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Abstract

Intelligent cyber-physical systems, such as self-driving cars, smart homes or e-health
solutions, will increasingly influence our daily lives. They will deal with increasingly
uncertain and changing environments and simultaneously must adhere to strict safety
requirements. In addition, we need to trust those systems, as we will hand over control
on our daily life to them. This increasing list of non-functional requirements makes the
design of intelligent cyber-physical systems (CPS) a challenging task.
In this thesis, we advance research on intelligent CPS by introducing intelligent self-
adaptive systems that autonomously evolve their adaptation logic in response to changes
in the system structure, their environment and their goals. We make their widespread
integration possible, by introducing a safe design framework, based on a novel methodology.
Our framework enables the integrated design and formal verification of intelligent and
explainable self-adaptive systems. Our key idea is to combine a resource-efficient process
for self-adaptation with dynamic evolution of the adaptation logics and continuous
verification activities. To obtain trust in those systems, we additionally collect structured
runtime knowledge to build an explanation basis for autonomous decisions.
Our main contributions are an efficient and comprehensible rule- and distance-based
adaptation process, a quantitative and context-dependent goal model that provides the
basis for our adaptation process, a resource-efficient runtime evolution of adaptation
logics that combines a continuous evaluation and observation-based optimization, of
adaptation rules and a stochastic search-based learning of new comprehensible adaptation
rules, and a continuous verification methodology that is based on a formalization of our
rule- and distance-based adaptation process in timed automata.
We have implemented our framework and evaluated its applicability and performance on
three case studies from different domains, namely a smart temperature control system,
an autonomous drone delivery system and a self-organizing production system.
With our framework, we support the design of systems that are flexible enough to deal
with dynamically changing operation contexts, and, at the same time, provide safety
assurances and explainability of their autonomous decisions. It is the only approach that
provides an integrated solution to this crucial research topic.





Zusammenfassung

Intelligente cyber-physikalische Systeme, wie z.B. autonom fahrende Autos, Smart Homes
oder E-Health Systeme, werden unser zukünftiges leben beeinflussen. Sie müssen mit
zunehmend unsicheren und sich verändernden Umgebungen umgehen und dabei strikte
Sicherheitsanforderungen erfüllen. Ihnen die Kontrolle über unser Leben zu überlassen,
erfordert Vertrauen. Diese steigende Anzahl von zusätzlichen Anforderungen macht den
Entwurf von intelligenten cyber-physischen Systemen (CPS) zu einer Herausforderung.
Als Lösung für diese Herausforderungen führen wir intelligente selbst-adaptive Systeme
ein, die ihre Adaptionslogik autonom an Änderungen in ihrem System, der Umgebung und
ihren Zielen anpassen. Wir präsentieren eine neue Methodik zum integrierten Entwurf
und zur formalen Verifikation von intelligenten und erklärbaren selbst-adaptiven Systemen
und betten unsere Methodik in ein sicheres Framework ein. Unsere Kernidee ist die
Kombination eines ressourcensparenden Selbstadaptionsprozesses mit der dynamischen
Anpassung der Adaptionslogik zur Laufzeit und einem kontinuierlichen Verifikationspro-
zess. Zur Steigerung des Vertrauens in diese Systeme speichern wir Laufzeitdaten über
autonome Entscheidungen und stellen diese strukturiert zur Verfügung.
Unsere Hauptbeiträge sind ein effizienter und verständlicher regelbasierter Adaptionspro-
zess mit einer neuartigen Distanzmetrik als Entscheidungsgrundlage, ein quantitatives
und kontextabhängiges Zielmodel, das die Basis für unseren Adaptionsprozess bildet, eine
ressourcensparende Anpassung der Adaptionslogik zur Laufzeit, die eine kontinuierliche
Evaluierung und beobachtungsbasierte Optimierung von Adaptionsregeln mit einem si-
mulationsbasierten Lernen neuer Adaptionsregeln kombiniert, und eine kontinuierliche
Verifikationsmethodik, die auf einer Formalisierung unseres regel- und distanzbasierten
Adaptionsprozesses in zeitbehafteten Automaten beruht.
Wir haben die Anwendbarkeit und Leistungsfähigkeit unseres Frameworks mit drei Fallstu-
dien aus verschiedenen Domänen evaluiert: einem intelligenten Temperaturregler, einem
autonomen Drohnenlieferservice und einem selbstorganisierenden Produktionssystem.
Mit unserem Framework unterstützen wir den Entwurf von Systemen, die einerseits
flexibel genug sind, um mit sich dynamisch ändernden Umgebungen umzugehen, und,
andererseits Sicherheitszusicherungen und Erklärungen ihrer autonomen Entscheidungen
geben können.
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1 Introduction

We live in a decade of self-driving cars, smart homes and the internet of things. We
rely on personal assistants like Siri and Alexa and trust autonomous cancer classification
systems that perform better than human experts. All these intelligent cyber-physical
systems (CPS) are ubiquitous in our daily lives. They solve complex problems even
experts do not fully understand. This thesis is motivated by one of the most challenging
research questions in the area of autonomous intelligent systems: How can we ensure
that “increasingly capable AI systems are robust and beneficial”? [Fut15, Nev18]

In this thesis, we focus on intelligent CPS that autonomously adapt themselves to
changes in the system, their environment and goals. We interpret robustness of such
self-adaptive systems as systems being able to maintain their goals in ever-changing
operational contexts. For a definition of beneficial systems, we follow Stuart Russels
definition: Machines are beneficial to the extent that their actions can be expected to
achieve our objectives [Rus18]. Hence, it is crucial to ensure that these systems behave
as intended, and to obtain trust in the correctness and quality of autonomous decisions,
e.g. by providing comprehensible explanations [SSP+17]. Thus, we refine our research
question: How can we design intelligent self-adaptive systems that are flexible
enough to cope with ever-changing operational contexts and how can we ensure
safety and explainability of their autonomous decisions?

The aim of this thesis is to provide a design framework for intelligent self-adaptive
systems that are able to achieve safe and robust autonomous adaptation decisions
in ever-changing operational contexts, and to provide comprehensible explanations for
these decisions.

We require our approach to fulfill the following criteria:

1. Continuous learning of (timed) adaptation logics To maintain their goals in
ever-changing operational contexts, we require intelligent self-adaptive systems to
continuously evaluate their adaptation logic and to learn adaptation logics that
enable them to cope with run-time changes in environment, system topology and
capabilities, and goals. To account for time constraints and to enable proactive
adaptation in time, we require the adaptation logic to include the latency of
adaptation actions.
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Chapter 1. Introduction

2. Independence between adaptation logics and system goals Continuous learn-
ing of adaptation logics should be robust with respect to dynamic goal changes, i.e.
the learning results should still be applicable after goal changes. This means that
the expected effect of adaptations and its evaluation w.r.t. the system goals have
to be strictly separated. Thus, the effect must not directly refer to system goals.
However, if new parameters become restricted by the goals or previously restricted
variables become unrestricted, the adaptation logic still has to be updated via
learning.

3. Continuous analysis of safety properties Our approach should enable verifi-
cation during the design process of self-learning self-adaptive systems to detect
errors at early design stages. In addition, it should include run-time verification
procedures to enable continuous evaluation of safety requirements.

4. Explainability of autonomous decisions Knowledge models form the basis for
autonomous decisions. To achieve explainability, we require autonomous decisions
to be explainable based on their underlying decision basis. Furthermore, all models
have to be human readable and comprehensible.

5. Resource-efficiency Self-adaptation and learning should be efficient in terms
of time and computational overhead to be applicable in real-time and embedded
devices where resources, such as computation time, energy, and memory, are
restricted.

In our work, we develop a framework that enables the integrated design and formal
verification of intelligent self-adaptive systems. Our key idea is fourfold: (a) We base
our adaptation process on novel adaptation rules that explicitly encode timed ef-
fect expectations on the environment. (b) We continuously evaluate, optimize and
learn comprehensible timed adaptation rules at run-time. (c) We apply online and
offline verification to ensure that learning results do not compromise important system
properties, e.g. safety, before actually changing the adaptation rule base. (d) We pro-
vide an explanation basis that enables traceability and explainability of autonomous
adaptation and learning decisions.

In more detail, our framework comprises the following main contributions:

1. Rule- and distance-based adaptation process: Our key idea is to explicitly
encode timed effect expectations on environment and system parameters within
the adaptation rules and to evaluate their contribution w.r.t. the goals separately
to achieve modularity and reusability in the context of dynamic goal changes.
To this end, we evaluate the expected system state after adaptation and apply
a novel notion of distance between a system state and the goals. We use a
condition-action-effect structure for our timed adaptation rules that supports the
comprehensibility of autonomous decisions. With this solution, we achieve a) flexible

3



and comprehensible adaptation logics, b) efficient adaptation planning, and c)
robustness w.r.t. dynamic goal changes.

2. Quantitative and context-dependent goal model: We propose a hierarchical
goal-model to encode context-dependent adaptation goals, e.g. setpoints or
optimisation objectives, and their dependencies at run-time. We provide a modular
distance evaluation that enables us to quantify the context-dependent achievement
of goals during analysis and planning of adaptations. Thus, our quantitative
goal-model provides a basis to find an optimal trade-off between multiple, possibly
conflicting context-dependent goals.
We have published a preliminary version of our goal model in [KGLG17] and an
extended version in [KGG18d].

3. Resource-efficient runtime evolution of adaptation logics: We propose a novel
approach for run-time evolution of timed adaptation rules. It combines a continuous
accuracy evaluation, an optimization of adaptation rules and a stochastic search-
based learning of new comprehensible rules. To enable online learning of new
adaptation rules, we apply a genetic algorithm that uses a model simulation for the
fitness evaluation of adaptation options.With simulation-based learning, we avoid
the costs and risks of active exploration in the real system. We define a stepwise
rule generalization process to profit from learning results in similar situations. We
thereby achieve flexibility and are able to resolve uncertainties about the operational
context and the effect of adaptations at run-time. We store structured analysis and
learning results to provide processed data for explaining autonomous rule learning.

4. Continuous verification methodology: We integrate verification activities in
the design process and in the evolution process at run-time to ensure safety of
dynamically evolving self-adaptive systems. We combine resource intensive formal
verification and lightweight safety monitoring. The former is applied at design time
to verify the correctness of an initial set of adaptation rules w.r.t. the expected
environment behavior, and, additionally, at runtime, to verify that changes to
the adaptation rules do not compromise important properties (e.g. safety). The
latter is used to cope with the inherent uncertainty concerning the behavior of the
environment by continuously monitoring and validating the satisfaction of safety
properties at runtime. To enable formal verification, we provide a formalization of
our timed adaptation rules and our proposed rule- and distance-based adaptation
process in timed automata.
We have published our formal verification approach in [KGG16].

We have published previous versions of our overall framework in [KGG15, KGG18b,
KGG18c]. In [KGG15], we have presented the general architecture and adaptation
process together with our requirements on knowledge models that are used within the
framework. In [KGG18b], we have presented our run-time evolution with a focus on

4
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online learning of new adaptation rules. There, as well as in [KGG18c], we have also
discussed the comprehensibility and explainability of our framework.

With our approach, we achieve robustness of intelligent self-adaptive systems by
applying continuous optimization and learning of comprehensible timed adaptation rules
at run-time. We enable the design of beneficial systems with two means: a) we
enable systems to continuously verify a set of given objectives by integrating dedicated
verification processes, and b) we provide an explanation basis to obtain trust in the
correctness and quality of autonomous decisions.

In summary, our approach has the following advantages: Our combination of
resource-efficient rule-based adaptation and on-line evolution of adaptation rules provides
flexibility for uncertain environments, while reducing costly learning to a minimum
that can also be moved to external servers. Explicit timing information for adaptation rules
allow for latency-aware proactive adaptation and for the application in real-time systems.
We cope with dynamic goal changes due to the modular structure and distance evaluation
of our goal model. These solutions enable our systems to maintain their system
goals in ever-changing operational contexts, thus being robust w.r.t. our definition.
We ensure that our self-learning self-adaptive systems behave as intended by
embedding formal analysis into the design process and into the evolution process for the
adaptation logic. We provide an explanation basis for autonomous adaptation and
evolution decisions to obtain trust in their correctness. We evaluate our framework with
three case studies from different domains, namely a smart temperature control system,
an autonomous drone delivery system, and a self-organizing production system.

This thesis is structured as follows. In Chapter 2, we define relevant terms and
introduce concepts that are necessary to understand this thesis. We discuss related work
in Chapter 3. Afterwards, we provide an overview of our approach in Chapter 4 and
introduce our smart temperature control system that is also used as running example. In
Chapter 5, we describe our adaptation process and our design of the knowledge models.
We describe our goal model that plays a central role in our adaptation process in Chapter
6. In Chapter 7, we present our runtime evolution of adaptation rules and in Chapter 8,
we describe our verification approach. Afterwards, we describe our implementation and
discuss experimental results in Chapter 9. In Chapter 10, we conclude our thesis and
outline future work.

5



2 Background

In this chapter, we provide preliminaries that are the foundation of this thesis. We
start with a general introduction of self-adaptive systems. Afterwards, we describe the
MAPE-K feedback loop, which is a prominent reference architecture for self-adaptive
systems and which we use as a basis for our framework. In the following, we introduce
the modeling language UPPAAL Timed Automata and how it enables formal verification
with model checking. We also provide the necessary preliminaries on model checking
and temporal logics. Within this thesis, we use timed automata for formal verification
and provide a formalization of our adaptation layer in timed automata. Afterwards, we
introduce the modeling language SystemC, its simulation semantics and briefly describe
the SystemC to timed Automata Transformation Engine which we use for our formal
verification. We use SystemC for our runtime models and provide an implementation of
our adaptation layer in SystemC. In the end, we explain the basic principles of genetic
algorithms, which we use for rule learning at runtime, and classification rule learning,
which we employ for runtime optimization of adaptation rules.

2.1 Self-Adaptive Systems

Self-adaptive systems are software systems that are able to adapt their behavior to ensure
safety and correctness even in case of unpredicted runtime changes in the operational
environment, the system topology (e.g. changing components or services) or the system
goals. To detect critical changes, a self-adaptive system continuously monitors and
analyzes itself, the environment, and the current degree of its goal achievements. Based
on the analysis results, the system autonomously decides whether and how to adapt itself
to achieve the system goals (again). If goal satisfaction can be quantified with some utility
function, the algorithm searches for the best available option. This behavior was inspired
by feedback control systems that control a physical target system in order to keep its
output as close as possible to a reference value by controlling its input. Feedback control
uses the error between measured output and reference value to calculate the new input
based on some control laws. To enable the systematic design of self-adaptive systems,
the integration of a similar feedback loop into the adaptation software was proposed and
several reference architectures were developed (see Chapter 3 for an overview). To adopt
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Chapter 2. Background

feedback loop control for software systems, a self-adaptive system consists of a managing
part that is responsible for the adaptation, and a managed part that corresponds to the
target system. The latter is responsible for the functional behavior of the system. System
goals serve as reference value and decision algorithms serve as control laws. As it is
often not possible to anticipate all possible runtime changes and system states at design
time, the decisions on whether and how to adapt are based on runtime knowledge. To
this end, available control parameters, like system parameters (e.g., speed of a robot,
or parameters for calculating the necessary flow temperature for heating), the system
structure (e.g. number of active servers in a web application) or behavioral modes1 (e.g.,
an eco mode, a frost-protection mode of a heating, or a cruise control mode of a car)
are identified at design time. In addition, adaptation operations on these parameters
(e.g., parameter adjustment, restructuring methods, or mode switch routines) are defined.
This knowledge is encoded in a suitable and processable way in the system, e.g. as rules
or executable routines, together with a possibility to evaluate the expected outcome of
applying such an operation, e.g. in form of models or expected rewards. These adaptation
parameters, adaptation operations and evaluation models, as well as the autonomous
decision algorithm build the adaptation logics of a self-adaptive system.

Adaptation Logics

In the literature, different approaches for designing the adaptation logics exist. Existing
approaches can be classified according to the following aspects:

• reactive vs. proactive adaptation
Reactive adaptation means that the system adapts as a reaction to a situation
that is not conform with the system goals. In this case, some goal is already
violated and the adaptation algorithm chooses an adaptation operation (or a series
of operations) to re-establish goal conformance.

In contrast, proactive adaptation approaches rely on a prediction model on the
future environment behavior. They continuously evaluate whether the system
will violate the system goals in the future and choose an adaptation operation
to prevent this. If the prediction is accurate, these approaches perform better
than reactive approaches in case of adaptation operations that cannot change the
system behavior instantaneously but take some time. In this case, adaptation can
be planed ahead to avoid latencies.

• parameter (and mode) adaptation vs. architecture-based adaptation
Depending on the kind of parameters that should be changed by adaptation,
different aspects have to be encoded in the adaptation logics. For parameter
(and mode) adaptation, adaptation operations specify how parameters can be
changed (e.g. step size, minimal and maximal values, prerequisites). These

1with behavioral modes we refer to predefined configurations for a specific behavior
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operations can be easily encoded in rules, which are sometimes also referred to
as tactics (e.g., in [GCH+04, MCGS15], that consists of a precondition (e.g.,
valueOf(p1) ≥ minValue ∧ prerequisitesFulfilled()) and the operation
(e.g., increaseValueOf(p1)). Mode changes can be encoded in similar rules by
using mode switching routines as operations.

For architectural changes that can be freely chosen (i.e. the system does not
have to stick to predefined architectural variants, which could be easily encoded
as modes), adaptation operations are usually more complex and may also have
side effects that influence the prerequisites of other operations. To cope with that,
architecture-based adaptation usually uses different models that specify allowed
architectural changes (e.g., based on meta models) and that allow for evaluating
changes before executing them in the system. These models are used at runtime
to guide the adaptation. Thus, they are usually referred to as models at runtime.

• offline vs online planning
To choose between different applicable adaptation operations (i.e., their prereq-
uisites are satisfied), different adaptation planning approaches exist. They can
be roughly classified into offline approaches that construct a set of adaptation
rules at design time and quickly choose between those rules at runtime, and online
approaches that search for an optimal adaptation at runtime. Offline approaches
are usually rule-based, whereas online approaches are based on model simulations
to evaluate the effect of different adaptation operations. Depending on the used
formalism and the size and complexity of the models, this simulation can take some
time and needs sufficient memory space. Examples are timed automata (e.g., used
in [IW14]) or probabilistic models such as Markov Decision Procedures (e.g., used
in [MCGS15]) or stochastic multiplayer games (e.g., used in [CGSP15]). For both,
online and offline approaches, reinforcement learning or evolutionary approaches
are often used. They learn the expected utility of each adaptation operation and
use this value as heuristic. As these utility values are only representative for the
observed situations, they cannot be reused if the environment behavior changes, or
the utility function changes due to goal changes.

A detailed discussion on different adaptation approaches can be found in Chapter 3.
In this thesis, we provide a novel definition of adaptation rules that contain a relative

definition of the expected effect on observable parameters such that the expected effect
can be evaluated in the current context without the need for extensive model simulation
or utility exploration. Furthermore, the effect expectations are separated from the system
goals and are still valid after dynamic goal changes.

8
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Figure 2.1: MAPE-K Loop [KC03]

2.2 MAPE-K Framework

The MAPE-K feedback loop is a very popular reference framework for self-adaptive
systems. It was initially proposed as an IT management solution by IBM in 2003 [KC03,
IBM04]. The vision was to achieve self-organization and -optimization by dividing the
system into autonomic elements (such as databases, web servers, or physical servers)
that cooperate with other autonomic elements to accomplish system-level goals. Each
autonomic element consists of an autonomic manager and a managed element (cf.
Fig. 2.1). The autonomic manager continuously monitors and analyzes the behavior of
the managed element, compares it to the objectives, and plans and executes actions to
change the behavior of the manged element if necessary. These activities are driven by
knowledge about the managed element and by the individual objectives of the autonomic
element. Individual objectives and interactions between autonomic elements have to
support the desired system-level behavior. The term autonomic was chosen to express
that the elements have some self-x properties (e.g. self-configuration, self-healing,..)
but the changes chosen by the manager can be predefined at design time. Thus, these
managers do not have to be able to make autonomous decisions in the sense of reasoning
or using artificial intelligence.

The behavior of the autonomic manager is represented as a control loop consisting
of the four activities monitor, analyze, plan, execute. Based on the initial letters of the
activities and the underlying knowledge, this architecture is typically referred to as the
MAPE-K loop. The monitor phase of this loop collects information from the sensors
provided by the managed elements and from its operational environment. Based on
this data, the analyze phase evaluates the situation and determines any anomalies or
problems. If a problem is detected, the plan phase generates an adaptation plan to
solve it. Finally, the execute phase applies the generated adaptation plan on the actual
system. All phases share a common knowledge base that contains knowledge about
the system and its context, e.g. the software architecture, operational environment,
hardware infrastructure and individual goals. The MAPE-K reference architecture has
the advantage that it offers a clear structure, which helps to focus on the design of each
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activity, that it is easy to understand, and general enough to capture different self-x
systems and their different planning strategies (from static rules to autonomous strategy
inference). Thus, it is was adopted and extended by many researchers. More details
about the advantages of using explicit feedback loops in self-adaptive systems, as well as
a discussion of different examples for feedback loops, are given by [BSG+09].

We use this popular architecture as a basis for our framework. We define an explicit
structure of the knowledge base and define suitable knowledge representations for our
criteria. Furthermore, we add a second layer above the manager layer to enable runtime
evaluation and the evolution of adaptation logics.

In the following, we introduce timed automata as modeling mechanisms and the
UPPAAL toolsuite for modeling, simulation and verification of timed automata. We use
UPPAAL Timed Automata as formal modeling language to support our simulation-based
learning and our formal verification of newly learned rules. In our verification approach
we use the UPPAAL model checker and define important properties for self-adaptive
systems in the temporal logic TCTL. Thus, we also give a short introduction on model
checking in general and a detailed introduction on temporal logics.

2.3 Modeling and Formal Verification with
UPPAAL Timed Automata

UPPAAL [BDL04] is a tool suite for modeling, simulation, and verification of timed
automata (TA). TA extend finite automata by a set of real-valued clocks C : R≥0 that
start with an initial value of zero and are uniformly advanced [BY04]. Transitions and the
duration of stay in a location depend on clock constraints, which are conjunctive formulas
of atomic constraints of the form x ∼ n or x − y ∼ n with x, y ∈ C, ∼∈ {≥, ≥, =, ≤, ≤}
and n ∈ N. Clock constraints on transitions (guards) enable progress when satisfied,
whereas clock constraints in locations (invariants) enforce progress by restricting the
time in a location. During a transition, clocks can be reset to zero. Concurrent processes
are modeled as networks of communicating TA executed with an interleaving semantics.
They are well-suited to model communicating real-time processes, provide a modular
structure and a formal semantics.

Language Elements

Timed automata (TA) consist of locations, transitions that connect locations, and clocks.
The UPPAAL modeling language UPPAAL Timed Automata extends TA with e.g.,
bounded integer variables, binary and broadcast channels, and urgent (∪) and committed
(c) locations. Binary channels enable a blocking one-to-one synchronization between
sender (?) and receiver (!), whereas broadcast channels enable non-blocking one-to-many
synchronization. Channels can also be marked as urgent to enforce synchronization as
soon as possible. Urgent and committed locations are used to model locations where
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no time may pass. Leaving a committed location has priority over non-committed
locations. Furthermore, UPPAAL provides a C-like action-language that can be used to
express guards and updates on variables in form of method calls at transitions. Clocks
and variables can be declared as global or local within a template. To model similar
components or processes of a system, UPPAAL allows to model parameterized templates
of single timed automata. With this, different instants of an automaton can be defined
in the system declaration. UPPAAL models are represented as XML-files, which can be
easily manipulated, e.g for verification experiments with different parameter values.

To illustrate the main modeling concepts, we use a small example UPPAAL timed
automaton (UTA) as shown in Fig. 2.2. The initial location is marked by ⃝◦ . The
outgoing edge of this location is labeled with request? to enable receiving on this
channel for synchronization with a concurrent timed automaton. ack! denotes sending
on the respective channel. x is a clock variable that is first set to zero and then used
in two clock constraints: the invariant x <= maxtime denotes that the corresponding
location must be left before x becomes greater than maxtime, and the guard x >=

mintime denotes that the corresponding edge can only be taken if x >= mintime. Both
clock constraints together restrict the automaton to leave the location exactly at x =

mintime. The symbols ⃝∪ and ⃝c depict urgent and committed locations as explained
above.

x <= maxtime

ack!
value = f(t)

x >= mintime

request?
x = 0

Figure 2.2: Example Timed Automaton

To model dynamic behavior, the UPPAAL variant UPPAAL SMC (Statistical Model
Checker) [DLL+15] can be used. It allows for the integration of dynamic behavior in terms
of ordinary differential equations (ODEs). UPPAAL SMC is designed for real-time systems
with stochastic semantics and provides a stochastic simulator with trace recording and a
stochastic model checker. The stochastic simulator provides the possibility to directly
specify objects of interest for which value changes should be recorded in the simulation
trace using the command simulate N [≤ x] {observed variables/parameters}

that simulates the model N times for x time units and records the values of the observed
variables and parameters.

Semantics

The semantics of a timed automaton is defined as a transition system on semantic states
that consist of a location l and a clock valuation u, which maps all clocks c ∈ C to
non-negative real values. The initial state s0 = (l0, u0) consists of the initial location
l0 and a clock valuation u0 that maps all clocks to zero. Transitions between states
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describe semantic steps that can either be a time step (1) or a discrete transition (2) in
the underlying timed automaton:

1. (l, u) d→ (l, u + d) iff ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l)

2. (l, u) a→ (l′, u′) iff ∃l
g,a,r→ l′ such that u ∈ g ∧ u′ = [r ↦→ 0]u ∧ u′ ∈ I(l′)

where (l, u) is a semantic state, u ∈ g denotes that all clock values satisfy the guard
g, a is an action (i.e. a synchronization or a variable assignment) and u′ = [r ↦→ 0]u
denotes the reset of all clocks defined in r ⊆ C to zero ([BY04]).

The semantic state of a network of timed automata is a composition of the semantic
states of each automaton. A semantic step of the network can be either a time step, a
step of a single automaton or a synchronization between two automata (on the sending
and receiving events c! and c?) or between one sender and an arbitrary number of
receivers in case of a broadcast synchronization as additionally supported by UPPAAL.

The modeling of concurrency and time leads to an exponential increase in the number
of states. To enable model checking of timed automata, the semantic state space has to
be final and to improve performance the state space should be as small as possible. To
achieve this, a symbolic semantic that defines an equivalence over semantic states can
be used to reduce the state space.

In [AD94], region equivalence was introduced. The main idea of this approach is (a) to
exploit the fact that only clock constraints that compare clock values with integer-values
are allowed in TA, and (b) to define a ceiling k(x) for each clock x ∈ C based on the
greatest integer value that constraints this clock. Thus, two clock assignments u and v can
be considered equivalent if (i) their integer part is equal or both are greater than the clock
ceiling, and (ii) both have a fractional part of zero or both have a fractional part greater
than zero and (iii) the relation to all other clocks is preserved under both assignments,
i.e. ∀x, y : if u(x) ≤ k(x) ∧ u(y) ≤ k(y) then {u(x)} ≤ {u(y)} iff {v(x)} ≤ {v(y)}
where {d} denotes the fractional part of a real number d.

Region equivalence can be used for a finite-state partitioning of the infinite state
space of timed automata, because for a fixed amount of clocks which all have a maximal
constant, the number of regions is finite. Region equivalence implies bisimilarity w. r. t.
the untimed bisimulation for any location or location vector of a timed automaton or a
network of timed automata. The resulting finite-state model is called region automaton
or region graph. However, the number of states is exponential to the number of clocks
in the automaton. To further reduce the semantic state space, zone equivalence as first
described in [Dil89] can be used as a more efficient representation of the state space.
The main idea is to abstract regions into a zone, if they can perform the same discrete
transitions. Formally, a zone can be described as a convex conjunction of atomic clock
constraints that describe bounds on individual clocks and the differences between pairs
of clocks. As zones provide a coarser abstraction than regions, they reduce the semantic
state space. Furthermore, zones can be efficiently stored in memory as Difference Bound
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Matrices. For more details on the semantics and model checking algorithms for TA, we
refer to [BY04].

Model Checking and Temporal Logic

UPPAAL models can be verified using the build-in model checker. Model checking is a
formal verification technique to automatically verify that a model M satisfies a logical
property Φ. This is usually denoted with M |= Φ. The model M is usually given as a
labeled transition system (LTS) and converted to a Kripke structure, which represents
the semantic state space. A Kripke structure is a graph with vertices representing
all reachable states of the system and edges representing transitions between these
states. Furthermore, it has a labeling function that maps each state to the set of atomic
propositions that hold in it. Each execution path in the Kripke structure is a possible
execution trace of the system. The general model checking approach is to check whether
the Kripke structure fulfills Φ by checking all states. Thus, the whole state space has to
be explored. However, this is often not directly feasible as concurrency and time lead
to an exponential increase in the number of states. During the last decades several
techniques have been proposed to face this state space explosion problem. For timed
automata, which have an infinite state space due to their real-valued clocks, a symbolic
semantic has been defined to reduce the semantic state space as explained above. If the
property is not satisfied in the model, a counterexample, i.e. a trace from the initial
state of the model to the location violating the property, is generated.

Temporal Logic CTL* Properties of interest for labeled transition systems (LTS)
describe properties of states and properties over several states. To specify such properties,
temporal logics can be used. To this end, the LTS can be unfolded into a computation
tree with the initial location as root node. Properties over a computation tree can be
specified using the the computation tree logic CTL*. A CTL* formula consists of a
state property, i.e. a property that holds in a state, temporal operators that describe
a temporal order of properties, and path quantifiers that specify whether the property
should hold on all or on some paths. State properties are defined using propositional
logic (atomic propositions and logical connectives). In CTL*, the following temporal
operators exist:

• X Φ (neXt): property Φ holds in the next state.

• F Φ (Finally): property Φ holds in some future states including the current state.

• G Φ (Globally): property Φ holds in all future states including the current state.

• Φ U Ψ (Until): property Φ holds in all future states including the current state,
until Ψ holds eventually.
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There exits two different path quantifiers:

• A (Always): The property holds for all paths.

• E (Exist): The property holds for at least one path.

The temporal operators can be freely combined in CTL*. CTL* has two important
subsets: linear time logic (LTL) and computation tree logic (CTL). LTL can be used to
describe properties on a single path or a set of paths. Time is considered to be linear
and, thus, path quantifiers are not used in LTL. In CTL, time is not considered to be
linear and properties describe the behavior on the computation tree. However, each path
quantifier must be immediately followed by a temporal operator.
To specify time constraints within a CTL formula, the extension timed CTL (TCTL) can
be used. In TCTL, CTL is extended by the possibility to introduce formula clocks and
constraints over formula clocks and over automata clocks. Formula clocks can, e.g., be
used to specify the timing in an Until-Formula or in a formula with Finally. For example
A(Φ U≤3Ψ) means that Φ holds until within 3 time units Ψ becomes true. The same
formula can be expressed using the freeze operator for introducing a formula clock (c in
Φ) of TCTL: z in A((Φ ∧ z ≤ 3) U Ψ). To specify that a property becomes valid within
a time bound, AF≤tΦ can be used. With AF=tΦ, we can specify that the property Φ
becomes valid exactly after t time units. In TCTL the temporal operator X (neXt) does
not exist.

TCTL Subset of UPPAAL In UPPAAL, properties that should be checked by the
model checker are called Queries. Queries can be expressed in a subset of timed CTL,
where the temporal operators are restricted to F and G and quantifiers may not be nested.
The only exception is the liveness operator Φ - -> Ψ (Leads-To), which is equivalent
to the formula AG (Φ =⇒ AF Ψ) and means whenever Φ is satisfied, Ψ is satisfied
eventually. The temporal operators are denoted in box notation in UPPAAL with F =
<> and G = []. In summary, the following five general properties exist in the UPPAAL
TCTL subset:

• AG Φ (written as A[])

• AF Φ (written as A<>)

• EG Φ (written as E[])

• EF Φ (written as E<>)

• AG (Φ =⇒ AF Ψ) (written as Φ - -> Ψ)

State formulas are given by predicates constraining clocks and integer variables, or
stating that an automaton is in a specific location. Global variables and clocks are
identified by their name and local variables, clocks and locations have to be specified by
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a prefix that identifies the template instance. In contrast to TCTL, UPPAAL does not
allow to introduce formula clocks. However, this can often be modeled by introducing
additional automata clocks and specifying constraints on those. To model the freeze
operator in the Leads-To operator Φ - -> Ψ , the introduced clock has to be reset in an
automaton as soon as Φ becomes true. This is only possible, if Φ becomes true after
taking a transition, e.g. due to a synchronization or a clock invariant. Otherwise, we
have to introduce an additional observer automaton that periodically (with some period
d) checks whether Φ has become true, and resets a clock if this is the case. Thus, in
contrast to TCTL, it is not generally possible to check AG (Φ → AF≤t Ψ), but it is
possible to check the weaker untimed property AG (Φ → AF Ψ) or the stronger property
AG (Φ → AF≤t−d Ψ). Note, that it has to be ≤ t − d, because we might observe Φ
up to d time units after the property had become true. To check whether a deadlock
exists in the given system, the UPPAAL query language provides the formula deadlock

which becomes true, if the system contains a deadlock. If a property does not hold, the
UPPAAL model checker provides a counter example trace. Traces consist of the visited
states (consisting of automata locations and variable and clock assignments) and the
transitions between those states.

Above, we have introduce UPPAAL timed automata, which we use as formal modeling
language to support our simulation-based learning and our formal verification of newly
learned rules. We have also given a short introduction on model checking and a detailed
introduction on temporal logics, which provides the basis for our formal verification. In
the following, we introduce the system level design language SystemC, which we use as
modeling language for simulation-based learning, as well as for the implementation of
our prototype of the framework.

2.4 Modeling with SystemC

SystemC is a system level design language and a framework for HW/SW co-simulation,
which was was developed as an open industrial standard by the Open SystemC Initiative
(OSCI - now Accellera), and has been approved by the IEEE Standards Association
as IEEE 1666-2011 [IEE11]. Corporate Members of the OSCI were amongst others:
ARM, Cadence, CoWare, Intel, Mentor Graphics, NXP, STMicroelectronics and Synopsys.
SystemC is widely used in industry in many different fields of application. It is available as
open-source code and is realized as C++ library, thus easy to use for C++ programmers.
It provides language elements for the description of hardware and software on different
levels of abstraction. It supports an efficient design space exploration and performance
evaluation throughout the whole design process even for large and complex HW/SW
systems. Thus, it is widely used for HW/SW Co-Design.
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wait() wait for an event from the static sensitivity list or
that has been defined with next_trigger before

wait(SC_ZERO_TIME) wait for one delta cycle
wait(t) wait for t time units
wait(e) wait for event e
wait(t, e) wait for event e or timeout after t time units
wait(e1 & e2 ) wait for both events
wait (e1 | e2) wait for one these events

Table 2.1: The wait() method

Language Elements

In SystemC computation and communication are strictly separated. SystemC designs
consist of communicating processes that are capsuled in modules. Communication is
capsuled in channels and ports connect modules and channels.

Modules are a structural element that can be both hardware and software components.
They contain variables and C++ methods, but also processes to model the behavior of
the component, ports as entry points for the communication with other modules, and
other modules to build hierarchical components. Modules can be parameterized to model
different instances.

Processes encapsulate C++ methods. They have a (possibly empty) static sensitivity
list of events. If one of these events is notified, the process becomes runnable and will be
executed. During runtime, dynamic sensitivities can be declared to overwrite the static
sensitivity list temporarily. This can be used, for example, to declare that a process should
wait for 300ms before continuing. There exist two types of processes: SC_METHOD
and SC_THREAD. The main difference between both types is that an SC_METHOD
process runs from the start of the encapsulated method until its end and cannot be
suspended during execution. SC_THREAD processes can be suspended and reactivated
afterwards. Thus, their encapsulated methods usually contain a while-loop.

Events can be used to model the timing behavior of and synchronization between
processes. They influence the execution of processes that are statically or dynamically
sensitive to them. Static sensitivity is declared during process declaration with the
keyword sensitive. Dynamic sensitivity is declared at runtime by using the wait()

and next_trigger() methods. Both methods can be called with several arguments as
shown in Table 2.1. Note, that calling wait() will suspend the process until the event is
notified and can, thus, only be used in SC_THREADS. There exist three types of events:
Timed waiting will create timed events, channels have default events for, e.g., notifying
a process that a value has been written, and using the keyword sc_event event objects
can be declared to synchronize processes within a module.
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Communication is capsuled in channels which implement an interface. There exist
basic channel types like sc_signal (modeling a hardware signal) or sc_fifo (modeling
a buffered communication), and users can define own channels that are modeled as
modules. Channels are connected to modules via ports, which provide dedicated entry
points for the communication and are bound to an interface, which has to be implemented
by the channel. This structure allows for an easy exchange of components (i.e. modules
or channels) without requiring changes in the connected components as long as the
channels all implement the same interface.

SystemC also provides additional data types for the modeling of hardware components
(e.g., 4-valued logic, bit-vectors and fixed-point numbers) and timing behavior (e.g.,
clocks and time values).

Simulation Semantics

Initialize 1) Evaluate
3) Advance 

Time

2) Update

while 
processes

ready

delta
cycle

Figure 2.3: SystemC Simulation Semantics

To explore and evaluate different design decisions, SystemC comes with an event-
driven simulation kernel that enables simulation of concurrent processes in a simulated
real-time environment. The event-triggered execution of processes and the simulation
time are controlled by the cooperative SystemC scheduler. It implements a synchronous
semantics based on delta-cycles, which impose a partial order on parallel processes.
Figure 2.3 shows the behavior of the SystemC scheduler. After the initialization of
processes and channels, the scheduler performs delta-cycles as long as processes are
runnable. A delta-cycle consists of the two phases evaluate and update. Within the
evaluate phase, all runnable processes are executed. Write requests and event notifications
are collected. Immediate event notifications are executed in the same evaluation phase
and processes that are sensitive to those events become runnable. The execution order of
processes is not specified in the SystemC standard. After all runnable processes have been
executed, the update phase starts and collected changes are executed on the channels. All
processes that are sensitive to corresponding channel events and processes with zero-delay
notification (wait(0)) become runnable in the next evaluate phase. A delta-cycle does
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not consume time and the number of delta-cycles that can be executed at each point of
simulation time is not restricted. If no processes are runnable any more, simulation time
advances until at least one process is runnable or the simulation is stopped. For more
details on the SystemC semantics, we refer to [IEE11, GLMS02].

The simulator provides the possibility to record value changes of specified variables
and signals in a Value Change Dump (vcd) trace file.

SystemC to Timed Automata Transformation

In our thesis, we use the SystemC to Timed Automata Transformation Engine (STATE)
[HFG08, PHKG13, HPG15] for our formal verification. STATE is a java-based framework
that automatically transforms a given SystemC design into a semantically equivalent
network of UPPAAL timed automata. The resulting model has a similar structure as
the original SystemC design and includes a formal model of the SystemC Scheduler to
model the delta-cycle based semantics. STATE transforms processes, methods, and
communication channels to single UPPAAL templates. These templates interact with
the SystemC scheduler model based on the underlying event model of SystemC. STATE
also includes several optimizations on the resulting model to improve the readability and
to reduce the semantic state space for model checking. For a detailed explanation of the
framework and the transformation rules, we refer to [HPG15].

The STATE framework imposes the following restrictions on transformable SystemC
designs: variables have unique identifiers (no shadowing), only integer and boolean as
base types, only arrays and structs as complex data types, no function pointers, no
type casts, no unions, no void pointer, no recursion, statically determinable maximum
of processes, method calls, and memory consumption, no pointer arithmetic, no direct
memory access, noreferences to fields of structs, and no dynamic proccess creation.

In the following, we introduce Genetic Algorithms, which we use as learning algorithm
for self-adaptation rules.

2.5 Learning with Genetic Algorithms

The main goal of self-adaptation is to optimize the performance (w.r.t. the system
goals) of the underlying managed system in the current operation context. Thus, the
adaptation has to choose the best control parameters for the current situation. Finding
the best parameters for a given situation is a multi-dimensional optimization problem. An
efficient approach to solve such problems are stochastic search algorithms, like genetic
algorithms (GAs) [H+92]. GAs are a subclass of evolutionary algorithms. They are easy
to implement and achieve good results for a broad range of problems. The main idea
behind genetic algorithms is to mimic the biologic evolution process by implementing
suitable selection, combination (i.e. crossover) and mutation strategies on a set of valid
solutions. By following the principle “survival of the fittest”, the population of solutions
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Listing 2.1: General Genetic Algorithm
1 P ← i n i t i a l i s e P o p u l a t i o n ( ) ;
2 e v a l u a t e P o p u l a t i o n (P ) ;
3 w h i l e ( not endCond ( ) )
4 C ← ∅
5 w h i l e (#C ≤ c h i l d s P e r R u n )
6 p1 , p2 ← s e l e c t P a r e n t s (P ) ;
7 c1 , c2 ← c r o s s o v e r ( p1 , p2 ) ;
8 c1 ← mutate ( c1 ) ;
9 c2 ← mutate ( c2 ) ;

10 C ← C ∪ {c1 , c2 }
11 end_while
12 e v a l u a t e P o p u l a t i o n (C ) ;
13 P ← newGenerat ion (P , C ) ;
14 b e s t ← g e t F i t t e s t (P ) ;
15 end_while

will evolve towards an optimal solution. The fitness of a solution describes how well the
solution achieves the goals.

The general algorithm is depicted in Listing 2.1. It starts with a parent population (P)
of solutions encoded as vector or string of parameter values. This representation is called
the genotype of the solution. Usually the parent population is initialized with random
solutions (cf line 1). Each solution is evaluated with a fitness function that quantifies
how good the solution fulfills the criteria (line 2). This function usually operates on
the phenotype of the solution, i.e. the original representation of possible solutions. For
each iteration, the GA generates the specified amount of children (C). To this end, it
selects two parent vectors from the current generation (line 6), combines their parameter
values using crossover (line 7) and mutates some control parameters of the resulting
child vectors (line 8). This process is repeated until the specified amount of children is
reached. Afterwards, the fitness of all generated children is computed (line 12). The
children compete with the individuals from the old population for a place in the new
population for the next iteration (usually the size of the population is constant). This
process is repeated until a termination criterion is reached, i.e. a sufficient solution is
found or a computational limit is reached (e.g., the number of iterations).

In the following, we describe the main operators of GAs in detail and discuss different
variants.

Selection Selection is used to increase the quality of the solutions. We differentiate
between two types of selection: parent selection and survivor selection. Parent selection
selects two solutions as parents of children for the next generation. Survivor selection
determines which individuals will be part of the next generation. For both selection tasks,
different solutions are possible. The most common are choosing the most fittest solutions
or using probabilistic choice, which gives a higher chance to solutions with a high fitness
and a smaller chance to those that have a lower fitness. Probabilistic choice can prevent
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that the population gets stuck in a local optimum. The most popular selection algorithms
are:

• In Truncation Selection the solutions are ordered by their fitness value and the
best individuals are chosen. It is an easy method, but less sophisticated than many
other selection methods, and, thus, not often used in practice.

• In Fitness Proportional Selection (FPS)/ Roulette-Wheel Selection a pro-
portion of the overall probability is assigned to each individual based on their fitness
value. This could be compared to a roulette wheel in a casino. The probability that
a solution i is selected depends on its absolute fitness value fi compared to the
absolute fitness value of all other solutions. As the sum of probabilities over the
whole population has to be one, the selection probability of solution i can be defined
by PF P S(i) = fi/

∑︁N
j=1 fj where N is the number of solutions in the population.

This method leads to a fast convergence if single good solutions dominate weak
solutions. In later iterations, when fitness values are all close together, solutions
have an almost uniform probability and thus, the mean population fitness increases
very slowly.

• Rank-Based Selection was inspired by the drawbacks of FPS. It preserves a
constant selection pressure, by sorting the solutions based on their fitness values
and by selecting according to their rank. The mapping from rank to selection
probability can be done in different ways, e.g. linear or exponential. An exponential
mapping leads to a higher selection pressure.

• Tournament Selection does not require a global knowledge of the population,
nor a quantifiable fitness measure. Instead, it is based on comparing any two
solutions with each other to establish an ordering relation. The algorithm performs
several tournaments, in which k individuals are ranked and the best one is chosen
to be selected. The probability that a solution is selected depends on its rank in
the population and on the tournament size k. A large k increases the selection
pressure as only the fittest individual of each tournament is selected.

For survivor selection, there additionally exist strategies that also consider the age of
solutions and prefer younger solutions over old solutions.

Crossover Crossover and mutation are variation operators that are used to create new
solutions from existing ones. Crossover is used to combine two solutions by taking some
part (some genes) from the first parent and some part from the second parent. This is
usually done by selecting an index of the genotype to split the parent genotypes and
by recombining the first part of each parent with the second part of the other parent.
The index is usually chosen randomly. This method is called single-point or one-point
crossover. It can be easily generalized to variants with more than one crossing point,
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Figure 2.4: One-point crossover (top), 2-point crossover (middle) and uniform crossover
(bottom) [ES+03, p. 53]

called n-point crossover. A further crossover strategy is uniform crossover, where for each
parameter (gene) a random choice is performed to decide from which parent the gene
should be inherited. The second child is usually created by using the inverse mapping. In
Figure 2.4 these different strategies are illustrated.

Figure 2.5: Bitwise mutation for binary encodings [ES+03, p. 52]

Mutation Mutation is a unary variation operator that mutates single parameters
(genes) of a solution by applying a valid mutation operation on the selected parameters.
Mutations for binary encodings are done by bit-flipping. For integer values, random
resetting or adding a small (positive or negative) number can be used. Mutation of
parameters is usually performed according to a probabilistic mutation rate but can also
be performed by randomly deciding for each parameter whether it is mutated or not. For
the probabilistic rate, each parameter is mutated with a user-defined mutation probability.
While crossover can only result in solutions that have the same parameter values as
their parents but in a different combination, mutation provides the population with new
parameter values.
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Fitness Function The fitness function forms the basis for selection. It is a function
that assigns a quality measure to the genotype of a solution. Usually this is performed by
transforming the genotype into the phenotype and evaluating its quality. If the problem to
solve is an optimization problem, the objective function of the problem can also be used
as fitness function, or a simplified version of it. Often, a weighted sum of sub-functions
for each criterion is used as fitness function. If the problem is a constraint satisfaction
problem or a constrained optimization problem, the satisfaction of constraints can be
reflected in the fitness function by introducing penalties for constraints that are not
satisfied.

For more details on genetic algorithms, we refer to [ES+03].
We use a genetic algorithm to learn adaptation rules for situations that have not been

covered by the rule set before. To avoid discrepancies between the effect expectation of
our adaptation rules and the actual effect, we learn context-dependent effect deviations
from observed effects at runtime. In the following, we introduce classification rule learning,
which we use for this task.

2.6 Classification Rule Learning

Classification rules describe the learned classification model as a set of rules of the form

IF conditions THEN class.

Ideally, this set is complete, i.e., it covers all data sets that belong to the class, and
consistent, i.e., it does not cover any data that does not belong to the class. In reality,
this is often not possible, and replaced by the less strict criteria coverage and accuracy,
which are given as percentage of covered/ correctly classified examples.

Classification rule learning is a supervised learning task, thus all training examples
are labeled with their correct class. Usually, the training data is described as a set of
examples given in attribute-value representation. An example ej then is a vector of
attribute values labeled by a class label: ej = (v1,j , ...vn,j , cj), where each vi,j is a value
of attribute Ai, and cj ∈ C is a value of class attribute C. Attributes can either have a
finite set of values (discrete or nominal) or be real numbers (numerical). As example
consider the following data set that consists of three examples:

Swims hasFourLegs class

true false fish

false false bird

false true cat

From this data set, the following rule set can be learned:

• IF swims = true THEN fish
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• IF swims = false ∧ hasFourLegs = false THEN bird

• IF swims = false ∧ hasFourLegs = true THEN cat

Instead of specifying swims = false, the rules can be grouped in a decision set, where
rules are ordered and each subsequent rule is connected to the previous rule with ELSE.
Thus, the first fitting rule is taken. This can also be used to resolve conflicts if several
rules fit. Rules can be ordered based on the size of their conditions (rule-based), i.e. the
strength of their condition, or in order of importance or frequency of the predicted class
(class-based). In unordered sets, conflicts are often resolved with a voting mechanism.

Learning algorithm approaches

There exit several approaches for rule learning. The most common are the extraction
of rules from a decision tree (e.g., the C4.5 algorithm) and inductive approaches using
sequential covering (e.g., RIPPER). The former often suffers from subtree repetition and
redundant checks. To solve this, rule pruning is used to remove conditions that are not
necessary, i.e. that do not improve the accuracy of the classification rule.

x x  x  x
 x x  x  x
  x x x  x

y y y y y
 y  y   y
   y   y

y x x  y
y x x y y
 y  y   y

a
2
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Figure 2.6: An example snapshot of the Sequential Coverage Algorithm

The inductive approaches directly extract rules from the training data by learning a
set of rules for each class. They use a sequential covering algorithm that sequentially
learns rules that cover many examples of the training data for one class, and ideally no
examples of other classes. For each learned rule, the covered examples are removed from
the training set, and the process is repeated on the remaining set until all examples are
covered or the quality of learned rules is beyond a user-defined threshold. An example is
given in Figure 2.6. There, the algorithm has already learned a rule for class x and deleted
the covered examples. A second rule is identified (framed with a box) and some examples
remain for the next iteration. With this approach, we get rules with high accuracy but
not necessarily with a high coverage. Each rule is learned by using a feature construction
algorithm that corresponds to a heuristic search in the space of possible rules. Most
learners are top-down learners that start from the most general rule (IF true THAN class
ci) and iteratively specialize it by adding conditions as long as examples are covered
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that do not belong to the predicted class. Specialization is usually guided by a heuristic
quality function, such as precision or information gain, that leads to an improvement in
consistency and coverage of the rule. To avoid overfitting, i.e. fitting perfectly to the
training data but not generalizing well to unseen data, incremental pruning is used to
generalize rules again.

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) RIPPER
was proposed by Cohen in 1995 [Coh95] as an inductive algorithm that does not produce
rules that overfit to the data (e.g. by learning to predict noise). It combines several
aspects of previous works, like incremental pruning, and adds a post-processing phase to
optimize learned rules. The post-processing iteratively constructs two alternative rules for
each rule and evaluates whether replacing the original rule with one of the alternatives
would optimizes the overall rule set. RIPPER has a high precision and scales well on
large and noisy data sets. It has been shown in several comparative studies, that RIPPER
is one of the best rule learning algorithms and it is still state-of-the art in inductive rule
learning [HKP12]. We have used this algorithm to identify context-dependent effect
deviations of applied adaptation rules.

WEKA WEKA [WFHP16] is an open source tool for several machine learning/ data
mining tasks. It provides a collection of machine learning algorithms for data mining
tasks and tools for data preparation, classification, regression, clustering, association rules
mining, and visualization. It provides the following classification rule learning algorithms:
a decision table classifier, OneR that constructs only one rule for each target and only
uses the most influencing attribute as predictor, PART, which learns rules from a partial
decision tree, and JRIP, which implements RIPPER. We have used WEKA to conduct
experiments for our observation-based learning.

For more details on classification rule learning, we refer to [FGL12, HKP12].
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3 Related Work

In 2003, self-management was proposed as the only viable option to handle the raising
complexity and dynamics of software systems [KC03]. Later this class of systems was
called self-adaptive to express that these systems adapt themselves to achieve their goals.
In the last two decades, researchers and engineers have developed several solutions to
enable the realization of self-adaptive systems. According to Weyns [Wey17], this research
can be grouped into six waves, each with a special interest in the research community.
The first two waves were focused on foundations for self-adaptation: the automation
of tasks, such as installing, configuring, tuning and maintaining autonomous software
systems, and architecture-based solutions for self-adaptation. Afterwards, runtime models
were investigated to enable reasoning about the system and its goals, and to extend the
use of models from model-driven development to runtime. As goals are a key element of
self-adaptive systems, goal-driven approaches became the next focal point of interest.
With the increasing possibilities to build self-adaptive systems, it became conceivable to
apply them in safety- or cost-critical and highly uncertain domains, such as cyber-physical
systems or cloud systems. The next challenge arose: guarantees under uncertainties.
This challenge is investigated in the current waves five and six, which have a different
focus. In wave five, the focus lies on resolving uncertainties at runtime, whereas in wave
six control-based approaches are investigated to profit from the mathematical foundation
of control theory. All these research activities have contributed to the maturity of the
field and further research is still necessary to reach full maturity and to support the vision
of fully autonomous cyber-physical systems that we can safely trust to control several
aspects of our lives. In Figure 3.1, the development of the research field of self-adaptive
systems is depicted on a time line.

Our approach can be positioned in wave five (guarantees under uncertainty) and builds
on ideas from waves three (runtime models) and four (goal-driven). Our combination
of efficient and comprehensible adaptation-rules with a quantitative goal model that
provides flexibility w.r.t. dynamic goal changes, as well as our integration of formal
verification and safe runtime evolution of these rules is unique in the field of research.

In this chapter, we discuss related work to our approach. To this end, we structure
our discussion according to our main contributions. First, we discuss general frameworks
for self-adaptive systems with a focus on the adaptation process and knowledge models.
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Figure 3.1: Development of the research field of self-adaptive systems. Grey shades indicate
the degree of maturity in that phase. [Wey17, p. 32]

Afterwards, we focus on approaches that include online learning and optimization of
adaptation operations. Then, we discuss verification approaches for self-adaptive systems.
In the end of this chapter, we discuss related work to our quantitative and context-
dependent goal model and the state-of-the-art in explainable CPS.

3.1 General Frameworks for Self-Adaptation

In the beginning of research on self-adaptive systems, several conceptual frameworks
were developed. The most prominent framework is the MAPE-K framework, which
was proposed by Kephart and Chess [KC03]. In 2007, Kramer and Magee [KM07]
proposed a three-layer architecture for architecture-based self-adaptation. The bottom
layer corresponds to the managed system of the MAPE-K framework. The middle-layer
is responsible for adaptation of component parameters, or structural changes, such as
removing or adding components or changing interconnections between components. It
consists of a set of predefined plans. The top layer consists of a high-level specification
of goals associated with tasks to fulfill these goals. It produces new plans if the middle
layer could not handle a certain context condition with the existing plans. To this end,
alternative goals are identified and suitable plans are generated. New goals can be
introduced at runtime, which will also trigger plan creation.

In parallel to the research activities on self-adaptive systems, organic computing was
investigated. An organic computing (OC) system is a system that adapts dynamically to
changing conditions and has several self-x properties such as being self-organizing, self-
configuring, self-healing, self-protecting, self-explaining, and context-aware [MSSU11].
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The OC initiative has a strong focus on self-organization and emergent behavior. Emer-
gence occurs in complex systems with interactions among large numbers of components
under different operational conditions. To handle this, OC systems should also observe
and adapt their own goals, plans, resources, and behaviors. A prominent architecture for
OC systems is the observer/controller architecture [RMB+06]. It consists of the system
under observation and control (SuOC), the observer, and the controller. This structure
is closely related to the MAPE-K loop. the SuOC corresponds to the managed element,
the observer is similar to Monitor and Analyze, and the controller corresponds to Plan
and Execute. However, the observer/controller architecture is more detailed and also
includes means for learning and optimization of the control logic. An example for the
latter is [TPB+11], which we discuss in Section 3.3.

With FORMS [WMA12], a comprehensive formal reference model was developed.
It consists of a small number of formally specified modeling elements and a set of
relationships that guide their composition. FORMS offers a formally founded vocabulary
for the most important architectural constructs of self-adaptive systems, such as the
responsibilities allocated to different parts of a self-adaptive system, the processes that
realise adaptation together with the models they operate on, and the coordination
between feedback loops in a distributed setting. The formal representation of FORMS is
specified in the formal specification language Z, thus enabling the precise description and
reasoning about architectural characteristics of distributed self-adaptive software systems.
FORMS can be used to define reusable architectural patterns for self-adaptive systems.
It does not provide an implementation framework.

In 2013, [VTM+13] proposed DYNAMICO, a reference model that explicitly considers
runtime changes in system goals and adaptation mechanisms. This framework consists
of three feedback loops: One for changing goals, one for target system adaptation
and one for dynamic changes of the monitoring strategies in response to changes of
available sensors or changes of system goals. Changes in the goals are transferred to the
adaptation feedback loop to ensure that monitoring strategies are adapted and new goals
are considered during analysis and planning of adaptations.

Reference frameworks for self-adaptation that are based on runtime models are
proposed in [BFT+14] and [AGJ+14]. These runtime models provide the system with
self-awareness and are used for analysis and evaluation of adaptations. However, these
reference models are very abstract and do not specify how the run-time models are
used for adaptation and how adaptation mechanisms can be adapted. In [BFT+14], the
reference model distinguishes between a ground level that basically describes a MAPE-K
loop, and higher levels of abstraction that introduce various run-time models. As a
result, it allows for the structured design of adaptive systems and focuses on architectural
mechanisms to base adaptation on. In [AGJ+14], an abstract approach is presented
where adaptation is based on system models, a feedback loop, and goal models. Their
reference model possesses similarities in the structure of the system models compared to
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our knowledge models and a reasoner that performs search-based learning on the system
models. However, the general adaptation process within this reference model is given in
a rather abstract way, especially the role of the plan models is not obvious.

None of the existing conceptual frameworks provides an integrated solution for
efficient adaptation planning, runtime optimization and learning of adaptation rules and
formal verification.

3.2 Planning Approaches

Planning is the most crucial part of Self-Adaptation. Two different types of planning
approaches can be distinguished: online planning and offline planning. An online planner
generates a plan at runtime, whereas an offline planner chooses between precomputed
strategies for common cases. The latter allows for a fast response to known or predicted
situations, but cannot handle unanticipated adaptation needs. In the following, we give
an overview of different planning approaches.

3.2.1 Offline Planning

Many approaches focus on static adaptation using rules or configurations. Examples are
[GCH+04], [SST06], [KM07] (see above), [ASSV07], [RRL+13], [FRLB15] and many
more.

The most prominent framework that is based on selecting between predefined adapta-
tion rules is Rainbow [GCH+04]. The Rainbow framework defines a reusable infrastructure
for architecture-based self-adaptation. Its structure resembles the MAPE-K loop and
clearly distinguishes between the reusable adaptation infrastructure and the system-
specific adaptation knowledge. Adaptation knowledge is defined in terms of strategies
that are defined in an IF-THEN-ELSE form and contain sequences of actions with their
preconditions. Rainbow uses an abstract architectural model to monitor the system,
evaluates the model for constraint violation, and performs adaptations if necessary. To
this end, components have invariants that are associated to strategies that should be
executed to restore violated invariants. Rainbow supports structural and parameter adap-
tation on different system levels. In [SST06], an adaptive system is abstractly modeled
as a collection of communicating services that can be reconfigured based on locally
available data flow information. The adaptation behavior of each service is described
using configuration rules. The work in [ASSV07] provides a model-based development
approach in which adaptation behavior is strictly separated from functional behavior.
Adaptation is realized by switching between predefined configurations. In [RRL+13], a
goal-driven approach for component-based self-adaptation is proposed. It consists of an
offline phase, where a set of adaptation rules is generated, and an online phase, where
rules are evaluated to choose the best adaptation strategy. The rules specify adaptation
strategies for components. they consist of an event that triggers adaptation, a list of
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actions that are relevant for this event and conflicting, as well as dependent adaptations.
At runtime only one of the proposed actions is select. To this end, all actions are
evaluated w.r.t. their influence on the key performance indicators of the system goals.
This influence is specified at design time by the component designer. In [FRLB15], Event
Condition Action (ECA) rules are used to specify adaptations on parameter or component
level. They specify events and conditions that trigger adaptation actions. Events can be
triggered by the environment or can be periodic clock events. To define more complex
events and conditions, they support temporal expressions such as “during the last minute”
and expressions such as “the maximum messages size received within the last 30 s”.
Furthermore, conditions can specify whether actions should be executed every time the
condition matches, only the first time, or every time if not executed within the last t

seconds. This approach facilitates the design of expressive adaptation rules that are
human readable and thus support explainability. The approach also provides an approach
for offline rule learning, which we discuss in Section 3.3. However, adaptation rules do
not contain expectations on the effect and thus, only represent the best actions for the
specified events and conditions w.r.t. the system goals at design time.

With the increasing uncertainty in CPS, such static adaptation mechanisms are not
appropriate any more to deal with unanticipated changes at runtime. In our work, we
combine rule-based adaptation as done in approaches with offline planning and online
learning of rules. To achieve robustness w.r.t. dynamic goal changes, we provide a novel
notion of timed effect adaptation rules that include effect expectations on observable
environment parameters.

3.2.2 Online Planning

In online planning, different adaptation actions are evaluated for the current situation
on a model of the system and the environment. Online planning can include runtime
knowledge to resolve uncertainties. However, model evaluation requires sufficient time
and memory, and has to be performed from scratch for every situation that requires
adaptation. Thus, these approaches are typically applied to non time-critical domains or
to domains with a small adaptation search space (e.g., for mode adaptation).

For online planning different techniques are used. Examples for such techniques are
reinforcement learning (e.g. [KP09]), evolutionary approaches (e.g., [CGLG15]), model
checking (e.g., [SHMK08]), MDP-based planning (e.g., [MCGS15]) and stochastic
multi-player games (e.g., [CGSP15]).

In [KP09] and [CGLG15], adaptation plans are constructed by choosing from actions
with associated learned rewards or calculated fitness values. Consequently, the impact
of adaptations on the environment is only indirectly encoded and rewards have to be
relearned in case of goal changes. In [SHMK08], adaptation operations are encoded as
a transition system of environmental states and actions as transitions between those.
In each state a set of logical propositions holds. Model checking is used to identify a

29



3.3. Learning and Optimization of Adaptation Rules

path to a state that satisfies the system goals, which are encoded in CTL. In [CGSP15]
adaptation plans for architecture-based adaptation are automatically synthesized via
model checking of stochastic multiplayer games (SMG). The self-adaptive system and its
environment are modeled as two players of a SMG, in which the system tries to reach
a goal state that maximizes a reward. By checking the maximum reward that a player
can achieve independently of the strategy of the other player, an optimal strategy is
synthesized. In [MCGS15], a proactive approach that explicitly considers the latency of
adaptations is proposed. A probabilistic environment model is learned and combined
with a nondeterministic model of the adaptive system. Bounded model checking is used
to compute a strategy that maximizes the reward within a given horizon. After executing
the first action of the plan, the plan is recalculated to evaluate the response of the
environment. The models are encoded as markov decision procedures (MDP).

To combine the advantages of both online and offline planning, a hybrid approach
was proposed in [PMCG16]. It combines deterministic planning with nondeterministic
Markov Decision Process (MDP) planning. The fast deterministic planner is used to
handle an immediate problem, but simultaneously the slow planner is started to provide
an optimal solution. The success of hybrid planning depends on the seamless transition
of execution from a deterministic plan to an MDP policy. If the predicted environment
model used within the MDP are correct, the state that results from applying the first
action of the deterministic planner should be included in the MDP policy. Thus, a
transition is possible.

In summary, there exist various planning approaches. However, none of these
approaches provide means for a fast and efficient rule-based planning that is robust
to dynamic goal changes and can be adjusted at runtime to handle changes in the
environmental behavior and the system topology.

3.3 Learning and Optimization of Adaptation Rules

Learning and optimization of adaptation rules has been investigated in only few approaches.
Examples for investigated learning techniques are reinforcement learning (e.g. [SMQ+16])
and evolutionary algorithms (e.g., [KCW+18], [FGKV19]), and learning classifier systems
(e.g., [TPB+11]) for learning of adaptation rules, and probabilistic rule learning (e.g.,
[SCM+13]) and model tree machine learning (e.g., [EEM13]) for online optimization of
adaptation operations.

In [KCW+18], an approach for reusing knowledge of existing plans to improve the
performance of replanning for unexpected changes, such as the addition or removal of
adaptation tactics, changes in the goals or the environment, is presented. Replanning is
based on genetic algorithms (GA). Knowledge reuse is enabled by performing the GA on
candidate plans and initializing the population with individuals based on an existing plan.
Due to their explicit encoding of alternatives for failures of subplans, the evaluation time
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is exponential with respect to the plan size. To improve planning times, optimizations,
such as trimming of long plans are proposed. In case of goal changes, this approach
must reevaluate the fitness of existing plans via expensive model simulation. In contrast,
our efficient calculation of the distance metric together with our separation between
encoded adaptation effects and our goal model, enables a fast and efficient reevaluation
of adaptation plans. Our genetic algorithm has been developed at the same time as this
approach and is based on a similar idea of reusing knowledge from the last executed
adaptation plan by initializing the population of our GA with individuals based on the
current parameter configuration.

In [SMQ+16], adaptation operations are modeled as dynamic software product lines
(DSPL). Run-time reconfigurations are driven by the DSPL feature model, which describes
the possible and allowed feature combinations, and adaptation rules, which define under
which circumstances a reconfiguration should take place. To deal with runtime changes
in the system, its environment and goals, the authors extend the MAPE loop by learning
of adaptation rules and evolution of DSPL features. Learning is based on reinforcement
learning and is used to explore the configuration space of the DSPL. If none of the
existing configurations is able to achieve the system goals, the need for evolving the
DSPL is fed back to Evolution. However, evolution is not performed automatically, but
requires human expertise. As learning is based on reinforcement learning, it suffers from
the usual drawbacks, i.e. exploration in the running system which may lead to unsafe
system states and the need for relearning in case of changes in the goals.

In [FGKV19], a planning approach based on optimization strategies, such as Bayesian
optimization and evolutionary optimization, is proposed. In contrast to classical online
planning, reuse of adaptation plans is enabled by storing optimization results. These
results are associated to the situations they were learned for. Situations are dynamically
identified at runtime via clustering of observed context parameters. The authors assume
that for each context parameter, a discrete number of ranges for its values is provided,
and that all possible system states are the Cartesian product of the ranges of context
parameters. Then, clustering is used to group together states with similar impact on the
output parameters. For learning of optimal configurations, a black box model is assumed.
Thus, configurations are applied on the target system to evaluate their fitness. Their
target system is a traffic simulation, thus this drawback is not safety critical. However,
associations between learned configurations and identified situations are based on the
fitness value, and thus are not valid any more after dynamic goal changes. Furthermore,
similarities between situations are not exploited, thus environment changes imply that
stored situations may not match anymore, and, configurations have to be relearned.

None of these approaches generalize rules to fit situations that were not used for
learning. The following approach is the only approach that applies rule generalization to
achieve an efficient set of rules. In [TPB+11] a multi-level observer/controller architecture
for learning and self-optimizing systems is proposed. This architecture also differentiates
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between a first layer, which chooses a suitable rule from a set of Learning Classifier
System rules and a second layer, that is responsible for extending and optimising the
set of adaptation rules using evolutionary algorithms and simulation. However, the
considered adaptation rules do not include timing information and rule validation is based
on simulation results only. In contrast, we introduce timed adaptation rules that include
an effect estimation together with timing information, and we perform formal system
verification before altering the knowledge base at run-time. Furthermore, we provide
means for dealing with dynamic system topology changes and goal changes.

In [FRLB15], the Fossa framework for offline learning of Event Condition Action(ECA)
rules is presented. These rules provide an expressive mean to specify human compre-
hensible adaptation rules, as discussed in Section 3.2.1. The offline learner is based on
exploration strategies such as genetic algorithms to automatically create adaptation rules.
These rules are evaluated offline in a test environment that uses the actual implemen-
tation code and multiple simulation settings to optimize the rule set for a multitude
of environment settings and workloads simultaneously. Only rules that succeed in all
test cases are kept. Fossa also applies a paired difference test for statistical significance
of observed utility values. The genetic algorithm operates on the abstract syntax tree
of ECA rules. This approach is similar to our approach. However, we perform online
learning on the currently observed environment to deal with uncertain environment
behavior that cannot be anticipated at design time. In addition to conditions and actions,
we learn effect expectations on observable environment behavior to achieve robustness
w.r.t. dynamic goal changes.

The following two approaches provide means for inline optimization of adaptation
operations. In [SCM+13], adaptation operations are encoded as a logical program that
describes available actions, their preconditions and their postconditions in terms of
changes of the environment state. This model is extended to include probabilities within
the expected effect. Then, probabilistic rule learning is used to update these probabilities
and to change connections between actions and environment states. Learning is based on
observed execution traces. In [EEM13], adaptation operations are encoded as features
with a utility expectation. A learning cycle is integrated in the adaptation framework to
detect inaccurate expectations on the adaptation utility. This knowledge is then used to
correct the utility metrics of adaptation operations. Adaptation planning is performed
by finding the optimal feature selection with integer programming. However, the utility
values have to be relearned if goals change. In contrast to our work, both approaches
do not consider timing of adaptations and they do not verify that applying learned rule
changes does not compromise system safety.

In summary, there exist only few approaches for learning of reusable adaptation plans,
and even less for online optimization of adaptation operations. However, none of the
existing approaches are robust to goal changes because the fitness of learning results is
evaluated once during learning and cannot be reevaluated without costly simulations.
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Furthermore most approaches apply untested configurations on the target system for
evaluation means, and no approach applies formal verification before introducing learning
results into the system.

3.4 Verification

In the following, we give an overview of approaches that include formal models for
verification of functional and safety properties in self-adaptive systems. In contrast,
quantitative verification approaches, such as [CGK+11], [GCB14], and [FTG16] focus
on Quality of Service requirements, such as reliability or performance. However, in this
thesis we focus on safety properties.

The work in [ASSV07] provides a model-based development approach in which
adaptation behavior is strictly separated from functional behavior. Adaptation is realized
by switching between predefined configurations and verification properties are expressed in
a temporal logic and verified using theorem provers and model checkers. In contrast, we
focus on more flexible adaptation mechanisms that are adaptive themselves. Furthermore,
we additionally consider timing properties of self-adaptive systems.
In [ZGC09], a modular verification approach based on Assume-Guarantee- Reasoning is
presented. The adaptive system is modeled as a collection of steady-state programs and
a set of adaptations as transitions between steady-states. Local properties of steady-state
programs and global invariants are specified in LTL. For specifying properties that hold
during the adaptation process, an extension of LTL is proposed. Adaptive systems are
modeled as finite state machines that are annotated with assumptions (for adaptation)
and guarantees (of stable-state programs). However, to apply this approach the set
of steady-state programs has to be known in advance and the size of this set has to
be manageable. Thus, it is only applicable to mode adaptation. Furthermore, timing
behavior is not considered.
In [SS13] a methodology for the lightweight verification of component-based adaptive
systems (called LOVER) is presented. The main idea is to enable verification for systems
where some components can be replaced with a new version at runtime. At design time,
these components are not known. Thus, the model is incomplete. The LOVER framework
enables model checking of such incomplete models (given as labeled transition systems)
and produces a set of constraints for the unspecified components, if needed for property
satisfaction. At runtime, new components are verified in isolation against this set of
constraints. In contrast to our approach, LOVER is only applicable for component-based
self-adaptation and does not consider timing behavior.
In [NSSR13], an approach for formal modeling and verification of self-* systems based
on observer/controller-architectures is presented. It is based on the Restore Invariant
Approach (RIA) that separates functional behavior and adaptive behavior by defining a
corridor of correct behavior (functional behavior). If this corridor is left, i.e. the invariant
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is violated, the adaptation component, i.e. the observer/controller-part is assumed to set
the functional components into a quiescent state (i.e., a consistent and passive state in
which the system performs no actions that disrupt the reconfiguration), to adapt the
reconfiguration parameters and to release the functional system from the quiescent state
again, afterwards. This separation of concerns is used for compositional verification based
on the assume/guarantee paradigm. For tool support, the approach has been integrated
in the interactive theorem prover KIV. To support arbitrary controller implementations,
a verified result checker (i.e., a result checker that has been formally verified at design
time) is used at runtime. If the controller result restores the invariant, it is applied to the
system. If not, it is blocked and feedback is provided to the reconfiguration algorithm.
However, by relying on this approach, no liveness properties of the adaptation phase can
be proven. In contrast to our approach, RIA does not support the verification of timing
behavior.
In [IW14], the authors present a framework called ActivFORMS that uses timed automata
to model and analyze self-adaptive systems. Based on a virtual machine for MAPE
loops modeled in timed automata, the system implementation is directly driven by
the underlying models. Furthermore, they introduce a goal management layer that
adapts the MAPE models according to a goal model. The goal model itself can be
updated by a system admin. The adaptation is realised as a switch between associated
adaptation models for each goal. In contrast, we propose a generic framework that can
be instantiated for an application by defining the abstract knowledge models and the
control data, which is exchanged between the managed components and the adaptation
layer. We realise the adaptation of the adaptation logic using online learning techniques
on run-time models to infer new adaptation rules without manual intervention.
In [dlIW15], various formal design patterns are presented using timed automata that form
components of a MAPE-K loop. Furthermore, property specification templates are given
that can help to verify the correctness of adaptation behaviors. The templates have been
applied to four case studies. In contrast to our work, no explicit rule-based adaptation
is realized. This means that effects of adaptation and their influence on the system
model cannot be analyzed. Furthermore, their approach does not cover fine-grained
parameter adaptation and does not incorporate (system-level) implementations that can
be analyzed with the help of formal models. Finally, although timed automata models
are used, no timing properties are specified and the timing behavior of the case studies is
not analyzed. Another approach that explicitly models the MAPE-K loop is presented
in [ARS15]. Multi-agent abstract state machines are used to model a decentralized
adaptation logic in a distributed self-adaptive system. The authors provide techniques for
simulation and model checking of the adaptation logic at early design stages. In contrast
to our work, they do not consider timing and they do not model the adaptation impact,
i.e. the expected effect of adaptations.
[CLGS16] deals with formally modeling the impact of adaptations in architecture-based
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self-adaptive systems based on discrete time Markov chains. The authors separate the
adaptation impact from the environment behavior to analyze adaptations in a worst-case
scenario. Uncertainty and variability are included by assigning probabilities to the outcome
of adaptations and to environment actions. The proposed probabilistic models can be
used together with the framework Rainbow [GCH+04] and the language Stitch [CG12].
In contrast to our work, their models do not include timing and they rely on accurate
stochastic models of the adaptation impact, which assumes available field data of similar
systems.

In [GKB15], we have proposed a formal architectural pattern for the construction and
modular verification of distributed self-adaptive real-time systems. There, the design of
adaptation components also follows the MAPE-K loop. The focus is on the separation of
functional and adaptation components and how this can be exploited for analysis using
the process calculus Timed Communicating Sequential Processes (Timed CSP) [Sch99].
In contrast, we here focus on the detailed design of the different parts of the MAPE loop
and on the continuous verification at runtime.

In [SM17], a framework for model checking of adaptive systems as service is presented.
As model checking is computationally expensive, the authors propose to offload this task
to the cloud. The paper focuses on the dynamic allocation of required cloud resources
(CPU and memory). To this end, they employ machine learning to estimate the resource
usage of an actual model checking task at run time.

In summary, there are various approaches for formal verification of functional properties
of self-adaptive systems. They focus on different aspects and consider models of the
self-adaptive system on different levels of abstraction. However, none of the approaches
provide the possibility for automatically verifying timing properties of rule-based self-
adaptive systems that use parameter adaptation.

3.5 Goal Models

In this chapter, we discuss related work on goal requirement languages and goal models
for autonomous systems.

Goal Requirements Languages Our goal model shares similarities with the goal
requirements language (GRL) developed by [Int12]. It is based on concepts of i*
introduced by [Yu97], and other models with similar concepts, e.g. TROPOS [BPG+04]
(which is based on i*) or KAOS presented by [vLL00]. From these goal modeling
languages, we have extracted the essence that is necessary to describe and quantitatively
evaluate runtime goals. To this end, we have transferred the concept of GRL indicators
to our goal model based on system and environment variables. We have generalized the
provided goal decomposition types to arbitrary combinations of child distances. In both
cases, we use local distance goal functions describing how far the system “is away” from
achieving the respective goal. In contrast to GRL, which makes use of satisfaction levels,
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we can simplify our model, because we do not require strict normalization of distances
to lay in a certain interval. Moreover, we consider context-dependent precedences and
context-dependent importance factors that are not part of GRL.

[PRA11] present an extension of GRL to business models. They employ logical
formulas to precisely define relationships between key performance indicators. These
are used in a quantitative evaluation algorithm that also includes risks. However, this
approach does not address complex context-dependent relationships between parent and
children goals. Moreover, modularity is limited because only ad-hoc formulas are used.

[LSYM14] present a combination of feature modeling and GRL that differentiates
between optional and mandatory goals. To cope with that, the GRL evaluation strategies
are adapted. Furthermore, the extended model includes special cross-tree integrity
constraints in the sense of includes and excludes relations between features. The includes
relation is similar to our precedence relation. In contrast to our work, this approach only
includes quantitative evaluation in the sense of satisfaction levels of goals and thereby
inherits the disadvantages of GRL as described above. Moreover, context-dependencies
are not considered. With our generic distance calculation, we can capture feature
modeling aspects as well, while providing more flexibility and modularity.

Context-dependent goal models are considered by [ADG10], where Tropos ([BPG+04])
is extended through contextual modeling elements. Contexts are primarily used to specify
how goals can be achieved in certain situations. Their semantics is similar to (context-
dependent) guards in our goal model. Leaf (soft)goals can be prioritized by the user
at design-time to calculate the best way to achieve the goals in the current context at
runtime. However, in contrast to our work, quantitative evaluation of goal achievement
and context-dependent importances/prioritization are not considered.

In the approach of [HTKS12], goal graphs are used to capture requirements, which may
be subject to change during runtime. Contribution values in parent-children relationships
describe priorities for the achievement of high-level goals. The basic modification
operations are the deletion and addition of goals. Based on the contribution values,
the impact of goal changes can be assessed w.r.t. the respective parent goals. In
contrast to our work, their approach does not address gradual satisfaction of goals,
context-dependencies, and precedences.

Goal Models for Self-Adaptive and Autonomous Systems [RRL+13] include a
goal model for self-adaptive applications. It consists of a set of goals that are based
on key performance indicators (KPIs). The adaptation decision is based on information
that describes the impact of available adaptations on performance indicators, and any
limitations or requirements. Offline, rules are generated to specify component adaptations
for a given change in the execution context. Online, these rules are evaluated whenever
a change occurs to choose appropriate adaptations. We adopted their differentiation
between exact and optimization goals. KPIs can be combined to composite KPIs to
describe weighted combinations of subgoals. These can be used to evaluate the deviation
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from a goal. In contrast to our work, the approach provides limited modularity and
ad-hoc distance functions only. Priorities are only incorporated in the sense of rankings
between goals.

[DM10] present a goal model for agent systems, where goals represent explicit tasks
that have to be achieved. It uses precedence of goals to describe that some task needs
to be executed before others. Thereby, it imposes a partial order on goals. With our goal
model, we do not aim at encoding actions or tasks, but focus on an extensible structure
for representing and quantifying the degree of deviation of system goals. We make use
of context-dependent precedence to specify priorities on system goals.

[GBH+16] propose IRM-SA as a goal-based design approach for Cyber-Physical
Systems. Goals represent invariants that have to be constantly maintained and that
may be context-dependent (modeled by environment assumptions similar to our guards).
Invariants are refined down to low-level obligations that can be achieved by system
components. AND/OR refinements can be used to build a goal model that describes
the state-space of possible system configurations to fulfill the invariants. Furthermore
“requires” and “collides” dependencies can be introduced to capture dependencies and
conflicts. At runtime, a SAT solver is used to select a valid configuration. To prioritize
between different valid configurations, a notion of costs is introduced and combined
with a total order of preferences. The costs for a system configuration depends on
the selected invariants that appear in the configuration and their position in the goal
graph. In contrast to our work, the goal model does not consider context dependent
importance and linear precedence and the evaluation strategy only selects the best
possible configuration according to the preferences but does not quantify the degree of
goal satisfaction. Furthermore, runtime changes of goals are not considered.

A form of quantitative evaluation of goals at runtime is described by [CvL17]. In
their model, goals are arranged in AND/OR trees. Furthermore, obstacles are included
in the goal model to describe, which circumstances can lead to a violation of subgoals.
Obstacles are described using LTL (linear temporal logic) formulae. At design time,
rates with which obstacles can prevent goals to be satisfied are estimated. At runtime,
the actual satisfaction rates of (probabilistic) obstacles are monitored over a certain
period of time. They are propagated through the goal tree to obtain goal satisfaction
rates. Thresholds on these satisfaction rates are used to decide whether an adaptation
is necessary or not. In contrast to our work, the authors require a goal to be entirely
satisfied or unsatisfied at a time. In our model, goals are assumed to be satisfiable to a
certain degree at a time only, which is captured in the calculated goal’s distance in a
system state. Furthermore, context-dependencies are not considered, e.g. precedences
and context-dependent weights.

Runtime Management of Goals in Self-Adaptive Systems [KM07] propose a three-
layered reference architecture for self-adaptive systems that consists of the following layers:
component control, change management, and goal management. The change manage-
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ment layer is responsible for executing adaptation plans, whereas the goal management
layer calculates plans to satisfy the system goals. This separation of concerns enables the
introduction of new goals at runtime. In their work, they did not provide a goal model
but identified the challenge of achieving a goal model that is “both comprehensible by
human users and machine readable”. With our goal model, we offer a solution for this
challenge.

[IW14] present a framework called ActivFORMS that uses timed automata to model
and analyze self-adaptive systems. Based on a virtual machine for MAPE loops modeled
in timed automata, the system implementation is directly driven by the underlying models.
Furthermore, they introduce a goal management layer that adapts the MAPE models
according to a goal model. The goal model itself can be updated by a system admin. The
adaptation is realized as a switch between associated adaptation models for each goal. In
contrast, we propose a generic goal model that captures complex system goals together
with context-dependencies and dependencies between goals. We separate goals and
adaptation plans to increase flexibility and reuse of adaptation rules, which is especially
important in case of uncertainties in the environment behavior, system topology, and
requirements.

SimCA*( [SWM17]) explicitly focuses on efficient handling of changing requirements
in self-adaptive systems. There, goals describing setpoints or thresholds for parameters,
or the necessity to optimize a value, are used to construct adaptation controllers with
certain guarantees using control theory. Runtime changes can be handled by updating or
resynthesizing those controllers. In contrast to our work, SimCA* only handles sets of
requirements, which may externally be changed due to new context-situations, but that
does not include context-dependencies like our guards, context-dependent importance
and precedence. Furthermore, they do not consider prioritization between goals or
precedences.

3.6 Explainability of intelligent CPS

Explainability has gained attention due to research projects on Explainable AI. Whereas
these projects focus on explaining machine learning results, many CPS make context-
dependent decisions that are not based on ML. To explain these decisions, some ap-
proaches focus on explainable planning : In [Fan18], Assumption-based Argumentation is
used to model planning problems and to generate explanations for planning solutions as
well as for invalid plans. [ZS19] explicitly focus on CPS. This work-in-progress aims at
providing interactive explanations based on Why and Why-Not questions from end-users
about specific behaviors of the system. Answers are provided in form of contrastive
explanations. Explanations contain the consequences or properties of choices, and how
the choices affect goals and objectives of the system. In [SSG18], verbal explanations
of multi-objective probabilistic planning are automatically generated. They also use
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contrastive justification as explanation for why a generated behavior is preferred to other
alternatives.

In [DLFG18], the authors sketch first steps towards a conceptual framework for
self-explaining CPS. They propose to add a layer for self-explanation that includes an
abstract model of the system, and they propose to adjust the granularity of explanations
for different user groups. They propose to construct cause-effect chains for observable
actions using the abstract model. Users can access these chains to understand the cause
of actions.

In [WFF19], a feedback loop approach is used to identify situations where it is
valuable to ask a user for feedback about system behavior. There, the authors compare
the user behavior with a goal model and ask for feedback when users achieve sub-goals
or when they deviate from an expected sub-goal.

Other work has focused on rationalizing and verbalizing the behavior of autonomous
agents. Rationalizations do not need to accurately reflect the true decision-making process,
but give some explanations like humans would give in similar situations. In [EHCR18]
an agent’s actions are rationalized by using an encoder-decoder neural network to
translate between state-action information and natural language. In [PSRV16] the
agent’s experiences on a route are verbalized by converting sensor data into natural
language as answer to user queries with varying levels of abstraction, specificity and
locality. Another approach to generate explanations at run-time is to use a multi-modal
agent that can be queried ‘on-demand’ [RCGL+18, CGRL+18a]. There, the system
behaviors are mapped into a modified version of fault trees, which the authors call
model of autonomy, that capture the possible states of the system [CGRL+18b]. The
authors found that the explanations given by the agent helped improving the fidelity
of the operators’ mental model, increasing the operator’s understanding of what the
autonomous vehicles were doing and why, as well as how they work [CGRL+18a].

In summary, there are some approaches towards achieving (self-) explainable CPS.
However, to the best of our knowledge, none focus on explaining of self-adaptive actions
and runtime learning.

3.7 Summary

There exists a broad spectrum of approaches that is related to our thesis. First of all,
there is the wide area of frameworks and planning approaches for self-adaptive systems.
However, none of the frameworks provides an integrated solution for efficient adaptation
planning, runtime optimization and learning of adaptation rules and formal verification.
The existing planning approaches do either offline planning or online planning based on
model simulations. In our work, we combine rule-based adaptation as done in approaches
with offline planning and online learning and optimization of those rules. To achieve
robustness w.r.t. dynamic goal changes, we provide a novel notion of timed effect
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adaptation rules that include effect expectations on observable environment parameters.
Secondly, there are few approaches that have investigated online learning of reusable
adaptation rules. None of these is robust w.r.t. dynamic goal changes because the utility
of learned rules is evaluated once during learning and cannot be reevaluated without time
and memory consuming simulations. The existing approaches for online optimization
of adaptation operations do not consider timing of adaptations. Furthermore, none of
the learning and optimization approaches apply formal verification before introducing
learning results into the system. Thirdly, we have discussed existing approaches for
formal verification of functional properties. There exist various approaches that focus
on different aspects. However, none of the approaches enables the formal verification
of timing properties of rule-based self-adaptive systems that use parameter adaptation.
Fourthly, existing goal modeling languages cannot capture context-dependent weights
of subgoals and none provide a modular quantitative evaluation of goal satisfaction in
a given environment state. Existing goal-driven approaches for self-adaptation do not
capture the gradual satisfaction of goals in different environmental contexts. Lastly,
the increasing need for explanations of autonomous actions, especially for machine
learning, has led to an increasing interest in explainability. There already exist some
approaches towards achieving (self-) explainable CPS. However, none focus on explaining
of self-adaptive actions and runtime learning. To the best of our knowledge, there is no
approach available yet that allows for the design and runtime evolution of safe, intelligent
and explainable self-adaptive systems.
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4 Safe, Intelligent and Explainable
Self-Adaptive Systems

How can we design intelligent self-adaptive systems that are flexible
enough to cope with ever-changing operational contexts and how can we
ensure safety and explainability of their autonomous decisions?

In the near future, intelligent cyber-physical systems (CPS), such as self-driving cars,
smart homes or the internet of things, will influence our daily lives. They have to cope with
uncertain and changing environments and must adhere to strict safety requirements. As
an example, consider an autonomous vehicle. It is not possible to predict every situation
the vehicle will face while on the roads at design-time. Thus, the control software has to
be able to autonomously adapt to the current situation, while still providing required safety
guarantees. The aim of this thesis is to support the design of intelligent self-adaptive
systems that are flexible enough to cope with dynamically changing operational contexts,
and, at the same time, provide safety assurances and explainability of their autonomous
decisions. In the thesis, we focus on intelligent CPS that autonomously autonomously
adapt themselves to changes in system, environment and goals. We provide a framework
that enables the integrated design and formal verification of intelligent self-adaptive
systems that adapt themselves to changes in system, environment and goals. To achieve
our objectives, we combine a resource-efficient process for self-adaptation with dynamic
evolution of the adaptation logics and continuous verification activities.

In the following, we start with an overview of our overall approach before we describe
the framework architecture in detail.

4.1 Overall Approach

Our key idea for designing intelligent self-adaptive systems is to view adaptation logics
as ‘first-class citizens’ that can evolve at runtime and that provide comprehensible access
to the underlying knowledge and assumptions of adaptation and evolution decisions. In
our framework, we differentiate between three layers of the system: the managed system,
the adaptation layer and the evolution layer, as depicted in Figure 4.1. The managed
system layer is responsible for the functional behavior of the system and interacts with the
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Figure 4.1: Three-layered Framework Structure

environment. It can operate independently from the other layers without self-awareness
or autonomous adaptation abilities. The adaptation layer is responsible for autonomously
adapting the managed system. We base adaptation decisions on a set of adaptation rules
and assumptions of their effect on the environment w.r.t. the system goals. The system
goals are encoded in a goal model that is shared by the adaptation and evolution layer.
Managed system and adaptation layer form a self-adaptive system that is able to adapt
to changes in its system, environment and goals, as long as suitable adaptation rules are
available and encoded assumptions on the environment are met. The topmost layer is
responsible for the runtime evolution of the adaptation rules. To this end, we continuously
evaluate the correctness of the assumptions on the observable effect of adaptations and
adjust incorrect assumptions based on previous observations. Furthermore, we combine
simulation-based learning of new adaptation rules with heuristic rule generalization to
generate new adaptation rules for situations that were not (accurately) captured by the
existing rules. We perform comprehensive verification w.r.t. environment assumptions
of the adapted rule set before applying it in the running system. We thereby ensure
that runtime evolution does not compromise important properties, e.g. safety properties.
We use executable runtime models for our simulation-based learning and comprehensive
verification. We have published previous versions of this framework in [KGG15, KGG18b].

In the following, we first describe our proposed framework architecture in detail.
Afterwards, we discuss general assumptions for our framework before we introduce our
illustrative example. Our main contributions are explained in detail in the following
chapters: We describe our adaptation layer and the components of our structured
knowledge base in Chapter 5. Here, we also explain the details of our explanation base
that provides the basis for explanations on the applied adaptations of the system. Our
explanation base is part of our knowledge base. We present our expressive quantitative
goal model and our distance evaluation algorithm in Chapter 6. In Chapter 7, we present
our safe and resource-efficient evolution layer with rule-learning and verification in detail.
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Figure 4.2: Our Framework Architecture

4.2 Framework Architecture

Our proposed framework architecture is depicted in Figure 4.2. It consists of three layers:
a managed system, an adaptation layer and an evolution layer that is responsible for the
runtime evolution of the adaptation logics.

Managed System The managed system is able to perceive and control the environment
via sensors and actuators. It is responsible for the functional behavior of the system and
may consist of several interconnected embedded systems. It can operate independently
from the other layers, but without self-awareness or autonomous adaptation abilities.
It is adapted by the adaptation layer in case of changes in system, environment and
goals. Dedicated control data of the managed system serve as an interface between both
layers. Control data are controllable system parameters including sensor data to provide
information on the current environment state.

Adaptation Layer We base our adaptation layer on the MAPE-K feedback loop [KC03,
IBM04], which is widely used in the design of self-adaptive systems [GVD+17]. It
consists of four general phases: Monitoring of the managed system (by accessing or
polling the control data), Analysis of goal satisfaction, Planning of adaptations for re-
establishing violated goals or for self-optimization and Execution of generated plans. All
four phases share a common Knowledge base. In this thesis, we separate the knowledge
about environment (KEnv), system (KSys), adaptation options (KAdapt), experiences from
executed adaptations (adaptation history), and system goals that should be maintained by
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self-adaptation (adaptation goals) and provide models for each of them. Furthermore, we
add an explanation base that contains structured information about adaptation decisions
to enable retracing and explanation of executed adaptations. We use a comprehensible
rule-based definition of adaptation logics for which we define a novel notion of timed
adaptation rules. The key idea is to encode the expected effect of an adaptation in terms
of observable changes in monitored data together with an estimation of the required
time until the effect is generally observable.

To analyze goal satisfaction of the currently monitored state as well as of states
that are expected to result from executing adaptation plans, we provide a hierarchical
goal model together with a modular distance evaluation between a given system and
environment state and the system goals. Based on this, we provide a rule- and distance-
based adaptation process to enable efficient adaptation planning. By strictly separating
adaptation rules and system goals, we achieve robustness of the adaptation logic w.r.t.
dynamic goal changes.

Evolution Layer On top of the adaptation layer, we introduce an evolution layer.
It continuously evaluates timed adaptation rules w.r.t. the accuracy of their effect
expectations (Rule Accuracy Evaluation) and learns accurate rules for situations that
were not (accurately) captured by the existing rules. Our accuracy evaluation is based
on a comparison between our encoded effect expectations and the observed effects of
adaptation rules. For learning, we use an observation-based correction of inaccurate effect
expectations (Observation-Based Learning), and an evolutionary approach on model
simulations to generate new rules for unmodeled situations (Simulation-Based Learning).
Furthermore, we verify the improved adaptation logic at runtime (Verification). This
layer can be seen as a meta-adaptation layer because it adapts the adaptation logics of
the adaptation layer. To realize learning and verification, we employ executable runtime
models of the system components and the environment to analyze their interaction w.r.t.
the adaptation goals.

Adaptation Goals We provide a modular quantitative goal model that provides a
hierarchical encoding of the Adaptation Goals together with their inter- and context-
dependencies. We introduce a modular distance evaluation algorithm capturing the
distance between a system state and the adaptation goals. The main idea of introducing
such a distance is to compare the effect of different adaptation options w.r.t. multiple
possibly conflicting goals. With this approach, we can formulate the problem of finding
an optimal adaptation plan as an optimization problem. The objective is to maximize
the fitness of the managed system, i.e. to minimize its overall distance to the goals. As
goals may be contradicting, we have to solve a multi-objective optimization problem. In
our rule-based setting, adaptation rules describe a final and usually small set of possible
optimization steps that can be compared based on their effect expectations and the
resulting distance. Thus, planning an adaptation has to operate on this small set of
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solutions only. For learning of new rules, we use a genetic algorithm to deal with the
optimization problem. The genetic algorithm uses our distance evaluation of the goals as
fitness function.

With our modular goal structure and our modular distance evaluation, we achieve
reusability of analysis and planning results for dynamic goal changes. The goal model is
maintained by a goal manager who can be a person (e.g. the user in a smart home or a
manager of a smart production system) or a system (e.g. an autonomous update server
for legal regulations in an autonomous drone scenario).

The focus of this thesis lies on the runtime evolution of the adaptation logics and
the comprehensibility of autonomous decisions. Thus, we have decided to use a straight-
forward planning algorithm instead of encoding probabilistic effects of adaptation rules.
We include fuzziness by adding a λp around the effect expectations, as we assume the
effect to be in the same equivalence class, i.e. deviations in this range have little impact.
Effect deviations beyond this λp are detected by our Rule Accuracy Evaluation and lead
to adjustments in the adaptation logic. Here, we assume that it is always possible to
infer a reason for deviations from analyzing the monitored system and environment state
at the time of rule execution. In future work, our framework could be combined with
approaches that model uncertainty in the adaptation logic to enhance the abilities of
our framework. For simplification, we assume that the system architecture consists of a
central controller with a central MAPE-K loop. However, our approach principally applies
to distributed MAPE-K loops as well. To this end, we plan to investigate the distribution
of our knowledge base and also distributing our evolution layer in future work.

The advantages of our framework are that it enables us to integrate comprehensible
timed adaptation rules, a runtime accuracy evaluation, a learning-based runtime evolution
of adaptation logics, and a formal verification based on runtime models into the well-
known and widely used MAPE-K framework. In combination with our explanation
base, we furthermore provide the basis for automatically generating explanations on
the observed adaptation behavior of the system. As a result, we enable the design of
trust-worthy, safe and reusable dynamically-evolving adaptation logics.

We will now discuss our general assumptions for our framework, before we introduce
our illustrative example that we use as a running example in the following chapters.

4.3 Assumptions

We make the following assumptions for our framework:

1. We assume that the managed system can be set into a safe operation mode where
it does not fulfill all system goals, but safety can be guaranteed. This mode serves
as a fallback option in case of failure of the adaptation layer, i.e. if no suitable
adaptations can be applied.
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2. We assume the adaptation goals to be quantifiable, i.e. their degree of satisfaction
can be expressed quantitatively.

3. Each system component provides an interface to its control parameters and its
atomic adaptation operations on them.

4. Each system component provides a relation R ⊆ (SP ∪ EP ) × EP describing
which control parameters of the system (SP) may influence which environment
parameters (EP), as well as known dependencies between environment parameters.

5. Each system component provides executable runtime models, which can be sim-
ulated and used for verification at runtime. To capture runtime behavior, we
assume that they can be updated with runtime data. Furthermore, we require our
runtime models to have a formal semantics, which enables us to employ them for
verification purposes.

6. We assume that the designer provides environment simulation models. We require
those models to have a formal semantics to employ them for verification purposes.

7. For the runtime environment of our framework, we assume an external trustworthy
server to perform adaptation rule learning and verification tasks.

Note that the design of the safe operation mode of Assumption 1 depends on the
criticality of violated system goals. In a non-critical environment, the system can continue
execution without adaptations although, optimal performance cannot be guaranteed, for
example. In a safety-critical domain like industrial production, parts of the production
can be stopped until manual maintenance is finished.

Assumption 2 is substantial for our approach because analysis, planning, learning,
and verification are based on quantitative distance functions that capture the distance
between the current system and environment parameter values and the (current) system
goals. In this thesis, we have developed a goal model from which such distance functions
can be generated automatically.

Assumption 3 is necessary for applying planned adaptations to the system components,
i.e. executing a sequence of adaptation operations on control parameters. Assumptions 4-
6 ensure that adaptation rules can be learned and verified before being deployed to the
system. Assumption 7 takes into account that learning and verification are time- and
resource-consuming. Thus, these tasks should be outsourced to save resources within
the actual system.

The assumptions above limit the applicability of our approach to applications where
the adaptation layer does not directly control a physical environment, but adapts a
controller within the managed system, and a safe operation mode can be defined. We
assume that adapting the controller is usually necessary for a few times only. Thus, the
potentially high effort of learning and verification is acceptable compared to the benefit
gained by optimizing the system. The safe operation mode has to be safe (in the sense
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Figure 4.3: Smart Temperature Control

of satisfying the most relevant requirements) for an undefined amount of time to assure
that the system operation is safe even in the case that no suitable adaptation can be
learned automatically or verification fails. In highly-safety critical systems like airplanes
or autonomous vehicles, this safe operation mode may consist of several fall back levels,
the last option being manual operation.

4.4 Illustrating Example: Smart Temperature
Control

As a running example, we introduce a smart temperature control system with a heating
unit, an air conditioning and additional sensors to monitor indoor and outdoor temperature,
and sun intensity (as shown in Fig. 4.3). The overall purpose of the temperature control
is to keep the indoor temperature close to a desired temperature of 20◦C at daytime
(from 6 a.m. to 8 p.m.) and 16◦C at night-time (from 9 p.m. to 5 a.m.). The heating
unit uses a heating curve to determine its required flow temperature flow_temp from the
current outdoor temperature. The air conditioning has three modes: off, on and power
that can be used to cool down the room in summer. The power mode has more power
than the normal mode on and provides a lower cooling temperature. We assume that
the heating unit and the air conditioning are independent control components whose
control parameters can be adjusted by an adaptation layer to cope with changes and
uncertainties in the environment. This case study was created by ourselves to illustrate
our concepts.

The smart temperature control system has to adhere to two main requirements:
optimal temperature control and energy efficiency. Temperature control is the most
important aspect. Thus, the more severely the temperature goal is violated, the less
important the energy goal becomes. In the following, we describe the functionality of the
managed system, i.e. heating unit and air conditioning, and sketch the responsibilities of
the adaptation layer.
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4.4. Illustrating Example: Smart Temperature
Control

Managed System The managed system consists of the heating unit and the air
conditioning. The sensors to monitor indoor and outdoor temperature and to measure
sun intensity also belong to the managed system, but only serve as an interface to the
environment, together with a sensor for the current energy consumption. The heating
unit provides three control parameters: the gradient m, the offset n of the heating curve,
and an offset st_offset that can be added to the flow temperature. The parameters
of the heating curve are used to adjust the heating unit to the thermal properties of
the building. The gradient m describes how much a change in outdoor temperature
influences the flow temperature. Adjustments of the offset n lead to a uniform change in
the flow temperature and can be used if it is, e.g., always slightly too warm. In contrast,
adjustments of the gradient are necessary if the failure of the heating regulation is caused
by the degree of changes in the outdoor temperature (e.g., it works on days with uniform
temperatures, but not with cold nights and warm days). The setpoint offset is used to
reduce the heating in case of additional heating from sun rays. The heating unit reacts
to changes in the outdoor temperature or to notifications from the adaptation layer, and
calculates the necessary flow temperature according to its heating curve. The actual
heating process is abstractly modeled by a time passage of theat seconds after which
the new flow temperature is passed to the environment. The air conditioning can be
adjusted by switching between the three modes off, on and power.

Environment As a simplification, we use an abstract environment model that is
represented by an ideal heating curve, as well as an ideal cooling curve, with the
assumption that a discrepancy of 2◦C to the ideal flow/ cooling temperature results
in a deviation of 1◦C in the room temperature. Furthermore, environmental influences
like sun intensity are considered. A high intensity will lead to higher room temperatures.
Heating can be reduced in these situations. This is abstractly modeled by a sun intensity
factor that captures the percentage of the necessary flow temperature that will be
contributed by the sun. The remaining required flow temperature is calculated as
follows: requiredFlow− = (sun_intensity × requiredFlow)/100. In the summer, we do
not explicitly consider the sun intensity, as the room temperature already increases with
the increasing outdoor temperatures.
The energy consumption depends on the flow temperature of the heating or the cooling
temperature of the air conditioning. As we do not aim at modeling the real energy cost,
but rather a trend in the cost, we simplify the calculation of the energy consumption.
To this end, we assume that the energy consumption of our smart heating increases by
1kWh per additional degree of its flow temperature. Thus, the energy consumption of the
heating unit is abstractly modeled by energy(flow_temp) = flow_temp − MIN_FLOW,
where MIN_FLOW is the minimal flow temperature of the heating unit. For the
energy consumption of the air conditioning, we use constant values for each mode. This
abstraction is used to focus on the adaptation logic and allows for modeling environmental
changes by simply changing its ideal heating curve. The environment consists of three
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processes that provide the day time, the outdoor temperature (following a predefined
temperature sequence of a day), and the room temperature. In our environment model,
we have a coarse sample time of one hour. Thus, daytime and outdoor temperature are
updated after one simulated hour. The room temperature is updated troom seconds after
a change in flow temperature or daytime occurred, with theat < troom ≪ 1h to give the
system sufficient time to react (as defined above, heating takes theat time units). Note
that this is a simplification which could also be modeled with a (discretized) continuous
change in the flow temperature during the heating process. In the remainder, we assume
theat = 30s and troom = 60s.

Adaptation and Evolution Layer The adaptation layer is responsible for optimizing
the managed system with respect to the temperature and energy goals, which may change
at runtime. Uncertainties like the actual energy costs or the influence of incoming sun
rays on the indoor temperature can be reduced at runtime by learning more accurate
effect predictions based on runtime data.

We use the step-wise development of a safe and explainable adaptation logics for
our temperature control system and the runtime evolution of the developed logics to
illustrate our framework. We first consider a system without air conditioning, construct
the adaptation logics and illustrate our observation-based learning. Afterwards, in
Chapter 7.3, we add the air conditioning component and show how simulation-based
learning can be used to infer suitable adaptation rules to enable effective temperature
control in summer.

Summary We combine resource-efficient rule-based adaptation and on-line optimiza-
tion and learning of adaptation rules to provide the necessary flexibility for uncertain
environments, while reducing costly learning to a minimum that can also be moved to
external servers. We can cope with dynamic goal changes due to the modular structure
and distance evaluation of our goal model, as well as our separation of effect expectations
of adaptation rules and the distance evaluation of the expected resulting state w.r.t. the
goal model. These solutions enable our systems to maintain their system goals in ever-
changing operational contexts, thus being robust w.r.t our definition. Our explicit timing
information for adaptation effects further allows for latency-aware proactive adaptation
and for the application in real-time systems. By embedding formal verification into the
design process and into the evolution process for the adaptation logic, we ensure that our
intelligent self-adaptive systems behave as intended. We provide an explanation basis for
autonomous adaptation and evolution decisions to obtain trust in their correctness.

In the next chapter, we describe our resource-efficient adaptation layer and our
knowledge models in more detail. Afterwards, we present our expressive quantitative
goal model in Chapter 6 and our evolution layer in Chapter 7 in detail.
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5 Resource-Efficient Self-Adaptation

How can we design resource-efficient and modular adaptation logics?

We base our self-adaptation on the widely used feedback-loop architecture MAPE-
K [KC03, IBM04]. This general architecture abstractly describes the tasks of and the
interaction between a monitoring, analysis, planning, and execution phase and includes
a shared knowledge base for information transfer. To achieve a resource-efficient and
explainable self-adaptation that is independent from the system goals, we provide a
rule-based encoding of the adaptation logic, where planning corresponds to choosing a
suitable rule from a bounded set of rules based on context-specific expectations on the
effect of those rules. We base the evaluation of whether goals are sufficiently satisfied
in a given system state (e.g., currently observed, predicted to be observable without
adaptation, or reachable by adaptation) on a distance metric between the system state
and an optimal state defined by the system goals. We define the system goals in a
hierarchical goal model and provide an algorithm to calculate the distance. With this
separation, we achieve the desired independence between adaptation logic and system
goals. Our distance evaluation provides a flexible coupling between them. As this
evaluation is fast, we perform it in every analysis and planning phase to cope with
dynamic changes in the environment and system goals. We have chosen a quantitative
evaluation of the degree of goal satisfaction to enable the fine-granular evaluation of
adaptation effects on possibly conflicting goals to find an optimal trade-off between those
goals. For continuous runtime evaluation of the rule-accuracy and for explainability, we
store relevant data about selected adaptations in our adaptation history and explanation
base.

In the following, we first describe our knowledge models in detail. Afterwards, we
describe the different phases within our adaptation layer and their interaction with our
knowledge models. In the end of the chapter, we explain how our adaptation history can
be used as basis for explaining the decisions of our adaptation layer. Our evolution layer
is described in detail in Chapter 7.
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5.1 Knowledge Models

The knowledge models of the adaptation layer play a central role in the whole adaptation
process. They capture the knowledge about the system and environment that was
gained by monitoring, they describe the system goals and the available adaptation rules.
Furthermore, they capture relevant data of executed adaptations for explainability. The
way this knowledge is encoded influences the performance of the overall adaptation and
evolution process in our framework. Thus, we have designed the knowledge models with
care in order to meet our criteria for the thesis, namely continuous learning, independence
between adaptation logic and system goals, continuous analysis of safety properties,
explainability, and resource efficiency.

In the following, we present our knowledge models in detail and illustrate them using
our illustrating example.

5.1.1 Environment Model KEnv and System Model KSys

The environment model and the system model capture the collected relevant information
about the environment and the system. We keep this data as simple as possible, because it
is continuously collected and updated in the monitoring phase within the adaptation layer.
Thus, we choose a set of sensor values and system parameters as abstract representation.
To represent system and environment behavior over time, we also include a history of the
collected data of previous monitoring cycles. This representation is efficient and sufficient
as we do not need executable models for our rule-based adaptation logic. Moreover,
we also capture information about the current system topology and its changes in the
abstract system model KSys. To this end, we use a set of currently available system
components that is updated during monitoring.

Example In our illustrating case study, the MAPE-K adaptation layer continuously
monitors indoor and outdoor temperature every cycle time units. To this end, temp_in
and temp_out are introduced as corresponding knowledge variables together with a
variable for the current daytime (time). Furthermore, the sun intensity (sun_intensity)
and the energy consumption (energy) are measured. Additionally, the history knowledge
variables temp_inold and temp_outold, which represent the respective values in the last
monitoring cycle, are updated accordingly. These parameters describe aspects of the
environment and belong to KEnv. The heating parameters m (gradient), n (offset),
st_offset (flow temperature offset) and the air conditioning mode airCon_mode are
system parameters stored in KSys.

5.1.2 Timed Adaptation Logic KAdapt

An essential model of our structured knowledge base is the adaptation logic, which is
represented by a set of timed adaptation rules. We define a timed adaptation rule ri to
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consist of four parts: an application condition, control data manipulation commands, an
expected effect, and a time after which the effect is assumed to be observable:

ri : gi & c1; c2; . . . ; cn −→ effect after time±[timeTolerance]

The guard gi is a condition on the system and environment parameters to describe
when the adaptation rule is applicable. For proactive adaptation, the guard can also
describe conditions on predicted future states or generally on computation results of
the analysis phase. The commands c1, c2, ..., cn describe how the control data of the
managed system is manipulated on applying the rule. The effect predicate describes
the expected effect, i.e. how the environment (behavior) is expected to be influenced
after applying the adaptation rule. Finally, time describes the smallest amount of time
after which the effect is assumed to be generally observable. Thus, effect describes
a relation between system and environment state before the adaptation and a state
after adaptation within time time units. The effect prediction is used for our distance-
based planning, and in the evaluation component to check whether adaptation rules are
accurate. An additional acceptable delay timeTolerance specifies the amount of time
that the effect is allowed to occur later than time. This delay is considered during our
rule accuracy evaluation. As the focus of this thesis lies on the runtime evolution of
the adaptation logic and the explainability of autonomous decisions, we have decided to
focus on simple effect predicates and against encoding probabilistic effects of adaptation
rules. However, our approach principally works for more complex effect predicates as
well. Probabilistic adaptation effects would require some adjustments of the planning
algorithm, the rule accuracy evaluation, the executable runtime models (e.g., stochastic
timed automata instead of timed automata), the rule learning algorithms and the usage
of a different model checker for verification (e.g., UPPAAL SMC). In future work, we
plan to investigate the integration of probabilistic effect predicates to enable the explicit
encoding of uncertainties in the effect predicates.

The advantage of our timed adaptation rules is that they enable us to describe an
expressive, yet comprehensible, adaptation logic. They make adaptation decisions explicit
and comprehensible due to their explicit application condition and timed expected effect.
Their general condition-action-effect structure is a comprehensible way to specify action
options and their effect for outcome evaluation. They provide a basis for increasing
trust in autonomous decision-making, because of their predictability, their transparency
w.r.t. their actual decisions, and their (formal) verifiability. Furthermore, adaptation rules
provide a modular encoding of the adaptation options which allows for easy adjustment
and exchange of single rules at runtime.

Example In our case study, an adaptation is necessary if there is a deviation from
the desired room temperature refTemp (temp_in ± tolerance ̸= refTemp). Then, the
adaptation unit can adjust the heating unit by adjusting the gradient m and the offset
n of the heating curve based on the knowledge variables, or adjust the setpoint offset
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st_offset to compensate for incoming sun energy sun_intensity. In summer, the air
conditioning can be adapted by switching between its modes. We have defined four
adaptation rules for increasing/ decreasing the gradient and offset of the heating curve,
and one rule for adjusting the setpoint offset of the heating. For the air conditioning we
have defined two rules to switch between modes. As examples, we here present the rules
for increasing the offset of the heating curve and for adjusting the setpoint offset.
increase n:

temp_out < refTemp ∧ temp_in + tolerance < refTemp
∧ temp_in = temp_inold

& n := n + stepsizen
−→ (temp_inenv ≥ temp_in + stepsizen/2

∧ energyenv = energy + stepsizen)
after k seconds±[timeTolerance]

This rule can be used if the monitored outdoor temperature is below the reference
temperature (indicating a general need for using the heating unit) and the indoor
temperature (temp_in) is (sufficiently) below the intended indoor temperature (refTemp)
but was stable in the last monitoring cycle (temp_in = temp_inold). The effect of
this rule encodes the assumption that a difference of 2◦C in the flow temperature
corresponds to a difference of 1◦C in the room temperature (stepsizen/2), and the
expected relationship between flow temperature and energy (linear for simplification).
Note variables like temp_in and temp_inold refer to monitored values in the knowledge
base. In contrast, temp_inenv refers to a future indoor temperature, independent from a
concrete monitoring cycle. Thus, the expected effect time describes the earliest point in
time when the effect in the environment is expected to be generally observable. As the
system can only evaluate this effect based on monitoring data, timeTolerance should be
at least the monitoring sample time that is used for effect monitoring.

If the indoor temperature is above the intended temperature, the offset is decreased
in a similar rule.
adjust st_offset:

temp_out < refTemp
& st_offset := 0 − sun_intensity · refTemp
−→ (temp_inenv = temp_in − refTemp · (sun_intensity − sun_intensityold)

∧ energyenv = energy − energy · (sun_intensity − sun_intensityold)
after k seconds±[timeTolerance]

This rule can be used if the monitored outdoor temperature is below the reference
temperature (indicating a general need for using the heating unit as compensation for
temperature drift). The effect of this rule encodes the assumption that the sun intensity
captures the percentage of the indoor temperature that will be achieved by the sun, and
the expected relationship between flow temperature and energy.
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5.1.3 Adaptation History

Our knowledge models as described in the previous subsections encode the current
knowledge about the system and environment, about goals and available adaptation
options. Additional knowledge is needed to enable the evolution of adaptation logics
based on the observed performance of the adaptation layer. We encode this knowledge in
our adaptation history. This history is a bounded set of adaptation history objects that
contain relevant information concerning a single rule execution. Such an object consists
of the executed rule, the execution context (in terms of KSys and KEnv), the expected
effect values, and the execution timestamp. Additionally, we include an evaluation status
(pending, effect_missed, effect_achieved), the actually observed effect values,
the evaluation timestamp that is used to detect deviations in the effect timing, and an
equivalence class that encodes the order of magnitude of the observed deviation from the
expected effect. The evaluation status expresses whether the evaluation is still running
because the expected effect time has not passed yet (pending), whether the rule missed
the effect expectations (effect_missed) or not (effect_achieved). These history
objects build the data base for our Observation-Based Learning . Furthermore, they
provide a basis for explaining adaptation decisions of the adaptation layer, and evolution
steps of the evolution layer, as discussed in Section 5.3 and Chapter 7. To this end,
we additionally add the violated goals and the overall distance to explain the reason
for adaptation. For resource-efficiency, we use a bounded adaptation history. Thus, we
propose to store the adaptation history objects in an additional Explanation Base when
they are removed from the bounded adaptation history. This explanation base can be
located in the system or on an external server.

Our adaptation history is either stored in a knowledge base within the evolution
layer or in the adaptation layer knowledge base. This architectural decision depends
on whether both layers are deployed on the same hardware and use the same memory
(separated knowledge bases are not necessary) or whether they are distributed and thus,
access to the adaptation layer knowledge base is more costly than access to a local
knowledge base. In our figure of the framework architecture, we have decided for a single
knowledge base to simplify the picture. This decision does not restrict our approach.

5.1.4 Adaptation Goals

We do not include the adaptation goals in our knowledge base that is located in the
adaptation layer, because they do not belong to the knowledge that is collected at
runtime. Still, they are not static as they can be updated at runtime by a goal manager
(i.e. human or external system). As they represent important knowledge that is the base
for all adaptation decisions, we briefly sketch our goal model here. We present more
details on our expressive quantitative goal model in the next chapter.

Our goal model is a hierarchical representation of the current system goals, their
subgoals, and the relationship between them. Thereby, goals can represent functional or
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non-functional requirements. The goal model enables the analysis whether KSys together
with KEnv satisfies the goals, and it allows for the quantification of how close the system
together with the environment is to the system goals. To this end, we use a distance
function dist(KSys, KEnv) which takes as input an abstract system and environment
model and provides a quantitative distance between the system and the environment
state towards the goals. We provide an automatic quantitative evaluation algorithm that
enables the modular calculation of this distance. We use the distance function in the
analysis phase for detecting adaptation needs and for planning and learning to measure
the improvement that can be achieved by applying an adaptation rule. In case of runtime
goal changes, we automatically provide a new distance function.

Example The system goals in our temperature control system are to keep the indoor
temperature at 20◦C during the day and between 16◦C and 20◦C during the night,
as well as to minimize the energy consumption. Suitable distance functions for the
temperature goals are, for example, the absolute value of the difference between the
current and the desired indoor temperature (if we want to express a linear distance for
each degree deviation), or a quadratic function that results in small distances for small
deviations and grows rapidly for larger deviations. For the energy consumption, we can
use an exponential function that captures a decreasing impact of adaptations while the
goal is approached. Such a linear distance function for the temperature goals and an
exponential function for the energy goal are automatically derived from our goal model
as described in the next chapter. The derived functions can be replaced by user-defined
functions like the quadratic function as illustrated in the next chapter as well.

In this section, we have described our knowledge models. We have designed them
to enable the realization of a further meta-adaptation layer for evolving the adaptation
logics, based on evaluation, learning, and verification. In the next section, we present
our resource-efficient adaptation process and describe its interaction with our knowledge
models in detail.

5.2 Adaptation Layer

The adaptation layer is responsible for ensuring goal satisfaction at runtime by adapting
the managed system to the current situation. Our adaptation process is an instantiation
of the MAPE-K feedback loop. In the following, we describe our major design decisions
for each phase of the feedback loop and the interaction with the knowledge models in
detail. The architectural overview of this layer is depicted in Figure 4.2 and the process
details are shown in Figure 5.1.

5.2.1 Topology-Aware Monitoring

In the monitoring phase, the adaptation layer regularly retrieves runtime information of
the managed system and the environment and stores this information in the knowledge
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Figure 5.1: Adaptation Process in Detail

base (in the system model KSys and the environment model KEnv). We use polling for
the cyclic monitoring as this enables us to use the monitoring answer also as heartbeat
signal to detect component reachability. In the case of event-based monitoring where
system components inform the monitoring component that relevant system/environment
data has changed, the heartbeat algorithm can also be realized by a separate polling
mechanism. If a component does not answer the monitoring request within a specified
time, it is considered not alive/ not reachable any more and we remove it from the set
of currently available components in KSys. Then, we update the adaptation rule base
accordingly, i.e. all adaptation rules that include actions on the removed component are
disabled. Thus, we are able to deal with component removal or connection failures at
runtime. If the system topology is stable, monitoring could also be based on interrupts
that signal that control data have changed. This would reduce the communication load
and the computation load of the adaptation layer. Except for the topology management,
the monitoring approach can be freely chosen in our framework. If components become
available again or if new components are dynamically added to the system, they have
to register and establish a connection to the monitoring component of the MAPE layer.
To this end, we assume a registration component that executes a registration protocol
in which required knowledge for adaptation is provided by the components. During
registration, components provide their control parameters, the corresponding influence
relation R and executable runtime models (RTM) that are used by our learning and
verification. To avoid expensive learning in case of (current) resource restrictions, new
components can also provide an initial set of adaptation rules. As these rules do not
necessarily capture dependencies to other system components, they are verified in the
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current system context, before being added to the set of active adaptation rules. We
propose the same verification steps that we use for newly learned adaptation rules for
the integration of those provided rules, namely rule effect validation and comprehensive
system verification to ensure safety. If a registration component is provided, we are able
to deal with dynamic topology changes at runtime.

After monitoring, the analysis phase is triggered for analyzing adaptation needs. If the
rule accuracy evaluation uses the monitored data, the evaluation component is invoked to
evaluate the accuracy of the current adaptation logic. Our rule accuracy evaluation can
also have its own evaluation cycle time. In this case, it is not triggered by the monitoring
of the adaptation layer.

5.2.2 Analysis of Goal Violations

In the analysis phase, we use our knowledge models to decide whether an adaptation
is necessary or not. We base this decision on the quantitative “distance” of the cur-
rent system state represented by KSys and KEnv towards the system goals represented
by Adaptation Goals to achieve an automatic coupling between the current adaptation
goals and the analysis. Thus dynamic goal changes are directly considered in the next
analysis phase. The distance is calculated with our distance calculation algorithm as
described in Chapter 6. If the evaluated distance exceeds a given threshold δ, i.e., some
goals are severely violated, an adaptation need has been found and the planner is triggered
to re-establish the goals. Our goal model also enables the specification of optimization
goals, which are never fully satisfied. For these goals, we also calculate a distance that
becomes exponentially smaller if those goals come close to an estimated optimal value.
Here, the threshold δ can be used to specify whether further optimization may still be
beneficial w.r.t. the required computation effort.

With our distance-based analysis, we support reactive, as well as proactive adaptation.
Reactive adaptation reacts to observed goal violations, whereas proactive adaptation
anticipates goal violations and adapts on time to prevent them. In the first case, we
base our analysis on the distance between the currently monitored state and the goals.
In the latter case, we use prediction models and base the analysis on the distance of this
predicted state. In [KGG18a], we have presented an example for proactive production
optimization based on lightweight environment profiles. Furthermore, our timed effect
expectations within our adaptation rules provide a basis for latency-aware proactive
adaptation. Latency-aware hereby refers to the latency between executing an adaptation
and being able to observe the effect. In this thesis, we focus on reactive adaptation for
two reasons: 1) the main goal of this thesis is to provide means for safe and explainable
runtime evolution of adaptation logics, and 2) the design and runtime learning of accurate
environment prediction models is a different and challenging research area that is out of
the scope of this thesis.
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5.2.3 Distance-Based Planning

1 chooseBes tRu l e ( ){
2 minDis tance ← c u r r e n t D i s t a n c e ;
3 b e s t R u l e ← NULL ;
4 RULES ← g e t C a n d i d a t e s ( v i o l a t e d _ g o a l ) ;
5 RULES ← g e t A p p l i c a b l e R u l e s (RULES ) ;
6 f o r each r : RULES{
7 v i r tua l l yExecuteCommands ( r ) ;
8 v i r t u a l l y A p p l y E f f e c t ( r ) ;
9 d i s t ← c a l c u l a t e D i s t a n c e ( v i r t u a l S y s t e m S t a t e ) ;

10 i f ( minDi s tance > d i s t ){
11 minDis tance ← d i s t ;
12 b e s t R u l e ← r ;
13 }
14 e l s e i f ( minDi s tance = d i s t ∧ r . e f f e c t _ t i m e < b e s t R u l e . e f f e c t _ t i m e ){
15 b e s t R u l e ← r ;
16 }
17 }
18 r e t u r n b e s t R u l e ;
19 }

Algorithm 5.1: Rule- and Distance-Based Planning Algorithm

In the planning phase, the best available adaptation rule for reestablishing violated
subgoals is chosen if an adaptation is necessary. The problem of finding an optimal
adaptation plan is an optimization problem. The objective is to maximize the fitness of
the managed system, which means to minimize its overall distance to the goals. As goals
may be contradicting, we actually have to solve a multi-objective optimization problem.
As these problems are hard to solve, they are usually solved with heuristic techniques. In
our rule-based setting, adaptation rules describe a final and usually small set of possible
optimization steps that can be compared based on their effect expectations and the
resulting distance. We propose to use a quantitative evaluation of the effects on the
adaptation goals to capture positive and negative effects on possibly conflicting goals.
As a result, we can choose the adaptation rule that minimizes the distance towards the
adaptation goals the most. If the set of adaptation rules is considered too large for
comparing all rules, heuristics like comparing only rules that effect the mostly violated
subgoal, can be easily introduced into our planning algorithm.

In Algorithm 5.1, we provide the pseudocode of our rule- and distance-based planning
algorithm. In a first step, we retrieve all rules that have an effect on currently violated
adaptation goals (getCandidates). Then, we filter this set by checking which rules
are applicable, i.e. rules with a guard that evaluates to true and that are not currently
running (i.e., the time since their last execution is less then their specified effect times)
(getApplicableRules). The subsequent rating of those rules is based on our quantita-
tive evaluation of their expected effect on the system goals. To this end, we virtually
apply adaptation rules on a copy of KSys and KEnv (virtuallyExecuteCommands) and
estimate the resulting system and environment state based on the expected effect, which
is encoded in the adaptation rules (virtuallyApplyEffect). Then we calculate the
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distance of this expected system and environment state (calculateDistance). We
apply these steps on all applicable candidate rules and compare their distance to the
minimal distance that we have found so far (initially this minDistance is set to the
current distance as we do not want to perform worse). In the end, the rule that minimizes
the distance the most is chosen. If two rules achieve the same distance, we additionally
compare their effect times and choose the one with the smaller effect time (cf. lines
14 -16). If no suitable rule is available, e.g. due to a situation that was not captured
by the existing rules, the learning component is invoked to infer a new adaptation rule.
The planning algorithm can be extended in future work to enable plans with more than
one rule. To this end, independent rules could be executed at the same time. To be
independent, rules should not deactivate each other (their effects should not influence the
guard of the other rules) and their effects should be disjunct to enable a separate effect
prediction or their effect predictions allow for combined effect prediction by building the
sum of their effects. A more sophisticated planning algorithm could also examine the
sequential execution of rules. However, this is computationally more expensive and is
only interesting if the computational overhead for planning is less than the overhead for
smaller monitoring cycle times.

The main advantage of our distance-based expected effect evaluation is its resource
efficiency. With our approach, we do not need to perform regular resource-intensive sim-
ulation to evaluate the context-dependent effect of adaptation options on the adaptation
goals in the current state. Instead, we use goal-independent effect expectations that may
depend on the context, which is encoded in the guard of adaptation rules, and evaluate
the distance from the resulting state to the goals. The notion of distance together with
the explicit encoding of effect expectations in our rules enables us to re-evaluate planning
results and to reuse adaptation rules in case of runtime changes of the system goals.

5.2.4 Execution

Finally, if a suitable adaptation rule was found, we apply the rule by setting the cor-
responding control parameters in the system components within the execution phase.
Furthermore, we record the applied rule, the execution context and the intended effect
in the adaptation history for later rule evaluation, which takes place in our evolution
layer. If, however, no adaptation rule is applicable or no rule approaches the system
goals sufficiently, we assume that the system can be set into a safe operation mode.
This mode does not have to be a single fail-safe mode, but can also be some kind of
graceful degradation that depends on the violated goals and the severity of goal violations.
In [ZKGG19], we have presented an example for a degradation controller for autonomous
car platoons. Similar controllers could be used to enhance the quality of operation during
the safe operation mode. The system resides in this mode until a suitable adaptation
rule has been learned or the environment behavior changed itself in a way that the goal
is approached again or another adaptation rule is applicable.
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In this section, we have described our resource-efficient adaptation process within our
framework and have sketched the usage of our knowledge models within this process. The
main advantages of our adaptation layer are a) flexible and comprehensible adaptation
logics, b) efficient adaptation planning, and c) robustness w.r.t. dynamic goal changes.

5.3 Explainability of Adaptation Decisions

Comprehensibility of autonomous decisions enables trust in autonomous systems. To
achieve this, we use comprehensible adaptation rules and particularly rely on tracing of
autonomous decisions and the information that led to the decision. To this end, we
argue that an explanation for an autonomous adaptation decision should contain the
following aspects: a) context of the decision, b) cause and c) expectation of the effect
w.r.t the cause. Furthermore, we add d) result, to enable the evaluation of the effect of
the autonomous decision.

Transferred to our framework, we trace the following aspects for each adaptation
decision: a) execution context (i.e. the current values of KSys and KEnv) and execution
start time, b) the violated goals and the overall distance, c) applied rule and expected
effect (i.e., the expected values after rule execution), and d) actually observed effect and
evaluation timestamp, rule accuracy evaluation results (rule status (effect_ achieved,
effect_missed)and deviation equivalence class). All of these information, are captured in
our adaptation history object. Thus, we do not delete adaptation history objects after
learning, but, instead, move the objects to our explanation base to keep them as basis
for generating explanations. Each object in our explanation basis can already be seen as
explanation for a single adaptation decision. While this explanation format is sufficiently
comprehensible for self-adaptive software engineers, further processing to generate textual
explanations may be beneficial for non-experts and could be part of future work. If the
goal model changes at runtime, we also store the old model together with the timestamp
of the change in our explanation base.

Summary In this chapter, we have described our knowledge models and the single
phases of our resource-efficient self-adaptation. Our main contributions in the adaptation
layer are the resource-efficient and modular encoding of the adaptation logics in our timed
adaptation rules, the distance-based evaluation of the adaptation goals, and the flexible
connection between adaptation rules and adaptation goals via an explicit encoding
of the expected effect of each adaptation rule. By additionally storing information
about adaptation decisions and their expected effect in the knowledge base and in the
explanation base, we enable the continuous evaluation of the accuracy of adaptation rules
and build a basis for explaining adaptation decisions at runtime. Our adaptation process
is based on the widely used feedback-loop architecture MAPE-K. Other architectures
like the O/C architecture used in Organic Computing [RMB+06] can be mapped to
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the MAPE-K architecture. Thus, this decision does not limit the applicability of our
framework.
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6 Goal Model

How can we quantify the effect of adaptation options with respect to
context-dependent and possibly conflicting system goals with
interdependencies?

We require our self-adaptive systems to autonomously cope with changing system
goals at runtime. To achieve this, we propose to design goal-aware systems that
dynamically manage their current system goals in a model and take them into account
when making autonomous decisions. To this end, they evaluate their system goals at
runtime. In the context of this thesis, system goals denote functional and non-functional
requirements that can be evaluated in a runtime state of the system.

With the increasing complexity of self-adaptive systems also the complexity of their
goal models increases. They are required to capture complex, possibly hierarchical goal
structures and relations between goals such as dependencies, priorities, and conflicts. At
runtime, it might be impossible or very costly to satisfy all requirements due to environ-
ment uncertainties (e.g. sun and wind energy in smart grids) or physical aspects (e.g.
wear or hardware failures). To enable complex autonomous decisions that incorporate a
fine-grained balancing of the cost-benefit ratio of autonomous decisions w.r.t. predictions
on the future environment behavior, a qualitative judgment (e.g. satisfied, partially
satisfied, not satisfied) of the satisfaction of system goals is insufficient. For example, in
case of a qualitative judgment goals that are labeled with “partially satisfied” cannot be
further distinguished w.r.t. their respective goal satisfaction. In contrast, a quantitative
judgment precisely captures the degree of satisfaction of each goal and thus enables the
choice of the most beneficial action in a systematic way.

In this chapter, we present our quantitative and context-dependent goal model as
published in [KGG18d]. A former version of our goal model is presented in [KGLG17].
Our goal model captures the structure of goals and dependency relations between them.
We enable the description of elementary leaf goals, parent goals, and the fine-grained
description of parent-children relationships, including context-dependent importances.
Our goal model combines essential modeling elements for describing and quantitatively
evaluating runtime goals from existing standard goal modeling languages like, for example,
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the Goal-oriented Requirements Language (GRL) [Int12], i* [Yu97] or KAOS [vLL00].
We provide additional modeling elements to describe context-dependent goal relations
and importances. As a central concept, we employ local goal distance functions. They
enable us to specify the dynamic calculation of the “distance” between runtime states
(captured in the knowledge parts that describe the system (KSys) and environment
(KEnv) state) and elementary (leaf) goals, and to specify how these are propagated to
higher levels in the goal hierarchy in a precise, generic, context-dependent, and modular
way. We provide automatically derivable local distance functions for each goal type and
an efficient distance calculation algorithm in terms of linear computational complexity,
which takes the specified dependencies and conflicts between goals into account. Thereby,
intended conflicts between goals can be resolved by balancing their distances to achieve
a Pareto optimum. In our model, goals can easily be added, removed, and adjusted
without the need to change the distance calculation.

In our framework, we use our goal model to (1) represent adaptation goals, e.g.
setpoints or optimization objectives, and their dependencies at runtime, and (2) to
provide a modular distance function that enables us to quantify the context-dependent
achievement of system goals during analysis, planning and learning of adaptations. Hence,
it provides a basis to find an optimal trade-off between multiple, possibly conflicting
context-dependent goals. The notion of distance together with the explicit encoding of
effect expectations also enables us to re-evaluate planning results and to reuse adaptation
rules in case of runtime changes of the system goals. Thus, we achieve robustness w.r.t.
dynamic goal changes.

Assumptions We make the following assumptions.

1. All goals can be mapped to quantifiable system goals, i.e. goals that can be
mapped to restrictions (setpoints or thresholds) or optimization of the value of
key performance indicators. Those indicators have to be based on system and
environment parameters that describe aspects of the environment like, e.g. time of
the day, outdoor temperature, or sun intensity, or aspects of the system like, e.g.
energy consumption. With that, we do not explicitly address the completion of
tasks, as e.g. done in [DM10].

2. There is an interface that continuously provides monitored values of system and
environment parameters at runtime. This enables the quantitative evaluation of
goals in the current system state at runtime. To this end, we assume that all
goal-relevant system and environment parameters are known at design time or are
registered in the system in case of runtime changes of the goal model.

The rest of this chapter is structured as follows. We present the structure of our
generic goal model and describe its use with our illustrating case study of a smart
temperature control system in Section 6.1. In Section 6.2, we describe our automatic
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quantitative global distance calculation. We argue that our model is particularly well-
suited for runtime management of system goals in autonomous systems. We support this
in Section 6.2.3 by illustrating how the distance calculation can support the autonomous
choice of appropriate adaptation actions.

6.1 Generic Quantitative Goal Model

In this section, we first present the general modeling elements and the hierarchical
structure of our goal model. We achieve genericity of our goal model by employing
generic local goal distance functions. To provide a certain degree of context-awareness,
we enable importance factors and precedences to be context-dependent. Afterwards, in
Section 6.1.2, we use our illustrating case study of a smart temperature control system
to illustrate the modeling capabilities of our goal model. In Section 6.1.3, we provide
a formalization of our goal model. It precisely captures the modeling elements and
their meaning. Moreover, it enables us to define a uniform quantitative evaluation in
Section 6.2, which captures the deviation of the current system state from an ideal
system state that fulfills all (currently active) goals.

6.1.1 Modeling Elements

Our goal model organizes system goals in a tree structure enhanced with dependence
and conflict relations. In Figure 6.1, we give an overview of our graphical notations for
goal modeling elements. In Section 6.1.2, we illustrate how they can be used to design a
precise goal model from informal requirements.

We distinguish between leaf and parent goals. Leaf goals (depicted with white, double-
framed boxes) describe explicit restrictions on the system and environment variables Var .
With these variables, we refer to parameters whose values can change over time and
that can be monitored. They can describe environment parameters of the system like,
for example, time of the day, indoor and outdoor temperature, or system parameters
like, for example, heating parameters. Note that these variables can describe controllable
(heating parameters), indirectly controllable (indoor temperature), or uncontrollable
parameters (outdoor temperature). Goal restrictions are expressed with literals (Lite/o)
that specify, for example, setpoints (e.g. indoor temperature temp_in = 20), thresholds
for one parameter, a relation between several parameters, or an optimization, i.e. the
minimization or maximization of an (arithmetic) expression (e.g. min(energy, 0, 52)),
which expresses that the energy consumption should be minimized within an expected
value range of [0, MAX_FLOW - MIN_FLOW] = [0, 52]). Leaf goals are the elementary
goals that are expressed directly on system and environment variables. To capture the
gradual deviation of a current system state from a leaf goal, a local goal distance function
is attached to the leaf goal (see Section 6.1.3), which can, for example, be derived from
the goal literal as described in Section 6.2.2. To combine subgoals, parent goals (depicted
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with grey, single-framed boxes) can be introduced. They hierarchically aggregate children
goals with a specified aggregation type (e.g. AND/OR, depicted at the edges between
parent and children goals). To enable context-dependent activation and deactivation of
goals, each goal has a guard (default is true and omitted in the graphical representation).
A guard describes a condition that has to be fulfilled by the current system and/or
environment state to activate the corresponding goal. Thus, the goal is only relevant,
if the guard is fulfilled. The weight w of each subgoal describes the impact of goal
deviations on the aggregated deviation in the parent goal. It is defined by the product of
a normalization factor n and a context-dependent importance factor i. The normalization
factor n is supposed to normalize the locally calculated distance to a suitable interval such
as [0, 100], and the importance i additionally describes the severity of a deviation from
the goal in different contexts. A tolerance value δ (depicted on top of a goal, omitted
for the default value of 0) describes to which extent a deviation is still acceptable and,
thus, not propagated to higher-level goals. To express complex relations between goals,
we include two kinds of dependencies. First, context-dependent weighted precedence
describes the influence of the degree of satisfaction of a preceding goal on the importance
of a preceded goal (depicted by a dashed arrow in the direction of influence, labeled
with the type of precedence). Precedences can be used to specify that a certain goal is
only relevant, if the preceding goal is satisfied (“0/1”-precedence) or that it becomes
more relevant, the more the preceding goal is satisfied (lin-precedence). Second, conflicts
(depicted by a dotted edge with a lightning symbol) describe that two goals are possibly
conflicting (e.g. min vs max or different target values for the same parameter). Adding
a conflict edge in the goal model expresses that the designer is aware of the (possibly
intended) conflict. Such a conflict might occur due to conflicting high-level goals (e.g.,
energy vs performance) that can be mapped to contradicting restrictions of the same
observable parameter (e.g., in our illustrative example a higher room temperature might
increase comfort but also increases energy consumption). By explicitly encoding the
conflict in the goal model, we enable the impact evaluation of adaptation decisions on
both goals. The conflict edge does not change the distance evaluation. It is only used
to connect conflicting goals. To increase flexibility, we allow the designer to provide
user-defined functions for the distance of leaf goals, for aggregation types of parent goals,
and for context-dependent importance factors and precedences.

In the following, we first illustrate the modeling capabilities of our goal model with our
illustrating case study. Then, in Section 6.1.3, we formalize our goal model to precisely
capture its semantics.

6.1.2 Illustrative Example

To model the goals of our illustrating case study, we map the requirements of our smart
temperature control system (cf. Figure 6.2) to subgoals and define quantifiable leaf goals
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...
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Lite := a ▷◁ d | a ∈ [d1, d2] with a being an arithmetic expression over V ar, ▷◁ ∈ {≤, =, ≥}, and
d, d1, d2 ∈ R with d1 < d2.

Lito := min(a, minv, maxv) | max(a, minv, maxv) with minv, maxv ∈ R and minv < maxv,
defining an approximate anticipated range of a.

Figure 6.1: Modeling Elements

for each requirement. In the following, we systematically derive the goal model from the
requirements specification.

Requirements

The main high-level requirements of our temperature control system are optimal temper-
ature control and energy efficiency. Temperature control is the most important aspect.
Thus, the more severe the temperature goal is violated, the less important the energy
goal becomes.

R1 The indoor temperature should be 20◦C at daytime.
R2 If the outdoor temperature is below 16, the indoor temperature should be reduced
to 16◦C at nighttime.
R3 To save energy, the indoor temperature should not be reduced in nights with an
outdoor temperature greater or equal to 16◦C, but stay in an interval of 16◦C to 20◦C.

(a) Temperature Requirements

R4 To reduce operational cost, the energy consumption should be minimized.

R4a Energy can be minimized by lowering the target temperature for the heating
unit.
R4b Energy can be minimized by reducing the power of the air conditioning.

(b) Energy Requirements

Figure 6.2: Requirements for our Smart Temperature Control System
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Structured Modeling of Requirements

As the requirements fall into the two categories of a) Temperature Control and b)
Energy Efficiency, we split the overall system goal into respective subgoals using AND
decomposition. The temperature regulations can be split into three exact leaf goals (R1
- R3), which depend on the environment context. These environment contexts can be
modeled as guards. With that, we can use the AND decomposition to express that each
leaf goal should be satisfied within its environment context. As the guards are exclusive,
only one of these goals can be active at the same time, thus, we do not have conflicts
here.

For the Energy Efficiency goal, we consider two modeling alternatives: Firstly, we
specify a minimization goal for an observable energy consumption parameter (R4). This
modeling decision requires an explicit modeling of the energy consumption and has the
advantage of also capturing other unmentioned influences on the energy consumption.
Secondly, we split the Energy Efficiency goal into two minimization goals according to
the specifications R4a AND R4b. This approach does not include other influences on
the energy consumption, but does not require additional monitoring capabilities. This
example shows that our goal model enables a fine-granular modeling of requirements
and requires an early consideration of design decisions. In our running example, we use
the first modeling alternative of capturing the energy goal to enable online learning of
the actual influence of adaptations on the energy consumption.

In Figure 6.3a, we present the resulting goal model for the first alternative of
modeling the energy goal. Here, we assume that the energy consumption parameter
depends on the flow temperature of the heating or the cooling temperature of the
air conditioning. The energy consumption of the heating is abstractly modeled by
energy(flow_temp) = flow_temp - MIN_FLOW, and the energy consumption of the air
conditioning is assumed to be constant for each mode with 0 for mode off, 20 for mode
on and 25 for mode power. The resulting values can range from 0 to 52. In Figure 6.3b,
we present the goal model for the second alternative. We capture the applied power
of the air conditioning by its mode and use the mode range as approximate interval:
airCon_mode ∈ [0, 2]. For the indoor temperature, we assume an approximate interval
of: temp_in ∈ [15, 30].

For simplicity, we set all tolerance values to 0. If they are greater than 0, they only
reduce the observed distances because deviations within the tolerance are not propagated
to higher-level goals.

Dependencies and Conflicts Our requirements include one dependency, which is
captured at the end of the requirements description above. It can be modeled as a
linear proportional precedence (lin-precedence) that describes a linear influence on the
importance of a goal. This means that the contribution of Energy Efficiency to the
overall goal depends on the quantitative degree of satisfaction of Temperature Control.
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Thus, the more severe temperature regulations are violated, the less important energy
efficiency get.

The requirements include a conflict between the exact restrictions of requirements
R1, R2 and R3 and the minimization goal of requirement R4a. To indicate that this
conflict is on purpose to enable a balancing between temperature and energy, we add
conflict edges in our alternative version (Fig 6.3b).

The requirements of our temperature control system do no include all of our modeling
elements. In Chapter 9, we evaluate our distance calculation on the goal model using the
example of an autonomous drone delivery system. There, we also use “0/1”-precedence,
an OR-aggregation, and context-dependent importance values.

Priorities and Weights To capture the priorities of goals, we use subgoal specific
weights in our goal model that consist of a possibly context-dependent importance factor
and a normalization factor to obtain distance values in the interval [0, 100] as described
in detail in Section 6.1.3. Deriving the context-dependent importance factors of subgoals
from requirement specifications is hard. In our temperature case study, we manually
specify the following qualitative priority: Temperature Control > Energy Efficiency. For
the remaining leaf goals in AND-aggregations, we use an equal importance as they are
exclusive. This prioritization is captured in our weights in Figure 6.3a and Figure 6.3b.
We have manually chosen the exact value of importances for our example in a way that
the resulting distances match our expectations.

In this subsection, we have shown how our modeling elements can be used to construct
a modular and quantitative goal model from a set of structured high-level requirements.
In general, the complexity of goal modeling depends on the amount and on the format
(structure, clearness) of the given requirements. This complexity can limit the practical
applicability of goal-based approaches if not supported by graphical modeling tools and
guidelines. Furthermore, deriving the importance of subgoals is a challenging task, that
should be supported by systematic prioritization approaches. In future work, we aim
at integrating our modeling approach with systematic context-dependent prioritization
approaches like, e.g. iterative pairwise comparison of subgoals ([SSDD17]). Identifying
precedence relations between system goals is also challenging if those are not explicitly
encoded in the requirements specification (“the more..”, “unless”).

In the following, we formally define all modeling elements and illustrate their precise
meaning with our smart temperature control example.

6.1.3 Formalization of the Goal Model

In this section, we formalize our goal model. This enables an unambiguous understanding
and its systematic and precise evaluation in a system state (see Section 6.2).

To ensure a high expressiveness of our goal model, we design some of the modeling
elements to be context-dependent, i.e. they may depend on the system state.
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System Goal
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(a) Goal Model of the Smart Temperature Control System
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(b) Alternative Way of Modeling the Energy Efficiency Goal

Figure 6.3: Alternative Goal Models for the Smart Temperature Control System
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Definition (System States): A system state σ w.r.t. system and environment variables
Var is defined to be a variable valuation, i.e. σ : Var → R. We denote the set of all such
states as State.

Atomic Leaf Goals

Each leaf goal l ∈ L carries a literal goal formula

form : L → (Lite ∪ Lito)

that describes the (boolean) satisfaction of the respective leaf goal and that can be
evaluated in the current system state.

We distinguish exact and optimization goals. Exact goals are described using the
following syntax.

Lite := a ▷◁ d | a ∈ [d1, d2]

with a being an arithmetic expression over V ar, ▷◁ ∈ {≤, =, ≥}, and d, d1, d2 ∈ R
with d1 < d2. They enable the descriptions of restrictions on system and environment
parameters. As optimization goals, we here focus on minimization and maximization of
an arithmetic expression a.

Lito := min(a, minv, maxv) | max(a, minv, maxv)

In both cases, we assume that an approximate anticipated range of the observed value
can be given via minv, maxv ∈ R with minv < maxv. This assumption is realistic, as
boundaries can usually be estimated, e.g, based on physical constraints. For example,
the energy consumption of our heating system cannot be minimized beyond zero and
the maximal energy consumption of the system can be estimated. In the general
case of max(a, minv, maxv), for example, a should evaluate to values in the interval
[minv, maxv] and, then, the distance for this optimization goal should be small (close
to 0) if it is close to minv or smaller, and large for values close to maxv or larger.

Note that the leaf goal formula form is not directly used to evaluate a goal model.
However, it can be used to derive basic goal distance functions automatically as described
in the next section. If provided manually, it should be ensured that the distance is 0 if
the literal formula evaluates to true in the current system state. Generally, the distance
function dist : L × State → R+ enables the quantification of the distance between a
given system state σ : Var → R and the respective leaf goal. While a distance value of 0
in a current system state can be achieved for exact goals, for optimization goals this is not
possible. In the case of an exact interval goal x ∈ [d1, d2], for example, the distance is 0
if the current variable valuation of x lies in this interval. However, if a goal specifies that
a certain system variable should, for example, be maximized, the corresponding distance
should never reach 0. This is because the value maxv only captures an approximate
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reference point. Beyond this point, we aim at capturing that further optimization still has
an effect on the distance, i.e. the distance decreases if a gets larger beyond maxv. This
can be modeled, for example, using exponential curves. Note however, that the relaxed
distance that is based on the goal’s tolerance value can be 0. We give more details about
general distance functions and present some particularly useful ones in Section 6.2.2.

Decomposition of Goals

A parent (i.e. non-leaf) goal p ∈ P is decomposed into several subgoals. The parent-child
relationship is given by a function children : P → P(L ∪ P ) establishing the actual tree
structure. The distance function of a parent goal Dist : P × multisetfin([0, 1] × R+) → R+

describes the propagation of weighted calculated children distances to the level of the
respective parent goal1. It operates on a finite multiset2 (multisetfin) of evaluated child
distances (current (context-dependent) importance factors of all active children × their
calculated distances) to achieve modularity and flexibility w.r.t. structural goal changes,
i.e. new goals can easily be added to the children of a parent node. In many cases, AND
and OR decompositions suffice to describe the parent-children relationship. However,
also other parent-children relationships can be defined.

Guards and Context-Dependent Weights

Leaf goals L and parent goals P each have a guard guard : (L ∪ P ) → Formula3, a
distance normalization factor norm : (L ∪ P ) → R+, a context-dependent importance
factor importance : (L ∪ P ) × State → [0, 1], and a tolerance value δ : (L ∪ P ) → R+.
The context-dependent weight of a goal is given by the derived function
weight : (L ∪ P ) × State → R+ with weight(g, σ) = norm(g) · importance(g, σ).
Thus, weights capture both, the normalization and the importance.

We usually assume that the normalization factors normalize the calculated distances
of goals to values between 0 and 100. This facilitates the comparison of their distances.
However, we do not restrict our model to this. Thus, a designer has the freedom of
normalizing distances to other ranges. Importance factors describe to which degree the
respective goal contributes to its parent goal. Note that the importance factor depends
on a system state. This enables us to dynamically adjust the importance of a goal in
different system contexts. Explicit guards are therefore unnecessary, because they could
be handled using context-dependent importance factors (returning 0 if the guard is not
satisfied). However, for clarity, we have decided in favor of explicit guards.

Example As an example that illustrates the interplay of normalization and importance,
consider the subgoals of the Energy Efficiency goal in our alternative model (Fig. 6.3b).
One is speaking about the indoor temperature (values ranging from 10 to 30) and

1[0, 1] denotes the set of real values between 0 and 1.
2A multiset is a set that allows for multiple instances for each of its elements.
3Formula represents any predicate on the system and environment variables.
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the other about the mode of the air conditioning (values ranging from 0 to 2). If the
maximal deviation max_dev from these goals can be estimated, all distance values can be
normalized to values ∈ [0, 100] by assigning a normalization factor of n = 100/max_dev.
As the importance i is given as percentage indication, the normalization only has to
be performed for leaf goals as the combination of child distances then sums up to at
most 100. In our example, we assume full knowledge of maximal deviations gathered
from hardware specifications and experiences: For the indoor temperature, we assume
temp_in ∈ [0, 40]◦C, the energy consumption can reach a maximum of 52, and the air
conditioning mode can have values between 0 and 2. As we use an individual quadratic
distance function for our temperature leaf goals (as described in Section 6.2.3), we have
to use the result of applying this function to the maximal values of temp_in. Thus
max_dev for “temp_in = 20” is 200, and for “temp_in = 16”, we get max_dev = 288.
For optimization goals, the maximal deviation is given by the specified expected value
range, thus the maximal deviation from these goals is maxv − minv.
Note that for AND-goals dynamically changing importance factors do not introduce a
problem for the suitable calculation of the parent goal even if the sum of (dynamic)
importances of all subgoals is not exactly 1. As we base the distance function Dist of a
parent goal on a multiset of child distances together with their individual importances,
we can define a normalization on the children importances as described in Section 6.2.2.

Context-Dependent Weighted Precedence

With context-dependent weighted precedences given by precBy : (L ∪ P ) → P((State ×
R → [0, 1]) × (L ∪ P )), we can describe that the importance of a goal g depends on
the current distances of the preceding goals. For (cdwp, p) ∈ precBy(g), we use an
arrow from p to g as modeling element in our visual representation of goal models (e.g.
the precedence between Temperature Control and Energy Efficiency in Figure 6.3a).
The function cdwp : State × R → [0, 1] describes the absorption on the importance
of the preceded goal, whose value cdwp(σ, d) depends on the current state σ and the
calculated distance d (see Section 6.2) of the preceding goal. Precedence can, for
example, be used to describe priority of goals in an AND decomposition. This is captured
by “0/1”-precedences. Then, the function cdwp would return 1 if the preceding goal
distance is 0 and 0 otherwise. For the definition of, for example, linear precedences that
influences the importance of the preceded goal proportionally based on the distance of the
preceding goal, we define that cdwp(σ, d) = (100 − d)/100. We require that precedences
do not conflict with implicit dependencies of the tree itself. Thus, the intersection of
the transitive closure of tree arrows and the transitive closure of precedence arrows is
required to be empty. Furthermore, we require that there are no cyclic dependencies
between precedences. This is important for our quantitative evaluation (see Section 6.2)
to be well-defined.
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Example In our smart temperature example, we use a linear precedence between
Temperature Control and Energy Efficiency as described in Section 6.1.2.

Conflicts

Another important dependency between goals are conflicts given by the symmetric
relation conflict : (L ∪ P ) → P(L ∪ P ). It applies to goals that restrict the same system
or environment variables in possibly conflicting ways. While such goals can be desirable for
expressing an envisioned balance between parameters, unintended goal conflicts need to
be detected and resolved. Based on the given set of system and environment variables Var,
a straight-forward analysis could automatically detect conflicts between goals restricting
the same variable. As a result, a warning to the system designer or administrator could
be thrown. Unintended conflicts currently have to be resolved manually.

Example In our example, all subgoals of Temperature control specify exact values
for the indoor temperature temp_in, while the subgoal of Energy Efficiency in Version
2 (Fig. 6.3b) specifies to minimize the indoor temperature in order to reduce energy
consumption. Here, the conflict is on purpose. Both goals contribute to a common parent
goal (System Goal) such that its optimal distance is balanced between both according
to the given importance values. This is similar to a Pareto optimum. If, however, the
system should guarantee that the exact temperature value requested by the user of the
heating is usually achieved, the conflict is probably unintended. To resolve this conflict,
the corresponding energy subgoal could be deleted to ensure that energy reduction will
not collide with heating settings. If unresolved, our distance evaluation can, however,
still be used to choose a temperature that optimizes the overall goal distance at runtime.

In this section, we have presented our hierarchical and generic goal model, its use in an
example, and its formalization. In the next section, we present our modular quantitative
distance calculation algorithm, which enables the efficient quantitative evaluation of a
goal model in the current system state.

6.2 Global Distance Calculation

Our formalization enables the definition of an unambiguous semantics for the goal model
in terms of a global distance calculation that can automatically be performed. In this
section, we first present our distance calculation for our goal model (Section 6.2.1).
Second, we present suitable local distance functions for all leaf goal types, which can be
derived automatically (Section 6.2.2). Moreover, we provide example distance functions
for parent goals. Finally, we present and discuss the calculated global distance for our
smart temperature control system in example system states (Section 6.2.3).
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6.2.1 Distance Calculation Algorithm

Our distance calculation is realized as a bottom-up algorithm that starts at the leaf goals
and propagates the results along the edges in the tree to the parents. Hereby, guards
and precedence relations, tolerance values, and the type of decomposition are taken into
account. In the following, we describe the general distance calculation algorithm of leaf
and parent goals in terms of recursive functions. By applying the evaluation algorithm on
the root node of a goal model, the goal tree is traversed until the leaf goals are reached
for which the individual distances are calculated. These results are then propagated
upwards in the tree again until the distance of the root is finally calculated.

Auxiliary Definitions Guards and (context-dependent) precedences can activate or
deactivate goals if guards or preceding goals are not satisfied. In our distance calculation,
we only consider goals that are currently active.
Definition (Active Goal): A subgoal is called active if a) its guard evaluates to true
in the current system state σ : V ar → R, b) if it is a parent goal, it has at least one
active child, and c) the current goal importance and precedences do not render the goal
irrelevant as captured by the derived importance DImportance defined below. Formally,
this is captured as follows.
active(g, σ) = σ ⊨ guard(g) ∧

g ∈ P → ∃c ∈ children(g). active(c, σ) ∧
DImportance(g, σ) > 0

We define the derived importance DImportance to consist of the current importance
factor of the considered goal and each of the precedence absorption factors.
Definition (Derived Importance):
DImportance(g, σ) = importance(g, σ) ·

mult({| cdwp(σ, eval(p, σ)) | (cdwp, p) ∈ precBy(g) |})

Distance Calculation for Leaf Goals In general, the distance calculation of a leaf
goal gl is based on the value given by its local distance function dist(gl, σ), where σ is
the current system state. First, it is checked whether the goal is active and whether
the distance is still acceptable w.r.t. the tolerance value δ(gl). If this is the case, the
distance is set to 0. Otherwise, it is relaxed using δ(gl) and weighted using weight(gl).
Let gl be a leaf goal and σ : V ar → R be a system state. Then, the distance eval(gl, σ)
is calculated formally as follows:

eval(gl, σ) =

⎧⎪⎨⎪⎩ 0 if δ(gl) > d ∨ ¬active(gl, σ)

(d − δ(gl)) · n otherwise
where d = dist(gl, σ) and n = norm(gl).

Distance Calculation for Parent Goals For calculating the distance of a parent
goal, we first filter its children to get all active children. Then, we collect the current
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importance factors and current individual calculated distances of each active subgoal in a
multiset and feed them into the parent distance function Dist(gp, ChildDistances). This
function combines the weighted distance values of its active children according to the
decomposition type. The result is then further relaxed according to its tolerance value
and weighted. Let gp be a parent goal and σ : V ar → R be a system state. Then, the
distance eval(gp, σ) is calculated formally as follows.

eval(gp, σ) =

⎧⎪⎨⎪⎩ 0 if δ(gp) > d ∨ ¬active(gp, σ)

(d − δ(gp)) · n otherwise
where
Children = children(gp)

ActiveChildren = {c ∈ Children | active(c, σ)}

ChildDistances = {| (DImportance(c, σ), eval(c, σ))

| c ∈ ActiveChildren |}

d = Dist(gp, ChildDistances)

n = norm(gp)
Note that this calculation is only well-defined if precedence dependencies do not

conflict with implicit dependencies of the tree itself. This means that the intersection of
the transitive closure of tree arrows and the transitive closure of precedence arrows is empty.
Furthermore, we require that there are no cyclic dependencies between precedences.

6.2.2 Extraction of Local Goal Distance Functions

Our distance calculation is based on individual local distance functions of leaf and parent
goals. For leaf goals, we differentiate between exact and optimization goals. The distance
of exact goals is 0 if the goal is satisfied, whereas a distance of 0 is never reached for
optimization goals as they are never satisfied completely (assuming that the given target
values are only approximations of the reachable minimum or maximum value). This has
to be considered when defining a distance function for leaf goals.

Often, a basic local distance function is sufficient that is directly derived from the
literal formula that captures the main intent of a leaf goal. For exact goals (literals
from Lite), we derive the following local linear distance functions. They capture a linear
distance between the variable in the current system state σ and the lower respectively
upper bounds.

a) For literals of the form a ▷◁ d with a being some arithmetic expression over Var,
▷◁ ∈ {≤, =, ≥}, and d ∈ R, we get:

dist(gl, σ) =

⎧⎪⎨⎪⎩ 0 if σ ⊨ form(gl)

|σ(a) − d| otherwise

75



6.2. Global Distance Calculation

Example The derived local goal distance function of the “temp_in = 20” goal
in our temperature example is the following.

dist(“temp_in = 20”, σ) =

⎧⎪⎨⎪⎩ 0 if σ(temp_in) = 20

|σ(temp_in) − 20| otherwise

This can be simplified to dist(“temp_in = 20”, σ) = |σ(temp_in) − 20|. However,
we decided to use an individual distance function for the temperature regulations
as described in 6.2.3.

b) For literals of the form a ∈ [d1, d2] with d1, d2 ∈ R and d1 < d2, we get:

dist(gl, σ) =

⎧⎪⎨⎪⎩ 0 if σ ⊨ form(gl)

min(|σ(a) − d1|, |σ(a) − d2|) otherwise

To regulate the distance values for optimization goals, i.e. form(gl) ∈ Lito, such that
the maximal distance can be determined for normalization, we expect the optimization
goals to carry an approximate range for the result of its arithmetic expression. We include
those interval bounds in our local distance functions for minimizing and maximizing an
arithmetic expression. We require that the impact of changes towards the target value
is high if the observed value is far from the approximate target value and small if it is
close to the approximate target value. As described in the previous section, we aim at
capturing that further optimization still has a positive effect on the distance. Thus, the
distance value should never reach 0. In the case of a maximization goal, for example,
this means that that the distance should still decrease if a gets larger beyond maxv. To
achieve this, we use an exponential function. As resulting distance functions, we derive
the following.

a) For form(gl) = min(a, minv, maxv):
dist(gl, σ) := e(σ(a)−minv)·ln(100)/(maxv−minv)

b) For form(gl) = max(a, minv, maxv):
dist(gl, σ) := e(maxv−σ(a))·ln(100)/(maxv−minv)

Both these functions are illustrated in Figure 6.4. In the case of a maximization goal
(curve b), for example, the distance is 100 if the expression a evaluates to the minimal
value minv and it is 1 if it equals maxv. Thus, further optimization positively affects
the distance. The intention of curve a) for expression minimization is analogue.

The local distance function of parent goals combines the weighted distance values
of all active children according to its decomposition type. In most cases, AND- and
OR-decompositions are sufficient. For AND-decomposition, all child distances influence
the overall distance. Thus, we propose to follow a weighted sum approach. To this
end, we multiply each individual distance (d) with its current importance factor (i). To
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Figure 6.4: Local Distance Functions for Optimization Goals

additionally normalize the importances among all children to 1, we divide each individual
importance by s, the sum of all current children importance factors.
Dist(gp, ChildDistances) = sum({| i/s · d | (i, d) ∈ ChildDistances |})

where s = sum({| i | (i, d) ∈ ChildDistances |})
For OR-decomposition, only one of the subgoals has to be fulfilled. Thus, we take

the minimal child distance as the result.
Dist(gp, ChildDistances) = min({| i · d | (i, d) ∈ ChildDistances |}).

Example In our temperature example, the system goal has the AND aggregation type.
Using the above distance function for AND, the resulting distance calculation of the
system goal is as follows.
eval(System Goal, σ) = sum({| 0.7 · eval(Temperature Control, σ),

0.3 · eval(Energy Efficiency, σ) |})

6.2.3 Example

In this section, we use our smart temperature example to illustrate our distance calculation.
We use our goal model of Figure 6.3a.
For the leaf nodes, we use the derived local distance functions as proposed above with
the exception of the exact goals restricting the temperature. For these goals, we use an
individual distance function that takes into account that moderate deviations from the
target temperature (TARGET ) have a small effect on the distance and larger deviations
have a significantly higher effect. To achieve this, we use a quadratic function that fulfills
the following requirements: the vertex is at (TARGET |0) and a deviation of 2◦C results
in a distance of 2.

dist(“temp_in = TARGET”, σ) = 0.5 · (σ(temp_in) − TARGET )2

For the parent goals, we use the proposed local distance functions for AND-decompositions
as described above.
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To illustrate how our distance calculation can be used to evaluate different adaptation
options, we consider the following situation (system state): It is daytime (time = 13) and
the outdoor temperature is 10◦C, the indoor temperature is 25◦C, the air conditioning
is off (airCon_mode = 0), and the current energy consumption is 24. Thus, we have the
following (incomplete4) system state.

σ = {time = 13, temp_out = 10, temp_in = 25, airCon_mode = 0, energy = 24}
In this situation, we get an overall distance of ≈ 9.21 as weighted sum of the following
subdistances.

eval(Temperature Control, σ) = 6.25
eval(Energy Consumption, σ) ≈ 16.11

Now the temperature system has two options to decrease the indoor temperature: a)
reduce heating or b) turn on the air conditioning. While turning the air conditioning on is
explicitly encoded in our adaptation rules, reduction of the heating has to be performed
by adjusting the heating parameters. For simplicity, we here omit the detailed adaptation
steps and just compare the expected result of both adaptation options:

a)
σ = {time = 13, temp_out = 10, temp_in = 20, airCon_mode = 0,

energy = 14}

eval(System Goal, σ) ≈ 1.99
eval(Temperature Control, σ) = 0
eval(Energy Consumption, σ) ≈ 6.64

b)
σ = {time = 13, temp_out = 10, temp_in = 20, airCon_mode = 1,

energy = 34}

eval(System Goal, σ) ≈ 11.7
eval(Temperature Control, σ) = 0
eval(Energy Consumption, σ) ≈ 39.06

As we can see, reducing the heating has a positive effect on both, the indoor
temperature and the energy consumption. Whereas using the air conditioning has a
positive effect on the indoor temperature, but also increases the energy consumption,
which leads to a significantly higher overall distance. Based on these values, the planning
algorithm can choose strategy a) over strategy b).

In this section, we have presented our modular distance calculation algorithm with
which we can quantify the deviation between a runtime state and the system goals. We
have provided automatically derivable local distance functions for all considered kinds
of leaf goals. To illustrate our distance calculation, we have shown how changes in the
system behavior influence the distance values in the context of our smart temperature
control example. In summary, the global distance calculation can serve as the basis
for runtime evaluation of current and possible future system states within analysis and
planning phases of self-adaptive systems, as well as for fitness evaluation during learning
of new adaptation options.

4heating parameters and environment parameters not relevant for the calculation are omitted
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Practical Applicability and Limitations of our Goal Model To enable goal-aware
autonomous decisions the first crucial step is to create a corresponding quantitative
goal model. This task includes several challenges and (currently) limits the practical
applicability of our approach. The main challenges are a) to identify a quantitative
key-performance indicator for each system goal (which may be difficult for aspects like
security or safety) and provide a corresponding interface that gives access to runtime
values of these indicators, b) to derive the structure of the goal model from explicit
and implicit relations between informal requirements (as shown for a small amount of
requirements in our illustrative example in Section 6.1.2), c) to derive precedences and
context-dependencies from the requirements specification, and d) to identify suitable
(context-dependent) importances for subgoals.

Runtime updates of our goal model require a manual mapping from new requirements
to the existing goal-structure, which is straight forward in case of changes on existing
goal elements (e.g. priorities, thresholds) and more challenging in case of introducing
new goals as described for the initial creation of the goal model. The technical aspect of
runtime updates is easily implementable due to the modular (object) structure of the
goal model, as illustrated in Chapter 9. To further assess the practical applicability of
our approach, further evaluations are necessary.

Summary In this chapter, we have presented our modular and generic goal model that
provides an automatic quantitative goal evaluation capturing the “distance” between
a runtime system state and the system goals. Our goal model comprises elementary
quantifiable goals, hierarchic goals based on generic goal decomposition types, and
complex relations between subgoals, which we model using individual goal guards and
precedence relations. We have applied our goal model to our illustrating case study to
illustrate its applicability and its suitability as a basis for autonomous decision-making. As
described in Chapter 4, we use our distance evaluation to analyze whether autonomous
decisions are currently necessary, to evaluate the cost-benefit ratio of given decision
options, and as a basis for learning of new decision options. In the next chapter, we
describe our runtime evolution of the adaptation logic in detail.
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7 Runtime Evolution of Adaptation
Logics

How can we enable continuous learning under safety, comprehensibility
and resource restrictions?

With our adaptation layer, we enable a light-weight resource efficient self-adaptation
that autonomously evaluates different adaptation options in the current situation, as
described in the previous chapter. However, its success highly depends on the accuracy
of the expected effect of the adaptation rules, and, thus, on the designers degree
of uncertainty about the environment behavior that the system may face at runtime.
Furthermore, the accuracy may decrease over time with changes in the environment
behavior. We distinguish between two kinds of uncertainty:

1. the environment situations that can occur at runtime are known, but the effect of
adaptations may depend on unknown aspects, i.e. the designer is uncertain about
the quantification of the effect and about context-dependencies that may influence
the effect

2. uncertainty about situations that may lead to goal violations and require adaptation.

In the first case, the expected effect of adaptations may not be accurate, which might
lead to over- or undershooting while trying to re-establish system goals. In the second
case, unexpected situations were not considered during the design of adaptation rules,
which leads to the lack of applicable adaptation rules at runtime. In both cases, runtime
observations can be used to adapt the adaptation logic to the actual operational context.
As the environment behavior, the system structure and the system goals may evolve over
time, a continuous adjustment is necessary to achieve a co-evolution of the adaptation
logic.

While self-adaptivity realized through MAPE-K feedback loops [IBM04] has become
a prominent approach to autonomously cope with changing environment behavior in
complex dynamically evolving systems, the safe and explainable co-evolution of the
adaptation logic itself is not sufficiently addressed in existing approaches. To overcome
this limitation, our framework provides an evolution layer that detects and safely replaces
inaccurate adaptation rules, learns missing rules, and verifies the evolved adaptation logic.
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Figure 7.1: Evolution Process in Detail

To this end, we propose a Rule Accuracy Evaluation, an Observation-Based Learning , a
Simulation-Based Learning, and a Verification approach as shown in Figure 7.1. In our
Rule Accuracy Evaluation, we continuously compare the expected effect of previously
applied rules and the actual values of system and environment parameters until the
expected effect time (plus time tolerance) is expired. If the effect did not occur, we
calculate the gap between the expected and observed effect. If the gap is too large
(greater than a rule-specific accuracy tolerance εr), this rule is disabled to ensure the
correctness of planning results. If, however, a smaller deviation is observed, we propose
to keep the rule in the rule base, and to store and use previous evaluation results to learn
from observations instead of using costly learning via model simulation. Our accuracy
evaluation can also be seen as a runtime monitoring approach to ensure the correctness
of the adaptation layer. Additionally, the retracing of adaptation decisions and their
actual effect also help to gain a deeper understanding of autonomous decisions and thus,
supports the explainability of the adaptation layer. In our Observation-Based Learning , we
analyze whether some recurring pattern can be detected in the observed effect deviations.
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If, for example, the effect deviation of a certain rule is always the same, or if this deviation
depends on some external environment conditions, this knowledge can be used to adjust
the existing adaptation rules. To this end, we propose to split the original adaptation rule
into more specific rules that capture context-dependent effects by refining the guards
of those rules according to the observed context conditions and by adding the observed
deviations to the expected effect of the respective context-specific rule. Adjusting rules
reduces discrepancies between future model predictions and the actual system behavior.
However, observation based learning cannot be used to discover suitable adaptations
for situation that were not considered during the design of adaptation rules. This is
addressed in our Simulation-Based Learning . We propose to use learning on model
simulations to determine promising adaptations for the currently observed environments.
To minimize the resource consumption that is necessary for such a search-based learning,
we iteratively generalize the learned solutions to achieve more generic rules that can be
reused in similar situations. As a basis for the explainability of runtime changes on the
adaptation rules, we store relevant evaluation and learning results in our explanation
base.

In the following, we first describe our Rule Accuracy Evaluation, and then our learning
approaches Observation-Based Learning , and Simulation-Based Learning . With the
combination of these three parts, we achieve an explainable runtime evolution of the
adaptation logic. In the end of this chapter, we discuss the stability of our rule evolution
approach. To ensure correctness of learned rules, we perform verification of the learned
rules before applying them on the running system. Our verification approach is described
in the next chapter.

7.1 Rule Accuracy Evaluation

To detect inaccurate effect expectations, we continuously observe and evaluate the actual
effect of applied adaptations. To this end, we evaluate whether the expected effect
occurs in time or within a rule-specific acceptable delay timeTolerance. This tolerance
is motivated by the fact that the effect is evaluated on monitored data and the values
depend on the monitoring cycle time. If there is a gap between the expected and the
actual effect, we check whether the gap is smaller than a rule-specific tolerance value εr.
We assume that ε is the maximal deviation that is tolerable for planning. If this threshold
is exceeded, we disable the corresponding rule to ensure correctness. If, however, a smaller
deviation is observed, the rule can still remain in the rule base and observed effects of
several executions can be compared to learn recurring patterns, e.g. context-dependent
deviations. This status tracking for applied adaptations is described in Section 7.1.1.
Note that the tolerance εr on the one hand has to be large enough to cope with the fact
that there is a certain gap between the actual behavior and the model level, and, on the
other hand, has to be small enough to allow for precise re-establishing of system goals.
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In preparation of our Observation-Based Learning , we classify the observed effects of safe
rule executions (with gap ≤ εr) w.r.t. the observed deviation from the expected effect
(in Section 7.1.2). To this end, we require the designer to provide a fuzziness value λp

for each monitored parameter that specifies the deviation from the expected effect that
is still considered as equivalent. This classification enables a fast detection of recurring
effect deviations.

Example For our running example of a smart temperature control system, we assume
that the concrete environment behavior is not entirely known at design-time, but can
be abstractly modeled with a heating curve that describes the relation between the
flow temperature of the heater and the current outdoor temperature on the indoor
temperature. As this is a very simple model, it is likely that this relation is not accurate
in every situation (e.g., high sun intensity) or that it may change due to changes in
the construction of the building (e.g., thermal insulation) or in the characteristics of
the radiator (e.g., installation of a new radiator). The former situation leads to the
observation that the adaptation rules for adjusting the parameters of the heating curve
always miss their effect if the sun intensity was high. The latter situation leads to the
observation of a general shift in the actual effect of these rules. We use the scenario of
an radiator exchange to illustrate our Rule Accuracy Evaluation and Observation-Based
Learning .

7.1.1 Status Tracking

1 i nput : a d a p t a t i o n h i s t o r y
2 begin
3 foreach pend ing a d a p t a t i o n r u l e
4 DEVS ← c a l c u l a t e D e v i a t i o n ( e x p e c t e d E f f e c t , c u r r e n t S t a t e ) ;
5 add DEVS to h i s t o r y o b j e c t ;
6 e f f e c t O c c u r r e d ← checkFuzzyne s s (DEVS ) ;
7 dueDate ← e x e c u t i o n S t a r t T i m e + e f f e c t T i m e ;
8 i f ( e f f e c t O c c u r r e d && cur rentT ime <= dueDate + t imeTo l e r ance )
9 s t a t u s ← e f f e c t _ a c h i e v e d ;

10 e l s e i f ( cu r ren tT ime > dueDate + t imeTo l e r ance )
11 s t a t u s ← e f f e c t _ m i s s e d ;
12 i f ( s t a t u s != pend ing )
13 eva lTime ← c u r r e n t t ime ;
14 s a v e C u r r e n t S t a t e ( ) ;
15 end_if
16 i f ( s t a t u s = e f f e c t _ m i s s e d ∧ ExceedsGap (DEVS) ) d i s a b l e R u l e s ( ) ;
17 end_for
18 moveChangedObjectsToEvaluat ionDataBase ( ) ;
19 end

Algorithm 7.1: Rule Status Evaluation Algorithm

To enable rule accuracy evaluation, we create a new adaptation history object in
our knowledge base for each execution of an adaptation rule. This object contains the
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applied rule, the execution context (i.e. the current values of KSys and KEnv), the
expected resulting effect (i.e., the expected values after rule execution), the execution
timestamp, and a rule status. Its status is initialized with pending. In our rule status

evaluation, which is given in Algorithm 7.1, we continuously (with a cycle time that
can be independent from the monitoring cycle time) check for all pending rule executions
in our adaptation history whether the expected effect has occurred in time. Based on
this, we update the status of each history object, which expresses whether the evaluation
is still running because the expected effect time has not passed yet and the effect has not
occurred (pending), whether the rule missed the effect expectations (effect_missed)
or not (effect_achieved). To this end, we first calculate the deviation between the
expected and the current values of each effected parameter and store the result for later
analysis in DEVs (lines 4, 5). Then, we compare these deviations to the parameter-specific
fuzziness value λp and check whether all deviations are within the allowed range, i.e. the
effect occurred (line 6). If this is the case within the expected effect time, we set the
status to effect_achieved (lines 7-9). If the expected effect time passed, we allow
for a given additional acceptable delay timeTolerance for the effect to be visible. If
the effect has not occurred yet, we check whether the expected effect time has already
passed. In this case, the status is set to effect_missed (lines 10-11) and the rule is no
longer observed. Otherwise, the rule should be re-evaluated later (still pending). For all
rules for which the status was changed, we save the current values of KSys and KEnv

(current state) and the current timestamp (lines 12-14). For rules that have missed their
effect, we check whether the gap between the expected and the actual effect of applied
adaptation rules is smaller than the tolerance value εr. If this gap is greater than the
maximal deviation εr, the corresponding rules are disabled from the rule set in KAdapt

to ensure correctness of planning results (line 16). In the end, all history objects with
a status change are moved into a separate evaluation data base that is used for the
classification of rule effects, which is described in the following subsection and which
builds the basis for our Observation-Based Learning .

The size of this data base is restricted and the oldest entries are moved into our
explanation archive following the FIFO principle. With that, we restrict the amount of
data, and thus, the computation time, of our classification. Furthermore, our restriction to
the latest observations also supports the exploration of recent changes in the environment.
As more data may lead to more accurate results, the size of the data base has to be
chosen with care and should be tailored to the application and the specific dynamics of
the operational environment.

Example As illustrating example, we assume that the effect of flow temperature
adjustments has changed after the installation of a new radiator. In this case, the
assumption that a change of 2◦C in the flow temperature leads to a change of 1◦C in
the room temperature is not valid anymore. Instead, a constant shift of the effect can
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be observed. In the following, we evaluate the accuracy of the rule increase n after the
radiator exchange.

• execution state:
σexecution = {time = 17, temp_out = 15, temp_in = 18,

airCon_mode = 0, energy = 6}

• adaptation rule (shortened):
guardincrease_n & n := n + stepsizen
−→ (temp_inenv ≥ temp_in + stepsizen/2
∧ energyenv = energy + stepsizen)

• expected effect:
σ = {time = 17, temp_out = 15, temp_in = 19, airCon_mode = 0,

energy = 8}

• observed effect:
σeffect = {time = 17, temp_out = 15, temp_in = 20, airCon_mode = 0,

energy = 8}

• calculated deviation: {(temp_in, 1), (energy, 0)}

• rule status: effect_missed

The deviation of 1◦C is less than the tolerance value, thus the rule is kept in the rule
set and the history object is moved into the evaluation data base for further processing
within our Observation-Based Learning .

With this knowledge, we can learn the new relationship between flow temperature
and room temperature (assuming a temporarily constant outdoor temperature) with our
observation based learning.

7.1.2 Deviation Classification

The main idea of our classification algorithm is to divide all observed rule executions
from the evaluation data base into equivalence classes that are calculated based on the
observed deviation from the expected effect. To this end, we require the designer to
provide a fuzziness value λp (for each effected parameter p) that specifies the deviation
from the expected effect that is still considered as equivalent. Based on the classification
result, we can have two cases: a) all executions have a uniform deviation (are in the
same equivalence class), b) deviations are non-uniform (more than one equivalence class).
In case a), we have observed an inaccuracy in the effect quantification and in case b),
the effect may depend on the execution context or on some incidents that happened
between execution and evaluation. For both cases, we propose to refine the adaptation
rules to more specific rules that provide adjusted effect expectations for the observed
contexts in our Observation-Based Learning as described in the next section.
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In the following, we explain our equivalence class construction. Based on the fuzziness
value λp, we define that a rule is accurate if the observed deviation from its expected
effect is smaller than λp for each effected parameter p, i.e. devp < λp. Thus, we first
classify the deviation for each effected parameter. Our parameter equivalence classes cp

have the following form for λp > 0:
.., [−5λp, −3λp), [−3λp, −λp), [−λp, λp], (λp, 3λp], (3λp, 5λp], ...

This can be formally defined as:
E := {[−λp, λp]} ∪ Eneg ∪ Epos

with Eneg := {[−(2k + 3) · λp, −(2k + 1) · λp) |k ∈ N0}
and Epos := { ((2k + 3) · λp, (2k + 1) · λp] |k ∈ N0}
For λp= 0, each deviation forms a new equivalence class as no deviations can be

considered equivalent.

Example For our example, we assume λtemp_in = λenergy = 0.5. Thus, the equivalence
classes for our rule execution of increase n with deviation {(temp_in, 1), (energy, 0)}
are (0.5, 1.5] and [−0.5, 0.5].

For our classification, we use class identifier (IDs) to refer to these equivalence classes.
As class IDs, we use the distance to the equivalence class of an accurate rule with respect
to parameter p. Thus, for accurate effect expectations (i.e., deviation devp ∈ [−λp, λp]),
we get classIDp(devp, λp) = 0, for devp ∈ [−3λp, −λp), we get classIDp(devp, λp) = −1,
and classIDp(devp, λp) = 1 for devp ∈ (λp, 3λp], etc. The classID of the class for a given
deviation devp can be formally defined as follows:

classIDp(devp, λp) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if devp ∈ [−λp, λp]

−(k + 1) if devp ∈ [−(2k + 3) · λp, −(2k + 1) · λp)

k + 1 if devp ∈ ((2k + 3) · λp, (2k + 1) · λp]
We can calculate this identifier for a given deviation devp with the following function:

fclassIDp(devp, λp) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
devp if λp = 0 or devp = 0

c_id(devp, λp) if devp > 0

c_id(|devp|, λp) · (−1) if devp < 0

c_id(devp, λp) =

⎧⎪⎨⎪⎩ ((devp/λp) − 1)%2) if devp%λp = 0

((devp/λp) − 1)%2 + 1 otherwise
Within our classification algorithm, we classify the overall accuracy of an effect

expectation for each rule execution that is stored in our evaluation data base (unless it is
already classified). To this end, we first calculate the classIDs for each affected parameter
of this rule observation. Then, we combine these classes into an overall equivalence
class crule, which we represent as vector of parameter classIDs in the order in which
the parameters occur in the effect formula: classIDrule = ⟨classIDp1, ..., classIDpn⟩. As
we only compare executions of the same rule with each other, this order is fixed. The
calculated classIDrule is stored in the adaptation history object of the corresponding rule
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execution. The classified set of rule effect observations builds the basis for our subsequent
Observation-Based Learning .

Example For our example, we get

classIDincrease n = ⟨classIDtemp_in, classIDenergy⟩ = ⟨1, 0⟩.

In the subsequent learning step, we check whether this deviation can be observed several
times to avoid adjustments for outliers. Due to the change of the radiator, we can
observe a permanent shift. Thus, the rule is adjusted as described in the next section.

With our Rule Accuracy Evaluation, we provide a systematic evaluation of observed
deviations from the encoded expectations that also considers the timing behavior of
adaptation effects. The evaluation results are used to adjust existing adaptation rules
within our Observation-Based Learning as described in the next section.

7.2 Observation-Based Learning

With our accuracy evaluation, we classify executions of adaptation rules based on whether
they achieve the expected effect in time or within an acceptable time span, and if not,
to which degree the effect differs. Based on this, we can detect systematic deviations
from the expected effect and adjust our adaptation rules. To this end, we rely on our
effect classification to identify equivalent deviations and context conditions that are
characteristic for each observed equivalence class. The main idea of our rule adjustment
is to split the original adaptation rule into more specific rules that fit the observed
deviation classes and specify the context in which these effects are expected.

Example In our smart temperature example, a correction may be necessary for an
adaptation rule that describes the effect of adjusting heating parameters on the indoor
temperature. In our adaptation rules, we have assumed that this effect is independent from
the outdoor temperature. If for example, the effect is different for outdoor temperatures
greater than 15◦C, we will observe a different deviation in this situations.

7.2.1 Learning Process

The main steps of our Observation-Based Learning are depicted in Algorithm 7.2. For
each evaluated rule execution in our evaluation data base that did not achieve its effect
in time (i.e. with status = effect_missed), we first check whether we have sufficient
observations for this rule to allow for generalization of observations, i.e. the amount of
observed executions within the evaluation horizon is larger than a rule specific threshold
γ. If this is the case, we proceed with our correction of rule effect expectations as
given in Algorithm 7.3. Otherwise, this rule will be further observed as long as it is safe
(the deviations are within the safety threshold εr). Note that the necessary amount of
observations γ is application dependent and has to be chosen with care, as more data
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1 i nput : e v a l u a t i o n data base
2 output : NEW_RULES
3 begin
4 NEW_RULES ← ∅ ;
5 foreach r ∈ e v a l u a t e d r u l e s w i th r . s t a t u s != e f f e c t _ a c h i e v e d
6 i f ( count ( r , E) > γ )
7 NEW_RULES ← NEW_RULES ∪ r u l e E f f e c t C o r r e c t i o n ( r , E ) ;
8 end_if
9 end_for

10 g e n e r a l i s a t i o n A n d V e r i f i c a t i o n (NEW_RULES) ;
11 end

Algorithm 7.2: Observation-Based Learning

may increase the accuracy but lead to more inaccurate adaptations of the system before
adjusting the rule set. The latter decreases the quality of the adaptation process but
due to the definition of the maximal tolerance εr, we ensure that a severe deviation only
occurs once. After constructing the set of specific rules, we perform an iterative rule
generalization and verification as described in Section 7.4. With that, we aim at reducing
the total amount of a) adaptation rules to speed-up planning, and b) rule learning steps
that are triggered by observing deviating effects in new context conditions that can be
covered by already learned rules. In the verification step, we verify the newly learned
set of adaptation rules and only insert rules into the rule base KAdapt that have been
verified successfully. Our verification is described in Chapter 8. Note that although we
rely on runtime model simulation for our generalization and verification, we still need
less simulation steps for observation-based learning than for simulation-based learning,
where simulation is also used for creating initial adaptation rules.

7.2.2 Correction of Rule Effect Expectations

To adjust our rule effect expectations, we identify context-dependent deviations by
analyzing the execution context to extract context conditions that can be used to refine
the guard of the adaptation rule. We propose to split the original adaptation rule into
context-specific rules. To this end, we refine the guard of the original rule based on
extracted context-conditions. For each specific rule, we adjust the effect expectation by
adding a calculated offset (which could be negative as well). For the identification of
context conditions, we rely on the relation R ⊆ (SP ∪ EP ) × EP that specifies which
control or environment parameters may possibly influence which environment parameters.
We assume this relationship to be specified at design time and to be updated at runtime
if new components provide new sensors or actuators. The intent of this relation is to use
expert knowledge to reduce false implications from spurious correlations. In the following,
we describe our ruleEffectCorrection algorithm, which is given in Algorithm 7.3.

Preparation In a first step of our ruleEffectCorrection algorithm we filter the
identified equivalence classes of our Rule Accuracy Evaluation (Line 6) to get a set
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1 i nput : r u l e r , e v a l u a t i o n data base E
2 output : NEW_RULES
3 begin
4 CLASSES ← g e t C l a s s e s (E ) ;
5 // f i l t e r s i g n i f i c a n t d e v i a t i o n s
6 CLASSES ← f i l t e r (CLASSES , λ c l a s s . e lemCount ( c l a s s ) > γ ) ;
7 NEW_RULES, COND ← ∅ ;
8 COND ← e x t r a c t C o n d i t i o n s (CLASSES ) ;
9 // c r e a t e s p e c i f i c r u l e s

10 foreach c l a s s j ∈ CLASSES \ { c l a s s 0}
11 e f f e c t j ← addOf f s e t ( c l a s s j , r ) ;
12 NEW_RULES ← NEW_RULES ∪ c r e a t e R u l e ( c l a s s j , r ,COND, e f f e c t j , 0 ) ;
13 end_for
14 NEW_RULES ← NEW_RULES ∪ c r e a t e R u l e ( c l a s s 0 , r ,COND, r . e f f e c t , 0 ) ;
15 re tu rn NEW_RULES;
16 end

Algorithm 7.3: ruleEffectCorrection

of significant evaluation results, i.e. the amount of observed executions within each
remaining equivalence class is larger than the rule specific threshold γ. Thus, for rules
with non-uniform deviations, i.e. more than one identified equivalence class, we only
consider those classes that contain enough observations. Note that λ in Line 6 of our
algorithm is a λ-term that specifies an anonymous function, and should not be confused
with λp. The main idea of our correction is to split the rule into more specific rules.
By only using significant evaluation results, we avoid creating rules for random effect
deviations or for very specific and rare context conditions. Disregarded deviation classes
will still be considered later if enough observations are collected that fall into this class.

Extraction of Context Conditions In a next step, we try to identify context conditions
that are characteristic for each rule equivalence class (Line 8). These conditions are
conjunctions of value ranges for system and environment parameters and are inferred by
comparing the execution contexts of adaptation rules within the same class and between
classes within extractConditions. To identify responsible context parameters, we rely
on classification rule learning algorithms such as RIPPER. This rule learning algorithm
infers rules of the form IF condition THEN class. As classes, we use our calculated
equivalence classes. The condition contains all parameters and value ranges for which
the class could be observed in the data. These ranges get more precise if more data
is observed. However, even for small datasets, we get good results if the data does
not contain too much noise. The extracted conditions are used to create rules with
guards that describe specific context conditions (Lines 12 and 14) because the observed
behavior might be context-specific and should not be generalized beyond available runtime
observations. If, for example, an autonomous robot vehicle is driving on a sandy surface
it might observe that the covered distance is smaller than expected. However, this effect
is only valid for sandy surfaces and will be different on e.g. asphalt. Thus, even if all
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1 i nput : e q u i v a l e n c e c l a s s ci , r u l e r
2 // s e t o f t u p l e s ( paramete r name p , o f f s e t op )
3 output : f o rmu la effecti

4 begin
5 se t <(p , op)> OFFSET ← ∅ ;
6 foreach p ∈ e f f e c t e d P a r a m e t e r s ( r )
7 DEVIATIONSp ← f i l t e r ( r . DEVIATIONS , hasParamName ( p ) ) ;
8 op ← avg(DEVIATIONSp)
9 OFFSET ← OFFSET ∪ (p , op ) ;

10 end_for
11 // adds each op to i t s r e s p e c t i v e sub fo rmu la effectp

12 // and r e t u r n s the m o d i f i e d e f f e c t f o rmu la
13 effecti ← a d d O f f s e t T o E f f e c t ( r , OFFSET ) ;
14 re tu rn effecti ;
15 end

Algorithm 7.4: addOffset

observed deviations are uniform, we split our rule into a rule that captures observed
contexts and deviations and the original rule that is refined to the unobserved contexts.

Example For our example, where the effect is different for outdoor temperatures greater
than 15◦C, we observe the following deviations for our rule increasen: a deviation of 1◦C
for eight rule executions with temp_out = 15 and a deviation of 0◦C for four executions
with temp_out = 6.

Effect Correction For inaccurate rules (Line 10), we adjust the expected effect to the
observed effect in these contexts by adding the average observed deviation (which could
be negative as well) of all rule executions within this specific equivalence class to the
expected effect (Line 11). This is done for each affected parameter and parameter-specific
effect subformula formulap within our addOffset algorithm as depicted in Algorithm 7.4.
We have decided to take the average instead of a class-specific representative number to
be even closer to the actual behavior.

Example For our example, we add the constant shift of 1◦C to the subformula for the
indoor temperature: effecttemp_in = effecttemp_in + 1.

Creation of new Adaptation Rules The extracted context conditions and the class-
specific effect formulas are now used to create a set of specific rules that follow the
following construction scheme:
ri1 : (gi ∧ cond1 ∧ ¬(

⋁︁
cond ∈ COND \ cond1)) & c1; c2; . . . ; cn

−→ (effect ⊕ OFFSET1) after time

ri2 : (gi ∧ cond2 ∧ ¬(
⋁︁

cond ∈ COND \ cond2)) & c1; c2; . . . ; cn

−→ (effect ⊕ OFFSET2) after time

...

ri : (gi ∧ ¬(
⋁︁

cond ∈ COND)) & c1; c2; . . . ; cn −→ effect after time
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1 i nput : c l a s s I D classj , r u l e r , c o n t e x t c o n d i t i o n s COND,
2 f o rmu la effectj , t im i ng o f f s e t t
3 output : r u l e s p e c i f i c _ r
4 begin
5 i f (classj != 0)
6 condj ← getCond (cj , COND) ;
7 r . guard ← r . guard ∧ condj ∧ ¬(

⋁︁
cond ∈ COND \ condj) ;

8 r . e f f e c t ← effectj

9 e l s e
10 r . guard ← r . guard ∧ ¬(

⋁︁
cond ∈ COND) ;

11 end_if
12 re tu rn r ;
13 end

Algorithm 7.5: createRule

with COND and OFFSET from Algorithm 7.3 and 7.4, respectively. The corresponding
algorithm is given in Algorithm 7.5. Lines 4 - 7 construct rules with adjusted effect,
whereas Line 9 refines the guard of the original rule such that it fits all other, possibly
non-observed contexts.

Example For our example, we split our rule into one for temp_out = 15 with the
corrected effect, and two rules without effect correction: one for temp_out = 6 and one
for temp_out ̸= 6 ∧ temp_out ̸= 15. Over time, when more conditions for both classes
are observed, we create more rules and rely on rule generalization to merge similar rules
as described in Section 7.4.

In summary, the Rule Accuracy Evaluation detects inaccurate adaptation rules and
classifies the observed effects of safe rule executions (gap ≤ εr) w.r.t. the observed
deviation from the expected effect. The evaluation results are used within our Observation-
Based Learning to refine deviating adaptation rules into more specific context-dependent
rules that capture the observed effects. This enables the accurate co-evolution of the
adaptation rules. In the next section, we describe our Simulation-Based Learning that is
used to learn new rules in the case that no fitting rule exists (e.g. because of situations
that are not captured by the existing rules, or due to rule disabling caused by severe
deviations form the expected effect) in detail. First, we introduce the runtime models
that we use for learning and verification. Subsequently, we describe our learning algorithm
in detail. Afterwards, we describe our rule generalization approach that enables reuse
of learning results in similar contexts, and thus reduces the learning effort. To enable
the traceability of autonomous adaptation and evolution decisions for comprehensibility
and explainability, we store relevant information in an explanation archive as described
in Section 7.5. Note that the runtime evolution of the adaptation logic has to be done
with care to avoid compromising the stability of adaptations, and thus, of the system. In
Section 7.6, we discuss how the stability of meta-layer adaptations (adaptations of the
adaptation logic) can be addressed.
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7.3 Simulation-Based Learning on Runtime Models

With our Observation-Based Learning , we are able to correct the effect expectations of
existing adaptation rules. To cope with situations that are not covered by the existing
rules, e.g. due to unexpected behavior of the environment, or due to changes in the
system goals or in the system topology, we propose a Simulation-Based Learning on
executable runtime models of the system and its environment. The main idea is to
apply changes to the system runtime models and to observe their effect on the simulated
environment, which is considered a black box. Based on these simulations, we extract
an initial adaptation rule and generalize this rule to increase the applicability of newly
learned rules. Each generalization step is validated with model simulation. In the end,
we perform a comprehensive system verification to verify that adding the new rule does
not compromise any important system properties. In the following, we present our
Simulation-Based Learning approach in detail. A previous version has been presented in
[KGG18b].

Example To illustrate the Simulation-Based Learning of adaptation rules within our
running case study of the smart temperature control system, we consider the following
scenarios:

1) We assume that the initial control system is a smart heating system that only
controls the heating unit. Due to climate change, summers are getting hotter and air
conditioning is necessary to achieve acceptable room temperatures in summer. After
having installed such an air conditioning component, it has to be integrated into the
smart temperature control system.

2) The old heating unit is replaced by a floor heating.
To integrate the new components into our self-adaptive system, we rely on our topology-
aware monitoring and assume that the air conditioning and the floor heating provide
runtime models that can be used to learn the effect of tuning its control parameters with
regard to the room temperature and the overall energy consumption. We integrate these
models into our simulation environment (assuming that the necessary interfaces (e.g.,
channels and ports) already exist or are added by some kind of installation routine) and
apply our learning process.

7.3.1 Learning Process

In our simulation-based learning process (as depicted in Figure 7.1), we first update
all runtime models (RTM) with the current system parameters KSys and environment
parameters KEnv. This update includes at least the parameter initialization for the
current situation. To improve the predictions of model simulation, we propose to use
the previously observed system and environment behavior (recorded in the histories) to
update the relation between system actions and environment states in the RTMs, e.g.,
by adjusting probabilities of transitions, or by changing transitions in the models. This
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update mechanism is RTM specific and, thus, is assumed to be managed by the update
interface of the runtime models. In Section 7.3.2, we present two exemplary formalisms
for RTMs and briefly discuss how the update can be realized for the formalisms.

After updating the RTMs, we apply a learning algorithm on the runtime models to
find an adaptation that leads to an improvement of the overall distance to the goals
(cf. Chapter 6 for distance calculation), when applied in the current situation. The
learning algorithm uses atomic operations, which are specific to each runtime model,
to mutate system control parameters in an appropriate way. We base the evaluation of
newly learned model parameters w.r.t. the system goals on our distance function. To
achieve stability of adaptations, we require the quality evaluation to include stability
aspects, e.g., by evaluating the distance of several future states, and by only choosing
states that are stable for some specified time. The learning algorithm can be freely chosen
as long as it operates on simulation results of RTMs. In this thesis, we exemplarily use a
genetic algorithm (GA) for fine-granular parameter adaptation (as e.g., for the heating
curve parameters in our running example) and a “scenario-based mode-evaluation” on
characteristic environment scenarios for coarse-grained mode adaptation. We have chosen
to use a GA for parameter adaptation because it is easy to implement and achieves good
results for a wide range of problems. The application of GAs for self-adaptive systems in
general was also recommended by Coker et al. [CGLG15]. They argue that stochastic
search-based algorithms like GAs are well-suited to handle multi-dimensional search spaces
and complex optimization problems, which are often present in self-adaptive systems.
For mode adaptation, the search-space is small and all available modes can be evaluated
in different scenarios to learn the best mode for characteristic scenarios. We describe
our genetic algorithm and its interaction with the RTMs in detail in Section 7.3.3 and
our scenario-based mode-evaluation in Section 7.3.4. As the runtime models may may
focus on different aspects (e.g. communication, energy consumption, ...), and represent
different components (e.g. heating, air conditioning, ...), not all models have to be
mutated. The relevant models are chosen according to heuristics w.r.t. the violated
subgoals. These heuristics are a parameter of the learning algorithm.

If learning was successful, i.e., a configuration was learned that achieves an improve-
ment, we use the sequence of mutations to generate an initial adaptation rule that
consists of a specific guard describing the current situation and parts of the history that
led to this situation, commands capturing the necessary changes to the control data of
the system, and the effect of applying these changes in the current situation. The latter
can be extracted from a model simulation after learning as described in Section 7.3.5.
This also provides us with the timing information when the effect is assumed to be
observable. After constructing the initial rule, we perform an iterative rule generalization
and verification as described in Section 7.4. With that, we aim at reducing the total
amount of a) adaptation rules to speed-up planning, and b) rule learning steps that are
triggered by observing new context conditions that can be covered by already learned
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rules.We only add the generalized rule if verification was successful. If no suitable param-
eters could be learned or if the final system verification fails, the learning/verification
component terminates and waits until it is triggered again by subsequent executions
of the evaluation component in future monitoring cycles. In this case, we rely on the
existence of a suitable safe operation mode in which the system can be set.

In the following, we first describe our requirements on runtime models and two
exemplary modeling formalisms, which we use in this thesis to illustrate and evaluate
our framework. Then, we present our genetic algorithm and its interaction with the
RTMs in detail. Afterwards, we describe how we construct an initial adaptation rule
from the learning result. We present our subsequent rule generalization that is used for
observation- and simulation-based learning in Section 7.4.

7.3.2 Runtime Models for Learning and Verification

In our framework, we apply online learning on runtime models (RTMs) to learn new
adaptation rules. These models capture the system and environment behavior in an
executable model. They have to a) capture the interplay between the modeled system
component and the environment, b) be executable in a way that allows for a prediction
of future system and environment behavior, and c) provide an interface for instantiation
of environment and system state and integration of observed environment behavior based
on current and history data. The latter allows us to consider the environment as black
box during learning, where we apply changes to the system models and observe their
effect on the environment state. Furthermore, we require our runtime models to have a
formal semantics, which enables us to employ them also for verification purposes. The
runtime models may focus on different aspects of the actual system implementation,
which enables a separate analysis of, e.g., timing or energy consumption.

Example In our running example, we have modeled the influence of our temperature
control system on the indoor temperature and on the energy consumption in separate
processes in our runtime model of the environment.

The runtime update mechanism for RTMs allows for (i) instantiating the RTM for
a specific situation for which a rule should be learned and (ii) for integrating observed
behavior to enable co-evolution of RTMs and actual environment. For the first purpose,
the RTM should provide some parameters that can directly be set to situation specific
values or value vectors, or that allow for switching between predefined context modes.
For the second purpose, mode switches provide a solution for environments that follow
predefined modes or for systems that show a finite amount of actuator failures, which can
be represented by different models as done for continuous self-modeling of a four-legged
robot in [BZL06]. For unguided runtime evolution of RTMs, architectural parameters
like delays between actions (as e.g. done within [MNBB17]) or probabilities of showing
different behavior (as e.g. done in [EGMT09, MJJ+17]), or even complete models (as
done in (timed) automata learning, e.g. [dMPCdS12, CdL12, MNBB17, TALL18]) could
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be inferred from the observed behavior. Behavioral parameters, like e.g. underlying
functions, could also be constructed based on the observed history of parameter values.

Example In our running case study, we have, for example, encoded the possibility to
switch between scenarios that consist of representative temperature and sun intensity
trends for different seasons. Based on the observed outdoor temperature and sun intensity
values, it is possible to identify the best fitting scenario or to add an observed scenario.
Moreover, the ideal heating curve or the effect of the air conditioning are encoded as
(linear) parameterized functions and, thus, can be easily adjusted in the environment
model.

In this thesis, we use two exemplary modeling mechanism: UPPAAL timed automata
(UTA) and the system description language SystemC. Both enable the modular design
(i.e. with UTA templates or SystemC modules) of different communicating components
on different levels of abstraction. Thus, we can capture the interplay between system
components and environment. Both provide simulation and verification capabilities
and can be parameterized to provide an interface for runtime updates. Thus, both
are well suited as runtime models in our framework. The main reason for using both
modeling mechanisms is that UTAs provide us with build-in model checking possibilities,
whereas SystemC models enable fast and efficient simulation, which is beneficial for
simulation-based learning. However, other formalisms like e.g. domain specific languages
(e.g. Simulink) or formal languages (e.g. CSP [Sch99]) are suitable as well as long as
they are executable (for learning) and have a formal semantics (for verification).

Correct runtime model creation is a crucial task for our simulation-based learning.
However, formal modeling is hard and error prone, and requires expert knowledge. To
support this process and, thus, to increase the acceptance of our framework, we propose
to reuse models from mode-based design, and/or to automatically extract RTMs from
a system level implementation during the design process. In this thesis, we use an
existing SystemC to Timed Automata Transformation Engine (STATE) [HFG08, HPG15]
to extract UPPAAL Timed Automata (UTA) models from a SystemC system-level
implementation to enable formal verification on SystemC runtime models. With that, we
can define a verification strategy for UPPAAL timed automata and reuse it for SystemC
RTMs.

7.3.3 Rule Learning for Parameter Adaptation based on a Genetic Algo-
rithm

Finding the best parameters for a given situation is a multi-dimensional optimization
problem. An efficient approach to solve such problems are stochastic search algorithms,
like genetic algorithms (GAs). GAs are easy to implement and achieve good results for a
broad range of problems. Thus, we instantiate the learning algorithm in our framework
with a basic genetic algorithm that operates on parameters of our runtime models. The
process is depicted in Figure 7.2. It starts with a parent population of vectors of control
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P ← initialisePopulation();
evaluatePopulation(P);
while(not endCond())
  C ← ∅
  while(#C < childsPerRun)
    p1,p2 ← 
selectParents(P);
    c1,c2 ← 
crossover(p1,p2);
    c1 ← mutate(c1);
    c2 ← mutate(c2);
    C ← C ∪ {c1,c2}
  end_while
  evaluatePopulation(C);
  P ← newGeneration(P,C);
  best ← getFittest(P);
end_while

Figure 7.2: Rule Learning using a Genetic Algorithm

parameter values (i.e. (name, value) tuples). Usually, this parent population is initialized
with random solutions. However, we only want to learn solutions that can be reached by
applying a series of valid mutation operations in the current situation. Thus, we modify
the random initialization such that each parameter of a new individual can be reached
from the current parameter by adding a random multiple (which could be negative as
well) of the valid step size for this parameter. For each iteration, the GA generates the
specified amount of children by selecting two random parent vectors from the current
generation, combining their parameter values using single-point crossover and mutating
some control parameters of the resulting child vector. Single-point crossover is the most
common crossover strategy for genetic algorithms and has delivered good results for our
case studies. Mutation of parameters is performed according to a probabilistic mutation
rate and corresponds to applying a valid mutation operation on the selected parameter.
To decide which system parameters should changed during learning, we rely on the
expertise of the designer. In future work, this decision can be based on a heuristic that
considers history information and currently violated system goals.

To compute the fitness of new individuals, we use a combined simulation of the
mutated system and an environment model that is instantiated with the actual observed
environment behavior. The simulation starts at some time in the past with the old
parameters to enable the simulation to reach the current situation, or is directly set to a
state that corresponds to the current situation. Then, the mutations are applied by an
abstract adaptation process that we add to the system model, and the simulation proceeds
for some specified time (based on predictions of the future environment behavior) to
observe the effect. During simulation, changes to monitored parameters are recorded in
some RTM-specific trace file to observe the effect of mutations. The resulting data set is
fed into a fitness function to calculate the fitness of the mutation series. To this end, we
use a provided fitness function or extract a fitness function from the distance function of
our goal model. The fitness function should consider additional aspects such as stability
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of the adaptation effect. This can be achieved by applying the fitness function not only
on the state where the effect could be observed first, but on several well chosen samples
from the simulation (e.g., using the average fitness of three states that are observable
after the effect time).
Example To illustrate the learning component, we consider an example scenario for our
illustrating case study of an adaptive temperature controller. For presentation purposes,
we assume that the knowledge base currently has no adaptation rules at all. Furthermore,
we initialize the system with an assumed heating curve with (m = 1, n = 30) (while
the ideal one is (m = −1.2, n = 44). For the environment, we consider a spring
environment scenario (outdoor temperature values between 5 and 20◦C) in which the
current parameters lead to a situation where the indoor temperature reaches 24◦C at
11 a.m. This situation is depicted in Figure 7.4 left to the vertical line. At time point
40200s, the MAPE-K layer recognizes the deviation of the indoor temperature to the
reference temperature of 20◦C. As no adaptation is applicable, the learning component
is invoked to learn the parameters m and n with which the correct flow temperature can
be calculated such that the reference temperature can be achieved. In this example, our
learning algorithm returns with the “correct” parameters m = −1.2 and n = 44.
To evaluate the fitness within our genetic algorithm, we use the distance function of our
goal model:

dist = 0.7 · disttemp + 0.3 · distenergy with

disttemp = (0.5 · (σ(temp_in) − 20)2) · 100/200 and

distenergy = e(σ(energy)−minv)·ln(100)/(maxv−minv) · 100/52 = e(σ(energy))·ln(100)/(52)) · 100/52.

To achieve a stable result, we apply this function on each value change of room
temperature and energy within the simulation interval and used the weighted mean (w.r.t.
the timespan until the next value change) of these fitness values. As the GA tries to
maximize the fitness, and our distance-based planning aims to minimize the distance, we
multiply the distance with −1. Thus, the resulting fitness function is

f = (
∑︂

(−1) · dist(sample) · duration(sample))/#duration.

Choosing an appropriate fitness function is one of the key aspects of applying the
GA. By using the distance functions that are encoded in our goal model, we can be sure
that the effect of adaptations is evaluated according to the designers intents. However,
as we are not interested in the absolute value of the fitness during learning, but rather in
the trend, i.e. whether the distance is improved or not, often a simple fitness function is
sufficient.

The fitness of all children w.r.t. the system goals is evaluated to decide which
parameter vectors are kept for the next iteration. As an optimization, we do not
simulate all children, but compare their parameter values with individuals from the
parent population. If an individual with the same parameter values exists, we copy the
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fitness value from the parent to the child. We use the elitist selection to select the best
individuals to build the next generation. For our prototype,we have chosen single-point
crossover and elitist selection as these are basic crossover and selection algorithms that
give good results on many optimization problems. These functions can be easily replaced
by more problem specific solutions. Thus, this decision is no limitation for our framework.

The learning algorithm stops if a) a target fitness is reached or b) if it has performed
a specified maximum amount of iterations. The target fitness, the maximum number of
rounds and the population size are parameters of the algorithm, which can be chosen
by the designer or calculated at runtime w.r.t. necessary precision, available resources
and time criticality of learning. As a result, we get a series of adaptation commands and
the best parameter values for the control parameters that are found with this heuristic
optimization algorithm. After learning, a rule can be extracted and generalized as
described in Section 7.4.

7.3.4 Rule Learning for Mode Adaptation based on Scenario-Based Mode-
Evaluation

In mode adaptation, the adaptation layer chooses the best system mode, i.e. a predefined
configuration for a specific behavior, for the current situation. There exist only a
small amount of different modes between which the system can change. Even, if there
are several independent modes for different functionalities, the amount of valid mode
combinations that are relevant for a certain system goal usually is small enough to
allow for a comprehensive evaluation of all these modes in a concrete scenario. Thus,
we do not use a GA for mode-based adaptation. Instead, we differentiate between
two cases: simulation-based mode-evaluation for a concrete situation, e.g. because of
newly detected environment behavior, and scenario-based mode-evaluation for several
characteristic environment scenarios, e.g. to learn adaptation-rules for a new system
component.

To identify the best mode for one concrete situation, we perform a simulation of
this situation for each mode. To this end, we instantiate the system with a mode
and simulate the interplay between system and environment within this situation. We
evaluate the fitness of each mode by using the same simulation-based evaluation as
for the fitness evaluation within our genetic algorithm. By comparing the fitness of all
mode combinations, we can select the best one for the current situation. The result of
this simulation-based mode-evaluation is used to extract an initial adaptation rule as
described in Section 7.4.

The main idea of our scenario-based evaluation is to simulate several scenarios for
each mode to learn adaptation rules for different situations in advance. If the environment
shows some recurring characteristic behaviors, like e.g. characteristic temperature trends
in different seasons and in the course of a day, we can use this knowledge to select the
most valuable scenarios for our evaluation. To achieve this, we identify characteristic
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Figure 7.3: Resulting Indoor temperatures for different modes of the air conditioning

scenarios that describe a typical sequence of environment values over time (e.g., typical
temperature trends in spring, summer or hot summer). Then, we simulate each scenario
(or selected scenarios that are likely to occur in near future) with each mode combination
and compute the fitness value for each point in time. By comparing the result of all
simulations, we can identify the best mode for each time span and extract adaptation
rules for each mode switch. To extract adaptation rules that describe the effect of
switching from any non-optimal mode to the optimal mode at a given point of time, we
iterate through all simulation traces and construct one rule for each non-optimal mode
as described in Section 7.4. With this approach, we simulate each scenario for each
mode only once, and identify all points of interest within these traces. The result is
a comprehensive set of initial adaptation rules for the evaluated scenarios. We further
generalize these adaptation rules to achieve a broader applicability, e.g. for similar
scenarios.

Example To learn suitable adaptation rules for the newly installed air conditioning, we
evaluate the different modes of the air conditioning (off, on or power) in one suitable
scenario that contains all relevant outdoor temperature values (summer time: outdoor
temperatures that start at around 18◦C in the night and increase up to 32◦C in the early
afternoon) with our scenario-based evaluation. The result is shown in Figure 7.3. The
simulation starts at 10 a.m. and ends at 8 p.m. In our scenario, the difference between
the outdoor temperature in the night or in the early afternoon is quite high. Thus, we
have to adapt the mode several times during such a typical summer day to achieve best
results. In our simulation, the best results can be achieved with mode off for outdoor
temperatures below 24◦C, with mode on for outdoor temperatures between 24◦C and
30◦C, and mode power for outdoor temperatures above 30◦C.

In the following, we first describe our generation of an initial adaptation rule from
the simulation of the learning result of our genetic algorithm. Afterwards, we show how
our GA can be applied on both RTM languages.

99



7.3. Simulation-Based Learning on Runtime Models

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

35,000 36,000 37,000 38,000 39,000 40,000 41,000 42,000 43,000 44,000 45,000

simulation time (in seconds)

temp_in
temp_in_history

m
n

temp_out_history
monitored_time

Figure 7.4: Effect of Learned Adaptation

7.3.5 Initial Rule Generation

If learning was successful, i.e., a configuration was learned that achieves an improvement,
we use the sequence of applied mutations and a simulation of the mutated RTM to
generate an initial adaptation rule as follows. First, we add an abstract monitoring process
that periodically stores system and environment data to mimic the history information of
the knowledge base to the mutated RTM. With this history information we are able to
formulate history-aware guards. This data is also traced in the respective trace file. Then,
we simulate the resulting RTM, parse the trace file and extract the relevant values for the
guard and the effect of the new adaptation rule. Here, we differentiate between monitored
values that are stored in the history (indicated by index K) and current environment
values. History values are used for guard extraction, while environment values are used
for effect extraction. In the following, we describe these extraction steps in detail.

Guard Extraction

The guard describes the situation, i.e. the parameter values for system and environment
parameters as captured in KSys and KEnv, at the start of the adaptation execution and
parts of the history of the same parameters that lead to this situation. The amount of
considered history data and the selection of potentially relevant parameters is application
specific and can be specified in the rule generation algorithm. In a subsequent rule
generalization step, we, furthermore, perform an iterative reduction and relaxation of
guard conditions.

Example We illustrate the rule extraction with our example from Section 7.3.3. We
initialize the system with an assumed heating curve with (m = 1, n = 30) (while
the ideal one is (m = −1.2, n = 44). For the environment, we consider a spring
environment scenario (outdoor temperature values between 5 and 20◦C) in which the
current parameters lead to a situation where the indoor temperature reaches 24◦C at
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11 a.m. This situation is depicted in Figure 7.4 left to the vertical line. At time point
40200s, the MAPE-K layer recognizes the deviation of the indoor temperature to the
reference temperature of 20◦C. As no adaptation is applicable, the learning component
is invoked to learn the parameters m and n with which the correct flow temperature can
be calculated such that the reference temperature can be achieved. In this example, our
learning algorithm returns with the “correct” parameters m = −1.2 and n = 44. Note
that we have omitted the effect on the energy to concentrate on the temperature.

To extract an initial guard we not only include the temperature values for the current
situation, but also the last values of the history. Here, we use t to refer to the current
monitoring cycle and t − 1 to refer to the last cycle, etc. Thus, we get the following
guard.
(temp_inK(t−3) = 20∧temp_outK(t−3) = 7∧timeK(t−3) = 9)∧(temp_inK(t−2) =
20 ∧ temp_outK(t−2) = 7 ∧ timeK(t−2) = 9) ∧ (temp_inK(t−1) = 21 ∧
temp_outK(t−1) = 8 ∧ timeK(t−1) = 9) ∧ (temp_inK(t) = 24 ∧ temp_outK(t) =
10 ∧ timeK(t) = 10)

Commands

The commands should capture the necessary changes to the control data of the system.
In our adaptation rules, we assume that all commands are executed at the same time.
Thus, we can directly set the mutated control parameters to the respective learned values
by generating commands of the following form: p1 = p1_learned.

Effect Extraction

To extract the effect of an adaptation, we use a simulation trace that results from
applying the learned model parameters in the initial situation (where the system goals are
violated) and simulate their effect on the environment model for some application specific
time span that was also used to evaluate the quality during learning. We analyze this
simulation trace to identify the point in time where the adaptation effect occurs. To this
end, we use our distance function to identify a state in which the distance has improved
and stays stable for some time. If the trace contains several candidates, a heuristic has
to specify which point should be taken, e.g., the first one, or another one within a given
time range after the adaptation. This point also provides us with the timing information
when the effect is assumed to be observable. Note that we have based our effect time
estimation on the time point where the effect is generally observable, instead of when
the adaptive system is able to observe the effect in the knowledge base. This results in
adaptation effects that are independent on concrete monitoring cycle times.

The system and environment state that is reached after this time span can be used
to extract all changes in the environment parameters to describe the effect of those
changes. To increase the precision of this initial adaptation rule, we refine the effect
prediction based on this reference state and a relation R ⊆ (SP ∪ EP ) × EP . R
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specifies which control parameters of the system (SP ) may possibly influence which
environment parameters (EP ), as well as known dependencies between environment
parameters. The relation is used to remove all changes in environment parameters that
were not influenced by the adaptation (e.g., passage of time). We assume this relation
to be provided together with the runtime model.

Example After learning of (optimal) parameter values for our illustrating case study,
we have (manually) performed our proposed rule extraction and generalization process.
To this end, we have simulated the execution of the learned adaptation commands
(m = −1.2, n = 44) directly after the detection of the undesired situation. The results
are shown in the part right to the vertical line in Figure 7.4. At time point 40200s, an
indoor temperature (temp_in) of 24◦C is monitored. Then, the adaptation is executed
and the parameter values m and n are modified. At time point 40300s, the indoor
temperature decreases to 20◦C as reaction to the adaptation in our simple model. This
effect is monitored at time point 40800s. From this simulation trace, we have extracted
the following initial effect.

temp_in = 20 ∧ temp_out = 12 ∧ time = 11 after 100 seconds
In this subsection, we have described our initial rule generation. This initial rule is

only applicable in a specific situation as described in the guard. In the following, we
first describe how our rule learning algorithm can be applied to runtime models that are
modeled in UPPAAL timed automata or SystemC. Afterwards, in Section 7.4, we describe
our rule generalization and show how the initial adaptation rule for our air conditioning
example can be further generalized.

7.3.6 Rule Learning on UPPAAL and SystemC Models

Rule Learning on UPPAAL Timed Automata

In this subsection, we describe how we apply our exemplary learning process on UPPAAL
Timed Automata (UTAs) runtime models. The following description is valid for the usual
UTAs as well as for the stochastic extension UPPAAL SMC that can be used to integrate
dynamic behavior (ODEs) or stochastic behavior. In the following we use UTA to refer
to any kind of UPPAAL timed automata.

Our basic genetic algorithm operates on parameters of UTAs. To enable the evaluation
of the effect of adaptations in the current situation, we integrate an adaptation automaton
(see Figure 7.6) into our system model that executes a series of parameter changes (p1, p2)
at the specified point in time (startAdaptTime). The GA mutates the parameter values
(p1_learned, p2_learned) of these changes. The mutated UTA model is simulated
with the UPPAAL simulator or with the UPPAAL SMC Model Checker [DLL+15],
depending on the type of the UTA, to observe the effect of mutations. It is also
possible to combine dynamic or stochastic UPPAAL SMC models with our automatically
extracted UPPAAL runtime models, e.g. to model a more realistic environment. However,
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Figure 7.5: Abstract Monitoring Automaton for Rule Generation

Figure 7.6: Adaptation Automaton for Learning

Figure 7.7: Modified Adaptation Automaton for Guard Generalization

to this end, the extracted models have to be manually adjusted, e.g. by expressing
binary communication in terms of broadcast communication because UPPAAL SMC
only supports this subset of UTAs. Within the simulation, the mutations are applied by
the adaptation automaton, and the simulation proceeds for some specified time. The
resulting data set (encoded in a text file) is fed into a fitness function to calculate the
fitness of the mutation series. For the extraction of an initial adaptation rule, we add
an abstract monitoring automaton as shown in Figure 7.5. It periodically (every cycle
seconds) stores system and environment data to mimic the history information of the
knowledge base.

Rule Learning on SystemC models

In this subsection, we describe how we apply our exemplary learning process on SystemC
runtime models. To this end, our basic genetic algorithm operates on parameters of
SystemC modules. To enable the evaluation of the effect of adaptations in the current
situation, we integrate an adaptation process into our SystemC model that executes a
series of parameter changes at a specified point in time. In Listing 7.7, we give a code
snippet for our adaptation process with a default time resolution of seconds. This can be
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1 v o i d a d a p t a t i o n _ p r o c e s s ( i n t p1_learned , i n t p2_ lea rned ){
2 wa i t ( startAdaptTime , SC_SEC ) ;
3 p1 = p1_lea rned ;
4 p2 = p2_lea rned ;
5 }

Listing 7.7: Adaptation Process for Learning

1 v o i d adapta t i on_proce s s_w i thGuard ( i n t p1_learned , i n t p2_lea rned ){
2 boo l w a i t i n g := f a l s e ;
3 whi le ( w a i t i n g ){
4 wa i t ( c y c l e , SC_SEC ) ;
5 i f ( r e l a t i v e G u a r d ){
6 p1 = p1_lea rned ;
7 p2 = p2_lea rned ;
8 w a i t i n g = t r u e ;
9 }

10 }
11 }

Listing 7.8: Modified Adaptation Process for Guard Generalization

adjusted to the actual time resolution that is used in the adaptation layer. The code is
equivalent to the timed automata presented above (cf. Figure 7.6). The GA mutates the
parameter values of these changes. All variables that are used to calculate the fitness
of the resulting model are traced in a Value Change Dump (vcd) trace file during the
simulation of the mutated model with the SystemC simulation engine. For the extraction
of an initial adaptation rule, we, furthermore, add an abstract monitoring process as
shown in Listing 7.6. It periodically (every cycle seconds) stores system and environment
data to mimic the history information of the knowledge base.

1 v o i d m o n i t o r i n g _ p r o c e s s ( ){
2 whi le ( t r u e ){
3 wa i t ( c y c l e , SC_SEC ) ;
4 moni to r ( ) ;
5 }
6 }

Listing 7.6: Abstract Monitoring Process for Rule Generation

7.4 Generalization of Adaptation Rules

Our Rule Learning, as described in the last section, learns an initial adaptation rule
that describes a concrete context and a concrete effect that can be assumed to occur
after applying concrete control parameter values to the system. In a next step, we
further generalize this initial rule to achieve a rule that is also applicable in other similar
contexts. To this end, we perform a step-wise generalization process that includes rule
effect validation on executable runtime models. Our step-wise generalization also makes
use of the influence relation R between monitored parameters. At the end of the learning
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1 i nput : r u l e s e t NEW_RULES, boo l o n l y G u a r d A b s t r a c t i o n
2 output : −
3 begin
4 i f (¬ o n l y G u a r d A b s t r a c t i o n )
5 NEW_RULES ← r e l a t i v e E f f e c t (NEW_RULES) ;
6 NEW_RULES ← r e l a t i v e G u a r d s (NEW_RULES) ;
7 end_if
8 NEW_RULES ← a b s t r a c t G u a r d s (NEW_RULES) ;
9 i f (¬ o n l y G u a r d A b s t r a c t i o n )

10 NEW_RULES ← re la t i veCommands (NEW_RULES) ;
11 mergeRules (NEW_RULES, KAdapt ) ;
12 c o m p r e h e n s i v e V e r i f i c a t i o n (NEW_RULES) ;
13 end

Algorithm 7.6: Rule Generalization

process, we perform a comprehensive system verification considering the interplay of all
the adaptation rules in the adaptation logic KAdapt to verify that adding the new rule
does not compromise any important system properties. We only add the generalized rule
if the verification was successful. If no suitable parameters could be learned to generate
an initial rule or if the final system verification fails, the learning/verification component
terminates and waits until it is triggered again by subsequent executions of the evaluation
component in future monitoring cycles. In this case, we rely on the existence of a suitable
safe operation mode in which the system can be set.

Our generalization is given in Algorithm 7.9. We differentiate between complete gener-
alization as required for simulation-based learning and pure guard abstraction as performed
after observation-based learning (indicated by the boolean onlyGuardAbstraction).
We generalize initial rules stemming from simulation-based learning as follows:

1. Relative Effects: First, we generalize the effect by encoding the relative change
of effected parameters. If an adaptation is able to restore some system goals, we
also reflect this in the effect prediction, e.g., by referring to relevant reference
values from the goals.

Example As we can see in the simulation (see Figure 7.4) for our illustrating
example, the adaptation restores our system goal. Thus, we generalize the effect
by referring to the reference value of our temperature goal:

temp_in = refTemp after 100 seconds.

2. Relative History of Environment Parameters in Guards: In a similar way, we,
then, generalize the guard by using relative values w.r.t. previous history values.
We use relative indexes that describe how many values we consider in the history,
i.e., previous monitoring cycles. We refer to the current point in time with i, the
previous monitoring cycle with i − 1, etc. This allows us to describe relations in a
general form that may apply to several concrete situations. Note that we assume
a constant monitoring cycle time here. For variable cycle times, the time span
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between history values additionally has to be captured. Whether this generalization
might be valid, or whether at least some concrete values are necessary, can be
checked by simulating the runtime model with the modified adaptation process. If
this check is positive, we still have to perform a more thorough rule effect validation
to check whether this also holds in other environment scenarios.

Example For our example scenario, we formulate the history of environment
parameters in the guard using relative values:
(temp_inK(t−2) = temp_inK(t−3) ∧
temp_outK(t−2) = temp_outK(t−3) ∧
timeK(t−2) = timeK(t−3))
∧
(temp_inK(t−1) = temp_inK(t−2) ∧
temp_outK(t−1) = temp_outK(t−2) ∧
timeK(t−1) = timeK(t−2))
∧
(temp_inK(t) = temp_inK(t−1) + 3 ∧
temp_outK(t) = temp_outK(t−1) + 2 ∧
timeK(t) = timeK(t−1) + 1).

3. Stepwise Abstraction of Guards: The amount of included history is following
heuristics and may be too restrictive. Thus, in a following step, we do a stepwise
abstraction of the guard by removing conditions, and by relaxing conditions. To
ensure that the resulting guard is still specific enough to guarantee the achievement
of the effect, we include simulation-based rule effect validation after each step.
Here, a validation that is based on a small amount of simulation runs is acceptable,
as learning is followed by a stronger comprehensive system verification. We propose
to start with the strongest abstraction, i.e. removing an entire condition, to get fast
results. This is especially helpful for reducing the amount of history information
in the guard. If removing some condition results in an inaccurate rule, it is
included again and relaxed gradually by analyzing for which additional “neighboring”
values the rule effect is still observable. This results in guards that describe
intervals of values for some parameters. As there may exist dependencies between
environment parameters, this should not only be done with single parameters, but
also for combinations of parameters. Choosing appropriate candidates for stepwise
abstraction should be based on the expertise of domain experts.

Example For our example scenario, we have used our stepwise abstraction of the
guard to weaken the guard and to reduce it to only consider the relevant conditions.
Note that we added a clock constraint to our adaptation execution process to
respect the timing of the MAPE-K loop, as this timing was included in the initial
effect time prediction. First, we have omitted the daytime information because
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it has no direct influence on the indoor temperature. After validating that this
abstraction still leads to the same simulation results, we have reduced the amount
of considered history information. To this end, we first have omitted the conditions
for the history values K(t-2), and after validation also the conditions for K(t-1).
Thus, as a result, we get the following adaptation rule:

(temp_inK(t) = temp_inK(t−1) + 3 ∧
temp_outK(t) = temp_outK(t−1) + 2
& n := 44; m := −1.2
−→ temp_in = refTemp after 100 seconds

This rule is always applicable if the environment follows the ideal heating curve
f(x) = −1.2x+44 and if the outdoor temperature increases by 2◦C during one hour.
Then the adaptation directly sets the optimal parameter values. To achieve more
general adaptation rules (like our manually constructed rules) further generalization
steps on the commands and the guard conditions have to be performed.

4. Relative Commands: After abstraction, the rule is applicable in other, similar
contexts. In the last step, we replace the commands by relative commands to
capture gradual changes on parameters. Note that in some cases, concrete values
are necessary to describe a specific mode that should be achieved by adaptation.
To check whether the abstraction is valid, we, again, perform simulation-based
rule effect validation. Note that command generalization has to be validated after
successful guard abstraction as it only makes sense if the original values of learned
parameters may differ from the initial scenario.

Example For our example, we get m := m − 2.2 and n := n + 14.

5. Merging of Similar Rules: In the end, we merge the resulting rule set with the
current rule set KAdapt to keep the number of rules low. To this end, we compare
the resulting new adaptation rule with existing rules in the knowledge base. If
a similar rule that includes the same commands and has the same effect, but a
slightly different guard exists, these two rules can be merged by combining their
guards.

As we assume the parameter names in the runtime models and in KSys to be
identical, the generated rule can be inserted into the knowledge model KAdapt after a
final comprehensive system verification step. For pure guard abstraction, we only perform
our iterative guard abstraction, followed by merging and verification.

To enable a quick check on the validity of our generalization steps, we replace the
adaptation process that executed the adaptation commands at a specified time with
a modified version of it. The new version checks every cycle time units whether the
rule guard evaluates to true and executes the adaptations as soon as the guard is true.
Note that we added a clock constraint to our adaptation execution process to respect
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the timing of the MAPE-K loop, as this timing was included in the initial effect time
prediction. The corresponding timed automaton is given in Figure 7.7, and the SystemC
process is given in Listing 7.8.

The advantage of employing adaptation rules, even if they are learned at runtime, is
that their comprehensibility and transparency of adaptation decisions is maintained.

7.5 Traceability of Decisions for Explainability

As our intelligent self-adaptive systems not only decide to adapt but also autonomously
evolve their adaptation logic, we also aim at providing valuable information to make these
decisions explainable as well. To achieve this, we create a log of learning results that
consists of explanation objects for each newly learned rule that passed our verification.
These objects are stored in our explanation basis and contain the original adaptation
rule (if existent), the kind of learning (observation- or simulation-based learning), the
learning result (refined context-specific rules, or newly learned rule), and, for observation-
based learning, the underlying evaluation results (status, set of equivalence classes with
considered rule executions, context conditions), and the timestamp of adding the rule
to the knowledge base. To explain the results of simulation-based learning, we propose
to log the updated RTMs as these will further evolve over time, and the influence
relation R, which can, in principle, also change, e.g. due to topology changes or new
insights on the actual influence relation that could be inferred from runtime observations.
Note that runtime evolution of the influence relation has not been investigated in this
thesis. Furthermore, we add the fitness function of the genetic algorithm to explain
the evaluation of found solutions. Our explanation objects, thus, form an explanation
basis for autonomous evolution decisions. With our adaptation and evolution explanation
bases, we enable the tracing and explanation of autonomous decision from both layers.

7.6 Stability of Learned Adaptations

Disabling of rules in Rule Accuracy Evaluation and learning of new rules in Simulation-
Based Learning can result in cyclic on-off adaptations of adaptation rules in unstable
environments or system topologies. To prevent this, we propose to

a) only disable rules if a severe gap (≥ εr) between expected and actual effect was
observed for this rule.

b) disable inaccurate rules but do not delete them immediately. Instead, keep a certain
amount of old rules in memory for re-evaluation in case of learning requests.

Removing Rules The amount of old rules that are kept in the knowledge base, and the
strategy of ultimately removing old rules when the knowledge base reaches its capacity
limit, depends on the application and its environment characteristics. One possibility
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would be to use a FIFO strategy for implementing forgetting in the memory. Another
one would be to always forget the rule that was the least useful one in the past, where
usefulness can be measured by the ratio between successful and unsuccessful applications
of the rule (w.r.t. its expected effect), or by the average improvement in the distance
that was achieved by applying the rule.

Re-Evaluation of Disabled Rules For re-evaluation, we propose to evaluate the
accuracy and fitness of applicable disabled rules in the learning component after updating
the RTMs before starting extensive learning. For each applicable disabled rule, first, the
rule commands are applied to the RTMs. Then, the fitness is evaluated and, if the fitness
is greater than a given threshold, rule verification is performed to check whether the
effect prediction is accurate. In this case, the rule is reactivated. Otherwise, an initial
rule for the current situation, with the commands of the old rule, and the actual effect
is extracted and generalized. If the fitness of this rule is below the threshold, the rule
is considered not suitable and is not reactivated. If no rule was found this way, normal
learning starts.

While this re-evaluation is still costly, it can save time and resources compared to the
time needed for exploration in the learning algorithm. In the best case, an existing old
rule can be reactivated. In the worst case, several old rules have been re-evaluated, but
due to the fact that no rule can be reactivated, learning still has to take place afterwards.
The performance of re-evaluation can be increased by using some heuristics for deciding
whether to re-evaluate or not. Basing re-evaluation only on the effect predictions encoded
in the old rules is likely to lead to false results, as the rules were disabled because of
their inaccuracy. Even, if they were only disabled because of topology changes, effect
predictions may be outdated.

In our Observation-Based Learning , we refine adaptation rules to capture context-
dependent effects. To provide a certain stability, we only refine rules if the effect has
been observed several times (specified by the design parameter γ). However, if the
effect deviates because of events that cannot be observed, e.g. due to a lack of sensors,
the system will recognize a general effect shift, and adapt accordingly. As example
consider an autonomous robot that drives against a low obstacle but is not able to detect
the obstacle. As a consequence, it will assume a different effect of motor actions. If
someone removes the obstacle, the robot has to refine the affected rules again. Detecting
unobservable events it out of the scope of this thesis. Thus, we assume that the observed
effect shift is stable if no causal context conditions can be inferred.

Summary In this chapter, we have described our evolution layer that enables the safe
evolution of adaptation logics at runtime. Our Rule Accuracy Evaluation continuously
evaluates and classifies the accuracy of timed adaptation rule effect expectations. If
the observed deviation is severe, the respective adaptation rule is disabled to ensure the
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correctness of planning results. In case of small deviations (below a given threshold),
the rule is kept in the rule base and evaluation results are used to refine the effect
expectations or the expected effect time in our Observation-Based Learning . The main
idea of this learning mechanism is to extract context conditions from the equivalence
classification results of our rule accuracy evaluation. Based on those, we split adaptation
rules into context-specific rules with corrected effect or effect time expectations. With
that, we enable the evolution of existing rules. To furthermore enable the definition of
new adaptation rules for situations that are not covered by the existing rule base, we
perform Simulation-Based Learning . The main idea of this learning mechanism is to
perform heuristic search on executable runtime models that provide means to update
them with observed environment behavior. We evaluate the fitness of learned adaptations
based on the quantitative distance towards the adaptation goals that is provided by
our goal model. Thus, the evaluation also considers runtime changes of the adaptation
goals. The learning result is a specific adaptation rule for the uncovered situation. Each
learning step (observation- and simulation-based) is followed by a rule generalization and
verification step. With our generalization we enable the reduction of necessary learning
steps and, thus, the frequency of applying inaccurate rules (for observation-based learning
results) and the overall resource consumption (for simulation-based results). To ensure
the correctness of learned rules, we continuously validate that the effect still holds during
our rule generalization. In the final verification step, we perform comprehensive system
verification to ensure that new rules do not compromise important system properties. In
the next chapter, we describe our verification processes in detail.
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How can we give guarantees for an evolving adaptation logic?

Intelligent cyber-physical systems, such as autonomous cars, autonomous drones,
surgery robots, or smart grids, gain more and more influence in safety-critical domains.
Thus, it becomes particularly important to ensure that these systems satisfy their
requirements. In the presence of continuous learning in an ever-changing operation
environment, design-time verification is not sufficient. Instead, continuous (i.e. design-
time and runtime) verification is critical for the success of our intelligent self-adaptive
systems. This need is, e.g., stressed by [Ghe10, DLGM+13, RCR+18, WBC+17]. In case
of self-adaptive systems that are based on feedback loops, continuous verification should
be explicitly addressed by integrating verification into the feedback loops [TVM+13].

In this thesis, we continuously ensure the correctness of the adaptation logics even in
the presence of several uncertainties, autonomous learning, and adjustment of adaptation
rules. To achieve this, we integrate different verification phases into our framework as
illustrated in Figure 7.1 in Chapter 7. We rely on two different types of verification:
light-weight safety monitoring (during Analysis and Rule Accuracy Evaluation) to detect
invalid assumptions on the operational environment (and system topology), and formal
verification to ensure the initial correctness at design time and the correctness of runtime
changes of the adaptation rules w.r.t. the current knowledge on the environment.

Safety monitoring does not operate on models but, instead, gets information from the
running system and detects and possibly prevents property violating behavior of the actual
system. Thus, it does not rely on the accuracy of models and it avoids the complexity
of comprehensive system verification with the cost of less coverage and, probably, the
execution of faulty behavior before this is detected. To ensure the correctness of the
evolution of adaptation rules, we integrate formal verification into our meta-adaptation
layer: We perform rule effect validation under the current environment model to ensure
that the effect prediction of the rule holds after rule application, and comprehensive
system verification, where overall system properties are verified considering the interaction
of adaptation layer and managed system. Both formal verification phases are based
on runtime models that are built at design time and continuously updated at runtime.
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Thus, those models get more accurate at runtime but there is still uncertainty about
the actual behavior of the environment. As a consequence, our formal verification is
only comprehensive with regard to the current knowledge about the environment. To
deal with this, we, again, rely on our safety monitoring. In our framework instantiation
in Chapter 8, we use model checking as formal verification technique. However, other
techniques, like e.g. theorem solving, can also be used.

In summary, we combine both techniques to get the best of both worlds. Our formal
verification is always executed before learning results are integrated into the actual
adaptation logic. We thereby avoid faulty behavior that can be anticipated based on our
models. For unanticipated behavior, we can rely on our safety monitoring and its ability
to prevent major damages.

In the following, we first discuss how safety monitoring is embedded in our framework
and afterwards, we describe our comprehensive verification in detail.

8.1 Safety Monitoring at Runtime

The main idea of embedding safety monitoring into our adaptation and evolution process
is to detect unanticipated behavior that may lead to property violations. Unanticipated
behavior may be caused by dynamic changes of the environment or system topology. Thus,
we use safety monitoring to continuously observe whether a) important properties/ goals
are satisfied, b) adaptation rules still fit to the current environment, and c) adaptation
rules still fit to the current system topology.

The main idea of self-adaptive systems is to autonomously ensure that system goals
are always satisfied, or only violated for a short amount of time before being re-established.
In this sense, we are able to embed safety monitoring at runtime into our adaptation
layer by inserting general system properties, e.g. safety properties, into the goal model
(cf. Chapter 6). At runtime, their satisfaction will continuously be analyzed in the
analysis phase of the adaptation layer (cf. Chapter 5). If appropriate counter measures
are encoded in the adaptation rules, the adaptation layer will not only detect property
violations but take actions to re-establish violated properties or, in case of proactive
adaptation, anticipate possible violations and avoid them. Otherwise, the system will be
set into a safe operation mode that guarantees safety but only with a subset of the desired
functionality. Safe operation modes can also be defined as a degradation cascade of
operation modes with decreasing functionality. In this case, either a degradation controller
or our adaptation process can select the best available operation mode. In [ZKGG19],
we have presented a systematic design method for such degradation controllers targeted
for autonomous car platoons. A similar approach can be used to define countermeasures
for violated goals within our adaptation layer.

To ensure that those counter measures will actually achieve their expected effect, i.e.
that the underlying assumptions are still valid in the current environment, we continuously
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observe the effect of executed rules in our Rule Accuracy Evaluation (cf. Section 7.1).
If violations are detected, faulty rules are corrected based on past observations in
Observation-Based Learning (cf. Section 7.2). To this end, our Rule Accuracy Evaluation
also evaluates the severity of deviations and evaluates whether rules are still accurate
enough to be executed without compromising correctness. Thereby, we balance protection
and collecting more observations from further rule executions to enable more precise
corrections.

A further threat to goal satisfaction are dynamic topology changes. If a component
that is responsible for maintaining a certain system goal fails, this failure cannot be
resolved by choosing an adaptation rule that relies on the failed component (e.g. setting
a target temperature for a floor heating unit in a smart home will only be possible if such
a heating unit is available). To avoid such incorrect adaptation plans, we continuously
monitor the system topology and adjust the set of adaptation rules to reflect topology
changes. If no alternative component is available, planning will fail and thus, the
system will be set into a safe operation mode. Our topology evaluation also detects
newly integrated components and triggers learning of new rules for these components.
Afterwards, we are able to use new capabilities and thus, avoid underperformance of the
adaptation logics.

Our safety monitoring provides a lightweight mechanism to detect behavior that
may lead to property violations and to prevent (further) violations by taking appropriate
counter measures. To minimize the amount of faulty behavior that is shown by our
system, we exploit the collected knowledge of the system and perform comprehensive
verification on our runtime models for each change of the adaptation logics. Thus, we
find a balance between resource consuming model-based verification with a high coverage
of possible runtime behavior and continuous safety monitoring to enable a fast detection
of property violations due to unmodeled environment behavior. In the following, we
describe our formal verification in detail.

8.2 Rule Effect Validation and Comprehensive System Ver-
ification

In this section, we describe our formal verification in detail. It is performed at design time,
and also at runtime within our evolution layer. We first describe our general verification
process and our generic tool chain. To model the interaction between adaptation layer
and managed system, we propose to use an abstract model of the MAPE loop that
can be varied in its degree of abstraction. We describe such a model in Section 8.2.2.
Afterwards, we introduce general adaptation properties for self-adaptive systems and
formalize them in (T)CTL.
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Figure 8.1: General Verification Tool Chain

8.2.1 General Verification Process

Our comprehensive verification operates on formal runtime models capturing the managed
system, the environment, and the adaptation layer. In Figure 8.1, our general verification
tool chain is depicted. It consists of an offline extraction of formal models (depicted with
white arrows) and an online instantiation and update of those models (depicted with
orange filled arrows), followed by the verification process. At design-time, we extract
formal runtime models from the managed system, from an environment simulation, and
from the adaptation layer (MAPE-K). The latter is abstracted during the extraction to
increase verification performance. With these, our verification tool chain can be used
to ensure correctness during the design process of the initial self-adaptive system. At
runtime, those models are updated with the information of the knowledge base (depicted
with orange filled arrows). The formal models and the system properties of interest are
given to a verification tool. The verification result is used as feedback concerning the
correctness of the system, e.g., during learning of new rules. The abstract models of the
adaptation layer can range from a complete model of the whole MAPE-K loop, including
the whole set of adaptation rules (necessary for comprehensive verification of system
properties) to a model of one concrete rule execution (sufficient for rule effect validation).
Finding the appropriate level of abstraction for verification in general is hard. Due to
the explicit structure of our adaptation layer and the knowledge, we are able to provide
an abstract MAPE process that includes all relevant aspects (e.g. timing) and may be
varied in its level of abstraction, e.g. concerning the planning algorithm as we illustrate
in Section 8.2.2.

8.2.2 Abstract MAPE Process

We use an abstract MAPE process that can be varied in its level of abstraction to increase
verification performance. Our abstract MAPE process with variations of knowledge
models (K1, K2, ..) and planning algorithms is depicted in Figure 8.2. It contains the
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Figure 8.2: Abstract MAPE Process

four phases from the MAPE-K feedback loop: It periodically monitors the managed
system and the environment. Then, it analyzes whether an adaptation is necessary. If an
adaptation need was detected, it searches for the best applicable rule and applies it to the
system. After that, the process waits for the next monitoring cycle. Within this general
process, we abstract from complex knowledge models, and use simpler analysis and
planning methods by introducing some nondeterminism. The degree of nondeterminism
can range from nondeterministically choosing an applicable rule (i.e. any rule with a guard
that evaluates to true), over choosing from relevant rules (i.e. any applicable rule that
influences a violated goal), to a more concrete planner that takes dependencies between
rules into account or even some distance-based planning that more or less corresponds
to the actual planner but uses a simplified goal model. This degree of nondeterminism
can be varied to balance between resource consumption and result accuracy. Although
nondeterminism generally increases the state space for model checking, it requires less
computation and variables that would be necessary to model concrete planning algorithms.

If the formal modeling mechanism supports timing, we propose to abstract from any
timing behavior inside the MAPE-cycle and model timing only between cycles.

In the following, we introduce our (T)CTL formalization of important adaptation
properties that we have analyzed in this thesis. Afterwards, we describe an instantiation
of our general tool chain with SystemC and UPPAAL Timed Automata and show an
abstract MAPE process in UPPAAL Timed Automata in Section 8.3.

8.2.3 Adaptation Properties

In the following, we first introduce important adaptation properties and give a brief
explanation for each of them. Afterwards, we show how they can be formally expressed
in (T)CTL to enable model checking.

In our rule effect validation, we verify that the encoded effect expectation of an
adaptation rule holds based on the current environment knowledge. We call the corre-
sponding property successful execution of a rule, which means that after each rule
execution its encoded effect is always achieved in time. However, this local view is not
sufficient to guarantee that the adaptation process is able to successfully re-establish
violated system goals. To this end, we perform comprehensive system verification and
define each system goal as a weak invariant that may be violated only for a limited
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amount of time. In contrast, strict safety requirements that always have to be ensured, if
necessary by switching to a safe operation mode, are represented by strong invariants.
An important property of self-adaptation is system stability in the sense of avoiding
oscillating behavior by continuously performing adaptations. Hence, the system should
always eventually resides in a stable operating system state for some time.

To enable model checking of these properties, they have to be formalized. To precisely
capture the meaning of these properties and to enable model checking, we formalize
them in (T)CTL:

1) Successful Execution of a Rule: To show that the effect of a rule ri is always
achieved in time, we introduce a corresponding observer. If the effect could not be
observed within the specified expected effect time, the observer encodes this fact
in a boolean variable or in a similar accessible encoding, e.g. a process location,
failed_effect. The corresponding CTL reachability formula is AG ¬ri.failed_effect.
Note that this alone does not ensure that the effect is always satisfied eventually. For
this, it is necessary to additionally verify the formula AG(ri.active → AF ri.effect),
which encodes that each activation of rule i is eventually followed by a system
state where the effect holds.

2) Weak Invariant: A weak invariant invw may only be invalid for a limited amount
of time. It can be expressed with the following TCTL formula AG(¬invw →
AF≤t invw).

3) Strong Invariant: AG invs expresses that a strong invariant invs is globally
satisfied.

4) Stability: We define that the system always eventually resides in a stable operating
system state (where no adaptation takes place) for some time over the reachability
of such a state. To this end, we require the encoding of rules to provide a boolean
active that is set to true during rule execution. Then, stability can be expressed
as AG(true → AF ∀i ∈ rules.¬riactive). This untimed property does not specify
how long the system stays in such a stable state. If we want to express that the
system is stable for at least min_stable time units, we have to introduce a clock
stable that is set to 0 the moment the lastly executed rule becomes inactive. Now,
we can express this property with: AGAF (∀i.¬ri.active ∧ stable ≥ min_stable).

In the next section, we exemplarily instantiate our tool chain with SystemC and
Timed Automata and explain how these adaptation properties can be verified using the
UPPAAL model checker.
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8.3 Tool-Chain Instantiation with SystemC and
UPPAAL Timed Automata

To show the applicability of our verification tool chain, we exemplarily instantiate it with
SystemC as design language for the managed system and UPPAAL timed automata
as formal modeling language for our runtime models. In Figure 8.3, we show our
instantiated tool chain. We transform the functional components of the managed
system and environment simulation modules from the SystemC implementation into
equivalent UPPAAL timed automata (UTA) models using the existing transformation
engine STATE [HFG08, HPG15] as described in Section 7.3.2. The MAPE-K adaptation
layer is not transformed directly, but mapped to abstract UTA models of the MAPE-K
layer to reduce the resulting state space and to reduce verification time. Our abstract
UTA models consist of a generic MAPE-K template following our abstract MAPE process
as described in Section 8.2.2 and a rule automaton together with a corresponding observer
automaton for each adaptation rule. In the following, we describe our MAPE-K template
and our generic rule automaton.

8.3.1 Abstract MAPE-K Template and Formal Rule Automata

Abstract MAPE-K Template

Our generic MAPE-K template is depicted in Figure 8.4. As prescribed by our abstract
MAPE process, it periodically (every cycle time units) monitors the managed system and
the environment. Then, it analyzes whether an adaptation is necessary. If an adaptation
need was detected, it searches for the best applicable rule (findBestRules()) and applies
it to the system. After that, the template waits for the next monitoring cycle.

After planning, one of the applicable rules is immediately chosen non-deterministically
(the rule events ri are urgent). If, however, no rule is applicable, the planner leaves
that location just after recognizing this. Thereby, the guard x > 0 is technically used
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Figure 8.4: Our generic MAPE-K template from [KGG16]

to give applicable rules priority over the implicit observation that no rule is applicable.
The invariant x < 1 ensures that the automaton reaches the lower location and the
execution phase is finished. Then, the planner waits for cycle time units before the
system parameters are monitored again. The timing behavior inside the MAPE-cycle is
abstracted and is only modeled between cycles.

The most crucial part is calculating the set rs of best fitting rules within findBe-
stRules(), which allows us to precisely adjust the abstraction of the actual planning
component. In its most abstract form, the entire set of rules can be returned of which
one is non-deterministically chosen subsequently. When refining the adaptation logic,
the selection of rules can be adjusted to take, e.g., dependencies between rules into
account. A detailed adaptation logic can be achieved by transforming the planning
logic implemented in SystemC to our abstract planner by mapping the rules to our
rule automata, copying the distance functions of the subgoals, and adding methods
that compute the expected effect of each rule (as encoded in the rules) to the planner.
These are then used in findBestRules() to determine the best adaptation action of all
relevant rules (effecting a violated subgoal). To illustrate this, we show a generic excerpt
of the function findBestRules() of the resulting UPPAAL model in Listing 8.1.

1 i f ( r e l e v a n t [ 1 ] ) {
2 i f ( gua rd_ru l e1 ( ) ){
3 // c a l c u l a t e d i s t a n c e o f e s t i m a t e d e f f e c t
4 e s t D i s t = e s t D i s t _ r u l e 1 ( ) ;
5 i f ( e s t D i s t < d i s t ){ // r u l e i s c u r r e n t b e s t
6 d i s t = e s t D i s t ; c u r r e n t B e s t = 1 ; }}}

Listing 8.1: Excerpt of findBestRules()

Such a transformation could be automatised (for basic distance functions that are
restricted to language elements of UPPAAL) by using, e.g., some static analyses.

Example For our rule increase n, presented in Section 5.1.2, we get the code that is
depicted in Listing 8.2

In our generic planner, we abstract from polling of sensors or time-consuming planning
to focus on the interplay of adaptation rules forming the essence of the adaptation logic.
However, these phases could be enriched by more sophisticated components based on,
e.g., formal templates for self-adaptive systems [dlIW15].
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1 i f ( r e l e v a n t [ 1 ] ) {
2 i f ( temp_out < refTemp && temp_in + t o l e r a n c e < refTemp
3 && temp_in = temp_in_old ){
4 // e s t i m a t e d e f f e c t w i th q u a d r a t i c d i s t a n c e f u n c t i o n
5 e s t D i s t = 0 ,5 ·( temp_in − refTemp ) ·( temp_in − refTemp ) ;
6 . . . }}

Listing 8.2: Excerpt of findBestRules()
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Figure 8.5: Generic Rule Automaton

Formal Rule Automata

As described in Section 5.1.2, the general structure of our timed adaptation rules consisting
of a guard gi, commands c1, c2, ..., cn, an effect formula describing the expected effect,
and the expected time after which the effect can be generally observed:

ri : gi & c1; c2; . . . ; cn −→ effect after time±[timeTolerance]

timeTolerance is used to allow for a certain delay of the effect due to a more coarse
grained monitoring. In our generic rule automaton, we omit the timeTolerance and,
instead, evaluate the effect on the actual environment values.

On the left side of Figure 8.5, we give the definition of a generic rule automaton for
a rule ri. When the rule is triggered using the event start_ri, it is checked whether the
rule is applicable by checking the guard on the shared knowledge variables. The activation
of the rule is followed by executing the several commands of the rule manipulating the
corresponding control data. As soon as all commands have been executed, the rule
automaton waits for time to pass by. The observer automaton on the right side of the
picture is explained in the next subsection.

Interface between Adaptation Layer and Managed System To ensure that changes
in the control parameters are detected quickly after the execution of adaptation steps, we
use an observer thread inside the SystemC design that continuously observes the control
parameters and, in case of changes, notifies affected functional components. This thread
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is also included in the generated UTA model and ensures that the control parameter can
serve as interface between the generated model of the managed system and our abstract
model of the adaptation layer.

Our formalization of our adaptation layer and our adaptation rules in UPPAAL timed
automata preserves their structure and leads to models that are human-readable and
comprehensible. Thus, results on those models can be easily retraced to the system.
As verification tool in our instantiated tool chain, we use the UPPAAL model checker
to verify our adaptation properties as defined above. In the following, we explain our
verification of adaptation properties with the UPPAAL model checker.

8.3.2 Analysis of Adaptation Properties in Timed Automata

To analyze the adaptation behavior of self-adaptive timed automata models w.r.t. our
adaptation properties (cf. Section 8.2.3), we define effect observer for each rule, and
we reformulate the TCTL properties because of the limited support for TCTL of the
UPPAAL model checker.

Observing Rule Automata On the right side of Figure 8.5, we define an observer
pattern for each rule. Before a rule automaton executes its commands, the values of
relevant knowledge variables are saved to local variables based on which the effect can be
checked later on. After executing the commands, the observer waits in location waiting
for at most time time units. If effect holds within this time, the observer returns to its
idle location as soon as possible because we define readyi to be urgent. If the effect
does not hold after time time units, the observer passes the location failed_effect before
going back to the idle location. In both cases, the ready event is emitted setting the
rule automaton back to its initial state. This means that, here, only one instance of a
rule can be active at a time. This is necessary for keeping track of the duration until the
effect of a rule takes place. If, however, it is necessary that several instances (with a
fixed maximum number) of the same rule are active at the same time, it can be copied
to form new rules.

Property Formulation for the UPPAAL Model Checker Our generic rule automata
allow us to use the UPPAAL model checker for verifying several adaptation properties
introduced above. To this end, we show how each property can be equivalently expressed
in the (T)CTL dialect of UPPAAL. In Table 8.1, we compare both formalizations.

1) Successful Execution of a Rule: Here, we can use the same formula as in CTL.
We only have to replace G by [], which is the UPPAAL symbol for □. In our
UPPAAL model, failed_effect is a location in the corresponding rule observer (see
Figure 8.5). Whenever a rule is applied, it will eventually have to take the effect()
edge or the ¬effect() edge. To show that the effect is always satisfied eventually,
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Table 8.1: Adaptation Properties formalized in (T)CTL and UPPAAL

(T)CTL UPPAAL
1) AG ¬ri.failed_effect A[] ¬ri.failed_effect

AG (ri.active → AF ri.effect) ri.active - -> ri.effect.
2) AG (¬invw → AF≤t invw) ¬invw- -> invw (untimed)

A[] (obs.invalid imply c + d ≤ t)
(timed)

3) AG invs A[] invs

4) AG (true → AF ∀i ∈
rules. ¬ri.active)

true - -> ∀i ∈ rules. ¬activei

AGAF (∀i ∈ rules. ¬ri.active ∧
stable ≥ min_stable)

true - -> ((∀i ∈ rules. ¬ri.active) ∧
stable ≥ min_stable)

we also have to translate the second formula to the equivalent UPPAAL formula
by using the leads-to operator.

Example We have verified the successful execution of all initial rules in our case
study (given in Section 5.1.2) and all learned rules (Chapter 7).

2) Weak Invariant: The TCTL formula that expresses that a weak invariant invw

may only be continuously invalid for a fixed amount of time is not supported in
the TCTL subset of UPPAAL. To check this, a clock would need to be reset as
soon as the weak invariant invw is not satisfied any more, which is in general not
realisable in UPPAAL. Instead, we can check either a weaker untimed property
¬invw –> invw, or a stronger timed property that needs an additional invariant
observer automaton as depicted in Figure 8.6. It checks with a sampling rate d

whether the invariant still holds or not, and if not, a fresh clock c is reset to 0
and the observer switches to obs.invalid. When invw holds again the observer
automaton switches back to its initial location. Now, we can check the formula
A[](obs.invalid imply c + d ≤ t).

Example For our illustrating case study, such a weak invariant is, for example,
that the indoor temperature usually is at 20◦C at daytime.

3) Strong Invariant: To show that a strong invariant invs is globally satisfied, we
can use the equivalent formula A[] invs.

Example For our illustrating case study, such a strong invariant is, for example,
that the flow temperature always resides in a certain interval, and that the system
is deadlock free.

4) Stability: The reachability of a stable operating system state, can be equivalently
expressed by using the leads-to operator. To check how long the system stays
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there, we slightly extend the rule observers by resetting a clock stable as soon as
the currently last active rule observer returns to its idle location. Then, we can
verify true –> (∀i.¬activei) ∧ stable ≥ min_stable. This extension is depicted
in Figure 8.7. It is done by duplicating the effect edge. One of them carries
the additional guard ∃j ̸= i. activej . The other one carries the additional guard
∀j ≠ i. ¬activej and the update stable := 0 where stable is a fresh shared clock.
Now, stable is set to 0 in the moment when all rules become idle (again). Note
that this works under the condition that the effect of a rule never fails. If the effect
of a rule may fail, the edge from ri.failed_effect to ri.active has to be duplicated
accordingly.

Summary In this chapter, we have described our verification processes that are embed-
ded in our framework. We combine lightweight safety monitoring and comprehensive
system verification, to find a balance between resource consuming model-based verifi-
cation with a high coverage of possible runtime behavior and continuous verification
to enable a fast detection of property violations due to unanticipated environment be-
havior. Our safety monitoring consists of three parts. It continuously observes whether

122



Chapter 8. Continuous Verification

a) important properties, which have to encoded in the adaptation goals, are satisfied,
b) adaptation rules still fit to the current environment, and c) adaptation rules still
fit to the current system topology. For comprehensive system verification, we have
presented our general verification process, have introduced our abstract MAPE process,
and have formalized important adaptation properties. Afterwards, we have presented an
exemplary instantiation of our verification tool chain based on an automatic extraction
of timed automata models from a SystemC implementation of the managed system and
an abstract timed automata model of our abstract MAPE-K process, together with a
timed automata formalization of our timed adaptation rules. The adaptation logic can
be expressed at an arbitrary level of abstraction. This enables analysis of an existing
implementation of the adaptation layer, as well as model-based development of this
layer using simulation and verification results to gradually refine the adaptation logic.
Furthermore, we have shown how general property classes including timing properties
can be verified automatically, and provided corresponding observer automata.

In the last chapters (Chap. 5 to 8), we have presented all parts of our framework in
detail and have given illustrating examples on our running example of a smart temperature
control system. In the next chapter, we evaluate our framework on three case studies
from different domains. With respect to formal verification, we present our setting for
verification experiments and respective verification times for our smart temperature case
study.
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9 Evaluation

We have implemented our approach and evaluated it on three case studies. We have
used our smart temperature control system as a complete case study, where we have
evaluated all parts of our framework. The temperature control system is well suited to
illustrate all aspects as it was designed for this purpose. In addition, we have developed
two further case studies, each for a specific evaluation purpose. We evaluate our goal
model and its quantitative distance evaluation on an autonomous drone delivery system
and the performance of the genetic algorithm on a self-organizing production system.In
this chapter, we first describe important aspects of our implementation. Afterwards, we
describe our case studies and provide experimental results.

9.1 Implementation

We have implemented most parts of our framework in the system description language
SystemC to easily integrate it with SystemC implementations of a manged system. To
this end, all processes are implemented in C++ and embedded into SystemC Processes.
Communication with the managed system is realized via SystemC channels. We have
implemented our simulation-based learning separately as it may run in parallel, e.g. on an
external server. In the following we describe interesting aspects of our implementation.

Goal Model A first prototype of our goal model was developed by Adrian Lohr in his
bachelor thesis [Loh16]. We have improved the distance calculation and heavily extended
the modeling features for the goal model afterwards. To achieve an efficient and modular
implementation, we have build a completely new implementation. We have implemented
our goal model and our distance calculation in Java as described in [KGG18d], as well as
in C++ to integrate the goal model into our framework. The basic classes are the goal
classes, which refer to their respective children and preceding goals. For various kinds of
local distance functions for leaf goals (optimization, exact) and parent goals (AND, OR),
and different kinds of precedences (linear, “0/1”), we provide templates for predefined
and user-defined distance and precedence functions, respectively. With them, concrete
local distance functions that capture the behavior of a goal’s formula can conveniently
be derived.
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Our goal model implementation is modular, extensible, and realizes all features
presented in Chapter 6. We have realized our distance calculation algorithm close to its
formal definition as a top-down recursive function, initially applied to the root node of the
goal model. To increase efficiency, we perform distance calculation, derived importance
calculation, and activeness calculation only once per goal. After that, the current values
are stored as attributes of each goal. They are reused if the same goal is visited again
because of precedences, for example. As a result, our distance calculation algorithm has
a linear complexity in the number of goals. For later distance calculation for new system
states, these values are reset.

Evolution Layer Our rule accuracy evaluation consists of a rule status evaluation and a
deviation classification. Our status evaluation determines for each executed rule whether
the expected effect has occurred in time. To achieve this, we have parallelized our
evaluation algorithm (cf. Algorithm 7.1). We have defined a generic observer thread
that waits until the effect time (earliest time the effect is expected to be observable)
has past and checks whether the effect occurred. If not, we periodically poll the sensors
and evaluate the effect for at most timeTolerance additional time units. The cycle time
for this polling can be set to zero to specify that reevaluation is performed only once
after timeTolerance time units. We dynamically instantiate an observer thread for each
execution of an adaptation rule. Each observer thread copies its evaluated rule instance
in the evaluation data base.

Our observation based learning consists of the extraction of context conditions, for
which we use the JRip implementation of classification rule learning with RIPPER. It
is included in WEKA [WFHP16] and provides a fast calculation of classification rules,
as well as the option to validate the results with ten-fold cross-validation. We have not
automatized the execution of JRip and the construction of our corrected context-specific
adaptation rules. However, this only requires a minor adjustment of the printing routine
for our evaluation results to include the header information for WEKA, parsing of the
resulting classification rules and the construction of new rule objects based on our
description in Section 7.2.

Our simulation-based learning is implemented separately to enable the deployment
on an external server. It consists of our genetic algorithm, our initial rule extraction and
our rule generalization. The first prototype of the genetic algorithm was developed by
our bachelor student Kevin Styp-Rekowski. He had developed a genetic algorithm that
operates on parameterized UPPAAL timed automata in his bachelor thesis [SR16]. We
have improved his prototype and extended it to support parameterized SystemC models
as runtime models (RTMs). We use text files as interface to the RTMs. To this end, we
have implemented parser routines to extract the controllable parameters from a parameter
specification text file and the recorded parameter values from RTM-specific trace files.
The parameter specification contains the amount of controllable parameters and pairs of
parameter name and initial value. For parameter adaptation and subsequent simulation
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of the resulting model, we have implemented a find-and-replace routine for our exemplary
RTM languages UPPAAL Timed Automata and SystemC. We have implemented our
initial rule extraction in Java, too. Our rule generalization is currently not automatized.
For our evaluation of the rule generalization, we have performed all steps manually.

Explanation Basis Our explanation basis is realized as vector of history objects within
our SystemC framework. In the end of the SystemC simulation, our explanation basis is
stored in a CSV-file for further processing. Currently, our history objects only include the
explanation information for decisions of the adaptation layer. We have not implemented
the explanation objects for the evolution layer, as rule learning is realized in a separate
implementation.

In the following, we describe our evaluation on our smart temperature control system.
Afterwards, we proceed with our further case studies.

9.2 Case Studies and Evaluation

In this section, we describe the case studies that we have used to evaluate our framework
and present the experimental results.

9.2.1 Smart Temperature Control System

We have implemented our case study in the system description language SystemC and
evaluated our observation- and simulation-based learning procedures, as well as our
formal verification with different scenarios.

Rule Accuracy Evaluation and Observation-Based Learning

We have evaluated our rule accuracy evaluation and observation-based learning with two
scenarios. In the first scenario, the radiator of our heating system is exchanged. For
the new radiator, a constant shift in the effect of adaptation rules can be observed. In
the second scenario, the effect of flow temperature changes depends on the outdoor
temperature. For temperatures that are greater or equal to 15◦C degree, any increase in
the flow temperature results in the same increase in the room temperature.

Experiment 1 - New Radiator To evaluate the accuracy of the rule increasen after
the radiator exchange, we have conducted the following experiment. We have removed
the air conditioning and the sun intensity sensor from our temperature control system.
We thereby focus on the heating system and avoid disturbances from sun. To enable the
observation of several executions of this rule, we initialized the heating parameters of
our heating controller with m = −1.2, and n = 32 and the ideal heating curve of the
environment with m = −1.2, and n = 44. We simulated one day (24 hours) in spring
in our heating system after the installation of the radiator. This took a few seconds
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temp_in temp_out time deviation (temp_in, energy)
4 5 1 (1,0)
6 5 1 (1,0)
8 5 1 (1,0)
10 5 1 (1,0)
12 5 1 (1,0)
14 5 1 (1,0)

Table 9.1: Rule Accuracy Evaluation for increasen of Experiment 1

only. The results of our rule accuracy evaluation are shown in Table 9.1. The constant
shift in the resulting indoor temperature was correctly observed and classified by our rule
accuracy evaluation.

Experiment 2 - Context-dependent Shift To evaluate the extraction of context
conditions with JRip, we have conducted the following experiment. We have removed
the air conditioning and the sun intensity sensor from our temperature control system.
We thereby focus on the heating system and avoid disturbances from sun. We initialized
the heating parameters of our heating controller with m = −1.2, and n = 32 and the
ideal heating curve of the environment with m = −1.2, and n = 44. Additionally, we
have introduced a thread into our environment that switches between three ideal heating
curves: 1) −1.2x + 44, 2) −1.2x + 36, and 3) −1.2x + 52. The change from 1) to
2) is introduced after eight simulation hours, and afterwards the environment switches
between 2) and 3) every eight simulation hours. The results of our accuracy evaluation
after 96 simulation hours in a spring time scenario are depicted in Table 9.2 and 9.3.
Note that we have depicted the equivalence class for the temperature only. The two
observations with a deviation of 2◦C are caused both caused by an environmental switch
from rule 2) two rule 3) and the subsequent stabilization of the environment. In a normal
scenario, the environment would not switch as often as in our experiment. Thus, these
observations would not be fed into learning as they would not occur often. However, we
used them as additional noise to see whether JRip can handle this. We have manually
fed the results into WEKA and applied JRip, the RIPPER implementation of WEKA, for
both rules increasen and decreasen.

JRip returned with the following rules for increasen after 0.01 seconds:

• IF (time >= 17) and (temp_in <= 15) and (temp_in >= 15)
THEN deviationtemp_in = 2

• (ELSE IF (temp_out >= 15) THEN deviationtemp = 1

• ELSE deviationtemp_in = 0
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temp_in temp_out time deviationtemp_in

15 15 17 2
15 15 17 2
17 6 8 0
18 6 8 0
17 6 8 0
18 6 8 0
18 15 13 1
18 15 13 1
14 15 17 1
16 15 17 1
18 15 17 1
14 15 17 1
16 15 17 1
18 15 17 1
10 5 1 0
11 5 1 0
12 5 1 0
13 5 1 0
14 5 1 0
12 5 1 0
13 5 1 0
14 5 1 0

Table 9.2: Rule Accuracy Evaluation for increasen in Experiment 2
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temp_in temp_out time deviationtemp_in

22 15 13 -1
22 15 13 -1
26 15 17 -1
24 15 17 -1
22 15 17 -1
26 15 17 -1
24 15 17 -1
22 15 17 -1
28 15 17 -1
28 15 17 -1
23 6 8 0
22 6 8 0
23 6 8 0
22 6 8 0
20 5 1 0
19 5 1 0
18 5 1 0
20 5 1 0
19 5 1 0
18 5 1 0

Table 9.3: Rule Accuracy Evaluation for decreasen in Experiment 2
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We have performed 10-fold cross-validation in WEKA, which resulted in two miss-
classified rules. This happens, because if the first two rows of Table 9.2 are not included
in the training set, the first rule will not be learned. Thus, these two data sets will be
miss-classified.

For decreasen the rules are:

• IF (temp_out >= 15) THEN deviationtemp = −1

• ELSE deviationtemp_in = 0

Based on the result from WEKA we can perform our rule correction as explained in
Section 7.2.

In our experiments, we have shown that our rule accuracy evaluation is able to detect
and classify recurring deviations, and that we can optimize our our adaptation rules to
handle recurring context-dependent deviations based on our proposed observation-based
learning.

Simulation-Based Learning

To evaluate our genetic algorithm, we demonstrate the learning of a suitable adaptation
rule for a concrete situation in a variant of our smart temperature control system without
an air conditioning. We consider the case where the indoor temperature exceeds the
desired temperature due to a incorrect assumption on the heat transmission of the
building (an incorrect heating curve). Note that this situation could be resolved using
our existing general adaptation rules in several adaptation steps. For this experiment, we
disregard our manually engineered set of adaptation rules and consider our environment
as black box to evaluate whether the genetic algorithm is able to learn a suitable rule.
We have instantiated the environment with the ideal heating curve f(x) = −1.2x + 44
and the system with the initial heating parameters gradient m = 1 and offset n = 30.
We compare learning based on formal UPPAAL timed automata simulation to learning
based on SystemC simulation.

We have instantiated our genetic algorithm on stochastic timed automata to enable
the simulation with trace recording. The mutation rules specify the step size and range
of changes on m (0.1 in [-0.3, 0.3]) and n (1 in [-5, 5]). We have set the number of
iterations (15), the amount of generated children per iteration (20), the size of the
parent population (2), the simulation length (22 hours in the model) and the number
of simulation runs per mutated automaton (1, due to the deterministic models). As
fitness function we have used the quadratic error between current and desired indoor
temperature measured on several samples of the same simulation run to avoid wrong
values at the intersection of the current and the ideal heating curve. We have applied
our genetic algorithm in a spring environment scenario (outdoor temperature values
between 5 and 20◦C) in which the current parameters lead to a situation where the
indoor temperature reaches 24◦C at 11 a.m.
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Figure 9.1: Optimization of Heating Curve Parameters

children 10 iterations 15 iterations 20 iterations
10 2.2s (101, -0.97) 3.1s (151, -0.06) 4.1s (201, 0.00)
15 3.3s (151, -0.11) 4.6s (226, -0.01) 6.3s (301, 0.00)
20 4.2s (201, -0.20) 6.2s (301, 0.00) 8.9s (401, 0.00)

Table 9.4: Comparison of Genetic Algorithm Variants Using UPPAAL SMC: runtime (#simu-
lations, achieved fitness)

In the following, we present the results of our evaluation. All learning experiments
were carried out on a 64 bit Linux system with an Intel Core i7-3520M CPU with 2.9
GHz and 16 GB of RAM.

Figure 9.1 shows the learned heating curves of the GA during seven iterations. Here,
our learning algorithm has found the optimal parameters (m = −1.2, n = 44) after seven
iterations. Note that that there are other “optimal” parameters (e.g. m = −1.1, n = 43)
that do not match the current ideal heating curve, but which also establish the intended
indoor temperature in the considered simulation interval. We have performed simulations
on an environment that showed outdoor temperatures in the highlighted area of 5◦C
to 20◦C. Here, in the last iteration the optimal solution was reached. In our example,
we were able to use a monotone fitness function without local optima that ensures that
eventually a global optimum (fitness of 0.0) is reached after sufficiently many iterations.
In more complex case studies, we can only expect the GA to find a better solution, but
not necessarily the best one, as the GA could get stuck in a local optimum. Table 9.4

children 10 iterations 15 iterations 20 iterations
10 0.9s (101, -2.10) 1.1s (151, -0.45) 1.4s (201, 0.00)
15 1.1s (151, -0.56) 1.7s (226, 0.00) 2.2s (301, 0.00)
20 1.5s (201, -0.18) 2.2s (301, 0.00) 2.8s (401, 0.00)

Table 9.5: Comparison of Genetic Algorithm Variants Using SystemC Simulation: runtime
(#simulations, achieved fitness)
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shows a runtime comparison of GA variants that differ in the number of iterations and
children on our temperature example. Note that we did not let the algorithm terminate
before the entire number of iterations was performed. The given runtimes are average
values of 10 runs for each variant. Furthermore, we include the performed number of
simulations and the fitness value of the learned model. The most time consuming task in
the GA are the model simulations for the fitness calculation, thus we get similar results
for the symmetric variants. Generally, a GA achieves better results, if we increase the
number of iterations and children, thus, the number of evaluated parameters.

We have also performed experiments using the SystemC implementation for simulation,
directly. To this end, we have used the SystemC simulation capabilities to calculate the
fitness of individuals. The results are shown in Table 9.5. In comparison to the UPPAAL
SMC-based learning, runtimes were better when using SystemC directly. The reason
is that there is some overhead in the generated UPPAAL model of a SystemC design.
Moreover, SystemC is highly optimized for simulation purposes. However, the results also
show that it is feasible to learn based on formal models, which also has the advantage of
providing a basis for formal verification of learned rules.

Verification

To evaluate our formal verification approach, we use a smaller version of our smart
temperature control system as presented in [KGG16, KGG18b]. In this version, we omit
the air conditioning, the sun intensity sensor, and the goal to minimize the energy
consumption. Thus, our managed system consists of the heating unit only. To verify
the corresponding subset of adaptation rules that specify how to adapt the heating
parameters m and n, we have transformed the SystemC code of the managed system
and the environment into UPPAAL timed automata (UTA) with the SystemC to Timed
Automata Transformation Engine [HPG15]. We have instantiated our generic MAPE-K
template (see Figure 8.4, p. 118) with our four adaptation rules (increase and decrease of
m and n). Furthermore, monitor keeps track of indoor and outdoor temperature, analyze
compares the desired and the current indoor temperature and planning is captured in the
function findBestRules(). Here, it simply returns the set of all four adaptation rules,
as only one of these rules can be executed at each time.

We have defined the following properties that should not be violated (invariants):

• The system never deadlocks: A[] not deadlock

• The flow temperature never reaches the minimal and maximal values:
A[] (tempFlow > MIN_FLOW && tempFlow < MAX_FLOW )

or that should be restored (weak invariant) by the rules:

• The room temperature should be close to the desired temperature:
not (temp_in ± c = refTemp) - -> (temp_in ± c = refTemp)
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properties M=1 M=2 M=3 M=4 M=5

not deadlock 00:03 00:40 01:03 02:35 02:39
range of tempFlow 00:02 00:26 00:42 01:42 01:45
effect of rules 00:02 00:26 00:41 01:41 01:45
¬invw–>invw 00:03 00:37 00:54 02:14 02:33
goal reached in time 00:03 00:33 00:54 02:12 02:15
stable for some time 00:03 00:36 00:54 02:03 02:29

Table 9.6: Verification Times for a Fixed Amount of Deterministic Changes [min:sec]

properties M=1 M=2 M=3 M=4 M=5

not deadlock 00:07 01:39 12:36 17:10 44:31
range of tempFlow 00:04 01:04 08:19 11:17 29:51
effect of rules 00:04 01:04 08:18 11:17 29:41
¬invw–>invw 00:07 01:32 11:20 15:04 41:26
goal reached in time 00:06 01:23 10:39 14:40 38:05
stable for some time 00:06 01:28 10:41 14:15 40:01

Table 9.7: Verification Times for a Fixed Amount of Non-Deterministic Changes [min:sec]

• The temperature should be restored within at most 10.000 seconds:
A[](obs.invalid imply c + d ≤ 10.000)

To verify the above properties and to additionally show that all rules are executed
successfully and the system is always eventually in a stable state for a while, we have
generated the observer automata and queries as described in Section 8.3.2 and have used
the UPPAAL Model Checker to verify the properties.

Experimental Results To evaluate the scalability of our verification approach, we
compare verification times in different environment settings. We have examined the
adaptation behaviour in an environment with a finite amount of MAX (abbreviated to
M in Tables 9.6 and 9.7) changes between three reference heating lines: 1. −1.2x + 44,
2. −1.6x + 50, 3. −0.4x + 38, and have comparde deterministic vs. non-deterministic
changes. We have modeled corresponding automata that change the environment
parameters (gradient and offset) after a fixed time (in our setting every three hours).

All verification experiments were carried out on a 64 bit Linux system with an Intel
Core i7-4770 with 3.4 GHz and 32 GB RAM running Ubuntu 12.4 and averaged over 3
runs.

Table 9.6 shows the verification times in an environment with a fixed amount of
deterministic changes between the reference heating lines. In a deterministically changing
environment all properties could be verified very quickly. The number of visited states
ranges from about 250, 000 (MAX = 1) consuming 32 MB of RAM to about 11, 000, 000
(MAX = 5) consuming 874 MB of RAM. Table 9.7 shows the results in an environment
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with a fixed amount of non-deterministic changes between the reference heating lines.
The number of visited states ranges from about 500, 000 (MAX = 1) consuming 50
MB of RAM to about 167, 000, 000 (MAX = 5) consuming 13.6 GB of RAM. The
results show that with a non-deterministically changing environment, verification times
are considerably higher, but still less than one hour in a setting where the environment
changes five times.

Summary In this section, we have shown our experimental results for our smart
temperature control system. We have successfully detected and classified introduced
deviations in the effect of adaptation rules with our rule accuracy evaluation. Our
observation-based learning has extracted correct context conditions that enable the
introduction of precise and context-dependent effect expectations. Furthermore, we
have shown that our simulation-based learning can find optimal parameters very quickly.
The most time consuming part of the underlying genetic algorithm is the simulation of
candidate solutions to evaluate their fitness. We have shown that this can be optimized
by using the fast simulation capabilities of the SystemC simulation environment. We
have performed formal verification of a smaller version of our smart temperature control
system and compared runtimes for different environment settings. We were able to
verify all properties in all scenarios. Due to the state space explosion problem of model
checkers the verification times and memory consumption increase exponentially in the
non-deterministic environments. For large and complex system and environment models,
abstraction techniques and modular verification would help to reduce verification effort.
In the following, we evaluate our goal model on our autonomous drone delivery case
study.

9.2.2 Goal Model Evaluation with an Autonomous
Drone Delivery System

In this section, we present our autonomous drone delivery case study, which we use to
evaluate the expressiveness of our goal model and the suitability of our distance metric as
a basis for autonomous decisions. We have presented this case study and the evaluation
in [KGG18d].

Autonomous Drone Delivery System

Our autonomous drone delivery system consists of independent flying drones such as
quadrocopters, which have to deliver goods from a starting position to several target
addresses. Each drone has to fulfill the following requirements.
The main high-level requirements of our drone delivery service are, on the one hand, to
maximize the satisfaction of customers and, on the other hand, to minimize the operation
costs. Thus, we have two business requirements as shown in Figure 9.2a. As our drones
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R1 The delivery times experienced by customers should be as low as possible.
R1a The length of the route a drone has to fly to deliver a good should be as
short as possible.
R1b The velocity of the drone should be as high as safely possible to decrease
delivery times.

R2 The operation costs, mainly influenced by the fuel consumption of drones, should
be minimized.
R2a Drones should use the electricity-mode (e-mode) whenever the battery level
is sufficiently high.
R2b To reduce fuel consumption in fuel-mode, the length of the route a drone has
to fly to deliver a good should be as short as possible.
R2c To reduce fuel consumption in fuel-mode, the velocity of the drone should be
reduced whenever this is possible.

(a) Business Requirements

R3 To avoid hazards with planes, the allowed height near to an airport is between 10
and 50 m.
R4 In cities the flight height is restricted to a corridor between 10 and 100 m.
R5 At the country side, height restrictions are relaxed to be between 5 and 200 m.
R6 The drones are allowed to fly with a velocity of 80 km/h at maximum, unless the
drone has to perform a safety manoeuvre to avoid drone collisions.
R7 To avoid collisions between drones, the drones have to keep a safety distance of 10
m to all neighbouring drones.
R8 The noise of the drones is regulated during nighttime. Then, the volume of flying
drones is not allowed to exceed 60 dB.

(b) Safety Requirements

Figure 9.2: Requirements for the Drones of our Delivery System

are part of the overall air traffic, they additionally have to adhere to the safety regulations
as shown in Figure 9.2b.

This example was created by ourselves to illustrate our concepts. Thus, requirements
were inspired by real drone regulations, but do not necessarily capture real-world drone
regulations.

Safety is the most important aspect of activities that affect the air traffic. Thus, the
more severe safety regulations are violated, the less important the business goals become.

Goal Model

We have build a goal model that reflects all these requirements. In Figure 9.3, we present
the resulting goal model for a single drone. For simplicity, we set all tolerance values to
0. If they are greater than 0, they only reduce the observed distances. We use a linear
precedence to model that the importance of business goals decreases the more severe
safety regulations are violated. To capture that it is allowed to exceed the maximum
velocity to avoid collision between drones (R6), we use “0/1”-precedence. This means
that only if collisions can be excluded, i.e. the distance of the goal Collision Avoidance is
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Figure 9.3: Goal Model of an Air Drone Delivery System

0, the velocity goal is active. As a consequence, in dangerous situations, speed regulations
can temporarily be ignored.
Our requirements include one conflict: Requirements R1b and R2c both require to
optimize the velocity of the drone, but in different directions (maximize vs. minimize).
To indicate that this conflict is on purpose (e.g. to enable multi-objective optimization),
we add a conflict edge in our model.

In our drone scenario, we manually specify the following qualitative priorities of the
subgoals.

• Safety > Business

• Flight Height > Collision Avoidance > Velocity

• Delivery Times > Fuel Consumption

• Volume: context-dependent (most severe in the city where many people live and
less severe near the airport)

For the remaining leaf goals in AND-aggregations, we assume an equal importance. This
prioritization is captured in our weights in Figure 9.3. For the Volume subgoal, we use
the context-dependent importance factor v_ci to describe that different importance
values apply in different situations. We define v_ci to be 0.1 near the airport, 0.2 in the
countryside, and 0.4 in the city.

Scenario-Based Evaluation of the Distance Calculation

In this section, we perform an evaluation on the expressiveness of our distance metric
w.r.t. runtime changes in system and environment parameters and their influence on
the system goals. We illustrate the development of the calculated distance in dynamic
example scenarios and sketch how this enables to autonomously choose appropriate
actions if the calculated distance significantly increases. Moreover, we illustrate the
impact of goal changes on the goal model and the calculated distance.
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Impact of Parameter Changes on the Distance Calculation In the runtime evalu-
ation of our goal model, the following aspects are required to be visible in the calculated
distance: a) The system and/or environment parameters change. b) A guard becomes
satisfied so that the respective goal “suddenly” contributes to the distance of the parent
goal. c) A goal is satisfied that has a precedence dependency to another goal.
To enable the observation whether those aspects are captured in our calculated distance,
we have created a scenario, which contains all three aspects.

In Figure 9.4, we depict the calculated distance over time for our scenario. Here, we
assume that the volume-related goals as depicted in Figure 9.3 are initially not part of the
goal model. The scale of the parameters velocity and height is given by the left y-axis,
while the scale of the system and safety goal evaluation is given by the right y-axis.

Left to the vertical bar, the scenario starts with a drone flying at the speed of 80 km/h,
a height of 200 meters, in the countryside (not depicted in the Figure), no other drones
nearby, and e-mode off. At time point 12, the drone enters the city, which deactivates
the current height goal (guard not satisfied anymore) and activates the one for the city
(guard satisfaction). This leads to an increase of the safety goal distance, because the
enforced flight height in the city is 100 meters. At time point 14, the system reacts by
descending to the height of 90 meters (parameter changes). Thus, the distances of the
system and safety goals decrease again.

Right to the vertical bar, the situation that another drone approaches is depicted.
From time point 30 to time point 33, a drone comes close up to 7 meters. At time
point 32, the system reacts by increasing the speed, which reduces the overall distance,
because the velocity goal is ignored as long as collision avoidance cannot be guaranteed
(“0/1”-precedence). At time point 34, the distance to the drone is over 10 meters again.
However, as the drone keeps on accelerating, the distance now increases, because the
velocity goal is active and violated. At time point 40, the drone reduces its speed again
down to 40. At time point 42.6, the velocity goal is satisfied again. From that time
on, only the business goals influence the overall system goal. Because of its conflicting
goals that aim at minimizing and maximizing the velocity, we see a curve, whose local
minimum is at time point 45.7 with a speed of 57.25.

In Figure 9.5, the evolution of the involved distances is depicted for these conflicting
goals in detail. For illustration, from time point 5 on, we decrease the velocity of the
drone from 80 km/h to 10 km/h. While the fuel consumption distance decreases because
less fuel is consumed, the delivery times distance increases, because it takes longer until
the good is delivered. As above, the optimal velocity is 57.25 km/h, which is marked
with a cross on the system goal curve.

In the following, we consider the case where not only parameters change at runtime
but also the goal model itself.
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Figure 9.4: Scenario for Parameter Changes

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  5  10  15  20  25  30  35  40  45  50
 0
 4
 8
 12
 16
 20
 24
 28
 32
 36
 40

d
is

ta
n
c
e

simulation time

velocity

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  5  10  15  20  25  30  35  40  45  50
 0
 4
 8
 12
 16
 20
 24
 28
 32
 36
 40

d
is

ta
n
c
e

simulation time

system
business
delivery

fuel

Figure 9.5: Scenario for Exploiting Conflicts

Impact of Local Goal Changes on the Calculated Distance To evaluate the mod-
ularity of our goal model and its distance calculation, we illustrate possible (local) goal
changes within our drone example and illustrate its impact on the calculated distance.

Tolerances capture a flexibility when it comes to the violation of a subgoal. Tolerances
can be changed in our model without the need for further adjustments. The effect of
changed tolerances is a shift in the distance calculation. For example, if the tolerance is
0, the “v ∈ [0, 80]” leaf goal in our example has a calculated distance of 0 for v = 80, of
5 for v = 85, and of 10 for v = 90. If the tolerance is 5, the calculated distance is 0 for
v = 80, 0 for v = 85, and 5 for v = 90. Thus, violations are considered less severe and
higher-level goals are informed “later” in case of violations.

Changes of the local distance function, such as changing the ranges of an interval
goal or changing the way child distances are combined in a parent goal, require an
adjustment of the normalization factors to reobtain distance values between 0 and
100. As example, consider the case where the allowed velocity range is changed from
v ∈ [0, 80] to v ∈ [0, 60]. Then, the maximal possible deviation changes from 20 to 40
(given the maximal speed of 100 km/h for a drone) and the normalization factor needs
to be changed to 100/40 = 2.5. This adjustment of the normalization can be done
automatically if the maximal deviation w.r.t. the new local distance function is given.

Precedences and guards of goals can easily be changed at runtime. For example,
it may be allowed to additionally exceed the flight height restrictions if collisions between
drones need to be avoided. To capture this in the goal model, a new “0/1”-precedence
from the collision avoidance goal to the flight height goal has to be included. Another
example is that the countryside height regulations extend to outer city parts, whereas city
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flight height regulations apply to inner city areas only. These changes can be achieved
by changing the guards of the flight height leaf goals accordingly. Here, no further
adjustments are necessary.

The change of weights, i.e. normalization or importance, has to be done with
caution. Depending on the local distance function of a parent goal, a changed weight of
some subgoal may result in an overall contribution of all subgoals of the same parent
that deviates from 100%. However, our local distance function of AND-decomposition
automatically normalizes the overall contribution of all active children to 100%. As an
example, we illustrate a scenario in Figure 9.6, in which we assume that the drone is in
e-mode and that the drone needs to increase the speed to deliver the good as soon as
possible. Thus, the speed limit shall be less important temporarily, which is modeled by
changing the relative importance of business and safety goals. In our scenario, this is
done at time point 12. The weight of the business goal is increased to 1.35 leading to a
normalized importance of 0.4 for the safety goals and 0.6 for the business goals. With
this, the overall distance drops and adaptations are postponed.

Our uniform distance function of parent nodes operates on multisets to enable that
subgoals can easily be added or removed. For the addition or removal of a subgoal, it
may be necessary to adjust the importance and normalization factors of local subgoals in
the same branch, on the same level. This is, for example, the case if the distance function
of the parent goal assumes an overall 100% contribution of its children subgoals. With our
proposed design of the distance function of AND-decompositions, the importance factors
of all active children goals are automatically normalized to an overall contribution of 100%.
This facilitates the definition of importance factors in the presence of guarded goals
and context-dependent importance factors as only active goals contribute to an overall
of 100%. Thus, the guarded volume-related goal with context-dependent importance
factors can be added without further ado. To show the influence of adding a subgoal on
the distance value, we illustrate the distance evolution in the case of a runtime addition
of the volume goal in Figure 9.7. For this scenario, we assume that it is night time,
that the drone generates noise of 80 dB, and e-mode is deactivated. At time point 5,
the additional safety volume goal as shown in Figure 9.3 is added. This leads to an
increase of the overall safety goals. At time point 8, we assume that the system reacts
by switching to e-mode, which immediately lets the business goal distance drop. The
linear reduction of the volume to assumed 50 dB in e-mode itself takes two seconds. At
the same time, the safety goal distance drops until a volume of 60 dB is reached.

Summary With our scenario-based evaluation, we have illustrated how the hierarchical
and modular structure and the efficient quantitative evaluation of our goal model enable
us to precisely analyze the impact of various sources of change at runtime. We have shown
that all introduced changes of system and environment parameters, guard satisfaction,
and precedences are reflected in the calculated distance. Furthermore, we have shown that
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Figure 9.6: Scenario for Change of Weights
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Figure 9.7: Scenario for Additional Goal

our distance calculation enables the detection of an optimal solution w.r.t. individual goal
importances for conflicting goals. Thus, it is well-suited as a basis for our distance-based
analysis and for comparing the expected result of different adaptation actions during
planning. In addition, we have examined necessary adjustments on the goal model after
different local goal changes and the impact of those changes on the calculated distance.
We have shown that our model supports runtime changes of system goals, as in most
cases only local changes to the weights of the changed goal itself and, in few cases, of
additionally local surrounding subgoals are necessary.
In the following, we evaluate the scalability of our genetic algorithm that is used for
simulation-based rule learning.

9.2.3 Scalability of Simulation-Based Adaptation Rule Learning for a
Self-Organizing Production System

In this section, we present our self-organizing production system, which we use to evaluate
the scalability of our genetic algorithm. It is parameterized on the number of involved
robots in the production cell. Thus, this case study enables us to compare runtimes of
our genetic algorithm for an increasing number of robots. We have published this case
study and its evaluation in [KGG18b].

Self-Organizing Production Cell

Our self-organizing production cell consist of N industrial robots, a test bench and a
switch that passes workpieces to robots. The general structure of a production cell is
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Figure 9.8: Autonomous Production Cell with N Robots

given in Figure 9.8. Robots have a currently installed capability and a list of available
capabilities. To avoid damage on robots and workpieces, we introduce a wear limit
(modeled by a number of steps that can be performed with the tool) for each tool and set
capabilities unavailable if the corresponding tool reaches this limit. A workpiece is given by
a list of capabilities that need to be processed in the given order. The robots collaborate
to accomplish a workpiece. To this end, the switch passes each incoming workpiece to
the next available robot with the required capability. Processing the workpiece at a robot
is abstractly modeled by a passage of time that depends on the processing speed for its
current capability. The test bench produces a stream of different workpieces that have
to be accomplished by the robots and receives accomplished workpieces. The stream
has some recurring pattern to enable learning for observed input scenarios. We have
implemented this case study in SystemC.

Self-adaptation is realized by reorganizing current capabilities to agents at runtime if
capabilities of agents become unavailable. To this end, we assume that reorganization is
costly because it can only be performed during a short production stop. Thus, we only
adapt the production cell if a capability is not available among the current capabilities of
all robots.

Evaluation Scenario To illustrate learning of adaptation rules in this case study, we use
an example instantiation of the production cell with N=9 Robots, 3 different capabilities
and the following start configuration of robots (3 robots for each capability):
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Current Capabilities:
[(R1, 0), (R2, 1), (R3, 2), (R4, 0), (R5, 1), (R6, 2), (R7, 0), (R8, 1), (R9, 2)]

Steps Left (wear limit):
Robot-ID Capability 0 Capability 1 Capability 2

R1 40 35 20

R2 15 40 15

R3 25 30 45

R4 40 35 20

R5 15 40 15

R6 25 30 45

R7 40 35 20

R8 15 40 15

R9 25 30 45

Now, consider the following situation, where all available steps for capability 0 are
exhausted. In this case, no robot with capability 0 is available and thus, reorganization
has to take place.

Steps Left (wear limit):
Robot-ID Capability 0 Capability 1 Capability 2

R1 0 35 20

R2 15 0 15

R3 25 30 0

R4 0 35 20

R5 15 40 15

R6 25 30 41

R7 0 35 20

R8 15 7 15

R9 25 30 45

Rule Learning with our Genetic Algorithm

To learn a suitable adaptation rule for this concrete scenario, we have used the SystemC
model of the production cell as runtime model and applied our genetic algorithm (with
20 iterations, 20 generated children per iteration, 4 surviving individuals per iteration) to
find an optimal solution with respect to maximizing the expected amount of workpieces
that can be processed before the next reorganization. To reduce the amount of changed
robots during reorganization, we added the number of unchanged robots to the fitness
value, and weighted the amount of packages with 0.7 and the amount of robots with 0.3.
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A resulting configuration is shown below. It proposes to change all robots as this results
in an increase of finished workpieces that is higher than the punishment for changing all
robots.

Current Capabilities:
[(R1, 1), (R2, 2), (R3, 0), (R4, 2), (R5, 1), (R6, 0), (R7, 1), (R8, 0), (R9, 0)]

Steps Left (wear limit):
Robot-ID Capability 0 Capability 1 Capability 2

R1 0 35 20

R2 15 0 15

R3 25 30 0

R4 0 35 20

R5 15 40 15

R6 25 30 41

R7 0 35 20

R8 15 7 15

R9 25 30 45

From this, we can extract an initial adaptation rule that consists of a guard describing
the initial configuration together with the history of received workpieces, the commands
to enable the capability changes for all robots and an effect that basically states that all
capabilities are available again (immediately). Additionally, we could add the expected
amount of accomplished workpieces before the next reorganization to enable a comparison
of different applicable adaptation rules.

To evaluate the runtimes of our genetic algorithm, we have performed learning within
our scenario for systems with different amounts of robots. The experiments were carried
out on a 64 bit Linux system with an Intel Core i7-3520M CPU with 2.9 GHz and 16 GB
of RAM. The results are shown in Table 9.8. The runtimes only moderately increase with
increasing numbers of robots. This is due to the heuristic nature of genetic algorithms
together with the limited number of iterations and children per iteration, which quickly
leads to nearly optimal results. The different fitness values are due to the fact that the
production cell is able to accomplish more workpieces if it contains more robots.

N = 3 N = 4 N = 6 N = 9
0.2s (4, 6.30) 1.1s (108, 10.10) 1.7s (253, 13.90) 3.2s (338, 24.10)

Table 9.8: Comparison of Genetic Algorithm for Production Cell Variants: runtime (#simula-
tions, achieved fitness)
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9.3 Summary

In this chapter, we have evaluated the applicability of our approach with our smart
temperature control system. We have shown that our rule accuracy evaluation success-
fully detects introduced context-dependent deviations of the adaptation effect and our
observation-based learning correctly classifies the context-dependencies. Thus, we can
correct the effect expectations with rules that capture the identified context-dependencies.
Furthermore, we have shown that our genetic algorithm learns suitable control parameters
for a given situation very quickly and that our simulation-based learning can extract
adaptation rules from the simulation traces of our runtime models. We have successfully
verified safety and adaptation properties in different environments with our formal verifi-
cation. In addition, we have evaluated the effectiveness and modularity of our distance
evaluation on our goal model with an autonomous drone delivery system. Our evaluation
shows that all kinds of runtime changes of the system goals are easily possible and
require minor and local adjustments on the normalization factor that is part of our weight
definition, only. Our evaluation has also confirmed that our distance metric is well-suited
for detecting dynamic changes in system and parameter values and for evaluating and
comparing different adaptation possibilities. Afterwards, we have evaluated the scalability
of our genetic algorithm (GA) on a parameterized production system that allows for
comparing runtimes of systems with different amounts of robots. Our results show that
runtimes only increase moderately with an increasing amount of robots and that the GA
has always lead to a near optimal solution quickly. Thus, we conclude that our genetic
algorithm scales well.
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10 Conclusion

In this chapter, we summarize the results of this thesis and show how our approach meets
our objectives as presented in the introduction. Afterwards, we give an outlook on future
work.

10.1 Results

We have presented a framework that enables the design and runtime evolution of safe,
intelligent and explainable self-adaptive systems. We have closed a gap by providing an
integrated approach that is capable of safely evolving the adaptation logics of rule-based
self-adaptive systems in order to handle dynamic changes in the system, its environment
and goals. Before, other approaches had addressed the design of self-adaptive systems,
or had presented solutions for single aspects of our research question, but there was no
integrated solution for runtime learning and verification in the presence of such dynamic
changes. Furthermore, most other approaches do not consider explainability of runtime
decisions.
Our main contributions are a rule- and distance-based adaptation process, a quantitative
and context-dependent goal model, an approach for the resource-efficient runtime evolu-
tion of adaptation logics, and a continuous verification methodology. Furthermore, our
rule format and our explanation basis, which consists of collected runtime knowledge,
enable the generation of detailed explanations about adaptation and learning decisions
at runtime.
We have evaluated our approach on three case studies from different domains, namely
a smart-temperature control system, an autonomous drone delivery system and a self-
organizing production system. We have proven the applicability of our approach by
successfully applying it to our smart temperature control system. In addition, we have
demonstrated the strength of our quantitative distance evaluation in scenarios with
various runtime changes of parameters and of the goal model itself. We have performed
these experiments on our drone delivery system because its requirements contain all
features of our goal model. Furthermore, we have shown that the runtimes of our our
genetic algorithm increase only moderately with an increasing number of adaptation
options, i.e. number of robots within our self-organizing production system.
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We summarize our key ideas for each main contribution:
Our rule- and distance-based adaptation process is based on our novel notion of timed
adaptation rules. We have used a comprehensible condition-action-effect structure for
our timed adaptation rules to support the explainability of autonomous decisions. The
key idea of these rules is to explicitly encode timed effect expectations on observable
environment and system parameters within the adaptation rules. We have separated the
effect expectations and their contribution to the system goals to achieve modularity and
reusability in the context of dynamic goal changes. We have evaluated the expected
contribution of adaptation rules with a novel notion of distance between a system state
and the goals.
Our quantitative and context-dependent goal model encodes context-dependent goals,
e.g. setpoints or optimization objectives, and their dependencies. We have combined
essential modeling elements from existing standard goal modeling languages, such as
the Goal-oriented Requirements Language (GRL) [Int12], i* [Yu97] or KAOS [vLL00],
and have provided additional modeling elements to describe context-dependent goal
relations and importances. To quantify the context-dependent achievement of goals
during analysis and planning of adaptations, we have provided an efficient and modular
distance evaluation algorithm.
Our novel approach for the resource-efficient runtime evolution of adaptation logics com-
bines a continuous accuracy evaluation, an observation-based optimization of adaptation
rules and a stochastic search-based learning of new comprehensible rules. Within our
observation-based learning, we have used classification rule learning to extract context
conditions that cause recurring deviations from the expected effect. Based on these
conditions, we have specified modified adaptation rules with context-specific effect ex-
pectations. To enable online learning of new adaptation rules, we have applied a genetic
algorithm that evaluates found solutions on a model simulation to avoid the costs and
risks of active exploration in the real system. Our rule learning includes stepwise rule
generalization process to increase the applicability of new rules. We have stored structured
analysis and learning results to provide processed data for explaining autonomous rule
learning.
Our continuous verification methodology consists of formal verification during the design
process and in the runtime evolution process. In addition, we have showed how run-
time monitoring of safety properties can be integrated in the monitoring process of the
MAPE-K loop for self-adaptive systems. To enable formal verification, we have provided
a formalization of our timed adaptation rules and our proposed rule- and distance-based
adaptation process in timed automata.
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10.2 Discussion

In the introduction, we have presented the objectives that should be fulfilled by a
framework for safe, intelligent and explainable self-adaptive systems. In the following, we
discuss how our solution matches these objectives.

10.2.1 Continuous learning of (timed) adaptation logics

The first criterion we discuss is the continuous learning of (timed) adaptation rules.
Intelligent cyber-physical systems control complex processes in a physical environment
showing behavior that may not have been considered at design time. Furthermore,
they operate for a long time after deployment and may be subject to change during
their lifespan, i.e. goals and system structure may change due to component failure or
installation. One aim of our thesis is to design intelligent systems that are flexible enough
to deal with such ever-changing operation contexts. Thus, they continuously have to
evaluate whether their adaptation logic still fits to the environment, their system topology
and capabilities, and their goals. If necessary, they have to learn suitable changes of their
adaptation logic that enable them to cope with these run-time changes.

To detect dynamic changes, we have proposed a rule accuracy evaluation, a heartbeat
approach, and an adaptation planning algorithm that is able to decide if it is possible
to achieve the system goals with the current set of rules. Our rule accuracy evaluation
assesses whether executed adaptations achieve their expected effect, and whether the
encoded effect fits the environment. We have resolved detected mismatches with our
observation-based learning. To detect changes in the system topology, we have integrated
a heartbeat into the monitoring of the manged system and have demanded an explicit
registration of new components. After detection, rules that rely on lost components are
removed from the active rule set and rules for new components are learned. If changed
goals cannot be achieved with the current set of adaptation rules, our planning process
provokes learning of new rules.
Furthermore, we require the adaptation logic to include the latency of adaptation actions
to account for time constraints and to enable proactive adaptation in time. Our novel
notion of timed adaptation rules includes an expectation when the effect should be
observable in the environment. We have used this expectation during adaptation planning
to favor faster solutions in case of rules with the same improvement on our quality
measure, i.e. the distance towards the goals. We have introduced an additional time
tolerance to express that there is an acceptable delay for the effect observation. We
have used the timing expectation (plus tolerance) to decide whether a rule execution
led to the expected effect, and the tolerance to cope with the usual problem of missing
phenomena due to discrete sampling rates.
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10.2.2 Independence between adaptation logics and system goals

Our second criterion concerns the independence between adaptation logics and system
goals. As goals may change at runtime, we require our solution to provide an independent
encoding of the expected effect of adaptation rules and of the system goals. We thereby
ensure that the adaptation logics is robust with respect to dynamic goal changes, i.e.
adaptation rules should still be applicable after goal changes.

We have achieved this separation by splitting our encoding of the expected effect
on environment and system parameters and the separate quantitative evaluation of the
distance between the expected system state and the system goals. In addition, we have
designed our distance evaluation in a modular way to ensure that goal changes require
local recalculations of the distance only. Thus, we have further minimized the impact of
goal changes.

10.2.3 Continuous analysis of safety properties

Our framework should be applicable for safety-critical cyber-physical systems. Thus,
our third criterion is the continuous analysis of safety properties to ensure safety of the
autonomous decisions.

With our formalization in UPPAAL timed automata, we have enabled formal verifica-
tion via model checking. It is thereby possible to formally verify the initial adaptation
logic at design time and the evolved adaptation logic at runtime. To achieve continuous
verification, we have defined a verification process that is deeply integrated into our adap-
tation and evolution processes. A safety monitoring detects violations of properties that
are encoded in the system goals or in the analysis process and initiates countermeasures,
such as applying suitable adaptations or switching into a safe operation mode. During
learning of adaptation rules, a validation of the effect expectations is performed on the
runtime models. Before a change in the adaptation rules is applied on the system, safety
is ensured by performing a comprehensive system verification.

10.2.4 Explainability of autonomous decisions

Our fourth criterion is to ensure the explainability of autonomous decisions. Intelligent
cyber-physical systems make autonomous decisions in safety-critical domains, such as au-
tomotive, industrial production, and medicine. As we hand over control to those systems,
we need to trust them. We have argued that providing comprehensible explanations for
autonomous decisions is crucial to obtain trust.

To achieve this, we have based our adaptation and learning decisions on comprehen-
sible models: The condition-action-effect structure of our adaptation rules resembles
the way humans specify actions and their effect. As example, consider the following
sentence in natural language: “If it is Sunday condition and I sleep in action, I will feel
rested effect.” We use human-readable runtime models in SystemC and UPPAAL timed
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automata for our simulation-based learning and verification. We thereby ensure that
results in the model can be easily retraced to the system. In addition, to supported the
traceability of these decisions, we have stored structured and processed knowledge in
an explanation base that can be queried for generating explanations at runtime or at
inspection time.

10.2.5 Resource-efficiency

Intelligent cyber-physical systems (CPS) are connected embedded systems that control
a physical environment and that are connected to the cyber-space. Cyber-space refers
to remote computing power or remote system components that are connected via the
internet. In embedded devices, resources, such as computation time, energy, and memory,
are restricted. Although remote computation power, i.e. servers, may be accessible,
communication is expensive in terms of energy and delays. Thus, it is desirable to enable
local decision-making, at least for frequent and time-critical decisions. We therefore
require our approach to be efficient in terms of time and computational overhead to be
applicable in real-time and embedded devices.

With our rule-based adaptation and modular distance calculation, we have provided
a fast self-adaptation with a low computational overhead. In our evolution layer, we
must perform resource-intensive tasks, such as learning and verification. However, we
have reduced the resource-consumption with several means: We have reduced the
learning overhead by applying our fast observation-based learning where possible, and by
increasing the applicability of learned rules with our rule generalization. For verification,
we differentiate between simulation-based rule effect validation and a comprehensive
formal system verification. The former is less resource-consuming, and is used during rule
generalization. The latter is based on model checking, which is known to be resource-
demanding. However, verification is only performed after learning, which we assume to
be necessary infrequently only.
As we assume, that the system can be set into a safe operation mode at any time,
learning and comprehensive verification can be outsourced to an external server with
more computational power and memory.

To summarize our discussion, our solution fulfills our criteria and enables the design of
intelligent systems that are flexible enough to deal with ever-changing operation contexts
while ensuring the safety and explainability of their autonomous decisions. To the best
of our knowledge, it is the only approach that provides an integrated solution to this
crucial research topic.

10.3 Outlook

In our thesis, we have focused on the integration of different aspects, such as self-
adaptation, learning, verification and explanations, into one framework that can be
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instantiated for several domains. Our framework can be improved further and can
serve as a basis for investigating future research directions. We first describe possible
enhancements of our framework and discuss future research directions afterwards.

We have chosen a straight-forward adaptation planning strategy to focus on our
evolution layer. Our framework can be extended by enhancing our timed adaptation rules
with probabilities, complex dependencies between adaptation commands and time delays
between commands. Our rule-based planning algorithm can be expanded to consider
these new features. Another possibility is to integrate different planning strategies, such
as online planning on model simulations or approaches for automatic controller synthesis.
The latter could be achieved by using the UPPAAL extension UPPAAL TIGA.
The performance of our rule learning can be increased. One possibility is to further
reduce the frequency of learning with heuristics. These heuristics describe when to delete
inaccurate or inapplicable rules from the knowledge base, and when to store them for
later re-evaluation and adjustment. A second option worth exploring, is the applicability
and performance of different learning strategies as alternative for our genetic algorithm.
Also the scalability of our formal verification can be improved. A promising approach is
to apply modular verification, e.g. based on assume-guarantee contracts, and to statically
analyze which components are influenced by newly learned rules. Thus, only affected
system and environment components have to be verified again. This also enables the
integration of externally verified adaptation rule sets of new components.

During our thesis, further research questions arose. We have assumed that the
adaptation layer is based on a single MAPE-K loop. It appears interesting to investigate
decentral intelligent self-adaptive systems, e.g. for smart grids or traffic control. A
particular challenge is to distribute our evolution layer, which currently assumes certain
knowledge of the overall system. Research in this direction can be based on results
for different design patterns for MAPE-K feedback loops that describe realizations for
hierarchical and distributed MAPE-K loops (see [WSG+13]).
Our evolution layer adapts the rule set of our adaptation layer. A similar meta adaptation
worth to investigate is to adapt the behavior of single MAPE-phases, such as introducing
a context-dependent monitoring rate, switching between different planning strategies or
adjusting the analysis strategy. We have discussed several options for such adaptations
in [KGG17]. In addition, it seems promising to follow this idea of meta adaptation and
to investigate adaptations of the evolution layer, such as switching between different
learning and verification strategies. This would enable a higher-order self-adaptation
approach where adaptation can take place on arbitrary levels of abstraction.
With our explanation basis, we provide a basis for automatically generated explanations.
However, explanations have to be adjusted to the recipients need to be valuable for users,
engineers or other stakeholders. It is worth investigating which decisions and actions
require an explanation and which explanation style should be used. Explanation styles
may differ w.r.t. their efficiency and acceptance rate for different recipient groups. For

150



Chapter 10. Conclusion

example, a user will need less technical explanations than an engineer, and a lawyer
cares about different aspects than engineers. Moreover, different situations may require
different kinds of explanations. For example, an explanation why a plane on autopilot
needs a human pilot to take over must be understandable quickly to avoid a crash.
However, if a crash has occurred, a detailed explanation is required to learn from this
crash. As a first step into this fascinating research topic, we have presented our vision
of self-explainable cyber-physical systems in [BGC+19]. Based on our experience from
this thesis, we have proposed a reference framework for self-explainable CPS that has a
similar structure to our framework for intelligent self-adaptive systems. The proposed
framework is based on the MAPE-K feedback loop and includes a second layers to adapt
the knowledge base of the first layer.
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