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Abstract

We suggest a new component e¢ cient solution for monotonic TU games with a coalition
structure, the conditional Shapley value. Other than other such solutions, it satis�es the
null player property. Nevertheless, it accounts for the players�outside options in productive
components of coalition structures. For all monotonic games, there exist coalition structures
that are stable under the conditional Shapley value. For voting games, the stability of coali-
tion structures under the conditional Shapley value supports Gamson�s theory of coalition
formation (Gamson, Am Sociol Rev 26, 1961, 373�382).
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1. Introduction

The Shapley value (Shapley, 1953) probably is the most eminent one-point solution
concept for cooperative games with transferable utility (TU games). Since the Shapley value
is e¢ cient. i.e., the worth generated by the grand coalition is distributed among the players,
the implicit underlying assumption is that the grand coalition is the productive unit, i.e., all
players cooperate in order to generate worth. In view of Young�s (1985) characterization,
the Shapley value can be viewed as the e¢ cient solution that re�ects the players�individual
productivities in TU games.
A simple way to model more general production arrangements are coalition structures,

i.e., partitions of the player set where its components are interpreted as the productive units.
Solutions for TU games that are enriched by a coalition structure (CS games, CS solutions)
re�ect this interpretation when they are component e¢ cient, i.e., the worth generated by a
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component of the coalition structure is distributed among its members.1

The component e¢ cient CS solution suggested by Aumann and Drèze (1974), determines
the players�payo¤s by applying the Shapley value to the subgames induced by the coalition
structure. This way, only the players�productivity within their components is taken into
account but not their joint productivity with players outside their components. Outside
options, however, might be important:

Any particular alliance describes only one particular consideration which en-
ters the minds of the participants when they plan their behavior. Even if a
particular alliance is ultimately formed, the division of the proceeds between the
allies will be decisively in�uenced by the other alliances which each one might
alternatively have entered. [...] Even if [...] one particular alliance is actually
formed, the others are present in �virtual� existence: Although they have not
materialized, they have contributed essentially to shaping and determining the
actual reality. (von Neumann and Morgenstern, 1944, p. 36)

During the course of negotiations there comes a moment when a certain coalition
structure is �crystallized�. The players will no longer listen to �outsiders�, yet
each coalition has still to adjust the �nal share of its proceeds. (This decision may
depend on options outside the coalition, even though the chances of defection
are slim). (Maschler, 1992, pp. 595)

Wiese (2007) and Casajus (2009) suggest component e¢ cient CS solutions that take into
account outside options, the outside option value and the �-value. As the Aumann-Drèze
value, these solutions coincide with the Shapley value for the trivial coalition structure
containing the grand coalition as the only component. In this sense, these CS solutions
generalize the Shapley value. In contrast to the Shapley value and the Aumann-Drèze
value, however, the solutions due to Wiese and Casajus fail the null player property, i.e.,
totally unproductive players may obtain a negative or positive payo¤. Indeed, Casajus
(2009, p. 52) demonstrates that a component e¢ cient CS solution satisfying the null player
property necessarily must neglect some of the outside options of players in CS games.
In some situations, negative or positive payo¤s for null players are not that plausible

or interpretable. In particular, this seems to be the case for voting games, i.e., simple
superadditive games. In such games, coalitions create either a worth of zero, indicating
a losing coalition, or a worth of one, indicating a winning coalition. Moreover, adding
players never turns a winning coalition into a losing coalition. Further, the complement of
a winning coalition is losing. A winning coalition in a coalition structure can be viewed as
the government coalition in a parliament, for example, where the players stand for political
parties. The payo¤s of the parties in a government coalition then may re�ect their relative

1Alternatively, the components can be interpreted as bargaining units formed during the process of bar-
gaining on the distribution of the worth generated by the grand coalition as the productive unit. CS solutions
that �t this interpretation are e¢ cient, for example, the CS solutions suggested by Owen (1977) and Kamijo
(2009).
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power or in�uence within the government, which is expressed by the (relative) number of
ministries a party can claim for itself, for example.
In this paper, we suggest a CS solution for monotonic games that satis�es the null player

property, the conditional Shapley value. It is characterized by �ve properties, four standard
properties, component e¢ ciency, symmetry within components, the null player property,
additivity restricted to the trivial partition containing only the grand coalition, and a new
property, the relative splitting property (Theorem 3). Component e¢ ciency: the worth
generated by a component is distributed among its members. Symmetry within components:
equally productive players who inhabit the same component obtain the same payo¤. Null
player property: unproductive players obtain a zero payo¤. Additivity: the payo¤s for the
sum of two games equal the sum of the payo¤s for the single games. The relative splitting
property is a relative version of the (absolute) splitting property (Casajus, 2009). Splitting:
whenever components split, players who stay together gain or lose the same amount of payo¤;
put di¤erently, the di¤erence of their payo¤s doesn�t change. Relative splitting: whenever
components split, players who stay together gain or lose proportionally by the same factor;
put di¤erently, the ratio of their payo¤s doesn�t change.
For all monotonic games, there exist coalition structures that are stable under the con-

ditional Shapley value in the following sense (Theorem 4). There exists no coalition that
can deviate from that coalition structure and make all its members better o¤ no matter how
the other players organize into groups. The conditional Shapley value this feature with the
�-value (Casajus, 2009, Theorem 6.1). In contrast, such stable coalition structures may not
exist under the CS solutions due to Aumann and Drèze (1974) and Wiese (2007) for games
with more than three players (Tutic, 2010).
In voting games, a player�s payo¤/power equals the probability that she is the pivot

in a rank order, i.e., the coalition of her predecessors is losing and turns into winning
coalition when she enters. In Section 4.1, we demonstrate that a player�s power in a winning
component/coalition is the probability that she is the pivot in a rank order in which one of
the players of her coalition is the pivot. Under the conditional Shapley value, a partition
is stable for a voting game if it contains a component that comprises a minimal winning
coalition with minimal total power (Theorem 7). This supports Gamson�s (1961) theory of
coalition formation.

It is clear, then, that the prediction from our model will be simply the cheapest
winning coalition in the applicable situations. (Gamson, 1961, p. 377)

This paper is organized as follows. In the second section, we provide basic de�nitions
and notation. In the third section, we introduce our new CS solution, the conditional
Shapley value, and study the stability of coalition structures under this solution. In the
fourth section, we apply the conditional Shapley value to voting games. So far, no remarks
conclude the paper.
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2. Basic de�nitions and notation

A TU game for a �nite player set N is given by a coalition function v : 2N ! R,
v (;) = 0; where 2N denotes the power set of N . Subsets of N are called coalitions; v (S)
is called the worth of coalition S. The set of all games is denoted by V (N) : Frequently, we
address v 2 V as a game. For S � N; S 6= ;; the subgame vjS 2 V (S) of v 2 V (N) with
respect to S is given by vjS (T ) = v (T ) for all T � S:
For v; w 2 V, � 2 R; and T � N; the coalition functions v+w 2 V (N) and � �v 2 V (N)

are given by (v + w) (S) = v (S) +w (S) and (� � v) (S) = � � v (S) for all S � N: The game
0 2 V (N) given by 0 (S) = 0 for all S � N is called the null game. For T � N; T 6= ;;
the game uT 2 V (N), uT (S) = 1 if T � S and uT (S) = 0 otherwise, is called a unanimity
game. Any v 2 V can be uniquely represented by unanimity games. In particular, we have

v =
X

T�N :T 6=;

�T (v) � uT ; (1)

where the coe¢ cients �T (v) are known as the Harsanyi dividends (Harsanyi, 1959) and can
be determined recursively by

�T (v) := v (T )�
X

S(T :S 6=;

�S (v) : (2)

A game v 2 V (N) is called monotonic, if v (S) � v (T ) for all S; T � N such that S � T ;
a game v 2 V (N) is called superadditive, if v (S [ T ) � v (S) + v (T ) for all S; T � N
such that S\T 6= ;; a game v 2 V (N) is called simple, if v (S) 2 f0; 1g for all S � N . The
set of all monotonic games is denoted by M (N) ; the set of all simple superadditive games
is denoted by S (N) :
A rank order for N is a bijection � : N ! f1; 2; : : : ; jN jg ; the set of all rank orders is

denoted by R (N). For v 2 V (N) ; i 2 N , and � 2 R (N) ; let Pi (�) denote the set of players
before i in �; i.e.,

Pi (�) := fj 2 N j � (j) < � (i)g ;
and let MCvi (�) denote the marginal contribution of player i in v for �; i.e.,

MCvi (�) = v (Pi (�) [ fig)� v (Pi (�)) :

A solution for a subset V of V (N) is a mapping ' : V ! RN ; which assigns a payo¤
'i (v) to any player i 2 N for any game v 2 V. The Shapley value (Shapley, 1953), Sh, is
given by

Shi (v) :=
X

T�N :i2T

�T (v)

jT j =
X

�2R(N)

MCvi (�)

jR (N)j ; for all v 2 V (N) ; i 2 N: (3)

It is characterized by four properties, e¢ ciency, additivity, symmetry, and the null player
property.
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E¢ ciency, E. For all v 2 V (N) ; we have
P

`2N '` (v) = v (N) :

Additivity, A. For all v; w 2 V (N) ; we have ' (v + w) = ' (v) + (w) :
Symmetry, S. For all v 2 V (N) and i; j 2 N such that i and j are symmetric in v; we
have 'i (v) = 'j (v) :

Null player, N. For all v 2 V (N) and i 2 N such that i is a null player in v; we have
'i (v) = 0:

A coalition structure for N is a partition P of N ; let P (N) denote the set of all
coalition structures for N: The component of player i 2 N in P 2 P (N) is denoted by
P (i) 2 P : A coalition structure P 2 P (N) is �ner than a coalition structure Q 2 P (N), if
P (i) � Q (i) for all i 2 N: The restriction PjS 2 P (S) of P 2 P (N) to S � N is given
by PjS (i) = P (i) \ S for all i 2 S:
A pair (v;P) 2 V (N) � P (N) is called a CS game. A CS solution for V � V is a

mapping V � P (N) ! RN ; which assigns a payo¤ 'i (v;P) to any player i 2 N for any
CS game (v;P) 2 V �P (N) : The Aumann-Drèze value (Aumann and Drèze, 1974), AD;
is given by

ADi (v;P) = Shi
�
vjP(i)

�
for all (v;P) 2 V (N)�P (N) and i 2 N: (4)

The �-value (Casajus, 2009), �; is given by

�i (v;P) = Shi (v)+
v (P (i))�

P
`2P(i) Sh` (v)

jP (i)j for all (v;P) 2 V (N)�P (N) and i 2 N:

(5)

3. The conditional Shapley value for monotonic games

In this section, we introduce a new component e¢ cient extension of the Shapley value
to monotonic games with a coalition structure, i.e., a CS solution that coincides with the
Shapley value for monotonic CS games with the trivial coalition structure containing only
the grand coalition.

3.1. Motivation and de�nition

The Aumann-Drèze value for the full class of CS games is characterized by four properties:
component e¢ ciency, additivity, symmetry within components, and the null player property
(Aumann and Drèze, 1974, Theorem 3). One easily checks that this characterization also
works within the class of monotonic CS games.

Component e¢ ciency, CE. For all v 2 V (N), P 2 P (N) ; and P 2 P ; we haveP
`2P '` (v;P) = v (P ) :

Additivity, A. For all v; w 2 V (N) ; P 2 P (N) ; and i 2 N; we have 'i (v + w;P) =
'i (v;P) + 'i (w;P) :
Symmetry within components, CS. For all v 2 V (N) ; P 2 P (N) ; and i; j 2 N such
that i and j are symmetric in v and P (i) = P (j) ; we have 'i (v;P) = 'j (v;P) :
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Null player, N. For all v 2 V (N) ; P 2 P (N) ; and i 2 N such that i is a null player in
v; we have 'i (v;P) = 0:
In view of its de�nition it is clear that Aumann-Drèze value cannot recognize the players�

outside options. Since component e¢ ciency is at the heart of the interpretation of the CS so-
lutions under consideration and since symmetry within components is a natural relaxation
of symmetry for CS solutions, one has to relax either additivity or the null player property
in order to allow a CS solution to take into account outside options. In his characterization
of the �-value, Casajus (2009, Theorem 4.1) relaxes the null player property by restricting
its applicability to the trivial coalition structure, fNg ; where there are no outside options.
Grand coalition null player, GN. For all v 2 V (N) and i 2 N such that i is a null
player in v; we have 'i (v; fNg) = 0:
There exist many CS solutions that satisfy component e¢ ciency, additivity, symmetry

within components, and the grand coalition null player property. In order to single out one
particular of them, Casajus (2009) introduces and imposes the (absolute) splitting property.

Splitting, SP. For all v 2 V (N) ; P ;Q 2 P (N) ; and i; j 2 N such that P is �ner than Q
and P (i) = P (j) ; we have

'i (v;P)� 'i (v;Q) = 'j (v;P)� 'j (v;Q) :

Whenever components split, this property requires that players who stay together to gain
or lose the same amount of payo¤, i.e., to gain or lose equally in absolute terms. One easily
checks that the characterization below also works within the class of monotonic CS games.

Theorem 1 (Casajus, 2009). The �-value is the unique CS solution that satis�es compo-
nent e¢ ciency (CE), additivity (A), symmetry within components (CS), the grand coalition
null player property (GN), and the splitting property (SP).

The �-value fails the null player property. Indeed, Casajus (2009, p. 52) demonstrates
that a component e¢ cient CS solution satisfying the null player property necessarily must
neglect some of the outside options of players in CS games. So, if one wants a CS solution
to obey the null player property one necessarily has to neglect some of the outside options.
Moreover, in view of the discussion above, additivity has to be relaxed. We consider the
following relaxation of additivity, which relaxes additivity in the same vein as the grand
coalition null player property relaxes the null player property.

Grand coalition additivity, GA. For all v; w 2 V (N) ; we have ' (v + w; fNg) =
' (v; fNg) + ' (w; fNg) :
For games with more than two players, the splitting property is incompatible with component
e¢ ciency, grand coalition additivity, symmetry within components, the null player property.

Proposition 2. For jN j > 2; there exists no CS solution for V (N) or M (N) that satis�es
component e¢ ciency (CE), grand coalition additivity (GA), symmetry within components
(CS), the null player property (N), and the splitting property (SP).
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Proof. Let jN j > 2 and the CS solution ' for V (N) be as in the theorem. For �xed
P = fNg ; the properties CE, GA, CS, and N become E, A, S, and N for TU games.
Since the latter characterize the Shapley value both for V (N) and for M (N), we have
(*) ' (v; fNg) = Sh (v) for all v 2 V (N) : W.l.o.g., let 1; 2; 3 2 N: Set v = uf1;2g and
P = ff1g ; f2; 3gg : We obtain

1

2
� '2 (v;P)

(3)
= Sh2 (v)� '2 (v;P)
(*)
= '2 (v; fNg)� '2 (v;P)
SP
= '3 (v; fNg)� '3 (v;P)
(*)
= Sh3 (v; fNg)� '3 (v;P)

(3),N
= 0� 0;

i.e., '2 (v;P) = 1
2
. By N, we have '3 (v;P) = 0: Hence, '2 (v;P) + '3 (v;P) = 1

2
6= 0 =

v (f2; 3g) ; which contradicts CE. �
There exist many CS solutions that satisfy component e¢ ciency, grand coalition addi-

tivity, symmetry within components, and the null player property. In order to single out
one particular of them, we introduce and impose the relative splitting property.

Relative splitting, RSP. For all v 2 V (N) ; P ;Q 2 P (N) ; and i; j 2 N such that P is
�ner than Q and P (i) = P (j) ; we have

'i (v;P) � 'j (v;Q) = 'i (v;Q) � 'j (v;P) : (6)

If all expressions are de�ned, then (6) can be written as

'i (v;P)
'i (v;Q)

=
'j (v;P)
'j (v;Q)

:

That is, whenever components split, players who stay together are required to gain or lose
proportionally by the same factor, i.e., they gain or lose equally in relative terms. Expressed
di¤erently, the ratio of their payo¤s doesn�t change. In contrast, the splitting property
requires the di¤erences of the players�payo¤s not to change.
For games with three and more players, there exist no solutions on the full domain of

games component e¢ ciency, grand coalition additivity, symmetry within components�the
null player property, the relative splitting property. In contrast, on the domain of monotonic
games, a unique such a solution exists.

Theorem 3. (i) For jN j > 2; there exists no CS solution for V (N) that satis�es component
e¢ ciency (CE), grand coalition additivity (GA), symmetry within components (CS), the
null player property (N), and the relative splitting property (RSP).
(ii) There exists a unique CS solution forM (N) that satis�es component e¢ ciency (CE),

grand coalition additivity (GA), symmetry within components (CS), the null player property
(N), and the relative splitting property (RSP).
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Proof. (i) Let jN j > 2 and the CS solution ' for V (N) be as in the theorem. For �xed
P = fNg ; the properties CE, GA, CS, and N become E, A, S, and N for TU games.
Since the latter characterize the Shapley value, we have

' (v; fNg) = Sh (v) for all v 2 V (N) : (7)

For P 2 P (N) and P 2 P such that jP j > 1 and i 2 P; we have

'i (v;P) � Shj (v)
(7)
= 'i (v;P) � 'j (v; fNg)
ASP
= 'j (v;P) � 'i (v; fNg)
(7)
= 'j (v;P) � Shi (v) (8)

for all j 2 P: Summing up (8) over j 2 P gives

'i (v;P) �
X
j2P

Shj (v) = Shi (v) �
X
j2P

'j (v;P)
CE
= Shi (v) � v (P ) : (9)

W.l.o.g., let 1; 2; 3 2 N: Set v = uf1g + uf1;2g � 3 � uf1;2;3g and P = ff1; 2g ; f3gg : We obtain

0 = '1 (v;P) � (Sh1 (v) + Sh2 (v))
(9)
= Sh1 (v) � v (f1; 2g)

CE
=
1

2
� 2

a contradiction.
(ii) Let the CS solution ' for M (N) be as in the theorem. Since E, A, S, and N also

characterize the Shapley value on M (N) ; again, we obtain (9). In monotonic games, the
Shapley payo¤s are non-negative and zero only for null players. Hence, for all v 2 M (N) ;
P 2 P (N), and P 2 P, (*) v (P ) > 0 implies

P
`2P Sh` (v) > 0 and (**)

P
`2P Sh` (v) = 0

implies that all j 2 P are null players in v: By N and (9), we obtain

'i (v;P) =

8<:
Sh` (v) � v (P (i))P

`2P(i) Sh` (v)
; v (P (i)) > 0;

0; v (P (i)) = 0
(10)

for all v 2M (N) ; P 2 P (N) ; and i 2 N: One easily checks that the CS solution forM (N)
de�ned by (10) satis�es all the properties in the theorem. �
The CS solution for M (N) de�ned by (10) can be interpreted as conditional version the

Shapley value. We therefore call it the conditional Shapley value, cSh. For v 2 M (N)
with v (N) > 0; i.e.; v 6= 0; the relative Shapley payo¤s

pi (v) :=
Shi (v)P
`2N Sh` (v)

; i 2 N

can be interpreted as the players�probabilities of obtaining v (N) : Then, the Shapley payo¤s
are the expected payo¤s for this interpretation. For components C 2 P with v (C) > 0; one
can calculate the conditional probabilities of getting v (C) ;

pi (vjC) =
pi (v)P
`2C pi (v)

=
Shi (v)P
`2C Sh` (v)

; i 2 C:
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Now, the conditional Shapley payo¤s are the expected payo¤s for this interpretation.
Casajus (2009, p. 52) demonstrates that a component e¢ cient CS solution satisfying

the null player property necessarily must neglect some of the outside options of players in
CS games. Nevertheless, the conditional Shapley value doesn�t fare too bad when it comes to
outside options. In view of Young�s (1985) characterization, the Shapley value can be viewed
of re�ecting the players�productivities within the grand coalition. Hence, with respect to a
coalition structure, it re�ects the players�productivities within their components and their
outside options. Whenever the worth generated by a component is greater than zero, a player
with a greater total productivity obtains a greater payo¤ than a player in her component
with a lower total productivity. That is, the conditional Shapley value recognizes outside
options in productive components.

3.2. Stability of coalition structures
In this subsection, we explore the stability of coalition structures under the conditional

Shapley value. A coalition structure P 2 P (N) is called cSh-stable for v 2M (N) if there
is no coalition S � N; S 6= ; such that

cShi (v;Q) > cShi (v;P) for all Q 2 P (N) such that S 2 Q and i 2 S

That is, no coalition can deviate from this coalition structure and make all their members
strictly better o¤no matter how the other players organize. As theWiese value (Wiese, 2007)
and the �-value, the conditional Shapley value is component independent, i.e., a player�s
payo¤ does not depend on how the players outside her component are organized.

Component independence, CI. For all v 2M (N) ; P ;Q 2 P (N) ; and i 2 N such that
P (i) = Q (i) ; we have

'i (v;P) = 'i (v;Q) :
Hence, our notion of stability is analogous to the one used by Wiese (2007) and Casajus
(2009).

Theorem 4. For any v 2M (N) ; there exists a cSh-stable coalition structure.

Proof. Fix v 2M (N) and set

�(S) :=

8<:
v (S)P

`2S Sh` (v)
;
P

`2S Sh` (v) > 0;

0;
P

`2S Sh` (v) = 0
for S � N; S 6= ;. (11)

Construct a partition P = fP1; P2; : : : ; Pt; : : : ; Pkg 2 P (N) ; k 2 N by iteration on t as
follows:
(i) Set Q1 = ;.
(ii)) Chose

Pt 2 argmax
S�NnQt

�(S) : (12)

(iii) Set Qt+1 = Qt [ Pt.
9



Repeat steps (i)�(iii) until Qt+1 = N:
Suppose, P were not _�-stable. By (12) and CI, there were some coalition S =2 P such

that cShi (v; fS;N n Sg) > cShi (v;P) for all i 2 S: The only reason for S not being in P is
that there is some P 2 P such that S\P 6= ; and �(S) � �(P ) : By (10) and (11), we had

cShi (v; fS;N n Sg) = � (S) � Shi (v) � �(P ) � Shi (v) = cShi (v;P)

for all i 2 S \ P; a contradiction. �

Remark 5. The proof of Theorem 4 is constructive. One easily checks that all cSh-stable
coalition structures can be constructed as in this proof.

Remark 6. From proof of Theorem 4 it is also clear, that a coalition structure remains _�-
stable when a null players are �moved around�. More precisely, if P 2 P (N) is cSh-stable
for v 2M (N) and Q 2 P (N) is such that

QjNnN0(v) = PjNnN0(v);

where N0 (v) denotes the set of null players in v; then Q also is cSh-stable for v:

4. Coalition formation in voting games

In this section, we apply the conditional Shapley value to simple superadditive games,
i.e., to voting games, and study coalition formation. In a voting game, a coalition is called
losing if it generates a worth of zero and it is called winning if it generates a worth of one.
A winning coalition is called minimal if it does not contain a winning coalition as a proper
subcoalition.

4.1. The conditional Shapley value for voting games

In voting games, all marginal contributions are either zero or one. In non-trivial voting
games, exactly one player�s marginal contribution is one in any rank order. Such a player is
called a pivot for a rank order and this rank order is called a swing for this player. Hence,
the Shapley value indicates a player�s probability of being a pivot in a rank order, where all
rank orders are equally probable, i.e.,

Shi (v) =
jf� 2 R (N) jMCvi (�) = 1gj

jR (N)j for all v 2 S (N) and i 2 N: (13)

When the players are organized into groups represented by a partition, one can employ
the conditional Shapley value in order to determine players�power. In this context, the
phrase �conditional�can be motivated by the following observation. While cShi (v j S) = 0
for all i 2 S whenever S is losing, we have

cShi (v j S) =
Shi (v)P
j2S Shj (v)

=
jf� 2 R (N) jMCvi (�) = 1gj���� 2 R (N) jMCvj (�) = 1 for some j 2 S	�� (14)
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if S is winning. That is, a player�s power according to the conditional Shapley value is the
probability of a player being a pivot for a rank order conditional on one of the players in
the coalition under consideration to be a pivot in a rank order.
Since the conditional Shapley value is component independent, one can use it to de�ne

conditional payo¤s without reference to a coalition structure. For all v 2 S (N), S � N; and
i 2 S; we de�ne the power of player i in the game v given that coalition S has formed as

cShi (v j S) := cShi (v;P) for some/all P 2 P (N) such that S 2 P : (15)

4.2. Stability in voting games and Gamson�s law

Using the �partition-free�version of the conditional Shapley value in (15), the stability
of coalition structures for voting games can be expressed as follows. A partition P 2 P (N)
is cSh-stable for a voting game v 2 S (N) there is no coalition S � N such that

cShi (v j S) > cShi (v j P (i)) for all i 2 S:

In voting games, any partition contains at most one winning coalition. By Remark 5, the
algorithm in the proof of Theorem 4 implies that a partition is cSh-stable if and only if it
contains one winning coalition for which the sum of its members�powers according to the
Shapley value is minimal, while the other players can be organized arbitrarily. In voting
games, all players have non-negative power, where only null players have zero power. Hence,
this winning coalition consists of a minimal winning coalition and plus an arbitrary number
of null players. Cum grano salis, a partition is cSh-stable for a voting game if it contains
one of the minimal winning coalitions with minimal total power.

Theorem 7. A partition P 2 P (N) is cSh-stable for a voting game v 2 S (N) if and only
if it contains a component P 2 P that contains a minimal winning coalition S � N in v
such thatX

i2S
Shi (v) �

X
i2T

Shi (v) for all minimal winning coalitions T � N in v

and that all players in P n S are null players in v:

If one interprets a player�s power in a voting game as her contribution to a coalition
formed, then the conditional Shapley value �ts the empirical hypothesis of Gamson (1961)
underlying his theory of coalition formation.

Any participant will expect others to demand from a coalition a share of
the payo¤ proportional to the amount of resources which they contribute to a
coalition. (Gamson, 1961, p. 376)

Moreover, the fact that any cSh-stable coalition structure contains one of the minimal win-
ning coalitions with minimal total power also �ts his prediction on the outcome of coalition
formation.

11



It is clear, then, that the prediction from our model will be simply the cheapest
winning coalition in the applicable situations. (Gamson, 1961, p. 377)

Hence, stability under the conditional Shapley value provides a cooperative foundation of
Gamson�s (1961) theory of coalition formation.2
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