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Abstract

This dissertation treats a recently introduced modern random access protocol known as

unsourced random access (U-RA). This protocol belongs to the family of grant-free ran-

dom access protocols which, in contrast to the established grant-based protocols of current

mobile communication standards, do not rely on an initial access phase, in which the ac-

tive devices identify themselves and await the grant of dedicated transmission resources

(e.g. time-frequency blocks) from the base station (BS). When messages are short and

the number of active devices is large, which is a central specification of upcoming massive

machine-type-communication (mMTC) scenarios, such a grant-based procedure is overly

wasteful and may increase the delay to an unacceptable level. In a grant-free scenario the

active devices transmit their payload right away without awaiting the grant of dedicated

resources. A commonly discussed approach is to assign devices unique fixed identification

sequences (called pilots in the following). Active devices then transmit their pilot followed

directly by their message. The idea of unsourced random access is to go one step further

and, ideally, abolish the identification step, such that active devices directly transmit a

message from a common predefined message set. Information-theoretically such a behav-

ior is captured by letting each user employ the same codebook, as opposed to the classical

information-theoretic treatment of the multiple access problem where each user is assigned

an individual codebook. The assumption of a common codebook allows to treat the ran-

dom access problem in a way that captures the effect of short messages while still taking

into account the physical properties of the channel. In this work I build on a previously

introduced coding scheme for the U-RA problem on the AWGN channel termed coded com-

pressed sensing (CCS). I introduce a novel decoding algorithm for the CCS scheme based

on approximate message passing (AMP) and give an asymptotic analysis. The analysis

shows that it is possible, under optimal decoding, to achieve the fundamental communica-

tion limit on the AWGN channel even when arbitrary many users communicate without

any coordination. Furthermore, I show that the low-complexity AMP algorithm cannot

achieve this limit with a uniform power allocation. Instead, an optimized non-uniform

power allocation is necessary to improve the performance of the AMP algorithm beyond a

certain limit. I use the developed analysis to derive a method to find such power allocation.

Numerical evaluation show that the proposed scheme is efficient and the analysis is precise.
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In the second part of the work I present an extension of the U-RA idea to a block-fading

AWGN channel with a massive MIMO receiver. I introduce and study a modified CCS

scheme that uses a covariance based decoding algorithm. The analysis shows that the

sum-spectral-efficiency of such a U-RA system can grow as O(L/ logL), where L is the

length of a coherence block. In the course of the analysis I show that the self Khatri-Rao

product of random spherical matrices satisfies the so called restricted isometry property,

which is a result of independent interest and find applications in e.g. the analysis of the

limits of direction-of-arrival estimation.

Remarkably, the CCS scheme shows to work very well even in a high mobility scenario

with short coherence block length L ≈ 100 and hundreds of concurrent active users. In

such a fast fading scenario pilot based random access would completely fail for this number

of users. On the other hand, if the coherence block length is large enough, I show that a

more conventional scheme based on randomly chosen pilots and maximum-ratio-combining

can efficiently implement the U-RA idea in a massive MU-MIMO setting. Finally, I show

that the CCS scheme can be deployed in an distributed setting, where multiple BSs can

decode the messages of many active users with minimal corporation between the BSs

and no required cell management ("cell-free"). Furthermore, I present a novel iterative

scheme that allows to jointly detect the activity and the geographic positions of the active

users. The practical performance of all the proposed schemes is evaluated by numerical

simulations.
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Zusammenfassung

In dieser Arbeit behandle ich ein kürzlich vorgestelltes Random-Access Verfahren zur draht-

losen Kommunikation das unter dem Namen łUnsourced Random Accessž (U-RA) bekannt

wurde. Das Verfahren gehört zur Klasse der zuweisungsfreien Random-Access Protokolle,

die, im Gegensatz zu den etablierten zuweisungsbasierten Protokollen aktueller mobiler

Kommunikationsstandards, nicht auf eine erste Kennenlernphase angewiesen sind, wäh-

rend der die Benutzer sich identifizieren and auf die Zuweisung von festen Kommunikati-

onsresourcen (z.B. Zeit-Frequenzblöcken) durch die Basisstation (BS) warten müssen. So

ein zuweisungsbasiertes Protokoll ist besonders ineffizient, wenn die Zahl der Benutzer sehr

groß ist, sie aber nur selten aktiv sind und nur kurze Nachrichten zu übermitteln haben. Das

ist z.B. bei typischen Szenarien zukünftiger Maschinenkommunikation der Fall, in denen

eine Vielzahl von Sensoren in unregelmäßigen Abständen ihren Messungen übermitteln.

Die Zuweisungsphase würde in so einem Szenario die Verzögerungen zwischen Sender und

Empfänger deutlich erhöhen. In einem zuweisungsfreien Protokoll hingegen senden Benuz-

ter ihre Daten direkt, ohne auf die Zustimmung der BS zu warten. Ein gerne verwendeter

Ansatz zur zuweisungsfreien Kommunikation besteht darin, jedem Benutzer eine eindeutige

Signatur zuzuweisen. Ein aktiver Benutzer sendet dann erst seine Signatur, direkt gefolgt

von der eigentlichen Nachricht. So ein Ansatz ist nicht komplett zuweisungsfrei, da erst

jedem Benutzer eine Signatur zugewiesen werden muss. Im U-RA Ansatz werden hingegen

alle Benutzer von Anfang an als ununterscheidbar behandelt. In dem Fall muss der Emp-

fänger nur eine Liste der gesendeten Nachrichten rekonstruieren, wobei es prinzipiell nicht

möglich ist eine bestimmte Nachricht einem bestimmten Benutzer zuzuordnen. Informa-

tionstheoretisch spiegelt sich dieser Ansatz in der Annahme, dass alle Benutzer dasselbe

Codebuch haben. Das erlaubt es das Problem auf eine weise zu behandeln die es ermöglicht

die kurze Länge der Nachrichten und gleichzeitig die Art des Kanals mit einzubeziehen. In

dieser Arbeit baue ich auf einer bestehenden Methode auf, für U-RA zu kodieren, die als

coded-compressed-sensing (CCS) bekannt ist. Ich stelle einen verbesserten Dekodieren für

CCS vor, basieren auf dem approximate message passing (AMP) Algorithmus, und analy-

siere diesen Dekoder. Die Analyse zeigt, dass es unter optimaler Dekodierung möglich ist die

fundamentalen Grenzen der Mehrbenutzerkommunikation auf dem realen AWGN Kanal zu

erreichen, selbst wenn unendlich Benutzer ohne jede Kooperation senden. Außerdem kann
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ich zeigen, unter welchen Bedingungen diese Grenzen auch unter sub-optimaler AMP De-

kodierung erreichbar sind. Simulationen zeigen, dass der vorgestellte Dekodierer effizient ist

und die theoretische Analyse gute Vorhersagen liefert. Im zweiten Teil der Arbeit stelle ich

vor, wie das U-RA Konzept auf einen AWGN Kanal mit Block-Fading und mehreren Emp-

fangsantennen anwendbar ist. Ich stelle eine Modifikation des CCS Schemas vor, die mit

einem Kovarianz-basierten Algorithmus dekodiert werden kann. Die Analyse zeigt, dass die

gesamte spektrale Effizienz eines solchen Systems in der Größenordnung O(L/ logL) wach-

sen kann, wobei L die Länge eines Koheränzblocks ist. Im Rahmen dieser Analyses habe ich

gezeigt, dass sogenannte selbst Khatri-Rao product einer zufälligen sphärischen Matrix die

restricted isometry property hat. Das ist ein Resultat das von unabhängigem Interesse ist

und in Bereichen wie der Bestimmung von Einfallswinkeln in Radaranwendungen benutzt

werden kann. Das CCS Verfahren funktioniert sehr gut und erlaubt es selbst in Szenarien

mit hoher Mobilität und kurzen Koheränzblocklängen von etwa L ≈ 100 noch zuverlässi-

ge Kommunikations von einigen hundert Benutzern. Bei solchen kurzen Koheränzblöcken

und Benutzerzahlen würden klassische Verfahren komplett versagen. Andererseits, für lan-

ge Koheränzblöcke stelle ich ein alternatives Verfahren vor, das auf der zufälligen Wahl von

Signaturen aus einer vorgegebenen Menge basiert und maximum-ratio-combining benutzt

um die Nachrichten unterschiedlicher Benutzer zu trennen. Im letzten Teil der Arbeit un-

tersuche ich, wie der U-RA Ansatz mit verteilten Empfangsstationen funktionieren kann.

Ich zeige, dass es trotz minimaler Kooperation unter den Empfangsstationen und ohne

Zellenmanagement, möglich ist das U-RA Konzept effizient zu implementieren. Außerdem

stelle ich einen neuen Algorithmus vor der es den Empfangsstationen erlaubt gleichzeitig

die Aktivität der Benutzer und ihre Position zu bestimmen. Die möglichen Leistungen aller

vorgestellen Algorithmen werden mit Simulationen belegt.
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1. Background and Motivation

1.1. Grant-Free Random Access

In the last decades mobile communication has evolved to a point where almost every person

on earth owns a mobile phone. The goal for next generation mobile systems is to provide

ubiquitous wireless access to a myriad of machine type devices like autonomous vehicles,

mobile sensors or smart home devices. Such scenarios have been described with names like

internet-of-things (IoT) or massive machine-type-communication (MTC). Current wireless

systems are not designed to handle a massive amount of terminals with sporadic activity

and short messages. The way that shared access of the communication resources is handled

in the current communication standards (e.g. 3G,4G-LTE or 5G NR) [1, 2] is through a

grant-based procedure: The active devices identify themselves and await the grant of some

dedicated transmission resource. When messages are short and the number of active de-

vices is large such a grant-based procedure is overly wasteful and may increase the delay to

an unacceptable level. In contrast, in a grant-free scenario [3ś7] the active devices transmit

their payload right away without awaiting the grant of dedicated resources. A prominent

way of implementing a grant-free scheme is to assign devices unique fixed identification

sequences (pilots) [3ś6]. Active devices then transmit their pilot followed directly by their

message. The downside of any fixed allocation of pilots to users is that the cost of identifi-

cation grows with the total number of devices [8], even if most of them remain inactive for

a very long time. A novel paradigm, later referred to as unsourced random-access (U-RA),

gets around this limitation and allows for a communication system that is completely in-

dependent of the number of inactive users [9]. The idea of unsourced random access is to,

ideally, abolish the identification step, such that active devices directly transmit a message

from a common predefined message set.

Information-theoretically such a behavior is captured by letting each user employ the

same codebook. In contrast to the massive MTC requirements, the traditional informa-

tion theoretic treatment of the multiple-access uplink channel is focused on few users K,

large blocklength n and coordinated transmission, in the sense that each user is given an

individual distinct codebook, and the K users agree on which rate K-tuple inside the ca-

pacity region to operate [10ś12]. Mathematically, this is reŕected by considering the limit
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1. Background and Motivation

of infinite message- and blocklength while keeping the rate and the number of users fixed.

This approach does not sufficiently capture the bursty random arrival of messages in real

world multiple access networks [13], which lead to the widespread success of packet based

random-access models [14ś17]. Such models are based on simplified collision channels [18],

which ignore the underlying physical communication channel and are thereby limited in the

achievable performance [19, 20]. The assumption of a common codebook in U-RA allows

to treat the random access problem in a way that captures the effect of short messages

while still taking into account the physical properties of the channel.

1.2. Unsourced Random Access

Polyanskiy formulated U-RA as information-theoretic problem in [9] and presented a way

to calculate an upper bound on the error probability of U-RA with a Gaussian random

codebook under a finite blocklength constraint [9, Theorem 1]. This result was used to

calculate the energy efficiency of random coding, i.e. the least required energy-per-bit to

noise power ratio Eb/N0 such that the error probability is within some tolerance ϵ.

The energy efficiency of the popular slotted Aloha protocol [14] was evaluated by di-

viding the available blocklength n into V slots. This creates smaller AWGN channels of

blocklength V/n, for which the finite blocklength capacity at a fixed error probability can

be approximated by the normal approximation [21]. It was found that the energy efficiency

of slotted Aloha is very poor compared to the random coding achievability bound, which

was mainly due to the rapid rise of the collision probability with the number of active

users. To alleviate this problem Polyanskiy introduced the concept of T -fold Aloha, which

refers to a hypothetical slotted coding scheme that is able to resolve up to T collision in

one Aloha slot. It was shown that the energy efficiency of T -fold Aloha is much better

than of regular Aloha, even for small values of T .

An asymptotic converse on the achievable energy efficiency is given by the Shannon limit

for the real AWGN channel [10, 11]

Eb/N0 ≥
22µ − 1

2µ
(1.1)

where µ = KaB/n is the sum-spectral efficiency, Ka is the number of concurrently trans-

mitting users, B is the length of messages in bits and n is the number of available channel

uses.. (1.1) shows we can distinguish between two extremal behaviors in multiple access

systems, depending on whether KaB ≪ n or KaB > n. The first regime is called power-

limited since here (22µ − 1)/(2µ) ≈ const., and therefore the required energy depends only

weakly on the number of active users. On the other hand, if KaB > n, any increase in Ka

2



1.2. Unsourced Random Access

will exponentially increase the required Eb/N0. This is known as the interference-limited

regime. The Shannon bound is known to be tight for the conventional AWGN-MAC, but it

is not necessarily tight for the unsourced case. In Chapter 2 I establish sufficient conditions

on the scaling of Ka under which (1.1) is indeed tight in the unsourced case.

Following the initial work of Polyanskiy several practical approaches were suggested

which successively reduced the gap to the random coding achievability bound [22ś27].

On a high level many of the suggested approaches consist of creating a pool of resources

(e.g. timeslots [22, 25, 28], spreading sequences [26, 27]) of which active users pick one at

random and use it to communicate. This is reminiscent of the initial access protocol in

current communication standards [1, Ch. 14.3], where the pool of resources consists of

orthogonal preamble sequences. Also Aloha falls into this broad class of schemes with

time slots as orthogonal resources. The main problem with such a strategy is that, as the

number of active users grow, the probability of collisions, i.e. multiple users picking the

same resource, becomes large. There are two ways to deal with this problem. One is to

use a code that is able to resolve a small number of collisions and the other is to make the

pool of resources non-orthogonal and large enough such that the probability of collisions

becomes negligible. The first way is essentially the concept of T -fold Aloha, introduced

by Ordentlich and Polyanskiy [22], and was practically implemented e.g. in [25, 28]. The

second approach was chosen e.g. in [23, 26, 27]. Basically all existing approaches to U-RA

share the property that the required energy-per-bit starts to grow rapidly as soon as the

number of active users that collide on one resource becomes too large. That is because

strong codes are necessary to resolve the multiple-access interference of many users. The

obvious way to reduce the number of collisions is to make the pool of resources as large

as possible. Random coding can be seen as an extreme example of the second approach,

where the pool of resources is equal to all possible codewords.

The U-RA problem on the real AWGN channel can be written as a sparse recovery

problem of the form

y = Ax + z (1.2)

where each column of A ∈ Rn×2B is one codeword of the common codebook. x ∈ {0, 1}2B

is a binary vector with entries equal to one at the indices of the transmitted codewords

and zero otherwise. z ∈ Rn is the vector of Gaussian noise. Although there are effi-

cient algorithms with polynomial complexity to solve such a sparse recovery problem, the

dimension 2B is extremely large, even for comparably small values like B = 100 bits.

A divide-and-conquer approach for this type of sparse recovery problems, referred to as

Coded-Compressed-Sensing (CCS), was proposed in [24]. The idea is to split each trans-

mission up into S subslots. In each subslot the active users send a column from a common
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inner coding matrix, while the symbols across all subslots are chosen from a common outer

tree code. One of the strong properties of this coding scheme is that the resolving of the

multiple-access interference is done in the domain of Ka sparse 2J dimensional vectors,

which simplifies the processing significantly. In the first part of this work I build upon the

finding of [24] and its similarity to sparse regression codes (SPARCs) to propose an im-

proved inner approximate message passing (AMP) decoder. I present an numerical method

to analyse the error probability of the decoder for finite J and give a closed form result on

the achievable rates that holds in the limit of Ka, J → ∞.

1.3. Sparse Regression Codes

SPARCs were introduced in [29] as a class of channel codes for the point-to-point AWGN

channel that can achieve rates up to Shannon capacity under maximum-likelihood decod-

ing. Later, it was shown that SPARCs can achieve capacity under approximate message

passing (AMP) decoding with either power allocation [30] or spatial coupling [31]. AMP

is an iterative low-complexity algorithm for solving random linear estimation problems or

generalized versions thereof [32ś34]. A recent survey on SPARCs can be found in [35].

One of the appealing features of the AMP algorithm is that it is possible to analyse its

asymptotic error probability, averaged over certain random matrix ensembles, through the

so called state evolution (SE) equations [34, 36]. Interestingly the SE equations can also

be obtained as the extreme point conditions of the replica symmetric (RS) potential, a

R → R function that was first calculated through the non-rigorous replica method [37,38].

It was shown that in random linear estimation problems the extreme points of the RS-

potential also characterize the symbols-wise posterior distribution of the input elements

and therefore also the error probability of several optimal estimators like the symbol-by-

symbol maximum-a-posteriori (SBS-MAP) estimator [39, 40]. The difference between the

AMP and the SBS-MAP estimate is that the SBS-MAP estimate always corresponds to

the global minimum of the RS-potential, while the AMP algorithm gets ’stuck’ in local

minima. The rate below which a local minimum appears was called the algorithmic or

belief-propagation threshold in [31,39,41]. It was shown in [41,42] that, despite the existence

of local minima in the RS-potential, the AMP algorithm can still converge to the global

minimum when used with spatially coupled matrices. Although the RS-potential was

derived by (and named after) the non-rigorous replica method, it was recently proven to

hold rigorously [43,44] for the case of Gaussian iid measurement matrices. The proof of [44]

is more general in the sense that it includes the case where the unknown, to be estimated,

vector s consists of blocks of size 2J and each block is considered to be drawn iid from

some distribution on R2J .
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1.4. Massive MIMO

In the second part of the work I present an extension of the U-RA idea to a block-fading

AWGN channel with a massive MIMO receiver [45, 46]. The term massive MIMO was

introduced in [47] and describes a variant of multi-user MIMO (MU-MIMO) where a BS

with a large antenna array consisting of M ≫ K antennas serves K users. Massive MIMO

differs from conventional MU-MIMO in that M is large enough such that the effect of

small scale fading can be averaged out. Specifically, it is possible to achieve large gains

with channel-state information (CSI) being available only at the receiver [46, 47]. Not

having to know the CSI at the transmitter is a huge advantage compared to conventional

MU-MIMO, but in an mMTC setting with sporadic activity it can still be very costly

to estimate the channel coefficients of all active users. The state-of-the-art approach to

grant-free random-access in massive MIMO consist of assigning unique orthogonal pilot

sequences to each users. Then, in an initial identification phase, the active users are

detected and their channel vectors are estimated. These estimates are subsequently used

to estimate the transmitted data symbols. It was shown in [4] that, through the use of

random non-orthogonal pilot sequences, it is possible to identify an arbitrary amount of

Ka active users out of Ktot total users and estimate their channel vectors in the asymptotic

regime of Ka,Ktot, L,M → ∞ when Ka/L < 1 and Ka/Ktot stay fixed and L ≫ M . Note,

that if Ka > L it is in general impossible to estimate the complete Ka×M channel matrix

reliably from the L×M measurements because the number of unknowns is larger then the

number of constraints.

A novel approach to activity detection (AD) in the massive MIMO setting was presented

in [48]. It was shown that through the use of just the covariance information in the

measurements it is possible to estimate the Large-Scale-Fading-Coefficients (LSFCs), and

therefore also identify the activity, of Ka > L, specifically Ka = O(L2/ log2(Ktot/Ka)),

active users even if it is not possible to estimate the channel vectors of all active users.

Similar results were found in the context of direction-of-arrival estimation and will be

discussed later. Although this result is remarkable, it is not practicable to use it in the

existing grant-free massive MIMO schemes, because they rely on the CSI to estimate

the transmitted data symbols. It is possible to embed information in the AD process,

e.g. one bit can be transmitted in the AD phase by assigning each user two unique pilot

sequences [49]. Clearly such an idea is impractical for the transmission of more than a

handful of bits. In contrast, as I will show in Chapter 3, U-RA with a modified CCS

scheme allows to combine covariance based AD and data transmission in a way that is

scalable to a moderate number of message bits and inherits all the advantages of U-RA.

The inner decoding problem in the CCS scheme for the block-fading MIMO channel model
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turns out to be mathematically equivalent to a massive MIMO AD problem where L

takes the role of the coherence blocklength and Ktot takes the role of 2J where J is the

number coded bits each user can transmit per coherence block. In Chapter 3 I present

a complete and rigorous proof of the Ka = O(L2/ log2Ktot) scaling result and use it

to derive an achievable scaling for the sum-spectral efficiency in the U-RA setting. The

results show that the presented scheme can support Ka = O(L2) active users and the

sum-spectral efficiency can grow as O(L) up to logarithmic factors with a required energy-

per-bit that can be made arbitrary low by increasing M . This can be achieved in a

completely non-coherent way, i.e. it is at no point necessary to estimate the channel

coefficients of all the active users. In contrast, no coherent scheme can support more

active users than the coherence block-length, since in this regime it is not possible to

estimate the channel coefficients of all active users. These are important properties to

enable easily deployable, low-latency, energy efficient communication in an IoT setting. The

scaling result is obtained by analyzing a Non-Negative Least-Squares (NNLS) algorithm

applied to the sample covariance information, which was recently considered for LSFC

estimation in [50]. The analysis in [50] showed, that with a random choice of pilot sequences

the LSFCs of up to Ka = O(L2) users could be estimated, but the proof was limited

by the assumptions of Ka = Ktot, Ktot ≤ L2 and M → ∞. The result in Chapter

3 lifts all these restrictions and shows that Ktot may be potentially much larger than

L2 and Ka, where one needs to pay only a poly-logarithmic penalty O(log2(Ktot

Ka
)) for

increasing the total number of users Ktot. Furthermore, an improved algorithm for AD

based on the Maximum-Likelihood (ML) estimation of the LSFCs of the active users is

presented, referred throughout this work as the "ML Algorithm". The resulting likelihood

maximization is a non-convex problem, that can be solved (approximately) by iterative

componentwise minimization. This yields an iterative scheme based on rank-1 updates

whose complexity is comparable to that of NNLS or Multiple-Measurement-Vector AMP

(MMV-AMP), the algorithm used in [4,5]. Extensive numerical simulations show that the

ML algorithm is superior to NNLS and to MMV-AMP in any regime, and does not suffer

from the ill-conditioned behavior of MMV-AMP for the case of large M .

1.5. Sparse Bayesian Learning and Joint-Sparse Support

Recovery

The componentwise optimization of the log-likelihood function was developed in [51ś54],

where the sparse Bayesian learning (SBL) framework was introduced to find the optimal

vector of weights in a linear regression problem. In the SBL framework it is assumed that

the weight vector follows a Gaussian prior distribution with zero mean and a diagonal
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covariance matrix. The entries of the covariance matrix are estimated by maximizing the

likelihood of the data. It was observed that the likelihood function maximization typically

yields a sparse result, which is a desirable property in statistical learning. The maximum

of the likelihood function can be computed iteratively by following the general expectation-

maximization (EM) framework [55,56], but it was found that a componentwise optimization

leads to faster convergence while still being guaranteed to converge to at least a local

maximum of the likelihood function [52], similar to EM. The SBL framework was extended

and applied to basis selection [57], compressed sensing [58] and also the MMV problem [59],

where the latter was termed M-SBL. Here, the task is to recover X ∈ CKtot×M (here we

stick to the notation introduced in this paper) from multiple measurements Y ∈ CL×M of

the form

Y = AX + Z (1.3)

Following the SBL framework, it is assumed that the rows of X are distributed according

to

X:,i ∼ CN (0, γiIM ). (1.4)

Note, that in the literature the term M-SBL has often been used ambiguously to refer to

the ML estimate of the parameters γi as well as to the algorithm used to find this solution,

which may be either coordinate-wise optimization or EM. Both of these algorithms lead to

similar solutions [59], but here we adopt the componentwise optimization algorithm, since

it can be efficiently implemented using rank-1 updates leading to a significant complexity

reduction compared to the EM version.

Let X have Ka non-zero rows. The identifiability limits of the ML solution of M-SBL were

analysed in [60ś64]. While the early work [60] was restricted to the case Ka ≤ L, [61] made

the distinction between recovering X, which necessarily requires Ka ≤ L, and recovering

the vector γ = (γ1, ..., γKtot
). It was noticed in [61] that the recovery of γ is governed by the

properties of the Khatri-Rao product A⊙A and it was proven that, with a random choice

of A, up to Ka = O(L2) non-zero entries of γ can be recovered uniquely if the covariance

matrix of Y is known exactly. The proof of [61] (similar proofs were given independently

in [50, 64]) is based on the fact that any 2Ka columns of A ⊙ A are linearly independent

almost surely for Ka up to O(L2). This proof deals only with the identifiability though,

i.e., it does not apply to a specific recovery algorithm and does not take into account the

uncertainty in estimating the covariance matrix of Y, and therefore gives no clue on the

robustness of the recovery with respect to the unavoidable covariance estimation error. It

is well known in the compressed sensing literature that stronger conditions are needed to

guarantee algorithmic robust recovery [65]. Upper and lower bounds on the performance of

the ML solution of M-SBL for the noisy case have been derived in [60] for Ka ≤ L and in [63]
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for Ka = O(L2), but these bounds contained parameters which were exponentially hard to

compute for a given matrix A and so no concrete scaling of Ka could be given. A coherence

based argument was given in [61] to analyse the performance of a covariance based LASSO

algorithm, but it was only possible to guarantee recovery for up to Ka = O(L) coefficients.

This is a well known limitation of coherence based arguments, known as the "square-root

bottleneck" [65].

In Chapter 3 this bottleneck is circumvented by proving the restricted isometry prop-

erty (RIP) of a properly centered and rescaled version of A ⊙ A for random A. This

allows to prove robust recovery guarantees for both the NNLS algorithm of [50] and a

constrained variant of the ML solution, showing that Ka = O(L2) coefficients can be

recovered. Although the constrained ML yields a combinatorial minimization with expo-

nential complexity and therefore is not useful in practice, it is shown that the scaling law

for successful detection of the activity pattern of the constrained ML scheme is the same

(up to logarithmic factors in the scaling of M) as what was found for NNLS. Therefore,

it is reasonable to believe that the (low-complexity) ML algorithm achieves the same scal-

ing law. An intuitive argument is provided which, at least heuristically, explains why the

componentwise optimization can be expected to converge to the global optimum in the

considered scaling regime. Note, that an analysis of the constrained ML estimator was

recently presented in [66]. However, the results in [66] are based on a RIP result that was

first claimed and then withdrawn by the same authors [67]. Hence, the result in Chapter

3, based on a novel RIP result and a few consequent modifications which are duly proven,

essentially rigorizes the analysis presented in [66].

The full characterisation of the global (unconstrained) ML solution and the conditions

under which the iterative estimate coincides with it remains open. Some progress has

recently been made in [68], where it was shown the global optimality of the algorithmic so-

lution can be checked, given A and the true γ◦, by a linear feasibility program. In contrast,

the presented recovery guarantees for the NNLS algorithm hold for all Ka-sparse γ and are

given in closed form (up to unspecified constants). Based on the asymptotic Gaussianity

of ML estimators in general, it was shown in [68] that for large M the distribution of the

ML estimation error, for a fixed γ◦, can be characterized numerically by the solution of a

quadratic program.

The coordinate-wise optimization algorithm for M-SBL was also independently re-discovered

and investigated in the context of angle-of-arrival estimation [69ś71]. It was noted in [69]

that the update equation can be equivalently derived by an iterative weighted least-squares

(WLS) approach, which asymptotically minimizes the variance of the estimation. The re-

sulting algorithm has therefore been called iterative asymptotic sparse minimum variance

stochastic ML (SAMV-SML). Recently, in [72] a similar WLS estimator was derived and
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an iterative algorithm was given to find an approximation of the WLS minimizer. The

performance reported was very similar to M-SBL, but at a much higher complexity-per-

iteration of O(L4K2
tot), compared to O(L2Ktot) for the coordinate-wise optimization with

rank-1 updates.

1.6. Slow-fading

Although the presented U-RA scheme with CCS and ML AD shows empirically to be

superior to any other MIMO U-RA scheme if run with the same coherence block-length,

its complexity grows proportional to O(L2) and becomes unfeasibly large when L is in the

order of a couple of thousands. Therefore it may be necessary to split up the coherence

block-length artificially, which reduces the achievable spectral efficiencies.

In Section 3.4 I introduce a simple new U-RA scheme that works when L ≫ Ka. If the

coherence block-length is long enough the first part of the coherence block-length can be

dedicated to transmitting randomly chosen non-orthogonal pilot sequences. In this first

phase the BS uses one of the AD algorithms discussed in Section 3.2 to detect the indices

of the transmitted pilots and subsequently produces a linear minimum-mean-square-error

(LMMSE) estimate of the channel vectors of the active users. The estimated channel

vectors are then used in the second phase as temporary identifiers which allow to separate

the data streams of the active users via maximum-ratio-combining (MRC). This concept is

reminiscent of the more conventional grant-free random-access approach [3ś7] where each

user is assigned a fixed pilot sequence. The difference here is that pilot collisions, i.e.

two or more active users picking the same pilot, are possible. I show that these collisions

can be resolved by using a low-rate polar code with a successive-cancellation-list (SCL)

decoder [73ś75] as single-user error correcting code. The simplicity of the scheme allows to

predict its error probability and energy-efficiency analytically with high precision by using

methods developed for massive MU-MIMO.

Empirical simulations show that the performance of the presented scheme, despite is

simplicity, is comparable to existing approaches designed for large coherence block-lengths.

1.7. Cell-free MIMO

The final part of the thesis treats the problem of combining measurements from several

BS. In a conventional massive MU-MIMO system with pilot based uplink a geographical

area is divided into cells with one BS at the center of each cell which serves users within

the cell only. When all cells share the same set of pilot sequences, users in neighbouring

cells may use the same pilot sequence which leads to a coherent corruption of the estimated
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channel vectors. This phenomenon is known as pilot contamination and ultimately limits

the scalability of massive MU-MIMO systems, since this type of interference cannot be

overcome by increasing the number of receive antennas. Also an increase of the cell-density

only increases the effect of the pilot contamination. Overcoming the pilot contamination

is a major problem in current mobile communication research. One solution is to allocate

different sets of pilots to different cells [46], such that neighbouring cells do not share the

same set of pilots. This limits the pilot contaminations but reduces the number of available

pilots per cell and therefore also the number of supported concurrent users.

The idea of conventional massive MU-MIMO with distributed, instead of collocated,

receive antennas which work together cooperatively to serve many users has been studied

under the name cell-free massive MU-MIMO [76]. And although the distributed systems

outperform their centralized counterparts in terms of achievable rates [76], they also come

with the increased logistic burden of placing and connecting all the micro BSs. Besides

the pilot based uplink treated in [76] still suffers from pilot contamination.

The advantage of the presented CCS U-RA scheme is that it works without pilots and

channel estimation and therefore it does not suffer from pilot contamination. Possible

collisions of sub-messages within one slot can be efficiently corrected by the outer code.

Furthermore, due to the unsourced nature of the scheme it is possible to scale the system

by adding more BS into an area without the need for cell management. A simple approach

to a multi-BS system that requires almost no cooperation between BSs is to let each BS

create a list of received messages individually. Then, a central collector gathers these lists

and takes the union to remove duplicate messages.

Finally, I present a more sophisticated approach to AD in the distributed setting which

requires the BS to share only the estimated LSFCs. The idea is to use the distant dependent

LSFCs to estimate the locations of the active users and use the location estimates to

refine the ML estimation of the LSFCs. This process can be iterated until convergence.

The accuracy of the position estimation depends mostly on the quality of the assumed

propagation model. In this work I assume a commonly used empirical propagation model

that has a deterministic pathloss exponent and random log-normal shadowing. It is well

known that positioning, based on received signal strengths, has a limited accuracy due to

the large effect of the log-normal shadowing [77,78]. Nonetheless, the described procedure

of joint positioning and AD shows a remarkable improvement when geographically close

BS are able to exchange their LSFCs estimates. Note, that the log-normal shadowing

model is purely empirical. The shadowing component is often a complicated but mostly

deterministic function of the surrounding environment. In static scenarios it is possible to

create radio maps which describe the pathloss in different locations. Such maps can be

generated for a given area by physical measurements, ray-tracing simulations or novel deep-
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neural-network based methods [79,80]. If such a map is available it is possible to incorporate

it into the likelihood function and improve the accuracy of the position estimation.

1.8. Notation

Scalar constants are represented by non-boldface letters (e.g., x or X), sets by calligraphic

letters (e.g., X ), vectors by boldface small letters (e.g., x), and matrices by boldface capital

letters (e.g., X). The i-th row and the j-th column of a matrix X are denoted by the row-

vector Xi,: and the column-vector X:,j respectively. A diagonal matrix with elements

(s1, s2, . . . , sk) is denoted by diag(s1, . . . , sk). The vectorization operator is denoted by

vec(.). The ℓp-norm of a vector x and the Frobenius norm of a matrix X are denoted by

∥x∥p and ∥X∥p resp. ∥x∥0 := |{i : xi ̸= 0}| denotes the number of non-zero entries of

a vector x. The operator norm of a matrix X is denoted by ∥X∥op. The k × k identity

matrix is represented by Ik. For an integer k > 0, the shorthand notation [k] is used for

{1, 2, . . . , k}. Superscripts (·)⊤ and (·)H are used for transpose and Hermitian transpose.

⊙ denotes the elementwise product of vectors or matrices of the same size. ⟨x,y⟩ := xHy

denotes the Euclidean scalar product between two vectors. Universal constants are defined

as numbers, which are independent of all system parameters. Such constants are typically

denoted by c, C, c′, c0, c1 etc., and different universal constants may be denoted by the same

letter. log(x) denotes the natural logarithm of x.
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2. Multi-User SPARCs for the AWGN

Channel

2.1. Outline and Main Contributions

This chapter is organized as follows. Section 2.2 formalizes the U-RA setting on the

real AWGN channel without fading. In Section 2.3 the concatenated coding scheme is

defined and the decomposition into inner and outer channel is introduced. Section 2.4

defines the inner AMP decoder and the optimal, but uncomputable, inner MAP decoder

and analyses their asymptotic error probabilities. Section 2.5 analyses the quantization

step, which is necessary for a binary-input outer decoder. Section 2.6 formulates the outer

channel and gives converse and achievability results. Section 2.7 analyses the concatenated

code. Section 2.8 gives an algorithm to optimize the power allocation and Section 2.9

introduces a low-complexity approximation of the suggested AMP algorithm. In Section

2.10 we give finite-length simulations and compare them to the analytical results. The

main contribution in this chapter are as follows

• The concept of sparse regression codes is extended to the unsourced random access

setting by making use of the tree code of [24].

• For the resulting inner-outer concatenated coding scheme, we introduce a matching

outer channel model and analyse the achievable rates on this outer channel and

compare it to existing practical solutions.

• We propose a modified approximate message passing algorithm as an inner decoder

and analyse its asymptotic error probability through its SE. We use the connections

between SE and the rigorously confirmed RS formula to find the error probability of

a hypothetical MAP decoder.

• We find that the error probability of the inner decoder admits a simple closed form

in the limit of Ka, J → ∞ with J = α log2Ka for some α > 1. The limit was also

considered in [24], motivated by the fact that J is the number of bits required to

encode the identity of each of up to Ktot users if Ka = K
1/α
tot . We show that the

13



2. Multi-User SPARCs for the AWGN Channel

per-user error probability of the concatenated scheme vanishes in the limit of large

blocklength and infinitely many users, if the sum-rate is smaller than the symmetric

Shannon capacity 0.5 log2(1+KaSNR). This shows that an unsourced random access

scheme can, even with no coordination between users, achieve the same symmetric

rates as a non-unsourced scheme.

• Using the results from the asymptotic analysis we identify parameter regions where

the AMP decoder can achieve the same error probability as the MAP decoder. In

parameter regions where there is a gap between the achievable error probability of

the AMP and the MAP decoder we propose a method for finding an optimal power

allocation that is able to improve the performance of the AMP decoder significantly.

• Finite-length simulations show the efficiency of the proposed coding scheme and the

accuracy of the analytical predictions.

2.2. Channel Model

Let Ka denote the number of active users, n the number of available channel uses and

B = nR the size of a message in bits. The spectral efficiency is given by µ = KaR. The

channel model used is

y =

Ktot∑︂

i=1

qixi + z, (2.1)

where each xi ∈ C ⊂ Rn is taken from a common codebook C and qi ∈ {0, 1} are binary

variables indicating whether a user is active. The number of active users is denoted as

Ka =
∑︁Ktot

i=1 qi. The codewords are assumed to be normalized ∥xi∥22 = nP for a given

energy-per-symbol P and the noise vector z is Gaussian iid zi ∼ N (0, N0/2), such that

SNR = 2P/N0 denotes the real per-user SNR. All the active users pick one of the 2B

codewords from C, based on their message Wk ∈ [1 : 2B] and transmit it. 1 The decoder

of the system produces a list g(y) of at most Ka messages. An error is declared if one

of the transmitted messages is missing in the output list g(y) and we define the per-user

probability of error as:

Pe =
1

Ka

Ka∑︂

k=1

P(Wk /∈ g(y)). (2.2)

Note that the error is independent of the user identities in general and especially inde-

pendent of the inactive users. The performance of the system is measured in terms of the

1Throughout this work, as in [9] and in [87], we assume that users are synchronized.
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required Eb/N0 := P/(RN0) for a target Pe and the described coding construction is called

reliable if Pe → 0 as n → ∞.

2.3. Concatenated Coding

In this work we focus on a special type of codebook, where each transmitted codeword is

created in the following way: First, the B-bit message Wk of user k is mapped to an LJ-bit

codeword from some common outer codebook. Then each of the J-bit sub-sequences is

mapped to an index ik(l) ∈ [1 : 2J ] for l = [1 : L] and k = [1 : Ka]. The inner codebook

is based on a set of L coding matrices Al ∈ Rn×2J . Let a
(l)
i with i = [1 : 2J ] denote the

columns of Al. The inner codeword of user k corresponding to the sequence of indices

ik(1), ..., ik(L) is then created as

xk =
L∑︂

l=1

√︁
Pla

(l)
ik(l)

. (2.3)

The columns of Al are assumed to be scaled such that ∥a(l)
i ∥22 = 1 and the power coefficients

Pl are chosen such that ∥xk∥22 ≤ nP . The above encoding model can be written in matrix

form as

y =

Ka∑︂

k=1

Amk + z = A

(︄
Ka∑︂

k=1

mk

)︄
+ z. (2.4)

where A = (A1|...|AL) and mk ∈ RL2J is a non-negative vector satisfying mk,(l−1)2J+ik(l)
=√

Pl and zero otherwise, for all l = [1 : L]. Let θ =
∑︁Ka

k=1 mk and let s denote the integer

part of θ, i.e. θ =
(︁√

P1s
1|...|√PLsL

)︁⊤
. The linear structure allows to write the channel

(2.4) as a concatenation of the inner point-to-point channel θ → Aθ + z and the outer

binary input adder MAC (m1, ...,mKa) → s. We will refer to those as the inner and outer

channel, the corresponding encoder and decoder will be referred to as inner and outer

encoder/decoder and the aggregated system of inner and outer encoder/decoder as the

concatenated system. The per-user inner rate in terms of bits/c.u. is given by Rin := LJ/n

and the outer rate is given by Rout = B/LJ . For the analysis we assume that all entries

of the coding matrices Al are Gaussian iid and that the outer encoded indices ik(l) are

distributed uniformly and independently in [1 : 2J ]. Furthermore, we assume that the

power coefficients are uniformly Pl ≡ nP/L, such that the power constraint E[∥xk∥22] = nP

is fulfilled on average. This latter assumption will be relaxed in Section 2.8, where we will

consider a non-uniform power allocation.
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2.4. Inner Channel

In this section we focus on the inner decoding problem of recovering s from

y = Aθ + z =
√︁

P̂As + z (2.5)

where P̂ = nP/L. Let ki ∈ [0 : Ka] for i ∈ [1 : 2J ] be non-negative integers. The

probability of observing a specific sl is given by:

p
(︂
sl = (k1, ..., k2J )

⊤
)︂
= 2−KaJ Ka!

k1! · · · k2J !
(2.6)

if
∑︁2J

i=1 ki = Ka and zero otherwise. This is a multinomial distribution with uniform event

probabilities. The marginals of such a distribution are known to be Binomial, i.e.:

pk := P(sli = k) =

(︃
Ka

k

)︃
2−kJ(1− 2−J)Ka−k (2.7)

and specifically, the probability of observing a zero is:

p0 := P(sli = 0) = (1− 2−J)Ka . (2.8)

We define two estimators for s. The first is a variant of the approximate message passing

(AMP) algorithm, which we will refer to as AMP-estimator. An estimate of s is obtained

by iterating the following equations:

θt+1 = ft(A
⊤zt + θt)

zt+1 = y − Aθt+1 +
2JL

n
zt⟨f ′

t(A
⊤zt + θt)⟩

(2.9)

where the functions ft : R2JL → R2JL are defined componentwise ft(x) = (ft,1(x1), ..., ft,2JL(x2JL))
⊤

and each component is given by

ft,i(x) =

√︁
P̂

Z(x)

Ka∑︂

k=0

pkk exp

(︃
1

2τ2t

(︂
x− k

√︁
P̂
)︂2

)︃
(2.10)

with τ2t = ∥zt∥22/n, p0 as in (2.8) and

Z(x) =

Ka∑︂

k=0

pk exp

(︃
1

2τ2t

(︂
x− k

√︁
P̂
)︂2

)︃
. (2.11)
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2.4. Inner Channel

⟨x⟩ = (
∑︁N

i=1 xi)/N in (2.9) denotes the average of a vector, f ′
t denotes the component-

wise derivative of ft and s0 = 0 is chosen as the initial value. After the equations (2.9)

are iterated for some fixed amount of iterations Tmax, a final estimate of s is obtained by

quantizing θTmax to the nearest integer multiple of
√︁

P̂ and dividing by
√︁

P̂ .

The second estimator that we analyse is the symbol-by-symbol maximum-a-posteriori

(SBS-MAP) estimator of s

ŝi = argmax
s∈[0:Ka]

P(si = s|y,A), (2.12)

which minimizes the SBS error probability P(ŝi ̸= si) but is unfeasible to compute in

practice. Let

PMAP
e =

1

2J

2J∑︂

j=1

P(ŝj ̸= sj) (2.13)

denote the error rate of the SBS-MAP estimator and PAMP
e the error rate of the AMP

estimator.

2.4.1. Asymptotic Error Analysis

The error analysis is based on the self-averaging property of the random linear recovery

problem (2.5) in the asymptotic limit L, n → ∞ with a fixed J and fixed Rin. That is, al-

though A, s and z are random variables, the error probability of both mentioned estimators

converges sharply to its average value. The convergence behavior is fully characterized by

the external parameters J,Rin, SNR and Ka. Let Sin = KaRin denote the inner sum-rate

and Ein = P/(RinN0) the energy-per-coded-bit in the inner channel. The main theoretical

result about the inner channel is to show that the (Sin, Ein) plane consists of three regions,

divided by two curves, see Figure 2.4 and Figure 2.5. The two curves are called the optimal

threshold Eopt
in (Sin) and the algorithmic threshold Ealg

in (Sin) (or equivalently Sopt
in (Ein) and

Salg
in (Ein)). The operative meaning of these thresholds is given by the following theorem.

Theorem 1. Let L, n → ∞ for fixed J and fixed Rin. Let ϵ > 0 be some fixed error rate

in the inner channel. If Sin and Ein are such that Ein > Eopt
in (Sin), then PMAP

e < ϵ and if

Ein > Ealg
in (Sin) then PAMP

e < ϵ.

□

Since the SBS-MAP estimator minimizes the error probability for all parameters it holds

that Eopt
in ≤ Ealg

in . In the remainder of the section we establish the existence of the thresholds

and calculate them.

The following Theorem was first discovered heuristically, using the non-rigorous replica

method, in [37] for binary iid signals s and generalized to arbitrary iid s in [33,88]. It states
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2. Multi-User SPARCs for the AWGN Channel

that asymptotically the error probability of various estimators, including the SBS-MAP

estimator (2.12) [40], can be described by the error probability in a decoupled Gaussian

channel model with an effective SNR that is obtained as the minimizer of a certain po-

tential function. Named after the method of discovery, this function is termed the replica

symmetric (RS) potential. This heuristic discovery was later confirmed rigorously for iid

signals in [43,44]. The proof in [44, Ch. 4] is based on an adaptive interpolation approach

and holds for the case of block iid signals as in the model (2.6):

Theorem 2. In the limit n, L → ∞ for fixed J and fixed Rin = JL/n the error probability

PMAP
e of the SBS-MAP estimator (2.12) converges to the error probability of the SBS-MAP

estimator of sl in the Gaussian vector channel

rl =

√︂
ηP̂sl + zl (2.14)

where sl ∈ R2J is distributed according to p(sl), specified in (2.6), the distribution of a

single section of s and zl ∈ R2J is Gaussian iid with N (0, 1) components, independent of

sl. The factor η ≥ 0 is given as the global minimizer of

iRS(η) = I2J (ηP̂ ) +
2J

2β
[(η − 1) log2(e)− log2(η)] (2.15)

where I2J (ηP̂ ) denotes the mutual information between rl and sl in the Gaussian vector

channel (2.14) and β = 2JL/n = Rin2
J/J is the aspect ratio of the matrix A in (2.5). □

Proof. See [44, Ch. 4].

It is known that the asymptotic estimation error of the AMP algorithm can be analyzed

by the so called state evolution (SE) equations [34]. Using the SE result a statement similar

to Theorem 2 can be made about the AMP algorithm (2.9):

Theorem 3. In the limit n, L → ∞ for fixed J and fixed Rin the MSE of the AMP estimate

(2.9) converges to the MSE of estimating s in the scalar Gaussian channel

r =

√︂
ηP̂ s+ z (2.16)

where s is distributed according to the binomial distribution p(s = k), specified in (2.7), the

marginal distribution of a single section of s and z ∼ N (0, 1) is Gaussian iid, independent

of s. The factor η ≥ 0 is given as the smallest local minimizer of

iRS
AMP(η) = 2JI(ηP̂ ) +

2J

2β
[(η − 1) log2(e)− log2(η)] (2.17)
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2.4. Inner Channel

where I(ηP̂ ) denotes the mutual information between r and s in the scalar Gaussian channel

(2.16). □

Proof. The theorem is merely a restatement of the SE result in [34]. To see this, set the

derivative of (2.17) with respect to η to zero. The derivative can be obtained by using the

I-MMSE theorem [89], which states that:

1

log2(e)

d

dη
I(ηP̂ ) =

P̂

2
mmse(ηP̂ ) (2.18)

This gives the following condition for a local minimum:

η−1 = 1 + βP̂mmse(ηP̂ ) (2.19)

where mmse(ηP̂ ) is the minimum-mean-square error (MMSE) in estimating s given an

observation r that is jointly distributed with s according to the scalar Gaussian channel

(2.16). It is well known that the MMSE is achieved by the posterior-mean estimator (PME)

E[s|y]. With the substitution τ2 = η−1 it is apparent that (2.19) resembles the fixpoint

condition for the SE of AMP [34, Eq. 1.4] if the PME is used as a componentwise denoising

function. It is apparent from the definition in (2.10) that ft was chosen precisely as the

PME of
√︁

P̂ s in a scalar Gaussian channel of the form (2.16) with η = 1/τ2t .

Note, that the assumed distribution on s is not iid. However, the AMP algorithm in

(2.9) uses a separable denoiser. In this case the SE result of [34] does not require s to

be iid, but only that its empirical marginal distributions converge to some limit, which is

required for the calculation of the SE. In fact, the presented AMP algorithm (2.9) is not

optimal since it does not make full use of the distribution of s, i.e. it ignores the correlation

among different components of s within a section. The optimal AMP algorithm would use

the PME of s in the Gaussian vector channel (2.14) as a denoiser, which, however, is

unfeasible for large values of J and Ka. Nonetheless, the two potential functions (2.15)

and (2.17) are strongly related and in the following we show that the componentwise PME

in (2.10) is the best componentwise approximation of the vector PME and furthermore,

in the typical sparse setting, i.e. Ka ≪ 2J , the difference between the minima of the two

potential functions (2.15) and (2.17) is negligibly small and therefore the global minimizer

of the scalar potential (2.17) can be used to approximate the global minimizer of (2.15).

This means that the error probability of both, the SBS-MAP estimator, and the presented

AMP estimator can be characterized by the local and global minimizers of a single scalar

potential function. This is idea is made precise in the following Theorem:
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2. Multi-User SPARCs for the AWGN Channel

Theorem 4. Let ηopt be the global minimizer of (2.15) and let η̃opt be the global minimizer

of (2.17) then ηopt > η̃opt and

ηopt − η̃opt = O
(︃
logKa

2(1−δ)J

)︃
(2.20)

for some 0 < δ < 1 □

Proof. Analog to (2.19) the optimality condition for ηopt can be found by setting the

derivative of (2.15) to zero and using the I-MMSE theorem for a Gaussian vector channel.

This gives the condition

η−1 = 1 + βP̂
mmse2J (ηP̂ )

2J
(2.21)

where mmse2J (ηP̂ ) is the MMSE of estimating sl in the Gaussian vector channel (2.14).

The mismatched MSE function for an arbitrary probability distribution q : [0 : Ka]
2J →

[0, 1] is defined as

mseq(t) = E∥s − ŝq(
√
ts + Z, t)∥22 (2.22)

with

ŝq(r, t) =
∑︂

s∈[0:Ka]2
J

s
exp(−∥r −

√
ts∥22/2)q(s)∑︁

s′ exp(−∥r −
√
ts′∥22/2)q(s′)

(2.23)

The expression in (2.22) is the MSE of a (mismatched) PME in a Gaussian vector channel

of the form (2.14) with respect to some prior distribution q(s), which may differ form

the true prior ps(s). It is clear that from the minimality of the MMSE function that

mmse2J (t) ≤ mseq(t) for all t with equality if and only if q(s) = ps(s) almost everywhere.

This means, that calculating the fixed-point of (2.21), with mmse2J (t) replaced by mseq(t)

for any choice of q(s) gives an upper bound on ηopt. The L1-distance between the functions

mmse2J (t) and mseq(t) is quantified by the following result from [90]

1

2
∥mseq − mmse2J∥L1 =

1

2

∫︂ ∞

0
[mseq(t)− mmse2J (t)]dt = D(ps ∥ q). (2.24)

where D(ps ∥ q) denotes the KL-divergence between the distributions ps and q. We focus

on product distributions of the form q(s) =
∏︁2J

i=1 qi(si), since for such distributions the

vector MSE function (2.22) becomes the sum of scalar MSE functions, which are easy to

calculate. Moreover, a simple calculation in Appendix A shows that the L1 distance (2.24)

is minimized by the product distribution whose factors qi match the marginals of ps. We

prove in Appendix B that the KL-divergence between the multinomial distribution ps and
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2.4. Inner Channel

the product distribution of its marginals satisfies

D

⎛
⎝ps

⃦⃦
⃦⃦
⃦⃦

2J∏︂

i=1

pi(si)

⎞
⎠ = O(logKa) (2.25)

Since all marginals of ps are identical and given by the binomial distribution the mis-

matched MSE function of q(s) =
∏︁

pi(si) takes the form

mseq(t) = 2Jmmse(t) (2.26)

where mmse(t) is the MMSE function in the scalar Gaussian channel (2.16) that appears

in (2.19). So it follows from (2.24) and (2.25) that

⃦⃦
⃦mmse − mmse2J

2J

⃦⃦
⃦
L1

= O
(︃
logKa

2J

)︃
(2.27)

Therefore, with J → ∞, the difference between the per-component vector MMSE function

in (2.21) and the scalar MMSE function in (2.19) converges exponentially fast in L1 norm

to zero. We show in Appendix C that exponentially fast convergence in L1-norm implies

exponentially fast pointwise uniform convergence almost everywhere. Since MMSE func-

tions of Gaussian channels are smooth [91, Proposition 7] the ’almost’ can be dropped. We

have established that the difference of the right hand sides of the fixpoint equations (2.19)

and (2.21) converges pointwise to zero. Due to the smoothness of the MMSE functions the

convergence carries over to the solutions of (2.19) and (2.21) which implies (2.20).

Theorem 4 allows to calculate the minima of the potential (2.15) by solving the scalar

fixpoint equation (2.19) numerically. It guarantees that the error will be small, since

typically 2J is much larger than Ka. Nonetheless, the MMSE function in equation (2.19)

can be further simplified if J grows large. That is because the coefficients pk defined in

(2.7), which can be expressed as

pk = p0

(︁
Ka

k

)︁

(2J − 1)k
(2.28)

decay exponentially with kJ . This suggests that for large J all pk with k ≥ 2 can be

dropped:

Theorem 5. Let mmseOR(t) be the MMSE function of estimating the binary variable

sOR ∈ {0, 1} in the scalar Gaussian channel

r =
√
tsOR + z (2.29)
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2. Multi-User SPARCs for the AWGN Channel

where p(sOR = 0) = p0 and p(sOR = 1) = 1 − p0 and z ∼ N (0, 1) independent of sOR.

Then mmseOR(t) ≥ mmse(t) for all t > 0 and

mmseOR(t)− mmse(t) = O
(︃
K2

a

22J

)︃
(2.30)

□

Proof. See Appendix D.

We choose the nomenclature OR in mmseOR because the distribution of sOR arises as

the marginal distribution of s if the OR-sum of the mk

s =

Ka⋁︂

k=1

mk (2.31)

is used instead of conventional real summation. Furthermore, let IOR(t) be the input-

output mutual information in the channel (2.29) and

iRS
J,OR(η) = IOR(ηP̂ ) +

2J

2β
[(η − 1) log2(e)− log2(η)] (2.32)

the corresponding RS-potential. A consequence of Theorems 4 and 5 is that (2.32) can be

used to find the global minimizer of (2.15) and the local minimizer of (2.17).

Corollary 1. Let ηopt be the global minimizer of (2.15), let η̃OR
opt be the global minimizer of

(2.32), let ηalg be the smallest local minimizer of (2.17) and let η̃OR
alg be the smallest local

minimizer of (2.32), then ηopt > η̃OR
opt and

ηopt − η̃OR
opt = O

(︃
logKa

2(1−δ)J

)︃
(2.33)

Furthermore, if ηopt ̸= ηalg then ηalg > η̃OR
alg and:

ηalg − η̃OR
alg = O

(︃
logKa

2(1−δ)J

)︃
(2.34)

for some 0 < δ < 1. □

Note that we have only shown that the difference of the MMSE functions in the channels

(2.14) and (2.29) converges to zero as J → ∞. This shows that those functions converge

to the same limiting function. The derivation of this limiting function itself is the subject

of the following Section 2.4.2.
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2.4. Inner Channel

2.4.2. The J → ∞ limit

The problem with the numerical evaluation of (2.19), even with the simplified mmseOR

function, is that 2−J is very small and the scalar potential (2.17) is hard to calculate even

for moderately large J due to machine precision errors. So even though (2.30) guarantees

that the common J → ∞ limit of the two MMSE functions in the channels (2.29) and (2.14)

exists, it is not obvious how to calculate it numerically. To solve these problems we calculate

the limit of (2.32) analytically in a regime where both Ka and J go to infinity with a fixed

ratio α := J/ log2Ka for some α > 1. The parameter α determines the sparsity in the

vector s, e.g. Ka = 300 and J = 15 gives α ∼ 1.82. In this limit Ka/2
J = K1−α

a → 0, i.e.

the sparsity in s goes to zero and the error term in Theorem 5 vanishes. We find that a non-

trivial limit of the MMSE function exists in the energy-efficient regime, i.e. for Rin, P → 0

with fixed sum-rate Sin = KaRin and fixed energy-per-coded-bit Ein = SNR/(2Rin). It was

already established in the proof of Theorem 4 and 5 that the derivatives of the potential

functions (2.15) and (2.32) converge uniformly to a common limit almost everywhere. By

a standard result about uniform convergence, e.g. [92, Theorem 7.17], it is enough to

calculate the pointwise limit iRS
∞ (η) := lim iRS

J,OR(η) to guarantee that the derivatives of

iRS
J,OR(η) will converge to the derivative of iRS

∞ (η) at all continuity points of iRS
∞ (η).

Theorem 6. In the limit Ka, J → ∞, Rin, SNR → 0 with fixed Ein, Sin and J = α log2Ka

for some α > 1 the pointwise limit of the RS-potential (2.32) is given by (up to additive

or multiplicative terms that are independent of η and therefore do not inŕuence the critical

points of iRS(η)):

iRS
∞ (η) := lim

J→∞
iRS
J,OR(η) =

ηSinEin[1− θ(η − η̄)] +
Sin

log2 e

(︃
1− 1

α

)︃
θ(η − η̄) +

1

2
[(η − 1)− ln η]

(2.35)

where

θ(x) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x > 0

1
2 , if x = 0

0, if x < 0

(2.36)

and

η̄ =
1− 1

α

Ein log2 e
(2.37)

□

Proof. See Appendix E.
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2. Multi-User SPARCs for the AWGN Channel

The critical points of iRS
∞ (η) can then be calculated analytically, resulting in simple

conditions:

Theorem 7. η∗ = 1 is a global minimizer of iRS
∞ (η), if and only if

Sin

(︃
1− 1

α

)︃
<

1

2
log2(1 + 2SinEin) (2.38)

and η∗loc = (1 + 2SinEin)
−1 is a local minimizer of iRS

∞ (η) if and only if

2Sin ≥ log2 e

(︃
1− 1

α

)︃−1

− 1

Ein
(2.39)

□

Proof. According to Theorem 6 the derivative of iRS
∞ (η) in (2.35) is given by

∂iRS
∞

∂η
(η) = SinEin[1− θ(η − η̄)] +

1

2

(︃
1− 1

η

)︃
(2.40)

for η ̸= η̄. The critical points of the derivative are

η∗0 = (1 + 2SinEin)
−1 (2.41)

and

η∗1 = 1. (2.42)

The first point η∗0 is critical if and only if η∗0 < η̄, which, after rearranging, gives precisely

condition (2.39). Also note, that the second derivative of iRS
∞ is (4η)−2, so it is non-

negative for all η > 0. Therefore the critical points are indeed minima. A local maximum

may appear only at η = η̄ where iRS
∞ is not differentiable. The values of iRS

∞ at the minimal

points are

iRS
∞ (η∗0) =

SinEin

1 + 2SinEin
+

1

2

[︃ −2SinEin

1 + 2SinEin
+ ln(1 + 2SinEin)

]︃

=
log2(1 + 2SinEin)

2 log2 e

(2.43)

if η∗0 < η̄, and

iRS
∞ (η∗1) =

Sin

log2 e

(︃
1− 1

α

)︃
(2.44)
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2.5. Hard Decision

It is apparent that iRS
∞ (η∗1) is the global minimum if and only if condition (2.38) is fulfilled.

It was implicitly used here that η̄ ≤ 1, which is justified because condition (2.38) implies

η̄ ≤ 1. This can be seen by using the inequality ln(1 + x) ≤ x for x > 0 with (2.38).

2.5. Hard Decision

Theorem 2 shows that the asymptotic error probability of the SBS-MAP detector can

be calculated from the vector Gaussian channel (2.14). Since the detection is performed

symbol-wise and all marginals of sl are identical the problem is reduced to MAP detection in

the scalar Gaussian channel (2.16), which by Theorem 3 also describes the error distribution

of the AMP-estimator although with a different effective channel strength. The previous

section described in depth how the effective channel strengths can be obtained. In this

section we consider the problem of deciding between s = 0 and s ≥ 1 from a Gaussian

observation r, specified by (2.16), with a fixed channel strength ηP̂ . We focus only on

the support information for two reasons. The first reason is that all known practical outer

codes only make use of the support information. The second reason is that in the typical

setting where Ka ≪ 2J collisions are so rare that the error-per-component of treating

each component as if collisions are impossible is negligibly small. Let ρ̂ be an estimate of

1(s ≥ 1) given a observation of s in Gaussian noise according to (2.16). We define two

types of errors, the probability of missed detections (Type I errors)

pmd = p(ρ̂ = 0|s ≥ 1) (2.45)

and the probability of false alarms (Type II errors)

pfa = p(ρ̂ = 1|s = 0). (2.46)

According to Neyman-Pearson the optimal trade-off between the two types of errors is

achieved by choosing ρ̂ = 1 whenever

p(s ≥ 1|r)
p(s = 0|r) ≥ θ, (2.47)

where θ is some appropriately chosen threshold. If s takes on only binary values with

p(s = 1) = 1 − p0 and p(s > 1) = 0, as in the OR-approximation introduced in Theorem

5, a straightforward calculation shows that by varying θ the trade-off between pmd and pfa

follows the curve defined by the equation

Q−1(pmd) +Q−1(pfa) =

√︂
ηP̂ (2.48)
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The support of s is given by the OR-sum of the messages:

ρ = supp(s) =

Ka⋁︂

k=1

mk (2.50)

Let ρ̂ denote the estimated support vector. It can be interpreted as the output of L uses

of a vector OR-MAC with symbol-wise, asymmetric noise. Let the lists of active indices

in the l-th section be

Sl =
{︂
i ∈ [1 : 2J ] : ρ̂li = 1

}︂
. (2.51)

Given L such lists, the outer decoder is tasked to recover the list of transmitted messages

up to permutation. An outer code is a subset C ⊂ [1 : 2J ]L of |C| = 2JLRout codewords. An

outer codeword can be equivalently represented as either a tuple (c1, .., cL) of L indices in

[1 : 2J ] or as a binary vector in RL2J with a single one in each section of size 2J .

Classical code constructions for the OR-MAC, like [93, 94], have been focussed on zero-

error decoding, which does not allow for finite per-user-rates as Ka → ∞, see e.g. [95] for

a recent survey. Capacity bounds for the OR-MAC under the given input constraint have

been derived in [96] and [97], where it was called the łT-user M-frequency noiseless MAC

without intensity information"" or łA-channel"". An asynchronous version of this channel

was studied in [98]. Note, that the capacity bounds in the literature are combinatorial and

hard to evaluate numerically for large numbers of Ka and 2J . In the following we will show

that, in the typical case of Ka ≪ 2J , a simple upper bound on the achievable rates based

on the componentwise entropy is already tight.

From the channel coding theorem for discrete memoryless channels [12] it is known that

a code with per-user-rate Rout [bits/coded bits] and an arbitrary small error probability

exists if and only if

Rout <
I(m1, ...,mKa ; ρ̂)

JKa
. (2.52)

The coding theorem assumes that each user has his own codebook, so the resulting rate

constraint as an upper bound on the achievable rates of an outer code with the same

codebook constraint. The mutual information is:

I(m1, ...,mKa ; ŝ) = H(ŝ)−H(ŝ|m1, ...,mKa) (2.53)

where

H(ρ̂|m1, ...,mKa) = 2J(p0H2(pfa) + (1− p0)H2(pmd)) (2.54)

and H2(·) denotes the binary entropy function. The output entropy H(ŝ) for general

asymmetric noise is hard to compute. A simple upper bound on the entropy of the 2J -ary
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2. Multi-User SPARCs for the AWGN Channel

vector OR-channel can be obtained by the sum of the marginal entropies of 2J independent

binary-input binary-output channels. If the coded messages are uniformly distributed, i.e.

P(ml
k = ej) = 2−J for all j = [1 : 2J ], then for all i

p(ρi = 1) = 1− p0 (2.55)

with p0 given in (2.8) and

p(ρ̂i = 1) = (1− p0)(1− pmd) + p0pfa (2.56)

Therefore, after reordering:

H(ŝ) ≤ 2J(H2((1− p0)(1− pfa − pmd) + pfa) (2.57)

Technically, this is only an upper bound, but we find numerically that it is very tight

and furthermore, in the next section we will show that in the noiseless case it is actually

achievable by an explicit outer code in the already familiar limit Ka, J → ∞ with J =

α log2Ka. To find the limit of (2.57) is is assumed that pfa ≤ cKa/2
J = cK1−α

a for some

constant c > 0, i.e. the ratio of false positives to true positives remains at most constant

as Ka, J → ∞. An equivalent condition is

lim
Ka→∞

log2 pfa

log2Ka
≤ 1− α (2.58)

If this is not fulfilled the false positives dominate the entropy terms in the mutual informa-

tion and the achievable rates go to zero. For small arguments, the binary entropy function

becomes

H2(p) ≈ p(1− log2 p) (2.59)

and (1− p0) ≈ Ka/2
J . With this, a straightforward calculation shows that

lim
Ka,J→∞

I(m1, ...,mKa ; ŝ)

JKa
≤ (1− pmd)

(︃
1− 1

α

)︃
(2.60)

For now we assume for simplicity that the inner decoder works error free, i.e. pfa = pmd = 0.

Interestingly, the bound 1 − α−1 is achievable by a random code with a cover decoder, a

construct often used in group testing literature. Given OR(L), the OR-combination of L,

a list of Ka codewords, the cover decoder goes through the whole codebook and produces

a list of codewords that are covered by OR(L). By construction the cover decoder will find

all codewords in L and the error probability is governed by the number of false positives

nfa. I assume that if the decoder finds more than Ka codewords, it discards exceeding
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codewords at random until the list contains only Ka codewords. Therefore the per-user

error probability of the cover decoder is given as Pe = nfa/(Ka + nfa). We write c1 ⊂ c2

if a binary vector c1 is covered by a binary vector c2, that is if for all i with c1,i = 1 also

c2,i = 1.

Theorem 8. Let C be an outer codebook of size 2LJRout, where the position of each codeword

in each section is chosen uniformly at random. Then the error probability of the cover

decoder vanishes in the limit L,Ka, J → ∞ with J = α log2Ka for some α > 1 if

Rout < 1− 1

α
(2.61)

□

Proof. Let L be a list of Ka arbitrary codewords from C. Then

P (nfa ≥ 1) = P

(︄
⋃︂

c/∈L
{c ⊂ OR(L)}

)︄
(2.62)

≤ 2LJRout max
c/∈L

P (c ⊂ OR (L)) (2.63)

= 2LJRout max
c/∈L

L∏︂

l=1

P
(︂
cl ⊂ OR

(︂
Ll
)︂)︂

(2.64)

≈ 2LJRout

(︃
Ka

2J

)︃L

(2.65)

= 2LJRout+L(1−α) log2 Ka (2.66)

= 2LJ(Rout−(1−α−1)) (2.67)

In the second and third line we have used the union bound and the independence of the

sections. In the fourth line OR(Ll) denotes the OR-combination of the l-th section of the

codewords in L, we have used that the probability that a random number from [1 : 2J ] is

contained in a fixed set of size Ka is given by 1−(1−2−J)Ka , which is tightly approximated

by Ka/2
J in the considered limit. It is apparent that the error probability vanishes for any

L and J → ∞ if condition (2.61) is fulfilled.

Remark 1. The proof of Theorem 8 can easily be extended to include false positives. For

that introduce modified lists OR̃(Ll), which in addition to the list of transmitted symbols in

section l also contain nfa random erroneous entries. If nfa = cKa for some constant c > 0

the result of Theorem 8 is unchanged. Since pfa = nfa/2
J , this condition is equivalent to

(2.58).
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One can also derive a finite length upper bound on the achievable outer rates with the

cover decoder in a more direct, combinatorial way.

Theorem 9. Any outer code that can guarantee error-free recovery under cover decoding

for Ka users with L-sections in the limit Ka, J → ∞ with J = α log2Ka has to satisfy:

Rout ≤ 1− 1

α
+

1

αL
(2.68)

□

Proof. We first show that any error free code has to satisfy

2LJRout

Ka
≤ 2JL

KL
a

(2.69)

To see this, assume an outer code that is error-free, i.e. for any list of Ka codewords the

OR-combination of theses codewords does not cover any other codeword that is not in the

list. Then any two non-intersecting lists, L1 and L2, of Ka codewords create two non-

intersecting lists of KL
a possible sensewords. To see that they are non-intersecting, note,

that due to the error-free property none of the codewords in L2 is covered by the OR-

combination of all codewords from L1, which is denoted by OR(L1). This means that each

codeword from L2 differs from OR(L1) in at least one position. But this also means that

any OR-combination of codewords from L2 differs from OR(L1) in at least one position.

Now divide the set of all 2LJRout codewords into distinct lists of length Ka, then each of

these lists corresponds to a distinct list of KL
a sensewords, whose total number has to be

limited by the size of the space:

2LJRout

Ka
KL

a ≤ 2JL (2.70)

This is precisely the statement of (2.69). Using the scaling condition 2J = Kα
a and taking

the limit Ka, J → ∞ gives the statement of the theorem.

For L = 1 it holds that Rout ≤ 1, which can obviously be achieved, since for a single

section no outer code is necessary.

2.6.1. Tree code

The first practical decoder for the outer OR-MAC with the sectionized structure has been

presented in [24]. It works as follows: The B-bit message is divided into blocks of size

b1, b2, . . . , bL such that
∑︁

l bl = B and such that b1 = J and bl < J for all l = 2, . . . , L.

Each subblock l = 2, 3, . . . , L is augmented to size J by appending πl = J − bl parity bits,
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2.6. Outer Channel

obtained using pseudo-random linear combinations of the information bits of the previous

blocks l′ < l. Therefore, there is a one-to-one association between the set of all sequences

of coded blocks and the paths of a tree of depth L. The pseudo-random parity-check

equations generating the parity bits are identical for all users, i.e., each user makes use

exactly of the same outer tree code. For more details on the outer coding scheme, please

refer to [24].

Let Sl, l = 1, ..., L be the list of active indices in the l-th section, defined in (2.51). Since

the sections contain parity bits with parity profile {0, π2, . . . , πL}, not all message sequences

in S1 × S2 × · · · × SL are possible. The role of the outer decoder is to identify all possible

message sequences, i.e., those corresponding to paths in the tree of the outer tree code [24].

The output list L is initialized as an empty list. Starting from l = 1 and proceeding in

order, the decoder converts the integer indices Sl back to their binary representation,

separates data and parity bits, computes the parity checks for all the combinations with

messages from the list L and extends only the paths in the tree which fulfill the parity

checks. A precise analysis of the error probability in various asymptotic regimes is given

in [24]. Specifically, the analysis shows that the error probability of the outer code goes

to zero in the familiar limit Ka, J → ∞ with J = α log2Ka and some α > 1 2 if the total

number of parity bits P =
∑︁L

l=2 πl is chosen as ( [24, Theorem 5 and 6])

1. P = (L+ δ− 1) log2Ka for some constant δ > 0 if all the parity bits are allocated in

the last slots.

2. P = c(L − 1) log2Ka for some constant c > 1 if the parity bits are allocated evenly

at the end of each subslot except for the first.

In the first case the complexity scales like O(KRoutL
a logKa), since there is no pruning in

the first RoutL subslots, while in the second case the complexity scales linearly with L like

O(LKa logKa). The corresponding outer rates are

Rout = B/(B + P )

= 1− P/(B + P )

= 1− P/(LJ)

= 1− L+ δ − 1

Lα

= 1− 1

α
+

1

L

δ − 1

α

(2.71)

2We deviate slightly from the notation in [24], where the scaling parameter α′ is defined by B = α′ log2 Ka

and the number of subslots is considered to be constant. It is apparent that those definitions are
connected by α′ = LRoutα.
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Theorem 10. Let ηP̂ be the channel strength in the scalar Gaussian channel (2.16). In

the limit Ka, J → ∞ with J = α log2Ka for some α > 1 the condition (2.58) is fulfilled if

and only if

η ≥ η̄ (2.75)

where η̄ is given in (2.37). □

Proof. We show only the direction

η ≥ η̄ =⇒ lim
Ka→∞

log2 pfa

log2Ka
≤ 1− α (2.76)

the reverse implication can be shown similarly.

One can choose the points pmd and pfa on the curve defined by (2.48) in a way that

Q−1(pmd) < ϵ for some constant ϵ > 0. Therefore, for P̂ = 2JEin

Q−1(pfa) ≥
√︂
ηP̂ − ϵ =

√︁
2ηJEin − ϵ (2.77)

so

pfa ≤ Q(
√︁

2ηJEin − ϵ) (2.78)

and

lim
Ka→∞

log2 pfa

log2Ka
≤ lim

Ka→∞
1

log2(e)

(︄
−ηJEin

log2Ka
+

O(
√
J)

log2Ka

)︄
(2.79)

= − ηαEin

log2(e)
(2.80)

where the first line follows from the standard bound on the Q-function

Q(x) ≤ (2π)−1/2 exp(−x2/2)/x. (2.81)

By reordering, it holds that (2.80) < 1− α if

η >
1− α−1

log2(e)Ein
= η̄ (2.82)

The consequences of Theorem 10 for the concatenated code are summarized in the fol-

lowing Corollary.

Corollary 2. Let n, L, J,Ka → ∞ and R, SNR → 0 with fixed Eb/N0 = SNR/(2R),

S = KaR and J = α log2Ka for any α > 1. In this limit there is an outer code such that
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the concatenated code described in Section 2.3 with a random Gaussian codebook can be

decoded with the SBS-MAP estimator as inner decoder and Pe → 0 if and only if

S <
1

2
log2(1 +KaSNR) (2.83)

If the AMP algorithm (2.9) is used as inner decoder, reliable decoding is possible if and

only if

S <
1

2

(︁
log2 e− (Eb/N0)

−1
)︁

(2.84)

□

Proof. The statement follows immediately from Theorems 7 and 10 together with the

relation η∗loc < η̄ ≤ 1, which is discussed in the proof of Theorem 7.

Remark 2. In the case Ka = 1 no outer code is necessary, so Rin = R and furthermore

Sin = R and 2SinEin = SNR. Hence, if Ka = 1 is fixed and J → ∞, which corresponds to

α → ∞, then Corollary 2 recovers the statements of [29,42], i.e. that SPARCs are reliable

at rates up to the Shannon capacity 0.5 log2(1 + SNR) under optimal decoding. Also the

algorithmic threshold (2.84) coincides with the result of [31]. In that sense Theorem 7 and

Corollary 2 are an extension of [31] and show that SPARCs can achieve the optimal rate

limit in the unsourced random access scenario. However, notice that the concept of the

proof technique is simpler, since Theorem 5 is used, which states that not only the sections

are described by a decoupled channel model, but in the limit J → ∞ also the individual

components. So the result of Theorem 7 can be derived from the fixpoints of a simple

scalar-to-scalar function.

Remark 3. In general, most classical multiple-access variants on the AWGN, where all

the users are assumed to have their own codebook, can be represented as sparse recovery

problems like (2.4). For that, let Ka = 1 and identify the number of section with the number

of users. The matrices A1, ...,AL are then the codebooks of the individual users and Pl are

the transmit power coefficients of different users:

• Fixed L in the limit J, n → ∞ describes the classical AWGN Adder-MAC from [12],

where each user has his own codebook.

• L, J, n → ∞, where only a fraction of the sections are non-zero describes the many-

access channel treated in [8]

• J fixed and L, n → ∞ describes specific version of the many-access MAC treated

in [9,99]

35



2. Multi-User SPARCs for the AWGN Channel

It is interesting, that in the first case Theorem 7 gives the correct result, after letting

α → ∞, Ka = 1 and L = K. The case of J, n → ∞ at finite L is not directly covered though

by the presented analysis framework. Nonetheless, the empirical results (e.g. Figure 2.5)

show a good agreement with the SE predictions even for small L. Especially the case L = 1

is interesting since it resembles the U-RA formulation with random coding, as it was already

noted in [99].

In Figure 2.4 and Figure 2.5 we visualize the results of Theorems 2, 3 and 7. For that

fix α = 2. For various values of J we set Ka such that J = α log2Ka. For each value of

Rin then ηopt and ηalg are calculated using the approximations of Theorem 4 and Corollary

1. This process is repeated with increasing SNR until ηoptP̂ and ηalgP̂ resp. reach a value

of (Q−1(pmd) +Q−1(pfa))
2 where the error probabilities are chosen as pmd = 0.05/L, with

L = 8, and pfa = 0.01Ka/2
J . These are the solid lines in Figure 2.4 and Figure 2.5.

The dashed lines are the threshold lines from Theorem 7. Additionally, Figure 2.5 shows

empirical results, obtained by Monte-Carlo simulations with L = 8, where the inner channel

with the AMP decoder is simulated with increasing SNR until the error probabilities satisfy

pmd < 0.05/L and pmd < 0.01Ka/2
J , matching the values above. There are several

interesting effects. The asymptotic trade-off curve Sin(1 − α−1) = 0.5 log2(1 + 2SinEin) is

approached from below by the curves for finite J . Also the finite length curves exhibit a

region for small Sin, where Ein stays almost constant up to some value of Sin, and then

it starts to grow linearly. Such a behavior was also observed in e.g. [99] in the context of

finite-blocklength multiple access on the AWGN channel. This constant regions becomes

smaller with increasing J and disappears completely in the asymptotic limit. Also, there

is a region of Sin in which the algorithmic curve stays almost constant and matches the

optimal curve. That is the region where there is only one unique minimum in the RS-

potential. The empirical simulations in Figure 2.4 confirm the qualitative behavior of the

calculated curves. The required energy stays constant over a large region of Sin until some

point, where it start to grow rapidly. Note, that Theorem 2 and 3 assume infinite L,

but nevertheless the theoretical results match the empirical simulations with L = 8 very

precisely. According to Theorem 7 in the limit J → ∞ the required energy grows to infinity

as Sin approaches log2(e)/[2(1− 1/α)]. This value is increased for finite J . In general, one

can observe that the asymptotic algorithmic limit is very slowly approached from above.

That has the interesting consequence, that for each Sin there is a value J∗ below which the

required energy decreases with J and above which the required energy starts to increase

again (see Figure 2.6 where this is visualized for Sin = 2 with the same parameters as

above).
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the power allocation for the AMP algorithm that follows very closely the optimization

procedure of [104], which was developed in the context of CDMA.

The denoising function in (2.10) was specific to a uniform power allocation Pl = P/L for

all l. For a generic power allocation one can replace the componentwise denoising functions

ft,i with ones that depend on the section index:

f l
t,i(x) =

√︂
P̂ l

Z(x)

Ka∑︂

k=0

pkk exp

(︄
1

2τ2t

(︃
x− k

√︂
Pl̂

)︃2
)︄

(2.85)

where P̂ l = nPl/L and

Z(x) =

Ka∑︂

k=0

pk exp

(︄
1

2τ2t

(︃
x− k

√︂
Pl̂

)︃2
)︄

(2.86)

To analyse the error probability of this modified AMP algorithm in the asymptotic limit

L → ∞, we assume that the powers Pl take values only in a finite set {Π1, ...,ΠI} and that

the ratio of sections which use Πi is given by αi = |{l : Pl = Πi}|/L satisfying
∑︁I

i=1 αi = 1

and
∑︁I

i=1 αiΠi = P . Assume that these ratios stay constant as L → ∞. According to the

generalized SE in [36] the recursive equation which describes the behavior of the modified

AMP algorithm is given by

τ2t+1 = σ2
w + lim

L→∞
β

L2J
E
[︁
∥ηt(θ + τtZ)− θ∥22

]︁
(2.87)

where σ2
w = P−1,

θ = (θ1|...|θL) =

(︃√︂
P̂ 1s

1

⃓⃓
⃓⃓ ...

⃓⃓
⃓⃓
√︂
P̂LsL

)︃⊤
(2.88)

is a rescaled version of s and ηt is componentwise given by ηlt,i =

√︂
P̂ lf

l
t,i. Since f l

t =

(f l
t,1, ..., f

l
t,2J

) is chosen to be separable, the expected value in (2.87) decouples as follows

E
[︁
∥ηt(θ + τtZ)− θ∥22

]︁
=

L∑︂

l=1

2J∑︂

j=1

E

[︃⃦⃦
⃦
√
P lf

l
t,j

(︂√
P ls

l
j + τtZ

)︂
−
√
P ls

l
j

⃦⃦
⃦
2

2

]︃
(2.89)

As L goes to infinity the sum over l converges to its mean for each j

lim
L→∞

1

L

L∑︂

l=1

E

[︃⃦⃦
⃦
√
P lf

l
t,j

(︂√
P ls

l
j + τtZ

)︂
−
√
P ls

l
j

⃦⃦
⃦
2

2

]︃
=

I∑︂

i=1

αiΠ̂iE

[︃⃦⃦
⃦f l

t,i

(︂√
Πis+ τtZ

)︂
− s

⃦⃦
⃦
2

2

]︃

(2.90)
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where now s is a random variable distributed according to the marginal empirical distribu-

tion of s. This holds for each component j and each j has the same marginal distribution,

so the sum over j becomes redundant.

Remark 4. In this calculation the sums over j and l are interchangeable. If 2J is large

enough the sum over j already converges to its mean value and the sum over l becomes

redundant. This explains heuristically why one can observe a good correspondence between

the state evolution and the empirical performance even for small L. Technically the expo-

nential scaling regime with β → ∞ is not covered by the result of [36].

Note, that the denoising functions f l
t,i were chosen precisely as the PME of s in a scalar

Gaussian channel like (2.16) with power

√︂
P̂ l. So they minimize the MSE in (2.90) and

substituting τ2 = η−1 gives the fixpoint condition

η−1 = 1 + β

I∑︂

i=1

αiΠ̂immse(ηΠ̂i) (2.91)

where Π̂i = nΠi/L = JΠi/Rin. The function mmse(t) is precisely the same as in (2.19).

The right hand side of (2.91) is a linear combination of rescaled versions of the original

MMSE function in (2.19). The condition that (2.91) has no local minima besides the global

minimum around η = 1 can be formulated as follows:

minimize
α

I∑︂

i=1

αiΠi

subject to 1 + β

I∑︂

i=1

αiΠ̂immse(ηΠ̂i) < η−1 − ϵ, ∀η ∈ [0, 1− δ]

I∑︂

i=1

αi = 1

αi ≥ 0

(2.92)

where ϵ, δ > 0 are appropriately chosen slack variables. The optimization problem (2.92)

is a linear program and therefore easily solvable. The discrete set of Πi is chosen as

follows. For fixed Ka, J, Rin set a target inner channel strength. Then Theorem 4 is used

to determine the smallest power Popt such that for ηopt, the global minimizer of (2.17), it

holds that ηoptP̂ opt exceeds the target inner channel strength. This Popt serves as lower

bound on the set of Πi. The upper bound is chosen arbitrary, e.g. 5Popt. The Πi are then

chosen as a uniform discretisation of the interval [Popt, 5Popt]. In Figure 2.7 we visualize

this for Ka = 300, J = 20, Rin = 0.0061, where the slack parameters are ϵ = 0.01, δ = 0.1.
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The solution of (2.92) gives an optimal power distribution that puts weight on only two

values, Π1 = Popt and another value P∗ in a ratio of α1 ∼ 0.81 to α2 ∼ 0.19. The total

average power α1Popt + α2P∗ is about 0.5dB smaller then Palg, the power at which (2.17)

has no local minimizers. Therefore, letting one fifth of the sections use a higher power

allows to let the other four fifths of the section use the optimal power without having a

local convergence point. In Figure 2.7 a) we plot

g(η) = 1 + β
(︂
α1P̂ optmmse(ηP̂ opt) + α2P̂ ∗mmse(ηP̂ ∗)

)︂
− η−1 (2.93)

and its counterparts without power allocation. Figure 2.7 b) shows the integral of g(η),

which resemble the RS-potential (2.17) with a non-uniform power allocation. The efficiency

of the power allocation is demonstrated in Figure 2.8 with finite-length simulations. We

choose L = 8, J = 20 and use the outer tree code with 0 parity bits in the first section,

20 parity bits in the last, and alternating between 8 and 9 parity bits in the remaining

sections. This leaves a total of 89 data bits. We choose those numbers to stay below the

typical number of 100 bits that is commonly used in IoT scenarios. The blocklength is

chosen as n = 26229, which results in Rin = 0.0061 and a per-user spectral efficiency of

RinRout = 0.0034. To distribute the power as close as possible to the optimized power

allocation obtained above let two sections have a power roughly twice as high as the

remaining six sections. It shows that by using this power allocation a gain of about 0.5-1

dB is achievable, wthisich matches the theoretical prediction. With the same parameters

as above but Ka = 200 it turns out that Palg = Popt. So the desired inner channel strength

of 15dB can be obtained by the AMP algorithm with a ŕat power allocation. In that case

a non-uniform power allocation may be detrimental, because it could introduce unwanted

fixpoints into (2.17). Indeed, simulations confirm that the 2-level power allocation that

was effective for Ka = 300 actually worsens the performance for Ka ≤ 250. This means

that the power allocation has to be tailored carefully to the expected parameters and it

only improves the performance if there is a gap between Palg and Popt.

2.9. Considerations for Practical Implementation

The denoising function in the AMP algorithm, (2.10) or its counterpart for non-uniform

powers in (2.85), can be simplified if Ka ≪ 2J . Then the probabilities pk are very small

for k ≥ 2 and by neglecting them we get the modified denoising function

fOR
t,i (x) =

√︁
P̂

(︄
1 +

p0
1− p0

exp

(︄
P̂ − 2

√︁
P̂ x

2τ2t

)︄)︄−1

(2.94)
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as active and added to the list Sl for the outer tree code. Let ∆ = 50. For J = 15 we use

L = 16 and the parity bits for the outer code are chosen as: π = (0, 7, 8, 8, 9, ..., 9, 13, 14).

For J = 20 we use L = 8 and a parity bit distribution π = (0, 9, 8, 9, 8, 9, 8, 20). The outer

rates are Rout = 0.4167 and Rout = 0.5563 respectively. For the SE curves we first estimate

the required effective inner channel strength by setting the error rates in the outer channel

to pmd = Pe/L and pfa = ∆/2J . The required inner channel strength is then calculated

by (2.48). The potential (2.17) is used to estimate the power to achieve the required inner

channel strength. For the curves with power allocation we use the method of Section 2.8

to find the optimal power allocation for Ka = 300. In both cases, J = 15 and J = 20,

the required power decreases for Ka = 300 but increases for all other values of Ka. So the

power allocation has to be adapted to the expected number of users. The empirical values

match the theoretically estimated SE curves very well, which confirms the precision of the

asymptotic analysis, even though the number of sections is very small.

The obtained value of 4.3 dB for Ka = 300 is at the point of writing 0.7 dB better than

the best reported value of 5 dB, which was achieved in [105]. For smaller values of Ka

other coding schemes have achieved better results, the best of which at the point of writing

are [26] and [25], but both of those schemes have shown a rapid increase in required energy

as Ka grows large. In [105] an enhanced version of the discussed concatenated coding

scheme was presented, were another outer code was used that enabled the passing of soft

decoding information between the AMP decoder and the outer decoder, resulting in an

turbo-like iterative decoding scheme, alternating between inner and outer decoder. With

this type of decoding the required power for Ka ≤ 250 is reduced significantly, but for

Ka = 300 the required power is still around 5dB.

2.11. Summary

In this chapter we have introduced a concatenated coding construction that extends the

concept of sparse regression codes to the unsourced random access scenario. In this con-

struction an inner code is used as an efficient single user channel code for the AWGN

channel and an outer code is used to resolve the multiple access interference. The struc-

tural similarity to the coupled compressed sensing scheme allowes to use the tree code

presented in [24] as an outer code. We use the AMP algorithm as inner decoder, for which

we have introduced a low-complexity approximation to the Bayesian optimal denoiser. We

introduced a decomposition of the channel into an inner and an outer channel to analyse

the asymptotic limits under optimal decoding. Furthermore, we calculated the asymptot-

ically required energy-per-bit of the inner AMP decoder and compared it to the optimal

decoder. Finite-length simulations show that the calculated results describe the actual
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required energy-per-bit for a fixed per-user error probability very precisely. We find that

as J → ∞, where 2J is the size of the outer alphabet, the achievable sum-rates of the

concatenated code converge to the Shannon limit, even if the number of active users Ka

grows to infinity simultaneously, but much faster than J . This is in stark contrast to the

typical information theoretic limit, where the size of the message is considered to be much

larger than the number of active users. Therefore, it is noteworthy that even under short

message length (compared to the number of users) and no coordination between users the

Shannon limit can be achieved.

Unfortunately, also the difference in required energy between the AMP decoder and the

optimal decoder grows rapidly with J once J surpasses a certain value that depends on the

rate. When there is a difference in performance between the AMP and the optimal inner

decoder, a non-uniform power allocation can be used to improve the performance of the

AMP decoder. We present an linear programming algorithm to find an optimized power

allocation. Although for small sum-spectral efficiencies existing U-RA coding schemes

like [25,26] are more energy-efficient than the presented scheme, or a sum-spectral efficiency

of 1 bit/c.u. and Ka = 300 users the presented approach improves on existing ones by

almost 1 dB. The good performance at high spectral efficiencies and the availability of a

precise analysis make the presented coding scheme stand out among the existing U-RA

approaches and therefore an interesting candidate for massive MTC.

The extension of the presented coding scheme and analysis to more general channel

models incorporating fading, asynchronicity or multiple receivers seems to be in reach and

promising research directions. Furthermore, the presented analysis can be seen as a basis

to analyse the more complex turbo-like decoder of [105].
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3. Block Fading Multi-User-MIMO

Channel

3.1. Outline and Main Contributions

This chapter is organized as follows. Section 3.2 introduces the AD problem on the block-

fading MU-MIMO AWGN channel and presents two variants of covariance-based AD al-

gorithms. Furthermore, a novel RIP result is given which allows for a scaling analysis of

the presented covariance-based algorithms. The remainder of Section 3.2 describes two

alternative AD algorithms and compares them empirically to the covariance-based meth-

ods. Section 3.3 introduces the U-RA on the block-fading AWGN channel with a MIMO

receiver, presents the CCS algorithm for this channel and establishes the connection to

AD. A scaling analysis of the CCS algorithm is given, based on the results from Section

3.2 and finally, the performance of the CCS algorithm is evaluated numerically. In Sec-

tion 3.4 I present a simple alternative U-RA approach that works well when the coherence

block length is large compared to the number of active users. The last Section 3.5 intro-

duces U-RA in a distributed setting and compares different decoding strategies. The main

contribution in this part are as follows

• Two efficient iterative algorithms for covariance based AD are introduced and anal-

ysed.

• The analysis shows that it is possible to detect the activity of up to

Ka = O(L2/ log2(Ktot/Ka)) (3.1)

users out of Ktot total users. This is the first time, that such a result has been

proven for a concrete algorithm with polynonmial complexity. A thorough discussion

of related works was given in the introduction.

• In order to prove this scaling result a novel RIP result for Khatri-Rao product matri-

ces is introduces, which is of independent interest, e.g. in angle-of-arrival estimation

or machine learning.
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• The concept of U-RA is extended to the block fading AWGN channel with multiple

receive antennas.

• The CCS algorithm is adapted to work with the covariance-based ML algorithm as

inner decoder. This provides a valid alternative for grant-free random access on a

block-fading channel with a multi-antenna receiver.

• An analysis of the concatenated scheme shows that sum-spectral efficiencies in the

order of L/ logL are achievable, where L is the coherence block-length.

• Finite-length simulations show that the achievable sum-spectral efficiencies are indeed

much higher than in current mobile communication standards.

• For large coherence block-lengths another U-RA scheme, based on the pilot trans-

mission and channel estimation, is introduced and analysed.

• It is shown that U-RA in a setting with distributed BSs can circumvent many of the

downsides of existing proposed grant-free random access solutions like pilot contam-

ination and the necessity for power control.

• A novel algorithm is introduced that improves the performance of the ML algorithm

in the distributed setting by simultaneous AD and position estimation.

3.2. Activity Detection

3.2.1. Signal Model

In this chapter a block-fading wireless channel between each user and the BS is considered

where the channel coefficients remain constant over a coherence block consisting of L signal

dimensions in the time-frequency domain [45], and change from block to block according to

some stationary and ergodic fading process. In this section the problem of AD in a single

coherence block is considered. AD refers to the process of identifying the set of Ka active

users out of Ktot total potential users. For this purpose each user is given a user-specific

and a priori known pilot sequence. The problem of AD arises e.g. in several proposed

grant-free random access schemes [3ś7]. Let the pilot sequence of user k be denoted as

ak = (ak,1, . . . , ak,L)
⊤ ∈ CL. If user k is active, it transmits the components of ak in

the AD slot of L signal dimensions. Denoting by hk the M -dimensional channel vector

(small-scale fading coefficients) of user k to the M antennas at the BS, we can write the
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received signal at the BS over the AD slot as

y[i] =

Ktot∑︂

k=1

bk
√︁
Pkgkak,ihk + z[i], i ∈ [L], (3.2)

where [L] := {1, . . . , L}, gk ∈ R+ denotes the LSFC (channel strength) of user k, bk ∈ {0, 1}
is a binary variable with bk = 1 for active and bk = 0 for inactive users, Pk is the transmit

power per signal dimensions of user k and z[i] ∼ CN (0, N0IM ) denotes the additive white

Gaussian noise (AWGN) at the i-th signal dimension. For simplicity we assume Pk ≡ P

for all k.

Denoting by Y = [y[1], . . . ,y[L]]⊤ the L ×M received signal over L signal dimensions

and M BS antennas, we can write (3.2) more compactly as

Y = AΓ
1
2H + Z, (3.3)

where A = [a1, . . . , aKtot
] denotes the L ×Ktot matrix of pilot sequences and Γ = PBG

with G being a Ktot × Ktot diagonal matrix consisting of the LSFCs (g1, . . . , gKtot
)⊤

and B being a Ktot × Ktot diagonal matrix consisting of the binary activity patterns

(b1, . . . , bKtot
)⊤ of the users. H = [h1, . . . ,hKtot

]⊤ denotes the Ktot×M matrix containing

the M -dimensional normalized channel vectors of the users.

In line with the classical massive MIMO setting [46], we assume for simplicity an indepen-

dent Rayleigh fading model, such that the channel vectors {hk : k ∈ Ktot} are independent

from each other and are spatially white (i.e., uncorrelated along the antennas), that is,

hk ∼ CN (0, IM ).

The user pilots are normalized to unit energy per symbol, i.e., ∥ak∥22 = L. Then, the

average received SNR of a generic user over L pilot dimensions is given by

snrk =
∥ak∥22γkE[∥hk∥22]

E[∥Z∥2
F
]

=
LγkM

LMN0
=

γk
N0

, (3.4)

where γk = Pbkgk (bk = 1 for active users) is the k-th diagonal element of Γ. The vector

γ = (γ1, . . . , γKtot
)⊤ or equivalently the diagonal matrix Γ = diag(γ) the is called the

łactive LSFC patternž of the users. Ka ⊆ {1, ...,Ktot} shall denote the subset of active

users in the current AD slot, with size |Ka| = Ka. Thus, γ is a non-negative sparse

vector with only Ka nonzero elements. In the presence of LSFCs the definition of active

users is slightly relaxed to contain only the users with sufficiently strong received signals

Ka(ν) := {k ∈ {1, ...,Ktot} : γk > νN0}, for a pre-specified threshold ν > 0, from the noisy

observations as in (3.3). As a side goal, we wish also to estimate the LSFCs γk of the active

users (at least those above the threshold). This information may be useful in practice to
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3. Block Fading Multi-User-MIMO Channel

accomplish tasks such as user-BS association, user scheduling, and possibly other high-level

network optimization tasks where the knowledge of the user channel strength is relevant,

like positioning.

Since the channel vectors are assumed to be spatially white and Gaussian, the columns

of Y in (3.3) are i.i.d. Gaussian vectors with Y:,i ∼ CN (0,Σy) where

Σy = AΓAH +N0IL =

Ktot∑︂

k=1

γkaka
H

k +N0IL (3.5)

denotes the covariance matrix, which is common among all the columns Y:,i, i ∈ [M ]. The

empirical covariance matrix of the observations Y in (3.3) shall be defined as

ˆ︁Σy =
1

M
YYH =

1

M

M∑︂

i=1

Y:,iY
H
:,i. (3.6)

3.2.2. Covariance-Based Algorithms

Maximum Likelihood Estimation

The Gaussianity of the channel vectors allows to express the negative log-likelihood cost

function of the conditional distribution p(Y|γ) in a particular simple form

f(γ) := − 1

M
log p(Y|γ) (a)

= − 1

M

M∑︂

i=1

log p(Y:,i|γ) (3.7)

∝ log |AΓAH +N0IL|+ trace

(︃(︂
AΓAH +N0IL

)︂−1 ˆ︁Σy

)︃
, (3.8)

where (a) follows from the fact that the columns of Y are i.i.d. (due to the spatially white

user channel vectors), and ˆ︁Σy denotes the sample covariance matrix of the columns of Y

as in (3.6). For spatially white channel vectors considered here, ˆ︁Σy → Σy as the number

of antennas M → ∞. It is apparent that the log-likelihood function of p(Y|γ) depends on

Y only through the covariance matrix ˆ︁Σy. Therefore, ˆ︁Σy is a sufficient statistic for the

estimation of γ or any function thereof. Especially in a Massive MIMO scenario, where

M > L, the use of the covariance matrix ˆ︁Σy ∈ CL×L instead of the raw measurements

Y ∈ CM×L results in a significant dimensionality reduction. Assuming the number of

active users Ka is known, let the constrained ML estimator of γ be defined as

γ∗
c-ML = argmin

γ∈Θ+
Ka

f(γ). (3.9)
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where the constraint set Θ+
Ka

= {γ ∈ R
Ktot

+ : ∥γ∥0 ≤ Ka} is the (non-convex) set of

non-negative Ka-sparse vectors. There are two problems with this estimator: 1) Ka is

generally not known a priori, and 2) the minimization in (3.9) is combinatorial and has

exponential complexity in Ktot, which can be very large. Therefore, this ML estimator has

no practical value. Nevertheless, its performance yields a useful bound to the performance

of the following relaxed ML estimator of γ given by

γ∗
r-ML = argmin

γ∈R
Ktot

+

f(γ). (3.10)

It is not difficult to check that f(γ) in (3.8) is the sum of a concave function and a convex

function, so also the problem in (3.10) is not convex in general. Besides, the estimator in

(3.10) does not require any prior knowledge of Ka.

In the following, for the sake of analysis, we shall denote the true vector of LSFCs as g◦

and the true activity pattern as b◦. Next, we consider the performance of the constrained

ML estimator (3.9). The idea of the proof is based on [66], which was relying on a RIP

result [67] which was then withdrawn because the proof had a ŕaw. In Appendix F we

give a complete and streamlined proof for the case, where the true vector of LSFCs g◦ is

known at the receiver and all entries satisfy g◦k ∈ [gmin, gmax]. Therefore, the goal consist

of estimating the activity pattern b◦ and the active LSFC pattern is eventually given by

γ∗
c-ML = b∗⊙g◦, where b∗ is the estimate of b◦. We hasten to say that our proof technique

extends easily also to the case where g◦ is unknown, provided that the per-component upper

and lower bounds gmin and gmax are known, using the arguments of [66]. We have omitted

this general case for the sake of brevity, since it requires a few more technicalities which

can be found in [66].

For the case at hand, we define the constrained ML estimator of the activity pattern

b◦ ∈ {0, 1}Ktot as

b∗ := argmin
b∈ΘKa

f(b ⊙ g◦), (3.11)

with f(·) as defined in (3.7) and ΘKa = {b ∈ {0, 1}Ktot :
∑︁

bk = Ka}, the set of binary

Ka-sparse vectors. We have the following result:

Theorem 11. Let the LSFCs be such that for all k it holds that gmin ≤ gk ≤ gmax. Let

A ∈ CL×Ktot , be the pilot matrix with columns drawn uniformly i.i.d. from the sphere

of radius
√
L and let Ktot > L2. For any b◦ ∈ ΘKa the estimate b∗, defined in (3.11),

satisfies b∗ = b◦ with probability exceeding 1−2ϵ− exp(−CL) (jointly, on a draw of A and
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a random channel realization), provided that

Ka ≤ c
L2

log2(eKtot/L2)
, (3.12)

and

M ≥ 4

1− δ

⎛
⎝
C ′gmax

(︂
2 log( eKtot

2Ka
) + log(2/ϵ)

max{Ka,L}

)︂
max

{︁
1, Ka

L

}︁
+ N0

PL

gmin

⎞
⎠

2

log

(︃
3eKtotKa

1 + ϵ

ϵ

)︃

(3.13)

where 0 < δ < 1 and 0 < c,C,C ′ are universal constants that may depend on each other

but not on the system parameters. The precise relation is given in the proof. □

Proof. See Appendix F

Theorem 11 gives sufficient conditions under which the error probability of the estimator

(3.11) vanishes and it shows that Ka can be larger than L, although then M has to grow

at least as fast as (Ka/L)
2. Simple algebra (omitted for the sake of brevity) shows the

following:

Corollary 3. Let A be as above and let M,Ka, L → ∞, then it is possible to choose

Ka = O(L2/ log2(Ktot/L
2)) (3.14)

and

M = O
(︁
Ka(gmax/gmin)

2 log2(Ktot/Ka) log(KtotKa)
)︁

(3.15)

such that the estimation error of the ML estimator (3.11) vanishes. □

Note, that the scaling condition (3.14) can be replaced with the stricter condition

Ka = O(L2/ log2(Ktot/Ka)). (3.16)

This is because Ka ≤ L2 and therefore L2/ log2(Ktot/Ka) ≤ L2/ log2(Ktot/L
2), which

implies

L2/ log2(Ktot/Ka) = O(L2/ log2(Ktot/L
2)). (3.17)

As said, the minimization in (3.9) or (3.11) is in general computationally unfeasible

(beyond the problem of not knowing Ka). Next, we consider the relaxed ML estimator

(3.10), where the domain of search is relaxed to the whole non-negative orthant. This

estimator is formally equivalent to the ML estimator of the model parameters in the sparse
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Bayesian learning framework, posed in [51]. In [51] a low-complexity iterative algorithm

was given and it was shown in [52] that the iterative algorithm is guaranteed to converge

to at least a local minimum of (3.7). We derive the iterative update equations here for

completeness and show that they can be efficiently implemented by rank-1 updates. While

this algorithm is not know to converge to the exact minimum of (3.7), empirical evidence

suggests it converges very well. The algorithm proceeds as follows:

For each coordinate k ∈ [Ktot], define the scalar function fk(d) = f(γ + dek) where f(γ)

is the likelihood function (3.8) and ek denotes the k-th canonical basis vector with a single

1 at its k-th coordinate and zero elsewhere. Setting Σ = Σ(γ) = AΓAH + N0IL where

Γ = diag(γ) and applying the well-known Sherman-Morrison rank-1 update identity [106]

we obtain that

(︁
Σ+ daka

H

k

)︁−1
= Σ

−1 − dΣ−1aka
H

kΣ
−1

1 + d aH

kΣ
−1ak

. (3.18)

Using (3.18) and applying the well-known determinant identity

⃓⃓
Σ+ daka

H

k

⃓⃓
= (1 + d aH

kΣ
−1ak)

⃓⃓
Σ
⃓⃓
, (3.19)

we can simplify fk(d) as follows

fk(d) = c+ log(1 + d aH

kΣ
−1ak)−

aH

kΣ
−1 ˆ︁ΣyΣ

−1ak

1 + d aH

kΣ
−1ak

d (3.20)

where c = log
⃓⃓
Σ
⃓⃓
+trace(Σ−1 ˆ︁Σy) is a constant term independent of d. fk(d) is well-defined

only when d > d0 := − 1
aH

k
Σ−1ak

. Taking the derivative of fk(d) yields

f ′
k(d) =

aH

kΣ
−1ak

1 + d aH

kΣ
−1ak

− aH

kΣ
−1 ˆ︁ΣyΣ

−1ak

(1 + d aH

kΣ
−1ak)2

. (3.21)

The only solution of f ′
k(d) = 0 is given by

d∗ =
aH

kΣ
−1 ˆ︁ΣyΣ

−1ak − aH

kΣ
−1ak

(aH

kΣ
−1ak)2

. (3.22)

Note, that d∗ ≥ d0 = − 1
aH

k
Σ−1ak

, thus, one can check from (3.20) that fk is indeed

well-defined at d = d∗. Moreover, we can check from (3.20) that limϵ→0+ fk(d0 + ϵ) =

limd→∞ fk(d) = ∞, thus, d = d∗ must be the global minimum of fk(d) in (d0,∞). After

the update we have γk ← γk + d. So, to preserve the positivity of γk, the optimal update

step d is in fact given by max
{︁
d∗,−γk

}︁
. The procedure is summarized in Algorithm 1.
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The exact characterization of the performance of this algorithm remains, at the moment,

an open problem. Specifically, it is not known under which conditions the iterative algo-

rithm actually reaches the global minimum of (3.7). A heuristic intuition for why the local

minima become rare in the large scale limit may be obtained as follows. Let us first note

some property of the negative log-likelihood cost function (3.7). Define

Σ(γ) := AΓAH +N0IL (3.23)

and let

ϕ(Σ) := − log |Σ|+ trace(Σˆ︁Σy). (3.24)

Since Σ(γ) is positive definite for every non-negative vector γ and N0 > 0, it is also invert-

ible and the negative log-likelihood cost function can be expressed as f(γ) = ϕ((Σ(γ))−1).

Now ϕ : CL×L → R is strictly convex. Hence, it has a unique minimal value over a convex

set. Let Σ
−1
∗ denote the unique positive definite matrix with 0 ≺ Σ

−1
∗ ⪯ 1/N0 that mini-

mizes (3.24), and let Σ∗ be its inverse. Now, if the set of pilot sequences {ak : k ∈ Ktot}
is such that the set {∑︁Ktot

k=1 γkaka
H

k : γk ≥ 0} spans the whole cone of positive semidef-

inite matrices, then Σ∗ can be represented as Σ∗ = Σ(γ∗) and therefore γ∗ is a global

minimizer of f(γ) over {γ : γi ≥ 0}, i.e γ∗
r-ML = γ∗. Since there are no local minimizers,

the componentwise optimization algorithm will necessarily converge to a global minimizer.

We cannot apply this argument though, because {∑︁Ktot

k=1 γkaka
H

k : γk ≥ 0} will never span

the whole cone of positive semidefinite matrices for any finite Ktot. Nonetheless, if Ktot

is large enough we expect the approximation of the cone of positive semidefinite matrices

to be good enough such that the log-likelihood function has few and small local minima.

That explains, at least heuristically, the good convergence behavior of the componentwise

optimization algorithm.

Another open problem are the conditions, under which it is guaranteed that the solutions

of (3.9) and (3.10) coincide. It is only possible to confirm the validity of γ∗
r-ML a-posteriori,

i.e. , if γ∗
r-ML happens to be Ka-sparse, then it follows that γ∗

c-ML = γ∗
r-ML. Hence, if γ∗

r-ML

is Ka-sparse and the conditions on A,Ka,M,L and Ktot of Theorem 11 are fulfilled, then

γ∗
r-ML coincides with the correct solution γ◦ with high probability. Intuitive explanations

for the sparsity inducing nature of (3.10) have been provided in [51] for the SMV case and

in [59] for the MMV case.

Non-Negative Least Squares

In this section we investigate a different approach to estimate γ which can be directly

analyzed and for which we can provide a rigorous non-asymptotic bound on the ℓ1 recovery

error. Interestingly, analyzing this bound we find that the estimation error vanishes for
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M → ∞ under the same scaling condition (3.12) for Ka, L and Ktot as in Theorem 11.

The strict convexity of ϕ(·) defined in (3.24) suggests the following approach: first, find

the matrix argminΞ⪰0 ϕ(Ξ), where {Ξ : Ξ ⪰ 0} denotes the set of positive semidefinite

matrices. A simple calculation shows that the minimizer is simply the inverse of the

empirical covariance matrix ˆ︁Σy. Then, find the estimate of γ as

γ∗ = argmin
γ∈R

K
+

∥Σ(γ)− ˆ︁Σy∥2F. (3.25)

Let us introduce the matrix A ∈ CL2×Ktot , whose k-th column is defined by:

A:,k := vec(aka
H

k ). (3.26)

and let w = vec(ˆ︁Σy − N0IL) denote the L2 × 1 vector obtained by stacking the columns

of ˆ︁Σy −N0IL. Then, we can write (3.25) in the convenient form

γ∗ = argmin
γ∈R

K
+

∥Aγ − w∥22, (3.27)

as a linear least squares problem with non-negativity constraint, known as non-negative

least squares (NNLS). Such an algorithm was proposed for the activity detection problem

in [50].

A key property of the matrix A is that a properly centered and rescaled version of it has

the restricted isometry property (RIP). Let us define the centered version of A, denoted by

Å as the L(L− 1)×Ktot dimensional matrix, with the k-th column given by

Å:,k := vecnon-diag(aka
H

k − diag(aka
H

k )). (3.28)

Where vecnon-diag(·) denotes the vectorization of only the non-diagonal elements, which in

the case of aka
H

k − diag(aka
H

k ), are zero anyway. Let m = L(L − 1), then the restricted

isometry constant δ2s = δ2s(Å/
√
m) of Å/

√
m of order 2s is defined as:

δ2s := sup
0<∥v∥0≤2s

⃓⃓
⃓⃓
⃓
∥Åv∥22
m∥v∥22

− 1

⃓⃓
⃓⃓
⃓ (3.29)

and if δ2s ∈ [0, 1) the matrix Å/
√
m is said to have RIP of order 2s. The normalization

is necessary to ensure that the expected norm of the columns of Å is of order O(1) for

all L, which is a necessary condition for the RIP to hold with high probability. It is

well known that matrices with iid sub-Gaussian entries satisfy the RIP of order 2s with

high probability for s = O(m/ log(eKtot/s)) [65]. The entries of Å though are neither
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sub-Gaussian nor independent which makes the analysis more complicated. Nonetheless,

recent results in [107, 108] show that matrices which have independent columns (with

possibly correlated entries) satisfy the RIP with high probability if the columns have a

bounded sub-exponential norm. Using the results of [107] we can establish the following

Theorem, which is central for both Theorem 11 and Theorem 13.

Theorem 12. Let A ∈ CL×Ktot , be the pilot matrix with columns drawn uniformly i.i.d.

from the sphere of radius
√
L. Then, with probability exceeding 1− exp(−cδ

√
m) on a draw

of A, it holds that Å/
√
m has the RIP of order 2s with RIP-constant δ2s(Å/

√
m) < δ as

long as

2s ≤ Cδ
m

log2(eKtot/m)
(3.30)

for some constants c, cδ, Cδ > 0 depending only on δ. □

Proof. See Appendix G.

NNLS has a special property, as discussed for example in [109] and referred to as the

M+-criterion in [110], which makes it particularly suitable for recovering sparse vectors:

If the row span of A intersects the positive orthant, NNLS implicitly also performs ℓ1-

regularization. Because of these features, NNLS has recently gained interest in many

applications in signal processing [111], compressed sensing [110], and machine learning. In

our case the M+ścriterion is fulfilled in an optimallyśconditioned manner. Combined with

the RIP of Å it allows us to establish the following result:

Theorem 13. Let A ∈ CL×Ktot , be the pilot matrix with columns drawn uniformly i.i.d.

from the sphere of radius
√
L. There exist universal constants ci > 0, i = 1, ..., 5, depending

only on some common parameter, but not on the system parameters, (see the proof in

Appendix H for details) such that, if

s ≤ c1
L2

log2(eKtot/L2)
, (3.31)

then with probability exceeding 1 − exp(−c5L) (on a draw of A) the following holds: For

all s-sparse activity pattern vectors γ◦ and all realizations of ˆ︁Σy, the solution γ∗ of (3.27)

fulfills for 1 ≤ p ≤ 2 the bound:

∥γ◦ − γ∗∥p ≤
c2

s
1− 1

p

σs(γ
◦)1 +

c3

s
1
2
− 1

p

(︄√
L√
s
+ c4

)︄
∥d∥2
L

, (3.32)
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where σs(γ
◦)1 denotes the ℓ1śnorm of γ◦ after removing its s largest components and where

d = vec

(︄
ˆ︁Σy −

Ktot∑︂

k=1

γ◦kaka
H

k −N0IL

)︄
. (3.33)

□

The proof is based on the NNLS results of [110] suitably adapted to our case. The

common parameter on which the constants ci depend is the RIP constant of a properly

centered version of A, defined in (3.26). We state this dependence explicitly to emphasize

that Theorem 13 holds also for more general random models for A, for which A can be

shown to have the RIP. The constants c2, c3, c4 can be computed explicitly (see Appendix

H) depending on the RIP constant of the other matrix model. The probability term

1− exp(−c5L) is precisely the probability that the centered version of the random matrix

A has the RIP. The result is uniform meaning that with high probability (on a draw of A)

it holds for all γ◦ and for all realizations of the random variable ˆ︁Σy. For s = Ka = ∥γ◦∥0
it implies (up to the ∥d∥2-term) exact recovery since in this case σs(γ

◦)1 = 0.

The analysis of the random variable ∥d∥2 given in Appendix I shows that, for every

realization of A it holds that

EY|A[∥d∥2] =
L√
M

(∥γ◦∥1 +N0) (3.34)

with a deviation tail distribution satisfying

PY|A

(︂
∥d∥2 >

√
αϵEY|A[∥d∥2]

)︂
≤ ϵ (3.35)

for

αϵ = c log((eL)2/ϵ) (3.36)

with some universal constant c > 0. The bounds (3.34) and (3.35) are independent of

the realization of A, so the conditional expectation/probability can be replaced by the

total expectation/probability. Assuming that A is chosen independent of the channel

realization, it holds that with probability (1− ϵ)(1− exp(−c5L)) ≥ 1− ϵ− exp(−c5L) the

pilot matrix A satisfies the condition in Theorem 13 and the channel realization d satisfies

∥d∥2 ≤ √
αϵEY|A[∥d∥2]. Setting s = Ka in Theorem 13 (yielding σs(γ

◦) = 0), for p = 1

we get the following:

Corollary 4. With the assumptions as in Theorem 13, the following holds: For any Kaś

sparse γ◦ with

Ka ≤ c1
L2

log2(eKtot/L2)
, (3.37)
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the NNLS estimate γ∗ fulfills:

∥γ◦ − γ∗∥1
∥γ◦∥1

≤ c3

(︂√
L+ c4

√︁
Ka

)︂ 1 + N0
∥γ◦∥1√︁

M/αϵ

(3.38)

with probability at least 1− ϵ− exp(−c5L), where c1, c3, c4, c5 are the same constants as in

Theorem 13. □

Using the well-known inequality ∥γ◦∥1 ≤ √
Ka∥γ◦∥2, Theorem 13 for the case p = 2

gives:

Corollary 5. Under the same conditions as in Corollary 4

∥γ◦ − γ∗∥2
∥γ◦∥2

≤ c3

(︂√
L+ c4

√︁
Ka

)︂
(︂
1 + N0√

Ka∥γ◦∥2

)︂

√︁
M/αϵ

(3.39)

holds with probability at least 1− ϵ− exp(−c5L) where c3, c4, c5 are the same constants as

in Theorem 13 provided that (3.37) holds. □

In conclusion, the following scaling law is sufficient to achieve a vanishing estimation

error.

Corollary 6. Let M,Ka, L → ∞ with Ka as in (3.14) and M = Kκ
a for κ > 1 then for

p = 1, 2 it holds with probability 1 that

lim
M→∞

∥γ◦ − γ∗∥p
∥γ◦∥p

= 0. (3.40)

□

This shows that the NNLS estimator (3.25) can identify up to O(L2) active users by

paying only a poly-logarithmic penalty O(log2(Ktot

Ka
)) for increasing the number of potential

users Ktot. This is a very appealing property in practical IoT setups where, as already

mentioned in the introduction, Ktot may be very large. Note, that the scaling of the

identifiable users is the same as that of the (uncomputable) restricted ML estimator, see

Corollary 3, while the scaling of the minimum required M agrees up to poly-logarithmic

factors.

Iterative Solution

Finding the ML estimate γ∗ in (3.10) or the NNLS estimate (3.25) requires the optimiza-

tion of a function over the positive orthant R
Ktot

+ . In Section 3.2.2 we have derived the
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componentwise minimization condition (3.22) of the log-likelihood cost function. Starting

from an initial point γ, at each step of the algorithm we minimize f(γ) with respect to

only one of its arguments γk according to (3.22). We refer to the resulting scheme as an

iterative componentwise minimization algorithm. As discussed before, hopefully this will

converge to the solution of (3.10). Variants of the algorithm may differ in the way the

initial point is chosen and in the way the components are chosen for update. The noise

variance N0 can also be included as an additional optimization parameter and estimated

along γ [51].

The same iterative componentwise minimization approach can be used to solve (itera-

tively) the NNLS problem (3.25). Of course, the component update step is different in

the case of ML and in the case of NNLS. We omit the derivation of the NNLS component

update since it consists of a straightforward differentiation operation. Since NNLS is con-

vex, in this case the componentwise minimization algorithm is guaranteed to converge to

the solution of the NNLS problem (3.25). Given the analogy of the two iterative compo-

nentwise minimization algorithms for ML and for NNLS, we summarize them in a unified

manner in Algorithm 1.

ML and NNLS with Knowledge of the LSFCs

Since the ML and NNLS algorithms are non-Bayesian in nature, they work well without

any a-priori information on the LSFCs. If g◦ (true values of the LSFCs of all users,

active and not) is known, the algorithms can be slightly improved by projecting each

k-th coordinate update on the interval [0, g◦k] (see step 8) in Algorithm 1. In this case

the thresholding step can be improved by choosing the thresholds relative to the channel

strength ˆ︁Ag0 = {i : ˆ︁γi > θg0k}.

3.2.3. Empirical Comparison: MF, ML, NNLS and MMV-AMP

Simulation Setting and Performance Criteria

We assume that the output of each algorithm is an estimate γ∗ of the active LSFC pattern

of the users. We use the relative ℓ1 norm of the difference ∥γ∗ − γ◦∥1/∥γ◦∥1 as a measure

of the estimation quality. The ℓ1 norm is the natural choice here, since the coefficients

γi represent the received signal power, i.e., they are related to the square of the signal

amplitudes. Therefore, a more traditional łSquare Errorž (ℓ2 norm), related to the 4th

power of the signal amplitude, does not really have any relevant physical meaning for the

underlying communication system. We define ˆ︁Ac(ν) := {i : γ∗i > νN0}, with ν > 0, as

the estimate of the set of active users. We also define the misdetection and false-alarm
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Algorithm 1 Activity Detection via Coordinate-wise Optimization

1: Input: The sample covariance matrix ˆ︁Σy = 1
M

YYH of the L×M matrix of samples Y.

2: Input: The LSFCs of Ktot users (g1, . . . , gKtot
) if available.

3: Initialize: Σ = N0IL, γ = 0.

4: for i = 1, 2, . . . do

5: Select an index k ∈ [Ktot] corresponding to the k-th component of γ = (γ1, . . . , γKtot
)⊤

randomly or according to a specific schedule.

6: If ML: Set d∗0 = max
{︂

a
H

k
Σ

−1 ˆ︁ΣyΣ
−1

ak−a
H

k
Σ

−1
ak

(aH

k
Σ−1ak)2

,−γk

}︂
.

7: If NNLS: Set d∗0 = max
{︂

a
H

k
(ˆ︁Σy−Σ)ak

∥ak∥4

2

,−γk}.
8: Set d∗ = min{d∗0, gk − γk} if LSFC gk is available and d∗ = d∗0 otherwise.

9: Update γk ← γk + d∗.

10: Update Σ
−1 ← Σ

−1 − d
∗

Σ
−1

aka
H

k
Σ

−1

1+d∗a
H

k
Σ−1ak

11: end for

12: Output: The resulting estimate γ.

probabilities as

Pmd(ν) = 1− E[|Ka ∩ ˆ︁Ac|]
Ka

, Pfa(ν) =
E[| ˆ︁Ac\Ka|]
Ktot −Ka

(3.41)

where Ka and Ktot denote the number of active and the number of potential users, respec-

tively. By varying ν ∈ R+, we get the Receiver Operating Characteristic (ROC) [112] of the

algorithms. For simplicity of comparison, in the results presented here we have restricted

to the point of the ROC where Pmd(ν) = Pfa(ν).

We consider several models for the distribution of the LSFCs gk. The simplest case is

when all LSFCs are constant, gk ≡ 1, this corresponds to a scenario with perfect power

control. We also consider the case of variable signal strengths such that 10 log10(gk) is

randomly distributed uniformly in some range [10 log10(gmin), 10 log10(gmax)] (uniform dis-

tribution in dB scale). This corresponds to the case of partial power control, where users

partially compensate for their physical pathloss and reach some target SNR out of a set

of possible values. In practice, these prefixed target SNR values corresponds to the vari-

ous Modulation and Coding Schemes (MCS) of a given communication protocol, which in

turn correspond to different data transmission rates (see for example the MCS modes of

standards such as IEEE 802.11 [113] or 3GPP-LTE [114]). In passing, we notice here the

importance of estimating not only the user activity pattern but their LSFCs, in order to

perform rate allocation.
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Matched Filter

A simple sub-optimal approach to recover the LSFCs of the active users is to use the pilot

sequences as a bank of matched filters (MF) and apply them one by one to to Y. An

estimate of the LSFC γk is then obtained as the average of the squares:

γ̂MF
k =

∥aH

k Y∥22
M

(3.42)

This approach was recently analysed in [115] where a scaling law on the sample complexity

was proven for sub-Gaussian A. The results show as similar scaling behavior as in Theorem

11, specifically recovery is possible if M = O(K2
a/L

2). It was shown in [116] that the

estimator (3.42) is heavily biased, but the relative order of the LSFCs is preserved on

average, i.e. E[γ̂1] ≤ ... ≤ E[γ̂Ktot
] whenever γ1 ≤ ... ≤ γKtot

, where the expectation is over

the M measurements. Therefore we can detect the active users by picking the Ka indices

with the largest values γ̂k.

MMV-AMP

This version of AMP, as introduced in [117], is a Bayesian iterative recovery algorithm for

the MMV problem, i.e., it aims to recover an unknown matrix with i.i.d. rows from linear

Gaussian measurements. As said in the introduction, the use of MMV-AMP has been

proposed in [4,118] for the AD problem in a Bayesian setting, where the LSFCs are either

known, or its distribution is known. Since unfortunately the formulation of MMV-AMP

is often lacking details and certain terms (e.g., derivatives of matrix-valued functions with

matrix arguments) are left indicated without explanations, for the sake of clarity and in

order to provide a self-contained exposition we brieŕy review this algorithm here in the

notation of this paper.

We can rewrite the received signal in (3.2) as

Y = AX + Z (3.43)

with X = GBH. We assume here that P = 1 for simplicity. Let Xk,: denote the k-th row

of X. Letting λ = Ka

Ktot
be the fraction of active users, in the Bayesian setting underlying

the MMV-AMP algorithm it is assumed that the rows of X are mutually statistically

independent and identically distributed according to

pX(x) = (1− λ)δ0 + λ

∫︂ +∞

0

e
− ∥x∥22

ζ

πζ
dpG(ζ), (3.44)
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where pG(·) is the distribution of the LSFCs, i.e., for each k, it is assumed that Xk,: is

either the identically zero vector (with probability λ) or a conditionally complex i.i.d. M -

dimensional Gaussian vector with mean 0 and conditional variance gk. Furthermore, the

gk’s are i.i.d. ∼ pG(·). The conditional distribution of Xk,: given gk is obviously given by

pX|g(x|gk) = (1− λ)δ0 + λ
e
− ∥x∥22

gk

πgk
. (3.45)

The MMV-AMP iteration is defined as follows:

Xt+1 = ηt(A
HZt + Xt) (3.46)

Zt+1 = Y − AXt+1 +
Ktot

L
Zt⟨η′t(AHZt + Xt)⟩ (3.47)

with X0 = 0 and Z0 = Y. The function ηt : CKtot×M → CKtot×M is defined row-wise as

ηt(R) =

⎡
⎢⎢⎣

ηt,1(R1,:)
...

ηt,Ktot
(RKtot,:)

⎤
⎥⎥⎦ , (3.48)

where each row function ηt,k : CM → CM is chosen as the posterior mean estimate of

the random vector x, with a priori distribution as the rows of X as given above, in the

decoupled Gaussian observation model

r = x + z, (3.49)

where z is an i.i.d. complex Gaussian vector with components ∼ CN (0,Σt). When g is

known, such posterior mean estimate is conditional on the knowledge of gk, i.e., we define

ηt,k(r) = ˜︁ηt(r, gk) := E[x|r, gk]. (3.50)

If g is not known, the posterior mean estimate is unconditional, i.e., we define (with some

abuse of notation)

ηt,k(r) = ˜︁ηt(r) := E[x|r]. (3.51)

Notice that in the latter case ηt,k(·) does not depend on k, i.e., the same mapping ˜︁ηt(·) is

applied to all the rows in (3.48). The noise variance in the decoupled observation model, Σt

is provided at each iteration t by the following recursive equation termed State Evolution

(SE),

Σt+1 = N0IM +
Ktot

L
E[ete

H

t ] (3.52)
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where

et =

{︄
(˜︁ηt(x + z, gk)− x)⊤ if g is known

(˜︁ηt(x + z)− x)⊤ if g is not known
(3.53)

The initial value of the SE is given by Σ0 = N0IM+Ktot

L E[xxH]. The sequence (Σt)t=0,1,2,...

does not depend on a specific input X and can be precomputed. The SE equation has the

important property that it predicts the estimation error of the AMP output {Xt}t=0,1,...

asymptotically in the sense that in the limit of Ktot, L → ∞ with L/Ktot = const. it holds

that [119]

lim
Ktot→∞

∥Xt+1 − X∥2F
Ktot

= tr(E[ete
H

t ]) = tr(Σt −N0IM )
L

Ktot
. (3.54)

Formally this was proven for the case when the entries of A are Gaussian iid. In practice

this property holds also when the columns of A are sampled uniformly from the sphere, as

in our case. Note, that tr(E[ete
H
t ]) is the MSE of the estimator ˜︁η in the Gaussian vector

channel (3.49) and therefore the choice (3.50) (or (3.51) resp.) is asymptotically optimal

as it minimizes the MSE in each iteration.

Since there is no spatial correlation between the receive antennas, Σ0 is diagonal and it

can be shown (see [118]) that Σt is diagonal for all t. In the case of g is known to the AD

estimator, a simple calculation yields the function ˜︁ηt,k(r) defined in (3.50) in the form

˜︁ηt,k(r) = ϕt,k(r)gk(gkIM +Σt)
−1r, (3.55)

where the coefficient ϕt,k(r) ∈ [0, 1] is the posterior mean estimate of the k-th component

bk of the activity pattern b, when rewriting the decoupled observation model (3.49) as

r =
√
gkbkh + z. In particular, we have (details are omitted and can be found in [118])

ϕt,k(r) = E[bk|r, gk]
= p(bk = 1|r, gk)

=

{︄
1 +

1− λ

λ

M∏︂

i=1

[︄
gk + τ2t,i

τ2t,i
exp

(︄
− gk|ri|2
τ2t,i(gk + τ2t,i)

)︄]︄}︄−1

(3.56)

The term ⟨η′(·)⟩ in (3.47) is defined as

⟨η′t(R)⟩ = 1

Ktot

Ktot∑︂

k=1

η′t,k(Rk,:), (3.57)

where η′t,k(·) ∈ CM×M is the Jacobi matrix of the function ηt,k(·) evaluated at the k-th row

Rk,: of the matrix argument R. For known LSFCs and uncorrelated antennas (yielding
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diagonal Σt = diag(τ2t,1, ..., τ
2
t,M ) for all t), the derivative is explicitly given by

η′t,k(r) = ϕt,k(r)diag(Ξt,k) + (Ξt,kr)(˜︁Ξt,kr)
H(ϕt,k(r)− ϕt,k(r)

2) (3.58)

where we define Ξt,k = diag

(︃
gk

gk+τ2t,i
: i ∈ [M ]

)︃
and ˜︁Ξt,k = diag

(︃
gk

τ2t,i(gk+τ2t,i)
: i ∈ [M ]

)︃
.

Analogous expressions for the case where the LSFCs g are unknown to the receiver can

be found, but their expression cannot be generally given in a compact form and in general

depends on the LSFC distribution pG(·) (see [118] for more details).

MMV-AMP Scaling

For the single measurement vector (SMV) case (M = 1) it was shown in [34] that in the

asymptotic limit L,Ktot,Ka → ∞ with fixed ratios L/Ktot and Ka/Ktot the estimate

AHzt + xt in the AMP algorithm in the t-th iteration is indeed distributed like the true

target signal in Gaussian noise with noise variance Σt given by the SE. A generalized

version of this statement that includes the MMV case was proven in [119]. It was shown

in [4] that, based on the state evolution equation (3.52), the error of activity detection

vanishes in the limit M → ∞ for any number of active users. It is important to notice

that, in this type of SE-based analysis, first the limit Ka, L → ∞ is taken at fixed M

and then the limit M → ∞ is taken. This makes it impossible to derive a scaling relation

between M and Ka. Furthermore, this order of taking limits assumes that Ka is much

larger then M . Hence, this type of analysis does not generally describe the case when M

scales proportional to Ka or even a bit faster. Finally, it is implicit in this type of analysis

that L, Ka and Ktot are asymptotically in linear relation, i.e., Ka

L → α and Ktot

L → β for

some α, β ∈ (0,∞). Hence again, it is impossible to capture the scaling studied in our

work, where Ka is essentially quadratic in L, Ktot can be much larger than Ka, and M

scales to infinity slightly faster than Ka.

The above observation is a possible explanation for the behavior described in Section

3.2.3, which is in fact quite different from what is predicted by the SE and in fact reveals

an annoying non-convergent behavior of MMV-AMP when M is large with respect to L

and the dimensions are or łpractical interestž, i.e., not extremely large.

MMV-AMP Approximations

Instead of pre-computing the sequence (Σt)t=0,1,..., in the SMV case, where Σt reduces

to a single parameter τ2t , it is common to use the norm of the residual ∥Zt∥22/Ktot as an

empirical estimate of Σt [31,33], since it leads to faster convergence [120] while disposing the

need of pre-computing the state evolution recursion. We find empirically that, analogous
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to the SMV case, estimating the i-th diagonal entry of Σt = diag(τ2t,1, ..., τ
2
t,M ) as τ2t,i =

∥Zt
:,i∥22/Ktot (i.e., the empirical variance of the i-th column of the matrix Zt in (3.47))

leads to a good performance.

Another possible approximation arises from the observation that in the derivative (3.58),

the diagonal terms are typically much larger then the off-diagonal terms, which is to be

expected, since in expectation the off-diagonal entries of the term (Ξt,kr)(Ξ̃t,kr)
H vanish.

So we find empirically that reducing the calculation of the derivative to just the diago-

nal entries, barely alters the performance in a large parameter regime, while significantly

reducing the complexity of the MMV-AMP iterations from O(M2) to O(M).

Activity detection with MMV-AMP

For known LSFCs an estimate of the activity pattern can be obtained directly by thresh-

olding the posterior mean estimate of bk (3.56). For statistically known LSFCs we have to

calculate the integral of (3.56) over the distribution of the LSFCs. For large M this integral

may become numerically unstable, in that case we can also use the following method: Let

Xt0 and Zt0 denote the output of the MMV-AMP algorithm at the final iteration. Let

Rt0 := AHZt0 + Xt0 . Under the assumption that the asymptotic decoupling phenomenon

described in Section 3.2.3 holds, i.e. that the decoupled observation model represents

faithfully the statistics of the rows of Rt0 , each row Rt0
k,: is distributed as

√
γkhk + zk with

zk ∼ CN (0,Σt0) and hk has the statistics of the Gaussian MIMO i.i.d. channel vector

of user k. Furthermore we assume that Σ
t0 is diagonal, with entries τ2t0,i : i = 1, . . . ,M ,

which are estimated as described in the previous section. Then the ML estimate of γk from

Rt0 is given by

ˆ︁γk = max

(︄
0,

∥Rt0
k,:∥22
M

−
∑︁M

i=1 τ
2
t0,i

M

)︄
. (3.59)

Then, the activity pattern as well as the active LSFC pattern can be obtained by thresh-

olding the ˆ︁γk.

Instability of MMV-AMP

In simulations, we have observed that the MMV-AMP algorithm as described in Section

3.2.3, for certain parameter settings, exhibits an annoying non-convergent behavior that

occurs at random with some non-negligible probability (according to the realization of the

random pilot matrix A, the random channel matrix H, and the random observation noise).

We find that this behavior occurs most frequently for either small Ka << L and M similar

to or larger then Ka, or for M > Ka > L. Also the dynamic range of the LSFCs plays

an important role. While this behavior occurs less frequently or completely vanishes for
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a small dynamic range or constant LSFCs, it occurs more frequently for large dynamic

ranges. For example if we let gk be distributed uniformly in dB scale between 0 and 20dB,

known at the receiver, for Ka = 20 the algorithm is stable for M = 4, in the sense that the

effective noise variance τ2t decreases consistently, but unstable for M = 10, i.e. for many

instances the actual measured values of ∥Xt − X∥2F /(MKtot) diverge a lot from their SE

prediction (3.52). This behavior is illustrated in Figure 3.1, where ∥Xt −X∥2F /(MKtot) is

plotted for t = 1, 2, ... for several samples along with τ2t /M , where Σt = τ2t IM is calculated

according to the SE (3.52). For Ka < L one may argue that this is an artificial behavior,

which can be circumvented by simply discarding the information from some of the antennas,

but this is certainly not possible for Ka > L, where M > Ka measurements are necessary.

We find that specifically in this regime M > Ka > L the MMV-AMP performance differs

significantly from its state evolution prediction, which is consistent with what was argued

before. These outliers occur even if none of the approximations mentioned in Section

3.2.3 are applied. Although we find that approximating the derivative η′(·) as described

in Section 3.2.3 helps to reduce the number of samples that do not converge to the state

evolution prediction. Another observation is that the use of normalized pilots (∥ak∥22 = L)

improves the convergence to the SE prediction compared to Gaussian iid pilots.

Complexity Comparison

The complexity of the discussed covariance-based AD algorithms (ML and NNLS) scales

with the size of the covariance matrix and the total number of users, i.e. O(KtotL
2), plus

the complexity of once calculating the empirical covariance matrix which is linear in ML.

The complexity of the MF approach is O(MLKtot) or, with a sub-sampled FFT matrix

as pilot matrix, O(MKtot logKtot).

The complexity of MMV-AMP in each iteration scales like O(M2LKtot) or, with a sub-

sampled FFT matrix as pilot matrix, like O(M2Ktot logKtot). Using the simplified deriva-

tive as described in paragraph 3.2.3 the complexity is reduced to min(O(MKtot logKtot),O(MKtotL)).

In any case the covariance-based algorithms scale better with M , while MF and MMV-

AMP scales better with L.

Scaling

The performance of AD is visualized in Figure 3.2 (‘CS regime’, i.e. Ka ≤ L) and Fig-

ure 3.3 (Ka > L). Here we assumed all the LSFCs to be identically equal to 1, MMV-AMP

was run with the full knowledge of the LSFCs and the ML and NNLS algorithms were run

with the box-constraints described in Section 3.2.2. In Figure 3.2 the NNLS algorithm is

comparably worse than MMV-AMP and ML. This is to be expected, since M is small com-
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Figure 3.1.: Evolution of the normalized MSE in the AMP iterations (3.46)-(3.47) for
10 sample runs and its state evolution prediction from (3.52). L = 100,
Ktot = 2000 and the LSFCs are chosen such that snrk (see (3.4)) are uni-
formly distributed between 0 and 20dB and are assumed to be known at the
receiver.
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Figure 3.2.: Scaling of the support detection error vs. M at the border of the CS regime
for Ka = L = 100,Ktot = 2000 with constant LSFCs at SNRk = 0 dB.

pared to L, which leads to a significant gap between the true and the empirical covariance

matrix ∥ˆ︁Σy −Σy∥F . Interestingly, although the ML algorithm is also covariance based, it

still outperforms MMV-AMP. In Figure 3.3 we see that beyond the CS regime, the perfor-

mance of MMV-AMP and MF significantly deteriorates, while the activity detection error

probability of ML and NNLS still decays exponentially with M . In Figure 3.4 we compare

the LSFC estimation performance of the ML and NNLS algorithms. The simulations con-

firms Corollary 4 and show that the relative ℓ1 recovery error of NNLS indeed decays like

1/
√
M . We see that the same decay behavior holds for the ML algorithm only with signifi-

cantly better constants. Note, that the number of required antennas for the ML algorithm

scales fundamentally different depending on whether Ka ≤ L or Ka > L. In the first case

the probability of error decays a lot faster with increasing M , matching qualitatively the

scaling derived in Theorem 11, which states that (up to constant or logarithmic factors)

M = O((Ka/L)
2).

Corollary 4 predicts that, in the limit M → ∞, the recovery error of NNLS vanishes, as

long as the number of active users fulfils condition (3.14). We confirm this behavior em-

pirically in Figure 3.5a, where we solve the NNLS problem (3.25) using the true covariance

matrix Σ
◦ = Adiag(γ◦)AH +N0IL instead of the empirical covariance matrix ˆ︁Σy. In this

case, ∥d∥2 = 0 in (3.32) and the recovery error should be identically zero when the true

vector γ◦ is Ka-sparse and the system parameters are such that Theorem 13 holds. This

is confirmed by Figure 3.5a, showing a quadratic curve, below which the recovery error

vanishes. We also observe a very similar behavior for the ML algorithm, (see Figure 3.5b).

This suggests that the condition (3.25) is indeed necessary independent of the algorithm.
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Figure 3.3.: Scaling of the support detection error vs. M beyond the CS regime (i.e.
Ka > L). Here Ka = 300, L = 100,Ktot = 2000 with constant LSFCs at
snrk = 0 dB.
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Figure 3.4.: Relative ℓ1 error of the estimation of the LSFCs of the active users for Dc =
100,Ka = 200,Ktot = 2000. The LSFCs are chosen such that snrk are uniform
in the range 0-20dB. The dotted lines show that the curves are well represented
by a c/

√
M behavior, for some constant c, as predicted by Corollary 4.
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Figure 3.5.: Phase transition of the recovery error for NNLS and ML in the limit M → ∞
for Ktot = 1000. The function x → (x−4)2/2 is overlayed in black to emphasize
the super-linear scaling. The color indicates the normalized ℓ1-error as it is
subject of Corollary 4 in the NNLS case. The LSFC are constant and the
activity pattern is chosen uniformly at random from all Ka-sparse vectors.
The results are obtained by averaging over random pilot matrices and activity
patterns.
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Figure 3.6.: Effect of using the box-constraint (see step 8 in Algorithm 1) when the LSFCs
gk are known at the receiver. Here Ka = 150, L = 100,Ktot = 2000 and the
LSFCs are distributed such that snrk are uniform in the range 0− 20dB.

Figure 3.6 shows the gain in performance when the LSFCs are known at the receiver

and the box-constraint (step 8 in Algorithm 1) is employed.

3.3. Massive MIMO Unsourced Random Access

In this section the U-RA concept is extended to the case of a block-fading channel with a

massive MIMO BS receiver. The algorithms for AD and their analysis from the previous

Section are used to show that the ML scheme (see Algorithm 1) provides an efficient

inner decoder for the CCS scheme. The presented scaling properties in Corollary 6 allow

to estimate the required per-user-power, in terms of Eb/N0, and the required number of

receive antennas M for reliable transmission.

The channel model is the same as described in Section 3.2.1, i.e., a Rayleigh block-fading

channel with deterministic LSFCs and multiple receive antennas. For this Section assume

that L spans the whole coherence block-length. Let n = SL, for some integer S, such that

the transmission of a codeword spans S fading blocks. In contrast to the AD setup, now

again a grant-free U-RA setting is considered, i.e. a fixed number Ka of users transmit

their messages, picked from a common codebook C = {c(m) : m ∈ [2nR]}, formed by 2nR,

now complex valued, codewords c(m) ∈ Cn. A fixed but unknown number Ka of users

transmit their messages over multiple coherence blocks. The BS must then produce a list

L of the transmitted messages {mk : k ∈ Ka} (i.e., the messages of the active users).

For this section the error criterion is slightly relaxed to allow for more ŕexibiliy in the

decoder design. The system performance is expressed in terms of the Per-User Probability
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of Misdetection, defined as the average fraction of transmitted messages not contained in

the list, i.e.,

pmsg
md =

1

Ka

∑︂

k∈Ka

P(mk /∈ L), (3.60)

and the Probability of False-Alarm, defined as the average fraction of decoded messages

that were indeed not sent, i.e.,

pmsg
fa = E

[︃ |L \ {mk : k ∈ Ka}|
|L|

]︃
. (3.61)

The size of the list is also an outcome of the decoding algorithm, and therefore it is a

random variable. As customary, the average error probabilities of false-alarm/misdetection

are defined as the expected values of pmsg
fa /pmsg

md resp. over all involved random variables.

That is in this case the Rayleigh fading coefficients, the AWGN noise and the choice of

messages, where the messages are assumed to be chosen uniformly and independent of

each other. Notice, that in this problem formulation the total number of users Ktot is

completely irrelevant, as long as it is much larger than the number of active user Ka (e.g.,

we may consider Ktot = ∞).

3.3.1. Unsourced Random Access as AD Problem

First, we analyse the case S = 1, i.e. each user transmits his codeword in a single block

of length L. This model is also known as the quasi-static fading AWGN [28], in contrast

to the block-fading model, where a message is encoded over multiple independent fading

blocks. Further fix J = LR and let A ∈ CL×2J = [a1, ..., a2J ], be a matrix with columns

normalized such that ∥ai∥22 = L. Each column of A represents one codeword. Let ik

denote the J-bit messages produced by the active users k ∈ Ka, represented as integers in

[1 : 2J ], user k simply sends the column aik of the coding matrix A. The received signal

at the M -antennas BS takes on the form

Y =
∑︂

k∈Ka

√︁
Pgkaikh

⊤
k + Z

=
√
PAΦG1/2H + Z (3.62)

where, as for the AD model in (3.3), G = diag(g1, . . . , gKtot
) is the diagonal matrix of

LSFCs, H ∈ CKtot×M is the matrix containing, by rows, the user channel vectors hk formed

by the small-scale fading antenna coefficients (Gaussian i.i.d. entries ∼ CN (0, 1)), Z ∈
CL×M is the matrix of AWGN samples (i.i.d. entries ∼ CN (0, N0)), and Φ ∈ {0, 1}2J×Ktot

is a binary selection matrix where for each k ∈ Ka the corresponding column Φ:,k is all-zero
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but a single one in position ik, and for all k ∈ [Ktot] \ Ka the corresponding column Φ:,k

contains all zeros.

X =
√
PΦG1/2H is a matrix of dimension 2J × M . The r-th row of such a matrix is

given by

Xr,: =
∑︂

k∈Ka

√︁
Pgkϕr,kh

⊤
k , (3.63)

where ϕr,k is the (r, k)-th element of Φ, equal to one if r = ik and zero otherwise. It

follows that Xr,: is Gaussian with i.i.d. entries ∼ CN
(︁
0,
∑︁

k∈Ka
gkϕr,k

)︁
. Since the messages

are uniformly distributed over [1 : 2J ] and statistically independent across the users, the

probability that Xr,: is identically zero is given by (1− 2−J)Ka . Hence, for 2J significantly

larger than Ka, the matrix X is row-sparse.

In order to map the decoding into a problem completely analogous to the AD problem

already discussed before, with some abuse of notation the modified LSFC-activity coeffi-

cients are defined as γr :=
∑︁

k∈Ka
Pgkϕr,k and Γ = diag(γ1, ..., γ2J ). Then, (3.62) can be

written as

Y = AΓ
1/2 ˜︁H + Z, (3.64)

where ˜︁H ∈ C2J×M with i.i.d. elements ∼ CN (0, 1). Notice that in (3.64) the number of

total users Ktot plays no role. In fact, none of the matrices involved in (3.64) depends on

Ktot.

The task of the inner decoder at the BS is to identify the non-zero elements of the

modified active LSFC pattern γ, the vector of diagonal coefficients of Γ. The active (non-

zero) elements correspond to the indices of the transmitted messages. Notice that even

if two or more users choose the same sub-message, the corresponding modified LSFC γr

is positive since it corresponds to the sum of the signal powers. In other words, since

the detection scheme is completely non-coherent (it never explicitly estimates the complex

channel matrix) and active signals add in power, there is no risk of signal cancellation or

destructive interference.

At this point, it is clear that the problem of identifying the set of transmitted messages

from observation (3.64) is completely analogous to the AD problem from the observation

in (3.3), where the role of the total number of users Ktot in the AD problem is replaced by

the number of messages 2J in the inner decoding problem. Building on this analogy, we

shall use the discussed ML algorithm to decode the inner code.

It is interesting to notice that the modified LSFCs in γ are random sums of the indi-

vidual user channel gains {gk}. Hence, even if the gk’s were exactly individually known,

or their statistics was known, these random sums would have unknown values and un-

known statistics (unless averaging over all possible active subsets, which would involve an
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exponential complexity in Ktot which is clearly infeasible in our context). Hence, Bayesian

approaches such as MMV-AMP (see Section 3.2.3) as advocated in [4, 49, 118, 121] do not

find a straightforward application here. In contrast, the proposed non-Bayesian approaches

(in particular, the ML algorithm in Algorithm 1), that treats γ as a deterministically un-

known vector.

Notice also that in a practical unsourced random access scenario such as a large-scale

IoT application, the slot dimension L may be of the order of 100 to 200 symbols, while

for a city-wide IoT data collector it is not unreasonable to have M of the order of 500

to 1000 antennas (especially when considering narrowband signals such as in LoRA-type

applications [122, 123]). This is precisely the regime where we have observed a critical

behavior of MMV-AMP, while our algorithm uniformly improves as M increases, for any

slot dimension L.

3.3.2. Discussion and Analysis for One-Slot Transmission

In this section we discuss the performance of the ML decoder in a single slot (S = 1). For

the sake of simplicity, in the discussion of this section we assume gk = 1 for all k. In this

case, the SNR P/N0 is also the SNR at the receiver, for each individual (active) user.

Corollary 4 shows that, if the coding matrix A is chosen randomly, the probability of

an error in the estimation of the support of γ vanishes in the limit M → ∞ for any SNR
P
N0

> 0 as long as Ka = O(L2/ log2(e2J/L2)). Then Corollary 4 gives the following bound

for the reconstruction error of

∥γ − γ∗∥1
∥γ∥1

≤ κ

(︄
1 +

(︃
Ka

P

N0

)︃−1
)︄√︃

Ka

M
(3.65)

where κ is some universal constant and γ∗ denotes the estimate of γ by the NNLS algorithm

(see Section 3.2.2). Our numerical results (Section 3.2.3) suggest that the reconstruction

error of the ML algorithm is at least as good as that of NNLS (in practice it is typically

much better). This bound is indeed very conservative. Nevertheless, this is enough to give

achievable scaling laws for the probability of error of the inner decoder. It follows from

(3.65) that
∥γ−γ∗∥1

∥γ∥1 → 0 for (M,Ka,
P
N0

) → (∞,∞, 0) as long as

Ka(1 + (KaP/N0)
−1)2

M
= o(1), (3.66)

which is satisfied if M grows as

M = max(Ka, (P/N0)
−1)κ (3.67)
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for some κ > 1. Assuming that J scales such that 2J = δL2 for some fixed δ ≥ 1, i.e.

J = O(logL), then the condition in Corollary 4 becomes Ka = O(L2) and we can conclude

that the recovery error vanishes for sum spectral efficiencies up to

KaJ

L
= O(L logL). (3.68)

This shows that we can achieve a total spectral efficiency that grows without bound, by

encoding over larger and larger blocks of dimension L, as long as the number of messages

per user and the number of active users both grow proportionally to L2 and the number of

BS antennas scales as in (3.67). The achievable sum spectral efficiency grows as L log(L)

and the error probability can be made as small as desired, for any given Eb/N0 > 0. Of

course, in this regime the rate per active user vanishes as log(L)/L.

We wish to stress again that this system is completely non-coherent, i.e., there is no

attempt to either explicitly (via pilot symbols) or implicitly to estimate the channel matrix

(small-scale fading coefficients).

3.3.3. Coding over Multiple Coherence Blocks

In practice it is not feasible to transmit even small messages (e.g. J ∼ 100) within one

coherence block (S = 1), because the number of columns of the coding matrix A grows

exponentially in J . Aside from the computational complexity L may also be limited phys-

ically by the coherence time of the channel. In both cases it is necessary to transmit the

message over multiple blocks. Let each user transmit his message over a frame of S fading

blocks and within each block use the code described in Section 3.3.1 as inner code with

the ML decoder as inner decoder.

We can again use the outer tree code described in Section 2.6.1. Let B = nR denote the

number of bits per user message. Given J and the slot length L, the inner code is used

to transmit in sequence the S (outer-encoded) blocks forming a frame. Let A ∈ CL×2J

be the coding matrix as defined in Section 3.3.1. Each column of A now represents one

inner codeword. Letting ik(1), . . . , ik(S) denote the sequence of S (outer-)encoded J-bit

messages produced by the outer encoder of active user k ∈ Ka. The user k now simply sends

in sequence, over consecutive slots of length L, the columns aik(1), aik(2), ..., aik(S) of the

coding matrix A. As described in Section 3.3.1, the inner decoding problem is equivalent

to the AD problem (3.64). Note, that in contrast to the sparse regression structure used in

Chapter 2, here the sub-message in each slot is independently encoded by the same inner

coding matrix A.

For each subslot s, let ˆ︁γ[s] = (ˆ︁γ1[s], . . . , ˆ︁γ2J [s])T denote the ML estimate of γ in subslot

s obtained by the inner decoder. Then, the list of active messages at subslot s is defined
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as

Ss =
{︁
r ∈ [2J ] : ˆ︁γr[s] ≥ νs

}︁
, (3.69)

where ν1, . . . , νS are suitable pre-defined thresholds. Let S1,S2, . . . ,SS the sequence of lists

of active subblock messages. Since the subblocks contain parity bits with parity profile

{0, p2, . . . , pS}, not all message sequences in S1 × S2 × · · · × SS are possible and the outer

tree decoder described in Section 2.6.1 is used to create a list of messages that fulfill all

parity checks.

3.3.4. Asymptotic Analysis of the Concatenated Code

It was shown in Section 2.6 that outer code rates up to 1−α−1 are achievable and optimal

with the tree code in the scaling regime where J = α log2Ka. The resulting achievable

sum spectral efficiency can be calculated as in Section 3.3.2 with a subtle but impor-

tant difference, because the results on the outer code are valid only in the logarithmic

regime J = α log2Ka, i.e. 2J = Kα
a for α > 1. According to Corollary 4 the error

probability of the inner code vanishes if the number of active users scale no faster then

Ka = O(L2/ log2(e2J/L2)). Using the scaling condition J = α log2Ka and that Ka ≤ L2,

this implies that in the logarithmic regime the error probability of the inner code vanishes

if the number of active users scales as Ka = O(L2/ log2(L)). This gives a sum spectral

efficiency of
KaRoutJ

L
= O

(︃
Ka logKa

L

)︃
= O

(︃
L

logL

)︃
. (3.70)

The order of this sum spectral efficiency is, by a factor log2 L, smaller then the one we

calculated in Section 3.3.2. This is because the order of supported active users is smaller

by exactly the same log2 L factor. In Section 3.3.2 we assumed that J scales as 2J = δL2 =

O(Ka) for some δ > 1, so that the ratio Ka/2
J remains constant. It is not clear from the

analysis in [87], whether the probability of error of the outer tree code would vanish in the

regime. We can get a converse by evaluating the entropy bound (2.57) from Section 2.6.

Let 2J = δKa with δ > 1, then (1 − 2−J)Ka = (1 − δ/Ka)
Ka −−−−−→

Ka→∞
exp(−δ). Therefore

the binary entropy H2((1 − 2−J)Ka) remains a constant in the limit J,Ka → ∞ and we

get that

KaRoutJ ≤ δKaH2(exp(−δ)). (3.71)

This shows that Rout → 0 in the limit J,Ka → ∞ is the best achievable asymptotic per-

user outer rate, but the outer sum rate KaRoutJ is proportional to Ka. The resulting sum

78



3.3. Massive MIMO Unsourced Random Access

spectral efficiencies scale as

KaRoutJ

L
= O

(︃
Ka

L

)︃
= O(L). (3.72)

This means it could be possible to increase the achievable sum spectral efficiencies by a

factor of logL by using an outer code that is able to achieve the entropy bound (2.57) in

the regime 2J = δKa. It is not clear though whether the code of [87] or some other code

can achieve this.

3.3.5. Simulations

The outer decoder requires a hard decision on the support of the estimated ˆ︁γ[s]. The

decision problem is slightly different than the one discussed in Section 2.5 because the users

can potentially have different channel gains and an estimate of the LSFCs is available at

the receiver. When Ka is known, one approach consists of selecting the Ka + ∆ largest

entries in each section, where ∆ ≥ 0 can be adjusted to balance between false alarm and

misdetection in the outer channel. However, the knowledge of Ka is a very restrictive

assumption in such type of systems. An alternative approach, which does not require this

knowledge, consists of fixing a sequence of thresholds {νs : s ∈ [S]} and let ρ[s] to be the

binary vector of dimension 2J with elements equal to 1 for all components of ˆ︁γ[s] above the

threshold νs. By choosing the thresholds, one can balance between missed detections and

false alarms. Nonetheless, for simplicity we stick to the first approach and choose ∆ = 50.

For the simulations in Figure 3.7 we choose B = 96 bits as payload size for each user,

a frame of S = 32 slots of L = 100 dimensions per slot, yielding an overall block length

n = 3200. Choosing the binary subblock length J = 12, the inner coding matrix A has

dimension 100× 4096 and therefore is still quite manageable. We choose the columns of A

uniformly i.i.d. from the sphere of radius
√
L. For the outer code, we choose the following

parity profile p = [0, 9, 9, . . . , 9, 12, 12, 12], yielding an outer coding rate of Rout = 0.25

information bits per binary symbol. Notice also that if one wishes to send the same

payload message using the piggybacking scheme of [49, 121], each user should make use

of 296 columns, which is totally impractical. All large scale fading coefficients are fixed

to gk ≡ 1. In Figure 3.7 we fix N0 = 1 and choose the transmit power (energy per

symbol), such that Eb/N0 = 0 dB and plot the sum of the two types of message error

probabilities Pe = pmsg
md + pmsg

fa , (see (3.60) and (3.61)) as a function of the number of

active users for different numbers of receive antennas M . Figure 3.8 shows how Pe falls

as a function of Eb/N0 for different values of Ka and M . Figure 3.9 shows the required

values of Eb/N0 as a function of Ka to achieve a total error probability Pe < 0.05 for

the code parameters in Table 3.1. We use three different settings here, depending on the
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Figure 3.7.: Error probability (Pe = pmsg
md +pmsg

fa ) as a function of the number of active users
for different numbers of receive antennas. Eb/N0 = 0 dB, L = 100, n = 3200,
B = 96 bits, S = 32, J = 12.

values of the coherence block-length L. In all three settings the total block-length is fixed

to n = 3200 and B ≈ 100, which gives a per-user spectral efficiency of R ≈ 0.031 bits

per channel use. With Ka = 300 the total spectral efficiency is µ ≈ 9 bits per channel

use, which is significantly larger than today’s LTE cellular systems (in terms of bit/s/Hz

per sector) and definitely much larger than IoT-driven schemes such as LoRA [122, 123].

According to the Shannon-limit for the scalar Gaussian multiple access channel (only one

receive antenna, no fading) Eb/N0 > (2KaR − 1)/(KaR), and therefore each user needs at

least ≈ 17.5 dB to achieve a total spectral efficiency of 9 bits per channel use. Here we find

that gains of 20 dB or more are possible even with non-coherent detection by the use of

multiple receive antennas. The simulations confirm qualitatively the behavior predicted in

Sections 3.3.2 and 3.3.4. The performance of MF under the different settings in Table 3.1

is depicted Figure 3.10 and the performances of ML, MMV-AMP and MF are compared in

Figure 3.11. The ML algorithm is consistently superior to the other two. The achievable

total spectral efficiencies seem to be mainly limited by the coherence block-length L, and

for a given total spectral efficiency the required energy-per-bit can be made arbitrary

small by increasing M . This shows also quantitatively that the non-coherent massive

MIMO channel is very attractive for unsourced random access, since it preserves the same

desirable characteristics of unsourced random access as in the non-fading Gaussian model

of [9] (users transmit without any pre-negotiation, and no use of pilot symbols is needed),

while the total spectral efficiency can be made as large as desired simply by increasing the

number of receiver antennas.
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Figure 3.8.: Error probability (Pe = pmsg
md + pmsg

fa ) as a function of Eb/N0 with ML as inner
decoder. L = 100, n = 3200, b = 96 bits, S = 32, J = 12.
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Figure 3.9.: Required energy-per-bit to achieve Pe < 0.05 with ML as inner decoder. L and
S are varied, while n = 3200 and B ≈ 100 are fixed. The precise parameters
are given in Table 3.1.
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S J Rout Parity profile B

L = 100 32 12 0.25 [0,9,...,9,12,12,12] 96

L = 200 16 15 0.42 [0,7,8,8,9,...,9,13,14] 100

L = 320 10 19 0.52 [0,9,...,9,19] 99

Table 3.1.: Parameters for Figure 3.9
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Figure 3.10.: Required energy-per-bit to achieve Pe < 0.05 with a simple matched filter
approach as inner decoder.
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Figure 3.11.: Required energy-per-bit to achieve Pe < 0.05. Comparison of MF, MMV-
AMP and ML as inner decoder. L = 100. The precise parameters are given
in Table 3.1.

3.3.6. Impact of Large-Scale Fading

In a wireless random-access scenario the received LSFCs of the active users may vary over

several orders of magnitude. Nonetheless, the assumptions of constant LSFCs, known

at the receiver, can be justified by assuming an initial power control phase where users

adjust their power based on feedback from the BS until an acceptable power distribution

is reached. In many of the proposed pilot based MU-MIMO grant-free random-access

schemes, e.g. [3ś7, 49], power control is crucial to avoid the near-far effect and allow for

reliable communication. Note, that such a power control phase goes against the basic idea

behind grant-free random access, that is to reduce the access latency when messages are

short and access is very sporadic. Especially in a high-mobility scenario, as it is typical

when the coherence times are small, the LSFCs of the users will change between the

sporadic activations, which would require to do power control before each activation slot.

This would significantly increase the transmission delay and may even destroy the gains

of the grant-free approach. Furthermore, a high dynamic range at the transmitter comes

with increased battery consumption and a higher hardware complexity, which goes against

the underlying idea of U-RA to enable low-cost low-energy transmitters.

To investigate the effect of a more realistic LSFC distribution on the CCS U-RA scheme

we assume the following widely used model for the LSFCs [124]:

gk[dB] = −α− 10β log10(dk) + σshadowz (3.73)
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Figure 3.12.: Impact of LSF: Required energy-per-bit to achieve Pe < 0.05 with L = 100
and n = 3200 with the ML algorithm. The LSFCs are chosen according to
the model (3.73) with users distributed uniformly on a circle of radius 1km.

where dk is the distance of user k to the BS in km and z ∼ N (0, 1). For the simulations in

Figure 3.12 we set α = 100, β = 3.76 and σ2
shadow = 8. For the noise density we assume a

spectral density of −170 dBm/Hz and a bandwidth of 10 MHz. The positions of the active

users are assumed to be distributed uniformly around the BS in a circle of radius 1 km.

We fix L = 100 and the remaining parameters are chosen as in Table 3.1.

The simulations show that the AD performance of the ML algorithm decreases signif-

icantly in the presence of severe power imbalances, but only in the overloaded regime

Ka > L. A possible explanation is that interference cancellation, which is implicitly done

by the ML algorithm and is generally known to improve performance under power imbal-

ances, cannot be done perfectly when channel estimation is not possible, as it happens in

the overloaded regime Ka > L. In Section 3.5 I will discuss an approach to overcome this

limitation.

The MF and the MMV-AMP algorithm are not considered in the faded setting because

their performance is very bad. For the MF algorithm this is expected, because is suffers

heavily under a near far effect, which is why the weakest 20% of the users are almost

never correctly recovered. The instability of the MMV-AMP algorithm under varying

receive powers has already been discussed in Section 3.2.3.
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3.4. Massive MIMO Unsourced Random Access - Slow Fading

Although we have shown in the previous section that the sum spectral efficiency can grow

unbounded with the coherence block length L, in practice, L is limited by the coherence

time of the channel. In typical wireless systems the coherence block-length n may range

from a couple of hundred to a couple of thousand, depending mainly on the speed of

the transmitters. At a carrier frequency of 2 GHz the coherence times, according to the

model Tc ≈ 1/(4Ds) [45], range from 45 ms at 3 km/h to 1 ms at 120 km/h. The coherence

bandwidth depends on the maximal delay spread and, in an outdoor environment, typically

ranges from 100 to 500 kHz depending on the propagation conditions. Therefore, the

number of OFDM symbols in a coherence block may range from 100 to 20000, depending

mainly on the assumed speed and the geometry of the environment. Unfortunately, the

ML algorithm of Section 3.2.2 has a run-time complexity that scales with L2, which makes

it unfeasible to use at L ≳ 300.

In this section we present a conceptually simple algorithm that can be used when L > Ka.

It is based on pilot transmission, AD, channel estimation, MRC and single-user decoding,

very similar to the state-of-the art approach for massive MIMO grant-free random access

[3ś5]. In contrast to the scheme with fixed pilots allocated to all users, we use a pool of

non-orthogonal pilots from which active users pick one pseudo-randomly based on the first

bits of their message.

We show that a collision of users, i.e. two users picking the same pilot sequence, can

be resolved by using a polar single-user code with a successive-cancellation-list (SCL)

decoder [73ś75]. Finite-length simulations show that the performance of the coding scheme

can be well predicted by analytical calculations. Despite its simplicity the suggested scheme

has an energy efficiency that is comparable to existing approaches.

Note, that the problem treated here is formally almost equivalent to grant-free random-

access with fixed pilots allocated to each user. Differences arise only in the possibility of

collisions and the associated use of an list decodable single-user code. The error probability

of AD and MRC in the asymptotic limit Ka,Ktot, L → ∞ with fixed ratios Ka/Ktot and

Ktot/L has been analysed in [5]. In this work we focus on the finite-blocklength regime

and the combination of MRC with a single-user polar code.

3.4.1. Pilot-based Massive MIMO U-RA

In this section it is assumed, again, that S = 1, i.e. the complete message is transmitted

in one coherence block of length L. Let the coherence block of length n be divided into

two periods of lengths L and nd. In the first period each users chooses one of N = 2J

(non-orthogonal) pilot sequences based on the first J bits of its message. The received
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signal in the identification phase is the same as in (3.3). The BS uses an AD algorithm

from Section 3.2 to estimate the indices Î of the set I of used pilots and the corresponding

LSFCs. Then a linear MMSE estimate of the channel matrix is computed as

Ĥ = Γ̂
1/2

Î AH

Î

(︂
AÎΓ̂ÎA

H

Î +N0IL

)︂−1
Yp (3.74)

where AÎ denotes a sub-matrix of the pilot matrix A which contains only the columns

which have been estimated as active and Γ̂Î contains the LSFCs of the active users on the

diagonal. In the second period each users encodes its remaining B − J-bit message with a

binary (B−J, 2nd) block code and modulates the 2nd coded bits via QPSK on a sequence

of nd complex symbols sk. These are transmitted over the nd channel uses in the second

phase. The matrix of received signals in the second phase is

Yd =

Ktot∑︂

k=1

√︁
Pdataγkskhk + Zd. (3.75)

The BS uses the channel estimate Ĥ from the first phase to perform multiuser detection

via maximum-ratio-combining (MRC) [46], i.e. it computes

Ŝ = Γ̂
−1/2

Î ĤYH

d (3.76)

The rows of Ŝ correspond to noisy estimates of the transmitted sequences sk. Note, that it

is also possible to use zero-forcing [46] instead of MRC but this would require that M > Ka.

The rows of Ŝ are individually demodulated, the bit-wise log-likelihood ratios are computed

and fed into a soft-input single-user decoder. If the decoder finds a valid codeword, the

index of the corresponding pilot is converted back to bits and the concatenation of the

two parts is added to the output list. The use of a polar code with CRC-bits and a

successive-cancellation-list decoder has the additional benefit that we can include all the

valid codewords in the output list of the SCL decoder in the U-RA output list. This allows

to recover the messages of colliding users which have chosen the same pilot in the first

phase. The ability of polar codes to resolve sums of codewords has been observed and used

for U-RA on the AWGN in combination with spreading sequences [26] and a slotted Aloha

approach [25,125].

3.4.2. Analysis

In this section we calculate a finite-blocklength lower bound on the error probability and on

the energy efficiency of the MRC approach. We assume that the AD and LSFC estimation

can be done without errors. This gives a lower bound on the error probability and in the
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regime where L > Ka we expect it to be tight, as in this regime the AD error rates and

the error of the LSFC estimation are very low [4,82]. For simplicity we consider P = Pdata

here. The covariance of the channel estimation error of the LMMSE estimation in (3.74)

is given by

Ce = IKa − Γ
1/2
I AH

I
(︂
AIΓIA

H

I +N0IL

)︂−1
AIΓ

1/2
I (3.77)

and the MSE for each active user k ∈ Ka is given by msek = E{|hk,m − ĥk,m|2} = (Ce)k,k.

If the pilots would be orthogonal this error reduces to

msek =
N0

N0 + Lγk
(3.78)

which lower bounds the error and will show, in the simulations, to be a sufficiently tight

approximation for practical random non-orthogonal pilots. A lower bound on the effective

SINR of each user after MRC is given by [46]

SINRk ≥ Mγk(1− msek)

N0 +
∑︁Ka

k=1 γk
(3.79)

An approximation of the achievable rates of a block-code with block-length 2nd and

error probability pe on a real AWGN channel with power SINR is given by the normal

approximation [21]

R ≈ 0.5 log(1 + SINR)−
√︃

V

2nd
Q−1(pe) (3.80)

where

V =
SINR

2

SINR + 2

(SINR + 1)2
log2 e (3.81)

and Q(·) is the Q-function. Using the normal approximation we can find the required

SINR to achieve a certain error probability at a given block-length and then we can find

the required input power to achieve the target SINR.

3.4.3. Complexity

For the large coherence block-lengths considered here we use the MMV-AMP algorithm

described in Section 3.2.3. The complexity of AD with the modified MMV-AMP algorithm

is in the order of O(MN logN) when the pilots are chosen as the columns of a randomly

sub-sampled DFT matrix, which allows to replace the matrix multiplications in the AMP

iterations by Fast-Fourier-Transforms. Also we employ the approximate calculation of the

derivatives in the MMV-AMP as described in Section 3.2.3 which reduces the complexity

of MMV-AMP from O(M2N logN) to O(MN logN).
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3.4.4. Simulations

For the simulation in Figure 3.13 we choose n = 3200, Pe = 0.05, B = 100, L = 1152,

nd = 2048 and Bp = 16. Also all LSFCs are considered to be constant gk = 1. We use a

polar code [73ś75] with a state-of-the-art SCL decoder with 16 CRC bits and a list size

of 32. The simulations show an excellent overlap with the theoretical results, although we

have neglected the non-orthogonality of the pilots in the analysis. For comparison we add

the reported values of the tensor-based-modulation (TBM) approach [126], although the

latter have been obtained with the higher value Pe = 0.1. For M = 50 the results pilot

based scheme and TBM show a similar shape, although the TBM approach achieves better

results for Ka ≥ 400. The results show that with only M = 100 receive antennas over

thousand users can be served concurrently, which leads to sum-spectral efficiencies beyond

30 bits per channel use. This is not surprising, since the scheme essentially resembles

pilot based massive MU-MIMO with MRC, which is known to achieve very high spectral

efficiencies. Nonetheless, the results show that MMV-AMP provides an algorithm that

can scale to thousands of concurrent users even with a large number of non-orthogonal

pilots. Furthermore, the combination with a single-user polar code with list decoding can

efficiently reduce the effect of pilot collisions, as we will further investigate in the following.

3.4.5. Collisions

The average number of collisions of k users on one pilot is given by

E[Ck] =

(︁
Ka

k

)︁

Nk−1
. (3.82)

We can safely ignore the collisions of more then two users since their number is much

smaller than 1 for the considered parameters. For Ka = 1000 and N = 216 (3.82) gives

an average number of 7 − 8 collisions of order two. If all of the colliding messages would

result in an error, this would lead to an per-user error probability of 0.016 on average. This

could be incorporated into the above analysis by subtracting this values from the target

error probability pe in the normal approximation (3.80). Nonetheless, if a list decoder is

used as a single-user decoder, it is possible to recover both of the colliding messages as

demonstrated in Figure 3.14.

In Figure 3.14 we simulate a collisions between two users on a non-fading AWGN channel

and visualize the probability distribution of the number of correctly decoded messages. We

can see that a that at a per-user SNR of about -11 dB the probability that both messages

are lost drops below 0.01, where in roughly 70% of the cases both codewords are correctly
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Figure 3.14.: Probability distribution of recovered codewords in the case of a two-user
collision in the non-fading case. Polar code with B − Bp = 84 message
bits,nd = 2048 complex QPSK coded symbols (4096 real BPSK symbols)
and SCL decoding with 16 CRC-bits and list-size 32.

recovered. The simulation shows that at high SNR values the SCL decoder can reliably

recover both messages. When there is no fading, half of the coded bits are erased on average

when two codewords are added. Since the rate of the polar code R = (B − Bp)/(2nd) is

much smaller then 1/2, these erasure can be recovered, see also [26]. This situation changes

when fading is involved. In Figure 3.15 we take the uncertainty of the channel estimation

and the MRC into account via the following simplified two user collision model. Let s1 and

s2 denote the QPSK modulated sequences of two users and h1,h2 ∈ CM their iid Rayleigh

channel vectors. We model the channel estimates as ĥ = h1+h2+e where e ∼ CN (0, σ2
est)

is the channel estimation error with variance σ2
est. The model for the estimated single-user

sequence for both users is then

ŝ⊤ = ĥ
H

(
√
Ph1s

⊤
1 +

√
Ph2s

⊤
2 + z) (3.83)

with z ∼ CN (0, 1). We fix the per-user SNR to -10 dB and vary the variance of the channel

estimation error. The simulation in Figure 3.15 shows that the probability of recovering

both codewords saturates to a non-zero value, in contrast to the non-fading case. This

effect persists, even when the base per-user SNR is increased. Nonetheless, the probability

that at least one codeword is recovered converges to 1.
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Figure 3.15.: Probability distribution of recovered codewords in the case of a two-user
collision with MRC according to the model (3.83). Polar code with B−Bp =
84 message bits ,nd = 2048 complex QPSK coded symbols and SCL decoding
with 16 CRC-bits and list-size 32.

3.5. Going Cell-Free

The simulations in Section 3.3.6 have shown that power imbalances in the received LSFCs

significantly worsen the performance of the ML AD algorithm when Ka > L compared

to constant LSFCs. With the presented U-RA scheme it is possible to circumvent the

near-far effect by combining the measurements of several BSs in a very simple way. Each

BS uses the ML algorithm to estimate the active columns in each slot. A central processor

then forms the union of the active sets of geographically close BSs in each slot and runs

the outer tree decoder. Alternatively each BS can run the outer decoder individually and

the central processor forms the union of the message lists. While the first approach leads

to lower error probabilities, as the simulations will show, the second approach is better

suited to a completely decentralized approach. This can be done without any a-priori cell

management. Indeed, the single BSs will naturally identify the strongest signals in their

vicinity without the need for BS assignment or power control. This allows for the design

of a truly scalable random access system, since users can be added to the system without

modifying the existing system and the number of supported active users per slot can be

scaled arbitrarily by increasing the number of antennas per BS and the density of BSs.

There problem of pilot contamination does not arise.

In the last part of this section I present a new concept which allows for joint AD and

positioning. The idea is to share the distant dependent LSFCs between BSs, use them to
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estimate the locations of the active users and use the location estimates to refine the ML

estimation of the LSFCs. This process can be iterated until convergence. Although, the

simulation shows a better AD performance compared to completely independent process-

ing the improved AD algorithm cannot readily be used in the CCS U-RA scheme, mainly

because the complexity is to high to allow for sufficient simulation numbers. Nonethe-

less, the concept seems promising and future research may improve the complexity of the

algorithm.

3.5.1. Model

We assume that Ktot users are distributed at random in some two dimensional area of

which Ka are active at each time slot. Q base stations (BS) with M receive antennas per

BS are placed at positions zq = (zqx, z
q
y), q = 1, ..., Q. Let pk = (pkx, p

k
y) denote the position

of user k. Let dkq = ∥pk − zq∥2 be the distance between user k and BS q. The large-scale

fading coefficients are assumed to follow the distribution introduced in (3.73). We define

the function

h(dkq) = −α− 10β log10(dkq), (3.84)

such that the distribution of the LSFCs can be expressed as

p(gkq = g [dB]|pk) = N (h(dkq), σ
2
shadow). (3.85)

Furthermore, gkq are assumed to be conditionally independent given pk

p(gk1, ..., gkQ|pk) = (2πσ2
shadow)

−Q

2 exp

(︄
−
∑︁Q

q=1 ∥h(dkq)− 10 log10(gkq)∥22
2σ2

shadow

)︄
(3.86)

Then the measurements at the BSs are created according to

Y1 = AΓ
1/2
1 H1 + Z1

...

YQ = AΓ
1/2
Q HQ + ZQ

(3.87)

with Γq = diag(γq) and γq = (γ1q, ..., γKtotq) with γkq = Pbkgkq. For the AD scenario

A ∈ CL×Ktot is the matrix of pilot sequences. In the U-RA scenario A is the inner coding

matrix with Ktot = 2J , as described in Section 3.3.1. Hq ∈ CKtot×M are the small-scale

fading coefficients and, as before, are assumed to have iid CN (0, 1) entries. The entries

the noise matrices Zq are iid CN (0, 1). The propagation model can be summarized by the
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Figure 3.17.: Comparison between independent outer decoding and joint outer decoding in
the decentralized setting with Q = 4 and a square cell with side length 2 km.
L = 100, n = 3200, remaining parameters as in Section 3.3.6.

The parameters of the LSFCs are chosen as in Section 3.3.6. We fix L = 100, n = 3200

and S = 32. The remaining parameters are given in Table 3.1. The results in Figure 3.17

show that the joint outer decoding is generally better than the individual decoding, even

though the difference is not large. A more detailed evaluation of the energy efficiency of

decentralized CCS with joint outer decoding at different values of M is given in Figure 3.18.

We can observe that it is possible to increase the number of active users beyond L without

any cell management even though each single BS on its own would not be able to decode

all messages in the presence of severe power imbalances as the results in Section 3.3.6 have

shown.

3.5.3. Joint AD and Position Estimation

We formulate the algorithm for the AD problem of detecting Ka active out of Ktot total

users, as in Section 3.2.

MAP LSFC estimation

Following the propagation model (3.73), each BS can find an estimate of γq = (γq1, ..., γqKtot
)

from measurements Yq by maximizing the posterior probability p(γ|Yq) instead of the like-

lihood p(Yq|γ). The new cost function is given by

fMAP
q (γ) = − log(p(Yq|γ))− log(p(γ|p1, ...,pKtot

)) (3.90)
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Figure 3.18.: Decentralized U-RA with CCS, ML as inner decoder and joint outer decoding
in a square cell with Q = 4 and side length 2 km. L = 100, n = 3200,
remaining parameters as in Section 3.3.6.

As in the ML algorithm, this estimate can be found efficiently by coordinate-wise opti-

mization. When the assumed prior on γ is iid. the coordinate-wise optimization reduces

to
d

dd
[f(γ + dek)− log(p(γk + d|pk))] = 0. (3.91)

For Guassian marginals the condition (3.91) leads to closed form update equations [127].

In the general case the solution to (3.91) can be found numerically.

Position estimation

Under the log-shadowing propagation model (3.73) the ML estimate of the positions

p1, ...,pKtot coincides with the least-squares solution:

pk = argmin
p∈R2

Q∑︂

q=1

∥h(∥p − zq∥)− 10 log10

(︂γkq
P

)︂
∥22 (3.92)

Note that the model (3.73) holds more generally for bkgkq, instead of just gkq, when the

positions of inactive users are defined by pk := (∞,∞) for k /∈ Ka. (3.92) is a non-convex

optimization problem, so it cannot be guaranteed to have no local minima. Nonetheless,

due to the small dimension of the problem the solution can be found by either grid search

or a generic non-linear solver like MATLAB’s lsqnonlin function.
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In general the accuracy of position estimation based on received signal strengths is

limited due to the strong effect of shadowing, as can be seen from calculating the Cramer-

Rao bound [77, 78]. Nonetheless, when a more accurate pathloss map, i.e. a function

of the form hq(p) that gives the pathloss between BS q and a user at position p, is

available, it can simply be substituted in (3.92). Such maps can be generated for a given

area by physical measurements, ray-tracing simulations or novel deep-neural-network based

methods [79,80].

Iterative algorithm

The MAP estimation of γq and the position estimation can be alternated in an iterative

fashion if the BSs are able to share their estimates of γq with each other. Let µt
kq and

(σt)2k denote the mean and variance of the estimated log-normal distribution of the received

LSFC at BS q at iteration t.

We initialize (σ0)2k = ∞ for all k = 1, ...,Ktot, which is equivalent to an uninformative

prior. µ0
k can be chosen arbitrarily. The iterations proceed as follows. At time step t

1. Each BS calculates an estimate γt
q of the LSFCs by coordinate-wise optimization

of the log-posterior-probability (3.90) assuming a log-normal prior on γ with means

and variances µt
k and (σt)2k.

2. The estimates γt
1, ...,γ

t
Q are shared and used to create position estimates pt

k of the

users by (3.92).

3. The position estimates are used to update the means and variances as

µt+1
kq = max(h(∥pt

k − zq∥), µ∗) (3.93)

(σt+1)2k = min
p∈R2

Q∑︂

q=1

∥h(∥pt
k − zq∥)− 10 log10

(︄
γtkq
P

)︄
∥22 (3.94)

4. Users with maxq(µ
t+1
kq ) ≤ µ∗ are marked as inactive, i.e. µt+1

kq is set to zero and

pk := (∞,∞).

The last step is necessary to prune weak users from the system. The maximum in Step

3 is only taken to avoid too small numbers which would lead to numerical problems. µ∗

is a parameter that controls the minimum signal strength that is detected as active. The

empirical estimation of σt in (3.94) as the estimation error of the positions makes the

algorithm stable: If the variance in the position estimation is too high the prior is not

taken into account in the MAP estimation step.
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Figure 3.19.: Localisation MSE for square cells with side length 2 km and Q = 4 BSs at
the center of each side. L = 100,M = 50,Ktot = 2000, σ2

shadow = 8.

For the AD each BS creates an estimated active set Aq by picking the indices of the

L + ∆ largest components of γq. The final estimated set of active users is taken as the

union of all Aq. Then the error is defined as in Section 3.2.3.

For the simulations in Figure 3.19,Figure 3.20 and Figure 3.21 we chose the square

geometry as in Figure 3.16 with side length 2 km. The parameters of the pathloss model

are chosen as in Section 3.3.6. We let L = 100,M = 50,Ktot = 2000,∆ = 10, µ∗ = −30

dB and fix P = 15 dBm. Figure 3.19 shows that the localization MSE indeed decreases

with each iteration, although the biggest improvement occurs after the first iteration. The

Cramer-Rao bound was calculated as described in [78] and gives the best MSE that can

be achieved by an unbiased estimator that has access to the LSFCs at the BSs. However,

it does not take into account the uncertainty of the estimation of the LSFCs by the ML

algorithm. We can see that for active user numbers below Ka = 150 the MSE of the

position estimation is very close to the Cramer-Rao bound. The AD error is visualized

in Figure 3.20 and Figure 3.21. We can see that false alarm are efficiently pruned by the

cooperation of the BSs. The missed detection rate does not improve though or gets worse.

This is expected because a user who is missed by all the BSs in the first step will very

likely be missed in subsequent iterations as well. On the other hand, a user with a weak

connection to all BSs can be detected initially by at least one BS but dropped later by the

thresholding step. This happens only rarely and to user with a very weak signal.
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Figure 3.20.: Missed detection rate for square cells with side length 2 km and Q = 4 BSs
at the center of each side. L = 100,M = 50,Ktot = 2000, σ2

shadow = 8.
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Figure 3.21.: False alarm rate for square cells with side length 2 km and Q = 4 BSs at the
center of each side. L = 100,M = 50,Ktot = 2000, σ2

shadow = 8.

98



3.6. Summary

3.6. Summary

In the beginning of this chapter the problem of user activity detection in a massive MIMO

setup was introduced. It was shown that with a covariance-based algorithm and L signal

dimensions one can reliably estimate the activity of Ka = O(L2/ log2(Ktot/Ka)) active

users in a set of Ktot users, which is a much larger than the previous bound Ka = O(L)

obtained via traditional compressed sensing techniques. In particular, one needs to pay

only a poly-logarithmic penalty O(log2(Ktot/Ka)) with respect to the number of potential

users Ktot, which makes the scheme ideally suited for activity detection in IoT setups where

the number of potential users can be very large. We discuss low-complexity algorithms

for activity detection and provided numerical simulations to illustrate our results. In

particular, as a byproduct of numerical investigation, we also showed a curious unstable

behavior of MMV-AMP in the regime where the number of receiver antennas is large, which

is precisely the case of interest with a massive MIMO receiver. We proposed a scheme

for unsourced random access where we use the introduces activity detection scheme(s)

directly. We showed that an arbitrarily fixed probability of error can be achieved at any

Eb/N0 for sufficiently large number of antennas, and a total spectral efficiency that grows

as O(L logL), where L is the code block length, can be achieved. Such a one-shot scheme

is conceptually nice but not suited for typical practical applications with message payload

of the order of B ≈ 100 bits, since it would require a codebook matrix with 2B columns.

Hence, we have also considered the application of the concatenated approach pioneered

in [87], where the message is broken into a sequence of smaller blocks and the activity

detection scheme is applied as an inner encoding/decoding stage at each block, while an

outer tree code takes care of łstitching togetherž the sequence of decoded submessages over

the blocks. Numerical simulations show the effectiveness of the proposed method. It should

be noticed that these schemes are completely non-coherent, i.e., the receiver never tries to

estimate the massive MIMO channel matrix of complex fading coefficients. Therefore, the

scheme pays no hidden penalty in terms of pilot symbol overhead, often connected with

the assumption of ideal coherent reception, i.e., channel state information known to the

receiver.

The complexity of the covariance-based inner decoder grows proportional to O(L2) which

can become troublesome at very large L. For this case we introduce and analyse an

alternative scheme based on transmitting non-orthogonal signature sequences randomly

chosen from a given set and subsequent maximum-ratio-combining. The use of a single-

user polar code with a list decoder allows to resolve possible pilot collisions. Simulations

show that such a setup, despite its conceptual simplicity and low complexity gives results

similar to other proposed approaches for this setting. Furthermore, the analytical results
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show an excellent agreement with the simulations, which will allow to optimize the scheme

in the future. Finally, it is shown that the coupled-compressed-sensing based scheme

can be readily extended to a setting with distributed base stations, where only minimal

information exchange is required between the receivers. A novel algorithm is presented

that allows to improve the activity detection and estimate the positions of the active users

by exchanging the estimated large-scale fading coefficients. Simulations show the efficiency

of such a setup.
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The first chapter of this work analysed in-depth the properties of the coupled-compressed-

sensing algorithm for unsourced random access on the real AWGN channel without fading,

while the second chapter introduced concepts and algorithms for unsourced random access

on a block-fading channel with multiple receive antennas. The technical content of these

chapter was already recollected in their respective summaries. Here, I will focus on relations

between the two chapters, points that remained open, possible future research directions

and a final conclusion.

Although the scaling law for the sum-spectral efficiency, derived in Chapter 3, has im-

portant implications for the design of massive random access systems, it is unsatisfying in

the sense that it does not provide concrete numbers on achievable rates, i.e. the constants

in the scaling laws are unspecified. An extension of the replica/state evolution analysis in

Chapter 2 to the fading case with multiple receive antennas seems challenging because the

existing analysis methods do not account for the relative scaling of L and M , as discussed

in Section 3.2.3. A precise analysis of the error probabilities may allow for the design of a

power allocation that improves the performance similar to the M = 1 case. The results in

Section 2.8 have shown that a specifically matched power allocation is necessary to improve

the performance compared to the uniform power allocation, which is very hard to find by

empiric search.

An important bottleneck in the usage of the covariance-based algorithm for activity

detection with large L is the O(L2) scaling of the complexity, caused by the size of the

covariance matrix. This scaling does not seem to be fundamental and a smart choice of

signature sequences may lead to fast operations which speed up the algorithm, similar to

the replacement of matrix multiplications with fast-Fourier transforms in AMP.

Another issue that was ignored in this and comparable works is the one on synchroni-

sation. Usually timing synchronisation has to be acquired in the initial access phase. So

for a random access scheme to be truly grant-free would require to avoid the initial timing

acquisition, since it is not reasonable in the massive IoT setting to keep all potential users

synchronised. Because the CCS scheme can be used together with OFDM modulation,

in principle, the synchronisation problem can be dealt with in the same way that timing

offsets are detected in the initial access phase of 4G-LTE, i.e. by adding a sufficiently long
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4. Conclusion

guard interval and a cyclic prefix to the pilot sequences. A detailed study on the impact

of different timing delays on the achievable rates remains open.

Overall, from an information theoretic point of view, the žunsourcedł paradigm seems

to be the correct model for a grant-free random access setting, because the assumption

of individual codebooks assumes implicitly that some sort of initial access protocol has

already taken place, which is not compliant with a truly grant-free setting and unfeasible

for a very large amount of users with sporadic activity. This work has shown that unsourced

random access, and the coupled compressed sensing approach in particular, has a lot of

favorable properties and enables an alternative design of grant-free random access systems

that can get around several of the problems which pilot based protocols suffer from.
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A. Optimal product distribution

Lemma 1. Let Ω ⊂ R be some discrete set. Let p(s) with p : Ω2J → R+ be a probability

mass function on Ω2J . Let ps1(s1), ...., ps2J (s2J ) denote the marginals of p(s). Further let,

Pprod :=

⎧
⎨
⎩q(s) =

2J∏︂

i=1

qi(si), qi : Ω → R+

⃓⃓
⃓⃓
⃓⃓
∑︂

s∈Ω
qi(s) = 1

⎫
⎬
⎭ (A.1)

denote the space of product distributions on Ω2J . Then

argmin
q∈Pprod

D(p ∥ q) =

2J∏︂

i=1

psi(si) (A.2)

Proof. For a product distribution q ∈ Pprod, D(p ∥ q) can be expressed as:

D(p ∥ q) =
∑︂

s

p(s) log
p(s)

q(s)
(A.3)

=
∑︂

s

p(s) log
p(s)∏︁
i psi(si)

∏︁
i psi(si)

q(s)
(A.4)

= D

(︄
p

⃦⃦
⃦⃦
⃦
∏︂

i

psi

)︄
+
∑︂

s

2J∑︂

i=1

p(s) log
psi(si)

qi(si)
(A.5)

The first term is independent of q and the second term can be rewritten as

∑︂

s

2J∑︂

i=1

p(s) log
psi(si)

qi(si)
(A.6)

=
2J∑︂

i=1

∑︂

si

⎛
⎝∑︂

s\si

p(s)

⎞
⎠ log

psi(si)

qi(si)
(A.7)

=
2J∑︂

i=1

∑︂

si

psi(si) log
psi(si)

qi(si)
(A.8)

=

2J∑︂

i=1

D(psi ∥ qi) (A.9)
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which is non-negative and minimized by qi ≡ psi .
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B. DKL(Mult ∥ Bin)

A vector (z1, ..., z2J ) is called multinomial distributed with parameter n and probabilities

p1, ..., p2J if

p(z) = P(Z1 = z1, .., Z2J = z2J ) (B.1)

=

⎧
⎨
⎩

n!
z1!···z2J !

pz11 · · · pz2J
2J

∑︁2J

i=1 zi = n

0 else
. (B.2)

It follows from the multinomial theorem, that the distribution is normalized
∑︁

z p(z) =

1. An important property of the multinomial distribution is that the marginals follow a

binomial distribution:

p(Zi = zi) =
∑︂

z\zi

P(z1, ..., z2J ) =

(︃
n

zi

)︃
pzii (1− pi)

n−zi (B.3)

with covariance given by cov(Zi, Zj) = −npipj .

Let n = Ka and pi = 2−J for all i = 1, ...,Ka and let q(Z) denote the binomial distribu-

tion with parameters n = Ka and pi = 2−J . Then the marginals of p are all identical and

equal to q(Z) and it holds

DKL

(︄
p

⃦⃦
⃦⃦
⃦

Ka∏︂

i=1

qi

)︄
=

∑︂

z

p(z) log
p(z)

qi(zi)
(B.4)

= −H(p) + 2JH(q) (B.5)

where H(p) denotes the entropy of the multinomial distribution p and H(q) the entropy

of the binomial distribution q. Both entropies are well known and given by

H(p) = JKa − log2Ka! + 2J
Ka∑︂

t=0

(︃
Ka

t

)︃(︁
2−J

)︁t (︁
1− 2−J

)︁Ka−t
log2 t! (B.6)
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and

H(q) = − log2Ka! + Eq[logZ!] + Eq[log(Ka − Z)!] + JEq[Z]− Eq[Ka − Z] log2(1− 2−J)

(B.7)

We have Eq[Z] = Ka/2
J and Eq[Ka − Z] = Ka −Ka/2

J . In the limit for large J , we can

expand Eq[log2(Ka − Z)!] in terms of 2−J and get:

Eq[log2(Ka − Z)!] = log2Ka!−
Ka

2J
log2Ka +O

(︃
1

22J

)︃
. (B.8)

Inserting this, (B.6) and (B.7) into (B.5), many terms cancel and we get:

DKL

(︄
p

⃦⃦
⃦⃦
⃦

Ka∏︂

i=1

qi

)︄
= log2Ka!−Ka(2

J − 1) log2(1− 2−J)−Ka log2Ka (B.9)

Using log2(1− 2−J) = − log2 e/2
J +O(1/22J) for large J and the Stirling approximation

log2Ka! = Ka log2Ka −Ka log2 e+O(logKa) we get

DKL

(︄
p(x)

⃦⃦
⃦⃦
⃦

Ka∏︂

i=1

qi(xi)

)︄
= O(logKa)−

Ka log2 e

2J
. (B.10)

which implies (2.25).
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C. Exponential L1 convergence implies

exponential pointwise convergence a.e.

Theorem 14. Let (fJ)J=1,2,... be a sequence of integrable functions s.t.

∥fJ − f∥L1 ≤ c

2J
(C.1)

for some constant c > 0 and all large enough J . The for any δ > 0 there is a Jδ such that

for all J ≥ Jδ

|fJ(t)− f(t)| ≤ 1

2(1−δ)J
(C.2)

holds for all t except for a set of size O(2−δJ). □

Proof. Let ϵ > 0 then
∞∑︂

j=J

∥fj − f∥L1 ≤ c

2J−1
< ϵ

1

2(1−δ)J
(C.3)

holds for all

J > Jδ = log2(2c/ϵ)/δ (C.4)

where we have used condition (C.1) and the formula

∞∑︂

j=J

2−j = 2−(J−1). (C.5)

Now define the sets

Aj =

{︃
t : |fj(t)− f(t)| > 1

2(1−δ)J

}︃
(C.6)

and let µ(Aj) denote the Lebesgue measure of Aj . Then it follows from elementary prop-

erties of the integral that

∞∑︂

j=J

µ(Aj)
1

2(1−δ)J
<

∞∑︂

j=J

∥fj − f∥L1 < ϵ
1

2(1−δ)J
(C.7)
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and so

µ

⎛
⎝

∞⋃︂

j=J

Aj

⎞
⎠ ≤

∞∑︂

j=J

µ(Aj) < ϵ (C.8)

Let AJ :=
⋃︁∞

j=J Aj , then

Ac
J =

{︃
t : |fj(t)− f(t)| ≤ 1

2(1−δ)J
, ∀j ≥ J

}︃
(C.9)

and so (C.8) states that µ(AJ), the measure of the set of points on which the pointwise

convergence does not hold, can be made arbitrary small. More precisely, it follows from

(C.4) that

µ(AJ) = O
(︂
2−δJ

)︂
(C.10)
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D. Proof of Theorem 5

Let

q(k) = pk (D.1)

for k = 0, ..,Ka, where pk are the binomial probabilities defined in (2.7) and

qOR(0) = p0 (D.2)

qOR(1) = 1− p0. (D.3)

Let r, s, z be jointly distributed according to the Gaussian model

r =
√
ts+ z, (D.4)

with z ∼ N (0, 1) independent of s for some fixed t ≥ 0 and s distributed according to q.

Let mmse(t) be the MMSE of estimating s from the Gaussian observation r and let f(r)

be the PME of s, given by

f(r) =
1

Z(r)

Ka∑︂

k=0

pkke
−(r−k

√
t)

2
/2 (D.5)

with

Z(r) =

Ka∑︂

k=0

pke
−(r−k

√
t)

2
/2 (D.6)

Let fOR(r) be the mismatched PME, which estimates s from r assuming that s is dis-

tributed according to qOR. It is given by

fOR(r) =
(1− p0)e

−(r−
√
t)

2
/2

ZOR(r)
(D.7)

with

ZOR(r) = p0e
−r2/2 + (1− p0)e

−(r−
√
t)

2
/2 (D.8)
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Let mmseOR(t) be the mean square error of fOR(r). Since fOR(r) is mismatched we have

mmse(t) ≤ mmseOR(t) and it holds:

0 ≤ mmseOR(t)− mmse(t) (D.9)

=

Ka∑︂

k=0

pkE

{︃[︂
k − fOR

(︂√
tk + z

)︂]︂2
− [k − f(

√
tk + z)]2

}︃
(D.10)

= p0E
{︂[︁

fOR(z)
]︁2 − [f(z)]2

}︂
(D.11)

+ p1E

{︃[︂
1− fOR

(︂√
t+ z

)︂]︂2
−
[︂
1− f

(︂√
t+ z

)︂]︂2}︃
(D.12)

+

Ka∑︂

k=2

pkE

{︃[︂
k − fOR

(︂√
tk + z

)︂]︂2
−
[︂
k − f

(︂√
tk + z

)︂]︂2}︃
(D.13)

We can bound the terms (D.11) - (D.13) individually. Since 0 ≤ fOR(r) ≤ 1, (D.13) is

bound by

(D.13) ≤
Ka∑︂

k=2

pkk
2 (D.14)

= Var(s) + [E(s)]2 − p1 (D.15)

=
Ka

2J

(︃
1− Ka

2J

)︃
+

K2
a

22J
− Ka

2J
(︁
1− 2−J

)︁Ka−1
(D.16)

= O
(︃
K2

a

22J

)︃
(D.17)

For the remaining terms we split the expected values over z in (D.11) and (D.12) in two

parts, depending on whether Z(r) = Z(
√
t+ z) is smaller or larger than ZOR(r).

D.1. Z(r) ≤ Z
OR(r)

We have:

fOR(r) =
1

ZOR(r)
(1− p0)e

−(r−
√
t)

2
/2 (D.18)

≤ 1

Z(r)
(1− p0)e

−(r−
√
t)

2
/2 (D.19)

and

f(r) =
1

Z(r)

Ka∑︂

k=0

pkke
−(r−

√
tk)

2
/2 (D.20)
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D.1. Z(r) ≤ ZOR(r)

≥ 1

Z(r)
p1e

−(r−
√
t)

2
/2 (D.21)

because all the summands are non-negative. It follows for all r:

[fOR(r)]2 − [f(r)]2 (D.22)

≤
[︄
p1e

−(r−
√
t)

2
/2

Z(r)

]︄2 [︄(︃
1− p0
p1

)︃2

− 1

]︄
(D.23)

≤
[︄(︃

1− p0
p1

)︃2

− 1

]︄
(D.24)

=

⎡
⎣
(︄

1− (1− 2−J)Ka

Ka

2J
(1− 2−J)Ka−1

)︄2

− 1

⎤
⎦ (D.25)

≤ O
(︃
K2

a

22J

)︃
(D.26)

which bounds the integral in (D.11) on the set {Z(z) ≤ ZOR(z)}. For (D.12) notice that

[︁
1− fOR(r)

]︁2 − [1− f(r)]2 (D.27)

= fOR(r)2 − f(r)2 + 2
[︁
f(r)− fOR(r)

]︁
(D.28)

The first term was already bound in (D.26), we bound the second term by

f(r)− fOR(r) (D.29)

=
[︁
1− fOR(r)

]︁
− [1− f(r)] (D.30)

=
p0e

−r2/2

ZOR(r)
− p0e

−r2/2 +
∑︁Ka

k=1 pk(1− k)e−(r−
√
tk)

2
/2

Z(r)
(D.31)

≤ 1

Z(r)

Ka∑︂

k=2

pk(k − 1)e−(r−
√
tk)

2
/2 (D.32)

≤ 1

Z(r)
max
k≥2

{︂
e−(r−

√
tk)

2
/2
}︂ Ka∑︂

k=2

kpk (D.33)

=
1

Z(r)
max
k≥2

{︂
e−(r−

√
tk)

2
/2
}︂(︃

Ka

2J
− p1

)︃
(D.34)

=
e−(r−

√
tk∗)

2
/2

p1e
−(r−

√
t)

2
/2
O
(︃
K2

a

22J

)︃
(D.35)
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where k∗ = argmaxk≥2

{︁
exp(−(r −

√
tk)2/2)

}︁
. For the last line, notice that Z(r) ≥

pk exp(−(r −
√
tk)2/2) for all k and especially for k = 1. In (D.35) we have r =

√
t + z.

For the expected value in (D.12) we have to integrate over z, restricted to the values of z

for which Z(r) ≤ ZOR(r). Since

∫︂ ∞

−∞
e−z2/2 e

−(z−
√
t(k∗−1))2/2

p1e−z2/2
=

1

p1
(D.36)

and the integrand is non-negative, the same integral, restricted to {z : Z(
√
t + z) ≤

ZOR(
√
t+ z)}, is also bounded by 1/p1.

D.2. Z(r) > Z
OR(r)

Let r be such that, Z(r) > ZOR(r). It holds that

fOR(r) = 1− p0e
−r2/2

ZOR(r)
(D.37)

≤ 1− p0e
−r2/2

Z(r)
(D.38)

=
1

Z(r)

Ka∑︂

k=1

pke
−(r−k

√
t)

2
/2 (D.39)

≤ 1

Z(r)

Ka∑︂

k=1

kpke
−(r−k

√
t)

2
/2 (D.40)

= f(r) (D.41)

Since both terms are non-negative we get

fOR(r)2 − f(r)2 ≤ 0 (D.42)

which, together with (D.26), shows that (D.11) is bounded by a term of order O
(︂

K2
a

22J

)︂
.

For (D.12), the same argumentation as in (D.28) holds and it remains to bound f(r)−
fOR(r). We have that

f(r)− fOR(r) (D.43)

=
1

Z(r)

Ka∑︂

k=1

kpke
−(r−k

√
t)

2
/2 − 1

ZOR(r)
(1− p0)e

−(r−
√
t)

2
/2 (D.44)
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≤ 1

Z(r)

Ka∑︂

k=1

kpke
−(r−k

√
t)

2
/2 − 1

Z(r)
(1− p0)e

−(r−
√
t)

2
/2 (D.45)

≤ 1

Z(r)

Ka∑︂

k=2

kpke
−(r−k

√
t)

2
/2 (D.46)

≤ 1

Z(r)
max
k≥2

{︂
e−(r−

√
tk)

2
/2
}︂(︃

Ka

2J
− p1

)︃
(D.47)

=
e−(r−

√
tk∗)

2
/2

p1e
−(r−

√
t)

2
/2
O
(︃
K2

a

22J

)︃
(D.48)

This is the same term as in (D.48), for which we have shown that its expected value over

z is bounded by p−1
1 O(K2

a/2
2J). (D.48), together with (D.35), shows that f(r) − fOR(r)

is bounded by p−1
1 O(K2

a/2
2J) for all r. (D.35) and (D.42) show that fOR(r)2 − f(r)2 =

O(K2
a/2

2J) for all r, and therefore, by (D.28), also (D.12) is bound by a term of order

O
(︂

K2
a

22J

)︂
. This concludes the proof of Theorem 5.
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E. Proof of Theorem 6

The RS-potential (2.32), rescaled by β/2J takes the form

iRS(η) =
Rin2

J

J
I(ηP̂ ) +

log2 e

2
[(η − 1)− ln η] (E.1)

with the mutual information

I(ηP̂ ) := I(X;Y ) = H(Y )−H(Y |X) (E.2)

for P (X = 0) = p0, P (X = 1) = 1−p0 and Y = (ηP̂ )
1
2X+Z, for Z ∼ N (0, 1) independent

of X. The mutual information I(ηP̂ ) can be evaluated as follows. First, note that in an

additive channel H(Y |X) = H(Z), so H(Y |X) is independent of η and therefore we can

ignore it. The distribution of Y is given by

p(y) = p0p(y|x = 0) + (1− p0)p(y|x = 1)

=
p0√
2π

exp

(︃
−y2

2

)︃
+

1− p0√
2π

exp

(︃
−1

2

(︂
y − (ηP̂ )

1
2

)︂2
)︃
,

(E.3)

so the differential output entropy H(Y ) = −
∫︁
p(y) log2 p(y)dy can be split into the sum

of two parts. Define H0 and H1 respectively by

H0 := − 1√
2π

∫︂ ∞

−∞
exp

(︃
−y2

2

)︃
log2(p(y))dy (E.4)

and

H1 := − 1√
2π

∫︂ ∞

−∞
exp

(︃
−1

2

(︂
y − (ηP̂ )

1
2

)︂2
)︃
log2(p(y))dy

= − 1√
2π

∫︂ ∞

−∞
exp

(︃
−y2

2

)︃
log2

(︂
p
(︂
y + (ηP̂ )

1
2

)︂)︂
dy

(E.5)

such that the following relation holds:

I(ηP̂ ) = p0H0 + (1− p0)H1. (E.6)
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E. Proof of Theorem 6

Taking into account the scaling factor in (E.1) and using that limJ→∞ 2J(1 − p0) = Ka

and limJ→∞ p0 = 1 we get that

lim
J→∞

Rin2
J

J
I(ηP̂ ) = lim

J→∞

(︃
Rin2

J

J
H0 +

S

J
H1

)︃
(E.7)

Now let us take a closer look at log2 p(y) = log2(e) ln p(y) which appears in both H0 and

H1. Let x1, x2 > 0 with x2 > x1. Then for the logarithm of the sum of exponentials it

holds that

− ln(e−x1 + e−x2) = x1 + ln(1 + e−(x2−x1)). (E.8)

The error term ln(1+e−(x2−x1)) decays exponentially as the difference x2−x1 grows. Since

p(y) is the sum of two exponentials we can approximate ln p(y) by:

− ln p(y) = min

{︃
y2

2
− ln(p0),

1

2

(︂
y − (ηP̂ )

1
2

)︂2
− ln(1− p0)

}︃
(E.9)

This approximation is justified, since the difference of the two exponents in p(y) is propor-

tional to
√
J , and so it grows large with J . 1 First, note, that since min{a, b} ≤ a

and min{a, b} ≤ b holds for all a, b ∈ R, − ln p(y) ≤ y2/2 − ln(1 − p0) as well as

− ln p(y + (ηP̂ )
1
2 ) ≤ y2/2 + ln(2J/Ka). This means that each of the integrands in H0

and H1/J resp. is bounded uniformly, for all J , by an integrable function. This allows us

to evaluate the integrals by using Lebesgue’s theorem on dominated convergence. For this

purpose we need to calculate the pointwise limits of ln p(y) and ln p(y + (ηP̂ )
1
2 )/J . The

theorem on dominated convergence then states, that the limit of the integrals is given by

the integral of the pointwise limits.

The minimum in (E.9) can be expressed as

− ln p(y) =

⎧
⎨
⎩

y2

2 y < γ

1
2

(︂
y − (ηP̂ )

1
2

)︂2
+ ln

(︂
2J

Ka

)︂
y ≥ γ

(E.10)

where we neglected ln(p0) = ln(1−Ka/2
J) ∼ Ka/2

J and γ is given by

γ =
1

2

(︂
ηP̂

)︂ 1
2
+ ln

(︃
2J

Ka

)︃(︂
ηP̂

)︂− 1
2
. (E.11)

1Technically, this approximation does not hold at the point where the two exponents in p(y) are equal.
However, since the integral of a function does not depend on the value of the function at points of
measure zero, we can redefine ln p(y) arbitrary at that point.
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Given the considered scaling constraints and P̂ = JSNR/Rin = 2JEin, γ can be rewritten

as

γ =

√︃
J

2

(︄
√︁

ηEin +
1− 1

α

log e
√
ηEin

)︄
(E.12)

The term in parenthesis is strictly positive for all η so limJ→∞ γ = ∞ and therefore the

pointwise limit of ln p(y) is give by limJ→∞ ln p(y) = −y2/2. It follows from Lebesgue’s

theorem on dominated convergence that

lim
J→∞

H0 = log2 e (E.13)

which is independent of η, so we can ignore it when evaluating iRS(η). For the calculation

of H1 note that:

− ln p
(︂
y + (ηP̂ )

1
2

)︂
=

⎧
⎨
⎩

1
2

(︂
y + (ηP̂ )

1
2

)︂2
y < γ′

y2

2 + ln
(︂

2J

Ka

)︂
y ≥ γ′

(E.14)

where we defined γ′ := γ − (ηP̂ )
1
2 . γ′ is not non-negative anymore and therefore the

asymptotic behavior of γ′ depends on η in the following way:

lim
J→∞

γ′ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if η < η̄

0 if η = η̄

−∞ if η > η̄

(E.15)

where η̄ was defined in (2.37). This gives the following asymptotic behavior:

− lim
J→∞

ln p(y + (ηP̂ )
1
2 )

J
=

⎧
⎨
⎩
ηEin + 1

2J η < η̄

(1− α−1)/ log2 e η ≥ η̄
(E.16)

Finally, using (E.13), (E.5), (E.7), (E.16) and the θ function defined in (2.36) we get:

lim
J→∞

(︃
iRS(η)

log2 e
− Rin2

J

J

)︃
= ηSEin[1− θ(η − η̂)] +

S

log2 e

(︃
1− 1

α

)︃
θ(η − η̄) +

1

2
[(η − 1)− ln η]

(E.17)

This proves the statement of the theorem.
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F. Proof of Theorem 11

The main line of arguments in this section is based on [66]. In turns, the proof in [66]

is based on a RIP result which was claimed and successively retracted [67]. The result

was applied to a non-centered matrix and therefore could not have the claimed property.

We fix this here, using our own new RIP result (Theorem 12) and, for the sake of clarity

and self-contained presentation, give a complete streamlined proof for the case of known

LSFCs. At several points our proof technique differs from [66], which results in the slightly

better bound on M . Let us first introduce some notation.

Definition 1. For t > 1 define the Renyi divergence of order t between two probability

densities p and q as

Dt(p, q) :=
1

t− 1
ln

∫︂
p(x)tq(x)1−tdx (F.1)

♢

Definition 2. A differentiable function f is called strongly convex with parameter m > 0

if the following inequality holds for all points x, y in its domain:

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
m

2
∥x− y∥22 (F.2)

♢

Without loss of generality we assume that P = 1, which can alway be achieved by

renormalizing N0 := N0/P . Let b◦ denote the true activity pattern with known sparsity

Ka, and b∗ be the output of the estimator (3.11). Using the union bound, we can write

P(b∗ ̸= b◦) = P

(︃
max

b∈ΘKa\{b◦}
p(Y|b) ≥ p(Y|b◦)

)︃

= P

⎛
⎝ ⋃︂

b∈ΘKa\{b◦}
{p(Y|b) ≥ p(Y|b◦)}

⎞
⎠

≤
∑︂

b∈ΘKa\{b◦}
P(Y : p(Y|b)− p(Y|b◦) ≥ 0)

≤
∑︂

b∈ΘKa\{b◦}
P(Y : p(Y|b)− p(Y|b◦) > −α)

(F.3)
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F. Proof of Theorem 11

for any α > 0. With slight abuse of notation we define Σ(b) := ABG◦AH + N0IL,

the covariance matrix for a given binary pattern b for a fixed vector of LSFCs g◦, with

B = diag(b) and G◦ = diag(g◦). Let pb := CN (0,Σ(b)) denote the Gaussian distribution

with covariance matrix Σ(b), then log p(Y|b) =
∑︁

j log pb(Y:,j). The following large

deviation property of log p(Y|b) is established in [66, Corollary 1]:

Theorem 15.

P

(︃
log p(Y|b)− log p(Y|b◦) > −M

2
D1/2(pb, pb◦)

)︃

≤ exp

(︃
−M

4
D1/2(pb, pb◦)

)︃ (F.4)

where D1/2(pb, pb◦) is the Renyi divergence of order 1/2 between pb and p◦b defined in

Definition 1. □

The result of Theorem 15 holds only if D1/2(pb, pb◦) > 0, so in the following we will

establish conditions under which this is true. First, note that since pb and pb◦ are zero-

mean Gaussian distributions with covariance matrices Σ(b) and Σ(b◦) resp., their Renyi

divergence of order t can be expressed in closed form as:

Dt(pb, pb◦) =
1

2(1− t)
log

|(1− t)Σ(b) + tΣ(b◦)|
|Σ(b)|1−t|Σ(b◦)|t (F.5)

Let ψ(b) := − log |Σ(b)|, then we can see that Dt(pb, pb◦) ≥ tm
∗

4 ∥b−b◦∥22, with m∗ being

the strong convexity constant of ψ(·), is equivalent to

ψ((1− t)b + tb◦) ≤ (1− t)ψ(b) + tψ(b◦)− 1

2
m∗t(1− t)∥b − b◦∥22. (F.6)

Here we used the fact that

−ψ((1− t)b + tb◦) = log |Σ((1− t)b + tb◦)|
= log |A((1− t)B + tB◦)G◦AH +N0IL|
= log |(1− t)Σ(b) + tΣ(b◦)|

(F.7)

Inequality (F.6) is precisely the condition that ψ(·) is strongly convex along the line con-

necting b and b◦. So if ψ(·) is strongly convex on the set of 2Ka-sparse vectors, then

Dt(pb, pb◦) ≥ t
m∗

4
∥b − b◦∥22 (F.8)
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holds for any Ka-sparse vectors b and b◦. Let b1,b2 ∈ ΘKa be two arbitrary Ka-sparse

vectors. Since log | · | is differentiable on R+, a Taylor expansion of ψ(b1) around b2 gives:

ψ(b1) = ψ(b2) + ⟨∇ψ(b1),b2 − b1⟩

+
1

2
(b2 − b1)

⊤∇2ψ(br)(b2 − b1)
(F.9)

for br = (1−r)b1+rb2 with some r ∈ [0, 1]. Let ∆b := b2−b1, then the strong convexity

of ψ(·) is equivalent to

∑︂

i,j

∂ψ

∂bi∂bj

⃓⃓
⃓⃓
b=br

∆bi∆bj ≥ m∗∥b2 − b1∥22. (F.10)

The derivatives of ψ are given by:

∂ψ

∂bi

⃓⃓
⃓⃓
b=br

= −trace(Σ(br)
−1g◦i aia

H

i ) (F.11)

∂ψ

∂bi∂bj

⃓⃓
⃓⃓
b=br

= trace(Σ(br)
−1g◦i aia

H

i Σ(br)
−1g◦jaja

H

j ) (F.12)

Next we will calculate m∗. It holds that

∑︂

i,j

∂ψ

∂bi∂bj

⃓⃓
⃓⃓
b=br

∆bi∆bj =
∑︂

i,j

trace

(︂
Σ(br)

−1∆big
◦
i aia

H

i Σ(br)
−1∆bjg

◦
jaja

H

j

)︂

= trace

⎛
⎝Σ(br)

−1

(︄
∑︂

i

∆big
◦
i aia

H

i

)︄
Σ(br)

−1

⎛
⎝∑︂

j

∆bjg
◦
jaja

H

j

⎞
⎠
⎞
⎠

= trace

(︁
Σ(br)

−1(Σ(b2)−Σ(b1))Σ(br)
−1(Σ(b2)−Σ(b1))

)︁

≥ σmin(Σ(br)
−1)trace

(︁
(Σ(b2)−Σ(b1))Σ(br)

−1(Σ(b2)−Σ(b1))
)︁

≥ σ2
min(Σ(br)

−1)∥Σ(b2)−Σ(b1)∥2F

=
∥Σ(b2)−Σ(b1)∥2F

σ2
max(Σ(br))

.

(F.13)

Here σmin(A) (resp., σmax(A)) denotes the minimum (resp., maximum) singular value of

A. In the first and the second inequality in (F.13) we used the fact that trace(AB) ≥
σmin(A)trace(B) for positive semi-definite matrices A,B, and in the second inequality in

(F.13) we used the fact that the covariance matrix is symmetric and trace(A⊤A) = ∥A∥2F .

We can rewrite ∥Σ(b2) −Σ(b1)∥2F = ∥A(g◦ ⊙ (b2 − b1))∥22, where A ∈ CL2×Ktot is the

matrix defined in (3.26), obtained by stacking the L2-dimensional vectors vec(aka
H

k ) by
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F. Proof of Theorem 11

columns. We show in (H.16) that ∥Ax∥2 ≥ ∥Åx∥2 holds ∀x ∈ RKtot , with Å being the

centered version of A, which is defined in (3.28).

We show in Theorem 12, that, with probability at least 1 − exp(−cδL), Å/
√︁
L(L− 1),

the centered and rescaled version of A has RIP of order 2Ka with constant δ2Ka < δ if

condition (3.12) is fulfilled. In particular ∥Åx∥22 ≥ (1 − δ2Ka)L(L − 1)∥x∥22 holds for all

2Ka-sparse vectors x. So the RIP of Å implies that

∥Σ(b2)−Σ(b1)∥2F ≥ (1− δ2Ka)L(L− 1)∥g◦ ⊙ (b2 − b1)∥22
≥ (1− δ2Ka)L(L− 1)g2min∥b2 − b1∥22
≥ 1

2
(1− δ2Ka)L

2g2min∥b2 − b1∥22

(F.14)

An upper bound on σ2
max(Σ(br)) = ∥Σ(br)∥2op can be found as follows. Note that for any

binary 2Ka-sparse vector b, it holds that

σmax(Σ(b)) = ∥Σ(b)∥op

=

⃦⃦
⃦⃦
⃦

Ktot∑︂

k=1

g◦kbkaka
H

k +N0I

⃦⃦
⃦⃦
⃦
op

≤ gmax

⃦⃦
⃦⃦
⃦⃦

∑︂

k∈supp(b)
aka

H

k

⃦⃦
⃦⃦
⃦⃦
op

+N0

= gmax

⃦⃦
⃦⃦
⃦⃦

∑︂

k∈supp(b)
(aka

H

k − I) + 2KaI

⃦⃦
⃦⃦
⃦⃦
op

+N0

≤ gmax

⃦⃦
⃦⃦
⃦⃦

∑︂

k∈supp(b)
(aka

H

k − I)

⃦⃦
⃦⃦
⃦⃦
op

+ gmax2Ka +N0

(F.15)

Now
∑︁

k∈supp(b)(aka
H

k − I) is a sum of 2Ka random matrices aka
H

k , with ak drawn i.i.d.

from the sphere of radius
√
L, and therefore sub-Gaussian. A generic large deviation result

for such matrices, e.g., the complex version of [128, Theorem 4.6.1], shows that

⃦⃦
⃦⃦
⃦⃦

∑︂

k∈supp(b)
(aka

H

k − I)

⃦⃦
⃦⃦
⃦⃦
op

≤
(︂√︁

Ka + C
(︂√

L+ t
)︂)︂2

(F.16)

holds with probability at least 1 − 2 exp(−t2) for some universal constant C > 0. Let

t =
√
βmax(

√
Ka,

√
L) for some β > 0. Then (F.15) gives that

σmax(Σ(γ)) ≤ (1 + βC ′)gmax max{Ka, L}+N0 (F.17)
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holds with probability at least 1−exp(−βmax{Ka, L}) for some universal constants C ′ > 0.

So (F.13) can be further bounded using (F.14) and (F.17) as

∥Σ(b2)−Σ(b1)∥2F
σ2

max(Σ(br))
≥ (1− δ2Ka)g

2
min∥b2 − b1∥22

2
(︁
(1 + C ′β)gmax max

{︁
Ka

L , 1
}︁
+ N0

L

)︁2 (F.18)

Together with (F.10) and (F.13) this implies that, if the pilot matrix satisfies the RIP of

order 2Ka with constant δ2Ka < 1, then ψ(·) is strongly convex along the line between any

two Ka-sparse vectors with constant

m∗ ≥ (1− δ2Ka)g
2
min

2
(︁
(1 + C ′β)gmax max

{︁
Ka

L , 1
}︁
+ N0

L

)︁2 (F.19)

with probability exceeding 1 − exp(−βmax{Ka, L}). Since the bound is independent of

the chosen vectors and the number of 2Ka sparse binary vectors is bounded by
(︁
Ktot

2Ka

)︁
≤

(eKtot/Ka)
2Ka ≤ (eKtot/Ka)

2max{Ka,L}, (F.19) holds in the set of all 2Ka-sparse vectors

with probability exceeding

1− exp

(︃
−2max{Ka, L}

(︃
β

2
− log

(︃
eKtot

2Ka

)︃)︃)︃
(F.20)

This probability exceeds 1− ϵ if

β ≥ 2 log

(︃
eKtot

2Ka

)︃
+

log(2/ϵ)

max{Ka, L}
(F.21)

We get that

m∗ ≥ (1− δ2Ka)g
2
min

2
(︂
C ′

(︂
2 log

(︂
eKtot

2Ka

)︂
+ log(2/ϵ)

max{Ka,L}

)︂
gmax max

{︁
Ka

L , 1
}︁
+ N0

L

)︂2 (F.22)

holds with probability exceeding 1− ϵ.

Let kd = ∥b2 − b1∥0 ≤ 2Ka denote the number of positions in which b2 and b1 differ,

i.e. their Hamming distance. Then the Renyi divergence (F.8) can be lower bound as:

Dt(pb, pb◦) ≥ t
m∗

4
kd (F.23)

Putting everything together, we can complete the union bound. Note that there are(︁
Ka

kd

)︁(︁
Ktot−Ka

kd

)︁
≤ (3eKtotKa)

kd ways to choose a support which differs from the true sup-

port in kd positions. Now, denote by C the event that the pilot matrix A is such that the

RIP condition (F.14) holds, and the bound (F.22). Using (F.3), Theorem 15 and (F.23)
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F. Proof of Theorem 11

we get that

P(b∗ ̸= b◦, C) ≤
∑︂

b∈ΘKa\{b◦}
exp

(︃
−M

4
D1/2(pb, pb◦)

)︃

≤
2Ka∑︂

kd=1

(3eKtotKa)
kd exp

(︃
−M

m∗

4
kd

)︃

=

2Ka∑︂

kd=1

exp

(︃
−kd

(︃
M

m∗

4
− log(3eKtotKa)

)︃)︃

(F.24)

So let

M ≥ 4

m∗ log

(︃
3eKtotKa

1 + ϵ

ϵ

)︃
(F.25)

which is precisely condition (3.13), then

P(b∗ ̸= b◦, C) ≤
2Ka∑︂

kd=1

(︃
ϵ

1 + ϵ

)︃kd

≤ ϵ

(F.26)

Finally

P(b∗ ̸= b◦) ≤ P(b∗ ̸= b◦, C) + P(C̄)
≤ ϵ+ ϵ+ exp(−CδL)

(F.27)

This concludes the proof of Theorem 11.
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G. Proof of the RIP, Theorem 12

Let us first define some basic properties.

Definition 3 (Sub-Exponential Norm). Let X be a real scalar random variable. Define

the sub-exponential norm of X as

∥X∥ψ1
:= inf

{︃
t > 0 : E

[︃
exp

(︃ |X|
t

)︃]︃
≤ 2

}︃
. (G.1)

A well known property of sub-exponential variables is that

P(|X| > t) ≤ 2 exp(−ct/∥X∥ψ1) ∀t > 0 (G.2)

for some universal constant c > 0.

Definition 4 (Sub-Exponential Random Vector). Let X be a random vector in Rn. X is

said to be sub-exponential if all its marginals are scalar sub-exponential random variables,

i.e. if

sup
x∈Sn−1

∥⟨X, x⟩∥ψ1 < ∞ (G.3)

then we define ∥X∥ψ1
:= supx∈Sn−1 ∥⟨X, x⟩∥ψ1 , where Sn−1 is the unit sphere in Rn.

Basic properties of sub-exponential random variables and vectors can be found e.g. in

Ch. 2 and 3 of [128].

Definition 5 (Convex Concentration Property (2.2 in [129])). Let X be a random vector

in Rn. X has the convex concentration property with constant K if for every 1-Lipschitz

convex function ϕ : Rn → R, we have E[|ϕ(X)|] < ∞ and for every t > 0,

P(|ϕ(X)− E[ϕ(X)]| ≥ t) ≤ 2 exp(−t2/K2) (G.4)

For the RIP of Å/
√
m we first establish the following results for generic matrices R ∈

Rm×N with independent normalized columns.

Theorem 16. Let R ∈ Rm×N be a matrix with independent columns R:,i, normalized such

that ∥R:,i∥22 = m, with ψ1-norm at most ψ. Also assume that N ≥ m. Then the RIP
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constant of R/
√
m satisfies δ2s(R/

√
m) < δ with probability ≥ 1− exp(−C ′√cδ,ξm) for

2s = cδ,ξ
m

log2(eN/cδ,ξm)
, (G.5)

where cδ,ξ ≤ min{1, δ2

(3Cξ2)2
} for any ξ > ψ + 1 and C,C ′ > 0 are universal constants. □

Proof. We make use of the following generic RIP result from [107, Theorem 3.3] for matrices

with i.i.d. sub-exponential columns:

Theorem 17. Let m ≥ 1 and s,N be integers such that 1 ≤ s ≤ min(N,m). Let

R:,1, ...,R:,N ∈ Rm be independent sub-exponential random vectors normalized such that

E[∥R:,i∥2] = m and let ψ = maxi≤N ∥R:,i∥ψ1 . Let θ′ ∈ (0, 1), K,K ′ ≥ 1 and set

ξ = ψK +K ′. Then for the matrix R with columns R:,i

δs

(︃
R√
m

)︃
≤ Cξ2

√︃
s

m
log

(︄
eN

s
√︁

s
m

)︄
+ θ′ (G.6)

holds with probability larger than

1− exp

(︄
−cK

√
s log

(︄
eN

s
√︁

s
m

)︄)︄
(G.7)

− P

(︃
max
i≤N

∥R:,i∥2 ≥ K ′√m

)︃
− P

(︃
max
i≤N

⃓⃓
⃓⃓∥R:,i∥22

m
− 1

⃓⃓
⃓⃓ ≥ θ′

)︃
, (G.8)

where C, c > 0 are universal constants. □

In order to prove Theorem 16 we shall apply Theorem 17. Let us abbreviate δs =

δs

(︂
R√
m

)︂
. Since ∥R:,i∥22 = m, the last two terms in (G.8) vanish for all K ′ > 1 and θ′ > 0.

Therefore, we consider the bound

δs ≤ Cξ2
√︃

s

m
log

(︄
eN

s
√︁
s/m

)︄
=: D, (G.9)

that holds with probability larger than

P(δs ≤ D) ≥ 1− exp

(︄
−cK

√
s log

(︄
eN

s
√︁

s/m

)︄)︄
(G.10)
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Let s = cm/ log2(e N
cm) for any 0 < c ≤ 1. Note that the conditions c ≤ 1 and N ≥ m

guarantee that log(e N
cm) ≥ 1. Plugging into (G.9) we see that the RIP-constant satisfies

δs ≤ Cξ2
√
c
log(e( N

cm)3/2 log3(e N
cm))

log(e N
cm)

(G.11)

≤ Cξ2
√
c

(︄
3

2
+

3 log log e N
cm

log e N
cm

)︄
(G.12)

≤ Cξ2
√
c

(︃
3

2
+

3

e

)︃
(G.13)

≤ 3Cξ2
√
c (G.14)

where in the first line we made use of m ≤ N and in the last line we used log log x/ log x ≤
1/e. This bound fails with probability:

P(δs > D) ≤ exp

(︃
−ˆ︁cK

√
s log

(︃
e
N
√
m

s3/2

)︃)︃
(G.15)

≤ exp

(︃
−ˆ︁cK

√
s log

(︃
e
N

m

)︃)︃
(G.16)

= exp(−ˆ︁cK
√
c
√
m) (G.17)

where in the second line we used s ≤ m. The statement of Theorem 16 follows by choosing

c small enough such that δs ≤ δ.

We want to apply Theorem 16, which holds for real values matrices R, to the matrix

A
R :=

√
2[Re(Å); Im(Å)] ∈ R

2L(L−1)×Ktot , (G.18)

i.e., the real matrix obtained by stacking real and imaginary part of Å, with m = 2L(L−1)

and N = Ktot. For this we need to show that

i The columns of AR are normalized to
√︁
2L(L− 1);

ii The columns of AR are sub-exponential with ψ1 norm independent of the dimension.
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G. Proof of the RIP, Theorem 12

Consider the k-th column AR
:,k of AR. We have

∥[Re(Å:,k); Im(Å:,k)]∥22 = ∥Re(Å:,k)∥22 + ∥Im(Å:,k)∥22
= ∥Å:,k∥22
=

∑︂

i ̸=j

|ak,iaH

k,j |2

=

(︄
L∑︂

i=1

|ak,i|2
)︄2

−
L∑︂

i=1

|ak,i|2

= (∥ak∥22)2 − ∥ak∥22
= L(L− 1),

(G.19)

where we have used the normalization of the pilot matrix A. This shows i.

For ii we need to show that all marginal distributions of the columns AR are sub-

exponential. Note that for any vector u ∈ R2L(L−1) the marginal ⟨AR
:,k,u⟩ can be

expressed as a quadratic form in aR
k :=

√
2[Re(ak); Im(ak)] as the following calcula-

tion shows. Let U, ˜︁U ∈ RL×L be two matrices with zeros on the diagonal such that

u = [vecnon-diag(U); vecnon-diag(˜︁U)]. Then it holds:

⟨︁
A
R
:,k,u

⟩︁
=

√
2
∑︂

i ̸=j

(︂
Re(ak,ia

H

k,j)Uij + Im(ak,ia
H

k,j)
˜︁Uij

)︂

= (aR
k )

⊤Qua
R
k

(G.20)

with

Qu =
1√
2

(︄
U ˜︁U
−˜︁U U

)︄
(G.21)

and therefore ∥Qu∥2F = ∥u∥22.
This form of Qu follows from the identities:

Re(ak,ia
H

k,j) = Re(ak,i)Re(ak,j) + Im(ak,i)Im(ak,j) (G.22)

Im(ak,ia
H

k,j) = −Re(ak,i)Im(ak,j) + Im(ak,i)Re(ak,j) (G.23)

We can now use the following concentration result for quadratic forms from [129] which

states that a random vector which satisfies the convex concentration property also satisfies

the following inequality, known as Hanson-Wright inequality [130]:

Theorem 18 (Theorem 2.5 in [129]). Let X be a mean zero random vector in Rn, which

satisfies the convex concentration property with constant B, then for any n × n matrix Y
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and every t > 0,

P(|X⊤YX − E[X⊤YX]| > t)

≤ 2 exp

(︃
−cmin

(︃
t2

2B4∥Y∥2F
,

t

B2∥Y∥op

)︃)︃
(G.24)

□.

Note that a random variable with such a mixed tail behavior is especially sub-exponential.

This can be seen by bounding its moments. Let Z be a random variable with

P(|Z| > t) ≤ 2 exp

(︃
−cmin

(︃
t2

B4∥Y∥2F
,

t

B2∥Y∥op

)︃)︃
(G.25)

Since ∥Y∥op ≤ ∥Y∥F , we have P(|Z| > t) ≤ 2 exp(−cmin(x(t)2, x(t))) for x(t) = t
B2∥Y∥F

.

It follows

E[|Z|p] =
∫︂ ∞

0
P(|Z|p > u)du = p

∫︂ ∞

0
P(|Z| > t)tp−1dt

≤ 2p(B2∥Y ∥op)p
(︃∫︂ 1

0
e−x2

xp−1dx+

∫︂ ∞

1
e−xxp−1dx

)︃

≤ 2p(B2∥Y ∥op)p (Γ(p/2) + Γ(p))

≤ 4p(B2∥Y ∥op)pΓ(p) ≤ 4p(pB2∥Y ∥op)p

(G.26)

where Γ(·) is the Gamma function. So

(E[|Z|p])
1
p ≤ (4p)

1
p pB2∥Y∥op ≤ cpB2∥Y∥op (G.27)

where c = 4e1/e. (G.27) is equivalent to ∥Z∥ψ1 ≤ cB2∥Y∥op by elementary properties of

sub-exponential random variables, e.g. [128, Proposition 2.7.1].

The convex concentration property was introduced in Definition 5. In our case the

pilots ak ∈ CL are distributed uniformly on the complex L-dimensional sphere of radius

L, therefore the real versions aR
k ∈ R2L are distributed uniformly on the sphere of radius

2L. A classical result states that a spherical random variable X ∼ Unif(
√
nSn−1) has the

even stronger (non-convex) concentration property (e.g. [128, Theorem 5.1.4]):

Theorem 19 (Concentration on the Sphere). Let X ∼ Unif(
√
nSn−1) be uniformly dis-

tributed on the Euclidean sphere of radius
√
n. Then there is an universal constant c > 0,

such that for every 1-Lipschitz function f :
√
nSn−1 → R

P(f(X)− E[f(X)]) ≤ 2 exp(−ct2) (G.28)
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G. Proof of the RIP, Theorem 12

□

So in particular the columns AR
:,k = aR

k have the convex concentration property with

some constant c > 0, independent of the dimension and it follows by (G.20) and Theorem

18 applied to X = aR
k and Y = Qu that the marginals of ⟨AR

:,k,u⟩ uniformly satisfy the tail

bound of the Hanson-Wright inequality. As shown in (G.27), this implies that the columns

of AR are sub-exponential with

∥AR
:,k∥ψ1 = max

u∈S2L(L−1)−1
∥⟨AR

:,k,u⟩∥ψ1 ≤ C (G.29)

for some universal constant C > 0.

With this we can apply Theorems 16 and together with 18 and 19 it follows that AR, as

defined in (G.18), has RIP of order 2s with RIP constant δ2s(A
R/

√
2m) < δ as long as

2s ≤ Cδ
m

log2(eKtot/m)
. (G.30)

Then, for the complex valued Å it holds that

⃦⃦
⃦⃦
⃦

Åx√
m

⃦⃦
⃦⃦
⃦
2

=

⃦⃦
⃦⃦
⃦

√
2[Re(Å); Im(Å)]x√

2m

⃦⃦
⃦⃦
⃦
2

=

⃦⃦
⃦⃦ ARx√

2m

⃦⃦
⃦⃦
2

(G.31)

for any x ∈ RKtot and therefore the RIP of AR/
√
2m implies the RIP of Å/

√
m with the

same constants, which concludes the proof of Theorem 12.
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H. Proof of the Recovery Guarantee for

NNLS, Theorem 13

Throughout this section let γ∗ denote the NNLS estimate

γ∗ = argmin
γ∈R

Ktot

+

∥Aγ − w∥22 (H.1)

as introduced in Section 3.2.2, where A is the L2×Ktot matrix whose k-th column is given

by vec(aka
H

k ) and

w = vec(ˆ︁Σy −N0IL), (H.2)

where ˆ︁Σy is assumed to be the empirical covariance matrix (3.6) of M iid samples from a

Gaussian distribution CN (0,Σy) with covariance matrix

Σy =

Ktot∑︂

i=1

γ◦kaka
H

k +N0IL (H.3)

where γ◦ = (γ◦1 , . . . , γ
◦
Ktot

) ∈ R
Ktot

+ is the true (unknown) activity pattern. So w can be

expressed as

w = Aγ◦ + d (H.4)

for d := vec(Σy − ˆ︁Σy). Let us introduce some notation.

Definition 6 (Robust NSP (4.21 in [65])). A ∈ CL2×Ktot is said to satisfy the robust ℓq

nullspace property (NSP) of order s with parameters 0 < ρ < 1 and τ > 0 if

∥dS∥q ≤
ρ

s1−1/q
∥vS̄∥1 + τ ∥Av∥2 ∀v ∈ R

Ktot (H.5)

holds for all subsets S ⊂ [Ktot] with |S| ≤ s. The set S̄ denotes here the complement of S

in [Ktot].

Furthermore let the ℓ1-error of the best s-sparse approximation to γ◦ be denoted as:

σs(γ
◦)1 = min

∥γ∥0≤s
∥γ◦ − γ∥1 (H.6)
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H. Proof of the Recovery Guarantee for NNLS, Theorem 13

If γ◦ is assumed to actually be s-sparse, then we obviously have σs(γ
◦)1 = 0. The statement

of Theorem 13 will be an immediate consequence of the following theorem:

Theorem 20. If A ∈ CL2×Ktot has the robust ℓ2 NSP of order s with constants τ > 0 and

ρ ∈ (0, 1) and there exists a t ∈ CKtot , such that 1 = AHt, where 1 := (1, ..., 1)⊤, then for

p ∈ [1, 2] the NNLS estimate γ∗ in (H.1) satisfies

∥γ∗ − γ◦∥p ≤
2Cσs(γ

◦)1
s1−1/p

+
2D

s
1
2
− 1

p

(︃
τ +

∥t∥2
s

1
2

)︃
∥d∥2 (H.7)

with C := (1+ρ)2

1−ρ , D = (3+ρ)
1−ρ and d = vec(Σy − ˆ︁Σy) □

Proof. This proof is adapted from [110] to our setting. First, we will need some implications

which follow from the NSP [65, Theorem 4.25]. Assume that A satisfies the robust NSP as

stated in the theorem. Then, for any p ∈ [1, 2] and for all x, z ∈ RKtot ,

∥x − z∥p ≤
C

s1−1/p
(∥x∥1 − ∥z∥1 + 2σs(x)1)

+Dτs1/p−1/2∥A(x − z)∥2 (H.8)

holds, with C,D as defined in the statement of the theorem. If x, z ≥ 0 are non-negative

and there exists t such that 1 = AHt we use:

∥x∥1 − ∥z∥1 = ⟨1,x − z⟩ = ⟨AHt,x − z⟩
= ⟨t,A(x − z)⟩ ≤ ∥t∥2∥A(x − z)∥2

(H.9)

where we have used Cauchy-Schwarz inequality (note that ⟨t,A(x − z)⟩ is real). So in-

equality (H.8) implies:

∥x − z∥p (H.10)

≤ 2Cσs(x)1

s1−1/p
+

(︃
Dτ +

C · ∥t∥2
s1/2

)︃ ∥A(x − z)∥2
s

1
2
− 1

p

(H.11)

Now, lets take y = Ax+d. Since ∥A(x−z)∥2 ≤ ∥Az−y∥2+∥d∥2 we get for all non-negative

z and x:

∥x − z∥p (H.12)

=
2Cσs(x)1

s1−1/p
+

(︃
Dτ +

C · ∥t∥2
s1/2

)︃ ∥Az − y∥2 + ∥d∥2
s

1
2
− 1

p

(H.13)
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Now take z = γ∗ and x = γ◦, then y = w (see (H.2)). Since γ◦ ∈ R
Ktot

+ is itself is a

feasible point of the minimization we have minγ∈R
Ktot

+
∥Aγ − b∥2 ≤ ∥d∥2, yielding:

∥γ∗ − γ◦∥p ≤
2Cσs(γ

◦)1
s1−1/p

+ 2

(︃
Dτ +

C · ∥t∥2
s1/2

)︃ ∥d∥2
s

1
2
− 1

p

(H.14)

It is easily checked that C ≤ D for ρ ∈ (0, 1), which gives the result.

In our case we choose t = t · vec(IL) ∈ RL2
with some t > 0. Let Ak be the k-th column

of A. It holds that

A
H

k vec(IL) = trace(aka
H

k ) = ∥ak∥22. (H.15)

Using the normalization of the pilots ∥ak∥22 = L, we get that:

A
Ht = tL · 1

so t = 1/L, and therefore ∥t∥22 = 1/L gives the desired condition AHt = 1. Before we

can make use of Theorem 20 it remains to show that A has the robust ℓ2-NSP with high

probability. To this end, we will restrict to those measurements which are related to the

isotropic part of A. Let Å be the centered version of A defined in (3.28). Now it is easy to

check (revert the vectorization) that this special structure gives us the inequality:

∥Av∥22 = ∥Åv∥22 + ∥Adiagv∥22 ≥ ∥Åv∥22 (H.16)

where Adiag ∈ CL×Ktot is defined as the non-isotropic part of A with its k-th column

defined by A
diag
:,k = vec(diag(aka

H

k )). This shows that if Å has the ℓ2-NSP of order s with

constants τ and ρ, then so does A, since

∥vS∥2 =
ρ√
s
∥vS̄∥1 + τ

⃦⃦
⃦Åv

⃦⃦
⃦
2

≤ ρ√
s
∥vS̄∥1 + τ ∥Av∥2

(H.17)

holds for all subsets S ⊂ [Ktot] with |S| ≤ s. It is well-known that the robust ℓ2-NSP

of order s is implied by the RIP of order 2s with sufficiently small constants [65]. The

following theorem specifies how RIP is related to the ℓ2-NSP

Theorem 21. If Å has RIP of order 2s with a constant bound as δ2s(Å/
√
m) ≤ δ <

4/
√
41 ≈ 0.62 then Å/

√
m has the robust ℓ2-NSP of order s with parameters ρ and τ ′ with

ρ ≤ δ/(
√
1− δ2 − δ/4) and τ ′ ≤

√
1 + δ/(

√
1− δ2 − δ/4).

Furthermore Å has the robust ℓ2-NSP of order s with parameters ρ and τ = τ ′/
√
m. □
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Proof. The first part is shown in [65, Theorem 6.13]. The last statements follows immedi-

ately from

τL

⃦⃦
⃦⃦ 1

L
Åv

⃦⃦
⃦⃦
2

= τ
⃦⃦
⃦Åv

⃦⃦
⃦
2

(H.18)

Theorem 12 establishes the RIP of Å/
√︁
L(L− 1) under the assumptions of 13. If we fix

δ < 4/
√
41, Theorem 21 implies the robust ℓ2-NSP of order s for Å with explicit bounds on

τ and ρ. For example, δ = 0.5 gives ρ < 0.68 and τ < 3/L. As shown in (H.17) the robust

ℓ2-NSP of Å implies the ℓ2-NSP of the uncentered version A of the same order with the

same constants. Finally, the application of Theorem 20 concludes the proof of Theorem

13.
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I. Analysis of Error of the Sample

Covariance Matrix

Let Σy ∈ RL×L be fixed and let {y(t) : t ∈ [M ]} be M i.i.d. samples from CN (0,Σy).

We first consider the simple case where Σy is diagonal, given by Σy = diag(β) and let

∆ = ˆ︁Σy − Σy be the deviation of the sample covariance matrix from its mean. Then

∥d∥2 = ∥∆∥F and the (i, j)-th component of ∆ is given by

∆ij =
1

M

∑︂

t∈[M ]

yi(t)y
∗
j (t)− βiδij (I.1)

=

√︁
βiβj

M

∑︂

t∈[M ]

(︄
yi(t)√
βi

y∗j (t)√︁
βj

− δij

)︄
(I.2)

where δij = 1{i=j} denotes the discrete delta function. Let Yij(t) :=
yi(t)√

βi

y∗j (t)√
βj

− δij . Then

|∆ij |2 =
βiβj
M2

⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

(I.3)

Since all Yij(t) are zero mean and are independent for fixed i, j. Therefore the variance of

their sum E

[︃⃓⃓
⃓
∑︁M

t=1 Yij(t)
⃓⃓
⃓
2
]︃

is the sum of their variances. In the following we show that

E[|Yij |2] = 1 for all i, j. For i ̸= j, we have that

E[|Yij |2] =
E[|yi(t)yj(t)∗|2]

βiβj

(a)
=

E[|yi(t)|2]
βi

E[|yj(t)|2]
βj

= 1,

(I.4)
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I. Analysis of Error of the Sample Covariance Matrix

where in (a) we used the independence of the different components of y(t). Also, for i = j,

we have that

E[|Yij |2] = E

[︄⃓⃓
⃓⃓ |yi(t)|

2

βi
− 1

⃓⃓
⃓⃓
2
]︄

=
E[|yi(t)|4]

β2
i

− 2
E[|yi(t)|2]

βi
+ 1

(a)
= 2− 2 + 1

= 1,

(I.5)

where in (a) we used the identity E[|yi(t)|4] = 2E[|yi(t)|2]2 for complex Gaussian random

variables. Overall, from (I.4) and (I.5), we can write E[|∆ij |2] = βiβj

M . Thus, we have that

E[∥∆∥2
F
] =

∑︂

ij

E[|∆ij |2] =
∑︁

i,j βiβj

M

=
(
∑︁

βi)
2

M
=

trace(Σy)
2

M
. (I.6)

To see how fast ∥∆∥F concentrates around its mean, note that for fixed i, j the Yij(t)

are independent sub-exponential random variables with sub-exponential norm ≤ 1 (see

e.g. [128, Lemma 2.7.7]). Therefore, by the elemental Bernstein inequality we can estimate

that for any α > 0

P

⎛
⎝
⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

> α

⎞
⎠ = P

(︄⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓ >

√
α

)︄

≤ 2 exp(−cmin{α/M,
√
α})

(I.7)

for some universal constant c > 0. By a union bound we can see that

P

⎛
⎝min

i,j

⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

> α

⎞
⎠

≤
(︃
L

2

)︃
P

⎛
⎝
⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

> α

⎞
⎠

≤ 2 exp
(︁
2 log(eL)− cmin{α/M,

√
α}

)︁

(I.8)

By choosing α properly we can get the following statement:
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Theorem 22. Let ϵ > 0

∥∆∥F ≤ trace(Σy)√
M

⌜⃓
⎷⃓ log

(︂
2(eL)2

ϵ

)︂

c
(I.9)

holds with probability exceeding 1 − ϵ, if cM > log(2(eL)2/ϵ), where c > 0 is the constant

in (I.8). □

Proof. In (I.8) choose α = Mδ with δ = log(2(eL)2/ϵ)/c. Then min{α/M,
√
α} =

min{δ,
√
δM}. Under the condition on M stated in the Theorem, min{δ,

√
δM} = δ.

So

P

⎛
⎝min

i,j

⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

> δM

⎞
⎠

≤ 2 exp (2 log(eL)− 2 log(eL) + log(ϵ/2)})
= ϵ.

(I.10)

and the statement of the Theorem follows from

P

(︄
∥∆∥F >

trace(Σy)√︁
M/δ

)︄

= P

(︃
∥∆∥2

F
>

trace(Σy)
2

M/δ

)︃

= P

⎛
⎝∑︂

ij

βiβj
M2

⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

>
trace(Σy)

2

M/δ

⎞
⎠

≤ P

⎛
⎝min

ij

⃓⃓
⃓⃓
⃓

M∑︂

t=1

Yij(t)

⃓⃓
⃓⃓
⃓

2

> δM

⎞
⎠

≤ ϵ

(I.11)

where in the second equality we used (I.3) and in the last inequality we used (I.10).

Now, assume that the covariance matrix Σy is not in a diagonal form and let Σy =

Udiag(β)UH be the singular value decomposition of Σy. By multiplying all the vectors

y(t) by the orthogonal matrix UH to whiten them and noting the fact that multiplying by

UH does not change the Frobenius norm of a matrix, we can see that the bound in Theorem

22, which depends on Σy only through its trace, holds true in general also for non-diagonal

covariance matrices. Finally, since in Theorem 13 Σy =
∑︁Ktot

k=1 γkaka
H

k + N0IL and the
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pilot sequences satisfy ∥ak∥22 = L, it holds that

trace (Σy) =

Ktot∑︂

k=1

γktrace(aka
H

k ) +N0trace(IL) = L (∥γ∥1 +N0) , (I.12)

which gives (3.34) and (3.35).

Remark 5. It is worthwhile to mention that although (I.6) was derived under the Gaus-

sianity of the observations {y(t) : t ∈ [M ]}, the result can be easily modified for general

distribution of the components of y(t). More specifically, let us define

max
i

E[|yi(t)|4]
E[|yi(t)|2]2

=: ς < ∞. (I.13)

Then, using (I.4) and applying (I.13) to (I.5), we can obtain the following upper bound

E[∥∆∥2
F
] ≤ max{ς − 1, 1} ×

∑︁
i,j βiβj

M
(I.14)

≤ max{ς − 1, 1} × trace(Σy)
2

M
, (I.15)

which is equivalent to (I.6) up to the constant multiplicative factor max{ς − 1, 1}. ♢
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