Skip to main content

Advertisement

Log in

Chronic administration of Tat-GluR23Y ameliorates cognitive dysfunction targeting CREB signaling in rats with amyloid beta neurotoxicity

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is behaviorally characterized by memory impairments, and pathologically by amyloid β1–42 (Aβ1–42) plaques and tangles. Aβ binds to excitatory synapses and disrupts their transmission due to dysregulation of the glutamate receptors. Here we hypothesized that chronic inhibition of the endocytosis of AMPA receptors together with GluN2B subunit of NMDA receptors might improve cognition deficit induced by Aβ(1–42) neurotoxicity. Forty male Wistar rats were used in this study and divided into 5 groups: Saline + Saline, Aβ+Saline, Aβ+Ifen (Ifenprodil, 3 nmol /2 weeks), Aβ+GluR23Y (Tat-GluR23Y 3 μmol/kg/2 weeks) and Aβ+Ifen+GluR23Y (same doses and durations). Aβ(1–42) neurotoxicity was induced by intracerebroventricular (ICV) injection of Aβ1–42 (2 μg/μl/side), and then animals received the related treatments for 14 days. Cognitive performance of rats and hippocampal level of cAMP-response element-binding (CREB) were evaluated using Morris Water Maze (MWM), and western blotting respectively. Obtained data from the acquisition trials were analyzed by two way Anova and Student T test. Also one way Analysis of variance (ANOVA) with post hoc Tuckey were used to clarify between groups differences in probe test. The Group receiving Aβ, showed significant cognition deficit (long latency to platform and short total time spent in target quadrant (TTS), parallel with lower level of hippocampal CREB, versus vehicle group. While, Aβ+ GluR23Y exhibited the shortest latency to platform and the longest TTS during the probe test, parallel with the higher hippocampal level of CREB compared with other groups. The present study provides evidence that chronic administration of Tat-GluR23Y; an inhibitor of GluA2-AMPARs endocytosis, successfully restores spatial memory impaired by amyloid beta neurotoxicity targeting CREB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availablity

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alberdi E et al (2010) Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47:264–272

    CAS  PubMed  Google Scholar 

  • Balamotis MA, Tamberg N, Woo YJ, Li J, Davy B, Kohwi-Shigematsu T, Kohwi Y (2012) Satb1 ablation alters temporal expression of immediate early genes and reduces dendritic spine density during postnatal brain development. Mol Cell Biol 32:333–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer TA, Wirths O (2010) Intracellular accumulation of amyloid-Beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci 2:8. https://doi.org/10.3389/fnagi.2010.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt JM, Prakash A, Suryavanshi PS, Dravid SM (2013) Effect of ifenprodil on GluN1/GluN2B N-methyl-D-aspartate receptor gating. Mol Pharmacol 83:9–21

    CAS  PubMed  Google Scholar 

  • Bitner RS (2012) Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem Pharmacol 83:705–714

    Google Scholar 

  • Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer’s disease. CNS Drugs 17:641–652

    CAS  PubMed  Google Scholar 

  • Chen X, Wagener JF, Morgan DH, Hui L, Ghribi O, Geiger JD (2010) Endolysosome mechanisms associated with Alzheimer’s disease-like pathology in rabbits ingesting cholesterol-enriched diet. J Alzheimers Dis 22:1289–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2012) Alzheimer’s β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid. J Neurosci 32:11390–11,395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol 167:324–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z et al (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234–247

    PubMed  Google Scholar 

  • Gao X et al (2007) NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res 56:559

    CAS  PubMed  Google Scholar 

  • Guntupalli S, Widagdo J, Anggono V (2016) Amyloid-β-induced dysregulation of AMPA receptor trafficking. Neural Plast 3204519. https://doi.org/10.1155/2016/3204519

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  • Hardt O, Nader K, Wang Y-T (2014) GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short-and long-term memories. Philos Trans R Soc B Biol Sci 369:20130141

    Google Scholar 

  • He MT, Lee AY, Kim JH, Park CH, Shin YS, Cho EJ (2019) Protective role of Cordyceps militaris in Aβ 1–42-induced Alzheimer’s disease in vivo. Food Sci Biotechnol 28:865–872

    CAS  PubMed  Google Scholar 

  • Hendricson AW, Miao CL, Lippmann MJ, Morrisett RA (2002) Ifenprodil and ethanol enhance NMDA receptor-dependent long-term depression. J Pharmacol Exp Ther 301:938–944. https://doi.org/10.1124/jpet.301.3.938

    Article  CAS  PubMed  Google Scholar 

  • Hettinger JC, Lee H, Bu G, Holtzman DM, Cirrito JR (2018) AMPA-ergic regulation of amyloid-β levels in an Alzheimer’s disease mouse model. Mol Neurodegener 13:22. https://doi.org/10.1186/s13024-018-0256-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y et al (2017) Modulating the balance of synaptic and extrasynaptic NMDA receptors shows positive effects against amyloid-β-induced neurotoxicity. J Alzheimers Dis 57:885–897

    CAS  PubMed  Google Scholar 

  • Jalilzad M, Jafari A, Babaei P (2019) Neuregulin1β improves both spatial and associative learning and memory in Alzheimer model of rats possibly through signaling pathways other than Erk1/2. Neuropeptides 78:101963

    CAS  PubMed  Google Scholar 

  • Kamenetz F et al (2003) APP processing and synaptic function. Neuron 37:925–937. https://doi.org/10.1016/s0896-6273(03)00124-7

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kwon J-T, Kim H-S, Josselyn SA, Han J-H (2014) Memory recall and modifications by activating neurons with elevated CREB. Nat Neurosci 17:65

    CAS  PubMed  Google Scholar 

  • Lakhina V et al (2015) Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 85:330–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Westbrook GL (1991) Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol Pharmacol 40:289–298

    CAS  PubMed  Google Scholar 

  • Li L, Liu X, Qiao C, Chen G, Li T (2016) Ifenprodil Attenuates Methamphetamine-Induced Behavioral Sensitization and Activation of Ras-ERK-∆ FosB Pathway in the Caudate Putamen. Neurochem Res 41:2636–2644

    CAS  PubMed  Google Scholar 

  • Liu J, Chang L, Song Y, Li H, Wu Y (2019) The role of NMDA receptors in Alzheimer’s disease. Front Neurosci. https://doi.org/10.3389/fnins.2019.00043

  • Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4:a005710

    PubMed  PubMed Central  Google Scholar 

  • Ma YY, Yu P, Guo CY, Cui CL (2011) Effects of ifenprodil on morphine-induced conditioned place preference and spatial learning and memory in rats. Neurochem Res 36:383–391. https://doi.org/10.1007/s11064-010-0342-9

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo da Rosa M, Yuanxiang P, Brambilla R, Kreutz MR, Karpova A (2016) Synaptic GluN2B/CaMKII-α signaling induces synapto-nuclear transport of ERK and Jacob. Front Mol Neurosci 9:66

    PubMed  PubMed Central  Google Scholar 

  • Morris R (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9:3040–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris R, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776

    CAS  PubMed  Google Scholar 

  • O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    PubMed  PubMed Central  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    CAS  PubMed  Google Scholar 

  • Paramanik V, Thakur MK (2013) Role of CREB signaling in aging brain. Arch Ital Biol 151:33–42

    CAS  PubMed  Google Scholar 

  • Paxinos G and Watson Ch (2013) The rat brain in stereotaxic coordinates 7th edition. Academic Press

  • Pirotte B, Francotte P, Goffin E, de Tullio P (2013) AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 23:615–628. https://doi.org/10.1517/13543776.2013.770840

    Article  CAS  PubMed  Google Scholar 

  • Pourmir M, Babaei P, Soltani TB (2016) Kisspeptin-13 ameliorates memory impairment induced by streptozotocin in male rats via cholinergic system. Physiol Pharmacol 20(1):38–47

    Google Scholar 

  • Rammes G et al (2017) Involvement of GluN2B subunit containing N-methyl-d-aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Abeta) in murine models of Alzheimer’s disease (AD). Neuropharmacology 123:100–115. https://doi.org/10.1016/j.neuropharm.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Herrero-Labrador R, Burgueño J, Zamanillo D, Garzón J (2014) The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neuropsychopharmacol 17:1943–1955

    PubMed  Google Scholar 

  • Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22:153–169

    CAS  PubMed  Google Scholar 

  • Scoville WB, Milner B (2000) Loss of recent memory after bilateral hippocampal lesions. 1957. J Neuropsychiatry Clin Neurosci 12(1):103–113

    CAS  PubMed  Google Scholar 

  • Shen W-X, Chen J-H, Lu J-H, Peng Y-P, Qiu Y-H (2014) TGF-β1 protection against Aβ1–42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15:22092–22108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanciu GD et al (2020) Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 10(1)40

    CAS  Google Scholar 

  • Talantova M et al (2013) Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A 110:E2518–E2527. https://doi.org/10.1073/pnas.1306832110

    Article  PubMed  PubMed Central  Google Scholar 

  • Tu S, Okamoto S-I, Lipton SA, Xu H (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 14(9):48. https://doi.org/10.1186/1750-1326-9-48

    Article  CAS  Google Scholar 

  • Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13:366–371

    CAS  PubMed  Google Scholar 

  • Varga E, Juhász G, Bozsó Z, Penke B, Fülöp L, Szegedi V (2015) Amyloid-β 1–42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J Alzheimers Dis 45:449–456

    CAS  PubMed  Google Scholar 

  • Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci 99:13217–13,221

    CAS  PubMed  Google Scholar 

  • Vyklicky V et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(1):S191–203. https://doi.org/10.33549/physiolres.932678

  • Wang H, Xu J, Lazarovici P, Quirion R, Zheng W (2018) cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci 11:–255

  • Whitcomb DJ et al (2015) Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 5:10934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K (2008) Biology of the NMDA Receptor. In: Van Dongen AM (ed). CRC Press/Taylor & Francis, Boca Raton

  • Yamin G (2009) NMDA receptor–dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J Neurosci Res 87:1729–1736

    CAS  PubMed  Google Scholar 

  • Yang K, Xiong W, Yang G, Kojic L, Taghibiglou C, Wang YT, Cynader M (2011) The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity. Sci Rep 1:203

    PubMed  PubMed Central  Google Scholar 

  • Yin JC, Tully T (1996) CREB and the formation of long-term memory. Curr Opin Neurobiol 6:264–268. https://doi.org/10.1016/s0959-4388(96)80082-1

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Huang Z, Dai C, Du Y, Han H, Wang YT, Dong Z (2018) Facilitated AMPAR endocytosis causally contributes to the maternal sleep deprivation-induced impairments of synaptic plasticity and cognition in the offspring rats. Neuropharmacology 133:155–162

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li P, Feng J, Wu M (2016) Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci 37:1039–1047

    PubMed  PubMed Central  Google Scholar 

  • Zhang J et al. (2017) Endophilin2 Interacts with GluA1 to Mediate AMPA receptor endocytosis induced by oligomeric amyloid-β Neural Plast 2017.

  • Zhao W-Q et al (2010) Inhibition of calcineurin-mediated endocytosis and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid β oligomer-induced synaptic disruption. J Biol Chem 285:7619–7632

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Bahram Soltani, head of Cellular & Molecular Research Center and department of pharmacology, Faculty of medicine, Rasht, Iran for their laboratory facilities and technical support.

Funding

This work was a master science student thesis and financially was supported by the grant (No IR.GUMS.REC.1396.264) from Research deputy of Guilan University of Medical Sciences, Rasht, Iran.

Author information

Authors and Affiliations

Authors

Contributions

PB designed the study, and interpreted data, had a major contribution in writing and revising the manuscript. FA performed experiment, drafted the manuscript and analyzed data. AJ interpreted western blot data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Parvin Babaei.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 10 kb)

ESM 2

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashourpour, F., Jafari, A. & Babaei, P. Chronic administration of Tat-GluR23Y ameliorates cognitive dysfunction targeting CREB signaling in rats with amyloid beta neurotoxicity. Metab Brain Dis 36, 701–709 (2021). https://doi.org/10.1007/s11011-020-00662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00662-8

Keywords

Navigation