization. VIS ’95. IEEE Computer Society, 1995, p. 271.
isbn: 0818671874 (cit. on p. 15).

[207] Ivan Marusic and Susan Broomhall. “Leonardo da Vinci and Fluid
Mechanics.” In: Annual Review of Fluid Mechanics 53.1 (2021), pp. 1–25.
doi: 10.1146/annurev-fluid-022620-122816 (cit. on p. 28).

[208] M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, and H. L. Swin-
ney. “Uncovering the Lagrangian Skeleton of Turbulence.” In: Physical
Review Letters 98.14 (2007), p. 144502. doi: 10.1103/PhysRevLett.98.
144502 (cit. on p. 53).

[209] N. Max. “Optical Models for Direct Volume Rendering.” In: IEEE
Transactions on Visualization and Computer Graphics 1.2 (1995), pp. 99–108.
issn: 1941-0506. doi: 10.1109/2945.468400 (cit. on pp. 10, 126).

https://doi.org/10.1086/112164
https://arxiv.org/abs/2010.03936
https://arxiv.org/abs/2010.03936
https://doi.org/10.1109/LDAV.2018.8739204
https://doi.org/10.1109/TVCG.2006.100
https://doi.org/10.1109/VISUAL.2005.1532772
https://doi.org/10.1109/VISUAL.2005.1532772
https://doi.org/10.1146/annurev-fluid-022620-122816
https://doi.org/10.1103/PhysRevLett.98.144502
https://doi.org/10.1103/PhysRevLett.98.144502
https://doi.org/10.1109/2945.468400

162 bibliography

[210] A. Mayorga and M. Gleicher. “Splatterplots: Overcoming Overdraw
in Scatter Plots.” In: IEEE Transactions on Visualization and Computer
Graphics 19.9 (2013), pp. 1526–1538. issn: 1077-2626. doi: 10.1109/TVCG.
2013.65 (cit. on pp. 16, 103).

[211] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. “Over
Two Decades of Integration-Based, Geometric Flow Visualization.”
In: Computer Graphics Forum. Vol. 29. 6. Wiley Online Library. 2010,
pp. 1807–1829. doi: 10.1111/j.1467-8659.2010.01650.x (cit. on
p. 33).

[212] C. J. Mecklin and D. J. Mundfrom. “A Monte Carlo Comparison of the
Type I and Type II Error Rates of Tests of Multivariate Normality.” In:
Journal of Statistical Computation and Simulation 75.2 (2005), pp. 93–107.
doi: 10.1080/0094965042000193233 (cit. on p. 22).

[213] J. J. Miller and E. J. Wegman. “Construction of Line Densities for
Parallel Coordinate Plots.” In: Computing and Graphics in Statistics 36

(1991), pp. 107–123 (cit. on p. 100).

[214] V. Molchanov, A. Fofonov, and L. Linsen. “Continuous Representation
of Projected Attribute Spaces of Multifields over Any Spatial Sampling.”
In: Computer Graphics Forum 32.3pt3 (2013), pp. 301–310. doi: 10.1111/
cgf.12117 (cit. on p. 17).

[215] V. Molchanov, A. Fofonov, S. Rosswog, P. Rosenthal, and L. Linsen.
“SmoothViz: An Interactive Visual Analysis System for SPH Data.” In:
Proceedings of the 8th International SPHERIC Workshop. 2013, pp. 350–356

(cit. on pp. 15, 35).

[216] J. J. Monaghan. “Why Particle Methods Work.” In: SIAM Journal on
Scientific and Statistical Computing 3.4 (1982), pp. 422–433. doi: 10.1137/
0903027 (cit. on p. 84).

[217] J. J. Monaghan. “Smoothed Particle Hydrodynamics.” In: Annual review
of astronomy and astrophysics 30.1 (1992), pp. 543–574. doi: 10.1146/
annurev.aa.30.090192.002551 (cit. on p. 76).

[218] J. J. Monaghan. “Simulating Free Surface Flows with SPH.” In: Journal
of Computational Physics 110.2 (1994), pp. 399 –406. issn: 0021-9991. doi:
10.1006/jcph.1994.1034 (cit. on p. 29).

[219] G. E. Moore. “Cramming More Components onto Integrated Circuits.”
In: Electronics Magazine (1965) (cit. on p. 2).

[220] N. Morrical, W. Usher, I. Wald, and V. Pascucci. “Efficient Space Skip-
ping and Adaptive Sampling of Unstructured Volumes Using Hardware
Accelerated Ray Tracing.” In: IEEE Visualization. 2019, pp. 256–260. doi:
10.1109/VISUAL.2019.8933539 (cit. on p. 10).

[221] K. Mueller, T. Moller, and R. Crawlis. “Splatting Without the Blur.”
In: IEEE Visualization. 1999, pp. 363–544. doi: 10.1109/VISUAL.1999.
809909 (cit. on p. 9).

https://doi.org/10.1109/TVCG.2013.65
https://doi.org/10.1109/TVCG.2013.65
https://doi.org/10.1111/j.1467-8659.2010.01650.x
https://doi.org/10.1080/0094965042000193233
https://doi.org/10.1111/cgf.12117
https://doi.org/10.1111/cgf.12117
https://doi.org/10.1137/0903027
https://doi.org/10.1137/0903027
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1006/jcph.1994.1034
https://doi.org/10.1109/VISUAL.2019.8933539
https://doi.org/10.1109/VISUAL.1999.809909
https://doi.org/10.1109/VISUAL.1999.809909

bibliography 163

[222] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. “IBR-Assisted Volume
Rendering.” In: Late Breaking Hot Topics, Proceedings of IEEE Visualization.
1999, pp. 5–8 (cit. on p. 12).

[223] C. Münstermann, S. Krumpen, R. Klein, and C. Peters. “Moment-
Based Order-Independent Transparency.” In: Proc. ACM Comput. Graph.
Interact. Tech. 1.1 (2018), 7:1–7:20. issn: 2577-6193. doi: 10.1145/3203206
(cit. on pp. 8, 94, 99).

[224] E. A. Nadaraya. “On Estimating Regression.” In: Theory of Probability &
Its Applications 9.1 (1964), pp. 141–142 (cit. on p. 5).

[225] D. Nelson et al. “The Illustris Simulation: Public Data Release.” In:
Astronomy and Computing 13 (2015), pp. 12–37. doi: 10.1016/j.ascom.
2015.09.003 (cit. on pp. 3, 105, 135).

[226] N. Neophytou and K. Mueller. “Space-Time Points: 4D Splatting on
Efficient Grids.” In: Symposium on Volume Visualization and Graphics,
IEEE / ACM SIGGRAPH. 2002, pp. 97–106. doi: 10.1109/SWG.2002.
1226515 (cit. on p. 10).

[227] N. Neophytou, K. Mueller, K. T. McDonnell, W. Hong, X. Guan, H. Qin,
and A. Kaufman. “GPU-Accelerated Volume Splatting with Elliptical
RBFs.” In: Proceedings of the Eighth Joint Eurographics / IEEE VGTC
Conference on Visualization. 2006, pp. 13–20. isbn: 3-905673-31-2. doi:
10.2312/VisSym/EuroVis06/013-020 (cit. on p. 10).

[228] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel
Programming with CUDA.” In: Queue 6.2 (2008), pp. 40–53. issn: 1542-
7730. doi: 10.1145/1365490.1365500 (cit. on p. 43).

[229] M. Novotny and H. Hauser. “Outlier-Preserving Focus+Context Visual-
ization in Parallel Coordinates.” In: IEEE Transactions on Visualization
and Computer Graphics 12.5 (2006), pp. 893–900. issn: 1077-2626. doi:
10.1109/TVCG.2006.170 (cit. on pp. 16, 93, 103).

[230] J. Onderik, M. Chládek, and R. Ďurikovič. “SPH with Small Scale
Details and Improved Surface Reconstruction.” In: Proceedings of the
27th Spring Conference on Computer Graphics. SCCG ’11. 2013, pp. 29–36.
isbn: 978-1-4503-1978-2. doi: 10.1145/2461217.2461224 (cit. on p. 13).

[231] J. Orthmann, M. Keller, and A. Kolb. “Topology-Caching for Dynamic
Particle Volume Raycasting.” In: Vision, Modeling, and Visualization. The
Eurographics Association, 2010. isbn: 978-3-905673-79-1. doi: 10.2312/
PE/VMV/VMV10/147-154 (cit. on p. 11).

[232] R. S. Allendes Osorio and K. W. Brodlie. “Uncertain Flow Visualization
using LIC.” In: Theory and Practice of Computer Graphics. The Euro-
graphics Association, 2009. isbn: 978-3-905673-71-5. doi: 10.2312/
LocalChapterEvents/TPCG/TPCG09/215-222 (cit. on p. 36).

[233] M. Otto, T. Germer, H.-C. Hege, and H. Theisel. “Uncertain 2D Vector
Field Topology.” In: Computer Graphics Forum 29.2 (2010), pp. 347–356.
doi: 10.1111/j.1467-8659.2009.01604.x (cit. on p. 36).

https://doi.org/10.1145/3203206
https://doi.org/10.1016/j.ascom.2015.09.003
https://doi.org/10.1016/j.ascom.2015.09.003
https://doi.org/10.1109/SWG.2002.1226515
https://doi.org/10.1109/SWG.2002.1226515
https://doi.org/10.2312/VisSym/EuroVis06/013-020
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1109/TVCG.2006.170
https://doi.org/10.1145/2461217.2461224
https://doi.org/10.2312/PE/VMV/VMV10/147-154
https://doi.org/10.2312/PE/VMV/VMV10/147-154
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/215-222
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/215-222
https://doi.org/10.1111/j.1467-8659.2009.01604.x

164 bibliography

[234] M. Otto, T. Germer, and H. Theisel. “Closed Stream Lines in Uncertain
Vector Fields.” In: Proceedings of the 27th Spring Conference on Computer
Graphics. Association for Computing Machinery, 2011, pp. 87–94. isbn:
9781450319782. doi: 10.1145/2461217.2461235 (cit. on p. 36).

[235] M. Otto, T. Germer, and H. Theisel. “Uncertain Topology of 3D Vector
Fields.” In: IEEE Pacific Visualization Symposium. 2011, pp. 67–74. doi:
10.1109/PACIFICVIS.2011.5742374 (cit. on p. 36).

[236] M. Otto and H. Theisel. “Vortex Analysis in Uncertain Vector Fields.”
In: Computer Graphics Forum 31 (2012), pp. 1035–1044. doi: 10.1111/j.
1467-8659.2012.03096.x (cit. on p. 36).

[237] V. M. Panaretos and Y. Zemel. “Statistical Aspects of Wasserstein Dis-
tances.” In: Annual Review of Statistics and Its Application 6.1 (2019),
pp. 405–431. doi: 10.1146/annurev-statistics-030718-104938 (cit.
on pp. 81, 102).

[238] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. “Approaches to Uncer-
tainty Visualization.” In: The Visual Computer 13.8 (1997), pp. 370–390.
issn: 1432-2315. doi: 10.1007/s003710050111 (cit. on p. 35).

[239] R. J. Pattenden, S. R. Turnock, and X. Zhang. “Measurements of the
Flow over a Low-Aspect-Ratio Cylinder Mounted on a Ground Plane.”
In: Experiments in Fluids 39.1 (2005), pp. 10–21. issn: 1432-1114. doi:
10.1007/s00348-005-0949-9 (cit. on p. 50).

[240] K. Pearson. “Contributions to the Mathematical Theory of Evolution.”
In: Philosophical Transactions of the Royal Society of London. A 185 (1894),
pp. 71–110. issn: 02643820. url: http://www.jstor.org/stable/90667
(cit. on p. 21).

[241] A. E. Perry and M. S. Chong. “Topology of Flow Patterns in Vortex
Motions and Turbulence.” In: Applied Scientific Research 53.3-4 (1994),
pp. 357–374. doi: 10.1007/BF00849110 (cit. on p. 30).

[242] C. Peters, J. Klein, M. B. Hullin, and R. Klein. “Solving Trigonometric
Moment Problems for Fast Transient Imaging.” In: ACM Transactions on
Graphics 34.6 (2015). issn: 0730-0301. doi: 10.1145/2816795.2818103
(cit. on p. 118).

[243] C. Peters, S. Merzbach, J. Hanika, and C. Dachsbacher. “Spectral Ren-
dering with the Bounded MESE and sRGB Data.” In: Workshop on
Material Appearance Modeling. The Eurographics Association, 2019. isbn:
978-3-03868-080-2. doi: 10.2312/mam.20191304 (cit. on p. 120).

[244] C. Peters, S. Merzbach, J. Hanika, and C. Dachsbacher. “Using Mo-
ments to Represent Bounded Signals for Spectral Rendering.” In: ACM
Transactions on Graphics 38.4 (2019), 136:1–136:14. issn: 0730-0301. doi:
10.1145/3306346.3322964 (cit. on pp. 115, 117, 118, 120, 121).

[245] C. Petz, K. Pöthkow, and H.-C. Hege. “Probabilistic Local Features in
Uncertain Vector Fields with Spatial Correlation.” In: Computer Graphics
Forum 31 (2012), pp. 1045–1054. doi: 10.1111/j.1467-8659.2012.
03097.x (cit. on p. 36).

https://doi.org/10.1145/2461217.2461235
https://doi.org/10.1109/PACIFICVIS.2011.5742374
https://doi.org/10.1111/j.1467-8659.2012.03096.x
https://doi.org/10.1111/j.1467-8659.2012.03096.x
https://doi.org/10.1146/annurev-statistics-030718-104938
https://doi.org/10.1007/s003710050111
https://doi.org/10.1007/s00348-005-0949-9
http://www.jstor.org/stable/90667
https://doi.org/10.1007/BF00849110
https://doi.org/10.1145/2816795.2818103
https://doi.org/10.2312/mam.20191304
https://doi.org/10.1145/3306346.3322964
https://doi.org/10.1111/j.1467-8659.2012.03097.x
https://doi.org/10.1111/j.1467-8659.2012.03097.x

bibliography 165

[246] M. Piochowiak, T. Rapp, and C. Dachsbacher. “Stochastic Volume
Rendering of Multi-Phase SPH Data.” In: Computer Graphics Forum 40.1
(2021), pp. 97–109. doi: 10.1111/cgf.14121 (cit. on pp. 11–13, 18, 135).

[247] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matković, and H. Hauser. “The State of the Art in Topology-Based
Visualization of Unsteady Flow.” In: Computer Graphics Forum 30.6
(2011), pp. 1789–1811. doi: 10.1111/j.1467-8659.2011.01901.x (cit.
on p. 31).

[248] S. Popinet. “Free Computational Fluid Dynamics.” In: ClusterWorld 2.6
(2004). url: http://gfs.sf.net/ (cit. on p. 67).

[249] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch.
“The State of the Art in Flow Visualisation: Feature Extraction and
Tracking.” In: Computer Graphics Forum 22.4 (2003), pp. 775–792. doi:
10.1111/j.1467-8659.2003.00723.x (cit. on p. 31).

[250] K. Pöthkow and H.-C. Hege. “Nonparametric Models for Uncertainty
Visualization.” In: Computer Graphics Forum 32.3pt2 (2013), pp. 131–140.
doi: 10.1111/cgf.12100 (cit. on p. 36).

[251] K. Potter, P. Rosen, and C. R. Johnson. “From Quantification to Vi-
sualization: A Taxonomy of Uncertainty Visualization Approaches.”
In: Uncertainty Quantification in Scientific Computing. 2012, pp. 226–249.
isbn: 978-3-642-32677-6. doi: 10.1007/978-3-642-32677-6_15 (cit. on
pp. 35, 136).

[252] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan.
“Photon Mapping on Programmable Graphics Hardware.” In: ACM
SIGGRAPH 2005 Courses. SIGGRAPH ’05. New York, NY, USA: ACM,
2005. doi: 10.1145/1198555.1198797 (cit. on p. 42).

[253] T. Rapp and C. Dachsbacher. “Visualizing Transport and Mixing in
Particle-based Fluid Flows.” In: Vision, Modeling and Visualization. 2019.
isbn: 978-3-03868-098-7. doi: 10.2312/vmv.20191330 (cit. on pp. 3, 4).

[254] T. Rapp and C. Dachsbacher. “Uncertain Transport in Unsteady Flows.”
In: Proceedings of IEEE Visualization. 2020, pp. 16–20. doi: 10.1109/
VIS47514.2020.00010 (cit. on p. 4).

[255] T. Rapp, C. Peters, and C. Dachsbacher. “Image-based Visualization of
Large Volumetric Data Using Moments.” Submitted to IEEE Transac-
tions on Visualization and Computer Graphics. 2020 (cit. on p. 4).

[256] T. Rapp, C. Peters, and C. Dachsbacher. “Void-and-Cluster Sampling
of Large Scattered Data and Trajectories.” In: IEEE Transactions on
Visualization and Computer Graphics (Proceedings of IEEE Visualization
2019) 26.1 (2020), pp. 780–789. issn: 077-2626. doi: 10.1109/TVCG.2019.
2934335 (cit. on p. 4).

https://doi.org/10.1111/cgf.14121
https://doi.org/10.1111/j.1467-8659.2011.01901.x
http://gfs.sf.net/
https://doi.org/10.1111/j.1467-8659.2003.00723.x
https://doi.org/10.1111/cgf.12100
https://doi.org/10.1007/978-3-642-32677-6_15
https://doi.org/10.1145/1198555.1198797
https://doi.org/10.2312/vmv.20191330
https://doi.org/10.1109/VIS47514.2020.00010
https://doi.org/10.1109/VIS47514.2020.00010
https://doi.org/10.1109/TVCG.2019.2934335
https://doi.org/10.1109/TVCG.2019.2934335

166 bibliography

[257] T. Rapp, C. Peters, and C. Dachsbacher. “Visual Analysis of Large Mul-
tivariate Scattered Data using Clustering and Probabilistic Summaries.”
In: IEEE Transactions on Visualization and Computer Graphics (Proceedings
of IEEE Visualization 2020) 27.2 (2021), pp. 1580–1590. issn: 1941-0506.
doi: 10.1109/TVCG.2020.3030379 (cit. on p. 4).

[258] P. Rautek, M. Mlejnek, J. Beyer, J. Troidl, H. Pfister, T. Theußl, and M.
Hadwiger. “Objective Observer-Relative Flow Visualization in Curved
Spaces for Unsteady 2D Geophysical Flows.” In: IEEE Transactions on
Visualization and Computer Graphics (2020). issn: 1941-0506. doi: 10.
1109/TVCG.2020.3030454 (cit. on p. 31).

[259] N. M. Razali and Y. B. Wah. “Power Comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests.” In: Jour-
nal of Statistical Modeling and Analytics 2.1 (2011), pp. 21–33 (cit. on
p. 22).

[260] F. Reichl, M. G. Chajdas, J. Schneider, and R. Westermann. “Interactive
Rendering of Giga-Particle Fluid Simulations.” In: Proceedings of High
Performance Graphics. HPG ’14. Eurographics Association, 2014, pp. 105–
116 (cit. on p. 11).

[261] F. Reichl, M. Treib, and R. Westermann. “Visualization of Big SPH Simu-
lations via Compressed Octree Grids.” In: IEEE International Conference
on Big Data. 2013, pp. 71–78. doi: 10.1109/BigData.2013.6691717
(cit. on pp. 11, 24).

[262] G. Reina. “Visualization of Uncorrelated Point Data.” PhD thesis. Uni-
versity of Stuttgart, 2008. doi: 10.18419/opus-2649 (cit. on p. 8).

[263] S. Reinhardt, M. Huber, O. Dumitrescu, M. Krone, B. Eberhardt, and D.
Weiskopf. “Visual Debugging of SPH Simulations.” In: 21st International
Conference Information Visualisation. 2017, pp. 117–126. doi: 10.1109/iV.
2017.20 (cit. on pp. 16, 35).

[264] J. C. Roberts. “State of the Art: Coordinated Multiple Views in Ex-
ploratory Visualization.” In: Fifth International Conference on Coordinated
and Multiple Views in Exploratory Visualization (CMV 2007). 2007, pp. 61–
71. doi: 10.1109/CMV.2007.20 (cit. on p. 15).

[265] I. B. Rojo and T. Günther. “Vector Field Topology of Time-Dependent
Flows in a Steady Reference Frame.” In: IEEE Transactions on Visualiza-
tion and Computer Graphics 26.1 (2020), pp. 280–290. doi: 10.1109/TVCG.
2019.2934375 (cit. on pp. 31, 67).

[266] F. Sadlo and R. Peikert. “Efficient Visualization of Lagrangian Coherent
Structures by Filtered AMR Ridge Extraction.” In: IEEE Transactions
on Visualization and Computer Graphics 13.6 (2007), pp. 1456–1463. doi:
10.1109/TVCG.2007.70554 (cit. on p. 33).

[267] F. Sadlo and R. Peikert. “Visualizing Lagrangian Coherent Structures
and Comparison to Vector Field Topology.” In: Topology-Based Methods
in Visualization II (2009), pp. 15–29. doi: 10.1007/978-3-540-88606-
8_2 (cit. on p. 33).

https://doi.org/10.1109/TVCG.2020.3030379
https://doi.org/10.1109/TVCG.2020.3030454
https://doi.org/10.1109/TVCG.2020.3030454
https://doi.org/10.1109/BigData.2013.6691717
https://doi.org/10.18419/opus-2649
https://doi.org/10.1109/iV.2017.20
https://doi.org/10.1109/iV.2017.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2019.2934375
https://doi.org/10.1109/TVCG.2007.70554
https://doi.org/10.1007/978-3-540-88606-8_2
https://doi.org/10.1007/978-3-540-88606-8_2

bibliography 167

[268] F. Sadlo, A. Rigazzi, and R. Peikert. “Time-Dependent Visualization
of Lagrangian Coherent Structures by Grid Advection.” In: Topological
Methods in Data Analysis and Visualization (2011), pp. 151–165. doi:
10.1007/978-3-642-15014-2_13 (cit. on p. 32).

[269] F. Sadlo and D. Weiskopf. “Time-Dependent 2-D Vector Field Topol-
ogy: An Approach Inspired by Lagrangian Coherent Structures.” In:
Computer Graphics Forum 29.1 (2010), pp. 88–100. doi: 10.1111/j.1467-
8659.2009.01546.x (cit. on p. 31).

[270] E. Sakhaee and A. Entezari. “A Statistical Direct Volume Rendering
Framework for Visualization of Uncertain Data.” In: IEEE Transactions
on Visualization and Computer Graphics 23.12 (2017), pp. 2509–2520. issn:
1077-2626. doi: 10.1109/TVCG.2016.2637333 (cit. on pp. 99, 125).

[271] M. Salvi, J. Montgomery, and A. Lefohn. “Adaptive Transparency.”
In: Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics. HPG. 2011, pp. 119–126. doi: 10.1145/2018323.2018342 (cit.
on p. 8).

[272] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. “Pathline Pred-
icates and Unsteady Flow Structures.” In: The Visual Computer 24.12

(2008), pp. 1039–1051. issn: 1432-2315. doi: 10.1007/s00371-007-0204-
x (cit. on p. 35).

[273] S. Sane, R. Bujack, C. Garth, and H. Childs. “A Survey of Seed Place-
ment and Streamline Selection Techniques.” In: Computer Graphics Fo-
rum (2020). issn: 1467-8659. doi: 10.1111/cgf.14036 (cit. on p. 33).

[274] S. Sanikommu, H. Toye, P. Zhan, S. Langodan, G. Krokos, O. Knio, and
I. Hoteit. “Impact of Atmospheric and Model Physics Perturbations
On a High-Resolution Ensemble Data Assimilation System of the Red
Sea.” In: Journal of Geophysical Research-Oceans, Revision submitted (2020).
eprint: arXiv:2002.01825 (cit. on p. 63).

[275] F. Sauer, J. Xie, and K. L. Ma. “A Combined Eulerian-Lagrangian Data
Representation for Large-Scale Applications.” In: IEEE Transactions on
Visualization and Computer Graphics 23.10 (2017), pp. 2248–2261. issn:
1077-2626. doi: 10.1109/TVCG.2016.2620975 (cit. on p. 136).

[276] F. Sauer, H. Yu, and K.-L. Ma. “An Analytical Framework for Particle
and Volume Data of Large-Scale Combustion Simulations.” In: Proceed-
ings of the 8th International Workshop on Ultrascale Visualization. UltraVis
’13. Denver, Colorado: ACM, 2013, 1:1–1:8. isbn: 978-1-4503-2500-4. doi:
10.1145/2535571.2535590 (cit. on p. 136).

[277] K. Schatz, C. Müller, M. Krone, J. Schneider, G. Reina, and T. Ertl.
“Interactive Visual Exploration of a Trillion Particles.” In: IEEE 6th
Symposium on Large Data Analysis and Visualization. 2016, pp. 56–64. doi:
10.1109/LDAV.2016.7874310 (cit. on p. 8).

[278] B. Schindler, R. Peikert, R. Fuchs, and H. Theisel. “Ridge Concepts for
the Visualization of Lagrangian Coherent Structures.” In: Topological
Methods in Data Analysis and Visualization II (2012), pp. 221–235. doi:
10.1007/978-3-642-23175-9_15 (cit. on p. 33).

https://doi.org/10.1007/978-3-642-15014-2_13
https://doi.org/10.1111/j.1467-8659.2009.01546.x
https://doi.org/10.1111/j.1467-8659.2009.01546.x
https://doi.org/10.1109/TVCG.2016.2637333
https://doi.org/10.1145/2018323.2018342
https://doi.org/10.1007/s00371-007-0204-x
https://doi.org/10.1007/s00371-007-0204-x
https://doi.org/10.1111/cgf.14036
arXiv:2002.01825
https://doi.org/10.1109/TVCG.2016.2620975
https://doi.org/10.1145/2535571.2535590
https://doi.org/10.1109/LDAV.2016.7874310
https://doi.org/10.1007/978-3-642-23175-9_15

168 bibliography

[279] D. Schneider, J. Fuhrmann, W. Reich, and G. Scheuermann. “A Variance
Based FTLE-Like Method for Unsteady Uncertain Vector Fields.” In:
Topological Methods in Data Analysis and Visualization II: Theory, Algo-
rithms, and Applications. Springer Berlin Heidelberg, 2012, pp. 255–268.
isbn: 978-3-642-23175-9. doi: 10.1007/978-3-642-23175-9_17 (cit. on
pp. 36, 59).

[280] G. Schwarz. “Estimating the Dimension of a Model.” In: The Annals of
Statistics 6.2 (1978), pp. 461–464 (cit. on pp. 22, 96).

[281] S. C. Shadden. “Lagrangian Coherent Structures.” In: Transport and
Mixing in Laminar Flows. John Wiley & Sons, Ltd, 2011. Chap. 3, pp. 59–
89. isbn: 9783527639748. doi: 10.1002/9783527639748.ch3 (cit. on
p. 31).

[282] S. C. Shadden, F. Lekien, and J. E. Marsden. “Definition and Properties
of Lagrangian Coherent Structures from Finite-Time Lyapunov Expo-
nents in Two-Dimensional Aperiodic Flows.” In: Physica D: Nonlinear
Phenomena 212.3 (2005), pp. 271–304. issn: 0167-2789. doi: 10.1016/j.
physd.2005.10.007 (cit. on pp. 33, 44).

[283] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. “Layered Depth Images.”
In: Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’98. ACM, 1998, pp. 231–242. isbn:
0-89791-999-8. doi: 10.1145/280814.280882 (cit. on p. 12).

[284] S. S. Shapiro and M. B. Wilk. “An Analysis of Variance Test for Nor-
mality (Complete Samples).” In: Biometrika 52.3/4 (1965), pp. 591–611.
issn: 00063444. doi: 10.2307/2333709 (cit. on p. 22).

[285] N. Shareef, T.-Y. Lee, H.-W. Shen, and K. Mueller. “An Image-Based
Modelling Approach To GPU-based Unstructured Grid Volume Ren-
dering.” In: Volume Graphics. 2006. isbn: 3-905673-41-X. doi: 10.2312/
VG/VG06/031-038 (cit. on pp. 12, 115).

[286] D. Shepard. “A Two-Dimensional Interpolation Function for Irregularly-
Spaced Data.” In: Proceedings of the 1968 23rd ACM National Conference.
ACM. 1968, pp. 517–524 (cit. on p. 5).

[287] K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.-C. Hege,
and H.-P. Seidel. “Path Line Attributes - an Information Visualization
Approach to Analyzing the Dynamic Behavior of 3D Time-Dependent
Flow Fields.” In: Topology-Based Methods in Visualization II. Springer
Berlin Heidelberg, 2009, pp. 75–88. isbn: 978-3-540-88606-8. doi: 10.
1007/978-3-540-88606-8_6 (cit. on pp. 35, 53).

[288] L. Shi, L. Zhang, W. Cao, and G. Chen. “Analysis Enhanced Particle-
based Flow Visualization.” In: Electronic Imaging 2017.1 (2017), pp. 12–
21. doi: 10.2352/ISSN.2470-1173.2017.1.VDA-385 (cit. on p. 33).

[289] B. Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations.” In: IEEE Symposium on Visual Languages.
1996, pp. 336–343. doi: 10.1109/VL.1996.545307 (cit. on p. 17).

https://doi.org/10.1007/978-3-642-23175-9_17
https://doi.org/10.1002/9783527639748.ch3
https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1145/280814.280882
https://doi.org/10.2307/2333709
https://doi.org/10.2312/VG/VG06/031-038
https://doi.org/10.2312/VG/VG06/031-038
https://doi.org/10.1007/978-3-540-88606-8_6
https://doi.org/10.1007/978-3-540-88606-8_6
https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-385
https://doi.org/10.1109/VL.1996.545307

bibliography 169

[290] R. Sicat, J. Krüger, T. Möller, and M. Hadwiger. “Sparse PDF Volumes
for Consistent Multi-Resolution Volume Rendering.” In: IEEE Transac-
tions on Visualization and Computer Graphics 20.12 (2014), pp. 2417–2426.
issn: 1077-2626. doi: 10.1109/TVCG.2014.2346324 (cit. on p. 24).

[291] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. “GPU-Based Ray-Casting
of Quadratic Surfaces.” In: Proceedings of the 3rd Eurographics / IEEE
VGTC Conference on Point-Based Graphics. SPBG’06. Eurographics Asso-
ciation, 2006, pp. 59–65. isbn: 3905673320 (cit. on p. 8).

[292] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Rout-
ledge, 2018 (cit. on p. 93).

[293] Samuel W. Skillman, Michael S. Warren, Matthew J. Turk, Risa H.
Wechsler, Daniel E. Holz, and P. M. Sutter. Dark Sky Simulations: Early
Data Release. 2014. eprint: arXiv:1407.2600 (cit. on pp. 2, 89).

[294] B. Solenthaler, J. Schläfli, and R. Pajarola. “A Unified Particle Model for
Fluid - Solid Interactions.” In: Computer Animation and Virtual Worlds
18.1 (2007), pp. 69–82. issn: 1546-427X (cit. on p. 13).

[295] V. Springel. “E Pur Si Muove: Galilean-Invariant Cosmological Hydro-
dynamical Simulations on a Moving Mesh.” In: Monthly Notices of the
Royal Astronomical Society 401 (2010), pp. 791–851. doi: 10.1111/j.1365-
2966.2009.15715.x (cit. on pp. 105, 136).

[296] J. Staib, S. Grottel, and S. Gumhold. “Visualization of Particle-based
Data with Transparency and Ambient Occlusion.” In: Computer Graphics
Forum 34.3 (2015), pp. 151–160. doi: 10.1111/cgf.12627 (cit. on p. 8).

[297] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. “Query-Driven Visu-
alization of Large Data Sets.” In: IEEE Visualization. 2005, pp. 167–174.
doi: 10.1109/VISUAL.2005.1532792 (cit. on p. 15).

[298] H. A. Sturges. “The Choice of a Class Interval.” In: Journal of the
American Statistical Association 21.153 (1926), pp. 65–66. doi: 10.1080/
01621459.1926.10502161 (cit. on p. 21).

[299] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and J.
Ahrens. “Effective and Efficient Data Sampling Using Bitmap Indices.”
In: Cluster Computing 17.4 (2014), pp. 1081–1100. issn: 1573-7543. doi:
10.1007/s10586-014-0360-5 (cit. on pp. 25, 73).

[300] P. N. Sun, A. Colagrossi, S. Marrone, and A. M. Zhang. “Detection of
Lagrangian Coherent Structures in the SPH framework.” In: Computer
Methods in Applied Mechanics and Engineering 305 (2016), pp. 849 –868.
issn: 0045-7825. doi: 10.1016/j.cma.2016.03.027 (cit. on pp. 33, 41).

[301] J. E. Swan, K. Mueller, T. Moller, N. Shareel, R. Crawfis, and R. Yagel.
“An Anti-Aliasing Technique for Splatting.” In: IEEE Visualization. 1997,
pp. 197–204. doi: 10.1109/VISUAL.1997.663882 (cit. on p. 9).

[302] L. Szécsi and D. Illés. “Real-Time Metaball Ray Casting with Fragment
Lists.” In: Eurographics (Short Papers). 2012. doi: 10.2312/conf/EG2012/
short/093-096 (cit. on p. 8).

https://doi.org/10.1109/TVCG.2014.2346324
arXiv:1407.2600
https://doi.org/10.1111/j.1365-2966.2009.15715.x
https://doi.org/10.1111/j.1365-2966.2009.15715.x
https://doi.org/10.1111/cgf.12627
https://doi.org/10.1109/VISUAL.2005.1532792
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1007/s10586-014-0360-5
https://doi.org/10.1016/j.cma.2016.03.027
https://doi.org/10.1109/VISUAL.1997.663882
https://doi.org/10.2312/conf/EG2012/short/093-096
https://doi.org/10.2312/conf/EG2012/short/093-096

170 bibliography

[303] S. Taneda. “Visual Study of Unsteady Separated Flows Around Bodies.”
In: Progress in Aerospace Sciences 17 (1977), pp. 287–348. url: https:
//ui.adsabs.harvard.edu/abs/1977PrAeS..17..287T (cit. on pp. 47,
48).

[304] J. J. Thomas and K. A. Cook. “A Visual Analytics Agenda.” In: IEEE
Computer Graphics and Applications 26.01 (2006), pp. 10–13. issn: 0272-
1716. doi: 10.1109/MCG.2006.5 (cit. on p. 17).

[305] D. Thompson, J. A. Levine, J. C. Bennett, P. T. Bremer, A. Gyulassy,
V. Pascucci, and P. P. Pébay. “Analysis of Large-Scale Scalar Data Using
Hixels.” In: IEEE 1st Symposium on Large Data Analysis and Visualization.
2011, pp. 23–30. doi: 10.1109/LDAV.2011.6092313 (cit. on p. 23).

[306] A. Tikhonova, C. D. Correa, and K.-L. Ma. “An Exploratory Technique
for Coherent Visualization of Time-varying Volume Data.” In: Computer
Graphics Forum 29.3 (2010), pp. 783–792. doi: 10.1111/j.1467-8659.
2009.01690.x (cit. on p. 12).

[307] A. Tikhonova, C. D. Correa, and K.-L. Ma. “Explorable Images for
Visualizing Volume Data.” In: IEEE Pacific Visualization Symposium.
2010, pp. 177–184. doi: 10.1109/PACIFICVIS.2010.5429595 (cit. on
p. 12).

[308] A. Tikhonova, C. D. Correa, and K.-L. Ma. “Visualization by Proxy:
A Novel Framework for Deferred Interaction with Volume Data.” In:
IEEE Transactions on Visualization and Computer Graphics 16.6 (2010),
pp. 1551–1559. doi: 10.1109/TVCG.2010.215 (cit. on p. 12).

[309] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Indus-
trial and Applied Mathematics, 1997 (cit. on p. 98).

[310] J. W. Tukey. “The Future of Data Analysis.” In: Annals of Mathematical
Statistics 33.1 (1962), pp. 1–67. doi: 10.1214/aoms/1177704711 (cit. on
p. 15).

[311] J. W. Tukey. Exploratory Data Analysis. Addison–Wesley Publishing
Company, Inc., 1977 (cit. on p. 13).

[312] M. Uffinger, F. Sadlo, and T. Ertl. “A Time-Dependent Vector Field
Topology Based on Streak Surfaces.” In: IEEE Transactions on Visualiza-
tion and Computer Graphics 19.3 (2013), pp. 379–392. issn: 1941-0506. doi:
10.1109/TVCG.2012.131 (cit. on p. 31).

[313] R. A. Ulichney. “Dithering with Blue Noise.” In: Proceedings of the IEEE
76.1 (1988), pp. 56–79. issn: 0018-9219. doi: 10.1109/5.3288 (cit. on
p. 26).

[314] R. A. Ulichney. “Void-and-Cluster Method for Dither Array Genera-
tion.” In: Human Vision, Visual Processing, and Digital Display IV. Vol. 1913.
1993, pp. 332–343. doi: 10.1117/12.152707 (cit. on pp. 4, 73, 76).

[315] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka.
“CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees.” In:
IEEE Visualization. 2015, pp. 57–64. doi: 10.1109/SciVis.2015.7429492
(cit. on p. 8).

https://ui.adsabs.harvard.edu/abs/1977PrAeS..17..287T
https://ui.adsabs.harvard.edu/abs/1977PrAeS..17..287T
https://doi.org/10.1109/MCG.2006.5
https://doi.org/10.1109/LDAV.2011.6092313
https://doi.org/10.1111/j.1467-8659.2009.01690.x
https://doi.org/10.1111/j.1467-8659.2009.01690.x
https://doi.org/10.1109/PACIFICVIS.2010.5429595
https://doi.org/10.1109/TVCG.2010.215
https://doi.org/10.1214/aoms/1177704711
https://doi.org/10.1109/TVCG.2012.131
https://doi.org/10.1109/5.3288
https://doi.org/10.1117/12.152707
https://doi.org/10.1109/SciVis.2015.7429492

bibliography 171

[316] J. Wang, S. Hazarika, C. Li, and H. Shen. “Visualization and Visual
Analysis of Ensemble Data: A Survey.” In: IEEE Transactions on Visual-
ization and Computer Graphics 25.9 (2019), pp. 2853–2872. issn: 2160-9306.
doi: 10.1109/TVCG.2018.2853721 (cit. on pp. 35, 136).

[317] K. C. Wang, Kewei Lu, T. H. Wei, N. Shareef, and H. W. Shen. “Statistical
Visualization and Analysis of Large Data Using a Value-Based Spatial
Distribution.” In: IEEE Pacific Visualization Symposium. 2017, pp. 161–
170. doi: 10.1109/PACIFICVIS.2017.8031590 (cit. on p. 23).

[318] K.-C. Wang, T.-H. Wei, N. Shareef, and H.-W. Shen. “Ray-Based Ex-
ploration of Large Time-Varying Volume Data Using Per-Ray Proxy
Distributions.” In: IEEE Transactions on Visualization and Computer Graph-
ics 26.11 (2020), pp. 3299–3313. issn: 1941-0506. doi: 10.1109/TVCG.
2019.2920130 (cit. on pp. 13, 115).

[319] K. Wang, N. Shareef, and H. Shen. “Image and Distribution Based
Volume Rendering for Large Data Sets.” In: IEEE Pacific Visualization
Symposium. 2018, pp. 26–35. doi: 10.1109/PacificVis.2018.00013
(cit. on pp. 13, 115, 127, 134).

[320] K. Wang, J. Xu, J. Woodring, and H. Shen. “Statistical Super Resolution
for Data Analysis and Visualization of Large Scale Cosmological Sim-
ulations.” In: IEEE Pacific Visualization Symposium. 2019, pp. 303–312.
doi: 10.1109/PacificVis.2019.00043 (cit. on p. 24).

[321] W. Wang, W. Wang, and S. Li. “From Numerics to Combinatorics:
A Survey of Topological Methods for Vector Field Visualization.” In:
Journal of Visualization 19.4 (2016), pp. 727–752. doi: 10.1007/s12650-
016-0348-8 (cit. on p. 31).

[322] Y. Wang, W. Chen, J. Zhang, T. Dong, G. Shan, and X. Chi. “Efficient
Volume Exploration Using the Gaussian Mixture Model.” In: IEEE
Transactions on Visualization and Computer Graphics 17.11 (2011), pp. 1560–
1573. issn: 1077-2626. doi: 10.1109/TVCG.2011.97 (cit. on p. 24).

[323] G. S. Watson. “Smooth Regression Analysis.” In: Sankhyā: The Indian
Journal of Statistics, Series A (1964), pp. 359–372 (cit. on p. 5).

[324] G. H. Weber and H. Hauser. “Interactive Visual Exploration and Anal-
ysis.” In: Scientific Visualization. Springer London, 2014, pp. 161–173.
isbn: 978-1-4471-6497-5. doi: 10.1007/978-1-4471-6497-5_15 (cit. on
pp. 2, 17).

[325] T. Wei, S. Dutta, and H. Shen. “Information Guided Data Sampling
and Recovery Using Bitmap Indexing.” In: IEEE Pacific Visualization
Symposium. 2018, pp. 56–65. doi: 10.1109/PacificVis.2018.00016
(cit. on pp. 25, 73, 77).

[326] M. Weiler, R. Botchen, S. Stegmaier, T. Ertl, J. Huang, Y. Jang, D. S.
Ebert, and K. P. Gaither. “Hardware-Assisted Feature Analysis and
Visualization of Procedurally Encoded Multifield Volumetric Data.”
In: IEEE Computer Graphics and Applications 25.5 (2005), pp. 72–81. issn:
0272-1716. doi: 10.1109/MCG.2005.106 (cit. on p. 10).

https://doi.org/10.1109/TVCG.2018.2853721
https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/TVCG.2019.2920130
https://doi.org/10.1109/TVCG.2019.2920130
https://doi.org/10.1109/PacificVis.2018.00013
https://doi.org/10.1109/PacificVis.2019.00043
https://doi.org/10.1007/s12650-016-0348-8
https://doi.org/10.1007/s12650-016-0348-8
https://doi.org/10.1109/TVCG.2011.97
https://doi.org/10.1007/978-1-4471-6497-5_15
https://doi.org/10.1109/PacificVis.2018.00016
https://doi.org/10.1109/MCG.2005.106

172 bibliography

[327] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. “Boundary Switch
Connectors for Topological Visualization of Complex 3D Vector Fields.”
In: Proceedings of the Sixth Joint Eurographics - IEEE TCVG Conference on
Visualization. VISSYM’04. Eurographics Association, 2004, pp. 183–192.
isbn: 390567307X (cit. on p. 30).

[328] L. Westover. “Interactive Volume Rendering.” In: Proceedings of the 1989
Chapel Hill Workshop on Volume Visualization. ACM. 1989, pp. 9–16 (cit.
on p. 9).

[329] L. Westover. “Footprint Evaluation for Volume Rendering.” In: SIG-
GRAPH Computer Graphics 24.4 (1990), pp. 367–376. issn: 0097-8930.
doi: 10.1145/97880.97919 (cit. on p. 9).

[330] S. S. Wilks. Contributions to Probability and Statistics. Stanford University
Press Stanford, 1960 (cit. on p. 62).

[331] S. S. Wilks. Collected Papers; Contributions to Mathematical Statistics. Wiley,
1967 (cit. on p. 62).

[332] L. Williams. “Casting Curved Shadows on Curved Surfaces.” In: SIG-
GRAPH Computer Graphics 12.3 (1978), pp. 270–274. issn: 0097-8930.
doi: 10.1145/965139.807402 (cit. on p. 126).

[333] I. H. Witten, R. M. Neal, and J. G. Cleary. “Arithmetic Coding for Data
Compression.” In: Communications of the ACM 30.6 (1987), pp. 520–540.
issn: 0001-0782. doi: 10.1145/214762.214771 (cit. on pp. 19, 125).

[334] J. Woodring, J. P. Ahrens, J. Patchett, C. Tauxe, and D. H. Rogers.
“High-Dimensional Scientific Data Exploration via Cinema.” In: IEEE
Workshop on Data Systems for Interactive Analysis (DSIA). 2017, pp. 1–5.
doi: 10.1109/DSIA.2017.8339086 (cit. on p. 12).

[335] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heit-
mann. “In-situ Sampling of a Large-Scale Particle Simulation for Inter-
active Visualization and Analysis.” In: Computer Graphics Forum 30.3
(2011), pp. 1151–1160. doi: 10.1111/j.1467-8659.2011.01964.x (cit.
on pp. 25, 73, 83).

[336] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher. “MPC: A Mas-
sively Parallel Compression Algorithm for Scientific Data.” In: IEEE
International Conference on Cluster Computing. 2015, pp. 381–389. doi:
10.1109/CLUSTER.2015.59 (cit. on p. 20).

[337] Y. Ye, R. Miller, and K.-L. Ma. “In Situ Pathtube Visualization with
Explorable Images.” In: Proceedings of the 13th Eurographics Symposium
on Parallel Graphics and Visualization. EGPGV ’13. 2013, pp. 9–16. isbn:
978-3-905674-45-3. doi: 10.2312/EGPGV/EGPGV13/009- 016 (cit. on
p. 12).

[338] B.-L. Yeo. and B. Liu. “Volume Rendering of DCT-Based Compressed
3D Scalar Data.” In: IEEE Transactions on Visualization and Computer
Graphics 1.1 (1995), pp. 29–43. issn: 1941-0506. doi: 10.1109/2945.
468390 (cit. on p. 19).

https://doi.org/10.1145/97880.97919
https://doi.org/10.1145/965139.807402
https://doi.org/10.1145/214762.214771
https://doi.org/10.1109/DSIA.2017.8339086
https://doi.org/10.1111/j.1467-8659.2011.01964.x
https://doi.org/10.1109/CLUSTER.2015.59
https://doi.org/10.2312/EGPGV/EGPGV13/009-016
https://doi.org/10.1109/2945.468390
https://doi.org/10.1109/2945.468390

bibliography 173

[339] J. Yu and G. Turk. “Reconstructing Surfaces of Particle-based Fluids
Using Anisotropic Kernels.” In: ACM Transactions on Graphics 32.1
(2013), 5:1–5:12. issn: 0730-0301. doi: 10.1145/2421636.2421641 (cit.
on p. 13).

[340] M. M. Zdravkovich. Flow Around Circular Cylinders: Volume I: Funda-
mentals. Flow Around Circular Cylinders: A Comprehensive Guide
Through Flow Phenomena, Experiments, Applications, Mathemat-
ical Models, and Computer Simulations. OUP Oxford, 1997. isbn:
9780198563969 (cit. on p. 47).

[341] M. Zeidan, T. Rapp, C. Peters, and C. Dachsbacher. “Moment-Based
Opacity Optimization.” In: Eurographics Symposium on Parallel Graphics
and Visualization. 2020. isbn: 978-3-03868-107-6. doi: 10.2312/pgv.
20201072 (cit. on p. 9).

[342] M. Zeyen, J. Ahrens, H. Hagen, K. Heitmann, and S. Habib. “Cosmo-
logical Particle Data Compression in Practice.” In: Proceedings of the In
Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization.
ISAV’17. Association for Computing Machinery, 2017, pp. 12–16. isbn:
9781450351393. doi: 10.1145/3144769.3144776 (cit. on p. 19).

[343] Y. Zhu and R. Bridson. “Animating Sand As a Fluid.” In: ACM Trans-
actions on Graphics 24.3 (2005), pp. 965–972. issn: 0730-0301 (cit. on
p. 13).

[344] T. Zirr and C. Dachsbacher. “Memory-Efficient On-the-Fly Voxelization
and Rendering of Particle Data.” In: IEEE Transactions on Visualization
and Computer Graphics 24.2 (2018), pp. 1155–1166. doi: 10.1109/TVCG.
2017.2656897 (cit. on p. 12).

[345] J. Ziv and A. Lempel. “A Universal Algorithm for Sequential Data
Compression.” In: IEEE Transactions on Information Theory 23.3 (1977),
pp. 337–343. issn: 1557-9654. doi: 10.1109/TIT.1977.1055714 (cit. on
p. 19).

[346] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “EWA Volume
Splatting.” In: IEEE Visualization. 2001, pp. 29–538. doi: 10 . 1109 /
VISUAL.2001.964490 (cit. on pp. 9, 10).

https://doi.org/10.1145/2421636.2421641
https://doi.org/10.2312/pgv.20201072
https://doi.org/10.2312/pgv.20201072
https://doi.org/10.1145/3144769.3144776
https://doi.org/10.1109/TVCG.2017.2656897
https://doi.org/10.1109/TVCG.2017.2656897
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/VISUAL.2001.964490
https://doi.org/10.1109/VISUAL.2001.964490

