Skip to main content
Log in

Stress based multi-contact model for discrete-element simulations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The aim of this study is to introduce a stress-based non-binary contact model missing in classical discrete element method (DEM). To tackle this issue, a classical force-displacement contact law is generalized by utilizing the trace of the particle stress tensor to make all contacts dependent on all other contacts of a particle and thus, to account for multiple contacts simultaneously acting on a single particle. Simulation results for uniaxial confined (oedometric) compression employing our new multi-contact model were compared with the classical discrete element formulation, an existing strain-based multi-contact model, and experimental data. The satisfactory agreement between these results supports the validity of our new contact model. Several test examples at higher load levels show that our generalized contact model is able to capture the stronger non-linearity at higher stresses. Due to its simplicity, the proposed multi-contact model can easily be integrated in any DEM implementation, remaining relatively fast when compared to more complex methods or even a discretization of particles, e.g. by FEM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Combe, G., Roux, J.N.: Good practice for sample preparation–construction of granular packings. ALERT Doctoral School 2017 Discrete Element Modeling, p. 99 (2017)

  2. Luding, S.: Granular matter: so much for the jamming point. Nat. Phys. 12(6), 531 (2016)

    Article  Google Scholar 

  3. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  4. Martin, C.L., Bouvard, D., Shima, S.: Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51(4), 667–693 (2003)

    Article  ADS  Google Scholar 

  5. Senapati, R., Zhang, J.: Identifying fracture origin in ceramics by combination of nondestructive testing and discrete element analysis. In: AIP Conference Proceedings, vol. 1211. AIP, pp. 1445–1451 (2010)

  6. Cleary, P.W., Sawley, M.L.: Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    Article  Google Scholar 

  7. Cabiscol, R., Finke, J.H., Kwade, A.: Calibration and interpretation of DEM parameters for simulations of cylindrical tablets with multi-sphere approach. Powder Technol. 327, 232–245 (2018)

    Article  Google Scholar 

  8. Raji, A.O., Favier, J.F.: Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: theory, model development and validation. J. Food Eng. 64(3), 359–371 (2004)

    Article  Google Scholar 

  9. Luding, S.: Introduction to discrete element methods. basics of contact force models and how to perform the micro–macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 12(7–8), 785–826 (2008)

    Article  Google Scholar 

  10. Harthong, B., Jérier, J.F., Dorémus, P., Imbault, D., Donzé, F.V.: Modeling of high-density compaction of granular materials by the discrete element method. Int. J. Solids Struct. 46(18), 3357–3364 (2009)

    Article  Google Scholar 

  11. Persson, A.S., Frenning, G.: An experimental evaluation of the accuracy to simulate granule bed compression using the discrete element method. Powder Technol. 219, 249–256 (2012)

    Article  Google Scholar 

  12. Gethin, D.T., Lewis, R.W., Ransing, R.S.: A discrete deformable element approach for the compaction of powder systems. Modell. Simul. Mater. Sci. Eng. 11(1), 101 (2002)

    Article  ADS  Google Scholar 

  13. Procopio, A.T., Zavaliangos, A.: Simulation of multi-axial compaction of granular media from loose to high relative densities. J. Mech. Phys. Solids 53(7), 1523–1551 (2005)

    Article  ADS  Google Scholar 

  14. Frenning, G.: An efficient finite/discrete element procedure for simulating compression of 3d particle assemblies. Comput. Methods Appl. Mech. Eng. 197(49–50), 4266–4272 (2008)

    Article  ADS  Google Scholar 

  15. Stransky, J.: Mesoscale Discrete Element Model for Concrete and Its Combination with FEM. PhD thesis, Czech Technical University in Prague (2018)

  16. Nezamabadi, S., Radjai, F., Averseng, J., Delenne, J.Y.: Modeling soft granular media. In: Modeling Granular Media Across Scales-MGMAS2014 (2014)

  17. Vu, T.L., Nezamabadi, S., Barés, J., Mora, S.: Analysis of dense packing of highly deformed grains. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 15031 (2017)

  18. Mora, S., Vu, T.L., Barés, J., Nezamabadi, S.: Highly deformed grain: from the hertz contact limitation to a new strain field description in 2d. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 05011 (2017)

  19. Iaconeta, I., Larese, A., Rossi, R., Oñate, E.: An implicit material point method applied to granular flows. Procedia Eng. 175, 226–232 (2017)

    Article  Google Scholar 

  20. Dosta, M., Costa, C., Al-Qureshi, H.: Numerical investigation of compaction of deformable particles with bonded-particle model. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 15021 (2017)

  21. Haustein, M., Gladkyy, A., Schwarze, R.: Discrete element modeling of deformable particles in yade. SoftwareX 6, 118–123 (2017)

    Article  ADS  Google Scholar 

  22. Rojek, J., Zubelewicz, A., Madan, N., Nosewicz, S.: The discrete element method with deformable particles. Int. J. Numer. Methods Eng. 114(8), 828–860 (2018)

    Article  MathSciNet  Google Scholar 

  23. Brodu, N., Dijksman, J.A., Behringer, R.P.: Multiple-contact discrete-element model for simulating dense granular media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91(3), 1–6 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gonzalez, M., Cuitiño, A.M.: A nonlocal contact formulation for confined granular systems. J. Mech. Phys. Solids 60(2), 333–350 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. Frenning, G.: Towards a mechanistic model for the interaction between plastically deforming particles under confined conditions: a numerical and analytical analysis. Mater. Lett. 92, 365–368 (2013)

    Article  Google Scholar 

  26. Celigueta, M.A., Latorre, S., Arrufat, F., Oñate, E.: Accurate modelling of the elastic behavior of a continuum with the discrete element method. Comput. Mech. 60(6), 997–1010 (2017)

    Article  MathSciNet  Google Scholar 

  27. Karanjgaokar, N.: Evaluation of energy contributions using inter-particle forces in granular materials under impact loading. Granul. Matter 19(2), 36 (2017)

    Article  Google Scholar 

  28. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  29. Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol. 210(3), 189–197 (2011)

    Article  Google Scholar 

  30. Taghizadeh, K., Luding, S., Magnanimo, V.: Dem applied to soil mechanics. In: ALERT Doctoral School 2017 Discrete Element Modeling, p. 129 (2017)

  31. Luding, S.: Collisions & contacts between two particles. In: Physics of Dry Granular Media. Springer, pp. 285–304 (1998)

  32. Li, Y., Xu, Y., Thornton, C.: A comparison of discrete element simulations and experiments for sandpiles composed of spherical particles. Powder Technol. 160(3), 219–228 (2005)

    Article  Google Scholar 

  33. Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63(6), 1523–1541 (2008)

    Article  Google Scholar 

  34. Alenzi, A., Marinack, M., Higgs, C.F., McCarthy, J.J.: DEM validation using an annular shear cell. Powder Technol. 248, 131–142 (2013)

    Article  Google Scholar 

  35. Mindlin, R.D.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  36. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)

    Article  Google Scholar 

  37. Di Renzo, A., Di Maio, F.P.: An improved integral non-linear model for the contact of particles in distinct element simulations. Chem. Eng. Sci. 60(5), 1303–1312 (2005)

    Article  Google Scholar 

  38. Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 233, 30–46 (2013)

    Article  Google Scholar 

  39. Shäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. Phys. I 6(1), 5–20 (1996)

    Google Scholar 

  40. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65(3), 031304 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10(11), 823–837 (2011)

    Article  ADS  Google Scholar 

  42. Zhang, J., Behringer, R.P., Goldhirsch, I.: Coarse-graining of a physical granular system. Prog. Theor. Phys. Suppl. 184, 16–30 (2010)

    Article  ADS  Google Scholar 

  43. Labra, C., Ooi, J.Y., Sun, J.: Spatial and temporal coarse-graining for DEM analysis. In: AIP Conference Proceedings, vol. 1542. AIP, pp. 1258–1261 (2013)

  44. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2–3), 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  45. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  ADS  Google Scholar 

  46. Tatara, Y.: Extensive theory of force-approach relations of elastic spheres in compression and in impact. J. Eng. Mater. Technol. 111(2), 163–168 (1989)

    Article  Google Scholar 

  47. Brodu, N., Dijksman, J.A., Behringer, R.P.: Spanning the scales of granular materials through microscopic force imaging. Nat. Commun. 6, 6361 (2015)

    Article  ADS  Google Scholar 

  48. He, A., Wettlaufer, J.S.: Hertz beyond belief. Soft Matter 10(13), 2264–2269 (2014)

    Article  ADS  Google Scholar 

  49. Kloss, C.: Source code for MC-DEM simulations and simulation setup for hydrogel multicontact example. https://github.com/CFDEMproject/LIGGGHTS-PUBLIC (2017). Accessed Jan 17, 2017

  50. Barés, J., Brodu, N., Zheng, H., Dijksman, J.A.: Transparent experiments: releasing data from mechanical tests on three dimensional hydrogel sphere packings. Granul. Matter 22(1), 21 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The economic support of the European Community under the Marie Sklodowska-Curie Initial Training Network FP7 (ITN607453) TMAPPP is gratefully acknowledged. We would like to thank the collaboration with Vanessa Magnanimo and A.H. Lasschuit. At the same time, the authors would also like to thank Benedikt Finke, Ramon Cabiscol, Dimitri Ivanov, Marcel Schrader, Christoph Thon and Clara Sangrós for their valuable input regarding the implementation of the code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Giannis.

Ethics declarations

Conflict of interest

The authors that they do not have any conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Pseudo-code used in the LIGGGHTS-DEM platform to obtain the global force acting on a particle.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannis, K., Schilde, C., Finke, J.H. et al. Stress based multi-contact model for discrete-element simulations. Granular Matter 23, 17 (2021). https://doi.org/10.1007/s10035-020-01060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01060-8

Keywords

Navigation