Skip to main content

Advertisement

Log in

Asymptomatic type 2 diabetes mellitus display a reduced myocardial deformation but adequate response during exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

This article has been updated

Abstract

Background and purpose

The development of myocardial fibrosis is a major complication of Type 2 diabetes mellitus (T2DM), impairing myocardial deformation and, therefore, cardiac performance. It remains to be established whether abnormalities in longitudinal strain (LS) exaggerate or only occur in well-controlled T2DM, when exposed to exercise and, therefore, cardiac stress. We therefore studied left ventricular LS at rest and during exercise in T2DM patients vs. healthy controls.

Methods and results

Exercise echocardiography was applied with combined breath-by-breath gas exchange analyses in asymptomatic, well-controlled (HbA1c: 6.9 ± 0.7%) T2DM patients (n = 36) and healthy controls (HC, n = 23). Left ventricular LS was assessed at rest and at peak exercise. Peak oxygen uptake (\({\dot{\text{V}}\text{O}}_{{{\text{2peak}}}}\)) and workload (Wpeak) were similar between groups (p > 0.05). Diastolic (E, es, E/e’) and systolic function (left ventricular ejection fraction) were similar at rest and during exercise between groups (p > 0.05). LS (absolute values) was significantly lower at rest and during exercise in T2DM vs. HC (17.0 ± 2.9% vs. 19.8 ± 2% and 20.8 ± 4.0% vs. 23.3 ± 3.3%, respectively, p < 0.05). The response in myocardial deformation (the change in LS from rest up to peak exercise) was similar between groups (+ 3.8 ± 0.6% vs. + 3.6 ± 0.6%, in T2DM vs. HC, respectively, p > 0.05).

Multiple regression revealed that HDL-cholesterol, fasted insulin levels and exercise tolerance accounted for 30.5% of the variance in response of myocardial deformation in the T2DM group (p = 0.002).

Conclusion

Myocardial deformation is reduced in well-controlled T2DM and despite adequate responses, such differences persist during exercise.

Trial registration

NCT03299790, initially released 09/12/2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Raw data is available upon request. Requests should be oriented towards the corresponding author or last author.

Change history

  • 20 March 2021

    Former problem: Incorrect ORCID ID: 0000-0003-2602-0686 for author Paul Dendale

Abbreviations

A :

Late diastolic inflow

AGE’s:

Advanced glycation end products

ANOVA:

Analysis of variance

AP4C:

Apical four chamber

AP5C:

Apical five chamber

BMI:

Body mass index

BPM:

Beats per minute

BSA:

Body surface area

CO:

Cardiac output

CVD:

Cardiovascular diseases

Dt:

Deceleration time

E :

Early diastolic inflow

es :

Early diastolic velocity at the septal annulus

E/e’ ratio:

LV filling pressure

HbA1c:

Glycated haemoglobin A1c

HC:

Healthy control

HDL:

High density lipoprotein

HR:

Heart rate

IVSd:

Interventricular septum thickness end-diastole

LDL:

Low density lipoprotein

LS:

Longitudinal strain

LV:

Left-ventricular

LVEDV:

End-diastolic LV volume

LVEF:

LV ejection fraction

LVESV:

End-systolic LV volume

LVM:

LV mass

LVMi:

LV mass indexed for BSA

LVDd:

LV diameter end-diastole

LVPWd:

LV posterior wall thickness end-diastole

LVOT:

LV outflow tract diameter

NT-proBNP:

N-terminal pro-B-type natriuretic peptide

PLAX:

Parasternal long axis

RER:

Respiratory exchange ratio

RWT:

Relative wall thickness

SD:

Standard deviation

SV:

Stroke volume

T2DM:

Type 2 diabetes mellitus

TDI:

Tissue Doppler imaging

\({\dot{\text{V}}\text{O}}_{{2}}\) :

Oxygen uptake

References

  • Baldi JC, Lalande S, Carrick-Ranson G, Johnson BD (2007) Postural differences in hemodynamics and diastolic function in healthy older men. Eur J Appl Physiol 99(6):651–657. https://doi.org/10.1007/s00421-006-0384-5

    Article  PubMed  Google Scholar 

  • Conte L, Fabiani I, Barletta V, Bianchi C, Maria CA, Cucco C, De Filippi M, Miccoli R, Prato SD, Palombo C, Di Bello V (2013) Early detection of left ventricular dysfunction in diabetes mellitus patients with normal ejection fraction, stratified by BMI: a preliminary speckle tracking echocardiography study. J Cardiovasc Echogr 23(3):73–80. https://doi.org/10.4103/2211-4122.123953

    Article  PubMed  PubMed Central  Google Scholar 

  • Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458. https://doi.org/10.1016/0002-9149(86)90771-x

    Article  CAS  PubMed  Google Scholar 

  • Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  Google Scholar 

  • Ernande L, Bergerot C, Rietzschel ER, De Buyzere ML, Thibault H, Pignonblanc PG, Croisille P, Ovize M, Groisne L, Moulin P, Gillebert TC, Derumeaux G (2011) Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr 24(11):1268-1275.e1261. https://doi.org/10.1016/j.echo.2011.07.017

    Article  PubMed  Google Scholar 

  • Ernande L, Bergerot C, Girerd N, Thibault H, Davidsen ES, Gautier Pignon-Blanc P, Amaz C, Croisille P, De Buyzere ML, Rietzschel ER, Gillebert TC, Moulin P, Altman M, Derumeaux G (2014) Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr 27(5):479–488. https://doi.org/10.1016/j.echo.2014.01.001

    Article  PubMed  Google Scholar 

  • From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55(4):300–305. https://doi.org/10.1016/j.jacc.2009.12.003

    Article  PubMed  Google Scholar 

  • Ha JW, Lee HC, Kang ES, Ahn CM, Kim JM, Ahn JA, Lee SW, Choi EY, Rim SJ, Oh JK, Chung N (2007) Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. Heart 93(12):1571–1576. https://doi.org/10.1136/hrt.2006.101667

    Article  PubMed  PubMed Central  Google Scholar 

  • Hegab Z, Gibbons S, Neyses L, Mamas MA (2012) Role of advanced glycation end products in cardiovascular disease. World J Cardiol 4(4):90–102. https://doi.org/10.4330/wjc.v4.i4.90

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, Fang ZY, Prins JB, Stanton T (2015) Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 101(13):1061–1066. https://doi.org/10.1136/heartjnl-2014-307391

    Article  PubMed  Google Scholar 

  • Jorgensen PG, Jensen MT, Mogelvang R, von Scholten BJ, Bech J, Fritz-Hansen T, Galatius S, Biering-Sorensen T, Andersen HU, Vilsboll T, Rossing P, Jensen JS (2016) Abnormal echocardiography in patients with type 2 diabetes and relation to symptoms and clinical characteristics. Diab Vasc Dis Res 13(5):321–330. https://doi.org/10.1177/1479164116645583

    Article  CAS  PubMed  Google Scholar 

  • Karlsen S, Dahlslett T, Grenne B, Sjoli B, Smiseth O, Edvardsen T, Brunvand H (2019) Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc Ultrasound 17(1):18. https://doi.org/10.1186/s12947-019-0168-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Shim CY, Kim JM, Lee HJ, Choi DH, Choi EY, Jang Y, Chung N, Ha JW (2011) Impact of left ventricular longitudinal diastolic functional reserve on clinical outcome in patients with type 2 diabetes mellitus. Heart 97(15):1233–1238. https://doi.org/10.1136/hrt.2010.219220

    Article  PubMed  Google Scholar 

  • Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC, Kreeger J, Mertens L, Pibarot P, Picano E, Ryan T, Tsutsui JM, Varga A (2017) The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30(2):101–138. https://doi.org/10.1016/j.echo.2016.10.016

    Article  PubMed  Google Scholar 

  • Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270. https://doi.org/10.1093/ehjci/jev014

    Article  Google Scholar 

  • Leader CJ, Moharram M, Coffey S, Sammut IA, Wilkins GW, Walker RJ (2019) Myocardial global longitudinal strain: an early indicator of cardiac interstitial fibrosis modified by spironolactone, in a unique hypertensive rat model. PLoS ONE 14(8):e0220837. https://doi.org/10.1371/journal.pone.0220837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung M, Phan V, Whatmough M, Heritier S, Wong VW, Leung DY (2015) Left ventricular diastolic reserve in patients with type 2 diabetes mellitus. Open Heart 2(1):e000214. https://doi.org/10.1136/openhrt-2014-000214

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung M, Wong VW, Hudson M, Leung DY (2016) Impact of improved glycemic control on cardiac function in type 2 diabetes mellitus. Circ Cardiovasc Imaging 9(3):e003643. https://doi.org/10.1161/CIRCIMAGING.115.003643

    Article  PubMed  Google Scholar 

  • Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47(7):1313–1327. https://doi.org/10.1016/j.jacc.2005.11.063

    Article  PubMed  Google Scholar 

  • McAuley PA, Myers JN, Abella JP, Tan SY, Froelicher VF (2007) Exercise capacity and body mass as predictors of mortality among male veterans with type 2 diabetes. Diabetes Care 30(6):1539–1543. https://doi.org/10.2337/dc06-2397

    Article  PubMed  Google Scholar 

  • Mizamtsidi M, Paschou SA, Grapsa J, Vryonidou A (2016) Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? Eur J Clin Invest 46(11):947–953. https://doi.org/10.1111/eci.12673

    Article  PubMed  Google Scholar 

  • Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Card Fail 16(12):971–979. https://doi.org/10.1016/j.cardfail.2010.07.249

    Article  PubMed  Google Scholar 

  • Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD, Houston T, Oslo N, Phoenix A, Nashville T, Hamilton OC, Uppsala S, Ghent LB, Cleveland O, Novara I, Rochester M, Bucharest R, St. Louis M (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17(12):1321–1360. https://doi.org/10.1093/ehjci/jew082

    Article  PubMed  Google Scholar 

  • Nishi T, Kobayashi Y, Christle JW, Cauwenberghs N, Boralkar K, Moneghetti K, Amsallem M, Hedman K, Contrepois K, Myers J, Mahaffey KW, Schnittger I, Kuznetsova T, Palaniappan L, Haddad F (2020) Incremental value of diastolic stress test in identifying subclinical heart failure in patients with diabetes mellitus. Eur Heart J Cardiovasc Imaging 21(8):876–884. https://doi.org/10.1093/ehjci/jeaa070

    Article  PubMed  Google Scholar 

  • Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50. https://doi.org/10.1016/j.diabres.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  • Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG, American Society of E (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20(9):1021–1041. https://doi.org/10.1016/j.echo.2007.07.003

    Article  PubMed  Google Scholar 

  • Peterson LR, Rinder MR, Schechtman KB, Spina RJ, Glover KL, Villareal DT, Ehsani AA (2003) Peak exercise stroke volume: associations with cardiac structure and diastolic function. J Appl Physiol 94(3):1108–1114. https://doi.org/10.1152/japplphysiol.00397.2002

    Article  PubMed  Google Scholar 

  • Roberts TJ, Burns AT, MacIsaac RJ, MacIsaac AI, Prior DL, La Gerche A (2018) Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study. Cardiovasc Diabetol 17(1):44. https://doi.org/10.1186/s12933-018-0688-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TJ, Barros-Murphy JF, Burns AT, MacIsaac RJ, MacIsaac AI, Prior DL, La Gerche A (2020) Reduced exercise capacity in diabetes mellitus is not associated with impaired deformation or twist. J Am Soc Echocardiogr 33(4):481–489. https://doi.org/10.1016/j.echo.2019.11.012

    Article  PubMed  Google Scholar 

  • Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602

    Article  CAS  Google Scholar 

  • Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, Caballero L, Akhaladze N, Athanassopoulos GD, Barone D, Baroni M, Cardim N, Hagendorff A, Hristova K, Lopez T, de la Morena G, Popescu BA, Moonen M, Penicka M, Ozyigit T, Rodrigo Carbonero JD, van de Veire N, von Bardeleben RS, Vinereanu D, Zamorano JL, Go YY, Rosca M, Calin A, Magne J, Cosyns B, Marchetta S, Donal E, Habib G, Galderisi M, Badano LP, Lang RM, Lancellotti P (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18(8):833–840. https://doi.org/10.1093/ehjci/jex140

    Article  PubMed  Google Scholar 

  • van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P (2011) Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 92(1):10–18. https://doi.org/10.1093/cvr/cvr212

    Article  CAS  PubMed  Google Scholar 

  • Van Ryckeghem L KC, Verboven K, Verbaanderd E, Frederix I, Bakelants E, Petit T, Jogani S, Stroobants S, Dendale P, Bito V, Verwerft J, Hansen D (2020) Exercise capacity is related to attenuated responses in oxygen extraction and left ventricular longitudinal strain in asymptomatic type 2 diabetes patients. Euro J Preventive Cardiol. https://doi.org/10.1093/eurjpc/zwaa007

  • Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d’Hooge J, Aurigemma GP, Thomas JD, Badano LP (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16(1):1–11. https://doi.org/10.1093/ehjci/jeu184

    Article  CAS  PubMed  Google Scholar 

  • von Scheidt F, Kiesler V, Kaestner M, Bride P, Kramer J, Apitz C (2020) Left ventricular strain and strain rate during submaximal semisupine bicycle exercise stress echocardiography in healthy adolescents and young adults: systematic protocol and reference values. J Am Soc Echocardiogr 33(7):848-857.e841. https://doi.org/10.1016/j.echo.2019.12.015

    Article  Google Scholar 

  • Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC (2017) Impaired ventricular filling limits cardiac reserve during submaximal exercise in people with type 2 diabetes. Cardiovasc Diabetol 16(1):160. https://doi.org/10.1186/s12933-017-0644-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Winhofer Y, Krssak M, Jankovic D, Anderwald CH, Reiter G, Hofer A, Trattnig S, Luger A, Krebs M (2012) Short-term hyperinsulinemia and hyperglycemia increase myocardial lipid content in normal subjects. Diabetes 61(5):1210–1216. https://doi.org/10.2337/db11-1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wei X, Liang Y, Liu M, Li C, Tang H (2013) Differential changes of left ventricular myocardial deformation in diabetic patients with controlled and uncontrolled blood glucose: a three-dimensional speckle-tracking echocardiography-based study. J Am Soc Echocardiogr 26(5):499–506. https://doi.org/10.1016/j.echo.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  • Zhen Z, Chen Y, Shih K, Liu JH, Yuen M, Wong DS, Lam KS, Tse HF, Yiu KH (2015) Altered myocardial response in patients with diabetic retinopathy: an exercise echocardiography study. Cardiovasc Diabetol 14:123. https://doi.org/10.1186/s12933-015-0281-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants for their participation in this study, and the clinicians from the Department of Cardiology at Jessa hospital for the support in this study.

Funding

This work was supported by internal resources (Hasselt University).

Author information

Authors and Affiliations

Authors

Contributions

L.V.R. and D.H. conceived and designed the study. L.V.R. included the participants. The cardiologists (I.F., T.P., E.B., S.J., S.S.) executed the echocardiographic assessments and L.V.R assisted (execution of electrocardiogram, ergospirometry). L.V.R. performed the offline measurements of the echocardiographic assessments assisted by J.V. and C.K. analysed the data of the breath-by-breath gas exchange analyses. E.V. assisted in the conduction of the study as part of her internship. L.V.R. and D.H. performed the statistical analyses. L.V.R. and D.H. wrote the manuscript. C.K., J.V., P.D., S.J., E.B. and V.B. critically reviewed the manuscript. All authors gave their final approval of the manuscript to be submitted.

Corresponding author

Correspondence to Lisa Van Ryckeghem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study protocol was approved by the medical ethical committee of Jessa hospital (Hasselt, Belgium) and Hasselt University (Hasselt, Belgium) and was performed according to the Declaration of Helsinki (2013). The study was part of a clinical trial and registered at Clinicaltrials.gov (NCT number: NCT03299790).

Consent to participate

All participants gave written informed consent, prior to the execution of the tests.

Consent to publish

Full anonymity is guaranteed in this paper. No personal details such as date of birth, names and contact details are included in this paper.

Additional information

Communicated by Ellen Adele Dawson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

421_2020_4557_MOESM1_ESM.jpg

Supplementary file1 Supplementary Fig. 1 Two-way mixed ANOVA for longitudinal strain and stages of echocardiography. Data are presented as means ± SD. Panel A; Mean longitudinal strain for both groups, Panel B and C; Individual cases in for males and females respectively. Significant differences at *P < 0.05 (JPG 1480 KB)

Supplementary file2 (DOCX 13 KB)

Supplementary file3 (DOCX 17 KB)

Supplementary file4 (DOCX 20 KB)

Supplementary file5 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Ryckeghem, L., Keytsman, C., Verbaanderd, E. et al. Asymptomatic type 2 diabetes mellitus display a reduced myocardial deformation but adequate response during exercise. Eur J Appl Physiol 121, 929–940 (2021). https://doi.org/10.1007/s00421-020-04557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04557-5

Keywords

Navigation