
 Foundations of computing Volume 13

Universitätsverlag der TU Berlin

Hendrik Molter

Classic Graph Problems Made Temporal –
A Parameterized Complexity Analysis

Hendrik Molter

Classic Graph Problems Made Temporal –
A Parameterized Complexity Analysis

The scientific series Foundations of computing of the Technische Universität Berlin
is edited by:
Prof. Dr. Stephan Kreutzer,
Prof. Dr. Uwe Nestmann,
Prof. Dr. Rolf Niedermeier

Foundations of computing | 13

Hendrik Molter

Classic Graph Problems Made Temporal –
A Parameterized Complexity Analysis

Universitätsverlag der TU Berlin

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the internet at http://dnb.dnb.de.

Universitätsverlag der TU Berlin, 2020
http://www.verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2019
Gutachter: Prof. Dr. Rolf Niedermeier
Gutachter: Prof. Dr. Thomas Erlebach (University of Leicester)
Gutachter: Dr. Ralf Klasing (Université de Bordeaux)
Die Arbeit wurde am 19. Dezember 2019 an der Fakultät IV unter
Vorsitz von Prof. Dr. Benjamin Blankertz erfolgreich verteidigt.

This work – except for quotes and where otherwise noted – is licensed under the Creatice
Commons Licence CC BY 4.0
http://creativecommons.org/licenses/by/4.0/

Cover image: Hendrik Molter, 2011
CC BY 4.0 | http://creativecommons.org/licenses/by/4.0/

Print: docupoint GmbH
Layout/Typesetting: Hendrik Molter

ORCID iD Hendrik Molter: 0000-0002-4590-798X
http://orcid.org/0000-0002-4590-798X

ISBN 978-3-7983-3172-3 (print)
ISBN 978-3-7983-3173-0 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Published online on the institutional repository of the Technische Universität Berlin:
DOI 10.14279/depositonce-10551
http://dx.doi.org/10.14279/depositonce-10551

http://dnb.dnb.de
http://www.verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4590-798X
http://dx.doi.org/10.14279/depositonce-10551

Zusammenfassung
In dieser Dissertation untersuchen wir die parametrisierte Berechnungskomplexi-

tät von sechs klassischen Graphproblemen, die in einen temporalen Kontext gestellt
werden. Formaler ausgedrückt betrachten wir Probleme, die auf temporalen Graphen
definiert sind, wobei temporale Graphen aus einer unveränderlichen Knotenmenge
bestehen, zusammen mit einer Kantenmenge, die sich über einen diskreten Zeit-
raum hinweg verändern darf. Temporale Graphen eignen sich besonders gut zum
Modellieren dynamischer Daten und sind daher in Situationen von Bedeutung, in
denen dynamische Veränderungen oder zeitabhängige Interaktionen eine wichtige
Rolle spielen. Beispiele hierfür sind das Betrachten von Kommunikationsnetzwerken,
sozialen Netzwerken oder Netzwerken, deren Interaktionen räumliche Annäherun-
gen modellieren. Das wichtigste Auswahlkriterium für unsere Problemstellungen
war, dass sie in Kontexten der Analyse dynamischer Daten wohlmotiviert sind.

Da temporale Graphen mathematisch gesehen komplexer sind als statische Gra-
phen, ist es vielleicht nicht sehr überraschend, dass alle Probleme, die wir in dieser
Dissertation betrachten, NP-schwer sind. Wir konzentrieren uns auf die Entwicklung
exakter Algorithmen, wobei wir versuchen FPT-Resultate zu erzielen oder durch
spezialisierte Reduktionen zu zeigen, dass das betrachtete Problem NP-schwer auf
sehr eingeschränkten Instanzen ist, oder berechnungsschwer im parametrisierten
Sinne bezüglich möglichst „großer“ Parameter ist. Im Kontext temporaler Graphen
betrachten wir in erster Linie Strukturparameter des unterliegenden Graphen, das
heißt des Graphen, den man erhält, wenn man alle Zeitinformationen ignoriert.
Allerdings studieren wir auch andere Parameter, zum Beispiel solche, die das Aus-
maß der zeitlichen Veränderung eines temporalen Graphen messen. Im Folgenden
geben wir einen kurzen Überblick über unsere Problemstellungen und wichtigsten
Ergebnisse.

Restless Temporal Paths. Ein Pfad in einem temporalen Graph muss Kausalität
oder Zeit respektieren. Dies bedeutet, dass die Kanten, die von dem temporalen
Pfad benutzt werden, nicht zu abnehmenden Zeitpunkten erscheinen dürfen. Wir
untersuchen temporale Pfade, die darüber hinaus eine maximal erlaubte Wartezeit in
allen Knoten haben. Unsere Hauptresultate sind, dass Pfade dieser Art zu finden NP-
schwer ist, sogar in sehr restriktiven Instanzen, und dass das Problem W[1]-schwer
bezüglich der kreiskritischen Knotenzahl des unterliegenden Graphen ist.

Temporal Separators. Ein temporaler Separator ist eine Knotenmenge, die, wenn
sie aus einem temporalen Graph entfernt wird, alle temporalen Pfade zwischen zwei

i

ausgewählten Knoten zerstört. Wir erzielen hier zwei Hauptresultate: Auf der einen
Seite untersuchen wir die Berechnungskomplexität des Findens von temporalen
Separatoren in temporalen Einheitsintervallgraphen, einer Verallgemeinerung von
Einheitsintervallgraphen im temporalen Kontext. Wir zeigen, dass das Problem auf
temporalen Einheitsintervallgraphen NP-schwer ist, aber identifizieren eine weitere
Einschränkung, die es erlaubt, das Problem in Polynomzeit zu lösen. Auf Letzterem
aufbauend entwickeln wir einen FPT-Algorithmus, der eine „Distanz-zur-Trivialität“-
Parametrisierung nutzt. Auf der anderen Seite zeigen wir, dass das Finden temporaler
Separatoren, die alle ruhelosen temporalen Pfade zerstören, ΣP

2 -schwer ist.
Temporal Matchings. Wir führen ein Modell für Matchings in temporalen Gra-

phen ein, bei dem sich zwei Knoten „erholen“ müssen, nachdem sie zu einem
bestimmten Zeitpunkt einander zugeordnet wurden. Das heißt, für eine gewisse
Zeit können diese Knoten nicht wieder einander zugeordnet werden. Wir nutzen
das Konzept von temporalen Kantengraphen, um zu zeigen, dass das Finden von
temporalen Matchings NP-schwer ist, selbst wenn der unterliegende Graph ein Pfad
ist.

Temporal Coloring. Wir übertragen das klassische Knotenfärbungsproblem in
den temporalen Rahmen. In unserem Modell muss jede Kante in jedem Zeitfenster
einer bestimmten Größe mindestens einmal gültig gefärbt sein, also beide End-
punkte eine andere Farbe haben. Wir zeigen, dass dieses Problem schon auf sehr
eingeschränkten Instanzen NP-schwer ist – sogar für zwei Farben. Wir beschreiben
einfache Exponentialzeitalgorithmen für dieses Problem. Eines unserer Hauptre-
sultate ist, dass diese Algorithmen vermutlich nicht signifikant verbessert werden
können.

Temporal Cliques and s-Plexes. Wir stellen ein Modell für temporale s-Plexe vor,
das eine kanonische Verallgemeinerung eines existierenden Modells für temporale
Cliquen ist. Unser Hauptresultat ist ein FPT-Algorithmus, der alle maximalen tempo-
ralen s-Plexe aufzählt, wobei wir eine temporale Variante von Degeneriertheit von
Graphen als Parameter benutzen.

Temporal Cluster Editing. Wir stellen ein Modell für Clustereditierung in tem-
poralen Graphen vor, bei dem wir alle „Schichten“ eines temporalen Graphens in
hinreichend ähnliche Cluster überführen wollen. Unsere Hauptergebnisse sind zum
einen ein FPT-Algorithmus bezüglich des Parameters „Anzahl der Editierungen plus
Ähnlichkeit der Cluster“. Zum anderen geben wir eine effiziente Vorverarbeitungs-
methode an, welche die Größe der Eingabeinstanz beweisbar so reduziert, dass sie
unabhängig von der Anzahl der Knoten der ursprünglichen Instanz ist.

ii

Abstract
This thesis investigates the parameterized computational complexity of six classic

graph problems lifted to a temporal setting. More specifically, we consider problems
defined on temporal graphs, that is, a graph where the edge set may change over a
discrete time interval, while the vertex set remains unchanged. Temporal graphs
are well-suited to model dynamic data and hence they are naturally motivated in
contexts where dynamic changes or time-dependent interactions play an important
role, such as, for example, communication networks, social networks, or physical
proximity networks. The most important selection criteria for our problems was that
they are well-motivated in the context of dynamic data analysis.

Since temporal graphs are mathematically more complex than static graphs, it
is maybe not surprising that all problems we consider in this thesis are NP-hard.
We focus on the development of exact algorithms, where our goal is to obtain fixed-
parameter tractability results, and refined computational hardness reductions that
either show NP-hardness for very restricted input instances or parameterized hard-
ness with respect to “large” parameters. In the context of temporal graphs, we mostly
consider structural parameters of the underlying graph, that is, the graph obtained
by ignoring all time information. However, we also consider parameters of other
types, such as ones trying to measure how fast the temporal graph changes over time.
In the following we briefly discuss the problem setting and the main results.

Restless Temporal Paths. A path in a temporal graph has to respect causality, or
time, which means that the edges used by a temporal path have to appear at non-
decreasing times. We investigate temporal paths that additionally have a maximum
waiting time in every vertex of the temporal graph. Our main contributions are
establishing NP-hardness for the problem of finding restless temporal paths even in
very restricted cases, and showing W[1]-hardness with respect to the feedback vertex
number of the underlying graph.

Temporal Separators. A temporal separator is a vertex set that, when removed
from the temporal graph, destroys all temporal paths between two dedicated ver-
tices. Our contribution here is twofold: Firstly, we investigate the computational
complexity of finding temporal separators in temporal unit interval graphs, a gener-
alization of unit interval graphs to the temporal setting. We show that the problem is
NP-hard on temporal unit interval graphs but we identify an additional restriction
which makes the problem solvable in polynomial time. We use the latter result to
develop a fixed-parameter algorithm with a “distance-to-triviality” parameterization.

iii

Secondly, we show that finding temporal separators that destroy all restless temporal
paths is ΣP

2 -hard.
Temporal Matchings. We introduce a model for matchings in temporal graphs,

where, if two vertices are matched at some point in time, then they have to “recharge”
afterwards, meaning that they cannot be matched again for a certain number of
time steps. In our main result we employ temporal line graphs to show that finding
matchings is NP-hard even on instances where the underlying graph is a path.

Temporal Coloring. We lift the classic graph coloring problem to the temporal
setting. In our model, every edge has to be colored properly (that is, the endpoints
are colored differently) at least once in every time interval of a certain length. We
show that this problem is NP-hard in very restricted cases, even if we only have two
colors. We present simple exponential-time algorithms to solve this problem. As a
main contribution, we show that these algorithms presumably cannot be improved
significantly.

Temporal Cliques and s-Plexes. We propose a model for temporal s-plexes that
is a canonical generalization of an existing model for temporal cliques. Our main
contribution is a fixed-parameter algorithm that enumerates all maximal temporal s-
plexes in a given temporal graph, where we use a temporal adaptation of degeneracy
as a parameter.

Temporal Cluster Editing. We present a model for cluster editing in temporal
graphs, where we want to edit all “layers” of a temporal graph into cluster graphs
that are sufficiently similar. Our main contribution is a fixed-parameter algorithm
with respect to the parameter “number of edge modifications” plus the “measure
of similarity” of the resulting clusterings. We further show that there is an efficient
preprocessing procedure that can provably reduce the size of the input instance to
be independent of the number of vertices of the original input instance.

iv

Preface

This thesis is based on some results of my research activity at TU Berlin in the Al-
gorithmics and Computational Complexity group of Rolf Niedermeier from October
2015 until September 2019. I gratefully acknowledge support from the Deutsche
Forschungsgesellschaft (DFG) and the TU Berlin. From October 2015 to September
2016, I was financially supported by the DFG, project DAPA (NI 369/12) and from
February 2018 up to the time of writing I have been financially supported by the DFG,
project MATE (NI 369/17). In the time between those two projects I was financially
supported by the TU Berlin.

Since I started, my research quickly focused on temporal graph problems. How-
ever, I was also involved in a variety of projects from other research areas within
graph algorithmics and complexity theory. Most of my research has been in close
collaboration with my coauthors. In the research projects covered in this thesis my
coauthors were, in alphabetical order, Matthias Bentert, Arnaud Casteigts, Jiehua
Chen, Till Fluschnik, Anne-Sophie Himmel, George B. Mertzios, Marco Morik, Rolf
Niedermeier, Malte Renken, René Saitenmacher, Manuel Sorge, Ondřej Suchý, Viktor
Zamaraev, and Philipp Zschoche. In the following, I briefly explain my contributions
in the respective research projects.

Chapter 3: Restless Temporal Paths. The idea to study RESTLESS TEMPORAL (s, z)-
PATH emerged as a follow-up work to the Master’s thesis of Anne-Sophie Him-
mel [Him18] and was partially, in the context of separators and temporal walks,
already considered in the Master’s thesis of Philipp Zschoche [Zsc17], which I co-
supervised with Till Fluschnik and Rolf Niedermeier. While we have been inter-
ested in this problem for a while and became more interested after discovering its
NP-hardness, the project picked up speed when Arnaud Casteigts (Université de
Bordeaux) visited our group in May and June 2019. Arnaud was interested in the
problem and we jointly developed most of our results during the time of his visit.
I was mostly involved in the computational hardness results I present in this the-
sis, especially the W[1]-hardness for the parameter “feedback vertex number of the
underlying graph”. At the time of writing of this thesis, the results were available
only on ArXiv and were being prepared for a conference publication. At the date
of publication of this thesis, additional results have been obtained and the paper
is accepted for publication at the 31st International Symposium on Algorithms and
Computation (ISAAC ’20) [Cas+20].

v

Chapter 4: Temporal Separators. This project traces back to the Master’s thesis
of Philipp Zschoche [Zsc17], which I co-supervised with Till Fluschnik and Rolf
Niedermeier. After Philipp completed his thesis, we continued investigating the
computational complexity of TEMPORAL (s, z)-SEPARATION and developed two dif-
ferent viewpoints on this problem, splitting the work into two projects. In the first
project, we put an emphasis on investigating the difference between separators for
strict and non-strict temporal paths [Zsc+18, Zsc+20]. Philipp presented the results
at the 43rd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS ’18) [Zsc+18] and we published a long version in the Journal of Computer
and System Sciences [Zsc+20]. In the second project, we focused on trying to find
tractable cases for TEMPORAL (s, z)-SEPARATION by investigating the computational
complexity of the problem on restricted classes of temporal graphs [Flu+18, Flu+20b].
Philipp presented the results at the 44th International Workshop of Graph-Theoretic
Concepts in Computer Science (WG ’18) [Flu+18] and we published an extended
version in the journal Theoretical Computer Science [Flu+20b] with additional input
from Malte Renken. While many results in both projects were jointly developed by
all authors, my main contribution was the investigation of TEMPORAL (s, z)-SEPARA-
TION on temporal unit interval graphs which was part of the second project [Flu+18,
Flu+20b] and which I also feature in this thesis. I was invited to give a talk about our
results at the satellite workshop Algorithmic Aspects of Temporal Graphs of ICALP ’18.

I obtained the ΣP
2 -hardness result for RESTLESS TEMPORAL (s, z)-SEPARATION shortly

after working on the project on RESTLESS TEMPORAL (s, z)-PATH [Cas+20]. Up until
the date of publication of this thesis, this result is exclusively featured in this thesis.

Chapter 5: Temporal Matchings. This project was initiated during a visit of George
B. Mertzios and Viktor Zamaraev (then both Durham University) at our research
group in December 2018. In this time we developed some of the hardness results
and an approximation algorithm for TEMPORAL MATCHING. After this, I tried for a
long time to find an FPT-algorithm for structural parameters of the underlying graph
such as treewidth or vertex cover number. After a number of unsuccessful tries I
was beginning to suspect that this might not be possible and discovered the result
showing that TEMPORAL MATCHING is NP-hard even if the underlying graph is a path,
which is also my main contribution to this project, and which is also featured in this
thesis. At the time of writing this thesis, our results were published on ArXiv and the
paper was submitted to a conference and under review. At the date of publication of
this thesis, I presented the results at the 37th International Symposium on Theoretical
Aspects of Computer Science (STACS ’20) [Mer+20] and a long version of the paper
has been submitted to a journal and is under review.

vi

Chapter 6: Temporal Coloring. At a research retreat of our research group in Boiens-
dorf, Baltic Sea (2017), George B. Mertzios (Durham University) proposed to study
TEMPORAL COLORING. After some discussions, we started working on this project
shortly after Viktor Zamaraev (Durham University) joined George as a post-doc. Most
results were developed jointly, however, I was mainly involved in the computational
hardness results. I presented our results at the 33rd AAAI Conference on Artificial
Intelligence (AAAI ’19) [MMZ19] and at the time of writing, a journal version was in
preparation. At the date of publication of this thesis, a long version of this paper has
been submitted to a journal and is under review.

Chapter 7: Temporal Cliques and s-Plexes. This project started with the Bachelor’s
thesis on TEMPORAL CLIQUE of Anne-Sophie Himmel [Him16], which I co-supervised
with Manuel Sorge and Rolf Niedermeier. After Anne-Sophie finished her thesis, we
published the results and I presented them at the 2016 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM ’16) [Him+16]
where we won the runner-up best paper award. A long version appeared at So-
cial Network Analysis and Mining [Him+17]. In this first part of the project, I was
mostly involved in the theoretical part of developing an FPT-algorithm to enumerate
temporal cliques for the parameter “∆-slice degeneracy”.

We followed this work up in a student project with participants Marco Morik and
René Saitenmacher, which I co-supervised with Matthias Bentert, where we started
to investigate the problem TEMPORAL s-PLEX. After the student project finished, we
continued this work with the help of Anne-Sophie and Rolf. Anne-Sophie presented
our results at the 2018 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM ’18) [Ben+18] and a journal version appears
in the ACM Journal of Experimental Algorithmics [Ben+19]. In this second project, I
was again mainly involved in the theoretical results. Notably, both projects featured
an implementation and experimental evaluations which are not presented in this
thesis.

Chapter 8: Temporal Cluster Editing. I proposed this topic at a research retreat of
our research group in Boiensdorf, Baltic Sea (2017) and was joined by Jiehua Chen,
Manuel Sorge (then both University of Warsaw), and Ondřej Suchý (Czech Technical
University in Prague). During the period of the research retreat we jointly developed
the main ideas for the kernelization algorithm for TEMPORAL CLUSTER EDITING

which is featured in this thesis as well as parts of the FPT-algorithm. After the retreat
I focused on developing and refining the FPT-algorithm which is also featured in this
thesis. At a later point, we started investigating a second problem variant which is not

vii

covered in this thesis. I presented our results at the 29th International Symposium
on Algorithms and Computation (ISAAC ’18) [Che+18] and at the time of writing, a
journal version is in preparation.

Further Research Projects. In the following, I give a very brief list of projects I
was involved in during my research activity at TU Berlin that are not covered in
this thesis. The ordering is roughly chronological. I was involved in work on h-
index manipulation [Bev+16b, Bev+20], multi-layer subgraph detection [Bre+17,
Bre+19], secluded problems [Bev+16a, Bev+18], the minimum shared edges prob-
lem [Flu+17], centrality improvement [HMS18], funnels [Mil+18, Mil+20] (a class of
directed acyclic graphs), diminishers [Fer+18, Fer+20] (a framework to refute certain
polynomial kernels), collapsing k-cores [LMS18], dynamic cluster editing [Luo+18,
Luo+20], enumerating isolated temporal cliques [MNR19, MNR20], temporal feed-
back edge sets [Haa+20], a contribution to a Festschrift in honor of Hans Bodlaender’s
60th birthday on temporal treewidth [Flu+20a], and work on temporal between-
ness [Buß+20].

Acknowledgements. First of all, I am sincerely grateful to Rolf Niedermeier, who
gave me the opportunity to work in his group as a PhD student and contributed a lot
of his time for guidance, advice, and support in many different forms that allowed
me to finish this thesis. Together with him, I want to thank Thomas Erlebach and
Ralf Klasing for reviewing my thesis and their valuable feedback which greatly helped
to improve the presentation of my results.

I am grateful to all my coauthors for pleasant and fruitful collaborations without
which this thesis would not have been possible. In lexicographical order, I want
to thank Matthias Bentert, René van Bevern, Robert Bredereck, Sebastian Buß, Ar-
naud Casteigts, Jiehua Chen, Henning Fernau, Till Fluschnik, Marcelo Garlet Millani,
Roman Haag, Steffen Härtlein, Maike Hatzel, Danny Hermelin, Anne-Sophie Him-
mel, Clemens Hoffmann, Christian Komusiewicz, Stefan Kratsch, Andreas Krebs,
Junjie Luo, George B. Mertzios, Marco Morik, André Nichterlein, Rolf Niedermeier,
Malte Renken, Maciej Rymar, René Saitenmacher, Henning Seidler, Manuel Sorge,
Ondřej Suchý, Toby Walsh, Viktor Zamaraev, and Philipp Zschoche.

I also want to thank Christlinde Thielcke for helping me with numerous admin-
istrative issues and all my colleagues, longterm visitors and friends of our group
who I have not collaborated with (I hope we can change that some time!) for good
times and many interesting discussions. In lexicographical order: Niclas Böhmer,
Markus Brill, Piotr Faliszewski, Vincent Froese, Anne-Marie George, Klaus Heeger,
Falk Hüffner, Andrzej Kaczmarczyk, Leon Kellerhals, Dušan Knop, Tomohiro Koana,

viii

Ulrike Schmidt-Kraepelin, Piotr Skowron, Nimrod Talmon, and Mathias Weller.
Special thanks go out to my colleagues Matthias, Till, Vincent, Anne-Sophie, Leon,

André, Rolf, Malte, and Philipp as well as my sister Hannah Molter and my father Karl
Molter for helping me to improve the presentation of my results, and to Jiehua for
providing me with the latex template. I want to give extra special thanks to Till, Anne-
Sophie, Hannah, as well as my flatmates Maria Efimova and Johann Zajaczkowski
for mental support and encouragement during my write-up phase.

Finally, I want to thank my family Anne, Karl, and Hannah Molter, my extended
family and all my friends, and everybody who supported me in one form or another.

ix

Contents

1 Introduction and Overview 1
1.1 Invitation to Temporal Graph Problems 2
1.2 Related Work . 4
1.3 Thesis Contribution and Overview . 4

2 Preliminaries and Notation 9
2.1 Static Graphs . 9
2.2 Temporal Graphs . 10
2.3 Parameterized Complexity . 12
2.4 (Temporal) Graph Parameters . 14
2.5 Temporal Graph Problems vs. Multi-Layer Graph Problems 16

3 Restless Temporal Paths 19
3.1 Introduction . 19
3.2 Preliminaries . 23
3.3 Finding Restless Temporal Paths . 27
3.4 Conclusion . 38

4 Temporal Separators 39
4.1 Introduction . 39
4.2 Preliminaries . 42
4.3 Separators in Temporal Unit Interval Graphs 46
4.4 Restless Temporal Separators . 62
4.5 Conclusion . 68

5 Temporal Matchings 69
5.1 Introduction . 69
5.2 Preliminaries . 72
5.3 NP-Hardness of Temporal Matching with Few Layers 76
5.4 NP-Hardness of Temporal Matching with Underlying Paths 81
5.5 Conclusion . 88

6 Temporal Coloring 89
6.1 Introduction . 89

xi

6.2 Preliminaries . 92
6.3 Hardness Results for Temporal Coloring 95
6.4 Complexity of Sliding Window Temporal Coloring 101
6.5 Conclusion . 117

7 Temporal Cliques and s-Plexes 119
7.1 Introduction . 119
7.2 Preliminaries . 122
7.3 Enumerating Temporal Cliques and s-Plexes 131
7.4 Conclusion . 142

8 Temporal Cluster Editing 145
8.1 Introduction . 145
8.2 Preliminaries . 148
8.3 An Algorithm for Temporal Cluster Editing 153
8.4 Kernelization for Temporal Cluster Editing 167
8.5 Conclusion . 174

9 Conclusion 177
9.1 Main Contributions and General Messages 177
9.2 Zukunftsmusik . 181

Bibliography 183

Problem Compendium 199

Index 205

xii

CHAPTER 1

Introduction and Overview

Many questions that we want computers to answer for us are of the form that we
have some data set, which is typically too large or complex to be fully investigated
by hand, and we want to know some specific fact about this data. This could for
example be whether the data fulfills some global property (or how we have to modify
it to obtain this property), or whether we can find a small subset in the data that
fulfills a specific property (where the latter could be viewed as a special case of the
former). To find algorithms that can perform these tasks or to analyze how hard it is
for a computer to solve these problems, we typically need an abstract mathematical
model of our data first, which, on the one hand, in many cases reduces the amount
of information to something which a computer can handle in a reasonable amount
of time, and, on the other hand, allows us to formulate our questions in a precise
and formal way.

Graphs, that is, sets of vertices that are joined together in pairs by edges, turned out
to be one of the most versatile mathematical models for complex data sets. They
are used in a wide variety of research areas. In all kinds of applications related to
networks, graphs are typically the underlying mathematical model. Specific tasks
that pop up in these research fields are then commonly modeled as graph problems
and computer scientists try to find efficient algorithms to solve them (or show that
neither they nor many other famous people can find an efficient algorithm).

However, as predicted by Moore’s law, the capabilities of computers keep increas-
ing at a stunning pace, and at the same time our understanding of graph problems
becomes better and better. Hence, we can dial back our level of abstraction and in-
vestigate problems on generalized graph models that incorporate more information
of the data. Indeed, this is already happening since several years. In particular, dy-
namics of interactions play an increasingly important role in the analysis of complex
data. Especially data that is usually modeled with graphs, such as for example com-
munication data, is often times inherently changing over time. The classic model of
graphs as we know does not reflect this behavior of the data which leads to a loss of
information that can be critical in certain problem settings. This subject matter is
perhaps best illustrated through the following, somewhat whimsical, example.

Imagine that you, like the author, are part of a fairly large online social network

1

1 Introduction and Overview

G1: G2: G3:

Figure 1.1: Example temporal graph with lifetime three. We see three snapshots of the tem-
poral graph, one for each time step. These graphs G1, G2, and G3 contain all edges that are
present at the respective time steps one, two, and three. The graphs G1, G2, and G3 are also
called the layers of the temporal graph.

and suddenly realize that almost all of your “friends” own a “bandersnatch”. And
you start wondering where this new trend comes from. Who is manufacturing these
bandersnatches? You have not really heard of them before and you did not know that
you would need one until now. You start to realize that bandersnatches were mostly
promoted by viral marketing and word-of-mouth, and you would like to analyze
your social network to trace back this new trend to its origin.

Assume that, for reasons we do not discuss here, you have access to the whole
social network. You are one of the last individuals not owning a bandersnatch.
Hence, when looking at the data and formalizing the problem, you quickly realize
that without information about the times of interactions, it will not be possible to
extract any useful information. However, if the interactions between people are
time-stamped, then you are able create a much more meaningful model for the
dissemination of the bandersnatch.

More formally, we use temporal graphs as the main mathematical model to repre-
sent our data in this thesis. A temporal graph is, informally speaking, a graph where
the edge set may change over a discrete time interval, called the lifetime, while the
vertex set remains unchanged, see Figure 1.1 for an example. Considering the above
example, we can see that much more expressive models for information spreading
phenomena can be formulated on temporal graphs than on classic non-temporal
graphs.

1.1 Invitation to Temporal Graph Problems

There are many canonical ways to formulate problems on temporal graphs. In
the following we discuss which types of problems we consider in this thesis. First
of all, we only consider finite temporal graphs, that is, temporal graphs with a finite
number of vertices and a finite lifetime. Secondly, we always assume that we have

2

1.1 Invitation to Temporal Graph Problems

full knowledge of the temporal graph, that is, the whole temporal graph is part of
the input, as opposed to an online setting, where we would be informed about
the changes in the graph when they happen. Third, we assume that we look for a
centralized algorithm that can access all parts of the temporal graph, as opposed to
a distributed setting, where a computing entity can only access information about a
limited part of the temporal graph.

The temporal graph problems we consider are, in the most general form, of the
type “does the given graph have a certain property?”. If we want to be more specific,
then we can categorize most of the temporal graph problems we investigate in this
thesis into the following two groups, which in an analogous way also exists for classic
graph problems.

Substructure detection problems: We want to know whether a given temporal
graph contains a substructure that has a certain property. This can be seen as a
search problem, where once we find a desired substructure, it does not matter
how the rest of the temporal graph looks like. An example from classic graph
problems would be CLIQUE, where we want to find a set of vertices which are
all pairwise connected.

Graph modification problems: We want to know whether a given temporal graph
can be modified such that it (as a whole) fulfills a certain property. Modifica-
tion in this context typically means adding or removing edges, or removing
vertices. An example from classic graph problems would be CLUSTER EDITING,
where we want to add to or remove edges from a given graph such that every
connected component of the resulting graph is a clique.

Of course there are many natural temporal graph problems which do not fit into any
of the two categories.

When it comes to solving temporal graph problems we focus on exact algorithms
and perform worst-case running time analyses. Since the temporal dimension
adds more complexity to our problems (compared to classic graph problems), it
is not surprising that all problems we consider in this thesis are NP-hard. Hence,
we presumably have to expect algorithms for our problems to have exponential
running times. This motivates a parameterized complexity analysis. Here we identify
secondary properties of the input instances of our problems (other than the size) that
can be quantified with some natural number, which we call the parameter. The goal
is to find parameters that, informally speaking, allow for efficient algorithm when
they are small. Formally, we measure the running time of algorithms in terms of the
input size as well as the parameter and aim for running times of the form f (p) · |I |O(1),

3

1 Introduction and Overview

where p is the parameter, I is the problem instance, and f is a computable function.
In other words, we want to find algorithms that have polynomial running times for
constant parameter values, and the parameter should only influence the leading
constant of the polynomial and not its degree. If a problem admits such an algorithm,
then we call it fixed-parameter tractable when parameterized by p. If we cannot
find such algorithms, then we aim to show that the existence of such algorithms is
unlikely under widely believed computational complexity assumptions.

1.2 Related Work

The theory of temporal graphs and temporal graph algorithmics are comparatively
young research fields but have strongly grown in last years. There are several surveys
and books available that give an overview on the different research activities in these
fields [Boc+14, Cas+12, CF13a, CF13b, Hol15, HS12, HS13, HS19, LVM18, Mic16]. We
an extended discussion of related work in each of the chapters of this thesis which is
then specific to the problem that we investigate in the respective chapter.

1.3 Thesis Contribution and Overview

As the title of this thesis already describes, we take a look at temporal versions of
several classic graph problems. In most cases, there were already temporal models
of the problems established in the literature, and in some cases we also propose how
to transfer the problems to the temporal setting. We selected the problem by the
following two main considerations.

1. We look at problems that are naturally motivated in a temporal context, much
as in our introductory example. For many classic graph problems appearing
in data science or network analysis it is very canonical to investigate them in a
temporal setting.

2. As a general rule of thumb we can say that transferring a problem to the
temporal setting makes it more complicated. Because of that we prefer to
investigate problems that are efficiently solvable in the classic setting and we
do not want to look at problems that are already very difficult or not very well
understood in the classic setting.

We investigate temporal versions of six classic graph problems, each of which is
discussed in one chapter of this thesis. This thesis starts with a short presentation
of the most important concepts from (temporal) graph theory and parameterized
complexity theory in Chapter 2. In Chapter 9 the thesis concludes, summarizing

4

1.3 Thesis Contribution and Overview

and discussing again the main results, pointing out some general observations,
and providing a view on possible future research directions. In the six chapters
in between, we present the results we achieved when investigating the respective
temporal graph problems. We start with two problems related to connectivity, that is,
finding specific types of temporal paths and separators in temporal graphs. Then we
investigate a model of matching for temporal graph. Next, we move to the problem
of coloring a temporal graph. Finally, we give our findings for two problems related
to finding dense subgraphs in a temporal graph, which are enumerating dense
subgraphs and clustering the temporal graph into non-overlapping dense subgraphs.
In the following, we briefly introduce each problem and give an overview on the
most important contributions. For problem motivations and related work we refer
to the introductory sections of the corresponding chapters.

Chapter 3: Restless Temporal Paths. We begin by investigating the problem of
finding a special type of path in temporal graphs. This problem clearly falls into the
“substructure detection” category. Finding paths between two vertices in graphs is
arguably one of the most basic and important problems in graph algorithmics and it
was also one of the first problems transferred to the temporal setting. A path from
a start vertex to a destination vertex in a temporal graph has to respect causality,
or time, which means that the edges used by a temporal path have to appear at
non-decreasing times. Temporal paths have received much attention in recent years
and many efficient algorithms are known to find them.

In this chapter we investigate temporal paths that additionally have a maximum
waiting time in every vertex of the temporal graph. This means a path has to “con-
tinue” after a certain amount of time steps after its arrival at a vertex. This is a very
natural and well-motivated restriction, however, this makes the problem of finding
paths in a temporal graph computationally hard. Our main contribution is to thor-
oughly investigate the computational complexity of this problem and to show that
it remains hard even in very restricted cases and for many parameterizations. We
further put the results into context with an existing algorithm, essentially showing
that this algorithm cannot be significantly improved.

Chapter 4: Temporal Separators. Coming from the investigation of temporal paths,
we continue to investigate the problem of destroying all paths between two dedicated
vertices by removing vertices from the graph. This problem falls into the “graph
modification” category. Finding these so-called separators is a classic graph problem
which can be solved efficiently and which also has been transferred to the temporal
setting fairly early.

5

1 Introduction and Overview

Our contribution here is twofold: Firstly, we investigate the computational com-
plexity on a quite restricted class of temporal graphs, which we call temporal unit
interval graphs, a generalization of unit interval graphs1 to the temporal setting. We
show that, in general, finding temporal separators remains computationally hard on
temporal unit interval graphs but we identify an additional restriction which makes
the problem solvable in polynomial time. We use this to develop a fixed-parameter
algorithm for a parameter that measures the “distance” to the easy case. Secondly,
we investigate the computational complexity of finding separators that destroy all
restless temporal paths, which we discuss in Chapter 3. Our main result is that the
problem of finding these restless temporal separators is hard for a complexity class
located in the second level of the polynomial time hierarchy.

Chapter 5: Temporal Matchings. In this chapter we introduce a model for match-
ings in temporal graphs. Finding matchings is, again, a very fundamental task in
graph algorithmics that receives much attention in the scientific community to this
day. The model of temporal matching we consider informally works as follows. In a
temporal graph, if two vertices are matched at some point in time, then they have
to “recharge” afterwards, meaning that they cannot be matched again for a certain
number of time steps.

We investigate the computational complexity of this problem and show that it is
hard even in very restricted instances. To show our main result, we employ a tem-
poral analogue of line graphs2 and obtain some results that may be of independent
interest. We further discuss how our results imply that known algorithms for this
problem presumably cannot be improved significantly.

Chapter 6: Temporal Coloring. In this chapter we lift the classic graph coloring
problem to the temporal setting. We introduce a model where every edge has to be
colored properly (that is, the endpoints are colored differently) at least once in every
time interval of a certain length. This problem does not really fit into any of the two
categories described in the previous section but can rather be seen as the problem
of deciding whether a given temporal graph has a certain property.

We show that this problem is computationally hard in very restricted cases, even
if we only have two colors. Note that the classic analogue, that is, checking bipar-
titeness, can be solved efficiently. We present rather simple algorithms to solve

1A graph is a unit interval graph if its vertices can be assigned to intervals of the rational numbers of unit
length, such that two vertices are connected by an edge if and only if the two corresponding intervals
overlap.

2A line graph of a graph has a vertex for each edge of the original graph, and two vertices are connected
if the corresponding edges share an endpoint.

6

1.3 Thesis Contribution and Overview

this problem, however, we consider the main contribution that we show that these
algorithms presumably cannot be improved significantly.

Chapter 7: Temporal Cliques and s-Plexes. In this chapter we investigate finding
cliques and s-plexes3 in temporal graphs. Finding and enumerating cliques is a
classic problem that is very well investigated. This problem clearly falls into the
“substructure detection” category. We propose a model for temporal s-plexes that is a
canonical generalization of an existing model for temporal cliques. Here, a temporal
s-plex is a set of vertices together with a time interval, such that in each time window
of a certain size within this time interval, we have that every vertex is connected to
at least s −1 of the other vertices in the temporal s-plex. A temporal clique is simply
a temporal 1-plex.

Since finding cliques in graphs is computationally hard, this generalization clearly
is hard as well. Our main contribution is a fixed-parameter algorithm that enu-
merates all temporal s-plexes in a given temporal graph, where we use a temporal
analogue of degeneracy4 (a measure of sparsity) as a parameter.

Chapter 8: Temporal Cluster Editing. In this chapter we analyze the computational
complexity of clustering a temporal graph. The classic problem we lift to the tem-
poral setting here is the problem of modifying the edges of a graph such that every
connected component becomes a clique. Hence, here we have a problem that clearly
falls into the “graph modification” category. In our model, we want to modify every
layer, that is, the graph consisting of all edges that are present at a certain time step,
such that every of its connected components is a clique. However, we also want that
these connected components look somewhat similar at every time step.

The classic version of this problem is computationally hard and hence the general-
ization to the temporal setting is as well. Our main contribution is a fixed-parameter
algorithm for the parameter “number of edge modifications” plus the measure of
similarity of the resulting clusterings. We further show that there is an efficient
preprocessing procedure that can provably reduce the size of the input instance to
be independent of the number of vertices of the original input instance.

Short Summary. The thesis contains six chapters each exploring a temporal version
of a classic graph problem. It starts with an introduction and a chapter introducing
all necessary definitions and notations and concludes with a chapter discussing

3An s-plex is a set of vertices where every vertex is connected to all but s −1 of the other vertices in the
set.

4The degeneracy of a graph is the smallest integer d such that each subgraph contains a vertex with
degree at most d .

7

1 Introduction and Overview

general take home messages and future work directions. Moreover, each of the six
chapters dedicated to a specific problem also provides concluding remarks and
future research directions tailored to the problem under investigation.

8

CHAPTER 2

Preliminaries and Notation
In this chapter, we introduce all concepts, notations, and terminology that are

used in and relevant for many chapters of this thesis. Each chapter also contains a
“preliminaries” section introducing concepts and notation specific to that chapter.

We start with some basic mathematical definitions. We useN to denote the natural
numbers without zero. We refer to an interval as a contiguous ordered set of natural
numbers. Formally, an interval is an ordered set

I = [a,b] := {n | n ∈N∧a ≤ n ≤ b},

where a,b ∈N. Further, let [a] := [1, a]. Given a set S, we denote the set of all subsets
of size two by

(︁S
2

)︁
, that is,

(︁S
2

)︁
:= {{a,b} | a ∈ S ∧b ∈ S ∧a ̸= b}.

2.1 Static Graphs

We use standard notation from (static) graph theory [Die16]. Unless stated other-
wise, we assume graphs in this thesis to be undirected and simple. To clearly distin-
guish them from temporal graphs, they are sometimes referred to as static graphs.
Given a (static) graph G = (V ,E) with E ⊆ (︁V

2

)︁
, we denote by V (G) :=V and E(G) := E

the sets of its vertices and edges, respectively. We call two vertices u, v ∈V adjacent
if {u, v} ∈ E and we call u and v the endpoints of edge {u, v}. Two edges e1,e2 ∈ E are ad-
jacent if e1∩e2 ̸= ∅. The neighborhood of a vertex v ∈V is the set NG (v) = {u | {u, v} ∈ E }.
We call the size of the neighborhood of a vertex its degree. If a vertex has degree zero,
then we say that this vertex is isolated. For some vertex subset V ′ ⊆ V , we denote
by G[V ′] the induced subgraph of G on the vertex set V ′, that is, G[V ′] = (V ′,E ′) where
E ′ = {{v, w} | {v, w} ∈ E ∧ v ∈V ′∧w ∈V ′}. By Pn we denote a graph that is a path with n
vertices.

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is a bijection σ :
V1 →V2 such that for all u, v ∈V1 we have that {u, v} ∈ E1 if and only if {σ(u),σ(v)} ∈ E2.
Given a graph G = (V ,E) and an edge {u, v} ∈ E , subdividing the edge {u, v} results
in a graph isomorphic to G ′ = (V ′,E ′) with V ′ = V ∪ {w} for some w ∉ V and E ′ =
(E \ {{u, v}})∪ {{v, w}, {u, w}}. We call a graph H a subdivision of a graph G if there is
a sequence of graphs G1,G2, . . . ,Gx with G1 = G such that for each Gi = (Vi ,Ei) with
i < x there is an edge e ∈ Ei and subdividing e results in a graph isomorphic to Gi+1,

9

2 Preliminaries and Notation

G1: G2: G3: G↓:

Figure 2.1: Example of a temporal graph with lifetime three and its underlying graph.

and Gx is isomorphic to H . We call H a topological minor of G if there is a subgraph G ′

of G that is a subdivision of H . We call H an induced topological minor of G if there
is an induced subgraph G ′ of G that is a subdivision of H .

2.2 Temporal Graphs

Since temporal graph theory and temporal graph algorithmics are still rather
young research fields, notation and terminology is not yet completely standardized
and in the literature one can find many synonyms for terminology or mathematically
equivalent definitions that use different notation [Boc+14, Cas+12, CF13a, CF13b,
Hol15, HS12, HS13, HS19, LVM18, Mic16]. In the following we introduce the notation
and terminology we use in this thesis.

Temporal graphs are the most important mathematical objects in this thesis. They
are graphs where the edge set may change over a discrete set of time steps. We model
a temporal graph as a vertex set together with an ordered list of edge sets over this
vertex set.

Definition 2.1 (Temporal Graph). An (undirected, simple) temporal graph is a tu-
ple G = (V ,E1,E2, . . . ,Eℓ) (or G = (V , (Ei)i∈[ℓ]) for short), with Ei ⊆

(︁V
2

)︁
for all i ∈ [ℓ].

We call ℓ(G) := ℓ the lifetime of G . As with static graphs, we assume all temporal
graphs in this thesis to be undirected and simple.

We call the graph Gi (G) = (V ,Ei (G)) the layer i of G where Ei (G) := Ei . If Ei = ∅,
then Gi is a trivial layer. We call layers Gi and Gi+1 adjacent. We call i a time step. If
an edge e appears at time i , that is, e ∈ Ei , then we say that e has time stamp i . We
further denote V (G) := V . The underlying graph G↓(G) of G is defined as G↓(G) :=
(V ,

⋃︁ℓ(G)
i=1 Ei (G)). To improve readability, we remove (G) from the introduced notations

whenever it is clear from the context. For an example of a temporal graph and its
underlying graph see Figure 2.1.

For every v ∈V and every time step t ∈ [ℓ], we denote the appearance of vertex v at
time t by the pair (v, t). For every t ∈ [ℓ] and every e ∈ Et we call the pair (e, t) a time

10

2.2 Temporal Graphs

a b c

d e f

g h i

G1: G2: G3: G4:

(a) A temporal graph G .

G ′
1: G ′

2:

(b) Induced temporal subgraph G ′ =G [X]|[2,3] with X = {a,b,c,e,d , f }.

Figure 2.2: Example of a temporal graph and an induced temporal subgraph.

edge. We assume that the size (for example when referring to input sizes in running
time analyzes) of G is |G | := |V | +∑︁ℓ

i=1 |Ei |, that is, we do not assume that we have
compact representations of temporal graphs.

Induced Temporal Subgraphs. We use a canonical analogue to induced subgraphs
of static graphs in the temporal setting. For a vertex subset X ⊆ V and a time in-
terval [a,b] ⊆ [ℓ], we define the induced temporal subgraph of G by X and [a,b]
as G [X]|[a,b] := (X , (E ′

i)i∈[ℓ′]) where ℓ′ = b−a+1 and E ′
i = {{v, w} | v ∈ X ∧w ∈ X ∧ {v, w} ∈

Ei+a−1} for i ∈ [ℓ′]. For an illustration see Figure 2.2. If X = V , then we write G |[a,b]

as short form for G [X]|[a,b], and if [a,b] = [ℓ], then we write G [X] as short form for
G [X]|[a,b]. Furthermore, we define G −X :=G [V \ X].

Time Windows. We now define ∆-time windows, which we make use of in several
different problem settings we investigate in this thesis. Let ∆≤ ℓ. For every time step
t ∈ [ℓ−∆+1], the ∆-window W ∆

t = [t , t +∆−1] is the sequence of the ∆ consecutive
time steps t , t +1, . . . , t +∆−1. If ∆ < 1, then we define the ∆-window for any time
step to be the empty set. Furthermore, we denote by EW ∆

t
= ⋃︁

i∈W ∆
t

Ei the union of

all edges appearing at least once in the ∆-time window W ∆
t . We remark that in the

literature, the symbol ∆ is also often used to denote the maximum degree of a graph.

11

2 Preliminaries and Notation

In the context of this thesis, however, we exclusively use this symbol in the context
of time windows.

2.3 Parameterized Complexity

We use standard notation and terminology from parameterized complexity the-
ory [Cyg+15, DF13, DF99, FG06, Fom+19, Nie06] and give here a brief overview of
the most important concepts that are used in this thesis. A parameterized problem is
a language L ⊆Σ∗×N, where Σ is a finite alphabet. We call the second component
the parameter of the problem. A parameterized problem is fixed-parameter tractable
(in the complexity class FPT) if there is an algorithm that solves each instance (I ,r)
in f (r) · |I |O(1) time, for some computable function f . A decidable parameterized
problem L admits a polynomial kernel if there is a polynomial-time algorithm that
transforms each instance (I ,r) into an instance (I ′,r ′) such that (I ,r) ∈ L if and only if
(I ′,r ′) ∈ L and |(I ′,r ′)| ∈ r O(1). If a parameterized problem is hard for the parameter-
ized complexity class W[1] or W[2], then it is (presumably) not in FPT. Informally,
parameterized problems that are hard for W[1] are at least as hard as CLIQUE5 param-
eterized by the solution size, and parameterized problems that are hard for W[2] are
at least as hard as HITTING SET6 parameterized by the solution size. The complexity
classes W[1] and W[2] are closed under parameterized reductions, which may run in
FPT-time and additionally set the new parameter to a value that exclusively depends
on the old parameter. If a parameterized problem is NP-hard for constant parameter
values, then the problem is para-NP-hard.

Kernelization Lower Bounds. We employ the cross-composition framework [BJK14,
Bod+09, Dru15, Fom+19, FS11] to refute the existence of a polynomial kernel for a
parameterized problem under the assumption that NP ̸⊆ coNP/poly, the negation
of which would cause a collapse of the polynomial-time hierarchy to the third level.
Informally, in a cross-composition, we have to compose many problem instances
of an NP-hard problem into one big instance of the problem we want to investigate.
This composition should then have the property that the big instance is either a
YES-instance if and only if at least one of the input instances is a YES-instance (in the
case of OR-cross-compositions), or if and only if all input instance are YES-instances
(in the case of AND-cross-compositions). This then refutes polynomial kernels for

5In CLIQUE we are given a graph G and a “solution size” k, and are asked to decide whether G contains a
set of k vertices that are all pairwise connected by an edge.

6In HITTING SET we are given a universe U , a collection of subsets of U , and a “solution size” k, and are
asked to decide whether it is possible to select k elements of U such that every subset in the collection
contains at least one selected element.

12

2.3 Parameterized Complexity

the problem under investigation when parameterized by any parameter that only
depend on the maximum size of the input instances (and not on the number of input
instances). In order to formally introduce the framework, we need some definitions
first.

An equivalence relation R on the instances of some problem L is a polynomial
equivalence relation if

1. one can decide for each two instances in time polynomial in their sizes whether
they belong to the same equivalence class, and

2. for each finite set S of instances, R partitions the set into at most (maxx∈S |x|)O(1)

equivalence classes.

Using this, we can now define OR-cross-compositions and AND-cross-compositions.
An OR-cross-composition of a problem L ⊆ Σ∗ into a parameterized problem P

(with respect to a polynomial equivalence relation R on the instances of L) is an
algorithm that takes n R-equivalent instances x1, . . . , xn of L and constructs in time
polynomial in

∑︁n
i=1 |xi | an instance (x,k) of P such that

1. k is polynomially upper-bounded in max1≤i≤n |xi |+ log(n) and

2. (x,k) is a YES-instance of P if and only if there is an i ∈ [n] such that xi is a
YES-instance of L.

If an NP-hard problem L OR-cross-composes into a parameterized problem P ,
then P does not admit a polynomial kernel, unless NP ⊆ coNP/poly [BJK14, Bod+09,
FS11].

AND-cross-compositions are defined analogously. An AND-cross-composition
of a problem L ⊆Σ∗ into a parameterized problem P (with respect to a polynomial
equivalence relation R on the instances of L) is an algorithm that takes n R-equivalent
instances x1, . . . , xn of L and constructs in time polynomial in

∑︁n
i=1 |xi | an instance

(x,k) of P such that

1. k is polynomially upper-bounded in max1≤i≤n |xi |+ log(n) and

2. (x,k) is a YES-instance of P if and only if xi is a YES-instance of L for every
i ∈ [n].

If an NP-hard problem L AND-cross-composes into a parameterized problem P ,
then P does not admit a polynomial kernel, unless NP ⊆ coNP/poly [BJK14, Dru15].

13

2 Preliminaries and Notation

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) implies
that there is no algorithm for 3-SAT that has a running time in 2o(n+m), where n and m
denote the number of variables and clauses, respectively, of a 3-SAT formula [IP01,
IPZ01]. The ETH is typically used to obtain fine-grained running time lower bounds
for exponential-time algorithms. We remark that all NP-hardness reductions also
yield some running time lower bounds assuming the ETH. However, in this thesis,
we only discuss ETH-based running time lower bounds if they show that the running
time of some existing algorithm, or some algorithm that we present in this thesis,
presumably cannot be improved. If this is not the case, then we omit discussing
which ETH-based running time lower bounds the reductions presented in this thesis
imply.

2.4 (Temporal) Graph Parameters

In parameterized complexity, we not only want to investigate a problem parame-
terized by its sometimes called “natural problem parameters” such as for example
the solution size, but also with parameters that quantify some structural properties
of the input (temporal) graph. We call parameters of this type structural graph pa-
rameters. More formally, we call a graph parameter structural if there is a function
mapping graphs to natural numbers that describes the parameter value of a given
(temporal) graph.

Static Graph Parameters. In the following, we present definitions of the (static)
structural graph parameters we consider in this thesis.

Feedback Vertex Number: The feedback vertex number of a static graph G = (V ,E) is
the cardinality of a minimum vertex subset V ′ ⊆V such that G −V ′ is a forest.

Degeneracy: The degeneracy of a static graph G is the smallest integer d ∈N such
that each subgraph G ′ of G contains a vertex v with degree at most d .

Domination Number: The domination number of a static graph G = (V ,E) is the
cardinality of a minimum vertex subset V ′ ⊆V such that every vertex v ∈V is
either contained in V ′ or has a neighbor that is contained in V ′.

Maximum Degree: The maximum degree of a static graph G = (V ,E) is maxv∈V |N (v)|.

Treedepth: The treedepth of a static graph G = (V ,E) is the minimum height of a
rooted forest F = (V ,E ′) with the property that every edge of G connects a pair
of nodes that have an ancestor-descendant relationship to each other in F .

14

2.4 (Temporal) Graph Parameters

maximum degreetreedepthdomination number

degeneracy

feedback
vertex number

vertex cover
number

Figure 2.3: A Hasse diagram of the partial ordering for the structural parameters used in this
thesis. An arrow from a parameter p to another parameter p ′ indicates that p ′ is larger than p.
Parameter pairs that are not connected by an arrow are known to be incomparable. For details
we refer to Sorge and Weller [SW19].

Vertex Cover Number: The vertex cover number of a static graph G = (V ,E) is the
cardinality of a minimum vertex subset V ′ ⊆V such that every edge e ∈ E has
at least one endpoint in V ′.

Note that most of the mentioned parameters also have equivalent alternative defi-
nitions. Further note that parameters such as “number of vertices” or “number of
edges” could also be regarded as structural graph parameters.

Comparison of Parameters. In the following we describe a partial ordering of struc-
tural graph parameters. Let p1 and p2 be two structural graph parameters, then we
say that p1 is larger than p2 if there is a function f such that for all graphs G we have
that p2(G) ≤ f (p1(G)). In other words, a parameter p1 is larger than a parameter p2

if p1 can be used to upper-bound p2. Furthermore, if p1 is larger than p2, then we say
that p2 is smaller than p1. This notion creates a partial ordering on structural graph
parameters which we visualize for the parameters introduced above in Figure 2.3.
For a larger view on this partial ordering for structural graph parameters we refer to
Sorge and Weller [SW19]. If for two parameters p and p ′ have the property that p is
neither larger nor smaller than p ′, then we say that p and p ′ are incomparable.

Note that in the context of parameterized complexity theory, this partial ordering
allows us to draw conclusions of the following kind. Let p and p ′ be two structural
graph parameters such that p ′ is larger than p. If a problem is fixed-parameter
tractable with respect to a parameter p, then it is also fixed-parameter tractable

15

2 Preliminaries and Notation

with respect to the larger parameter p ′. If a problem is hard for a parameterized
complexity class (such as for example W[1]) with respect to p ′, then it is also hard for
this complexity class for the smaller parameter p.

Temporal Graph Parameters. There are several canonical ways to transfer a struc-
tural graph parameter from the static to the temporal setting. Let p be a structural
graph parameter. Two of the most obvious ways are the following. Let G = (V , (Ei)i∈[ℓ])
be a temporal graph.

1. We can consider the maximum of the parameter values of all layers, that
is, maxi∈[ℓ] p(Gi), which we abbreviate with pmax.

2. We can consider the parameter value of the underlying graph, that is, p(G↓),
which we abbreviate with p↓.

When comparing these two options, we can observe that we have different behaviors
depending on p. It is clear that any layer of a temporal graph is a (non-induced)
subgraph of the underlying graph, that is, we can obtain each layer of a temporal
graph by removing edges from the underlying graph. Hence we have the following
situation: Let G ′ = (V ,E ′) be a subgraph of G = (V ,E), that is, E ′ ⊆ E . If we have
that p(G) ≥ p(G ′), then it follows that p↓ is a larger parameter than pmax. This is
the case for most of the parameters we consider in this thesis, such as vertex cover
number, feedback vertex number, treedepth, maximum degree, and degeneracy.
However, there are also parameters where we have the opposite relation between
pmax and p↓. One parameter with this property that we consider is the domination
number. It is easy to see that this parameter is non-decreasing under edge removal.
Consider the extreme cases of a complete graph (which has domination number
one) and an edgeless graph (where the domination number equals the number of
vertices). Note that there are also cases where pmax and p↓ are incomparable.

Of course there are also many temporal graph parameters that do not fall into this
scheme. In Chapters 4 and 7 we will see examples of parameters of this kind.

2.5 Temporal Graph Problems vs. Multi-Layer Graph Problems

Multi-layer graph problems are related to temporal graph problems because the
mathematical object (a multi-layer graph) is very similar to a temporal graph. A
multi-layer graph is a set of vertices together with a collection of edge sets [Kiv+14].
In other words, if we remove the natural ordering of the edge sets from a temporal
graph, we obtain a multi-layer graph.

From a motivation and modelling standpoint, the multi-layer graphs are used if
the different layers model incomparable or orthogonal properties of the data. For

16

2.5 Temporal Graph Problems vs. Multi-Layer Graph Problems

example, different layers in a multi-layer graph modelling a social network can refer
to different types of relations (friends, family, co-workers, etc.) or different social
network platforms.

However, as we will see in this thesis, we can also have the case that in a temporal
graph problem the ordering of the layers does not play an important role. Formally,
we say that a temporal graph problem may be treated as a multi-layer graph problem
if it has the following property. Given a problem instance with a temporal graph
G = (V , (Ei)i∈[ℓ]), it holds that for every permutation π : [ℓ] → [ℓ] we have that the
instance containing G is a YES-instance if and only if the instance where G is replaced
by G ′ = (V , (Eπ(i))i∈[ℓ]) is a YES-instance.

17

CHAPTER 3

Restless Temporal Paths

The first problem we investigate in this thesis is a temporal version of one of the
most fundamental primitives in graph algorithmics: Computing a (shortest) path
between two vertices in a static graph. The static problem has been studied for
decades and also in the temporal setting it has received substantial attention in
recent years [Wu+16, XFJ03]. In a nutshell, temporal paths have to respect time, that
is, they may only move forward in time. More formally, the time edges used by a
temporal path either need to have increasing or at least non-decreasing time stamps.
It is well-known that computing temporal paths can be done in polynomial time. We
study a natural variant, where temporal paths may only dwell a certain given amount
of time steps in any vertex, which we call restless temporal paths. This small modifi-
cation creates a significant change in the computational complexity of the task of
finding temporal paths. We show that finding restless temporal paths is NP-complete
and give a thorough analysis of the (parameterized) computational complexity of
this problem. In particular, we show that the problem remains computationally hard
on temporal graphs with three layers and is W[1]-hard when parameterized by the
feedback vertex number of the underlying graph.

This chapter is based on the paper “The computational complexity of finding
temporal paths under waiting time constraints” by Casteigts et al. [Cas+20].

3.1 Introduction

Checking connectivity and computing shortest paths between vertices in a graph
is one of the most important tasks in graph algorithmics, both as a direct problem
setting and as a subroutine for numerous other applications. On static graphs, these
problems have been studied for decades. The study of temporal paths (sometimes
also called “journeys”) and temporal connectivity gained more and more attention
in the recent years. Intuitively, a temporal path is a path through a temporal graph
that “respects” time, that is, the time edges it uses have increasing or non-decreasing
time stamps. Even with this informal description we can already see that temporal
paths have some properties that usual paths in static (undirected) graphs do not
have.

19

3 Restless Temporal Paths

• Temporal paths are “directed” even in undirected temporal graphs: Since the
time stamps of the edges used by the path have to increase (or may not de-
crease), it is not necessarily possible to traverse a temporal path in the opposite
direction. This implies that the relation of “being connected” between vertices
is not symmetric in a temporal graph.

• Temporal paths cannot necessarily be “composed”: If there is a temporal path
from a vertex v to a vertex w and a temporal path from vertex w to a vertex u,
there is not necessarily a temporal path from v to u, since the path from w
to u might be “too early”. This implies that in temporal graphs the relation of
“being connected” between vertices is not transitive.

This puts some challenges on designing algorithms to check connectivity that are
not present in the static setting. We are in a somewhat similar situation when we
want to compute “shortest” temporal paths. There are several canonical notions
of a “shortest” or “optimal” temporal path. We informally describe the three most
important ones in the following.

• A shortest temporal path is a temporal path between two vertices that uses a
minimum number of time edges.

• A fastest temporal path is a temporal path between two vertices with a mini-
mum difference between the time stamps of the first and last time edge used
by the path.

• A foremost temporal path is a temporal path between two vertices with a
minimum time stamp on its last time edge.

Each one of these optimal temporal paths has some properties that shortest paths
in static graphs do not have, in particular, a “subpath” of an optimal path is not
necessarily optimal. Furthermore, we have that also temporal walks, which may visit
the same vertex multiple times, can be optimal (at least in the case of “fastest” and
“foremost”). All what we have seen above makes computing optimal temporal paths,
while still being polynomial-time solvable for the above three mentioned optimality
criteria, more challenging than computing their static counterpart.

In this chapter, we consider yet another natural type of temporal paths, which
we call restless temporal paths. Intuitively, a restless temporal path cannot stay in
any vertex longer than some given time period ∆. Consider the following motivating
example. In disease spreading scenarios it is very natural to model the spreading
process with a temporal network, where vertices correspond to individuals and time

20

3.1 Introduction

edges to for example physical contact, where infections can happen [Hol16]. Many
diseases have the property that infected individuals can recover (or die) after some
fixed time period and are immune afterwards7, the disease travels along restless
paths: It has to infect another individual before its current host recovers. If we
assume that a recovered person is immune to the disease afterwards, then the
disease cannot infect a host twice. Hence, it has to travel along a path with bounded
waiting times. This model for temporal paths has not received much attention of late.
It has been considered as a natural variant for temporal paths [HS12, PS11], but only
recently this model was studied from a computational perspective [Him+19, Him18,
Zsc17] where, however, mainly restless temporal walks were considered. Restless
temporal walks, that is, temporal paths with restricted maximum waiting times that
may visit vertices multiple times, can be found in polynomial time [Him+19]. In
this chapter, we focus on restless temporal paths, that is, any vertex can be visited at
most once. Surprisingly and in stark contrast to both restless temporal walks and
non-restless temporal paths, we show that it is NP-complete (even in very restricted
cases) to decide whether there exists a restless temporal path between two vertices.

3.1.1 Related Work

To the best of our knowledge, temporal paths and walks were first considered
by Göbel, Cerdeira, and Veldman [GCV91] in the context of information flow over
time. Other early work on temporal paths includes Berman [Ber96], where they were
also considered in the context of network flows, and the work of Kempe, Kleinberg,
and Kumar [KKK02], where they were considered in the context of connectivity and
separation problems. More systematic work with a focus on computing (optimal)
temporal paths as an algorithmic primitive (as opposed to a subroutine) was con-
ducted for example by Xuan, Ferreira, and Jarry [XFJ03], Wu et al. [Wu+16], and
Himmel et al. [Him+19]. They gave polynomial-time algorithms for finding optimal
temporal paths for several optimality criteria. Casteigts et al. [Cas+15b] studied the
problem from a distributed computing perspective.

Maximum waiting times have been considered as a natural variant for temporal
paths [HS12, PS11], however only recently this model has been studied from an
algorithmic standpoint [Him+19] and only in the context of temporal walks, where in
particular, they showed that restless temporal walks can be computed in polynomial
time. Casteigts et al. [Cas+15a] studied temporal paths with maximum waiting times
in the context of analyzing the expressivity of temporal graphs. In the context of

7This is a standard assumption in the SIR-model (Susceptible-Infected-Recovered), a canonical spreading
model for diseases that give immunity upon recovery [Bar16, New18].

21

3 Restless Temporal Paths

temporal flows, a concept somewhat similar to maximum waiting times, called
“vertex buffers”, has been considered by Akrida et al. [Akr+19a].

Further work related to temporal paths and connectivity in temporal graphs in-
cludes research on temporal spanners and temporally connected graphs [AF16,
Akr+17, CPS19, MMS19], temporal graph exploration [Akr+19b, AMS19, BZ19, EHK15,
Erl+19, ES18, FMS13], modifying temporal graphs to increase or decrease connec-
tivity [EMS21, Enr+19], and a temporal version of the TRAVELING SALES PERSON

problem [MS16]. For related work on temporal separators we refer to Section 4.1.1.

3.1.2 Our Contributions and Organization of the Chapter

Our contributions are mainly computational hardness results. To the best of our
knowledge, we are the first to establish NP-hardness of the problem of computing
a restless temporal path between two vertices. We show that the problem is NP-
hard even if the input temporal graph has only three layers. The reduction we
present also implies some running time lower bounds based on the Exponential
Time Hypothesis. We further show that finding restless temporal paths is W[1]-hard
when parameterized by the feedback vertex number of the underlying graph of the
input temporal graph. We discuss how these computational hardness results relate
to algorithmic results from Casteigts et al. [Cas+20] that are not part of this thesis.

In Section 3.2 we formally introduce all necessary concepts related to temporal
paths that we need in this chapter, we formally define our problem setting and report
some basic observations about the problem. In Section 3.3 we present our main
computational hardness results and discuss how they relate to known tractability
results. We conclude in Section 3.4.

3.1.3 Further Contributions of the Manuscript this Chapter is Based on

Additionally to the contributions we present in this chapter, Casteigts et al. [Cas+20]
show that finding shortest restless temporal paths is fixed-parameter tractable when
parameterized by the maximum number of time edges used by the path. They further
show that finding restless temporal paths is fixed-parameter tractable when parame-
terized by the feedback edge number of the underlying graph. Finally, they introduce
a novel temporal version of the “feedback vertex number”-parameter which they call
timed feedback vertex number. They show how to compute this parameter and that
finding restless temporal paths is fixed-parameter tractable when parameterized by
the timed feedback vertex number.

22

3.2 Preliminaries

3.2 Preliminaries

In this section, we formally introduce the most important concepts related to
temporal paths and walks and give the formal problem definitions of RESTLESS

TEMPORAL (s, z)-PATH and SHORT RESTLESS TEMPORAL (s, z)-PATH.

3.2.1 Temporal Walks and Paths

Intuitively, a temporal path (sometimes also called “journey”) is a path through a
temporal graph that respects time, that is, the time edges it uses have non-decreasing
time stamps. A temporal walk may visit the same vertex multiple times. Formally,
these two concepts are defined as follows.

Definition 3.1 (Temporal Walk / Temporal Path). A temporal walk of length n from
vertex s to vertex z in a temporal graph G = (V , (Ei)i∈[ℓ]) is a sequence P = (︁

({s =
v0, v1}, t1), ({v1, v2}, t2), . . . , ({vn−1, vn = z}, tn)

)︁
of edges together with time stamps such

that for all i ∈ [n] we have that {vi−1, vi } ∈ Ei and for all i ∈ [n −1] we have that ti ≤ ti+1.
Moreover, we call P a temporal path of length n if vi ̸= v j for all i , j ∈ {0, . . . ,n} with
i ̸= j .

Given a temporal path P = (︁
({v0, v1}, t1), ({v1, v2}, t2), . . . , ({vn−1, vn}, tn)

)︁
, we denote

the set of vertices visited by P by V (P) = {v0, v1, . . . , vn}.

3.2.2 Restless Temporal Walks and Paths

A restless temporal path is not allowed to wait an arbitrary amount of time in a
vertex, but has to leave any vertex it visits within the next ∆-window, for some given
value for ∆. Analogously to the non-restless case, a restless temporal walk may visit a
vertex multiple times. Formally, they are defined as follows.

Definition 3.2 (Restless Temporal Walk / Restless Temporal Path). A ∆-restless tem-
poral walk of length n from vertex s to vertex z in a temporal graph G = (V , (Ei)i∈[ℓ]) is a
sequence P = (︁

({s = v0, v1}, t1), ({v1, v2}, t2), . . . , ({vn−1, vn = z}, tn)
)︁

of edges together with
time stamps such that for all i ∈ [n] we have that {vi−1, vi } ∈ Ei and for all i ∈ [n−1] we
have that ti ≤ ti+1 ≤ ti +∆. Moreover, we call P a ∆-restless temporal path of length n
if vi ̸= v j for all i , j ∈ {0, . . . ,n} with i ̸= j . We say that P respects the maximum waiting
time ∆.

In Figure 3.1 we give an example: we are given the depicted temporal graph,
vertices s and z, and the time bound ∆ = 2. Here, (({s,d},2), ({d ,b},4), ({b, z},6)) is
a ∆-restless temporal (s, z)-path, but (({s,b},1), ({b, z},6)) is not because the wait-
ing time at b exceeds ∆. Furthermore (({s,b},1), ({b,c},2), ({c,d},4), ({d ,b},4), ({b, z},6))

23

3 Restless Temporal Paths

s

a

b

cd

z

3

1

4

22

4

4

6

2

Figure 3.1: Example of a temporal graph whose edges are labeled with time stamps. Bold red
edges form a 2-restless temporal (s, z)-path.

is a ∆-restless temporal walk but not a path because it visits vertex b twice. Fi-
nally, (({s, a},3), ({a,c},4), ({c,d},4), ({d ,b},4), ({b, z},6)) is a ∆-restless temporal (s, z)-
path for ∆= 2 because the waiting time at the source is not taken into consideration.

Having Definition 3.2 definition at hand, we are ready to define the main decision
problem of this chapter.

RESTLESS TEMPORAL (s, z)-PATH

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
an integer ∆≤ ℓ.

Question: Is there a ∆-restless temporal path from s to z in G ?

We also consider a variant, where we want to find ∆-restless paths of a certain
maximum length.

SHORT RESTLESS TEMPORAL (s, z)-PATH

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
two integers k ∈N and ∆≤ ℓ.

Question: Is there a ∆-restless temporal path of length at most k from s to z
in G ?

RESTLESS TEMPORAL (s, z)-PATH is the special case of SHORT RESTLESS TEMPORAL

(s, z)-PATH for k = |V |−1, since no ∆-restless temporal path in a graph G = (V , (Ei)i∈[ℓ])
can have length more than |V | −1. Furthermore, both RESTLESS TEMPORAL (s, z)-
PATH and SHORT RESTLESS TEMPORAL (s, z)-PATH are clearly contained in NP since,
given a temporal path, we can easily verify in polynomial time whether it is ∆-restless.

24

3.2 Preliminaries

G1

1

G2

2

· · · G∆

∆

(V ,∅)

∆+1

G∆+1

∆+2

· · · G2∆

2∆+1

(V ,∅)

2∆+2

· · · · · · · · · Gℓ

ℓ+⌊ℓ/∆⌋

Figure 3.2: Inserting trivial layers to reduce RESTLESS TEMPORAL (s, z)-PATH on instances
(G , s, z,∆) to RESTLESS TEMPORAL (s, z)-PATH on instances (G , s, z,∆+1).

3.2.3 Basic Observations

It is easy to observe that computational hardness of RESTLESS TEMPORAL (s, z)-
PATH for some fixed value of ∆ implies hardness for all larger values of ∆. This allows
us to construct hardness reductions for small fixed values of ∆ and still obtain general
hardness results.

Observation 3.1. For every fixed ∆, RESTLESS TEMPORAL (s, z)-PATH on instances
(G , s, z,∆+1) is computationally at least as hard as RESTLESS TEMPORAL (s, z)-PATH

on instances (G , s, z,∆).

Proof. The result immediately follows from the observation that a temporal graph G

contains a ∆-restless temporal (s, z)-path if and only if the temporal graph G ′ contains
a (∆+1)-restless temporal (s, z)-path, where G ′ is obtained from G by inserting one
trivial (that is, edgeless) layer after every ∆ consecutive layers (see Figure 3.2).

Furthermore, we can show that RESTLESS TEMPORAL (s, z)-PATH does not admit a
polynomial kernel when parameterized by the number |V | of vertices.

Proposition 3.2. RESTLESS TEMPORAL (s, z)-PATH parameterized by the number |V |
of vertices does not admit a polynomial kernel for all ∆≥ 1 unless NP ⊆ coNP/poly.

Proof. We provide an OR-cross-composition (for a definition see Section 2.3) from
RESTLESS TEMPORAL (s, z)-PATH onto itself. Intuitively, we can just string together
instances in the time axis such that the large instance contains a ∆-restless tempo-
ral (s, z)-path if and only if one of the original instances contains one.

We define an equivalence relation R as follows: Two instances (G = (V , (Ei)i∈[ℓ]), s, z,∆)
and (G ′ = (V ′, (E ′

i)i∈[ℓ′]), s ′, z ′,∆′) are equivalent under R if and only if |V | = |V ′| and
∆=∆′. Clearly, R is a polynomial equivalence relation.

Now let (G1 = (V1, (E1,i)i∈[ℓ1]), s1, z1,∆1), . . . , (Gn = (Vn , (En,i)i∈[ℓn]), sn , zn ,∆n) be R-equi-
valent instances of RESTLESS TEMPORAL (s, z)-PATH. We construct a temporal graph
G⋆ = (V ⋆, (E⋆

i)i∈[ℓ⋆]) as follows. Let |V ⋆| = |V1| and s⋆, z⋆ ∈ V ⋆. We identify all ver-
tices si with i ∈ [n] with each other and with s⋆, that is, s⋆ = s1 = . . . = sn . Analogously,
we identify all vertices zi with i ∈ [n] with each other and with z⋆, that is, z⋆ = z1 =

25

3 Restless Temporal Paths

. . . = zn . We arbitrarily identify the remaining vertices of the instances with the re-
maining vertices from V ⋆, that is, let V ⋆ \ {s⋆, z⋆} =V1 \ {s1, z1} = . . . =Vn \ {sn , zn }. Now
let E⋆

1 = E1,1,E⋆
2 = E1,2, . . . ,E⋆

ℓ1
= E1,ℓ1 . Intuitively, the first instance (G1 = (V1, (E1,i)i∈[ℓ1])

essentially forms the first ℓ1 layers of G⋆. Then we introduce ∆1 +1 trivial layers, that
is, E⋆

ℓ1+1 = E⋆
ℓ1+2 = . . . = E⋆

ℓ1+∆+1 =∅. Then we continue in the same fashion with the
second instance and so on. We have that ℓ⋆ =∑︁

i∈[n] ℓi + (n −1) · (∆1 +1). Finally, we
set ∆⋆ =∆1.

This instance can be constructed in polynomial time and the number of vertices
is the same as the vertices of the input instances, hence |V ⋆| is polynomially upper-
bounded by the maximum size of an input instance. Furthermore, it is easy to check
that G⋆ contains a ∆⋆-restless temporal (s⋆, z⋆)-path if and only if there is an i ∈ [n]
such that Gi contains a ∆i -restless temporal (si , zi)-path. This follows from the fact
that all instances are separated in time by ∆1 +1 trivial layers, hence no ∆⋆-restless
temporal (s⋆, z⋆)-path can use time edges from different original instances. Since
RESTLESS TEMPORAL (s, z)-PATH is NP-hard (Theorem 3.3) the result follows.

3.2.4 Optimality Concepts for Temporal Paths

In contrast to the static setting, there are several canonical notions of a “shortest”
or “optimal” temporal path. We informally describe the three most important ones
in the following and then give their formal definitions. For convenience, we repeat
the informal description from the introduction here.

• A shortest temporal path is a temporal path between two vertices that uses a
minimum number of time edges.

• A fastest temporal path is a temporal path between two vertices with a mini-
mum difference between the time stamps of the first and last time edge used
by the path.

• A foremost temporal path is a temporal path between two vertices with a
minimum time stamp on its last time edge.

Formally, they are defined as follows.

Definition 3.3 (Optimal Temporal Path). Let G = (V , (Ei)i∈[ℓ]) be a temporal graph
with two vertices s, z ∈V and let P = (︁

({s = v0, v1}, t1), ({v1, v2}, t2), . . . , ({vn−1, vn = z}, tn)
)︁

be a temporal (s, z)-path. We call P

• a shortest temporal (s, z)-path, if there is no temporal (s, z)-path P ′ = (︁
({s =

v0, v ′
1}, t ′1), ({v ′

1, v ′
2}, t ′2), . . . , ({v ′

n′−1, v ′
n′ = z}, t ′n′)

)︁
with n′ < n in G ,

26

3.3 Finding Restless Temporal Paths

• a fastest temporal (s, z)-path, if there is no temporal (s, z)-path P ′ = (︁
({s =

v0, v ′
1}, t ′1), ({v ′

1, v ′
2}, t ′2), . . . , ({v ′

n′−1, v ′
n′ = z}, t ′n′)

)︁
with t ′n′ − t ′1 < tn − t1 in G , and

• a foremost temporal (s, z)-path, if there is no temporal (s, z)-path P ′ = (︁
({s =

v0, v ′
1}, t ′1), ({v ′

1, v ′
2}, t ′2), . . . , ({v ′

n′−1, v ′
n′ = z}, t ′n′)

)︁
with t ′n′ < tn in G .

These concepts transfer to ∆-restless temporal paths in a straightforward way.
For an overview on further optimality concepts for temporal graphs we refer to
Himmel et al. [Him+19] and Himmel [Him18].

3.2.5 Strict vs. Non-Strict Temporal Paths

Let us briefly discuss the concept of strict temporal paths and how it differs from
the model we use here. In contrast to a (non-strict) temporal path (see Definition 3.1),
the edges used by a strict temporal path need to have strictly increasing time stamps.
Strict restless paths are defined in an analogous way. In this chapter, we focus on
non-strict temporal paths and we believe that most of our results transfer to this
setting, although we do not discuss this here. However, we remark that for some
problem settings, the two models can behave quite differently [Zsc+20]. One obvious
difference is that the length of a strict temporal path in a temporal graph is upper-
bounded by the lifetime of the temporal graph, which allows for some tractability
results for temporal graphs with small lifetime, whereas it is often not clear whether
similar results also hold for the non-strict temporal path model [Zsc+20].

3.3 Finding Restless Temporal Paths

In this section we thoroughly analyze the computational hardness of RESTLESS

TEMPORAL (s, z)-PATH which of course transfers also to SHORT RESTLESS TEMPORAL

(s, z)-PATH.

3.3.1 NP-Hardness for Few Layers

We start by showing that RESTLESS TEMPORAL (s, z)-PATH is NP-complete even if
the lifetime of the input temporal graph is constant. To do this we present a reduction
from EXACT (3,4)-SAT [Tov84], a variant of 3-SAT where every variable appears in
exactly four clauses and every clause has exactly three literals. The intuitive idea
it that we create a variable gadget that a restless temporal path from s to z has to
pass where the path can take two different routes for every variable, modeling an
assignment for the formula. Then afterwards in the clause gadgets, the restless
temporal path has to go through these vertices again at a later point in time, and this
should only be possible if every clause is satisfied by the assignment modeled by the

27

3 Restless Temporal Paths

first part of the path. The waiting time ∆ prevents the restless temporal path from
taking “shortcuts”, that is, entering the clause gadgets earlier than it is supposed
to. This is critical and the reason why this reduction fails for non-restless temporal
paths.

Theorem 3.3. RESTLESS TEMPORAL (s, z)-PATH is NP-complete for all ∆ ≥ 1 and
ℓ≥∆+2 even if the underlying graph has maximum degree six and every edge has
only one time stamp.

Proof. We show this result by a polynomial-time reduction from the NP-complete
EXACT (3,4)-SAT problem [Tov84]. The problem EXACT (3,4)-SAT asks whether a
given Boolean formula φ is satisfiable and is in conjunctive normal form where each
clause has exactly three literals and each variable appears in exactly four clauses.

Let φ be an instance of EXACT (3,4)-SAT with n variables and m clauses. We
construct a temporal graph G = (V , (Ei)i∈[ℓ]) with ℓ= 3 (note that to get larger values
for ℓ, we can simply append trivial layers to the constructed instance) consisting
of a series of variable gadgets followed by a dedicated vertex sn and then a series of
clause gadgets. It is constructed in a way such that for ∆= 1, any ∆-restless temporal
(s, z)-path has to visit a vertex sn and each possible ∆-restless temporal (s, sn)-path
represents exactly one variable assignment for the formula φ. Further we show
that for any ∆-restless temporal (s, sn)-path it holds that it can only be extended to
a ∆-restless temporal (s, z)-path if and only if the ∆-restless temporal (s, sn)-path
represents a satisfying assignment for the formula φ.

Variable Gadget. We start by adding a vertex s to the vertex set V of G . For each
variable xi with i ∈ [n] of φ, we add nine fresh vertices to V : x(1)

i , x(2)
i , x(3)

i , x(4)
i , x̄(1)

i ,
x̄(2)

i , x̄(3)
i , x̄(4)

i , and si . Each variable xi is represented by a gadget consisting of two
disjoint path segments of four vertices each. One path segment is formed by x(1)

i ,
x(2)

i , x(3)
i , and x(4)

i in that order and the second path segment is formed by x̄(1)
i , x̄(2)

i ,
x̄(3)

i , and x̄(4)
i in that order. The connecting edges all appear exclusively at time step

one, that is, {x(1)
i , x(2)

i }, {x(2)
i , x(3)

i }, and {x(3)
i , x(4)

i } are added to E1. Analogously for the
edges connecting x̄(1)

i , x̄(2)
i , x̄(3)

i , and x̄(4)
i . Intuitively, if a ∆-restless temporal (s, z)-path

passes the first segment, then this corresponds to setting the variable xi to false.
If it passes the second segment, then the variable is set to true. For all i ∈ [n −1]
we add the edges {x(4)

i , si }, {x̄(4)
i , si }, {si , x̄(1)

i+1}, and {si , x̄(1)
i+1} to E1 and, additionally, we

add {s, x(1)
1 }, {s, x̄(1)

1 }, {x(4)
n , sn }, and {x̄(4)

n , sn} to E1.
We can observe that there are exactly 2n different temporal (s, sn)-paths at time

step one. Intuitively, each path represents exactly one variable assignment for the
formula φ.

28

3.3 Finding Restless Temporal Paths

s

x1 x2 x3

sn

s ′

c1cici+1

z

Figure 3.3: Illustration of the temporal graph constructed by the reduction in the proof of
Theorem 3.3. An excerpt is shown with variable gadgets for x1, x2, and x3 and the clause
gadget for ci = (x1 ∨x2 ∨¬x3), where x1 appears for the fourth time, x2 appears for the third
time, and x3 also appears for the third time. Black edges appear at time step one, the light
blue edge {sn , s′} appears at time step two, and the dashed red edges appear at time step three.

Clause Gadget. We add a vertex z to V . For each clause c j with j ∈ [m] we add a
fresh vertex c j to V . We further add a vertex s ′ to V and add the edge {sn , s ′} to E2.
Let xi (or x̄ i) be a literal that appears in clause c j and let this be the kth appearance
of variable xi in φ. Then, we add the edges {c j , x(k)

i }, {x(k)
i ,c j+1} (or {c j , x̄(k)

i }, {x̄(k)
i ,c j+1})

to E3 (where cm+1 = z). Finally, we add the edge {s ′,c1} to E3.
Hence, there are exactly 3m different temporal (s ′, z)-paths at time step three. Each

path must visit the clause vertices c1, . . . ,cm in the given order by construction.
Finally, we set ∆ = 1. This finishes the construction, for a visualization see Fig-

ure 3.3. Note that in the underlying graph the vertices ci corresponding to the clauses
have degree six and the vertices corresponding to variables as well as all auxiliary
vertices have degree at most four. Further, it is easy to check that every edge in the
constructed temporal graph has only one time step and that the temporal graph can
be computed in polynomial time.

Correctness. We show that φ is satisfiable if and only if G has a ∆-restless temporal
(s, z)-path.

(⇒): Let us assume that there is a satisfying assignment for formula φ. Then we
construct a ∆-restless temporal path from vertex s to z as follows. Starting from s, for
each variable xi of φ the ∆-restless temporal path passes through the variables x(1)

i ,
x(2)

i , x(3)
i , and x(4)

i , if xi is set to false, and x̄(1)
i , x̄(2)

i , x̄(3)
i , and x̄(4)

i , if xi is set to true, at
time step one. The ∆-restless temporal path arrives at time step one in the vertex sn .
In time step two it goes from sn to s ′.

At time step three, the ∆-restless temporal path can be extended to c1. In each

29

3 Restless Temporal Paths

clause c j for j ∈ [m] there is at least one literal xi (or x̄ i) that is evaluated to true.
Let c j be the kth clause in which xi appears. We have that, depending on whether xi

is set to true (or false), the vertex x(k)
i (or x̄(k)

i) has not been visited so far. Hence, the
∆-restless temporal path can be extended from c j to c j+1 (or to z for j = m) at time
step three via x(k)

i (or x̄(k)
i). Thus, there exists a ∆-restless temporal (s, z)-path in G .

(⇐): Let us assume that there exists a ∆-restless temporal (s, z)-path in the con-
structed temporal graph G . Note that any ∆-restless temporal (s, z)-path must
reach sn in time step one because the variable gadget has only edges at time step one
and the waiting time ∆= 1 prevents the path to enter the clause gadget (which only
has edges at time step three) before using the edge {sn , s ′} at time step two.

It is easy to see that for the first part of the ∆-restless temporal path from s to sn

it holds that for each i ∈ [n], it visits either vertices x(1)
i , x(2)

i , x(3)
i , and x(4)

i , or vertices
x̄(1)

i , x̄(2)
i , x̄(3)

i , and x̄(4)
i . In the former case we set xi to false and in the latter case we

set xi to true. We claim that this produces a satisfying assignment for φ.
In time step three, the part of the ∆-restless temporal path from s ′ to z has to

pass vertices c1,c2, . . . ,cm to reach z. The ∆-restless temporal path passes exactly one
variable vertex x(k)

i (or x̄(k)
i) when going from c j to c j+1 (and finally from cm to z) that

has not been visited so far and that corresponds to a variable that appears in the
clause c j for the kth time. The fact that the variable vertex was not visited implies that
we set the corresponding variable to a truth value that makes it satisfy clause c j . This
holds for all j ∈ [m]. Hence, each clause is satisfied by the constructed assignment
and, consequently, φ is satisfiable.

This result also implies that parameterizing RESTLESS TEMPORAL (s, z)-PATH by
the maximum degree of the underlying graph or other smaller structural graph
parameters of the underlying graph cannot yield fixed-parameter tractability unless
P = NP, even if combined with the lifetime ℓ.

Furthermore, the reduction presented in the proof of Theorem 3.3 yields the
following running time lower bound assuming the Exponential Time Hypothesis
(ETH) [IP01, IPZ01].

Corollary 3.4. RESTLESS TEMPORAL (s, z)-PATH does not admit an f (ℓ)o(|G |)-time
algorithm for any computable function f unless the ETH fails.

Proof. First, note that any 3-SAT formula with m clauses can be transformed into an
equisatisfiable EXACT (3,4)-SAT formula with O(m) clauses [Tov84]. The reduction
presented in the proof of Theorem 3.3 produces an instance of RESTLESS TEMPORAL

(s, z)-PATH with a temporal graph of size |G | ∈O(m) and ℓ= 3. Hence an algorithm
for RESTLESS TEMPORAL (s, z)-PATH with running time f (ℓ)o(|G |) for some computable

30

3.3 Finding Restless Temporal Paths

function f would imply the existence of a 2o(m)-time algorithm for 3-SAT. This is a
contradiction to the ETH [IP01, IPZ01].

We use this result in Section 3.3.3 to show that an algorithm by Casteigts et al.
[Cas+20] is presumably asymptotically optimal.

3.3.2 W[1]-Hardness for Feedback Vertex Number

In the following, we show that RESTLESS TEMPORAL (s, z)-PATH is W[1]-hard when
parameterized by the feedback vertex number of the underlying graph. Intuitively
this means that even if the underlying graph on an input temporal graph is very
similar to a forest, we presumably cannot solve the problem very efficiently (that is,
in FPT-time). We show this with a parameterized reduction from MULTICOLORED

CLIQUE, where we are asked whether a given k-partite graph contains a clique of
cardinality k. The main idea it that we create a selection gadget for each vertex part
that any restless temporal path from s to z has to traverse, where it has to visit path
segments corresponding to all but one of the vertices of that part, thereby selecting
one vertex. Afterwards, in a validation gadget, the restless temporal path has to
traverse the non-visited path segments which is only possible if the selected vertices
form a clique. As in the reduction from the previous section, the waiting times that
the restless temporal path has to respect prevent it from taking “shortcuts”, that is,
entering the validation gadget before having traversed all vertex selection gadgets.

Theorem 3.5. RESTLESS TEMPORAL (s, z)-PATH parameterized by the feedback vertex
number of the underlying graph is W[1]-hard for all ∆≥ 1 even if every edge has only
one time stamp.

Proof. We present a parameterized polynomial-time reduction from MULTICOLORED

CLIQUE where, given a k-partite graph H = (U1⊎U2⊎. . .⊎Uk ,F), we are asked to decide
whether H contains a clique of cardinality k. MULTICOLORED CLIQUE is known to be
W[1]-hard when parameterized by the clique size k [Fel+09].

Let (H = (U1 ⊎U2 ⊎ . . .⊎Uk ,F),k) be an instance of MULTICOLORED CLIQUE. For
each i , j ∈ [k] with i < j let Fi , j = {{u, v} ∈ F | u ∈Ui ∧v ∈U j } be the set of edges between
vertices in Ui and U j . We assume that k ≥ 3, otherwise we can solve the instance in
polynomial time. Without loss of generality, we assume that for all i , j , i ′, j ′ ∈ [k] with
i < j and i ′ < j ′ we have that |Fi , j | = |Fi ′ , j ′ | = m for some m ∈N. Note that if this is not
the case, then we add new vertices and single edges to increase the cardinality of
some set Fi , j and this does not introduce new cliques since k ≥ 3. We further assume
without loss of generality that |U1| = |U2| = . . . = |Uk | = n for some n ∈N. If this is not
the case, then we can add additional isolated vertices to increase the cardinality

31

3 Restless Temporal Paths

of some set Ui . We construct a temporal graph G = (V , (Ei)i∈[ℓ]) with two distinct
vertices s, z ∈ V such that there is a ∆-restless temporal (s, z)-path in G if and only
if H contains a clique of size k. Furthermore, we show that the underlying graph G↓
of G has a feedback vertex number in O(k2).

Vertex Selection Gadgets. For each set Ui with i ∈ [k] of the vertex set of H we create
the following gadget. Let Ui = {u(i)

1 ,u(i)
2 , . . . ,u(i)

n }. We create a path of length k ·n +n +
1 on fresh vertices w (i)

1 , v (i)
1,1, v (i)

1,2, . . . , v (i)
1,k , w (i)

2 , v (i)
2,1, . . . , v (i)

n,k , w (i)
n+1. Intuitively, this path

contains a segment of length k for each vertex in Ui which are separated by the
vertices w (i)

j , and the construction will allow a ∆-restless temporal (s, z)-path to skip
exactly one of these segments, which is going to correspond to selecting this vertex
for the clique.

Formally, for each vertex u(i)
j ∈Ui we create k vertices v (i)

j ,1, v (i)
j ,2, . . . , v (i)

j ,k , which we

call the segment corresponding to u(i)
j . We further create vertices w (i)

1 , w (i)
2 , . . . , w (i)

n+1.

For all j ∈ [n] and x ∈ [k −1] we connect vertices v (i)
j ,x and v (i)

j ,x+1 with an edge at time

(i −1) ·n+ j and we connect w (i)
j with v (i)

j ,1 and w (i)
j+1 with v (i)

j ,k at time (i −1) ·n+ j each.

Lastly, we introduce a “skip vertex” s(i) that will allow a ∆-restless temporal (s, z)-
path to skip one path segment of length k that corresponds to one of the vertices
in Ui . For each j ∈ [n + 1], we connect vertices s(i) and w (i)

j with an edge at time
(i −1) ·n + j .

Now we connect the gadgets for all Ui ’s in sequence, that is, a ∆-restless tempo-
ral (s, z)-path passes through the gadgets one after another, selecting one vertex of
each part Ui . Formally, for all i ∈ [k −1], we connect vertices w (i)

n+1 and w (i+1)
1 with an

edge at time i ·n +1. It is easy to check that the set {s(1), s(2), . . . , s(k)} forms a feedback
vertex set of size k for the vertex selection gadgets. The vertex selection gadget is
visualized in Figure 3.4.

Validation Gadgets. A ∆-restless temporal (s, z)-path has to pass through the vali-
dation gadgets after it passed through the vertex selection gadgets. Intuitively, this
should only be possible if the selected vertices form a clique. We construct the gadget
in the following way.

For each i , j ∈ [k] with i < j let the edges in Fi , j be ordered in an arbitrary way,
that is, Fi , j = {e (i , j)

1 ,e (i , j)
2 , . . . ,e (i , j)

m }. We create two paths of length 2m on fresh ver-
tices v (i , j)

1,1 , v (i , j)
1,2 , v (i , j)

2,1 , v (i , j)
2,2 , . . . , v (i , j)

m,2 and v (i , j)
1,3 , v (i , j)

1,4 , v (i , j)
2,3 , v (i , j)

2,4 , . . . , v (i , j)
m,4 , respectively. In-

tuitively, the first path selects an edge from Ui to U j and the transition to the second
path should only be possible if the two endpoints of the selected edge are selected in
the corresponding vertex selection gadgets.

Formally, for each edge e (i , j)
h ∈ Fi , j we create four vertices v (i , j)

h,1 , v (i , j)
h,2 , v (i , j)

h,3 , v (i , j)
h,4 . Fur-

32

3.3 Finding Restless Temporal Paths

s

s(1)

w (1)
1 v (1)

1,1 v (1)
1,2 v (1)

1,3 v (1)
1,k w (1)

2 w (1)
3 w (1)

n w (2)
1

Figure 3.4: Visualization of the vertex selection gadget for U1 from the reduction of Theo-
rem 3.5. Black edges appear at time step one, red edges at time step two, blue edges at time
step three, green edges at time step n −1, and orange edges at time step n. For the segment

corresponding to u(1)
1 ∈U1 all vertex names are presented, for the other segments the names

are analogous but omitted. The auxiliary w (1)
1 , . . . , w (1)

n , . . . vertices are colored gray. The “skip

vertex” s(1) is colored yellow. Note that {s(1)} is a feedback vertex set for the vertex selection
gadget for U1.

thermore, we introduce three extra vertices s(i , j)
1 , s(i , j)

2 , s(i , j)
3 . For all h ∈ [m] we connect

vertices v (i , j)
h,1 and v (i , j)

h,2 with an edge at time yi , j + 2h − 1, we connect vertices v (i , j)
h,1

and s(i , j)
1 with an edge at time yi , j +2h −1, we connect vertices v (i , j)

h,3 and v (i , j)
h,4 with

an edge at time yi , j +2h −1, we connect vertices v (i , j)
h,3 and s(i , j)

3 with an edge at time

yi , j +2h−1, and if h < m, then we connect vertices v (i , j)
h,2 and v (i , j)

h+1,1 with an edge at time

yi , j +2h and we connect vertices v (i , j)
h,4 and v (i , j)

h+1,3 with an edge at time yi , j +2h, where
yi , j = k ·n+2m ·(i · j + 1

2 · i ·(i −1)−1) (the value of yi , j can be interpreted as a “time off-
set” for the validation gadget for Fi , j , the value is computed by adding all time steps
needed in validation gadget for Fi ′ , j ′ with i ′ < j ′, i ′ ≤ i , j ′ ≤ j , and (i ′, j ′) ̸= (i , j)). Next,
for each edge e (i , j)

h = {u(i)
a ,u(j)

b } ∈ Fi , j we connect vertices s(i , j)
1 and v (i)

a, j (from the vertex

selection gadget for Ui) with an edge at time yi , j +2h −1, we connect vertices s(i , j)
2

and v (i)
a, j with an edge at time yi , j +2h −1, we connect vertices s(i , j)

2 and v (j)
b,i (from

the vertex selection gadget for U j) with an edge at time yi , j +2h −1, and we connect
vertices s(i , j)

3 and v (j)
b,i with an edge at time yi , j +2h −1.

Now we connect the gadgets for all Fi , j ’s in sequence, that is, a ∆-restless tempo-
ral (s, z)-path passes through the gadgets one after another, selecting one edge of
each part Fi , j of the edge set F . Formally, for each i , j ∈ [k] with i < j , if i < j −1, then
we connect vertices v (i , j)

m,4 and v (i+1, j)
1,1 with an edge at time yi+1, j , and if i = j −1 < k −1,

then we connect vertices v (i , j)
m,4 and v (1, j+1)

1,1 with an edge at time y1, j+1. It is easy to

check that the set {s(1,2)
1 , s(1,2)

2 , s(1,2)
3 , s(1,3)

1 , . . . , s(1,k)
3 , . . . s(k−1,k)

3 } forms a feedback vertex set

33

3 Restless Temporal Paths

v (i , j)
h,1 s(i , j)

1 s(i , j)
2 s(i , j)

3
v (i , j)

h,3

v (i)
a, j v (j)

b,i

Ui U j

Figure 3.5: Visualization of the validation gadget for Fi , j from the reduction of Theorem 3.5.
The “first path” of the gadget is depicted vertically on the left, the “second path” on the right.

The connections to the vertex selection gadgets for the edge e
(i , j)
h = {u(i)

a ,u
(j)
b } ∈ Fi , j are

depicted. The edges in dashed red correspond to the path through the gadget if edge e
(i , j)
h

is “selected” and all these edges have the same time stamp. The vertex selection gadgets
corresponding to Ui and U j are depicted as triangles in the upper center part. The three

vertices s
(i , j)
1 , s

(i , j)
2 , and s

(i , j)
3 are colored yellow. Note that they form a feedback vertex set for

the validation gadget for Fi , j .

of size 3 · (︁k
2

)︁
for the validation gadgets. For an illustration see Figure 3.5.

Finally, we create two new vertices s and z, we connect vertices s and w (1)
1 (the “first”

vertex of the vertex selection gadgets) with an edge at time one, we connect vertices
s and s(1) (the “skip vertex” of the first vertex selection gadget) with an edge at time
one, and we connect z and v (k−1,k)

m,4 (the “last” vertex of the validation gadgets) with an
edge at time k ·n+m · (3k2 +5k +3), which is the time that a ∆-restless temporal (s, z)-
path needs to pass through all gadgets. We further connect vertices w (k)

n+1 and v (1,2)
1,1

(connecting the vertex selection gadgets and the validation gadgets) with an edge at
time k ·n. Finally, we set ∆= 1. This completes the construction. It is easy to check
that G can be constructed in polynomial time and that the feedback vertex number
of G↓ is at most k +3 · (︁k

2

)︁
and that every edge has only one time stamp.

34

3.3 Finding Restless Temporal Paths

Correctness. Now we show that H contains a clique of size k if and only if there is a
∆-restless temporal path from s to z in G .

(⇒): Assume that H contains a clique of size k and let X ⊆ V (H) with |X | = k
be the set of vertices that form the clique in H . Now we show how to construct
a ∆-restless temporal (s, z)-path in G . Note that since H is k-partite, we have
that |Ui ∩ X | = 1 for all i ∈ [k]. The temporal path starts at vertex s in G and then
first passes through the vertex selection gadgets. If u(i)

j ∈ X for some i ∈ [k] and

j ∈ [n], then the temporal path skips the segment corresponding to u(i)
j in the ver-

tex selection gadget for Ui . More formally, the temporal path follows the vertices
w (i)

1 , v (i)
1,1, v (i)

1,2, . . . , v (i)
1,k , w (i)

2 , . . . , v (i)
j−1,k , w (i)

j , s(i), w (i)
j+1, v (i)

j+1,1, . . . , v (i)
n,k , w (i)

n+1 in that order, that

is, it skips vertices v (i)
j ,1, v (i)

j ,2, . . . , v (i)
j ,k . It is easy to check that the time labels of the edges

in the vertex selection gadget allow for a restless temporal path as described that
respects the waiting time ∆.

In the validation gadget for Fi , j with i < j , the path “selects” the edge (Ui ∩X)∪(U j ∩
X) ∈ Fi , j that connects the vertices from the parts Ui and U j that are contained in the
clique X . Let (Ui ∩X)∪(U j ∩X) = {u(i)

a ,u(j)
b } = e (i , j)

h ∈ Fi , j . Formally, the path follows ver-

tices v (i , j)
1,1 , v (i , j)

1,2 , v (i , j)
2,1 , v (i , j)

2,2 , . . . , v (i , j)
h,1 , s(i , j)

1 , v (i)
a, j , s(i , j)

2 , v (j)
b,i , s(i , j)

3 , v (i , j)
h,4 , v (i , j)

h+1,3, v (i , j)
h+1,4, . . . , v (i , j)

m,4 in

that order. Note that vertices v (i)
a, j and v (j)

b,i have not been used by the path in the
vertex selection gadgets, since they appear in the segments that were skipped by the
temporal path in the corresponding vertex selection gadgets. Furthermore, since
the clique in H only contains one edge that connects vertices from Ui and U j , the
vertices v (i)

a, j and v (j)
b,i have not been used by the temporal path in an earlier validation

gadget. It is easy to check that the time labels of the edges in the validation gadget
allow for a ∆-restless temporal path as described. After the last validation gadget the
path arrives at vertex z. Hence, we have found a ∆-restless temporal (s, z)-path in G .

(⇐): Assume that we are given a ∆-restless temporal (s, z)-path in G . We now show
that H contains a clique of size k.

After starting at s, the ∆-restless temporal path first passes the vertex selection
gadgets. Here, we need to make the important observation that for each i ∈ [k], any
∆-restless temporal (s, z)-path has to “skip” at least one segment corresponding to
one vertex u(i)

j ∈Ui in the vertex selection gadget corresponding to Ui , otherwise the
temporal path cannot traverse the validation gadgets. More formally, assume for the
sake of contradiction that there is a ∆-restless temporal (s, z)-path and an i ∈ [k] such
that the temporal path visits all vertices in the vertex selection gadget corresponding
to Ui . Let j ∈ [k] with j ̸= i . Assume that i < j (the other case works analogously). We
claim that the temporal path cannot traverse the validation gadget for Fi , j . For the

35

3 Restless Temporal Paths

temporal path to go from s(i , j)
1 to s(i , j)

2 by construction it has to visit at least one vertex
from the vertex selection gadget for Ui . If all vertices have already been visited, then
this would mean that the ∆-restless temporal (s, z)-path visits one vertex twice—a
contradiction.

The waiting time ∆ prevents the temporal path from “skipping” more than one
segment. More formally, any ∆-restless temporal (s, z)-path arrives at the “skip
vertex” s(i) of the vertex selection gadget for Ui at time (i −1)·n+ j , for some j ∈ [k−1].
By construction this means that the path visits w (i)

j , then s(i), and then has to continue

with w (i)
j+1 since there is only one time edge the path can use without violating

the waiting time ∆. It follows that the temporal path skips exactly the segment
corresponding to u(i)

j ∈Ui .
This implies that any ∆-restless temporal (s, z)-path that traverses the vertex selec-

tion gadgets leaves exactly one segment of every vertex selection gadget unvisited.
Let the set X = {u(i)

j ∈ Ui | i ∈ [k]∧ j ∈ [n]∧ v j ,1 is an unvisited vertex} be the set of
vertices corresponding to the segments that are “skipped” by the given ∆-restless
temporal (s, z)-path. It is easy to check that |X | = k. We claim that X is a clique in H .

Assume for contradiction that it is not. Then there are two vertices u(i)
i ′ ,u(j)

j ′ ∈ X

such that the edge {u(i)
i ′ ,u(j)

j ′ } is not in F . Assume that i < j . We show that then
the ∆-restless temporal (s, z)-path is not able to pass through the validation gadget
for Fi , j . By assumption we have that {u(i)

i ′ ,u(j)
j ′ } ∉ Fi , j . Note that the validation gadget is

designed in a way that the first path “selects” an edge from Fi , j and then the waiting
time of one enforces that a ∆-restless temporal (s, z)-path can only move from the
first path to the second path of a validation gadget if the two endpoints of the selected
edge are vertices whose corresponding segments in the vertex selection gadget were
skipped. We have seen that for every Ui with i ∈ [k], the path segment corresponding
to exactly one vertex of that set was skipped. Since {u(i)

i ′ ,u(j)
j ′ } ∉ Fi , j , we have that for

every edge in Fi , j the segment corresponding to at least one of the two endpoints of
the edge was not skipped. Hence, we have that the ∆-restless temporal path cannot
pass through the validation gadget of Fi , j and cannot reach z—a contradiction.

This result shows that parameterizing RESTLESS TEMPORAL (s, z)-PATH with the
feedback vertex number of the underlying graph and all smaller structural graph
parameters of the underlying graph presumably does not yield fixed-parameter
tractability. In the next section we show based on a known result that if we choose an-
other structural graph parameter of the underlying graph, namely the treedepth (for
a definition see Section 2.4) which is incomparable to the feedback vertex number,
we can obtain fixed-parameter tractability.

36

3.3 Finding Restless Temporal Paths

3.3.3 Optimal Restless Temporal Paths

In this section, we discuss how to find optimal restless temporal paths. Of course,
we have by Theorem 3.3 that it is NP-hard to find optimal restless temporal paths for
all optimality criteria introduced in Section 3.2.4. However, the problem of finding a
restless temporal path with a certain quality introduces a natural parameter to the
problem, which we want to discuss here.

From Theorem 3.3 we can deduce that there is not much hope for fast or fore-
most restless temporal paths since the instance constructed in the reduction has
lifetime ℓ= 3 and hence the duration as well as the arrival time of any restless tem-
poral path in this instance is at most three. However, we can observe that in all
our reductions (the one of Theorem 3.3 and the one of Theorem 3.5) the length of
∆-restless temporal (s, z)-paths is unbounded. We defined SHORT RESTLESS TEM-
PORAL (s, z)-PATH as the problem of finding restless temporal paths of bounded
length, and indeed it is known that SHORT RESTLESS TEMPORAL (s, z)-PATH is fixed-
parameter tractable when parameterized by the length bound k [Cas+20]. The
algorithm of Casteigts et al. [Cas+20] has a single-exponential running time in k,
hence Corollary 3.4 implies that their algorithm is presumably asymptotically op-
timal. Furthermore, Proposition 3.2 shows that their fixed-parameter tractability
result presumably cannot be improved to yield a polynomial kernel.

The fixed-parameter tractability result of Casteigts et al. [Cas+20] has some inter-
esting implications for structural parameterizations. We can observe that any path
of a graph can contain at most twice as many vertices as the vertex cover number of
the graph (plus one) since we cannot visit two vertices outside of the vertex cover
directly one after another. Essentially the same observation can be made in the
temporal setting. If we consider the vertex cover number vc↓ of the underlying graph,
then we can deduce that any restless temporal path can have length at most 2vc↓+1.
From a classification standpoint, we can improve this a little further by observing
that the length of any restless temporal path is upper-bounded by the length of any
path of the underlying graph. The length of a path in the underlying graph can be
upper-bounded by 2O(td↓) [ND12], where td↓ is the treedepth of the underlying graph
(for a definition see Section 2.4). Hence, we get the following observation.

Observation 3.6. RESTLESS TEMPORAL (s, z)-PATH is fixed-parameter tractable when
parameterized by the treedepth td↓ of the underlying graph.

Theorem 3.5 implies that we presumably cannot hope to improve this result much,
at least not from a classification standpoint, since most structural graph parameters
that are smaller than treedepth are also smaller than feedback vertex number.

37

3 Restless Temporal Paths

3.4 Conclusion

In this chapter we have analyzed the (parameterized) computational complexity
of RESTLESS TEMPORAL (s, z)-PATH. Other than its non-restless counterpart or the
“walk-version”, this problem turns out to be computationally hard, even in quite
restricted cases. The waiting times allow us to encode computationally hard prob-
lems into RESTLESS TEMPORAL (s, z)-PATH since we have much more control over
the possibilities how a restless temporal path can traverse the temporal graph to
reach z from s. We remark that since deciding whether there exists a restless temporal
path between two vertices is already NP-hard, there is no hope for polynomial-time
approximation algorithms (where the canonical objective would be to optimize
the optimality, such as being short, fast, or foremost) for any approximation factor
unless P = NP. On the positive side, we could identify structural parameters of the
underlying graph that allow for fixed-parameter algorithms.

There are a couple of canonical future research directions. The fact that we can ex-
clude a large number of parameters as candidates to obtain further fixed-parameter
tractability results motivates considering parameter combinations or further restrict-
ing the input instances. Furthermore, the reductions we use to show computational
hardness produce instances where the temporal graph changes “abruptly” over time,
that is, there are time steps where many edges “appear” or “disappear”. If we restrict
the input to graphs where changes happen slowly, then most of our hardness result
do not hold in their current state and it is not clear whether it is possible to adapt
them.

It is natural to also analyze other path-related problems under this restless tem-
poral path model, such as for example finding temporal separators or computing
shortest path-based centrality measures such as closeness or betweenness. In Chap-
ter 4 we will do the former, that is, investigating the computational complexity of
finding vertex separators for restless temporal paths. However, also in other contexts
such as temporal graph exploration it would make sense to consider the restless
temporal path model.

38

CHAPTER 4

Temporal Separators

Coming from the problem of finding a special type of temporal paths in a tem-
poral graph in Chapter 3, we continue with another path-related problem. In this
chapter, we investigate the computational complexity of separating two distinct
vertices s and z by vertex deletion in a temporal graph, that is, destroying all tem-
poral paths from s to z. Since, in contrast to its static counterpart, this problem
is NP-hard [KKK02], it is natural to investigate whether relevant special cases exist
that are computationally tractable. To this end, we study a special class of temporal
graphs, so-called temporal unit interval graphs, which can be seen as a basic model
for temporal physical proximity networks. We provide computational hardness re-
sults as well as tractability results for temporal separation on such temporal graphs,
introducing a parameter to measure the “change over time” of temporal unit interval
graphs.

Additionally, we explore temporal separators under the restless temporal path
model we studied in Chapter 3. We investigate the computational complexity of
destroying all restless temporal paths between two distinct vertices s and z by vertex
deletion. We show that this problem is ΣP

2 -complete.
This chapter is based on a series of papers investigating the computational com-

plexity of finding temporal separators [Flu+18, Flu+20b, Zsc+18, Zsc+20].

4.1 Introduction

Having the dynamics of interactions represented in the model, it is essential to
adapt definitions such as connectivity and paths to respect temporal features. This
directly affects the notion of separators in the temporal setting. Vertex separators are
a fundamental primitive in static network analysis and it is well-known that they can
be computed in polynomial time [AMO93, Theorem 6.8]. In contrast to the static
case, Kempe, Kleinberg, and Kumar [KKK02] showed that in temporal graphs it is
NP-hard to compute minimum separators.

A natural approach to tackle computational hardness is to restrict the input in-
stances with the goal to obtain tractability results. Motivated from applications on
temporal physical proximity networks, we study temporal separators on temporal
unit interval graphs. Unit interval graphs capture a very simplistic notion of physical

39

4 Temporal Separators

proximity, namely of objects in one-dimensional space. We intend this model to
serve as a starting point of understanding temporal graphs that have an underlying
physical proximity model (or geometric intersection model). However, we can show
that finding temporal separators remains NP-hard even on temporal graphs where
each layer is a unit interval graph. From a motivation standpoint it is a reasonable
assumption that the entities of interest do not move arbitrarily fast in the space.
And indeed, putting restrictions on the “movements” of the intervals allows us to
obtain tractability results. We identify a subclass of temporal unit interval graphs
where finding temporal separators is polynomial-time solvable. From there we use a
“distance-to-triviality” parameterization to obtain fixed-parameter tractability results
for the general case.

We also analyze temporal separators under the restless temporal path model we
discussed in Chapter 3. These so-called restless temporal separators are vertex sets
that destroy all restless temporal paths. Recall that restless temporal paths are well
suited to model the spread of certain diseases. Hence, separators for these spreading
processes are naturally motivated as well. To the best of our knowledge we give the
first computational complexity analysis for the problem of finding restless temporal
separators.

4.1.1 Related Work

Temporal separators, as we study them in this chapter, were first investigated by
Kempe, Kleinberg, and Kumar [KKK02], who proved that computing temporal (s, z)-
separators is NP-hard. In contrast, Berman [Ber96] proved earlier that computing
temporal (s, z)-cuts (edge deletion instead of vertex deletion) is polynomial-time
solvable. There also exist other notions of temporal cuts and separators. In the
context of survivability of temporal graphs, Liang and Modiano [LM17] studied
cuts where an edge deletion only lasts for δ consecutive time stamps. Moreover,
they studied a temporal maximum flow defined as the maximum number of sets of
journeys where each two journeys in a set do not use a temporal edge within some δ

time steps. A different notion of temporal flows was introduced by Akrida et al.
[Akr+19a]. They showed how to compute in polynomial time the maximum amount
of flow passing from a source vertex s to a sink vertex z until a given point in time.

The vertex variant of Menger’s Theorem [Men27] states that the maximum num-
ber of vertex-disjoint paths from s to z equals the size of a minimum-cardinality
(s, z)-separator. In static graphs, Menger’s Theorem allows for finding a minimum-
cardinality (s, z)-separator via maximum flow computations. However, Berman
[Ber96] proved that the vertex-variant of an analogue to Menger’s Theorem for tem-
poral graphs, asking for the maximum number of (strict) temporal paths instead,

40

4.1 Introduction

does not hold. Kempe, Kleinberg, and Kumar [KKK02] proved that the vertex-variant
of the former analogue to Menger’s Theorem holds true if the underlying graph
excludes a fixed minor. Mertzios, Michail, and Spirakis [MMS19] proved another
analogue of Menger’s Theorem: the maximum number of strict temporal (s, z)-paths
which never leave the same vertex at the same time equals the minimum number
of vertex departure times needed to separate s from z, where a vertex departure
time (v, t) is the vertex v at time point t (what we also call vertex appearance).

For related work on temporal paths and other temporal connectivity related prob-
lems, we refer to Section 3.1.1.

4.1.2 Our Contributions and Organization of the Chapter

We analyze the computational complexity of finding temporal separators on tem-
poral unit interval graphs. We first show that the problem remains hard on temporal
unit interval graphs even if the number of layers is constant. Then we give a poly-
nomial time algorithm for a restricted version of the problem, where we require the
input temporal graphs to be order-preserving. Herein, the intervals of each layer
are not allowed to change their relative ordering. We generalize this algorithm by a
distance-to-triviality parameterization which upper-bounds how much the interval
orderings may change over time, introducing the “shuffle number” parameter for
temporal unit interval graphs.

Furthermore, we analyze the computational complexity of deciding whether a
temporal graph admits a restless temporal separator, and show that this problem is
ΣP

2 -complete.
The chapter is organized as follows. In Section 4.2 we formally introduce all

necessary concepts related to temporal separators that we need in this chapter, we
formally define our problem settings and report some basic observations about the
problems. In Section 4.3 we present our findings on the computational complexity of
finding temporal separators in temporal unit interval graphs. Section 4.4 discusses
the computational complexity of finding restless temporal separators. We conclude
in Section 4.5.

4.1.3 Further Contributions of the Papers this Chapter is Based on

Zschoche et al. [Zsc+20] focus on differences in the computational complexity
of finding temporal separators that destroy strict temporal paths and finding tem-
poral separators that destroy non-strict temporal paths.8 They show that finding
temporal separators that destroy non-strict temporal paths is NP-complete even if

8See Section 3.2.5 for a short discussion of strict and non-strict temporal paths.

41

4 Temporal Separators

the temporal graph has lifetime two. For the strict case, they show that the problem
is NP-complete if the temporal graph has lifetime at least five and polynomial time
solvable otherwise. Furthermore, they prove that both variants are W[1]-hard when
parameterized by the size bound of the separator and that both variants are NP-
complete even if the underlying graph is planar. Using MSO formulations, they show
that finding strict temporal separators is fixed-parameter tractable with respect to
the lifetime of the input temporal graph if the underlying graph is planar. Finally,
they introduce the concept of a temporal core, which is the set of vertices of a tem-
poral graph that have at least one incident edge, that is present at some time steps
but not at all time steps. They show that finding (non-strict) temporal separators is
fixed-parameter tractable with respect to the size of the temporal core while finding
strict temporal separators is NP-hard even if the temporal core is empty.

Fluschnik et al. [Flu+20b] focus on non-strict temporal separators and investigate
the computational complexity of finding such separators in different classes of
temporal graphs. They show NP-completeness even for very restricted classes of
temporal graphs, such as temporal graphs that have a line graph as underlying graph,
and several restrictions on how the edge set of the temporal graph may change
over time. On the positive side, they show that finding temporal separators is fixed-
parameter tractable with respect to vertex cover number of the underlying graph,
the combination of the treedepth and the size bound of the separator, and the
combination of the treewidth of the underlying graph and the lifetime.

4.2 Preliminaries

In this section, we formally introduce the most important concepts related to
temporal separators and give the formal problem definitions of TEMPORAL (s, z)-SEP-
ARATION and RESTLESS TEMPORAL (s, z)-SEPARATION. We further discuss some basic
observations for TEMPORAL (s, z)-SEPARATION.

4.2.1 Temporal Separators

Intuitively, a temporal separator that separates two distinct vertices s and z is
a vertex set that all temporal paths from s to z have to cross, see Figure 4.1 for
an example. We introduced temporal paths in the previous chapter and refer to
the definition in Section 3.2.1 (Definition 3.1). Using this, we can formally define
temporal (s, z)-separators as follows.

Definition 4.1 (Temporal (s, z)-Separator). Let G = (V , (Ei)i∈[ℓ]) be a temporal graph
with s, z ∈V . A vertex set S ⊆V \ {s, z} is a temporal (s, z)-separator for G if there is no
temporal (s, z)-path in G −S.

42

4.2 Preliminaries

G1:

s z

G2:

s z

G3:

s z

Figure 4.1: Example temporal graph with two vertices s and z and lifetime three. A tempo-
ral (s, z)-separator is depicted in red.

We can now introduce the (decision) problem of deciding whether a given tempo-
ral graph G with two distinct vertices s and z admits a temporal (s, z)-separator.

TEMPORAL (s, z)-SEPARATION

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
an integer k ∈N.

Question: Does G admit a temporal (s, z)-separator of size at most k?

It is easy to see that we can verify in polynomial time whether a vertex set S
is a temporal (s, z)-separator for a given temporal graph G since we can check in
polynomial time whether there is a temporal path from s to z in G −S [XFJ03]. Hence,
we have that TEMPORAL (s, z)-SEPARATION is contained in NP.

4.2.2 Temporal Unit Interval Graphs

When we analyze the computational complexity of TEMPORAL (s, z)-SEPARATION

we will focus on instances where the input temporal graph is a temporal unit interval
graph. Recall that a static graph G = (V ,E) is a unit interval graph if there are unit-
length intervals [av , av +1] with av ∈Q for all vertices v ∈V such that for all v, w ∈V
with v ̸= w we have that {v, w} ∈ E if and only if [av , av+1]∩[aw , aw +1] ̸= ∅. A temporal
unit interval graph is simply a temporal graph where every layer is a unit interval
graph.

Definition 4.2 (Temporal Unit Interval Graph). A temporal graph G = (V , (Ei)i∈[ℓ]) is
a temporal unit interval graph if for all i ∈ ℓ we have that Gi = (V ,Ei) is a unit interval
graph.

We remark that temporal unit interval graphs can easily be recognized in polyno-
mial time by checking whether every layer is a unit interval graph. This can be done
in linear time [LO93].

43

4 Temporal Separators

4.2.3 Restless Temporal Separators

We now adapt the definition of temporal separators for restless temporal paths
(which we discussed in Chapter 3), that is, a restless temporal (s, z)-separator should
destroy all restless temporal (s, z)-paths in a given temporal graph. Recall that, intu-
itively, restless temporal paths may only “wait” a bounded number of time steps in
any vertex. For the formal definition of restless paths we refer to Section 3.2.2 (Defi-
nition 3.2). Using this, we can formally define ∆-restless temporal (s, z)-separators
as follows.

Definition 4.3 (∆-Restless Temporal (s, z)-Separator). Let G = (V , (Ei)i∈[ℓ]) be a tem-
poral graph with s, z ∈ V . Let ∆ ≤ ℓ. A vertex set S ⊆ V \ {s, z} is a ∆-restless tempo-
ral (s, z)-separator for G if there is no ∆-restless temporal (s, z)-path in G −S.

We can now formally define the (decision) problem of finding a ∆-restless tempo-
ral (s, z)-separator in a given temporal graph G with two distinct vertices s and z.

RESTLESS TEMPORAL (s, z)-SEPARATION

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
two integers k ∈N and ∆≤ ℓ.

Question: Does G admit a ∆-restless temporal (s, z)-separator of size at most k?

We remark that we presumably cannot verify in polynomial time whether a vertex
set S is a ∆-restless temporal (s, z)-separator for a given temporal graph G since, as we
showed in Chapter 3, checking whether there is a ∆-restless temporal path from s to z
in G −S is NP-hard (Theorem 3.3). Note that RESTLESS TEMPORAL (s, z)-SEPARATION

with k = 0 is the complement of RESTLESS TEMPORAL (s, z)-PATH. This implies that
RESTLESS TEMPORAL (s, z)-SEPARATION is coNP-hard for k = 0 and hence presumably
not contained in NP. As we will discuss later in this chapter in Section 4.4, we can
indeed show that RESTLESS TEMPORAL (s, z)-SEPARATION is located in the second
level of the polynomial time hierarchy.

4.2.4 Basic Observations

It is known that TEMPORAL (s, z)-SEPARATION is already NP-complete [KKK02]
and W[1]-hard when parameterized by the separator size k [Zsc+20], however we
can observe that with some straightforward transformations, these hardness results
hold even when every layer only contains one edge. We show that by giving a
description on how to transform arbitrary instances of TEMPORAL (s, z)-SEPARATION

to equivalent instances with the above property. The rough idea is to “stretch” the

44

4.2 Preliminaries

lifetime of the temporal graph sufficiently much such that each edge has its own
layer, and then repeating certain layers in a way that all temporal paths of the original
instances are preserved and no new ones are introduced.

Proposition 4.1. TEMPORAL (s, z)-SEPARATION is NP-complete and W[1]-hard when
parameterized by the separator size k even if each layer has at most one edge.

Proof. We present a simple parameterized polynomial-time reduction from TEM-
PORAL (s, z)-SEPARATION on general temporal graphs, which is known to be NP-
complete [KKK02] and W[1]-hard when parameterized by the separator size k [Zsc+20],
to TEMPORAL (s, z)-SEPARATION on temporal graphs that have at most one edge in
each layer.

Construction. Let (G = (V , (Ei)i∈[ℓ]), s, z,k) be an instance of TEMPORAL (s, z)-SEPARA-
TION. We assume without loss of generality that for all i ∈ [ℓ] we have that Ei ̸= ∅.
Note that trivial layers can always be removed from instances of TEMPORAL (s, z)-
SEPARATION in some preprocessing step since they never create or remove temporal
paths. We construct a new temporal graph G ′ = (V , (E ′

i)i∈[ℓ′]) from G by creating for
each layer Gi = (V ,Ei) of G a temporal graph G

|Ei |
i such that there is a temporal path

in G
|Ei |
i if and only if there is a path in layer i of G .

For each layer Gi of G we first construct a temporal graph Gi = (V , (E (i)
j) j∈[ℓi])

with ℓi = |Ei | by fixing an arbitrary total order on the edge set Ei = {e1,e2, . . . ,e|Ei |}
of Gi and setting E (i)

j = {e j } for all j ∈ [|Ei |]. Now, we set G ′ = G
|E1 |
1 ◦G

|E2 |
2 ◦ . . . ◦G

|Eℓ |
ℓ

.
This is obviously a polynomial-time construction. Since, for all i ∈ [ℓ] we have
that |Ei | ≤ |V |2 and each Gi has |Ei | many layers, we know that ℓ′ ≤ ℓ · |V |4. The new
instance of TEMPORAL (s, z)-SEPARATION is now (G ′, s, z,k). By construction each
layer of G ′ contains exactly one edge.

Correctness. Let i ∈ [ℓ] and v, w ∈ V . Observe that Gi is the underlying graph of
both Gi and G

|Ei |
i . Since every temporal path is also a path in the underlying graph,

it is easy to see that for each temporal (v, w)-path in G
|Ei |
i there is a (v, w)-path in

layer Gi which visits the vertices in the same order. We claim that for each (v, w)-
path P of length n in layer Gi there is a temporal (v, w)-path in G n

i which visits the
vertices in the same order. Let V (P) = {v = v0, v1, . . . , vn = w} such that v j is visited
before v j+1, for all 0 ≤ j ≤ n. We prove the claim by induction on n. If n = 1, then we
know that there is a time edge between v and w in G1. For the induction step we
observe that there is a time edge between v = v0 and v1 in G1 and, by the induction
hypothesis, there is a temporal (v1, w)-path of length n −1 in G n−1

i which visits the
vertices in the same order as P . Since n ≤ |Ei |, we have that for each (v, w)-path
in layer Gi there is a temporal (v, w)-path in G

|Ei |
i which visits the vertices in the

45

4 Temporal Separators

same order, where v, w ∈ V and i ∈ [ℓ]. If follows that a vertex set S ⊆ V \ {s, z} is
a temporal (s, z)-separator in G if and only if S is a temporal (s, z)-separator in G ′,
because in the construction of G ′ we replaced layer Gi with G

|Ei |
i .

Proposition 4.1 also has some noteworthy implications from the point of view of
parameterized complexity: Parameterizing RESTLESS TEMPORAL (s, z)-SEPARATION

by structural graph parameters of the layers of the input temporal graph that are
constant on graphs with only one edge cannot yield fixed-parameter tractability
unless P = NP, even if combined with k.

For the problem RESTLESS TEMPORAL (s, z)-SEPARATION, it is easy to observe that
computational hardness for some fixed value of ∆ implies hardness for all larger
values of ∆. This allows us to construct hardness reductions for small fixed values
of ∆ and still obtain general hardness results.

Observation 4.2. For every fixed ∆, RESTLESS TEMPORAL (s, z)-SEPARATION on in-
stances (G , s, z,k,∆+1) is computationally at least as hard as RESTLESS TEMPORAL

(s, z)-SEPARATION on instances (G , s, z,k,∆).

This follows from an argument analogous to the proof of Observation 3.1, which
says that we have essentially the same property for RESTLESS TEMPORAL (s, z)-PATH.

Finally, we can also observe the following kernelization lower bound for RESTLESS

TEMPORAL (s, z)-SEPARATION.

Observation 4.3. RESTLESS TEMPORAL (s, z)-SEPARATION parameterized by the num-
ber |V | of vertices does not admit a polynomial kernel for all ∆ ≥ 1 unless NP ⊆
coNP/poly.

This follows directly from the result of Chapter 3 that RESTLESS TEMPORAL (s, z)-
PATH does not admit a polynomial kernel when parameterized by the number |V | of
vertices for all ∆≥ 1 unless NP ⊆ coNP/poly (Proposition 3.2). This follows from the
observation that RESTLESS TEMPORAL (s, z)-SEPARATION with k = 0 is the comple-
ment of RESTLESS TEMPORAL (s, z)-PATH and hence a polynomial kernel for RESTLESS

TEMPORAL (s, z)-SEPARATION parameterized by |V | would also be a polynomial ker-
nel for RESTLESS TEMPORAL (s, z)-PATH parameterized by |V |.

4.3 Separators in Temporal Unit Interval Graphs

In this section we investigate the computational complexity of TEMPORAL (s, z)-
SEPARATION for the case where the input temporal graph is restricted to be a tempo-
ral unit interval graph. Note that, by Proposition 4.1, TEMPORAL (s, z)-SEPARATION

46

4.3 Separators in Temporal Unit Interval Graphs

is NP-complete under this restriction. However, the construction from the proof of
Proposition 4.1 increases the number of layers quite heavily. In the following, we first
show that TEMPORAL (s, z)-SEPARATION is NP-complete on temporal unit interval
graphs even if the number of layers is constant. Afterwards we show how to put
additional restrictions on the input instances to obtain tractability results.

4.3.1 NP-Hardness for Few Layers

Zschoche et al. [Zsc+20, Theorem 3.1] showed by a reduction from VERTEX COVER

that TEMPORAL (s, z)-SEPARATION is NP-complete for all ℓ≥ 2, even if the underlying
graph has constant degeneracy and every edge appears in at most one layer. In this
section, we show how to modify this reduction to show that TEMPORAL (s, z)-SEPA-
RATION is NP-complete on temporal unit interval graphs even if the input temporal
graph has only six layers, thus strengthening the NP-hardness result for TEMPORAL

(s, z)-SEPARATION on temporal unit interval graphs that is implied by Proposition 4.1.
We remark that this leaves the obvious question of determining the computational
complexity of the problem on temporal unit interval graphs with 1 < ℓ< 6.

The main idea behind the reduction from VERTEX COVER that we use to show
the discussed computational hardness result is to create a gadget for each vertex
such that one can use two types of vertex sets to separate s from z in this gadget: a
small one and a large one. Then, for each edge in the VERTEX COVER instance, we
connect the corresponding gadgets in such a way that at least in one of the gadgets
it is necessary to take the large vertex set. Hence, taking the large vertex set from a
gadget into the temporal (s, z)-separator corresponds to taking the vertex into the
vertex cover.

Theorem 4.4. TEMPORAL (s, z)-SEPARATION on temporal unit interval graphs is NP-
complete for all ℓ≥ 6.

Proof. We present a polynomial-time reduction from the NP-complete VERTEX

COVER problem [GJ79, Kar72] to TEMPORAL (s, z)-SEPARATION on temporal unit
interval graphs with lifetime six (for larger lifetimes we can append trivial layers).
Our reduction is a modification of a reduction developed by Zschoche et al. [Zsc+20,
Theorem 3.1]. Recall that in VERTEX COVER, we are given a graph H and an integer h
and we are asked to select at most h vertices from H such that every edge in H
contains at least one selected vertex.

Construction. Let (H = (U ,F),h) be an instance of VERTEX COVER. We construct a
TEMPORAL (s, z)-SEPARATION instance (G = (V , (Ei)i∈[ℓ]), s, z, |U |+h) with ℓ= 6 with

V := {x, v, xv , x ′
v , xv w | v, w ∈U ∧x ∈ {s, z}},

47

4 Temporal Separators

where we assume that U does not contain vertices called s or z. To define the edge
sets of G we first define, for any x, y ∈ {s, z}, the following four edge classes

Eα(x) :=
(︄

{x, xv , x ′
v | v ∈U }

2

)︄
,

Eβ(x) := ⋃︂
v∈U

(︄
{xv , x ′

v , xv v }

2

)︄
∪

(︄
{xv w | w ∈U }

2

)︄
,

Eγ(x, y) := ⋃︂
v∈U

{︁
{xv , x ′

v }, {v, xv }, {v, x ′
v }, {v, yv v }

}︁
, and

Eδ := {{sv w , zw v }, {sw v , zv w } | {v, w} ∈ F }.

Now we define the edge sets of G in the following way.

E1 := Eα(s),

E2 := Eβ(s),

E3 := Eγ(z, s)∪Eδ,

E4 := Eγ(s, z),

E5 := Eβ(z), and

E6 := Eα(z).

The underlying graph of the constructed temporal graph G is visualized in Figure 4.2.
It is easy to see that the construction can be done in polynomial time.

Temporal unit interval property. To see that each layer of G is in fact a unit interval
graph, first observe that Eγ(z, s) and Eδ are vertex-disjoint and thus each connected
component of each layer is taken from a single edge class. Furthermore, for any
choice x, y ∈ {s, z} we have that

• Eα(x) forms a clique of size 2|U |+1,

• each connected component of Eβ(x) consists of a triangle and a clique of
size |U | that share exactly one vertex,

• each connected component of Eγ(x, y) is the union of a triangle and a single
edge, joined on a common vertex, and

• Eδ is a disjoint union of edges.

48

4.3 Separators in Temporal Unit Interval Graphs

s z

v

svv

svw svu

zvv

zvwzvu

u

suu

suw suv

zuu

zuwzuv

w

sww

swv swu

zww

zwvzwu

su

s′u

sv

s′v

sw

s′w

zu

z′u

zv

z′v

zw

z′w

Figure 4.2: Underlying graph of the constructed temporal graph G resulting from a VERTEX

COVER instance H = (U ,F) on three vertices U = {u, v, w} and one edge F = {{u, v}}. The two
time edges of G corresponding to {u, v} ∈ F appear as edges {suv , zvu } and {svu , zuv } in the
underlying graph (the two crossing edges in the top half of the figure).

In summary, each connected component of each layer is either a clique or a union
of two cliques sharing a single vertex and thus it is an interval graph.

Correctness. Observe that no temporal (s, z)-path can use more than one edge from Eδ

as it would need to use an edge from Eβ in between. Consequently we may as-
sume that any minimum temporal (s, z)-separator only contains vertices from the
set {v, sv v , zv v | v ∈U } as we could exchange any other vertex for one of these. After
these observations the rest of the correctness proof works analogously to the proof
of Zschoche et al. [Zsc+20, Proposition 3.2]. For the sake of self-containedness we
give the proof here.

(⇒): Let X ⊆ U be a vertex cover of size at most h for H . We claim that S :=
(U \X)∪{sv v , zv v | v ∈ X } is a temporal (s, z)-separator for G . There are |U |−|X | vertices
not in the vertex cover X and for each of them there is exactly one vertex in S. For each
vertex in X there are two vertices in S. Hence, we have that |S| ≤ |U |−h +2h = |U |+h.

Assume for contradiction that there is a temporal (s, z)-path P in G −S. Consider

49

4 Temporal Separators

the first time edge used by P that has a time stamp larger than one. Without loss of
generality we can differentiate between two scenarios:

1. Either P arrives at vertex v for some v ∈U after traversing the first time edge
with a time stamp larger than one,

2. or P arrives at vertex sv v for some v ∈U after traversing the first time edge with
a time stamp larger than one.

The first case can easily be excluded: Note that by construction of G we have that P
arrives at v via a time edge with time stamp four and the only way to continue the
path is using the edge {v, zv v } which also has time stamp four. It is easy to check that P
does not go “back” to sv or s ′v . However, we have that either v or zv v is contained in S
for all v ∈U . Hence, we can conclude that P cannot arrive at z via v .

In the second case we have by construction of G that P arrives at Sv v via a time
edge with time stamp two. Again, it is easy to check that P does not go “back” to
sv or s ′v . By essentially the same argument as for the first case, we can conclude
that P does not continue to v . The only other vertices adjacent to sv v are vertices
sv w for w ∈V and v ̸= w . Without loss of generality assume that P out of all vertices
adjacent to sv v visits sv w last. The only way to continue the path with a vertex that is
not adjacent to sv v is to visit zw v next. However, notice that by construction sv w and
zw v are only adjacent if {v, w} ∈ F and, if this is the case, then we have that either sv v

or zw w is contained in S. Clearly, sv v ∈ S is a contradiction to P being a temporal (s, z)-
path in G −S, so let us assume that zw w ∈ S. However, then the only vertices that P
could still visit are vertices zwu for u ∈U with u ̸= w . Hence, P can never reach z—a
contradiction.

(⇐): Let S be a temporal (s, z)-separator in G of size at most k = |U |+h and let v ∈U .
Recall that there are two disjoint temporal (s, z)-separators in the vertex gadget of v ,
namely {v} and {sv v , zv v }, and that all vertices in V \ {s, z} are from a vertex gadget. We
start with a preprocessing to ensure that for each vertex gadget only one of these two
separators are in S. Let Sv = S ∩ {v, sv v , zv v }. We iterate over Sv for each v ∈U :

Case 1: If Sv = {v} or Sv = {sv v , zv v }, then we do nothing.

Case 2: If Sv = {v, sv v , zv v }, then we remove v from S. One can observe that all tempo-
ral (s, z)-paths which are visiting v are still separated by sv v or zv v .

Case 3: If Sv = {v, sv v }, then we remove v from S and add zv v . One can observe that S
is still a temporal (s, z)-separator of size at most k in G .

50

4.3 Separators in Temporal Unit Interval Graphs

Case 4: If Sv = {v, zv v }, then we remove v from S and add sv v . One can observe that S
is still a temporal (s, z)-separator of size at most k in G .

Case 5: If Sv = ∅, then we have that sv , s ′v ∈ S or zv , z ′
v ∈ S. We remove sv , s ′v , zv , z ′

v

from S and add sv v and zv v . One can observe that S is still a temporal (s, z)-
separator of size at most k in G .

This is a complete case distinction because neither {sv v } nor {zv v } separate all tem-
poral (s, z)-paths in the vertex gadget of v . Now we construct a vertex cover X for H
by taking v ∈U into X if {sv v , zv v } ⊆ S. Since there are |U | vertex gadgets in G each
containing either one or two vertices from S, it follows that |X | = |S|− |U | ≤ h.

Assume towards a contradiction that X is not a vertex cover of H . Then there
is an edge {v, w} ∈ F where v, w ∉ X . Hence, sv v , zv v , sw w , zw w ∉ S and v, w ∈ S. This
contradicts the fact that S is a temporal (s, z)-separator in G , because

P = (︁
({s, sv },1), ({sv , sv v },2), ({sv v , sv w },2), ({sv w , zw v },3),

({zw v , zw w },5), ({zw w , zw },5), ({zw , z},6)
)︁

is a temporal (s, z)-path in G −S. It follows that X is a vertex cover of H of size at
most h.

Theorem 4.4 clearly shows that restricting the input instances of TEMPORAL (s, z)-
SEPARATION to temporal unit interval graph presumably does not suffice to obtain
tractability results. In particular we cannot hope for a fixed-parameter algorithm
for the parameter ℓ unless P = NP. Hence, it seems that we have to put further
restrictions on temporal unit interval graphs. In the next section, we discuss one
promising way to do this.

4.3.2 (Almost) Order-Preserving Temporal Unit Interval Graphs

In this section, we analyze how we further restrict temporal unit interval graphs
such that we can obtain tractability results for TEMPORAL (s, z)-SEPARATION on these
graphs. In particular, we restrict how much the intervals may change over time.
This is a layer-wise restriction with, additionally, a temporal restriction. Recall from
Theorem 4.4 that TEMPORAL (s, z)-SEPARATION remains NP-complete on temporal
graphs where each layer is a unit interval graph, even if the lifetime ℓ is a small
constant.

Now we show that if there is an ordering on the vertices that matches the relative
positions of the intervals in all layers, then we can solve TEMPORAL (s, z)-SEPARA-
TION in polynomial time. We then generalize this by introducing a parameter that,

51

4 Temporal Separators

Vertex Ordering <V

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

La
ye

rs

Figure 4.3: Visualization of an order-preserving temporal unit interval graph with three layers
(separated by dashed lines) and vertices {v1, v2, . . . , v10}. The intervals corresponding to the
vertices are visualized horizontally in the same color as the vertices they correspond to. In this
picture we can clearly see that the relative ordering of the intervals in the three layers is the
same and is compatible with the vertex ordering <V illustrated on the bottom.

informally speaking, describes how much the interval orderings may change over
time, and show fixed-parameter tractability with respect to the combination of this
new parameter and the lifetime ℓ.

We call a total ordering <V on a vertex set V compatible with a unit interval
graph G = (V ,E) if there are unit intervals [av , av +1] with av ∈Q for all vertices v ∈V
that induce the graph G and for all u, v ∈ V with u <V v we have that au ≤ av . Note
that for every unit interval graph there is a total ordering on the vertices that is
compatible with it.

Now we use the compatibility property of a vertex ordering to define a subclass of
temporal unit interval graphs that admits a vertex ordering that is compatible with
every layer.

Definition 4.4. A temporal graph G = (V , (Ei)i∈[ℓ]) is an order-preserving temporal
unit interval graph if G is a temporal unit interval graph and there is a total order-
ing <V on the vertex set V that is compatible with every layer Gi .

For a visualization of an order-preserving temporal unit interval graph see Fig-
ure 4.3. Given an order-preserving temporal unit interval graph G = (V , (Ei)i∈[ℓ]), we
denote by <V a compatible total ordering on V . Let n = |V |, and number the vertices
in V = {v1, v2, . . . , vn} such that vi <V v j ⇔ i ≤ j . Furthermore, we use the following
notation: V<i := {v j | 1 ≤ j < i } and V>i := {v j | n ≥ j > i } and N>

Gt
(vi) := NGt (vi)∩V>i . If

the ordering <V is clear from the context, then we refer to vertices as smaller or larger

52

4.3 Separators in Temporal Unit Interval Graphs

than other vertices to express that they appear before or after, respectively, in the
ordering <V .

Lemma 4.5. Order-preserving temporal unit interval graphs can be recognized in
O(|V |2 ·ℓ) time and a compatible vertex ordering for a given order-preserving temporal
unit interval graph can be computed in O(|V |2 ·ℓ) time.

Proof. Let G = (V , (Ei)i∈[ℓ]) be a temporal graph. Then, due to Looges and Olariu
[LO93, Theorem 1], we know that G is an order-preserving temporal unit interval
graph with vertex ordering <V if and only if the vertices in every closed neighborhood
NGi [v] := NGi (v)∪ {v} with v ∈ V of every layer i ∈ [ℓ] appear consecutively in the
ordering <V . Thus, the problem can be solved by searching for a column ordering
of the matrix M ∈ {0,1}|V |·ℓ×|V |, defined by M [(i , t), j] = 1 ⇔ v j ∈ NGt [vi], that has the
consecutive ones property, that is, for each column we have that all ones in this
column appear consecutively. It is known that this task can be solved in linear
time [BL76].

We now state some useful properties of temporal paths and separators in order-
preserving temporal unit interval graphs. Due to (3) of the following lemma, we will
henceforth assume without loss of generality that v1 = s and vn = z.

Lemma 4.6. Let G = (V , (Ei)i∈[ℓ]) be an order-preserving temporal unit interval graph
with ordering <V .

1. For all 1 ≤ a ≤ b ≤ ℓ and for all S ⊆ V we have that G |[a,b] −S is also an order-
preserving temporal unit interval graph.

2. If for some 1 ≤ i < j ≤ n there is a temporal (vi , v j)-path P in G , then there is
temporal (vi , v j)-path P ′ in G that visits its vertices in the order given by <V .

3. Let S ⊆ V be a temporal (vi , v j)-separator in G for some 1 ≤ i < j ≤ n. Then
S ′ := S \ (V<i ∪V> j) is also a temporal (vi , v j)-separator in G .

4. A temporal (vi , v j)-separator in G is also a temporal (vi ′ , v j ′)-separator in G for
all 1 ≤ i ′ ≤ i < j ≤ j ′ ≤ n.

5. Let S ⊆V \ {s, z} such that vi is the largest vertex reachable from s in G −S. Let t
denote the first time step when vi is reachable from s in G −S, and let t ≤ t ′ ≤ ℓ.
Then N>

Gt ′
(vi) ⊆ S.

53

4 Temporal Separators

6. Let S1 ⊆V \ {s, z} such that vi is the largest vertex reachable from s in G |[t] −S1

for some t ∈ [ℓ−1]. Let S2 ⊆V \ {s, z} such that v j is the largest vertex reachable
from s in G |[t+1,ℓ]−S2. If i ≤ j , then S := S1∪S2 is a temporal (s, z)-separator in G

such that there is no vertex reachable from s in G −S that is larger than v j .

7. Let S ⊆V be an inclusion-wise minimal temporal (s, z)-separator in G with the
property that a given vi is the largest vertex that is reachable from s in G −S and
let v j be the smallest vertex that is not in S such that S is also a temporal (s, v j)-
separator in G . Then, for all vi <V v <V v j with vi ̸= v ̸= v j , we have that v ∈ S,
and we have that S ∩V> j =∅.

Proof. (1): Obvious.

(2): We prove that there is a temporal (vi , v j)-path P ′ in G that visits its vertices
in the order given by <V and t ≤ t ′, where t and t ′ denote the first time label in P
and in P ′, respectively. We give an inductive proof over the number of edges in
the temporal (vi , v j)-path P . For the base case, if P has only one edge, then E(P) =
({vi , v j }, t) for some t ∈ [ℓ]. Hence, P ′ := P clearly is the sought temporal path. Now,
assume that the statement holds for all temporal (vi , v j)-paths with at most ℓ ∈N
edges. For the inductive step, let P be a temporal (vi , v j)-path with exactly ℓ+1 edges.
Let vi ′ be the last vertex on P such that i ′ ≤ i , and let t ∈ [ℓ] be the index of the layer
where P contains the edge {vi ′ , vx }, where vx is the successor of vi ′ on P . Since Gt is a
unit interval graph with order <V , the edge {vi , vx } is present in Gt . Denote by Px the
temporal (vx , v j)-subpath of P , starting at vertex vx . Observe that Px has at most ℓ

edges, and hence there is a path P ′
x visiting its vertices in the order given by <V and

starting at some time label t ′ ≥ t . Thus, the path P ′ = ({vi }∪V (P ′
x), {({vi , vx }, t)}∪E(P ′

x))
that starts with edge ({vi , vx }, t) and then follows P ′

x , visits its vertices in the order
given by <V and starts at time label t being at least the first time label appearing on
the edges of P .

(3): Follows directly from (2).

(4): Follows directly from (2).

(5): Suppose not. Then there is a time step t ′′ with a neighborhood that is not
contained in S and hence there is a vertex v j ∈ N>

Gt ′′
(vi) \ S. Hence, v j with j > i is

reachable from s in G[1:t ′′] −S, contradicting the definition of vi .

(6): Follows directly from (2).

(7): Assume towards a contradiction that there is a vertex v ∉ S with vi <V v <V v j .
Then either v is reachable from s in G −S, which would be a contradiction to vi being
the largest vertex reachable from s in G −S, or v is not reachable from s in G −S, a

54

4.3 Separators in Temporal Unit Interval Graphs

contradiction to the assumption that v j is the smallest vertex such that S is also a
temporal (s, v j)-separator in G . Furthermore, S∩V> j =∅ follows from the assumption
that S is inclusion-wise minimal and Lemma 4.6(3).

Now we have the necessary tools to prove that TEMPORAL (s, z)-SEPARATION can
be solved in polynomial time on order-preserving temporal unit interval graphs.
The algorithm we develop to show this result uses a dynamic programming table
that, intuitively, has two dimensions: vertices and time steps. Imagine a cell that
corresponds to a vertex v and a time step t . In this cell, we want (informally) to save a
temporal separator that separates s from all vertices that are larger than v according
to the order-preserving vertex ordering if edges that appear later than t cannot be
used. We fill this cell entry by finding the best possible way to extend a separator
for an earlier time and an earlier vertex (according to the vertex ordering) with a
separator that contains v . The former can be looked up in the table and the latter
can be found by looking at the neighborhood of v in all layers up to time step t .

Formally, we show the following result.

Theorem 4.7. TEMPORAL (s, z)-SEPARATION on order-preserving temporal unit inter-
val graphs is solvable in O(|V |2 ·ℓ2) time.

Proof. Let G = (V , (Ei)i∈[ℓ]) be a given order-preserving temporal unit interval graph
and k be a given upper bound on the temporal separator size. By Lemma 4.5 we can
find a total vertex ordering <V compatible with every layer. We assume that there
is no layer with an edge between s and z. In order to solve the problem, we use the
following dynamic programming table T of size ℓ× (n −1). In the table entry T (t , i)
we store a minimum temporal (s, z)-separator S for G |[t] with the property that there
is no vertex reachable from s in G |[t] −S that is larger than vi . Let

N (v, t , t ′) :=
{︄

{N>
Gt ′′

(v) | t ≤ t ′′ ≤ t ′}, if ∀t ≤ t ′′ ≤ t ′ : {v, z} ∉ Et ′′ ,

{V \ {s, z}}, otherwise.

55

4 Temporal Separators

Vertex Ordering <V

s v1 v2 v3 v4 v5 v6 v7 v8 z

La
ye

rs

T (6,5) := min. (s, z)-separator for time 5,
where no vertex larger than v6

is reachable from s.DP-Table T :

5

Figure 4.4: Visualization of the dynamic programming table T used in the algorithm described
in the proof of Theorem 4.7.

Let T be defined in the following way:

T (1,1) := NG1 (s), (4.1)

T (t ,1) :=argmax
S∈N (s,1,t)

|S|, (4.2)

T (1, i) :=argmin
S∈Yi

|S|, where Yi := {T (1, i −1)}∪N (vi ,1,1), (4.3)

T (t , i) := argmin
S∈Xt ,i

|S|, where (4.4)

X t ,i := { argmax
S∈N (vi ,t ′+1,t)

|S|∪T (t ′, i ′) | i ′ ∈ [i −1]∧ t ′ ∈ [t −1]}

∪ {T (t , i −1)}∪ { argmax
S∈N (vi ,1,t)

|S|}.

We decide whether we face a YES-instance by checking if there is an i ∈ [n − 1]
such that |T (ℓ, i)| ≤ k. For a visualization of the dynamic programming table T see
Figure 4.4.

It is easy to see that each table entry can be computed in O(|V | ·ℓ) time and the
table has size |V | ·ℓ. Hence, the algorithm has the claimed polynomial running time.

Correctness. We prove by induction on both dimensions of T that T (t , i) is a mini-
mum temporal (s, z)-separator S for G |[t] with the property that there is no vertex

56

4.3 Separators in Temporal Unit Interval Graphs

reachable from s in G |[t] − S that is larger than vi with respect to <V . First, ob-
serve that Lemma 4.6(5) implies that T (1,1) and T (t ,1) are correctly filled in Equali-
ties (4.1) and (4.2). Hence, the base for our induction is correct.

We proceed with the proof of the cases specified by Equalities (4.3) and (4.4) in
two steps. First we show that for all T (t , i) with t ≥ 1 and i > 1, we have that T (t , i) is a
temporal (s, z)-separator S for G |[t] with the property that there is no vertex reachable
from s in G |[t] −S that is larger than vi . Then, in a second step, we show that said
separator is minimum.

It is easy to check that if t = 1, then for all i ∈ [n−1] we have that T (1, i) (as specified
in Equality (4.3)) is a temporal (s, z)-separator with the desired properties. Next, we
consider the case that t , i > 1. We show that every set in X t ,i is a temporal (s, z)-separa-
tor with the desired properties. By induction we know that this holds for T (t , i −1). It
is also easy to check that it holds for S ′ := argmaxS∈N (vi ,1,t) |S|. For arbitrary i ′ ∈ [i −1]
and t ′ ∈ [t − 1] (Equality (4.4)) it is also straightforward to see that S ′ := T (t ′, i ′)∪
argmaxS∈N (vi ,t ′+1,t) |S| has the desired properties. By induction, T (t ′, i ′) contains a
temporal (s, z)-separator for G |[t ′] with the property that there is no vertex reachable
from s in G |[t ′] −T (t ′, i ′) that is larger than vi ′ . The set S ′′ := argmaxS∈N (vi ,t ′+1,t) |S|
either equals V \ {s, z}, in which case we clearly have a separator with the desired
properties, or it forms a temporal (s, z)-separator for G |[t ′+1,t] with the property that
there is no vertex reachable from s in G |[t ′+1,t] − S ′ that is larger than vi . Then by
Lemma 4.6(6) we get that we have a separator with the desired properties.

Now we show that for all t ≥ 1 and i > 1, the separator contained in T (t , i) is of
minimum size. Let S⋆ ⊆V \ {s, z} be a minimum set of vertices such that in G |[t] −S⋆

the vertex v j , j ≤ i , is the largest reachable vertex from s. If j < i , then by our
induction hypothesis (both for t = 1 and t > 1) we have that |S⋆| ≥ |T (t , i −1)| and
hence |T (t , i)| ≤ |S⋆|.

We continue with the case that j = i . If vi is reachable in G |[1] −S⋆ from s, then
by Lemma 4.6(5) we know that N>

Gt ′
(vi) ⊆ S⋆ for all t ′ ∈ [t]. As S⋆ is minimum, it holds

that |S⋆| = maxS∈N (vi ,1,t) |S|, and we have that argmaxS∈N (vi ,1,t) |S| ∈ X t ,i (if t = 1, then
argmaxS∈N (vi ,1,t) |S| ∈ Yi) which implies that |T (t , i)| ≤ |S⋆|.

Now assume that t > 1 and vi is not reachable from s in G |[1] −S⋆. Let t ′ be the
largest time-step in which vi is not reachable from s in G |[t ′] −S⋆, and let i ′ < i be
the largest index such that vi ′ is reachable from s in G |[t ′] −S⋆. By Lemma 4.6(5),
we know that S ′′ := N>

Gt ′′
(vi), where t ′+1 ≤ t ′′ ≤ t achieves the maximum cardinality,

is contained in S⋆. Let S ′ be the smallest subset of S⋆ such that in G |[t ′] − S ′ the
vertex vi ′ is the largest reachable vertex from s. By induction hypothesis, we have
that |S ′| ≥ |T (t ′, i ′)|. From Lemma 4.6(7) it follows that S ′∩S ′′ =∅. Thus, because S⋆ is

57

4 Temporal Separators

minimum, we can write S⋆ = S ′⊎S ′′. Hence, we have

|S| = |S ′|+ |S ′′| ≥ |T (t ′, i ′)|+ |N>
Gt ′′ (vi)| ≥ min

S∈Xt ,i
|S| = |T (t , i)|,

where the second inequality follows from the fact that T (t ′, i ′)∪N>
Gt ′′

(vi) ∈ X t ,i .

Next we show how to use the derived polynomial-time algorithm as a basis for a
distance-to-triviality parameterization [Cai03, GHN04]. For a temporal unit interval
graph we introduce a parameter κ that bounds how much the compatible vertex
orderings of two consecutive layers of a temporal unit interval graph differ. We use
the Kendall tau distance [Ken38] to measure the similarity of vertex orderings. The
Kendall tau distance K is a metric that counts the number of pairwise disagreements
between two total orderings; it is also known as “bubble sort distance”. We call the
parameter κ the shuffle number of a temporal unit interval graph and define it as
follows.

Definition 4.5 (Shuffle Number). Let G = (V , (Ei)i∈[ℓ]) be a temporal unit interval
graph. The shuffle number κ of G is the smallest integer such that there are vertex
orderings <1

V ,<2
V , . . . ,<ℓ

V with the property that <t
V is compatible with layer Gt for

all t ∈ [ℓ], and the orderings of any two consecutive layers have Kendall tau distance
at most κ, that is, for all t ∈ [ℓ−1] we have that K (<t

V ,<t+1
V) ≤ κ. We say that the vertex

orderings <1
V ,<2

V , . . . ,<ℓ
V witness the shuffle number of G .

Clearly for order-preserving temporal unit interval graphs we have that κ= 0 and
it is easy to observe (with a slightly modified version of Proposition 4.1, where in the
construction, we add sufficiently many additional trivial layers between any pair
of adjacent non-trivial layers) that we get NP-completeness for κ= 1. However, if
we consider the parameter combination (κ+ℓ), then the problem becomes fixed-
parameter tractable, if the vertex orderings that witness the shuffle number κ are part
of the input. We need the latter, because we do not know of an efficient algorithm to
compute vertex orderings that witness the shuffle number κ of a given temporal unit
interval graph.

Intuitively, the algorithm we give to show this result partitions the vertices into
parts that are order-preserving and into parts that are not order-preserving. In the
former parts, the algorithm uses the algorithm described in the proof of Theorem 4.7
as a subroutine. In the latter parts, the algorithm tries out all possibilities to add
vertices to a separator, however, we can show that we can upper-bound the number
of possibilities in κ+ℓ.

58

4.3 Separators in Temporal Unit Interval Graphs

Theorem 4.8. Given a temporal unit interval graph and vertex orderings that witness
its shuffle number κ, TEMPORAL (s, z)-SEPARATION can be solved in O((4ℓ)ℓ·κ · (κ+ℓ) ·
|V |2 ·ℓ2) time.

Proof. Let G = (V , (Ei)i∈[ℓ]) be a temporal unit interval graph given as input together
with vertex orderings <1

V ,<2
V , . . . ,<ℓ

V , and let k be the size bound on the separator.
The algorithm proceeds as follows. We introduce a set M ⊆V of “marked” vertices:
We mark the terminals s and z as well as all vertices u, v with the property that for
some t ∈ [ℓ−1] we have that u <t

V v and v <t+1
V u, that is, their relative order is flipped

at some point in time. More formally, let M be the largest subset of V that contains s
and z with the property that for all u ∈ M \ {s, z} there is a v ∈ M and a t ∈ [ℓ−1] such
that either u <t

V v and v <t+1
V u, or v <t

V u and u <t+1
V v .

Note that we can compute M in polynomial time using bubble sort when the
vertex orderings are given. Furthermore, we have that |M | ≤ 2 ·κ ·ℓ+2. If M =V , then
we can solve the problem in the desired running time by trying out every possible
separator. From now on we assume that M ̸=V .

Next, we define two partitions, one for the vertex set M and one for the vertex
set V ′ :=V \ M . Intuitively, the partition of V ′ describes which parts of the orderings
stay the same over the whole lifetime of the temporal graph, or in other words, which
parts of the graph are order-preserving. The partition of M describes which vertices
lie between the parts of the temporal graphs that are order-preserving. The partition
is illustrated in Figure 4.5.

We define a partition of the vertices in M = M1 ⊎M2 ⊎ . . .⊎Mp as follows: Let V =
{v1, v2, . . . , vn } be the vertex ordering given by <1

V (that is, vi <1
V v j if and only if i < j).

• We have that s ∈ M1 and z ∈ Mp .

• If vi ∈ M and vi+1 ∈ M for some i ∈ [n −1], then vi ∈ M j and vi+1 ∈ M j for some
j ∈ [p].

• If vi ∈ M j and vi ′ ∈ M j with i < i ′ for some j ∈ [p], then for all i < i⋆ < i ′ we have
that vi⋆ ∈ M j .

• For all j ∈ [p] we have that M j ̸= ∅, and if vi in M j and vi ′ in M j+1 for some
j ∈ [p −1], then we have that i < i ′.

Analogously, we define a partition of the remaining vertices V ′ =V ′
1 ⊎V ′

2 ⊎ . . .⊎V ′
q in

the following way:

• If vi ∈ V ′ and vi+1 ∈ V ′ for some i ∈ [n −1], then vi ∈ V ′
j and vi+1 ∈ V ′

j for some
j ∈ [q].

59

4 Temporal Separators

Vertex Ordering <V

s v1 v2 v3 v4 v5 v6 v7 v8 z

La
ye

rs

Figure 4.5: Visualization of the vertex partition created by the algorithm described in the
proof of Theorem 4.8. Green regions illustrate parts of vertices that are order-preserving. Red
regions illustrate parts of the vertices that are not order-preserving, indicated by the crossings.
In the red regions, the algorithm “guesses” when a temporal path could enter and should
leave the region, indicated by red arrows. These points in time then define subgraphs of the
temporal unit interval graphs that are order-preserving (green regions) and are solved by the
algorithm described in the proof of Theorem 4.7.

• If vi ∈V ′
j and vi ′ ∈V ′

j with i < i ′ for some j ∈ [q], then for all i < i⋆ < i ′ we have
that vi⋆ ∈V ′

j .

• For all j ∈ [q] we have that V ′
j ̸= ∅, and if vi in V ′

j and vi ′ in V ′
j+1 for some

j ∈ [q −1], then we have that i < i ′.

We can easily compute both partitions by iterating over all vertices in V in the order
given by <1

V and checking whether a vertex is contained in M . It is also easy to check
that q ≤ p +1 ≤ κ ·ℓ+3 ≤ n since for all 1 < j < p we have that |M j | ≥ 2.

Note that any vertex ordering <t
V with t ∈ [ℓ] defines the same partitions.

Now we are ready to construct a separator S. First we guess the set MS := S ∩M .
Then for each 1 < j ≤ p we guess the earliest time a j a temporal path starting from s
should be able to reach a vertex in the set M j in G−S or we set a j := ℓ+1 if no temporal
path from s should be able to reach a vertex in M j in G −S. For each 1 ≤ j < p we
guess the earliest time d j ≥ a j a temporal path from s should be able to reach a vertex
in V ′

j in G −S or, in other words, leave the set M j , or we set d j := ℓ+1 if no temporal
path from s should be able to reach a vertex in V ′

j in G −S.
Now we create the following instances of TEMPORAL (s, z)-SEPARATION on order-

preserving temporal unit interval graphs: For each j ∈ [q] we do the following:
If d j < a j+1, then we create an order-preserving temporal unit interval graph by taking

60

4.3 Separators in Temporal Unit Interval Graphs

the graph G |[d j ,a j+1−1][V ′
j] and adding two new vertices s j and z j . We further add the

edge {s j ,u} at time step t to the temporal graph if d j ≤ t ≤ a j+1 −1 and {u′,u} ∈ Et for
some u′ ∈ M j \MS . We add the edge {z j ,u} at time step t to the graph if d j ≤ t ≤ a j+1−1
and {u′,u} ∈ Et for some u′ ∈ M j+1 \ MS . We call the constructed graph G j . Intuitively,
we merge all vertices in M j \MS to a vertex s j and all vertices in M j+1 \MS to a vertex z j .
It is easy to check that G j is an order-preserving temporal unit interval graph. Now
we solve the optimization variant of TEMPORAL (s, z)-SEPARATION, where we want to
minimize the separator size, on (G j , s j , z j) using Theorem 4.79. Let S j be the solution,
that is, a minimum temporal (s j , z j)-separator for G j . If there is no valid solution or
if d j ≥ a j+1, then we set S j =∅.

Finally, we set S = ⋃︁
j∈[q] S j ∪ MS . If |S| ≤ k and there is no temporal (s, z)-path

in G −S, then we output YES. Otherwise, we output NO.
It is easy to check that the algorithm runs in FPT-time with respect to parame-

ter (κ+ℓ). We give a precise running time bound after the correctness proof.

Correctness. We next prove that the algorithm outputs YES if and only if we face a
YES-instance.

(⇒): If the algorithm outputs YES, then we face a YES-instance. This is trivially
true since the algorithm does a sanity check as a last step.

(⇐): If we face a YES-instance, then there is a temporal (s, z)-separator S⋆ with
|S⋆| ≤ k for G . We claim that in this case, our algorithm outputs YES. Since we try out
all possible sets MS we can assume that there is a branch of our algorithm where we
have that MS = M ∩S⋆. Similarly, we can assume that we are in a branch where all
values a j and d j for j ∈ [q] are “correct”, that is, they are the largest numbers with the
property that no vertex v ∈ M j is reachable from s in G −S⋆ earlier than a j and no
vertex u ∈V ′

j is reachable from s in G −S⋆ earlier than d j .
Then we can show that S =⋃︁

j∈[q] S j ∪MS is a temporal (s, z)-separator and |S| ≤ |S⋆|:
We first check whether S is a temporal (s, z)-separator. Since M ∩S⋆ = M ∩S, we know
that for each part M j with 1 < j < p we have that a temporal path from s that arrives
at a vertex in M j no earlier than a j cannot arrive at a vertex in V ′

j earlier than d j

in G −S. Furthermore, no temporal path from s can arrive at a vertex in V ′
1 earlier

than d1 in G −S and no temporal path from s that arrives at a vertex in Mp at time ap

or later can reach z in G −S. The sets S j are chosen in a way that ensures that a
temporal path from s that does not arrive at any vertex in V ′

j earlier than d j cannot
reach a vertex in M j+1 earlier than a j+1 in G −S j and hence also in G −S. We can
conclude that S is a temporal (s, z)-separator for G . Now assume for contradiction

9Note that the algorithm described in the proof of Theorem 4.7 can easily be modified to output a
solution.

61

4 Temporal Separators

that |S| > |S⋆|. Then there is a set S j such that |S j | > |V ′
j ∩S⋆|. This is a contradiction

to the fact that S j is a minimum temporal (s j , z j)-separator for (G j , s j , z j) since V ′
j ∩S⋆

is also a temporal (s j , z j)-separator for (G j , s j , z j) since otherwise there would be a
temporal path from s that arrives at a vertex in M j+1 earlier than a j+1 in G −S⋆. This
completes the correctness proof.

Running time. There are 2|M | possible guesses for MS and then a total of ℓ2(p−1)

possible guesses for the ai -values and di -values. The polynomial part of the running
time is q ·O(|V |2 ·ℓ2). Together with the bounds we have shown for q, p, and |M | we
get a running time upper bound of O((4ℓ)ℓ·κ · (κ+ℓ) · |V |2 ·ℓ2).

We leave as an open question how to effiently compute the shuffle number of a
given temporal unit interval graph and a set of vertex orderings that witness the
shuffle number. We conjecture that deciding whether a temporal unit interval graph
has shuffle number κ= 1 is already NP-hard.

4.4 Restless Temporal Separators

In this section we investigate the computational complexity of RESTLESS TEMPO-
RAL (s, z)-SEPARATION. Since it generalizes TEMPORAL (s, z)-SEPARATION, we can
quickly observe that the problem is NP-hard. Since the question whether a given
temporal graph admits a ∆-restless temporal (s, z)-separator is the complement of
the question whether the temporal graph contains a ∆-restless temporal (s, z)-path,
we can also deduce that RESTLESS TEMPORAL (s, z)-SEPARATION is coNP-hard since
we know that RESTLESS TEMPORAL (s, z)-PATH is NP-hard (Theorem 3.3). This already
suggests that RESTLESS TEMPORAL (s, z)-SEPARATION is located somewhere higher
in the polynomial time hierarchy. Indeed we can show that RESTLESS TEMPORAL

(s, z)-SEPARATION is ΣP
2 -complete. This implies, for example, that we presumably

cannot use SAT-solvers or ILP-solvers to compute ∆-restless temporal (s, z)-separa-
tors. To show ΣP

2 -hardness, we give a reduction from ∃∀-SAT, where we are given a
Boolean formula φ in conjunctive normal form and a partition of variables of φ into
two sets X and Y . Then we are asked to decide whether there exists an assignment
for all variables in X such that for all possible assignments for the variables in Y , the
formula φ evaluates to true. The very rough idea of our reduction is that the vertices
selected for the separator correspond to an assignment for the variables in X and
if there is an assignment for the variables in Y such that φ evaluates to false, then
the temporal graph should still contain a ∆-restless temporal (s, z)-path after the
separator vertices are removed.

62

4.4 Restless Temporal Separators

Theorem 4.9. RESTLESS TEMPORAL (s, z)-SEPARATION is ΣP
2 -complete for all ∆ ≥ 1

even if every edge has only one time stamp.

Proof. We present a polynomial-time reduction from the ΣP
2 -complete problem ∃∀-

SAT [AB09, Sto76], where we are given a Boolean formula φ in conjunctive normal
form and the variables of φ are partitioned into two sets X and Y , and we are asked
to decide whether there exists an assignment for all variables in X such that for all
possible assignments for the variables in Y , the formula φ evaluates to true.

Let φ(X ,Y) denote an instance of ∃∀-SAT, let nX = |X |, nY = |Y |, and let m be the
number of clauses in φ. We assume that no clause of φ contains a variable several
times. We construct a temporal graph G = (V , (Ei)i∈[ℓ]) with ℓ= 2m +1, consisting of
three gadgets. We start with the “exists gadget” in which we have to select the vertices
of the ∆-restless temporal (s, z)-separator. Intuitively, this chooses an assignment for
the variables in X . The next gadget is the “forall gadget” which must be passed by
every ∆-restless temporal (s, z)-path. This gadget can be traversed in 2nY ways which,
intuitively, represent all possible assignments for the variables in Y . The last gadget
is the clause gadget which, intuitively, a ∆-restless temporal (s, z)-path can only pass
if there is a clause that is not satisfied. We set ∆= 1 and k = nX . We next give formal
descriptions of the gadgets.

Exists Gadget. We start by creating two vertices s and z. For every variable xi ∈ X
we create two vertices x(T)

i and x(F)
i and we add edges {s, x(T)

i }, {x(T)
i , x(F)

i }, and {x(F)
i , z}

to E1. This already completes the construction of the exists gadget. We can see that
we created nX internally vertex-disjoint ∆-restless temporal (s, z)-paths. Since we
set k = nX , we have that every ∆-restless temporal (s, z)-separator has to contain one
vertex from each of these paths.

Forall Gadget. For every variable yi ∈ Y we create two vertices y (T)
i and y (F)

i . We further
create nY + 1 vertices s1, s2, . . . snY +1. For all i ∈ [nY] we add edges {si , y (T)

i }, {si , y (F)
i },

{y (T)
i , si+1}, and {y (F)

i , si+1} to E1. We further add edge {s, s1} to E1. This completes
the construction of the forall gadget. We can see that there are 2nY different ∆-
restless temporal paths from s1 to snY +1. Intuitively, each one of these represents an
assignment for the variables in Y .

Clause Gadget. For every clause ci of φ we create two vertices c (1)
i and c (2)

i . For
every i ∈ [m] we add edge {c (1)

i ,c (2)
i } to E2i+1 and if i < m, then we add edge {c (2)

i ,c (1)
i+1}

to E2i+2. We further add edge {snY +1,c (1)
1 } to E2. We call this part of the gadget the

clause selection path.
Let ci be a clause for some i ∈ [m]. Without loss of generality let ci contain variables

x1, . . . , x j1 and y1, . . . , y j2 . Then we add the following edges to E2i+1:

63

4 Temporal Separators

• If x1 appears non-negated in ci , then we add edge {c (2)
i , x(F)

1 }, otherwise we add
edge {c (2)

i , x(T)
1 }.

• For all j ∈ [j1 −1], if x j appears non-negated in ci , then set v j = x(F)
j , otherwise

set v j = x(T)
j . If x j+1 appears non-negated in ci , then set v j+1 = x(F)

j+1, otherwise

set v j+1 = x(T)
j+1. We add edge {v j , v j+1}.

• If x j1 appears non-negated in ci , then set v = x(F)
j1

, otherwise set v = x(T)
j1

. If y1

appears non-negated in ci , then set w = y (F)
1 , otherwise set w = y (T)

1 . We add
edge {v, w}.

• For all j ∈ [j2 −1], if y j appears non-negated in ci , then set v j = y (F)
j , otherwise

set v j = y (T)
j . If y j+1 appears non-negated in ci , then set v j+1 = y (F)

j+1, otherwise

set v j+1 = y (T)
j+1. We add edge {v j , v j+1}.

• If y j2 appears non-negated in ci , then we add edge {y (F)
j2

, z}, otherwise we add

edge {y (T)
j2

, z}.

We do this for all clauses in φ. This completes the construction of the clause gadget.
Intuitively, a ∆-restless temporal (s, z)-path should only be able to traverse the clause
gadget if there is a clause that is not satisfied.

This finishes the construction of G = (V , (Ei)i∈[ℓ]). The construction is illustrated in
Figure 4.6. Recall that ∆= 1 and k = nX . It is easy to check that G can be constructed
in polynomial time and that every edge has at most one time stamp.

Correctness. Now we show that G admits a ∆-restless temporal (s, z)-separator of size
at most k if and only if φ is a YES-instance of ∃∀-SAT.

(⇒): Assume that there is an assignment for the variables in X such that for all
assignments for the variables of Y we have that φ evaluates to true. We construct a
∆-restless temporal (s, z)-separator S for G as follows. For each i ∈ [nX], if variable xi

is assigned the value true, then we add the vertex x(T)
i to S, otherwise we add x(F)

i

to S. Clearly, we have that |S| = nX = k. In the following, we show that S is a ∆-restless
temporal (s, z)-separator for G .

Assume for contradiction that there is a ∆-restless temporal (s, z)-path P in G −S.
It is easy to see that all ∆-restless temporal (s, z)-paths in G that only use edges from
the exists gadget are destroyed in G −S since from every such path, we put one vertex
into S. Observe that all time edges adjacent to z that are not part of the exists gadget
have a time stamp of three or larger. Hence, to reach a time edge with time step
two, P has to pass the forall gadget to reach time edge {snY +1,c (1)

1 }, which is the only

64

4.4 Restless Temporal Separators

x(T)
1 x(F)

1

x(T)
nX

x(F)
nX

s z

s1

y (T)
1

y (F)
1

y (T)
nY

y (F)
nY

snY +1

c (1)
1

c (2)
1

c (1)
m

c (2)
m

Figure 4.6: Visualization of parts of the underlying graph of the temporal graph G constructed
in the reduction of Theorem 4.9. The red dashed path corresponds to the clause gadget for
clause c2 = (¬x2 ∨x3 ∨¬y2 ∨ y3) (without the clause selection path).

time edge with time stamp two. From this it follows that for every i ∈ [nY] we have
that either y (T)

i ∈V (P) or y (F)
i ∈V (P). Then the path P enters the clause selection path

of the clause gadget. To reach z, the path P has to leave this path at some vertex c (2)
j

for some j ∈ [m] (meaning that c (2)
j ∈V (P) and c (1)

j+1 ∉V (P)). We claim that this implies
that clause c j is not satisfied if the variables from Y are assigned the following truth
values: for each i ∈ [nY], if y (T)

i ∈ V (P), then we set yi to true, otherwise we set yi

to false. Assuming that c (2)
j ∈V (P) and c (1)

j+1 ∉V (P), the only way to reach z from c (2)
j

is through vertices that correspond to the variables appearing in clause ci , since
the time stamps from all paths from the clause selection path to z differ by at least
two. More specifically, for each variable xi (yi) appearing in c j , we have that V (P)
contains vertex x(F)

i (y (F)
i) if xi (yi) appears non-negated in c j and V (P) contains

vertex x(T)
i (y (T)

i) otherwise. This means for the variables xi that they are set to truth
values that do not satisfy clause c j , otherwise the corresponding vertices would
be contained in the separator S. For the variables yi this means the assignment
we constructed earlier also sets them to truth values that do not satisfy clause c j ,

65

4 Temporal Separators

otherwise the corresponding vertices would have been used by P when the path was
passing the forall gadget at time step one. Hence, we have found an assignment for
the variables in Y such that together with the given assignment for the variables in X ,
the formula φ evaluates to false—a contradiction.

(⇐): Let S ⊆ V \ {s, z} with |S| ≤ k be a ∆-restless temporal (s, z)-separator for G .
Let us first look at the exists gadget of G . It consists of nX internally vertex-disjoint
∆-restless temporal (s, z)-paths, each one visiting four vertices: s, x(T)

i , x(F)
i , and z

for some i ∈ [nX]. Of each of these ∆-restless temporal (s, z)-paths, one vertex other
than s or z has to be contained in S, otherwise S would not be a ∆-restless tempo-
ral (s, z)-separator. It follows that for all i ∈ [nX] either x(T)

i or x(F)
i is contained in S

(and also no other vertices are contained in S since k = nX). This lets us construct
an assignment for the variables in X as follows. For every i ∈ [nX], if x(T)

i ∈ S, then we
set xi to true, otherwise we set xi to false. We claim that using this assignment for the
variables in X , we have that for all assignments for the variables in Y the formula φ

evaluates to true.

Assume for the sake of contradiction that there is an assignment for the variables
in Y such that together with the constructed assignment for the variables in X , the
formula φ evaluates to false. Then we can construct a ∆-restless temporal (s, z)-path
in G −S as follows. Starting from s we traverse the forall gadget as follows. Starting
with i = 1 to nY we visit si and then y (T)

i if yi is set to true, and y (F)
i otherwise. Then

we visit snY +1. Up until this point, the path only uses time edges with time stamp one.
Since φ evaluates to false, there is at least one clause in φ that is not satisfied. Let c j

be that clause. We continue our ∆-restless temporal path from snY +1 to c (2)
j . Since c j

evaluates to false, the vertices corresponding to the variables in X appearing in c j are
not contained in S, otherwise, by construction, the clause c j would evaluate to true.
Similarly, the vertices corresponding to the variables in Y appearing in c j have not
been visited by the path when traversing the forall gadget. Hence, we can continue
the ∆-restless temporal path from c (2)

j to z—a contradiction.

Containment in ΣP
2 . Our proof so far shows that RESTLESS TEMPORAL (s, z)-SEPA-

RATION is ΣP
2 -hard. To show that the problem is ΣP

2 -complete, we show that it is
contained in ΣP

2 . Recall that ΣP
2 contains all problems that can be solved by an NP-

machine that has oracle access to an NP-complete problem [AB09, Sto76]. We can
solve an instance G = (V , (Ei)i∈[ℓ]), s, z,k,∆) of RESTLESS TEMPORAL (s, z)-SEPARATION

with such a machine as follows. We non-deterministically guess a set S ⊆V of size
at most k and then produce an instance (G −S, s, z,∆) of RESTLESS TEMPORAL (s, z)-
PATH. Since RESTLESS TEMPORAL (s, z)-PATH is contained in NP, we can reduce it to
the NP-complete problem to which we have oracle access. We use the reduction to

66

4.4 Restless Temporal Separators

produce an equivalent instance of the NP-complete problem we have oracle access
to and query the oracle with this instance. If the oracle answers NO, then we have
found a ∆-restless temporal (s, z)-separator of size at most k for G and can answer
YES. It is easy to see that the described machine has an accepting path if and only if
the RESTLESS TEMPORAL (s, z)-SEPARATION instance is a YES-instance.

From a parameterized complexity perspective we can make one rather straightfor-
ward observation. Since RESTLESS TEMPORAL (s, z)-SEPARATION generalizes TEM-
PORAL (s, z)-SEPARATION, we know that RESTLESS TEMPORAL (s, z)-SEPARATION pa-
rameterized by the separator size k is W[1]-hard [Zsc+20]. However, we can observe
that RESTLESS TEMPORAL (s, z)-SEPARATION is even W[2]-hard when parameterized
by the separator size k by a straightforward reduction from HITTING SET, where we
model each element of the universe with a vertex and each set by a path through
the corresponding vertices. The waiting time ∆ allows us to obtain a one-to-one
correspondence between restless temporal paths in the constructed temporal graph
and sets in the HITTING SET instance. We remark that the reduction we use to show
this result has been used in a very similar way by Zschoche [Zsc17] to show that
finding temporal separators of bounded size that destroy all ∆-restless temporal
walks from s to z is W[2]-hard when parameterized by the bound on the separator
size.

Observation 4.10. RESTLESS TEMPORAL (s, z)-SEPARATION parameterized by the
separator size k is W[2]-hard for all ∆≥ 1.

Proof. We present a parameterized polynomial-time reduction from HITTING SET,
where we are given a universe set U , a family of sets S1, . . . ,Sm ⊆U , and an integer
h, and are asked whether there is a hitting set S⋆ ⊆U with |S⋆| ≤ h such that for all
i ∈ [m] we have that S⋆∩Si ̸= ∅. HITTING SET is W[2]-complete when parameterized
by h [DF99, PM81].

Given an instance (U , (Si)i∈[m],h) of HITTING SET, we construct a temporal graph
G = (V , (Ei)i∈[ℓ]) with ℓ= 2m as follows. We set V =U ∪ {s, z} and for each set Si with
i ∈ [m] we create two layers G2i−1 and G2i . In layer G2i−1 we create a path from s to z
that visits all vertices in Si in an arbitrary order. The layer G2i is trivial. We set ∆= 1
and k = h. This finishes the construction. It is easy to check that this can be done in
polynomial time.

Correctness. The correctness is straightforward to see. A ∆-restless temporal (s, z)-
separator for G has to contain at least one vertex from each set Si with i ∈ [m],
otherwise there would be a layer that contains a ∆-restless temporal (s, z)-path. It
follows that a ∆-restless temporal (s, z)-separator for G is a hitting set for (U , (Si)i∈[m]).

67

4 Temporal Separators

For the other direction, one has to observe that due to the waiting time restriction ∆

and the trivial layers that are present in G , each ∆-restless temporal (s, z)-path in G

corresponds to a set Si for some i ∈ [m] of the HITTING SET instance. It follows that
a hitting set contains at least one vertex from each ∆-restless temporal (s, z)-path
in G .

We remark that it is open whether TEMPORAL (s, z)-SEPARATION parameterized
by the separator size k is contained in W[1]. Hence, Observation 4.10 does not
necessarily imply that RESTLESS TEMPORAL (s, z)-SEPARATION parameterized by
the separator size k is harder than TEMPORAL (s, z)-SEPARATION parameterized by
the separator size k. Also containment of RESTLESS TEMPORAL (s, z)-SEPARATION

parameterized by the separator size k in W[2] is open.

4.5 Conclusion

In the first part of this chapter we investigated the computational complexity
of finding temporal separators on temporal unit interval graphs, a restricted class
of temporal graphs that is motivated from physical proximity network modeling.
This approach allowed us to obtain fixed-parameter tractability results for a novel
type of parameter, the “shuffle number”, that measures how drastically temporal
unit interval graphs change over time. These results are a first step towards better
understanding temporal graphs based on geometric intersection models. Future
work includes generalizing these results to, for example, temporal graphs based on
square or disk intersection models.

Furthermore, we believe that these restrictions are well motivated for several other
problems on temporal graphs, such as for example TEMPORAL CLIQUE, a problem
that has been studied in the context of physical proximity networks [Ben+19, Him+17,
VLM16] and which we investigate (on general temporal graphs) in Chapter 7.

In the second part of this chapter, we adopted the path model we studied in
Chapter 3 for temporal separators and investigated the computational complexity
of finding restless temporal separators. We established that this problem is hard
for ΣP

2 , a complexity class that is located in the second level of the polynomial time
hierarchy. This implies, for example, that we presumably cannot use SAT-solvers
or ILP-solvers to compute restless temporal separators. So far, we do not know any
tractability results for this problem yet and leave that as a task for future research.

68

CHAPTER 5

Temporal Matchings

Finding matchings is one of the most important primitives in graph algorithmics.
In this chapter, we study the computational complexity of finding matchings in
temporal graphs. Our model of temporal matching (which appears to be slightly
more general than a previous one due to Baste, Bui-Xuan, and Roux [BBR20]) allows
for capturing several real-world scenarios where (as for example in social networks)
relations change over time and where one also has to model the duration of pairings
between agents. Intuitively, we say that if two agents are matched at some time step,
then they both cannot be matched again in the next ∆ time steps. This is motivated
from modeling activities that require a “recovery time” after completion. We present
several computational hardness results for very restricted cases and employ temporal
line graphs as an important tool. In particular, we show that computing matchings
of a given minimum cardinality is NP-hard even if the underlying graph of the input
temporal graph is a path. This presumably excludes fixed-parameter tractability
results for several popular and useful parameterizations.

This chapter is based on the paper “Computing maximum matchings in temporal
graphs” by Mertzios et al. [Mer+20].

5.1 Introduction

Computing maximum matchings (maximum-cardinality sets of independent
edges in an undirected graph) is one of the most fundamental graph-algorithmic
primitives [LP09]. In this work, we lift the study of the algorithmic complexity of find-
ing maximum matchings from static graphs to temporal graphs. Whenever facing
network structures changing over time (for example, social or biological networks),
the search for “temporal matchings” is a fundamental task. To this end, however,
one first has to come up with a natural model of temporal matching which, indeed,
leaves quite some degrees of freedom. We address this next.

We investigate a model for temporal matchings that is inspired by the work of
Baste, Bui-Xuan, and Roux [BBR20]. We build on their work and answer some of
their open questions. Our model slightly differs from theirs. Indeed, we have an
easy reduction from their model to ours whereas it is not clear whether an equally
easy reduction also exists for the opposite direction. In our model, we search for

69

5 Temporal Matchings

∆-temporal matchings. Roughly speaking, two time-stamped edges are temporally
independent (with respect to a natural number ∆) if their unlabeled versions do
not share an endpoint or their time stamps differ by at least ∆. While we search for
such temporally independent edges, Baste, Bui-Xuan, and Roux [BBR20] additionally
request that, in order to be eligible for a matching, an edge must exist in the input
in at least ∆ consecutive layers. Thus, their matchings need to consist of “time-
consecutive edge blocks”, which requires some “data cleaning” to make their model
fit with real-world “link stream” data in their experiments [BBR20].

To the best of our knowledge, the main alternative model for temporal match-
ings in temporal graphs is the concept of multistage (perfect) matchings [Bam+18,
GTW14]. This model, which is inspired by reconfiguration or reoptimization prob-
lems, is not directly related to ours. Roughly speaking, the goal is to find perfect
matchings for every layer of a temporal graph such that the matchings only change
slowly over time.

Before proceeding with a more general discussion of related work and our results,
let us briefly discuss a motivating example for finding ∆-temporal matchings. As-
sume that each vertex represents a police(wo)man. An edge labeled with a number t
then means that the two corresponding persons are available to perform a joint
activity at this time step t . In our police setting, this could mean to be together on
patrol on a specific day t . With the time window length ∆ we model the length of
the “recovery time” that is required after the activity. In the police setting this could
mean that the two police(wo)men cannot (or do not need to) patrol for ∆ days. More
generally, once two entities (vertices) participate in an activity (time-labeled edge) at
some time step t , at least ∆ time steps (the recovery time) need to pass after t before
any of these entities (vertices) can again become available for any other activity.

5.1.1 Related Work

The work of Baste, Bui-Xuan, and Roux [BBR20] is by far the closest to the setting
we study in this chapter. Among other things, they showed that finding maximum
matchings in temporal graphs is NP-hard, even when ∆≥ 2. In terms of parameter-
ized complexity, they provided a polynomial-size problem kernel for the combined
parameter k +∆, where k is the lower bound for the cardinality of the wanted match-
ing. Finally, they presented a polynomial-time 1/2-approximation algorithm and
conducted some experimental work [BBR20]. We mention in passing that all their
algorithmic results (both positive and negative) easily translate to our setting.

Gupta, Talwar, and Wieder [GTW14] introduced the concept of multi-stage (per-
fect) matchings. Here, the goal is to find perfect matchings for every layer of a tem-
poral graph such that the (symmetric) difference of the matchings of two adjacent

70

5.1 Introduction

layers is small. In this setting one mostly encounters computational intractability,
which leads to several results on approximation hardness and algorithms [Bam+18,
GTW14]. Furthermore, we remark that Michail and Spirakis [MS16] defined a dif-
ferent specialized notion of temporal matching which they used as an auxiliary
tool to prove computational hardness results for traveling salesperson problems in
temporal graphs.

In the closely related multi-layer setting, generalizations of matchings have also
been studied. Recall that in contrast to temporal graphs which are ordered sequences
of layers, a multi-layered graph is an unordered set of layers. For multi-layered
graphs with two layers it has been shown that a perfect matching can be computed
in polynomial time, while three layers already yield NP-hardness [Bre+19].

Notably, in static graphs there is a close connection between finding matchings
and finding vertex covers (that is, sets of vertices that cover all edges). Very recently,
finding vertex covers in temporal graphs has been studied in various models [Akr+20,
Flu+19]. However, we could not observe any direct links to be exploited between
vertex covering and matching in the temporal setting.

Finding maximum matchings in static graphs is a classic polynomial-time solvable
graph problem [MV80] that has been studies extensively. For an overview on results
for matchings in static graphs, we refer to the book of Lovász and Plummer [LP09].

5.1.2 Our Contributions and Organization of the Chapter

We introduce the TEMPORAL MATCHING problem, thoroughly investigate its com-
putational hardness and thereby show that known algorithms presumably cannot
be improved significantly. First, we prove that it is NP-complete even if the input
temporal graph has only three layers. is complete.

The second major result of this chapter is to show that TEMPORAL MATCHING

remains NP-hard even in the very restricted case where the underlying graph of the
temporal input graph is a path. On our way to prove the above hardness results, we
make use the notion of a temporal line graph. To the best of our knowledge this is the
first non-trivial application of this concept which may prove useful in other contexts,
too. Temporal line graphs form a restricted class of static graphs, which remains
largely unexplored. This notion enables us to reduce the problem of computing
a large temporal matching to the problem of computing a large independent set
in a static graph (namely in the temporal line graph that is specified by the input
temporal graph). Moreover, as an intermediate result, we show that the classic prob-
lem INDEPENDENT SET (on static graphs) remains NP-hard on induced subgraphs
of diagonal grid graphs, thus strengthening an old result of Clark, Colbourn, and
Johnson [CCJ90] for unit disk graphs.

71

5 Temporal Matchings

The chapter is organized as follows. In Section 5.2, we formally define ∆-temporal
matchings, our main problem TEMPORAL MATCHING, and temporal line graphs. We
further present some preliminary computational complexity observations. Moreover,
we discuss the relationship between our model for temporal matchings and the one
of Baste, Bui-Xuan, and Roux [BBR20] in more detail. We continue by presenting our
first NP-hardness reduction in Section 5.3 and prove in Section 5.4 that TEMPORAL

MATCHING is NP-hard even if the underlying graph of the input temporal graph is
a path. Here, we make extensive use of the concept of temporal line graphs. We
conclude in Section 5.5.

5.1.3 Further Contributions of the Paper this Chapter is Based on

Additionally to the contributions we present in this chapter, Mertzios et al. [Mer+20]
show that the optimization variant of TEMPORAL MATCHING where the size of the
temporal matching should be maximized is APX-complete. On the positive side, they
provide a polynomial-time ∆/(2∆−1)-approximation algorithm. Furthermore, they
show that TEMPORAL MATCHING is fixed-parameter tractable with respect to the
cardinality k of the sought temporal matching and with respect to the combination
of the vertex cover number of the underlying graph and the time window size ∆.

5.2 Preliminaries

In this section, we provide additional definitions and notation related to matchings
and line graphs. In particular, we present the formal definitions of temporal match-
ings, temporal line graphs, and give the formal problem definition of TEMPORAL

MATCHING and some preliminary computational complexity observations. We also
briefly discuss the relation between our model of temporal matchings and the model
used by Baste, Bui-Xuan, and Roux [BBR20].

5.2.1 Temporal Matchings

A matching in a (static) graph G = (V ,E) is a set M ⊆ E of edges such that for
all e,e ′ ∈ M we have that e ∩e ′ =∅ [LP09]. In the following, we transfer this concept
to temporal graphs.

For a natural number ∆, two time-edges (e, t), (e ′, t ′) are ∆-independent if e ∩e ′ =∅
or |t − t ′| ≥ ∆. If two time-edges are not ∆-independent, then we say that they
are in conflict. A time-edge (e, t) ∆-blocks a vertex appearance (v, t ′) (or (v, t ′) is ∆-
blocked by (e, t)) if v ∈ e and |t − t ′| ≤∆−1. A ∆-temporal matching M of a temporal
graph G = (V , (Ei)i∈[ℓ]) is a set of time-edges of G which are pairwise ∆-independent.
Formally, it is defined as follows.

72

5.2 Preliminaries

G1: G2: G3:

Figure 5.1: Example temporal graph with lifetime three. The thick edges form a maximum
2-temporal matching.

Definition 5.1 (∆-Temporal Matching). A ∆-temporal matching of a temporal graph
G = (V , (Ei)i∈[ℓ]) is a set M ⊆ E(G↓)× [ℓ] of time-edges of G such that for all (e, t) ∈ M
we have that e ∈ Et and for every pair of distinct time-edges (e, t), (e ′, t ′) in M we have
that e ∩e ′ =∅ or |t − t ′| ≥∆.

We remark that this definition is similar to the definition of γ-matchings by Baste,
Bui-Xuan, and Roux [BBR20]. We point out similarities and differences in a dedicated
paragraph at the end of this section.

A ∆-temporal matching is called maximal if it is not properly contained in any
other ∆-temporal matching. A ∆-temporal matching is called maximum if there
is no ∆-temporal matching of larger cardinality. For an example of a ∆-temporal
matching see Figure 5.1.

Having defined temporal matchings, we naturally arrive at the following central
problem.

TEMPORAL MATCHING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k ∈N and ∆≤ ℓ.
Question: Is there a ∆-temporal matching in G of cardinality at least k?

It is easy to see that we can check in polynomial time whether, given a temporal
graph, a given set of time-edges is a ∆-temporal matching. This implies that TEMPO-
RAL MATCHING is contained in NP and in subsequent NP-completeness statements
we will only discuss hardness.

5.2.2 Temporal Line Graphs

The line graph of a (static) graph G = (V ,E) is a graph L(G) with vertex set V (L(G)) =
{ve | e ∈ E } and for all ve , ve′ ∈ V (L(G)) we have that {ve , ve′ } ∈ E(L(G)) if and only

73

5 Temporal Matchings

if e ∩ e ′ ̸= ∅ [Die16]. In the context of matchings, line graphs are of special interest
since the cardinality of a maximum matching in a graph equals the cardinality of
a maximum independent set in its line graph. Indeed, a matching in a graph can
directly be translated into an independent set in its line graph and vice versa [Die16].
In the following, we show how to transfer this concept to temporal graphs and
temporal matchings. In particular, we make use of temporal line graphs in the
NP-hardness result of Section 5.4.

The ∆-temporal line graph of a temporal graph G = (V , (Ei)i∈[ℓ]) is a static graph
that has a vertex for every time-edge of G and two vertices are connected by an edge
if the corresponding time-edges are in conflict, that is, they cannot be both part of a
∆-temporal matching of G . We say that a graph H is a temporal line graph if there
exists a ∆ and a temporal graph G such that H is isomorphic to the ∆-temporal line
graph of G . Formally, temporal line graphs and ∆-temporal line graphs are defined
as follows.

Definition 5.2 (Temporal Line Graph). Given a temporal graph G = (V , (Ei)i∈[ℓ]) and
an integer ∆ ∈N, the ∆-temporal line graph L∆(G) of G is defined as follows.

• V (L∆(G)) := {et | e ∈ Et },

• E(L∆(G)) := {{et ,e ′
t ′ } | e ∩e ′ ̸= ∅∧|t − t ′| <∆}.

We say that a graph H is a temporal line graph if there is a temporal graph G and an
integer ∆ such that H = L∆(G).

By definition, ∆-temporal line graphs have the following property.

Observation 5.1. Let G = (V , (Ei)i∈[ℓ]) be a temporal graph and let L∆(G) be its ∆-
temporal line graph. The cardinality of a maximum independent set in L∆(G) equals
the size of a maximum ∆-temporal matching of G .

It follows that solving TEMPORAL MATCHING on a temporal graph G = (V , (Ei)i∈[ℓ])
is equivalent to solving INDEPENDENT SET on L∆(G).

We remark that a different notion of temporal line graphs was introduced in a
survey by Latapy, Viard, and Magnien [LVM18], which is somewhat similar to our
definition for the case of ∆= 1.

5.2.3 Basic Observations

Note that when the input parameter ∆ in TEMPORAL MATCHING is equal to one,
the problem can be solved efficiently, because it reduces to ℓ independent instances
of (static) MAXIMUM MATCHING, which can be solved in polynomial time [MV80].

74

5.2 Preliminaries

G1

1

G2

2

· · · G∆

∆

(V ,∅)

∆+1

G∆+1

∆+2

· · · G2∆

2∆+1

(V ,∅)

2∆+2

· · · · · · · · · Gℓ

ℓ+⌊ℓ/∆⌋

Figure 5.2: Inserting trivial layers to reduce TEMPORAL MATCHING on instances (G ,∆,k) to
TEMPORAL MATCHING on instances (G ,∆+1,k).

At the other extreme are instances (G = (V , (Ei)i∈[ℓ]),∆,k) in which ∆ coincides with
the lifetime ℓ, that is, ∆= ℓ. In this case the problem can also be solved in polynomial
time. Indeed, it can again be reduced to solving MAXIMUM MATCHING, this time in
the underlying graph G↓. Every matching edge in the underlying graph is then put
into the temporal matching with some arbitrary time step where this edge is present.

Furthermore, it is easy to observe that computational hardness of TEMPORAL

MATCHING for some fixed value of ∆ implies hardness for all larger values of ∆. This
allows us to construct hardness reductions for small fixed values of ∆ and still obtain
general hardness results.

Observation 5.2. For every fixed ∆, TEMPORAL MATCHING on instances (G ,∆+1,k)
is computationally at least as hard as TEMPORAL MATCHING on instances (G ,∆,k).

Proof. The claim immediately follows from the observation that a temporal graph G

contains a ∆-temporal matching of size at least k if and only if the temporal graph G ′

contains a (∆+1)-temporal matching of size at least k, where G ′ is obtained from G

by inserting one trivial layer after every ∆ consecutive layers (see Figure 5.2).

Next, we briefly discuss some further results from Mertzios et al. [Mer+20] that are
not part of this chapter. Mertzios et al. [Mer+20, Theorem 22] showed that TEMPORAL

MATCHING admits a factor- ∆
2∆−1 approximation algorithm. They further showed

that TEMPORAL MATCHING admits an FPT-algorithm for the parameter k (matching
size) [Mer+20, Theorem 25] and one for the combined parameter ∆+vc↓ [Mer+20,
Theorem 34], where vc↓ denotes the vertex cover number of the underlying graph.

5.2.4 Relation to γ-MATCHING by Baste, Bui-Xuan, and Roux [BBR20]

We refer to the variant of temporal matching introduced by Baste, Bui-Xuan, and
Roux [BBR20] as γ-MATCHING. They defined the problem γ-MATCHING very similarly
to the way we define TEMPORAL MATCHING. Their definition requires a time-edge to
be present at γ consecutive time steps to be eligible for a temporal matching. There
is an easy reduction from their model to ours: For every sequence of γ consecutive
time-edges starting at time step t , we introduce just one time-edge at time step t , and

75

5 Temporal Matchings

set ∆ to γ. This already implies that TEMPORAL MATCHING is NP-complete [BBR20,
Theorem 1] and that algorithmic results for TEMPORAL MATCHING also hold for
γ-MATCHING. We do not know an equally easy reduction in the reverse direction.

In addition, it is easy to check that the algorithmic results of Baste, Bui-Xuan, and
Roux [BBR20] can also be adapted to our model. Hence, we get that TEMPORAL

MATCHING admits a polynomial kernel when parameterized by k +∆ [BBR20, Theo-
rem 2]. Some of our hardness results can also easily be transferred to γ-MATCHING.
Whenever this is the case, we indicate this.

5.3 NP-Hardness of Temporal Matching with Few Layers

In this section, we prove that TEMPORAL MATCHING is NP-complete even if the
input temporal graph has only a constant number of layers. This is an improve-
ment over the previously known NP-hardness results by Baste, Bui-Xuan, and Roux
[BBR20] since their reduction has an unbounded number of layers.

Theorem 5.3. TEMPORAL MATCHING is NP-complete for all ∆≥ 2 and ℓ≥∆+1 even
if the underlying graph has maximum degree three and every edge of the underlying
graph appears only once.

Proof. We present a polynomial-time reduction from INDEPENDENT SET, which
is known to be NP-complete even on graphs with maximum degree three [GJ79,
GJS76]. In this problem we are asked to decide whether a given graph H = (U ,F) with
maximum degree three contains a set of at least h pairwise non-adjacent vertices.
Let H = (U ,F) be a graph with maximum degree three and let h be an integer. We
construct in polynomial time a temporal graph G = (V , (Ei)i∈[ℓ]) with lifetime ℓ= 3 as
follows (to obtain instances with larger lifetime, we can simply add additional trivial
layers after the first layer). First, we find a proper 4-edge coloring Υ : E → {1,2,3,4} of
H . Such a coloring exists by Vizing’s theorem [Viz64] and can be found in O(|F |) time
[Sch98]. For every vertex v ∈U of H we add two vertices v1, v2 to the vertex set V of
G . For every edge e ∈ F of H we add a vertex ue to V . Next, for every vertex v ∈U we
add the following edges to G .

1. We add {v1, v2} to E2.

2. For every edge e = {v, w} ∈ F such that Υ(e) ∈ {1,2} we add edges {ue , vΥ(e)} and
{ue , wΥ(e)} to E1.

3. For every edge e = {v, w} ∈ F such that Υ(e) ∈ {3,4} we add edges {ue , vΥ(e)−2} and
{ue , wΥ(e)−2} to E3.

76

5.3 NP-Hardness of Temporal Matching with Few Layers

a

bc

d

31

2

4

13

(a) A cubic graph H . The edge labels correspond
to the 4-edge coloring.

a1 a2

b1

b2

c1

c2

d1 d2u{c,d} u{b,d}

u{a,c} u{a,b}

u{a,d}

u{c,b}

(b) The underlying graph G↓. Big white vertices
correspond to edges of H , black vertices

correspond to vertices of H .

Layer 1 Layer 2 Layer 3

(c) The temporal graph G .

Figure 5.3: Example of the reduction from INDEPENDENT SET on graphs with maximum
degree three to TEMPORAL MATCHING.

The construction is illustrated in Figure 5.3. It is easy to check that vertices ue ∈V
with e ∈ F have degree two in the underlying graph and vertices v1, v2 ∈V with v ∈U
have degree at most three in the underlying graph, Furthermore, every edge in G

appears only at one time step. Finally, we set ∆= 2 and k = h +|F |.
Correctness. Next, we show that G contains a 2-temporal matching of size k if and
only if H contains an independent set of size h.

(⇒): Let M be a 2-temporal matching in G of size k. We first show that we
can assume without loss of generality that M contains at most one of the time-
edges ({v1, v2},2) and ({w1, w2},2) for every {v, w} ∈ F . This will allow us to construct
an independent set for the original graph H from the temporal matching. Formally,

77

5 Temporal Matchings

we show that if M is a 2-temporal matching of G , then there exists a 2-temporal
matching M ′ of G such that |M ′| = |M |, and for every edge e = {v, w} ∈ F the match-
ing M ′ contains at most one of the time-edges ({v1, v2},2) and ({w1, w2},2).

Let e = {v, w} ∈ F be an edge such that both ({v1, v2},2) and ({w1, w2},2) are in M .
Without loss of generality we assume that Υ(e) = 1. Since the lifetime of G is three
and ({v1, v2},2) ∈ M , no time-edge in M different from ({v1, v2},2) is incident with v1

or v2. Similarly, no time-edge in M different from ({w1, w2},2) is incident with w1

or w2. In particular, we have that ({ue , v1},1) ∉ M and ({ue , w1},1) ∉ M . Hence, the tem-
poral matching M ′ which is obtained from M by replacing ({v1, v2},2) with ({ue , v1},1)
is a 2-temporal matching of G with |M ′| = |M |, and the number of edges {v, w} ∈ F
such that M ′ contains both ({v1, v2},2) and ({w1, w2},2) is reduced by one (in compari-
son to M). Repeating this process eventually leads to a 2-temporal matching M ′ with
the desired property.

From now on we assume without loss of generality that if {v, w} ∈ F , then M con-
tains at most one of the time-edges ({v1, v2},2) and ({w1, w2},2). We set S = {v ∈U |
({v1, v2},2) ∈ M } and we claim that S is an independent set of size at least h in H . The
above assumption already implies that S is an independent set, hence we show in
the following that is has the correct minimum size.

Notice that for every edge e ∈ F the underlying graph G↓ of G contains exactly two
edges incident with ue and both of them appear in the same time step. Hence M
can contain at most one time-edge incident with we , and therefore |S| ≥ |M |− |F | ≥
k −|F | = h.

(⇐): Let S ⊆U with |S| ≥ h be an independent set of H . We show that G contains
a 2-temporal matching M of size at least k. We construct M as follows. First, for
every v ∈ S we add ({v1, v2},2) to M . Second, for every edge e = {v, w} ∈ F we add one
more time-edge in M as follows. Since S is independent, at least one of v and w is
not in S, say v . Then we add to M

1. ({ue , v1},1) if Υ(e) = 1,

2. ({ue , v2},1) if Υ(e) = 2,

3. ({ue , v1},3) if Υ(e) = 3, and

4. ({ue , v2},3) if Υ(e) = 4.

By construction we have |M | = |S|+|F |. Now we show that M is a 2-temporal matching.
For any two distinct vertices v and w in S the edges {v1, v2} and {w1, w2} do not share
a vertex and therefore the time-edges ({v1, v2},2) and ({w1, w2},2) are not in conflict.

78

5.3 NP-Hardness of Temporal Matching with Few Layers

Furthermore, for any pair of adjacent edges {ue , vα}, {v1, v2} with α ∈ [2] in E(G↓) the
corresponding time-edges are not in conflict in M , as, by construction, at most one
of them is contained in M . For the same reason, for every edge e = {v, w} ∈ F the time-
edges corresponding to {ue , vα} and {ue , wα}, where α= 1+ (Υ(e)+1) mod 2, are not
in conflict in M . It remains to show that the time-edges ({we ,uα}, i) and ({we′ ,uα}, j)
with i , j ∈ {1,3} and α ∈ [2] are not in conflict in M . Suppose to the contrary that
the time-edges are in conflict. Then both of them are in M and |i − j | ≤ 1. Since by
definition i , j ∈ {1,3}, we conclude that i = j , that is, the time-edges appear in the
same time step. Notice that e and e ′ share vertex u, and hence Υ(e) ̸=Υ(e ′). Since α=
1+(Υ(e) = 1) mod 2 = 1+(Υ(e ′)+1) mod 2, we conclude that either {Υ(e),Υ(e ′)} = {1,3},
or {Υ(e),Υ(e ′)} = {2,4}. However, by construction, this contradicts the assumption
that i = j . This completes the proof that M is a 2-temporal matching and furthermore
we have |M | = |S|+ |F | ≥ k.

We observe that the reduction from the proof of Theorem 5.3 can be modified in
such a way that it produces a temporal graph that has a complete underlying graph.
Namely, we can add ∆= 2 additional layers to the construction, one trivial layer at
time step four, and one layer that is a complete graph at time step five. This has
the consequence that the size of the matching increases by exactly ⌊|V |/2⌋ and the
underlying graph of the constructed temporal graph is a complete graph. Hence, we
obtain the following corollary.

Corollary 5.4. TEMPORAL MATCHING is NP-complete for all ∆≥ 2 and ℓ≥ 2∆+1 even
if the underlying graph of the input temporal graph is complete.

This corollary implies that parameterizing TEMPORAL MATCHING by structural
graph parameters of the underlying graph that are constant on complete graphs
cannot yield fixed-parameter tractability unless P = NP, even if combined with the
lifetime ℓ.

We further remark that the reduction from the proof of Theorem 5.3 implies that
the canonical maximization variant of TEMPORAL MATCHING, where we want to
maximize the cardinality of the temporal matching, is APX-hard [Mer+20].

We also remark that our reduction can easily be adapted to the model of Baste,
Bui-Xuan, and Roux [BBR20]: recall that every edge of the underlying graph of the
temporal graph constructed in the reduction (see proof of Theorem 5.3) appears in
exactly one time step. Hence, for each of these time-edges, we can add a second
appearance exactly one time step after the first appearance without creating any new
matchable edges. Of course in order to do that for time-edges appearing in the third

79

5 Temporal Matchings

time step, we need another fourth time step. It follows that γ-MATCHING [BBR20] is
NP-hard and its canonical optimization version is APX-hard even if γ= 2 and ℓ= 4.

Finally, we show how we can use the reduction from the proof of Theorem 5.3 to
derive a kernelization lower bound for TEMPORAL MATCHING when parameterized
by the number |V | of vertices. In particular, this implies that the fixed-parameter
tractability result for the parameter combination ∆+ vc↓ [Mer+20, Theorem 34],
where vc↓ denotes the vertex cover number of the underlying graph, presumably
cannot be improved to yield a polynomial kernel.

Proposition 5.5. TEMPORAL MATCHING parameterized by the number |V | of vertices
does not admit a polynomial kernel for all ∆≥ 2 unless NP ⊆ coNP/poly.

Proof. We provide an AND-cross-composition (for a definition see Section 2.3) from
INDEPENDENT SET on graphs with maximum degree three [GJ79, GJS76]. Intuitively,
we can just string together instances produced by the reduction we presented in the
proof of Theorem 5.3 in the time axis such that the large instance contains a large
∆-temporal matching if and only if all original instances are YES-instances.

In this problem we are asked to decide whether a given graph H = (U ,F) with
maximum degree three contains a set of at least h pairwise non-adjacent vertices.
Furthermore, it is important to observe that, given graph H = (U ,F) with maximum
degree three, it is NP-complete to decide whether H contains an independent set
of size h even if it is known that H does not contain an independent set of size
h + 1 [GJS76]. In the following, we assume that all instances have this property.
We define an equivalence relation R as follows: Two instances (H = (U ,F),h) and
(H ′ = (U ′,F ′),h′) are equivalent under R if and only if the number of vertices is the
same, that is, |U | = |U ′| and we have that h = h′. Clearly, R is a polynomial equivalence
relation.

Now let (H1 = (U1,F1),h1), . . . , (Hn = (Un ,Fn),hn) be R-equivalent instances of IN-
DEPENDENT SET with the above described extra conditions. We arbitrarily iden-
tify the vertices of all instances, that is, let U = U1 = . . . = Un . For each (Hi ,hi)
with i ∈ [n] we construct an instance of TEMPORAL MATCHING as defined in the
proof of Theorem 5.3 (for an illustration see Figure 5.3) with the only difference
that we add a fourth layer that does not contain any edges. Now we put all con-
structed temporal graphs next to each other in temporal order, that is, if G (i) =
(V (i),E (i)

1 ,E (i)
2 , . . . ,E (i)

4) is the graph constructed for (Hi ,hi), then the overall tempo-
ral graph is G = (

⋃︁
i∈[n] V (i),E (1)

1 ,E (1)
2 , . . . ,E (1)

4 ,E (2)
1 ,E (2)

2 , . . . ,E (2)
4 , . . . , E (n)

1 ,E (n)
2 , . . . ,E (n)

4). Note
that |⋃︁i∈[n] V (i)| ≤ 2|U | + (︁|U |

2

)︁
since in the reduction defined in the proof of Theo-

rem 5.3, the constructed temporal graph contains two vertices for every vertex of the

80

5.4 NP-Hardness of Temporal Matching with Underlying Paths

INDEPENDENT SET instance and one vertex for every edge of the INDEPENDENT SET

instance. Further, we set ∆= 2 and k = n ·h1 +∑︁
i∈[n] |Fi |.

This instance can be constructed in polynomial time and |V | is polynomially
upper-bounded by the maximum size of an input instance. It is easy to check that
the extra trivial layer contained in each constructed temporal graph G (i) prevents
the ∆-temporal matchings from two adjacent constructed graphs G (i) and G (i+1) for
i ∈ [n−1] to interfere, that is, matching two vertices with a time edge from G (i) cannot
block vertices from G (i+1) from being matched. Furthermore, since we assume that
no instance (Hi ,hi) of INDEPENDENT SET contains an independent set of size h1 +1,
it cannot happen that the ∆-temporal matching of a constructed temporal graph G (i)

is larger than h1 +|Fi |. It follows from the proof of Theorem 5.3 that the constructed
TEMPORAL MATCHING instance is a YES-instance if and only if for every i ∈ [n] the
INDEPENDENT SET instance (Hi ,hi) is a YES-instance.

Since INDEPENDENT SET is NP-hard under the above described restrictions [GJS76]
and we AND-cross-composed it into TEMPORAL MATCHING with ∆= 2 parameterized
by |V |, this proves the proposition.

5.4 NP-Hardness of Temporal Matching with Underlying Paths

In this section we show NP-completeness of TEMPORAL MATCHING for ∆= 2 even
if the underlying graph of the input temporal graph is a path. In particular, this
implies that in the FPT-algorithm for the parameter combination ∆+vc↓ [Mer+20,
Theorem 34], where vc↓ denotes the vertex cover number of the underlying graph,
we presumably cannot replace the parameter vc↓ with some smaller parameter such
as the feedback vertex number of the underlying graph.

Theorem 5.6. TEMPORAL MATCHING is NP-complete for all ∆≥ 2 even if the underly-
ing graph of the input temporal graph is a path.

We show Theorem 5.6 by a polynomial-time reduction from INDEPENDENT SET

on connected cubic planar graphs, which is known to be NP-complete [GJ77, GJ79].
More specifically, we show that INDEPENDENT SET is NP-complete on the temporal
line graphs of temporal graphs that have a path as underlying graph. Recall that, by
Observation 5.1, solving INDEPENDENT SET on a temporal line graph is equivalent to
solving TEMPORAL MATCHING on the corresponding temporal graph. We proceed in
the following steps.

1. We show that 2-temporal line graphs of temporal graphs that have a path
as underlying graph have a grid-like structure. More specifically, we show

81

5 Temporal Matchings

1,2,3,4,5e1

1,2,3,4,5e2

1,2,3,4,5e3

1,2,3,4,5e4

1,2,3,4,5e5

(a) Temporal graph G = (V , (Ei)i∈[ℓ]) with
G↓ = P6, ℓ= 5, and E1 = . . . = E5 = E(P6). Edge
names are on the left, time stamps of edges are

listed on the right.

e1

1

e2

2

e3

3

e4

4

e5

5

(b) 2-Temporal line graph L2(G). The
horizontal dimension corresponds to time

steps 1 to 5, the vertical dimension
corresponds to the edges of the P6.

Figure 5.4: A temporal line graph with a path as underlying graph where edges are always
present and its 2-temporal line graph.

that they are induced subgraphs of so-called diagonal grid graphs or king’s
graphs10 [Cha13, GZW18].

2. We show that INDEPENDENT SET is NP-complete on induced subgraphs of
diagonal grid graphs which, together with Observation 5.1, yields Theorem 5.6.

• We exploit that cubic planar graphs are induced topological minors of
grid graphs and extend this result by showing that they are also induced
topological minors of diagonal grid graphs.

• We show how to modify the subdivision of a cubic planar graph that is
an induced subgraph of a diagonal grid graph such that NP-hardness of
finding independent sets of certain size is preserved.

We first give a formal definition of diagonal grid graphs or king’s graphs. They
are grid graphs that additionally have diagonal edges in every grid cell. Recall the
definition of (normal) grid graphs.

10The name “king’s graph” stems from the fact that the graph represents all legal moves of the king chess
piece on a chessboard where each vertex represents a square on a chessboard and each edge is a legal
move.

82

5.4 NP-Hardness of Temporal Matching with Underlying Paths

Definition 5.3 (Grid Graph). A grid graph Zn,m has a vertex vi , j for all i ∈ [n] and
j ∈ [m] and there is an edge {vi , j , vi ′ , j ′ } if and only if |i − i ′|+ | j − j ′| ≤ 1.

With a slight modification we arrive at the definition of diagonal grid graphs. An
example for a diagonal grid graph is shown in Figure 5.4b.

Definition 5.4 (Diagonal Grid Graph [Cha13, GZW18]). A diagonal grid graph Zˆ︁ n,m

has a vertex vi , j for all i ∈ [n] and j ∈ [m] and there is an edge {vi , j , vi ′ , j ′ } if and only
if |i − i ′|2 +| j − j ′|2 ≤ 2.

We remark that diagonal grid graphs can also be characterized as the so-called
strong product of two paths [BKZ05].

It is easy to check that for a temporal graph with a path as underlying graph and
where each edge is active at every time step, the 2-temporal line graph is a diagonal
grid graph. For a visualization see Figure 5.4.

Observation 5.7. Let Pn = (V ,E) and G = (V , (Ei)i∈[ℓ]) with Ei = E for all i ∈ [ℓ], then
L2(G) = Zˆ︁ n−1,ℓ.

Further, it is easy to see that removing an edge at a certain point in time results in
removing the corresponding vertex from the diagonal grid graph. See Figure 5.5 for
an example. Hence, we have that every induced subgraph of a diagonal grid graph is
a 2-temporal line graph.

Corollary 5.8. Let Z ′ be a connected induced subgraph of Zˆ︁ n,m . Then there is an
n′ ≤ n, an ℓ≤ m, and a G = (V , (Ei)i∈[ℓ]) with G↓ = Pn′ such that Z ′ = L2(G).

Having these results at hand, it suffices to show that INDEPENDENT SET is NP-
complete on induced subgraphs of diagonal grid graphs. By Observation 5.1, this
directly implies that TEMPORAL MATCHING is NP-complete on temporal graphs that
have a path as underlying graph. Hence, in the remainder of this section, we show
the following result.

Theorem 5.9. INDEPENDENT SET on induced subgraphs of diagonal grid graphs is
NP-complete.

Theorem 5.9 may be of independent interest and strengthens a result of Clark,
Colbourn, and Johnson [CCJ90] who showed that INDEPENDENT SET is NP-complete
on unit disk graphs. It is easy to see from Definition 5.4 that diagonal grid graphs
and their induced subgraphs are a (proper) subclass of unit disk graphs.

The first building block for the reduction is the fact that we can embed cubic planar
graphs into a grid [Val81]. More specifically, a cubic planar graph admits a planar

83

5 Temporal Matchings

1,2,5

1,4

1,2,3

2,4

2,4,5

e5

e4

e3

e2

e1

(a) Temporal graph G = (V , (Ei)i∈[ℓ]) with
G↓ = P6, ℓ= 5, and Ei for i ∈ [5] as visualized.

Edge names are on the left, time stamps of
edges are listed on the right.

1

e1

2

e2

3

e3

4

e4

5

e5

(b) 2-Temporal line graph L2(G). The
horizontal dimension corresponds to time

steps 1 to 5, the vertical dimension
corresponds to the edges of the P6.

Figure 5.5: A temporal line graph with a path as underlying graph where edges are not always
active and its 2-temporal line graph.

embedding in such a way that the vertices are mapped to points of a grid and the
edges are drawn along the grid lines. Moreover, such an embedding can be computed
in polynomial time and the size of the grid is polynomially upper-bounded in the
size of the planar graph.

Note that if we replace the edges of the original planar graph by paths of appro-
priate length, then the embedding in the grid is actually a subgraph of the grid.
Furthermore, if we scale the embedding by a factor of two, that is, subdivide ev-
ery edge once, then the embedding is also guaranteed to be an induced subgraph
of the grid. In other words, we argue that every cubic planar graph is an induced
topological minor of a polynomially large grid graph.

Proposition 5.10 (Special case of Theorem 2 from Valiant [Val81]). Let G = (V ,E)
be a cubic planar graph. Then G is an induced topological minor of Zn,m for some
n,m with n ·m ∈O(|V |2) and the corresponding subdivision of G can be computed in
polynomial time.

We discuss next how to replace the edges of a cubic planar graph by paths of
appropriate lengths such that it is an induced subgraph of a diagonal grid graph. In

84

5.4 NP-Hardness of Temporal Matching with Underlying Paths

other words, we show that every cubic planar graph is an induced topological minor
of a polynomially large diagonal grid graph.

Lemma 5.11. Let G = (V ,E) be a cubic planar graph. Then G is an induced topological
minor of Zˆ︁ n,m for some n,m with n ·m ∈O(|V |2) and the corresponding subdivision
of G can be computed in polynomial time.

Proof. Let G = (V ,E) be a cubic planar graph. By Proposition 5.10 we know that there
are integers n,m with n ·m ∈ O(|V |2) such that G = (V ,E) is an induced topological
minor of Zn,m . Let G ′ = (V ′,E ′) with V ′ ⊆N×N be the corresponding subdivision
of G that is an induced subgraph of Zn,m , that is, Zn,m[V ′] =G ′. Furthermore, for each
vertex v ∈V of G, let v ′ ∈V ′ denote the corresponding vertex in the subdivision G ′.

Let G ′′ = (V ′′,E ′′) be the graph resulting from subdividing each edge in G ′ eleven
additional times and shift the graph three units away from the boundary of Zn,m in
both dimensions. Intuitively, this is necessary to ensure that all paths in the grid are
sufficiently far away from each other, which is also important in a later modification.

More formally, for each vertex (i , j) ∈ V ′ create a vertex (12i +3,12 j +3) ∈ V ′′. For
each edge {(i , j), (i , j + 1)} ∈ E ′ create eleven additional vertices, one for each grid
point on the line between (12i +3,12 j +3) and (12i +3,12 j +15). We connect these
vertices by edges such that we get an induced path on the new vertices together
with vertices (12i +3,12 j +3) and (12i +3,12 j +15) that follows the grid line they lie
on. For each edge {(i , j), (i + 1, j)} ∈ E ′ we make an analogous modification to G ′′.
Furthermore, for each vertex v ∈V of G, let v ′′ ∈V ′′ denote the corresponding vertex
in the subdivision G ′′. It is clear that G ′′ is an induced subgraph of Z12n+6,12m+6. We
now show how to further modify G ′′ such that it is an induced subgraph of the
diagonal grid graph Zˆ︁ 12n+6,12m+6.

For each vertex v ∈V let v ′′ = (i , j) ∈V ′′. We check the following.

1. If degG ′′ ((i , j)) = 2 and {(i , j), (i , j+1)}, {(i , j), (i+1, j)}, {(i+1, j), (i+2, j)} ∈ E ′′, then
we delete (i +1, j) from V ′′ and all its incident edges from E ′′. We add vertex
(i +1, j −1) to V ′′ and add edges {(i , j), (i +1, j −1)} and {(i +1, j −1), (i +2, j)}
to E ′′. This modification is illustrated in Figure 5.6a. Rotated versions of this
configuration are modified analogously.

2. If degG ′′ ((i , j)) = 3 and {(i , j), (i , j+1)}, {(i , j), (i+1, j)}, {(i+1, j), (i+2, j)}, {(i , j), (i−
1, j)}, {(i −1, j), (i −2, j)} ∈ E ′′, then we delete (i +1, j) from V ′′ and all its incident
edges from E ′′. We add vertex (i +1, j −1) to V ′′ and add edges {(i , j), (i +1, j −1)}
and {(i +1, j −1), (i +2, j)} to E ′′. Furthermore, we delete (i −1, j) from V ′′ and
all its incident edges from E ′′. We add vertex (i −1, j −1) to V ′′ and add edges

85

5 Temporal Matchings

(a) (b) (c)

Figure 5.6: Illustration of the modifications described in the proof of Lemma 5.11. The
situation before the modification is depicted above, dashed edges show unwanted edges
present in an induced subgraph of a diagonal grid graph. The situation after the modification
is depicted below.

{(i , j), (i−1, j−1)} and {(i−1, j−1), (i−2, j)} to E ′′. This modification is illustrated
in Figure 5.6b. Rotated versions of this configuration are modified analogously.

Lastly, whenever a path in G ′′ that corresponds to an edge in G bends at a square
angle, we remove the corner vertex and its incident edges and reconnect the path by
a diagonal edge.

More formally, let (i , j −1), (i , j), (i +1, j) ∈V ′′ be adjacent vertices in a path in G ′′

that corresponds to an edge in G, then we remove (i , j) from V ′′ and all its incident
edges, and add the edge {(i , j −1), (i +1, j)} to E ′′. This modification is illustrated in
Figure 5.6c. Rotated versions of this configuration are modified analogously.

Now it is easy to see that G ′′ is an induced subgraph of Zˆ︁ 12n+6,12m+6. Furthermore, G ′′

can be computed in polynomial time.

Next we argue that we can always embed a cubic planar graph into a diagonal
grid graph in a way that preserves NP-hardness of INDEPENDENT SET. This is based
on the observation that subdividing an edge of a graph twice increases the size of a
maximum independent set exactly by one.

86

5.4 NP-Hardness of Temporal Matching with Underlying Paths

Observation 5.12 (Poljak [Pol74]). Let G = (V ,E) be a graph. Then for every {u, v} ∈ E ,
the graph G ′ = (V ∪{u′, v ′}, (E \{{u, v}})∪{{u,u′}, {u′, v ′}, {v ′, v}}) contains an independent
set of size k +1 if and only if G contains an independent set of size k.

This observation implies that if we can guarantee that for every cubic planar graph
there is a subdivision that subdivides every edge an even number of times and that is
an induced subgraph of a diagonal grid graph of polynomial size, then we are done.

Lemma 5.13. Let G = (V ,E) be a cubic planar graph. Then there is a subdivision of G
that is an induced subgraph of Zˆ︁ n,m for some n,m with n ·m ∈O(|V |2) and where each
edge of G is subdivided an even number of times. Furthermore, the subdivision of G
can be computed in polynomial time.

Proof. Let G = (V ,E) be a cubic planar graph. By Lemma 5.11 we know that there
are some n,m with n ·m ∈ O(|V |2) such that G = (V ,E) is an induced topological
minor of Zˆ︁ n,m . Let G ′ = (V ′,E ′) with V ′ ⊆N×N be a subdivision of G constructed in
polynomial time as described in the proof of Lemma 5.11.

Recall that every edge e in G is replaced by a path Pe in G ′. Observation 5.12 implies
that if we can guarantee that all these paths have an odd number of edges (and hence
result from an even number of subdivisions), then G ′ contains an independent set of
size k +∑︁

e∈E ⌊ |E(Pe)|−1
2 ⌋ if and only if G contains an independent set of size k. In the

following we show how to change the parity of the number of edges of a path Pe in G ′

that corresponds to an edge e in G.
The number of subdivisions performed in the construction we described in the

proof of Lemma 5.11 ensures that each path Pe in G ′ that corresponds to an edge e
in G contains seven consecutive edges that are either all horizontal or all vertical.
Assume that Pe contains an even number of edges and contains horizontal edges
{(i , j), (i + 1, j)}, {(i + 1, j), (i + 2, j)}, {(i + 2, j), (i + 3, j)}, {(i + 3, j), (i + 4, j)}, {(i + 4, j), (i +
5, j)}, {(i+5, j), (i+6, j)}, {(i+6, j), (i+7, j)}. We remove vertices (i+2, j), (i+3, j), (i+5, j)
and all their incident edges. We add vertices (i +2, j +1), (i +3, j +2), (i +4, j +1), (i +
5, j − 1) and edges {(i + 1, j), (i + 2, j + 1)}, {(i + 2, j + 1), (i + 3, j + 2)}, {(i + 3, j + 2), (i +
4, j +1)}, {(i +4, j +1), (i +4, j)}, {(i +4, j), (i +5, j −1)}, {(i +5, j −1), (i +6, j)}. It is easy to
check that this reconnects the path and increases the number of edges by one. This
modification is illustrated in Figure 5.7. The vertical version of this configuration is
modified analogously.

Using this modification we can easily modify G ′ in polynomial time in a way that
all paths corresponding to edges of G have an odd number of edges. The result then
follows.

87

5 Temporal Matchings

(a) Before. (b) After.

Figure 5.7: Illustration of the modification described in the proof of Lemma 5.13. It shows
how to increase the length of an induced path of a diagonal grid graph by one.

This concludes the proof of Theorem 5.9. We can see that it follows directly from
Lemma 5.13 and Observation 5.12. Finally, Theorem 5.9, Observation 5.1, and
Corollary 5.8 together imply Theorem 5.6.

Theorem 5.6 implies that parameterizing TEMPORAL MATCHING by structural
graph parameters of the underlying graph that are constant on a path cannot yield
fixed-parameter tractability unless P = NP, even if combined with ∆.

5.5 Conclusion

In this chapter, we provided an analysis of the computational complexity of TEM-
PORAL MATCHING. As one of the main results, we showed that the problem remains
NP-hard even if the underlying graph of the input temporal graph is a path. We
proved this result by employing the concept of temporal line graphs, which is an
interesting research topic by itself. Facing computational hardness even in quite
restricted cases, the following issues remain research challenges.

In the domain of exact parameterized algorithms, in particular, treedepth of the
underlying graph combined with ∆ is left open. This would be a smaller parame-
ter than vertex cover number of the underlying graph combined with ∆ [Mer+20,
Theorem 34] and it is unbounded in all known NP-hardness reductions.

Considering that TEMPORAL MATCHING is APX-hard [Mer+20] and that we have NP-
hardness even if the underlying graph is a path, the investigation of parameterized
approximation algorithms seems promising. In fact, for the very restricted case that
the underlying graph is a path, we can use known polynomial-time approximation
schemes for INDEPENDENT SET on unit disk graphs [Hun+98, Mat98] since we know
that in this case the temporal line graph is a unit disk graph. This might become a
good base case for an FPT-approximation scheme with some distance-to-triviality
parameterization.

88

CHAPTER 6

Temporal Coloring

Graph coloring is one of the most famous computational problems with applica-
tions in a wide range of areas such as planning and scheduling, resource allocation,
and pattern matching. So far coloring problems are mostly studied on static graphs,
which often stand in contrast to practice where data is inherently dynamic and
subject to discrete changes over time. In this chapter we present a natural temporal
extension of the classic graph coloring problem. Given a temporal graph and two
natural numbers k and ∆, we ask for a coloring sequence for each vertex such that

1. in every sliding time window of ∆ consecutive time steps, in which an edge
is active, this edge is properly colored (that is, its endpoints are assigned two
different colors) at least once during that time window, and

2. the total number of different colors is at most k.

This sliding window temporal coloring problem abstractly captures many realistic
graph coloring scenarios in which the underlying network changes over time, such
as dynamically assigning communication channels to moving agents. We present a
thorough investigation of the computational complexity of this temporal coloring
problem. More specifically, we prove strong computational hardness results even
for two colors, complemented by exact FPT-algorithms and one parameterized
approximation algorithm. We show that some of our algorithms are asymptotically
almost optimal under the Exponential Time Hypothesis (ETH).

This chapter is based on the paper “Sliding window temporal graph coloring” by
Mertzios, Molter, and Zamaraev [MMZ19].

6.1 Introduction

In this chapter we introduce and rigorously study a new, yet natural temporal
extension of the classic COLORING problem, called SLIDING WINDOW TEMPORAL

COLORING. Recall that in the classic COLORING problem, we are asked to color the
vertices of a given graph with at most k colors such that the endpoints of every edge
are colored differently. In SLIDING WINDOW TEMPORAL COLORING the input consists
of a temporal graph G = (V , (Ei)i∈[ℓ]) and two natural numbers ∆ and k. At every time

89

6 Temporal Coloring

step t , every vertex has to be assigned one color (this color can be different every
time), under the following constraint: Every edge e has to be properly colored at least
once during every time window of ∆ consecutive time steps, and this must happen
at a time step t in this window when e is present. Now the question is whether there
exists such a temporal coloring over the whole lifetime of the input temporal graph
that uses at most k colors.

Our temporal extension of the COLORING problem is motivated by applications
in mobile sensor networks and in planning. Consider the following scenario: every
mobile agent broadcasts information over a specific communication channel while
it listens on all other channels. Thus, whenever two mobile agents are sufficiently
close, they can exchange information only if they broadcast on different channels.
We assume that agents can switch channels at any time. To ensure a high degree of
information exchange, it makes sense to find a schedule of assigning broadcasting
channels to the agents over time which minimizes the number of necessary channels,
while allowing each pair of agents to communicate at least once within every small
time window in which they are close to each other.

6.1.1 Related Work

Temporal extensions of the classic graph coloring problem have also been previ-
ously studied by Yu et al. [Yu+13] (see also Ghosal and Ghosh [GG15]) in the context
of channel assignment in mobile wireless networks. In this problem, every edge
has to be properly colored in every layer of the input temporal graph G , while the
goal is to minimize some linear combination of the total number of colors used
and the number of color re-assignments on the vertices [Yu+13]. In this temporal
coloring approach, the notion of time is only captured by the fact that the number of
re-assignments affects the value of the target objective function, while the funda-
mental solution concept remains the same as in static graph coloring, that is, every
individual (static) layer has to be properly colored. Using this, Yu et al. [Yu+13]
presented generic methods to adapt known algorithms and heuristics from static
graph coloring to deal with their new objective function. Other temporal extensions
of the classic vertex and edge coloring problems have been recently studied by Vizing
[Viz15]. Vizing considered only temporal graphs of lifetime two, and in his problems
every object to color (vertex or edge) has to be colored in exactly one of the layers of
the input temporal graph in such a way that any two objects that are assigned the
same color in the same layer are not adjacent in this layer. The goal of the problems
is to minimize the total number of used colors.

In contrast to the model of Yu et al. [Yu+13], the solution concept in SLIDING

WINDOW TEMPORAL COLORING is fundamentally different to that of static graph col-

90

6.1 Introduction

oring as it takes into account the inherent dynamic nature of the temporal network.
Indeed, even to verify whether a given solution is feasible, it is not sufficient to just
consider every layer independently.

On static graphs, COLORING is a classic and very well-studied problem. For an
overview on results for COLORING we refer to the monograph of Jensen and Toft
[JT11].

6.1.2 Our Contributions and Organization of the Chapter

In this chapter we present a thorough investigation of the computational complex-
ity of SLIDING WINDOW TEMPORAL COLORING. All notation specific to this chapter
and the formal definition of the temporal problems that we study are presented in
Section 6.2. First we investigate in Section 6.3 an interesting special case of SLIDING

WINDOW TEMPORAL COLORING, called TEMPORAL COLORING, where the length ∆

of the sliding time window is equal to the whole lifetime ℓ of the input temporal
graph. We start by proving in Theorem 6.2 that TEMPORAL COLORING is NP-complete
even for two colors, and even when every layer consists of one clique and isolated
vertices. This is in stark contrast to the static coloring problem, where it can be
decided in linear time whether a given (static) graph G is 2-colorable, that is, whether
G is bipartite.

In Section 6.4 and in the reminder of the chapter we deal with the general version
of SLIDING WINDOW TEMPORAL COLORING, where the value of ∆ is arbitrary. On
the one hand, we show that the problem is NP-hard even on very restricted special
classes of input temporal graphs. On the other hand, we give an exponential-time
algorithm for SLIDING WINDOW TEMPORAL COLORING that has an asymptotically
optimal running time assuming the Exponential Time Hypothesis (ETH) whenever ∆
is constant. Moreover we show how to extend the algorithm to get an FPT-algorithm
for the parameter “number |V | of vertices”. Note that the assumption that |V | is small
while ℓ is large can be also reasonable in practical situations.

Finally, we consider in Section 6.4 an optimization variant of SLIDING WINDOW

TEMPORAL COLORING where the number of colors is to be minimized. We give an
FPT-approximation algorithm for the problem parameterized by the vertex cover
number of the underlying graph G↓ that has an additive error of one (that is, uses
at most one additional color). From a classification standpoint this is also optimal
since the problem remains NP-hard to solve optimally on temporal graphs that have
an underlying graph with a constant-size vertex cover.

91

6 Temporal Coloring

6.1.3 Further Contributions of the Paper this Chapter is Based on

Additionally to the contributions we present in this chapter, Mertzios, Molter, and
Zamaraev [MMZ19] show that TEMPORAL COLORING admits a polynomial kernel
when parameterized by the number of vertices of the input temporal graph.

6.2 Preliminaries

In this section, we introduce further concepts related to temporal graphs and col-
oring and give the formal problem definitions of TEMPORAL COLORING and SLIDING

WINDOW TEMPORAL COLORING.

6.2.1 Coloring

Given a static graph G = (V ,E), a coloring of G is a function Υ : V →N which assigns
a color to every vertex in G . We say an edge {v, w} ∈ E is properly colored if Υ(v) ̸=Υ(w).
If Υ(v) = Υ(w), then we say that the edge {v, w} is colored monochromatically. A
coloring Υ is proper if it colors every edge properly. The size of a coloring Υ is the
number of colors it uses, that is, |Υ| := |⋃︁v∈V {Υ(v)}|. We say that G is k-colorable if it
admits a proper coloring Υ with |Υ| ≤ k.

6.2.2 Temporal Coloring

A temporal coloring of a temporal graph G = (V , (Ei)i∈[ℓ]) is a function Υ : V ×[ℓ] →N,
which assigns to every vertex appearance (v, t) with t ∈ [ℓ] in G one color Υ(v, t) ∈N.
The size of Υ is the total number |Υ| := |⋃︁v∈V ,t∈[ℓ]{Υ(v, t)}| of colors used by Υ. For every
time step t ∈ [ℓ] we denote by Υt the restriction of Υ to the vertex appearances at
time step t , that is, Υt : V →N, such that Υt (v) =Υ(v, t), for every v ∈V . We refer to Υt

as the time step coloring for the time step t . Furthermore, to ease the presentation,
we will refer to the temporal coloring Υ as the ordered sequence (Υ1,Υ2, . . . ,Υℓ) of all
its time step colorings. Let e ∈ E(G↓) be an edge of the underlying graph G↓. We say
that an edge e = {u, v} of the underlying graph G↓ is properly temporally colored at
time step t if Υt (u) ̸=Υt (v) and e ∈ Et , that is, the edge e is present at time step t . We
are now ready to introduce the definition of a proper temporal coloring.

Definition 6.1 (Proper Temporal Coloring). Let G = (V , (Ei)i∈[ℓ]) be a temporal graph.
A proper temporal coloring of G is a temporal coloring Υ= (Υ1,Υ2, . . . ,Υℓ) such that
every edge e ∈ E(G↓) is properly temporally colored in at least one time step t ∈ [ℓ].

Using this definition, we can formally define the decision problem TEMPORAL

COLORING.

92

6.2 Preliminaries

TEMPORAL COLORING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and an integer k ∈N.
Question: Is there a proper temporal coloring Υ of G using |Υ| ≤ k colors?

Note that TEMPORAL COLORING is a natural extension of the classic NP-complete
COLORING problem [GJ79, GJS76, Kar72] on static graphs to temporal graphs. In
particular, COLORING is the special case of TEMPORAL COLORING where the lifetime
of the input temporal graph is ℓ= 1. Moreover, it is easy to see that it can be verified in
polynomial time whether a given temporal coloring Υ is proper. Hence, we have that
TEMPORAL COLORING is NP-complete for each fixed k ≥ 3 and ℓ≥ 1 (since COLORING

is NP-hard for all k ≥ 3 [GJ79, GJS76] and to get ℓ> 1 we can add trivial layers to the
temporal graph).

We remark that TEMPORAL COLORING can be treated as a multi-layer graph prob-
lem: It is easy to check that, given a temporal graph G = (V , (Ei)i∈[ℓ]) and an inte-
ger k ∈N, it holds that for every permutation π : [ℓ] → [ℓ] we have that (G ,k) is a
YES-instance of TEMPORAL COLORING if and only if (G ′ = (V , (Eπ(i))i∈[ℓ]),k) is a YES-
instance of TEMPORAL COLORING.

6.2.3 Sliding ∆-Window Temporal Coloring

In the definition of a proper temporal coloring given in Definition 6.1, we require
that every edge is properly temporally colored at least once during the whole life-
time ℓ of the temporal graph G . However, in many real-world applications, where ℓ

is expected to be arbitrarily large, we may need to require that every edge is properly
temporally colored more often, and in particular, at least once during every ∆-time
window, for some given ∆, regardless of how large the lifetime ℓ is. We formalize this
in the definition of a proper sliding ∆-window temporal coloring.

Definition 6.2 (Proper Sliding ∆-Window Temporal Coloring). Let G = (V , (Ei)i∈[ℓ])
be a temporal graph and let ∆≤ ℓ. A proper sliding ∆-window temporal coloring of G

is a temporal coloring Υ= (Υ1,Υ2, . . . ,Υℓ) such that, for every ∆-window W ∆
t and for

every edge e ∈ EW ∆
t

we have that e is properly temporally colored in at least one time

step t ′ ∈W ∆
t .

An example of a proper sliding ∆-window temporal coloring is given in Figure 6.1.
Using this definition, we can formally define the decision problem SLIDING WINDOW

TEMPORAL COLORING.

93

6 Temporal Coloring

G1: G2: G3: G↓:

Figure 6.1: Example temporal graph with lifetime three and a proper sliding ∆-window tempo-
ral 2-coloring for ∆= 2. Notice that for example one edge of G2 is colored monochromatically,
but this edge is also active at time steps one and three and is colored properly in the corre-
sponding layers.

SLIDING WINDOW TEMPORAL COLORING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k ∈N and ∆≤ ℓ.
Question: Is there a proper sliding ∆-window temporal coloring Υ of G using

|Υ| ≤ k colors?

Note that the problem TEMPORAL COLORING defined above in this section is the
special case of SLIDING WINDOW TEMPORAL COLORING where ∆= ℓ, that is, where
there is only one ∆-window in the whole temporal graph. Moreover, it is easy to see
that it can be verified in polynomial time whether a given temporal coloring Υ is a
proper sliding ∆-window temporal coloring. Hence, we have that SLIDING WINDOW

TEMPORAL COLORING is NP-complete for each fixed k ≥ 3, ∆≥ 1, and ℓ≥∆.

6.2.4 Basic Observations

We start with the observation that computational hardness of SLIDING WINDOW

TEMPORAL COLORING for some fixed value of ∆ implies hardness for all larger values
of ∆. This allows us to construct hardness reductions for small fixed values of ∆ and
still obtain general hardness results.

Observation 6.1. Let ∆ be a fixed constant. SLIDING WINDOW TEMPORAL COLORING

on instances (G ,k,∆+ 1) is computationally at least as hard as SLIDING WINDOW

TEMPORAL COLORING on instances (G ,k,∆).

Proof. To see the correctness of Observation 6.1, we show that we can easily reduce
from SLIDING WINDOW TEMPORAL COLORING with input ∆ to SLIDING WINDOW

TEMPORAL COLORING with input (∆+ 1) by inserting a trivial layer after every ∆

consecutive layers. Let (G ,k,∆) denote the original instance and (G ′,k,∆+ 1) the
constructed instance. For a visualization see Figure 6.2.

94

6.3 Hardness Results for Temporal Coloring

G1

1

G2

2

· · · G∆

∆

(V ,∅)

∆+1

G∆+1

∆+2

· · · G2∆

2∆+1

(V ,∅)

2∆+2

· · · · · · · · · Gℓ

ℓ+⌊ℓ/∆⌋

Figure 6.2: Inserting trivial layers to reduce SLIDING WINDOW TEMPORAL COLORING on
instances (G ,∆,k) to SLIDING WINDOW TEMPORAL COLORING on instances (G ,∆+1,k).

(⇒): If G admits a proper sliding ∆-window temporal coloring, then we can easily
modify this coloring for G ′. The inserted trivial layers can be colored arbitrarily and
all other layers are colored in the same way the corresponding layers from G are
colored. This yields a proper sliding (∆+1)-window temporal coloring for G ′.

(⇐): If G ′ admits a proper sliding (∆+1)-window temporal coloring, then we can
easily modify this coloring for G . We ignore how the inserted trivial layers are colored
and color all layers of G in the same way the corresponding layers from G ′ are colored.
This yields a proper sliding ∆-window temporal coloring for G .

6.3 Hardness Results for Temporal Coloring

In this section we investigate the parameterized computational complexity of
TEMPORAL COLORING. We give two hardness results that in particular show that
TEMPORAL COLORING is already NP-complete for two colors, even if the input tem-
poral graph is very restricted. This stands in stark contrast to the static case, where
checking whether a graph is 2-colorable can be done in linear time11.

We start by showing that TEMPORAL COLORING is NP-complete even if each layer
is a clique together with some isolated vertices. From a motivation standpoint, this
excludes an interesting special case of the mobile agent scenario, where at each time
step exactly one group of agents meet such that they can all pairwise communicate.

Theorem 6.2. TEMPORAL COLORING is NP-complete for each fixed k ≥ 2 even if each
layer consists of one clique together with isolated vertices.

We show this result for k = 2 and later give some arguments why our proof is easily
adaptable for larger values of k. First we show the following lemma, which we will
make use of in the proof of Theorem 6.2.

Lemma 6.3. A graph G has two bipartite subgraphs that cover all edges of G if and
only if G is 4-colorable.
11This is a folklore result. One possible algorithm roughly works as follows. Colors are assigned in a

preorder traversal of a depth-first-search forest, such that all forest edges are properly colored. If
afterwards the graph contains a monochromatic edge, then it is not 2-colorable.

95

6 Temporal Coloring

Proof. Assume that a given graph G = (V ,E) has two bipartite subgraphs G1 = (V ,E1)
and G2 = (V ,E2) that cover all edges E of G, that is, E = E1 ∪E2. Let Υi : V → {1,2}
be the coloring of Gi for i ∈ {1,2}. Then Υ(v) := π(Υ1(v),Υ2(v)) is a 4-coloring for G,
where π is an arbitrary pairing function12: First note that |⋃︁v∈V {Υ(v)}| ≤ 4 since
Υ(v) ∈ {π(1,1),π(1,2),π(2,1),π(2,2)} for all v ∈V . Now let {v, w} ∈ E . By assumption we
have that {v, w} ∈ E1 ∪E2. Assume that {v, w} ∈ E1 (the other case is analogous), then
we have that Υ1(v) ̸=Υ1(w). It follows that Υ(v) ̸=Υ(w).

It remains to show that if a given graph G = (V ,E) is 4-colorable, then it has two
bipartite subgraphs that cover all edges of G. Let Υ : V → {1,2,3,4} be a 4-coloring
for G. Let E1 := {{v, w} ∈ E | Υ(v) ∈ {1,2}∧Υ(w) ∈ {3,4}} and E2 := {{v, w} ∈ E | Υ(v) ∈
{1,3}∧Υ(w) ∈ {2,4}}. It is easy to check that G1 = (V ,E1) is bipartite: One part is formed
by vertices colored in 1 or 2 and the second part by vertices colored in 3 or 4. By
definition E1 does not contain edges between vertices from the same part. The
argument for G2 = (V ,E2) is analogous. They are both subgraphs since Ei ⊆ E for
i ∈ {1,2}. It remains to show that E = E1 ∪E2: Let {v, w} ∈ E , then if {Υ(v),Υ(w)} ∈
{{1,3}, {2,3}, {1,4}, {2,4}}, then {v, w} ∈ E1, otherwise (if {Υ(v),Υ(w)} ∈ {{1,2}, {3,4}}) we
have that {v, w} ∈ E2.

Now we prove Theorem 6.2 for the case that k = 2.

Proof of Theorem 6.2 for k = 2. We give a polynomial-time reduction from the NP-
complete 4-COLORING problem [GJ79, GJS76] where, given a graph H , we are asked
to properly color H with four colors. Let H = (U ,F) be an instance of 4-COLORING.
We construct a temporal graph G = (V , (Ei)i∈[ℓ]) with V = U , E1 = E2 = E(K|U |), ℓ =(︁|U |

2

)︁−|F |+2, and for every non-edge of H there is exactly one time step i with 3 ≤ i ≤ ℓ

where only this edge is present. Note that every layer is either complete or only
contains a single edge. Hence, every layer consists of a clique together with some
isolated vertices.

Correctness. We now prove the correctness of our reduction, namely, show that the
constructed temporal graph can be properly temporally colored with two colors if
and only if the input graph is 4-colorable.

(⇒): If H is 4-colorable, then we can use the 4-coloring of H to 2-color G1 and G2

using Lemma 6.3 and for every edge that is not present in G, color it properly in the
layer where it is present.

(⇐): If G is properly colorable with k = 2 colors, then all edges present in H have
to be properly colored either in G1 or G2, that is, the edges of H can be covered by

12A function π :N×N→N is a pairing function if it is a bijection.

96

6.3 Hardness Results for Temporal Coloring

two bipartite graphs, and hence, by Lemma 6.3, we can properly 4-color H .

To adapt this proof for larger values of k, it is necessary to generalize Lemma 6.3 to
the statement “A graph G has two k-colorable subgraphs that cover all edges of G if
and only if G is k2-colorable”. It is easy to check that this can be done in an analogous
way for each fixed k. Using this more general lemma, one can easily adapt the
reduction in the proof of Theorem 6.2. We remark that, from a parameterized point
of view, this result implies that parameterizing TEMPORAL COLORING by structural
graph parameters of the layers that are constant on a graph consisting of a clique
with some isolated vertices cannot yield fixed-parameter tractability unless P = NP,
even if combined with k.

Now we show with a different reduction that TEMPORAL COLORING remains hard
even if each layer has very few edges and the underlying graph has small degeneracy.

Theorem 6.4. TEMPORAL COLORING is NP-complete for all k ≥ 2 even if the number
of edges in each layer is in O(k2), the degeneracy of the underlying graph is in O(k) and
the underlying graph has domination number four.

Proof. We present a polynomial-time reduction from EXACT (3,4)-SAT [Tov84] to
TEMPORAL COLORING with k = 2. The reduction can be easily modified to a larger
number of colors, we explain how to do this at the end of the proof. Recall that
in EXACT (3,4)-SAT we are asked to decide whether a given Boolean formula φ is
satisfiable and φ is in conjunctive normal form where every clause has exactly three
distinct literals and every variable appears in exactly four clauses. Given a formula
φ with n variables and m clauses, we construct a temporal graph G = (V , (Ei)i∈[ℓ])
consisting of ℓ= (n +2m) layers, that is, one layer for each variable gadget and two
layers for each clause gadget. An illustration of the construction is given in Figure 6.3.
We start by adding four vertices w1, w2, w3, and w4 which will help to encode the
first, second, third, and fourth appearance of a variable.

Variable gadget. For each variable xi with i ∈ [n] of φ we create nine vertices
v (1)

xi
, v (2)

xi
, . . . , v (8)

xi
(which we also refer to as “the vertices corresponding to xi ”), and uxi ,

and one new layer. In this new layer, we connect v (j)
xi

with v ((j mod 8)+1)
xi

for all j ∈ [8] and
we connect v (2h−1)

xi
and v (2h)

xi
with wh for all h ∈ [4]. Furthermore, we connect uxi with

w1, w2, w3, and w4. It is easy to check that every layer corresponding to a variable
contains twenty edges. For a visualization of the variable gadget see Figure 6.3a.

Clause gadget. For each clause ci with 1 ≤ i ≤ m of φ we add two new layers and
one new vertex uci . In the first new layer we connect it with w1, w2, w3, and w4.

97

6 Temporal Coloring

w1 w2 w3 w4

.

x1

(a) Variable gadget.

w1 w2 w3 w4

.

x1

x2

x3

(b) First layer of clause gadget.

Figure 6.3: Illustration of the reduction from EXACT (3,4)-SAT to TEMPORAL COLORING of the
proof of Theorem 6.4. Figure 6.3a depicts the variable gadget for x1. Figure 6.3b depicts the
first layer of the clause gadget for clause (x1∨¬x2∨x3), where we have the first appearance of
x1 (blue), the second appearance of x2 (yellow), and the fourth appearance of x3 (green). The
second layer of the clause gadget contains only the red dashed triangle and is not depicted. In
both figures vertices corresponding to the remaining variables are not depicted. Thick edges
are present in exactly two layers and thin edges are present in exactly one layer.

Let x j be a variable that appears in clause ci and let this be the hth appearance
of x j in φ. Then we connect wh with v (2h−1)

x j
and v (2h)

x j
in the first new layer. Lastly,

denote x j1 , x j2 , and x j3 the three variables in ci appearing for the h1th, h2th, and h3th
time, respectively, and let ys = 1 if x js appears non-negated in ci and ys = 0, otherwise.

We pairwise connect v (2h1−y1)
x j1

, v (2h2−y2)
x j2

, and v (2h3−y3)
x j3

in both the first and the second
new layer, we refer to these three vertices as “the triangle corresponding to clause ci ”.
It is easy to check that every layer corresponding to a clause contains at most thirteen
edges. For a visualization of the first layer of the clause gadget see Figure 6.3b.

Before we show correctness, let us check that the underlying graph of G has
constant degeneracy. We can show this by using the following degeneracy ordering:
First we order all vertices uxi and uci arbitrarily and put them at the beginning of the
degeneracy ordering. Then we order the vertices v (j)

xi
arbitrarily and put them next in

the ordering. Lastly, we add vertices w1, w2, w3, and w4 to the ordering. Note that all
vertices uxi and uci for some variable xi or clause ci , respectively, have degree four
since they are only connected to w1, w2, w3, and w4. The vertices v (j)

xi
have degree

five: In the layer of the variable gadget for xi they are connected to two other vertices

98

6.3 Hardness Results for Temporal Coloring

v (j ′)
xi

and v (j ′′)
xi

and to one of the vertices w1, w2, w3, and w4. Then, depending on the

value of j , there is at most one “clause triangle” that contains v (j)
xi

. Once all these
vertices are removed from the graph, the vertices w1, w2, w3, and w4 are isolated. It
follows that the degeneracy of G↓ is at most five.

Furthermore, it is straightforward to check that the vertices w1, w2, w3, and w4

form a dominating set in the underlying graph.

Correctness. It is easy to check that the reduction can be computed in polynomial
time. It remains to show that G admits a proper temporal 2-coloring if and only if φ
is satisfiable.

(⇒): Assume that we are given a satisfying assignment for φ. Then we construct
a proper temporal 2-coloring for G as follows. Let the two colors be red and blue.
Whenever we do not specify the color of vertices in a certain layer, those vertices
can be colored arbitrarily in that layer. In each layer, we color all vertices uxi and uc j

with i ∈ [n] and j ∈ [m] red, and vertices w1, w2, w3, w4 blue.
Now consider the layers corresponding to variable gadgets. If variable xi is set to

true in the satisfying assignment for φ, then we color (in the layer corresponding
to the variable gadget for xi) vertices v (2h−1)

xi
red and vertices v (2h)

xi
blue for h ∈ [4].

Otherwise we color the vertices exactly in the opposite way. This leaves exactly four
edges monochromatic in each layer corresponding to a variable gadget. These will
be colored properly in the four clause gadgets corresponding to the four clauses
where the corresponding variable appears.

Next, consider the layers corresponding to clause gadgets, in particular the first
layer corresponding to clause ci . Let x1, x2, and x3 be the three variables appearing
in ci and, without loss of generality, let x1 be contained in a literal that satisfies
the clause and let that be the hth appearance of x1. If x1 appears non-negated,
then we color v (2h−1)

x1
blue and all other vertices corresponding to variables x1, x2,

and x3 red. Otherwise, we color v (2h)
x1

blue and all other vertices corresponding to
variables x1, x2, and x3 red. Since the literal containing x1 satisfies clause ci , we have
that the edge between wh and v (2h−1)

x1
or v (2h)

x1
, respectively, is colored properly in the

layer corresponding to the variable gadget of x1. Hence all edges between w1, w2, w3,
w4 and vertices corresponding to variables x1, x2, and x3 are colored properly. Out
of the edges that form the triangle corresponding to ci in the layer corresponding
to clause ci , exactly one is colored monochromatically. We color the vertices of
the triangle in the second layer corresponding to the variable clause of ci such that
exactly that edge is colored properly. It is easy to verify that this describes a proper
temporal 2-coloring for G .

(⇐): Assume that we are given a proper temporal 2-coloring for G . Then we

99

6 Temporal Coloring

construct a satisfying assignment for φ in the following way: We start with the
observation that in any proper temporal coloring, vertices w1, w2, w3, and w4 have
the same color in each layer that corresponds to a variable gadget and in each first
layer corresponding to a clause gadget. Further, in each layer corresponding to a
variable gadget there is a cycle of size eight containing all vertices corresponding to
the variable of that gadget. Let that variable be xi . Since all edges involved in this
cycle only exist in this one layer, there are exactly two ways to color this cycle. One of
them leaves the edges between v (2h−1)

xi
and wh monochromatic for h ∈ [4]. The other

way to color the cycle is the inverse coloring and leaves the edges between v (2h)
xi

and
wh monochromatic for h ∈ [4]. In the first case, we set xi to false, and in the second
case we set xi to true. We claim that this yields a satisfying assignment for φ.

Assume for contradiction that it does not. Then there is a clause that is not satisfied.
Let that clause be ci . Recall that in a proper coloring, also vertices w1, w2, w3, and w4

have the same colors in each first layer that corresponds to a clause gadget. Consider
the triangle corresponding to clause ci in the first layer of the clause gadget of ci . We
have that in a proper temporal coloring, this triangle cannot be monochromatic,
since, otherwise, one of the three edges is not properly colored in any of the layers
of the temporal graph. Note that the triangle edges only exist in the two layers
corresponding to the clause gadget of ci and in the second layer, not all three edges
can be colored properly. Hence, in the first layer of the clause gadget, at least one of
the vertices of the triangle corresponding to ci has a different color than vertices w1,
w2, w3, and w4. However, this means that the corresponding variable is set to a truth
value that satisfies this clause—a contradiction.

Modification for a Larger Number of Colors. To modify this reduction for more colors
we introduce new vertices and edges to all layers to “block” all colors except two
from being used. Formally, we do the following. Let k > 2. For each layer i ∈ [ℓ], we
add k −2 fresh vertices c (i)

1 , . . . ,c (i)
k−2, connect them to form a clique in layer i , and

connect them to all non-isolated vertices in layer i . In all layers different from i the
vertices c (i)

1 , . . . ,c (i)
k−2 are isolated. All new edges exist in exactly one layer and hence

have to be colored properly in this layer. It follows that the vertices c (i)
1 , . . . ,c (i)

k−2 have
to be colored with k −2 distinct colors and these colors then cannot be used to color
any other non-isolated vertex in layer i .

The modification introduces ℓ · (k −2) new vertices to the temporal graph and it is
easy to check that it introduces O(k2) new edges to each layer. The degeneracy of
the underlying graph is in O(k) since we can put all new vertices to the beginning of
the degeneracy ordering described earlier in this proof, and it is easy to check that
all new vertices have a degree in O(k) in the underlying graph. Vertices w1, w2, w3,

100

6.4 Complexity of Sliding Window Temporal Coloring

and w4 still form a dominating set in the underlying graph since they are connected
to all new vertices.

We remark that Theorem 6.4 has some interesting implications from a param-
eterized point of view. Parameterizing TEMPORAL COLORING by structural graph
parameters of the layers that are constant on graphs with constantly many edges
cannot yield fixed-parameter tractability unless P = NP, even if combined with k.

6.4 Complexity of Sliding Window Temporal Coloring

In this section we investigate the parameterized computational complexity of
SLIDING WINDOW TEMPORAL COLORING. We first give a refined NP-hardness reduc-
tion together with an ETH lower bound. We give an exponential time algorithm that
matches the lower bound for constant ∆ and show how to extend this algorithm
to obtain fixed-parameter tractability for SLIDING WINDOW TEMPORAL COLORING

when parameterized by the number of vertices of the input temporal graph. In
contrast to TEMPORAL COLORING we can show that SLIDING WINDOW TEMPORAL

COLORING does not admit a polynomial kernel when parameterized by the number
of vertices of the input temporal graph unless NP ⊆ coNP/poly. We proceed by
showing that SLIDING WINDOW TEMPORAL COLORING is NP-complete even if k = 2
and the underlying graph of the input temporal graph has a vertex cover number
that only depends on k. Lastly, we show how to adapt our algorithm for SLIDING

WINDOW TEMPORAL COLORING for a canonical optimization variant of the problem,
where we want to minimize the number of colors. We achieve an FPT-approximation
algorithm that uses at most one extra color for the parameter “vertex cover number
of the underlying graph”.

6.4.1 NP-Hardness Results

We now present the main computational hardness result of this section. In partic-
ular, we show that SLIDING WINDOW TEMPORAL COLORING is NP-complete for k = 2
even if the temporal input graph has only three layers.

Theorem 6.5. SLIDING WINDOW TEMPORAL COLORING is NP-complete for all k ≥ 2,
∆≥ 2, and ℓ≥∆+1, even if

• the underlying graph is (k +1)-colorable,

• the underlying graph has a maximum degree in O(k), and

• every layer has connected components with size in O(k).

101

6 Temporal Coloring

2

1 3

5 4

2

1 3

5 4

2

1 3

5 4

2

1

3

1,1

1,2

2,1

2,2

3,1

3,2

1,1,1

1,1,2

1,2,1

2,1,1

2,1,2

2,2,1

3,1,1

3,1,2

3,2,1

(a) Layer one. (b) Layer two. (c) Layer three.

Figure 6.4: Illustration of the reduction from EXACT (3,4)-SAT to SLIDING WINDOW TEMPORAL

COLORING of the proof of Theorem 6.5. Vertices and edges in the red shaded areas (right)
correspond to a clause gadget for clause (¬x1 ∨ x2 ∨ x3). Vertices and edges in the green
shaded areas (left) correspond to the variable gadgets for x1, x2, and x3. Thick edges appear
in every layer while thin edges only appear in one layer. The vertices are colored according to
a coloring that would be constructed for the assignment x1 = true, x2 = true, x3 = false. In
the first layer (a), the superscripts of the vertices used in the proof of Theorem 6.5 are shown.
To keep the figure clean, the superscripts are omitted in the illustrations for layers (b) and (c).

Proof. We present a polynomial-time reduction from EXACT (3,4)-SAT [Tov84] to
SLIDING WINDOW TEMPORAL COLORING with k = 2 and ∆ = 2. The reduction can
be easily modified to a larger number of colors, we explain how to do this at the
end of the proof. Recall that in EXACT (3,4)-SAT we are asked to decide whether a
given Boolean formula φ is satisfiable and φ is in conjunctive normal form where
every clause has exactly three distinct literals and every variable appears in exactly
four clauses. On an intuitive level, the main idea that we exploit in this reduction
is that no matter how a triangle is colored with two colors, always (exaclty) one
of the three edges is monochromatic. We use this idea both to construct variable
gadgets (by further enforcing that a specific edge of the triangle always has to be
properly colored) and to construct clause gadgets, where the three edges of a triangle
correspond to the three literals in a clause and the monochromatic edge “selects”
which literal should satisfy the clause.

Given a formula φ with n variables and m clauses, we construct a temporal
graph G = (V , (Ei)i∈[ℓ]) consisting of ℓ= 3 layers, which we will refer to as G1 = (V ,E1),
G2 = (V ,E2), and G3 = (V ,E3). To increase the number of layers, we can repeat G3. We
construct the following variable gadgets and clause gadgets. An illustration of the
construction is given in Figure 6.4.

102

6.4 Complexity of Sliding Window Temporal Coloring

Variable gadget. For each variable xi with i ∈ [n] of φ we create five vertices v (1)
xi

, v (2)
xi

,
v (3)

xi
, v (4)

xi
, and v (5)

xi
. The vertices v (1)

xi
, v (2)

xi
, and v (3)

xi
form a (not necessarily induced) P3

in every layer, that is, {v (1)
xi

, v (2)
xi

} ∈ Et and {v (2)
xi

, v (3)
xi

} ∈ Et for all t ∈ [3]. Furthermore, we
connect v (1)

xi
and v (3)

xi
in the second layer, that is, {v (1)

xi
, v (3)

xi
} ∈ E2. Lastly, we create a

full C5 in layer three, that is, {v (3)
xi

, v (4)
xi

} ∈ E3, {v (4)
xi

, v (5)
xi

} ∈ E3, and {v (1)
xi

, v (5)
xi

} ∈ E3.

Clause gadget. For each clause ci with i ∈ [m] of φ we create a total of 18 vertices. We
create vertices v (1)

ci
, v (2)

ci
, and v (3)

ci
and connect them to form a triangle in every layer,

that is, {v (1)
ci

, v (2)
ci

} ∈ Et , {v (2)
ci

, v (3)
ci

} ∈ Et , and {v (1)
ci

, v (3)
ci

} ∈ Et for all t ∈ [3]. In this proof, we
refer to these vertices as the core of the clause gadget of clause ci . Next, we add six
vertices, which we refer to as the extension of the core of the clause gadget of clause ci .
Let these vertices be called v (1,1)

ci
, v (1,2)

ci
, v (2,1)

ci
, v (2,2)

ci
, v (3,1)

ci
, and v (3,2)

ci
. We connect v (j ,1)

ci

and v (j ,2)
ci

for all j ∈ [3] in every layer, that is, {v (j ,1)
ci

, v (j ,2)
ci

} ∈ Et for all j ∈ [3] and for
all t ∈ [3]. In the second layer, we connect the extension and the core as follows.

• Edge {v (1,1)
ci

, v (1,2)
ci

} forms a C4 with edge {v (2)
ci

, v (1)
ci

}, that is, {v (2)
ci

, v (1,2)
ci

} ∈ E2 and

{v (1)
ci

, v (1,1)
ci

} ∈ E2.

• Edge {v (2,1)
ci

, v (2,2)
ci

} forms a C4 with edge {v (2)
ci

, v (3)
ci

}, that is, {v (2)
ci

, v (2,1)
ci

} ∈ E2 and

{v (3)
ci

, v (2,2)
ci

} ∈ E2.

• Edge {v (3,1)
ci

, v (3,2)
ci

} forms a C4 with edge {v (1)
ci

, v (3)
ci

}, that is, {v (1)
ci

, v (3,2)
ci

} ∈ E2 and

{v (3)
ci

, v (3,1)
ci

} ∈ E2.

Lastly, we introduce nine auxiliary vertices that help to connect clause gadgets and
variable gadgets. Let these vertices be called v (j ,1,1)

ci
, v (j ,1,2)

ci
, and v (j ,2,1)

ci
for all j ∈ [3].

In the third layer, we connect the extension of the core and these auxiliary vertices
in the following way. For all j ∈ [3] we have that {v (j ,1,1)

ci
, v (j ,1,2)

ci
} ∈ E3, {v (j ,1,2)

ci
, v (j ,1)

ci
} ∈ E3,

and {v (j ,2,1)
ci

, v (j ,2)
ci

} ∈ E3.

Connection of variable and clause gadgets. The clause gadgets and variable gadgets
are connected in the third layer. Let clause ci = (ℓi ,1 ∨ℓi ,2 ∨ℓi ,3) with i ∈ [m] have
literals ℓi ,1, ℓi ,2, and ℓi ,3. Let xi , j with i ∈ [m] and j ∈ [3] be the variable of the j th literal
in clause ci . If ℓi , j = xi , j , then {v (2)

xi , j
, v (j ,1,1)

ci
} ∈ E3 and {v (3)

xi , j
, v (j ,2,1)

ci
} ∈ E3. If ℓi , j = ¬xi , j ,

then {v (1)
xi , j

, v (j ,1,1)
ci

} ∈ E3 and {v (2)
xi , j

, v (j ,2,1)
ci

} ∈ E3. This completes the construction. Recall
that ∆= 2 and k = 2.

Properties of G . We can check that the underlying graph is 3-colorable: It is easy to
see that we can color each variable gadget with three colors in the underlying graph.
The same for each clause gadget (without the connecting auxiliary vertices). The
auxiliary vertices can now be colored as follows. Vertices v (j ,2,1)

ci
are connected to two

103

6 Temporal Coloring

vertices with potentially different colors. Hence, we can use the third color for v (j ,2,1)
ci

.

We can color v (j ,1,2)
ci

with a color that is different from the color of v (j ,1)
ci

. Now v (j ,1,1)
ci

is
connected to two vertices with potentially different colors. Hence, we can use the
third color for v (j ,1,1)

ci
.

To see that the underlying graph has constant maximum degree recall that every
variable appears in exactly four clauses. Hence, the vertices v (1)

xi
have degree at most

seven in the underlying graph. It is straightforward to check that all other vertices
also have degree at most seven.

Lastly, we can easily verify that all layers are composed of small connected compo-
nents (see also Figure 6.4). To see this, recall that every variable appears in exactly
four clauses, hence in the third layer, each variable gadget is connected to four
extensions of clause gadgets.

Correctness. It is easy to check that the reduction can be computed in polynomial
time. It remains to show that G admits a proper sliding 2-window temporal 2-
coloring if and only if φ is satisfiable.

(⇒): Assume that we are given a satisfying assignment for φ. Then we construct
a proper sliding 2-window temporal 2-coloring for G as follows. We start coloring
the second layer and then show that we can color layers one and three in a way such
that the complete coloring is a proper sliding 2-window temporal 2-coloring. If a
variable xi with i ∈ [n] is set to true in the satisfying assignment, then we color the
triangle of the corresponding variable gadget in a way that leaves only edge {v (1)

xi
, v (2)

xi
}

monochromatic. To be specific, assume (for the remainder of this paragraph) we
have colors yellow and blue, we color vertices v (1)

xi
and v (2)

xi
in yellow and vertices v (3)

xi
,

v (4)
xi

, v (5)
xi

in blue. If variable xi is set to false in the satisfying assignment, then we color
the triangle of the corresponding variable gadget in a way that leaves edge {v (2)

xi
, v (3)

xi
}

monochromatic. To be specific, we color vertices v (2)
xi

and v (3)
xi

in yellow and vertices
v (1)

xi
, v (4)

xi
, v (5)

xi
in blue. For each clause ci with i ∈ [m] we choose one of its literals that

satisfies the clause. Let the j th literal with j ∈ [3] be a satisfying literal of clause ci for
the given assignment. Then we color the core of the corresponding clause gadget
in a way that leaves edge {v (j)

ci
, v (j mod 3+1)

ci
} monochromatic. Note that coloring the

core uniquely determines how we have to color the extension of the core since the
connecting edges are only present in the third layer and hence have to be properly
colored. The auxiliary vertices can be colored arbitrarily.

Now we show how to color layer one. For each variable xi with i ∈ [n], we color v (2)
xi

in yellow and the remaining vertices of the corresponding gadget in blue. Note that
this ensures that the edge which remains monochromatic in the second layer is
properly colored in the first layer. For each clause ci with i ∈ [m] we color the core in

104

6.4 Complexity of Sliding Window Temporal Coloring

a way that ensures that the edge which remains monochromatic in the second layer
is properly colored in the first layer. We properly color all edges of the extension and
the auxiliary vertices arbitrarily. It is not hard to see that now the first ∆-window is
properly colored.

Lastly, we show how to color the third layer. Note that for the variable gadgets,
the coloring in layer two determines (up to renaming the colors) how to color the
variable gadgets in the third layer. This also determines how to color the auxiliary
vertices and the extension of the core in the third layer. This potentially leaves
edges of the extension monochromatic. Note that in the second layer, all extension
edges are properly colored except the one which, in the third layer, is connected to a
variable that, in the given assignment, satisfies the clause. It is straightforward to
check that in this case, this particular extension edge is properly colored in the third
layer. Lastly, the core is colored in a way that ensures that the edge that is colored
monochromatically in the second layer is colored properly in the third layer. It is
easy to check that now the second ∆-window is also properly colored.

(⇐): Assume we are given a proper sliding 2-window temporal 2-coloring for G .
Then we construct a satisfying assignment for φ in the following way: Note that in
the second layer each variable gadget contains a triangle with exactly one monochro-
matic edge. The edge {v (1)

xi
, v (3)

xi
} only exists in the second layer and hence is colored

properly by any proper sliding 2-window temporal 2-coloring. This means that either
edge {v (1)

xi
, v (2)

xi
} or edge {v (2)

xi
, v (3)

xi
} is colored monochromatically. If {v (1)

xi
, v (2)

xi
} is colored

monochromatically, then we set xi to true, otherwise we set xi to false. We claim that
this yields a satisfying assignment for φ.

Assume for contradiction that it is not. Then there is a clause c j that is not satisfied.
Without loss of generality, let x1, x2, and x3 be the variables appearing in c j . Then in
the third layer, the clause gadget of c j is connected to the variable gadgets of x1, x2,
and x3. It is easy to check that in any proper sliding 2-window temporal 2-coloring,
exactly one edge of the extension of any clause gadget is colored monochromatically
in the second layer, hence this is also the case in the clause gadget of c j . Without loss
of generality, let the monochromatically colored (in the second layer) extension edge
of the clause gadget of c j be connected to the variable gadget of x1 in the third layer.
It is easy to check that for the sliding 2-window temporal 2-coloring to be proper, the
edge of the variable gadget of x1 that is connected to the clause gadget of c j in the
third layer needs to be colored properly in the second layer. By construction of G

this is a contradiction to c j not being satisfied by the constructed assignment.

Modification for a Larger Number of Colors. To modify this reduction for more colors
we introduce new vertices and edges to all layers to “block” all colors except two

105

6 Temporal Coloring

from being used. Formally, we do the following. Let k > 2. For each layer i ∈ [3], we
add k −2 fresh vertices c (i)

1 , . . . ,c (i)
k−2 for each connected component C in that layer.

The vertices c (i)
1 , . . . ,c (i)

k−2 form a clique in layer i , and we connect them to all vertices
in the connected component C . In all layers different from i the vertices c (i)

1 , . . . ,c (i)
k−2

are isolated. All new edges exist in exactly one layer and hence have to be colored
properly in this layer. It follows that the vertices c (i)

1 , . . . ,c (i)
k−1 have to be colored with

k −2 distinct colors and these colors then cannot be used to color any other vertex
from the connected component in layer i .

The number of new vertices introduced by this modification is in O(n ·k). It is easy
to check that this increases the number of colors necessary to color the underlying
graph by k −2. The maximum degree of the underlying graph after the modification
is in O(k) and the size of each connected component in each layer is increased
by k −2.

With small modifications to the reduction we get that SLIDING WINDOW TEMPORAL

COLORING remains hard under the following restrictions on the layers.

Corollary 6.6. SLIDING WINDOW TEMPORAL COLORING is NP-complete for all k ≥ 2,

• ∆ ∈O(k2), and ℓ≥∆+1 even if every layer is a cluster graph, or

• ∆≥ 3, and ℓ≥∆+1 even if every layer has domination number one.

Proof. Both modifications rely on the following construction. We can insert addi-
tional vertices and edges to each of the three layers of the reduction presented in the
proof of Theorem 6.5. Between layers two and three we add sufficiently many new
layers containing exclusively new edges, such that all new edges can be properly
temporally colored at least once if ∆ is increased by the number of new layers. Now
all new edges can be colored properly in the newly inserted layers and the original
construction of the reduction is not affected.

To get the first property for all layers, we can add all edges that transform each con-
nected component into a clique to the three original layers. Since the components
have size O(k), we only add a number of new edges that is in O(k2) per component.
Hence, we can O(k2) new layers each containing one new edge per component. The
newly added layers are clearly cluster graphs, hence we get the result.

To get the second property, we add one new universal vertex and one new layer
that contains all new edges. Clearly, now all layers have a dominating set of size
one.

106

6.4 Complexity of Sliding Window Temporal Coloring

We remark that Theorem 6.5 and Corollary 6.6 have interesting implications from
a parameterized point of view. Parameterizing SLIDING WINDOW TEMPORAL COLOR-
ING by the maximum degree of the underlying graph cannot yield fixed-parameter
tractability unless P = NP, even if combined with k and ℓ. Furthermore, parameteriz-
ing SLIDING WINDOW TEMPORAL COLORING by structural graph parameters of the
layers that are constant if all connected components are constant-sized cannot yield
fixed-parameter tractability unless P = NP, even if combined with k and ℓ.

The reduction presented in the proof of Theorem 6.5 also yields a running time
lower bound assuming the Exponential Time Hypothesis (ETH) [IP01, IPZ01]. In the
next section we will use this result to show that an algorithm we present presumably
is asymptotically optimal if ∆ is constant.

Corollary 6.7. SLIDING WINDOW TEMPORAL COLORING does not admit an f (k +
ℓ)o(|G |) · |G | f (k+ℓ)-time algorithm for any computable function f unless the ETH fails.

Proof. First, note that any 3-SAT formula with m clauses can be transformed into an
equisatisfiable EXACT (3,4)-SAT formula with O(m) clauses [Tov84]. The reduction
presented in the proof of Theorem 6.5 produces an instance of SLIDING WINDOW

TEMPORAL COLORING with a temporal graph of size |G | ∈ O(m), k = 2, and ℓ = 3.
Hence an algorithm for SLIDING WINDOW TEMPORAL COLORING with running time
f (k +ℓ)o(|G |) · |G | f (k+ℓ) for some computable function f would imply the existence of a
2o(m)-time algorithm for 3-SAT. This is a contradiction to the ETH [IP01, IPZ01].

6.4.2 An Exponential-Time Algorithm for Sliding Window Temporal Coloring

In the following we give an exponential-time algorithm for SLIDING WINDOW

TEMPORAL COLORING that, if ∆ is constant, asymptotically matches the running time
lower bound given in Corollary 6.7 assuming the ETH to hold.

We start with an auxiliary technical observation that, intuitively, allows us to
combine partial colorings if they agree on their “overlap”, that is, time intervals of
the temporal graph that are colored by both partial colorings, and if the overlap is
sufficiently large.

Observation 6.8. Let (G1 = (V ,E1,E2, . . . ,Ei),k,∆) and (G2 = (V ,E j ,E j+1, . . . ,Eℓ),k,∆) be
two instances of SLIDING WINDOW TEMPORAL COLORING with j+∆−1 ≤ i ≤ ℓ. Let Υ(1)

and Υ(2) be sliding ∆-window temporal colorings for G1 and G2, respectively, that use
the same k colors and with the property that for all v ∈V and for all j ≤ i⋆ ≤ i we have
that Υ(1)(v, i⋆) =Υ(2)(v, i⋆).

Then we have that Υ(1) and Υ(2) are proper sliding ∆-window temporal colorings
if and only if (Υ(1)

1 ,Υ(1)
2 , . . . ,Υ(1)

i ,Υ(2)
i+1, . . . ,Υ(2)

ℓ
) is a proper sliding ∆-window temporal

coloring for G = (V ,E1,E2, . . . ,Eℓ).

107

6 Temporal Coloring

Proof. It is easy to see that if (Υ(1)
1 ,Υ(1)

2 , . . . ,Υ(1)
i ,Υ(2)

i+1, . . . ,Υ(2)
ℓ

) is a proper sliding ∆-
window temporal coloring for G = (V ,E1,E2, . . . ,Eℓ), then we have that Υ(1) and Υ(2)

are proper sliding ∆-window temporal colorings for (G1 = (V ,E1,E2, . . . ,Ei),k,∆) and
(G2 = (V ,E j ,E j+1, . . . ,Eℓ),k,∆), respectively. For the other direction, assume for contra-
diction that (Υ(1)

1 ,Υ(1)
2 , . . . ,Υ(1)

i ,Υ(2)
i+1, . . . ,Υ(2)

ℓ
) is not a proper sliding ∆-window temporal

coloring for G = (V ,E1,E2, . . . ,Eℓ). Then there is a ∆-window W ∆
t for some t and an

edge e ∈ Et ′ for some t ′ ∈W ∆
t that is never properly colored in W ∆

t . However, it is easy
to check that W ∆

t is completely contained in [i] or [j ,ℓ] (because of the bounds on i
and j) and hence Υ(1) or Υ(2) color the whole ∆-window W ∆

t . Since, by assumption,
both Υ(1) and Υ(2) are proper sliding ∆-window temporal colorings, there being an
edge that exists in W ∆

t and is not properly colored is a contradiction.

Now we are ready to describe an exponential-time algorithm for SLIDING WINDOW

TEMPORAL COLORING. The main idea is to enumerate all partial proper sliding ∆-
window temporal colorings for time windows of size 2∆ and then to check whether
we can combine them to a proper sliding ∆-window temporal coloring for the whole
temporal graph using Observation 6.8.

Theorem 6.9. SLIDING WINDOW TEMPORAL COLORING can be solved in O(k4∆·|V | ·ℓ)
time.

Proof. Let (G = (V , (Ei)i∈[ℓ]),k,∆) be an input instance for SLIDING WINDOW TEMPO-
RAL COLORING. For the sake of simplicity, we assume that ℓ is divisible by ∆. If this is
not the case, we can “mirror” the last layers: we repeat layers {ℓ−(ℓ mod ∆)−1, . . . ,ℓ−
1} in reverse order after the ℓth layer. We give an algorithm for this problem that
works as follows:

1. For 2∆-windows W 2∆
i∆+1 = [i∆+1,(i +2)∆] for i ∈ {0,1, . . . ,ℓ/∆−2}, enumerate all

partial proper sliding ∆-window temporal colorings Υ
(j)

W 2∆
i∆+1

that use at most k

fixed colors, where each trivial layer is colored in some fixed but arbitrary
way13.

2. Create a directed acyclic graph (DAG) with all Υ(j)

W 2∆
i∆+1

as vertices and connect

Υ
(j)

W 2∆
i∆+1

and Υ
(j ′)
W 2∆

(i+1)∆+1

with a directed arc if the two proper sliding ∆-window

temporal colorings agree on the overlapping part.

13This is an important “trick” that will allow us to use this algorithm for the FPT result in Theorem 6.10.

108

6.4 Complexity of Sliding Window Temporal Coloring

...
...

. . .

. . .

. . .

. . .

...

W 2∆
1 W 2∆

∆+1 W 2∆
(ℓ/∆−2)∆+1

s z

Figure 6.5: Illustration of the DAG constructed in the algorithm described in the proof of
Theorem 6.9. Each vertex in each column of vertices corresponds to a partial proper sliding ∆-
window temporal coloring for the ∆-window written at the bottom of the column. Thick arcs
are only included in the DAG if the two connected partial proper sliding ∆-window temporal
colorings agree on the overlapping part.

3. Create a source vertex s and connect it to all Υ(j)

W 2∆
1

with a directed arc and

create a sink vertex z and add a directed arc from all Υ(j)

W 2∆
(ℓ/∆−2)∆+1

to it.

4. If there is a path from s to z, then answer YES, otherwise NO.

The constructed DAG is visualized in Figure 6.5.

Correctness. We now show that the above described algorithm is correct.

(⇒): Assume that we are given a proper sliding ∆-window temporal coloring Υ that
uses at most k colors for G . Without loss of generality, let the k colors be the same
fixed k colors we use in the algorithm. If G contains trivial layers, we assume without
loss of generality that Υ colors them in the same fixed but arbitrary way as we do in
the algorithm. Then for 2∆-windows W 2∆

i∆+1 = [i∆+1,(i +2)∆] for i ∈ {0,1, . . . ,ℓ/∆−2},
the partial coloring of W 2∆

i∆+1 that agrees with Υ appears in the constructed DAG,
since by assumption it is proper and we enumerate all of them. Now for any two
2∆-windows W 2∆

i∆+1 and W 2∆
(i+1)∆+1 we obviously have that if we color them with Υ the

overlapping part is colored in the same way. Hence the vertices corresponding to the
implied partial coloring for these two 2∆-windows are connected. Following these
connections, we can see that we find a path from s to z in the constructed DAG.

(⇐): If there is a path from s to z in the constructed DAG, then, by Observation 6.8,
we can combine the partial proper sliding ∆-window temporal coloring correspond-
ing to the vertices visited by the path since, by construction, they overlap for ∆ time

109

6 Temporal Coloring

steps and agree on how to color the vertices in the overlapping part. This given us a
proper sliding ∆-window temporal coloring for the whole graph.

Running Time. The running time is dominated by checking whether s and z are
connected in the last step of the algorithm. This can be done for example by a
breadth-first-search on the constructed DAG. The DAG has at most k2∆·|V | ·ℓ vertices
and at most k4∆·|V | ·ℓ edges.

6.4.3 An FPT-Algorithm for Sliding Window Temporal Coloring

In this section, we show how to extend the algorithm presented in Theorem 6.9
to achieve linear-time fixed-parameter tractability with respect to the number of
vertices. The main idea is to reduce the number of non-trivial layers in each ∆-
window. However, the procedure we describe only guarantees a very large upper
bound on the number of non-trivial layers in each ∆-window. Hence, the following
result is only of classification nature.

Theorem 6.10. SLIDING WINDOW TEMPORAL COLORING can be solved in 2O(2|V |2) ·ℓ
time.

Proof. We present a preprocessing step to reduce the number of non-trivial layers in
any ∆-window and then use the algorithm of Theorem 6.9 to solve the problem.

The data reduction rule is based on the observation that if some layer appears at
least |V |2 times in a ∆-window, then the edges of this layer can be properly colored
with two colors within the ∆-window. In other words, all but |V |2 copies of the layer
in the ∆-window are redundant for optimal coloring and each of them could be
replaced by the trivial layer. When implementing this idea one should take care to
guarantee that replacing a layer by the trivial one does not reduce the number of
copies of the layer in other ∆-windows which contain at most |V |2 copies of the layer.

Formally, the data reduction rule is as follows. Since the number of different layers

is at most 2(|V |
2) ≤ 2|V |2 , by the pigeonhole principle if ∆> 2 ·2|V |2 · |V |2, then in every

∆-window there exists a layer that appears more than 2|V |2 times in that ∆-window.
For every such layer that contains at least one edge, we replace one of its “middle”
copies, that is, one that has at least |V |2 copies appearing earlier and |V |2 copies that
appear later in the ∆-window, by a trivial layer. This data reduction rule guarantees
that every ∆-window that contains the modified layer also contains at least |V |2
copies of the original layer appearing either earlier or later in the ∆-window.

The data reduction rule can be applied exhaustively by linearly sweeping over all
∆-windows once in the following way. For each different graph (layer) we store a
list of occurrences and update these lists every time we move the ∆-window by one.

110

6.4 Complexity of Sliding Window Temporal Coloring

Having these lists, it is straightforward to count the occurrences and replace the
middle ones by trivial layers. When we move the ∆-window, we just have to update
two lists: the one of the graph that enters the ∆-window and the one of the graph

that leaves. This requires a lookup table of size 2(|V |
2) ≤ 2|V |2 but takes only time linear

in ℓ. Note that after this procedure, every ∆-window contains at most 2 ·2|V |2 · |V |2
non-trivial layers.

Now we apply the algorithm of Theorem 6.9. Note that after the data reduction step
the number of non-trivial layers in every ∆-window depends only on |V |. Further-
more, since we can assume that k ≤ |V |, the number of colorings that are enumerated

in Step 1 of the algorithm in Theorem 6.9 is in 2O(2|V |2). This completes the proof.

We complement the fixed-parameter tractability result of Theorem 6.10 with the
following proposition, in which we exclude the possibility of a polynomial-sized
kernel for SLIDING WINDOW TEMPORAL COLORING when parameterized by the num-
ber |V | of vertices unless NP ⊆ coNP/poly. This stands in contrast to the existence of
a polynomial kernel for TEMPORAL COLORING when parameterized by |V | [MMZ19].

Proposition 6.11. SLIDING WINDOW TEMPORAL COLORING parameterized by the
number |V | of vertices does not admit a polynomial kernel for all ∆ ≥ 2 and k ≥ 2
unless NP ⊆ coNP/poly.

Proof. We provide an AND-cross-composition (for a definition see Section 2.3) from
EXACT (3,4)-SAT [Tov84]. Recall that in EXACT (3,4)-SAT we are asked to decide
whether a given Boolean formula φ is satisfiable and φ is in conjunctive normal
form where every clause has exactly three distinct literals and every variable appears
in exactly four clauses. Intuitively, we can just string together instances produced
by the reduction we presented in the proof of Theorem 6.5 in the time axis with
some extra layers in between such that the large instance admits a proper sliding
∆-window temporal coloring if and only if all original instances are YES-instances.

We define an equivalence relation R as follows: Two instances φ and ψ are equiva-
lent under R if and only if the number of variables and the number of clauses is the
same in both formulas. Clearly, R is a polynomial equivalence relation.

Now let φ1, . . . ,φn be R-equivalent instances of EXACT (3,4)-SAT. We arbitrarily
number all variables and clauses of all formulas. For each φi with i ∈ [n] we construct
an instance of SLIDING WINDOW TEMPORAL COLORING as defined in the proof of
Theorem 6.5 (for an illustration see Figure 6.4) with the only difference that we
add a fourth and fifth layer both of which are copies of the first layer (Figure 6.4a).
Now we put all constructed temporal graphs next to each other in temporal order,
that is, if G (i) = (V ,E (i)

1 ,E (i)
2 , . . . ,E (i)

5) is the graph constructed for φi , then the overall

111

6 Temporal Coloring

temporal graph is G = (V ,E (1)
1 ,E (1)

2 , . . . ,E (1)
5 ,E (2)

1 ,E (2)
2 , . . . ,E (2)

5 , . . . , E (n)
1 ,E (n)

2 , . . . ,E (n)
5). Here,

the vertex set stays the same. We identify the vertices with their names according
to the numbering of the variables and clauses of the formulas. Further, we set ∆= 2
and k = 2.

This instance can be constructed in polynomial time and the number of vertices is
linearly upper-bounded in the size of the formulas, hence |V | is polynomially upper-
bounded by the maximum size of an input instance. Furthermore, it is easy to check
that the two extra copies of the first layer in the construction (Figure 6.4a) allow
to go from an arbitrary proper coloring of layer G (i)

4 = (V ,E (i)
4) to G (i+1)

1 = (V ,E (i+1)
1)

for any i ∈ [n − 1]. It follows from the proof of Theorem 6.5 that the constructed
SLIDING WINDOW TEMPORAL COLORING instance is a YES-instance if and only if for
every i ∈ [n] formula φi is satisfiable.

Since EXACT (3,4)-SAT is NP-hard [Tov84] and we AND-cross-composed it into
SLIDING WINDOW TEMPORAL COLORING with ∆= 2 and k = 2 parameterized by |V |,
the result follows.

6.4.4 Structural Graph Parameters and Approximation

In this section, we investigate the possibility to improve the fixed-parameter
tractability result of Theorem 6.10 by replacing the parameter |V | with a smaller
parameter. We answer this negatively by showing that SLIDING WINDOW TEMPORAL

COLORING remains NP-complete even if the underlying graph has a vertex cover
number in O(k), which is a fairly large structural parameter.

Theorem 6.12. SLIDING WINDOW TEMPORAL COLORING is NP-complete for all k ≥ 2,
even if ∆= 2 and the vertex cover number of the underlying graph is in O(k).

Proof. We present a polynomial-time reduction from MONOTONE EXACTLY 1-IN-3
SAT [GJ79, Sch78] to SLIDING WINDOW TEMPORAL COLORING with k = 2 and ∆= 2.
The reduction can be easily modified to a larger number of colors, we explain how to
do this at the end of the proof. In MONOTONE EXACTLY 1-IN-3 SAT we are given a
collection of triples (clauses) of variables and the task is to determine whether there
is an assignment of truth values to variables such that each clause contains exactly
one variable that is set to true. Given an instance I of MONOTONE EXACTLY 1-IN-3
SAT with n variables and m clauses, we construct a temporal graph G = (V , (Ei)i∈[ℓ])
with ℓ= 4m layers in the following way. The construction is visualized in Figure 6.6.

Construction. In the construction, we classify the layers of the constructed temporal
graph by the remainders of their time steps when divided by four. This gives us type 1,
type 2, type 3, and type 4 layers, where type 4 layers are the ones with a time step that

112

6.4 Complexity of Sliding Window Temporal Coloring

.

(a) Type 1 layer.

.

(b) Type 2 layer.

.

(c) Type 3 layer.

.

(d) Type 4 layer.

Figure 6.6: Illustration of the reduction from MONOTONE EXACTLY 1-IN-3 SAT to SLIDING

WINDOW TEMPORAL COLORING of the proof of Theorem 6.12. The vertex numbering in
the description of the construction corresponds to a row-wise numbering from top-left to
bottom-right. The first two rows correspond to vertices u1 to u4. The third row corresponds
to vertices v1 to vn . The remaining rows correspond to vertices w1 to w13. Thin edges appear
in all layers. Thick edges never appear consecutively and hence need to be colored properly.
Red dashed edges correspond to clauses. The colors of the vertices correspond to the proper
sliding ∆-window temporal coloring constructed in the proof of Theorem 6.12.

is divisible by four and the other type numbers correspond to the remainders of the
time steps. We start by adding four vertices u1, u2, u3, and u4 to G. In layers of type 1
or type 3 we add edges {u1,u2}, {u1,u3}, and {u2,u4}. In layers of type 2 or type 4 we add
edge {u3,u4}. For each variable xi we add a vertex vi . We connect each of u3 and u4 to
all vi in all layers. Next, we add 13 further vertices w1, w2, . . . , w13 to V . In all layers we
pairwise connect w1, w2, and w3, pairwise connect w11, w12, and w13, and add edges
{w4, w7}, {w5, w8}, and {w6, w9}. In layers of type 2 we add edges {w1, w4}, {w2, w5},
{w3, w6}, {u3, w10}, {w7, w10}, {w8, w10}, and {w9, w10} (see Figure 6.6b). In layers of
type 3 we add edges {w4, w9}, {w5, w7}, {w6, w8}, {w7, w11}, {w8, w12}, and {w9, w13} (see
Figure 6.6c). Lastly, let xi1 , xi2 , and xi3 be the three variables contained in clause c j .
Then we add edges {vi1 , w1}, {vi2 , w2}, and {vi3 , w3} in layer 4 j −2 (see red edges in
Figure 6.6b). Note that layer 4 j −2 has type 2.

Correctness. It is easy to check that this can be done in polynomial time. Note that
vertices u1,u2,u3,u4, w1, w2, . . . , w13 form a vertex cover in G↓. We are ready now to
prove that the MONOTONE EXACTLY 1-IN-3 SAT instance I is a YES-instance if and

113

6 Temporal Coloring

only if G admits a proper sliding 2-window temporal 2-coloring.

(⇒): Assume we are given a YES-instance of MONOTONE EXACTLY 1-IN-3 SAT
with a satisfying assignment. We show that the constructed instance of SLIDING

WINDOW TEMPORAL COLORING is also a YES-instance by presenting a proper sliding
∆-window temporal coloring with two colors. Let blue and yellow be the two colors
we use. We always color u1 and u4 yellow and u2 and u3 blue. If variable xi is set to
true in the satisfying assignment, then we color vi yellow in layers of type 1 and 3 and
blue in layers of type 2 and 4. If variable xi is set to false in the satisfying assignment,
then we color vi yellow in layers of type 2 and 4 and blue in layers of type 1 and 3.
Vertex w10 is always colored yellow.

Let clause c j be satisfied by its sth variable (note that s ∈ [3]). We describe how
to color vertices w1, . . . , w9 in layer 4 · j −2. Vertex ws is colored yellow. Vertices in
{w1, w2, w3}\{ws } are colored blue. Vertex ws+3 is colored blue. Vertices in {w4, w5, w6}\
{ws+3} are colored yellow. Vertices w7, w8, and w9 are colored blue. We further
describe how to color vertices w4, . . . , w13 in layer 4 · j −1. Note that w10 is already
colored yellow.

• We color vertex w((s+1) mod 3)+4 blue and vertices in {w4, w5, w6} \ {w((s+1) mod 3)+4}
yellow.

• We color vertex w(s mod 3)+7 yellow and vertices in {w7, w8, w9} \ {w(s mod 3)+7} blue.

• We color vertex w(s mod 3)+11 blue and vertices in {w11, w12, w13} \ {w(s mod 3)+11}
yellow.

In all layers of type 1 and 4 we color vertices w4, w5, and w6 yellow and vertices w7, w8,
and w9 blue. The coloring scheme so far is depicted in Figure 6.6. Note that the
colors of some vertices in some layers are not specified yet. These are the white
vertices in Figure 6.6. All these vertices belong to triangles, hence we can color them
in a way that each triangle has one monochromatic edge. We choose as the edge that
should remain monochromatic an edge that is properly colored in both adjacent
layers. Such an edge always exists since all these triangles are also triangles in the
adjacent layers and a triangle is never colored completely monochromatically.

(⇐): Assume that the constructed instance of SLIDING WINDOW TEMPORAL COLOR-
ING is a YES-instance and that we have a proper sliding ∆-window temporal coloring
with two colors. We show that the given instance of MONOTONE EXACTLY 1-IN-3
SAT is also a YES-instance by constructing a satisfying assignment. We claim that
the following yields a satisfying assignment. For every variable xi , if edge {u3, vi } is
colored properly in the first layer, then we set xi to true, otherwise we set xi to false.

114

6.4 Complexity of Sliding Window Temporal Coloring

First we argue that if an edge {u3, vi } is colored properly in the first layer for
some i ∈ [n], then it is also colored properly in every odd layer (that is, every layer
of type 1 and 3). Furthermore, the edge is colored monochromatically in every
even layer (that is, every layer of type 2 and 4). Analogously, if an edge {u3, vi } is
colored monochromatically in the first layer for some i ∈ [n], then it is also colored
monochromatically in every odd layer and colored properly in every even layer. This
follows from an easily verifiable fact that in every proper sliding ∆-window temporal
coloring vertex u3 is colored different from vertex u4 in every layer. It follows that if an
edge {u3, vi } is colored monochromatically in a layer t for some i ∈ [n] and t ∈ [ℓ−1],
then {u3, vi } needs to be colored properly in layer t +1 meaning that {u4, vi } is col-
ored monochromatically in layer t +1. Symmetrically, if an edge {u4, vi } is colored
monochromatically in a layer t for some i ∈ [n] and t ∈ [ℓ−1], then {u4, vi } needs to
be colored properly in layer t +1 meaning that {u3, vi } is colored monochromatically
in layer t +1.

Now we are ready to argue that each clause of the MONOTONE EXACTLY 1-IN-3 SAT
instance is satisfied. To see this we first take a look at layers of type 3. Note that the
triangle consisting of vertices w11, w12, and w13 has exactly one monochromatic edge.
It cannot have three since not all three edges can be colored properly in the adjacent
layers. This means that exactly two out of the three vertices w11, w12, and w13 have
the same color. It follows that exactly two out of the three vertices w7, w8, and w9

have the same color, since the edges {w7, w11}, {w8, w12}, and {w9, w13} need to be
colored properly. It is easy to check that this implies that exactly two out of the three
edges {w4, w7}, {w5, w8}, and {w6, w9} are colored monochromatically, since edges
{w4, w9}, {w5, w7}, and {w6, w8} need to be colored properly.

Now we take a look at layers of type 2. From the last paragraph follows that at
most one out of the three edges {w4, w7}, {w5, w8}, and {w6, w9} is colored monochro-
matically. Since edges {u3, w10}, {w7, w10}, {w8, w10}, and {w9, w10} need to be colored
properly, we have that vertices w7, w8, and w9 have the same color as vertex u3. It
follows that at most one of the vertices w4, w5, and w6 is colored in the same color
as u3. Since vertices w1, w2, and w3 form a triangle and edges {w1, w4}, {w2, w5},
and {w3, w6} need to be colored properly, it follows that exactly one out of the three
vertices w1, w2, and w3 is colored differently from u3. Recall that w1, w2, and w3 are
connected to vertices vi1 , vi2 , and vi3 corresponding to the three variables xi1 , xi2 ,
and xi3 that are contained in the clause that corresponds to the layer. The connecting
edges need to be colored properly. Consequently, exactly one of the edges {u3, vi1 },
{u3, vi2 }, and {u3, vi3 } is colored monochromatically and the other two are colored
properly. It follows that in the first layer, exactly one of the edges {u3, vi1 }, {u3, vi2 },
and {u3, vi3 } is colored properly and the other two are colored monochromatically.

115

6 Temporal Coloring

This means we set exactly one of the three variables to true and the clause is satisfied.

Modification for a Larger Number of Colors. To modify this reduction for more colors
we introduce new vertices and edges to the layers to “block” all colors except two
from being used. Formally, we do the following. Let k > 2. We add 2k−4 fresh vertices
c (1)

1 , . . . ,c (1)
k−2 and c (2)

1 , . . . ,c (2)
k−2. In each layer of type 1 or 3 the vertices c (1)

1 , . . . ,c (1)
k−2 form

a clique and we connect them to all other vertices. In each layer of type 2 or 4 the
vertices c (2)

1 , . . . ,c (2)
k−2 form a clique and connect them to all other vertices. All new

edges exist exactly once during any ∆-window for ∆= 2 and hence have to be colored
properly in every layer in which they appear. It follows that all vertices c (i)

1 , . . . ,c (i)
k−1

have to be colored with k −2 distinct colors and these colors then cannot be used to
color any other vertex.

The number of new vertices introduced by this modification is in O(k) and we can
simply add all of them to the vertex cover of the underlying graph.

Finally, we consider a canonical optimization version of SLIDING WINDOW TEM-
PORAL COLORING, which we call MINIMUM SLIDING WINDOW TEMPORAL COLORING,
where the goal is to minimize the number of colors k. Using Theorem 6.10, we
provide an FPT-approximation algorithm with an additive error of one where the
parameter is the vertex cover number of the underlying graph. Considering that we
cannot hope for an exact FPT-algorithm for parameter “vertex cover number of the
underlying graph” unless P = NP (Theorem 6.12), this is the best we can get from a
classification standpoint.

Theorem 6.13. MINIMUM SLIDING WINDOW TEMPORAL COLORING admits an ap-

proximation algorithm with a running time in 2O(2
vc2
↓) ·ℓ and an additive error of one,

where vc↓ is the vertex cover number of the underlying graph.

Proof. Let G = (V , (Ei)i∈[ℓ]) be the input temporal graph. First, we compute a mini-
mum vertex cover S ⊆V of the underlying graph G↓. Let the size of this vertex cover
be vc↓ = |S|. Note that this can be done in O(2vc↓ · (|V |+ |E(G↓)|) time [BG93, DF95].
We use the algorithm of Theorem 6.10 to compute the size of a minimum proper
sliding ∆-window temporal coloring for the temporal graph G [S] induced by the

vertex cover vertices14. By Theorem 6.10 this computation takes 2O(2
vc2
↓) ·ℓ time and

the number of colors used is clearly a lower bound for the minimum number of

14Note that the algorithm presented in Theorem 6.10 solves the decision version of SLIDING WINDOW

TEMPORAL COLORING while we want to solve the minimization problem here. This can be done by
trying out all values for the number k of colors between one and the size of the vertex cover of the
underlying graph.

116

6.5 Conclusion

colors necessary to properly color the whole temporal graph. We color the remaining
vertices with a fresh color. This clearly gives a proper sliding ∆-window temporal
coloring for the whole temporal graph that uses at most one extra color compared to
the optimum.

6.5 Conclusion

In this chapter we introduced and studied two natural temporal extensions of the
classic graph coloring problem, called TEMPORAL COLORING and SLIDING WINDOW

TEMPORAL COLORING, where TEMPORAL COLORING is the special case of SLIDING

WINDOW TEMPORAL COLORING, where the sliding window size equals the lifetime of
the input temporal graph. For both variants we showed that they are NP-complete
even under severe restrictions, in particular even if the number of colors is two,
which stands in stark contrast to the static case, where the problem of coloring a
graph with two colors is polynomial-time solvable.

On the positive side, we provided a linear-time FPT-algorithm for parameter “num-
ber |V | of vertices” and a linear-time FPT-approximation algorithm for parameter
“vertex cover number of the underlying graph” with an additive error of one. We leave
as an open question whether for the latter we can replace vertex cover number by
a structurally smaller parameter. However, due to their high space requirements
these algorithms might not be very practical. A future research direction would be to
investigate whether there are alternative algorithms yielding these tractability results
that only require polynomial space.

There are several natural extensions of our problem that one could consider in
future work. Considering our motivating example of mobile agents, it would be
reasonable to assume that agents do not want to change a channel too frequently.
In our model, this would translate to imposing a restriction on the number of color
reassignments per vertex, or imposing a minimum time period that each vertex has
to wait (after a color change) before it can change colors again. We remark that
restricting the number of vertices that may change their color when going from
one time step to the next (which would be a somewhat similar condition as used in
“multistage” problems [Bam+18, Flu+19, GTW14]) presumably does not simplify the
problem, since in the reduction of the proof of Theorem 6.12 this number is constant
(for a constant number of colors k).

117

CHAPTER 7

Temporal Cliques and s-Plexes

One of the most fundamental problems in (social) network analysis is community
detection, and one of the most basic primitives to model a community is a clique: a
set of vertices that are all pairwise connected in the network. Addressing the problem
of finding communities in temporal networks, Viard, Latapy, and Magnien [VLM16]
introduced ∆-cliques as a natural temporal version of cliques. In this chapter, we
show how to adapt the well-known Bron-Kerbosch algorithm [BK73] to enumerate
∆-cliques and temporal s-plexes (∆-s-plexes), a temporal version of a popular clique
relaxation.

We define a ∆-s-plex as a set of vertices and a time interval, where during this
time interval each vertex has in each consecutive ∆ time steps at least one edge to
all but at most s −1 vertices in the chosen set of vertices. We develop a recursive
algorithm for enumerating all maximal ∆-s-plexes. To analyze its running time, we
introduce a temporal adaptation of the degeneracy of a graph, a popular measure
for sparseness, which we call ∆-slice degeneracy. As our main result, we show that
enumerating ∆-s-plexes is fixed-parameter tractable when parameterized by the
∆-slice degeneracy of the input temporal graph. We remark that our algorithm has
been shown to perform very well in practice [Ben+19].

This chapter is based on a series of papers investigating the computational com-
plexity of enumerating temporal cliques and temporal k-plexes [Ben+18, Ben+19,
Him+16, Him+17].

7.1 Introduction

Network analysis is one of the main pillars of data science. Focusing on networks
that are modeled by undirected graphs, a fundamental primitive is the identification
of complete subgraphs, that is, cliques. This is particularly true in the context of
detecting communities in social networks. Finding a maximum-cardinality clique in
a graph is a classic NP-complete problem [Kar72], so exponential worst-case running
time seems unavoidable. Moreover, often one wants to solve the more general task
of not only finding one maximum-cardinality clique but to enumerate all maximal
cliques. Their number can be exponential in the graph size. The famous Bron-
Kerbosch algorithm (“Algorithm 457” in Communications of the ACM, 1973, [BK73])

119

7 Temporal Cliques and s-Plexes

addresses this task and still today forms the basis for some of the best (practical)
algorithms to enumerate all maximal cliques in static graphs [Con+18, ELS13].

Cliques as a mathematical model, however, are often too restrictive for real-world
applications, where some edges in communities might not exist because of errors
in measurements or application-specific reasons. To mitigate this issue, the clique
concept has seen several relaxations. In this chapter we focus on a popular degree-
based relaxation of cliques known as s-plexes [SF78]. In an s-plex, every vertex must
be adjacent to all but at most s −1 vertices in the s-plex (excluding itself). A 1-plex
is a clique and in a 2-plex every vertex can have a missing edge to one other vertex
in the 2-plex. One can use s-plexes also as a tool for link-prediction, as the missing
edges are probably good candidates for missing links in social networks: It has been
observed that friends of friends tend to become friends themselves [MZZ16].

Previous work on s-plexes uses static graph models [BBH11, BCK15, Con+17,
Con+18, Guo+10, MH12, MNS12, PYB13, SF78, WP07, Xia+17]. However, to realis-
tically model many real-world phenomena in social and other network structures,
one has to take into account the dynamics of the modeled system of interactions be-
tween entities, which are captured nicely by temporal graphs. Indeed, as Nicosia et al.
[Nic+13] pointed out, in many real-world systems the interactions among entities
are rarely persistent over time and the non-temporal interpretation is an “oversim-
plifying approximation”.

The generalization of a clique to the temporal setting that we study is called ∆-
clique and was introduced by Viard, Latapy, and Magnien [VLM16]. Intuitively, being
in a ∆-clique means to be regularly in contact with all other entities in this ∆-clique.
In slightly more formal terms, each pair of vertices in the ∆-clique has to be in contact
within at least every ∆ time steps. We extend this concept to ∆-s-plexes by allowing
each vertex to have up to s −1 missing edges during each interval of ∆ consecutive
time steps. It is easy to see that a ∆-1-plex is a ∆-clique. Fully formal definitions are
given in Section 7.2. We present an adaption of the framework of Bron and Kerbosch
[BK73] to temporal graphs and present an algorithm to enumerate ∆-cliques and ∆-s-
plexes. To the best of our knowledge, we are the first to investigate the enumeration
of s-plexes in temporal graphs.

7.1.1 Related Work

Finding maximum cliques (or cliques of a certain minimum cardinality) is a classic
NP-complete problem [Kar72]. The enumeration of maximal cliques in static graphs
is subject of many different algorithmic approaches (sometimes also exploiting
specific properties such as the “degree of isolation” of the cliques searched for) [BK73,
ELS13, Hüf+09, II09, Kom+09, TTT06].

120

7.1 Introduction

The concept of s-plexes was introduced by Seidman and Foster [SF78]. There
has been extensive research on maximum s-plex detection [BBH11, MH12, MNS12,
Xia+17] and s-plex enumeration [BCK15, Con+17, Con+18, WP07] in static graphs.
To find maximum s-plexes, there are several combinatorial branch-and-cut ap-
proaches [MH12, MNS12, Xia+17] as well as ILP-based algorithms [BBH11]. The
Bron-Kerbosch algorithm [BK73] has been adapted to enumerate s-plexes in static
graphs [Con+18, WP07], but there are also enumeration algorithms based on other
approaches [BCK15, Con+17]. To the best of our knowledge, the currently asymptot-
ically fastest algorithm for finding a maximum-cardinality s-plex in a static graph
is due to Xiao et al. [Xia+17] and the asymptotically fastest algorithm for listing all
maximal s-plexes in a static graph is due to Berlowitz, Cohen, and Kimelfeld [BCK15].

There are several other clique relaxations. Typically, the corresponding decision
problems are NP-complete. For more details on different clique relaxations we refer
to Pattillo, Youssef, and Butenko [PYB13].

The problem of finding ∆-cliques in temporal graphs was introduced and moti-
vated by the study of Viard, Latapy, and Magnien [VLM16] who enumerated con-
tact patterns among high-school students [BF14]. There has been intensive re-
cent research on clique enumeration in temporal graphs [BP19, Qin+19, VLM16,
VML18]. Recently, also the concept of isolation has be transferred to the temporal
setting [MNR19].

7.1.2 Our Contributions and Organization of the Chapter

We formally introduce and define ∆-s-plexes (Definition 7.6), adapt and extend the
classic Bron-Kerbosch algorithm [BK73] to enumerate them, prove its correctness
(Proposition 7.6), and present a worst-case running time analysis of our new algo-
rithm (Proposition 7.12). We further introduce a measure for sparsity for temporal
graphs called ∆-slice degeneracy (Definition 7.7), which is a temporal adaptation
of the degeneracy for static graphs [LW70]. Our running time analysis shows that
our algorithm has an FPT running time if s is constant and when the problem is
parameterized by the ∆-slice degeneracy of the input temporal graph (Theorem 7.3).

The chapter is organized as follows. In Section 7.2 we introduce some additional
definitions and notations. We formally define ∆-cliques and ∆-s-plexes and define
decision versions of our problem. We discuss the adaptation of degeneracy to
temporal graphs and give the definition of ∆-slice degeneracy. We further give some
easy to observe intractability results and, lastly, we briefly explain the original Bron-
Kerbosch algorithm which serves as a role model for our algorithm. In Section 7.3, we
present our adaptation of the Bron-Kerbosch algorithm for enumerating all maximal
∆-s-plexes in temporal graphs. After a detailed description of the algorithm, we

121

7 Temporal Cliques and s-Plexes

prove its correctness and analyze its running time. We further utilize the parameter
“∆-slice degeneracy of a temporal graph” to upper-bound the number of maximal
∆-s-plexes of a temporal graph and to show the fixed-parameter tractability of our
problem. We conclude in Section 7.4.

7.1.3 Further Contributions of the Papers this Chapter is Based on

Himmel et al. [Him+17] focus on the problem of enumerating ∆-cliques. They
propose several pivoting techniques to reduce the number of recursive calls of their
algorithm. Furthermore, they give an implementation of the algorithm and an
experimental evaluation showing that their approach works well in practice.

Bentert et al. [Ben+19] further give an implementation of the algorithm to enu-
merate ∆-s-plexes and propose additional heuristic speed-ups. They also present an
experimental evaluation of their algorithm showing that in practice, enumerating
∆-s-plexes is only possible for small values of s.

7.2 Preliminaries

In this section, we provide additional notation for intervals and sets of intervals. We
introduce further concepts related to temporal graphs and give the formal problem
definitions of TEMPORAL CLIQUE and TEMPORAL s-PLEX and some preliminary
computational hardness results. We also give a short description of the classic
Bron-Kerbosch algorithm [BK73].

7.2.1 Intervals and Sets of Intervals

We introduce various concepts related to intervals of natural numbers that we need
in this chapter. The most central one is that of a set I of intervals. On a mathematical
level, a set I of intervals is a finite subset of the natural numbers. Additionally, we
assume that in the algorithm we present, sets of intervals are always stored as ordered
lists. The name “set of intervals” stems from the fact that we interpret these sets of
intervals as literal sets of intervals, even though from a mathematical standpoint,
they are just finite sets of integers. According to this intuition, we define the notion
of an interval being an element of a set of intervals as follows.

Definition 7.1. An interval I = [a,b] is contained in a set of intervals I⊂N if I ⊆ I

and there is no larger interval I ′ ⊃ I with I ′ ⊆ I. If I is contained in I, then we denote
this with I ⊏− I.

We refer to a tuple (v, I) with v being a vertex and I being an interval as a vertex-
interval pair and we refer to a tuple (v,I) with a vertex v and a set I of intervals as a

122

7.2 Preliminaries

vertex-interval-set pair. For a set A of vertex-interval-set pairs, we define V (A) to be
the set of all vertices of vertex-interval-set pairs in A. We further define the following
notation.

Definition 7.2. Let X ,Y be sets of vertex-interval-set pairs, let (v, I) be a vertex-
interval pair, let (v,Iv) be a vertex-interval-set pair, let I be a set of intervals, and
let V ′ ⊆V be a set of vertices:

• X [I] := {(u,Iu ∩I) | (u,Iu) ∈ X };

• X [V ′] := {(u,I) | (u,I) ∈ X ∧u ∈V ′};

• (v,Iv)⊔X :=
{︄

X ∪ {(v,Iv)} if ¬∃(v,IX
v) ∈ X ,

(X \ {(v,IX
v)})∪ {(v,Iv ∪IX

v)} otherwise;

• X ⊓Y := {(u,IX
u ∩IY

u) | (u,IX
u) ∈ X ∧ (u,IY

u) ∈ Y };

• (v,Iv)⊓X := {(v,Iv)}⊓X ; and

• (v, I)⊏− X := (v, {I }) ∈ (v, {I })⊓X .

7.2.2 ∆-Neighborhoods and ∆-Non-Neighborhoods

In order to properly define ∆-cliques and ∆-s-plexes, we need to adjust the notion
of vertex neighborhoods and non-neighborhoods from static to temporal graphs.
Instead of just considering the incident edges of a vertex at one time step, we con-
sider all incident edges within a ∆-window. We say that two vertices v and w are
neighbors in the ∆-window W ∆

i if there is an edge {v, w} ∈ Et with t ∈ W ∆
i . The ∆-

neighborhood N∆(v, i) of a vertex v ∈V and a ∆-window W ∆
i is the set of all neighbors

of v in W ∆
i . Accordingly, we define the ∆-neighborhood N∆(v,Iv) of a vertex-interval-

set pair (v,Iv) as the set of vertex-interval-set pairs (w,Iw) with maximal Iw such
that Iw ⊆ Iv and there is an edge between v and w in every ∆-window W ∆

i with i ∈ Iw .
See Figures 7.1a to 7.1c for an example. More formally, we arrive at the following
definition.

Definition 7.3 (∆-Neighborhood). Let G = (V , (Ei)i∈[ℓ]) be a temporal graph, let v ∈V
be a vertex, and let W ∆

i , i ∈ [ℓ−∆+1], be a ∆-window of G . The ∆-neighborhood of v
in W ∆

i is defined as

N∆(v, i) := {w ∈V | ∃t ∈W ∆
i : {v, w} ∈ Et }.

123

7 Temporal Cliques and s-Plexes

1 2 3 4 5 6 7
a

b

c

(a) N∆(a, [ℓ])

1 2 3 4 5 6 7
a

b

c

(b) N∆(b, [ℓ])
1 2 3 4 5 6 7

a

b

c

(c) N∆(c, [ℓ])

1 2 3 4 5 6 7
a

b

c

(d) Maximal ∆-Clique ({a,b,c}, [3,3])

Figure 7.1: ∆-Neighborhoods and a ∆-clique of a temporal graph with ∆= 3. The lifetime of
the temporal graph is ℓ= 7. The elements of the ∆-neighborhoods of vertices a, b, and c are
visualized in Figures 7.1a to 7.1c, respectively, in yellow and blue (hatched). Light shaded areas
correspond to the time steps in the respective last ∆-window. Figure 7.1d shows a maximal
∆-clique shaded in yellow, where the light yellow part corresponds to the time steps in the last
∆-window.

Let (v,Iv) be a vertex-interval-set pair of G . The ∆-neighborhood of v in Iv is defined
as

N∆(v,Iv) := {(w,Iw) | w ∈V ∧Iw = ⋃︂
i∈Iv

{i | w ∈ N∆(v, i)}}.

Notice that being a ∆-neighbor of another vertex is a symmetric relation. If (w, I)⊏−
N∆(v,I), then we say that w is a ∆-neighbor of v during the time interval I .

Accordingly, we say that v and w are non-neighbors in W ∆
i if there exists no edge

{v, w} ∈ Et with t ∈ W ∆
i . The ∆-non-neighborhood N

∆
(v, i) of a vertex v ∈ V and a

∆-window W ∆
i is the set of all non-neighbors of v in W ∆

i . Accordingly, we define

the ∆-non-neighborhood N
∆

(v,Iv) of a vertex-interval-set pair (v,Iv) as the set of
vertex-interval-set pairs (w,Iw) with maximal Iw such that Iw ⊆ Iv and there is no
edge between v and w in any ∆-window W ∆

i with i ∈ Iw . See Figures 7.2a to 7.2c for
an example. More formally, we arrive at the following definition.

Definition 7.4 (∆-Non-Neighborhood). Let G = (V , (Ei)i∈[ℓ]) be a temporal graph,
let v ∈ V be a vertex, and let W ∆

i , i ∈ [ℓ−∆+ 1], be a ∆-window of G . The ∆-non-

124

7.2 Preliminaries

1 2 3 4 5 6
a

b

c

(a) N
∆

(a, [ℓ])

1 2 3 4 5 6
a

b

c

(b) N
∆

(b, [ℓ])
1 2 3 4 5 6

a

b

c

(c) N
∆

(c, [ℓ])

1 2 3 4 5 6
a

b

c

(d) Maximal ∆-2-plex ({a,b,c}, [4,5])

Figure 7.2: ∆-Non-neighborhoods and a ∆-2-plex of a temporal graph with ∆= 2. The lifetime
of the temporal graph is ℓ = 6. The elements of the ∆-non-neighborhoods of vertices a, b,
and c are visualized in Figures 7.1a to 7.1c, respectively, in yellow, blue (hatched), and green
(hatched). Light shaded areas correspond to the time steps in the respective last ∆-window.
In Figure 7.2a, we can see for example that b within time interval [3,4] is in the ∆-non-
neighborhood of a because in the ∆-windows W ∆

3 ([3,4]) and W ∆
4 ([4,5]) there are no time

edges between a and b. Figure 7.2d shows a maximal ∆-2-plex shaded in yellow, where the
light yellow part corresponds to the time steps in the last ∆-window. The tuple ({a,b,c}, [4,5])
is a ∆-2-plex because in ∆-windows W ∆

4 ([4,5]) and W ∆
5 ([5,6]) each vertex has at most two

non-neighbors (including itself).

neighborhood of v in W ∆
i is defined as

N
∆

(v, i) := {w ∈V | ∀t ∈W ∆
i : {v, w} ∉ Et }.

Let (v,Iv) be a vertex-interval-set pair of G . The ∆-non-neighborhood of v in Iv is
defined as

N
∆

(v,Iv) := {(w,Iw) | w ∈V ∧Iw = ⋃︂
i∈Iv

{i | w ∈ N
∆

(v, i)}}.

7.2.3 ∆-Cliques and ∆-s-Plexes

A straightforward adaptation of a clique to the temporal setting is to additionally
assign a lifetime I = [a,b] to it, that is, the largest time interval such that the clique
exists in each time step in said interval. However, this model is often too restrictive

125

7 Temporal Cliques and s-Plexes

for real-world data. For example, if the subject matter of examination is e-mail traffic
and the data set includes e-mails with time stamps including seconds, we are not
interested in people who sent e-mails to each other every second over a certain
time interval, but we would like to know which groups of people were in contact
with each other, say, at least every seven days over months. One possible approach
would be to generalize the time stamps, taking into account only the week an e-mail
was sent, resulting in a loss of accuracy in the data set. The constraint of each pair
of vertices being connected in each time step can be relaxed by introducing an
additional parameter ∆, quantifying how many time steps may be skipped between
two connections of any vertex pair. These so-called ∆-cliques were introduced by
Viard, Latapy, and Magnien [VLM16] and are formally defined as follows.

Definition 7.5 (∆-Clique). Given a temporal graph G = (V , (Ei)i∈[ℓ]), an integer ∆ ∈N,
a subset C ⊆V of vertices, and an interval I = [a,b] ⊆ [ℓ−∆+1], then R = (C , I) is a
∆-clique if for all v, w ∈C and all i ∈ I it holds that w ∈ N∆(v, i).

In other words, for a ∆-clique R = (C , I) all pairs of vertices in C interact with each
other at least once in every ∆-window that starts at a time step in the time interval I .
See Figure 7.1 for an illustration of a ∆-clique. It is evident that the parameter ∆ is a
measurement of the intensity of interactions in ∆-cliques. Small ∆-values imply that
the interaction between vertices in a ∆-clique has to be more frequent than in the
case of large ∆-values. The choice of ∆ depends on the data set and the purpose of
the analysis.

We can also consider ∆-cliques from another point of view. For a given temporal
graph G = (V , (Ei)i∈[ℓ]), an integer ∆ ∈N, and a time step t ∈ [ℓ−∆+ 1], the static
graph G∆

t = (V ,EW ∆
t

) describes all contacts that appear within the ∆-window W ∆
t in

the temporal graph G . The existence of a ∆-clique R = (C , I = [a,b]) implies that
all vertices in C form a clique in all static graphs G∆

t with t ∈ I . This implies that
all vertices in C are pairwise connected to each other in the static graphs of all
sliding, ∆-sized time windows from time a until b.

We can now formally define the (decision) problem of finding a ∆-clique with a
certain minimum amount of vertices and a certain minimum lifetime in a given
temporal graph G .

TEMPORAL CLIQUE

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and three integers k, t ∈ N, and
∆≤ ℓ.

Question: Does G contain a ∆-clique (C , [a,b]) with |C | ≥ k and b −a ≥ t?

126

7.2 Preliminaries

TEMPORAL CLIQUE clearly generalizes the classic NP-complete CLIQUE prob-
lem [Kar72]. It is further easy to check that, given a temporal graph G = (V , (Ei)i∈[ℓ]),
it can be verified in polynomial time whether R = (C , I) with C ⊆V and I ⊆ [ℓ−∆+1]
is a ∆-clique in G . Hence, we have that TEMPORAL CLIQUE is NP-complete for each
fixed t ≥ 1, ∆≥ 1, and ℓ≥∆.

In an enumeration setting, we are most interested in ∆-cliques that are not “con-
tained” in any other ∆-clique. For this we also need to adapt the notion of maximality
to the temporal setting [VLM16]. Let G = (V , (Ei)i∈[ℓ]) be a temporal graph. We call a ∆-
clique R = (C , I) in G vertex-maximal if there is no vertex v ∈V \C such that (C ∪{v}, I)
is a ∆-clique in G . Intuitively, a ∆-clique is vertex-maximal if we cannot add any
vertex to C without having to decrease the clique’s lifetime I . We say that a ∆-clique
R = (C , I) is time-maximal if there is no I ⊂ I ′ ⊆ [ℓ−∆+ 1] such that R ′ = (C , I ′) is
a ∆-clique in G . Intuitively, a ∆-clique is time-maximal if we cannot increase the
lifetime I without having to remove vertices from C . We call a ∆-clique maximal if it
is both vertex-maximal and time-maximal.

We define a ∆-s-plex as a straightforward relaxation of a ∆-clique. A ∆-s-plex
consists of a set C of vertices and a lifetime I = [a,b]. Analogously to s-plexes in static
graphs [SF78], ∆-s-plexes are defined so that each vertex in the vertex set C of the
∆-s-plex must have at least |C | − s neighbors in each ∆-window W ∆

i with i ∈ I . In
other words, for every vertex v ∈C there are at most s vertices both in C and in the
∆-non-neighborhood of (v, i) for each i ∈ I . Note that a ∆-1-plex is a ∆-clique. See
Figure 7.2d for an illustration of a ∆-s-plex. The formal definition is as follows.

Definition 7.6 (∆-s-Plex). Given a temporal graph G = (V , (Ei)i∈[ℓ]), an integer ∆ ∈N,
a subset C ⊆V of vertices, and an interval I = [a,b] ⊆ [ℓ−∆+1], then R = (C , I) is a
∆-s-plex if for all v ∈C and all i ∈ I it holds that |N∆

(v, i)∩C | ≤ s.

We can now formally define the (decision) problem of finding a ∆-s-plex with a
certain minimum amount of vertices and a certain minimum lifetime in a given
temporal graph G .

TEMPORAL s-PLEX

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and three integers k, t ∈ N, and
∆≤ ℓ.

Question: Does G contain a ∆-s-plex (C , [a,b]) with |C | ≥ k and b −a ≥ t?

By definition we have that TEMPORAL s-PLEX generalizes the NP-complete s-PLEX

problem [BBH11]. It is further easy to check that, given a temporal graph G =

127

7 Temporal Cliques and s-Plexes

(V , (Ei)i∈[ℓ]), it can be verified in polynomial time whether R = (C , I) with C ⊆V and
I ⊆ [ℓ−∆+ 1] is a ∆-s-plex in G . Hence, we have that TEMPORAL s-PLEX is NP-
complete for each fixed s ≥ 1, t ≥ 1, ∆≥ 1, and ℓ≥∆.

In the enumeration setting, we focus on finding maximal ∆-s-plexes. Analogously
to the case of ∆-cliques, there is both vertex-maximality and time-maximality. Given
a temporal graph G = (V , (Ei)i∈[ℓ]), a ∆-s-plex R = (C , I) is vertex-maximal if and only
if there is no vertex v ∈ V \ C such that (C ∪ {v}, I) is a ∆-s-plex in G . Intuitively, a
∆-s-plex is vertex-maximal if no other vertex can be added to it without decreasing
its lifetime. We say that a ∆-s-plex R = (C , I) is time-maximal if and only if there is
no I ⊂ I ′ ⊆ [ℓ−∆+1] such that R ′ = (C , I ′) is a ∆-s-plex in G . Intuitively, a ∆-s-plex is
time-maximal if we cannot increase its lifetime without removing a vertex from it.
We call a ∆-s-plex maximal if it is both vertex-maximal and time-maximal.

7.2.4 Degeneracy of Temporal Graphs

Degeneracy is a measure of sparsity for static graphs [LW70] (for a definition see
Section 2.4). Real-world instances of static graphs (especially social networks) are
often sparse, which results in a small degeneracy value [ELS13]. This motivates
using the degeneracy of the input graph as a parameter for graph problems that are
motivated in the context of for example social network analysis, such as CLIQUE.

It is easy to see that the maximum clique size of a graph with degeneracy d is at
most d +1: If there is a clique of size at least d +2, then the vertices of this clique
would form an induced subgraph in which every vertex v of the clique has a degree
larger than d . Indeed, it is known that CLIQUE parameterized by the degeneracy of
the input graph is fixed-parameter tractable [ELS13].

This motivates a parameterized complexity analysis of TEMPORAL CLIQUE param-
eterized by a temporal analogue of degeneracy. There are several canonical ways to
transfer degeneracy from the static to the temporal setting. The two most obvious
are, given a temporal graph,

1. to consider the maximum of the degeneracy values of all layers, or

2. to consider the degeneracy value of the underlying graph.

It is clear that the former is smaller than the latter. However, for our problem, we
define a temporal adaptation of degeneracy that lies between the two options above,
the so-called ∆-slice degeneracy. Intuitively, it measures the maximum degeneracy
value of the union graphs of all ∆-windows of a temporal graph.

128

7.2 Preliminaries

Definition 7.7 (∆-Slice Degeneracy). A temporal graph G = (V , (Ei)i∈[ℓ]) has ∆-slice
degeneracy d if for all t ∈ [ℓ−∆+1] it holds that GW ∆

t
= (V ,EW ∆

t
) has degeneracy at

most d .

We remark that, from a parameterized point of view, the ∆-slice degeneracy is at
most as large as the maximum degeneracy of all layers combined with ∆. This follows
from the observation that the degeneracy can be lower-bounded by the arboricity15

and upper-bounded by twice the arboricity [Nas61, Nas64, SW19, Tut61]. Further,
we have that it is obvious that the arboricity of the union graph of a ∆-window
GW ∆

t
= (V ,EW ∆

t
) is at most as large as the sum of the arboricities of the layers in that

∆-window. It can, however, be much smaller.

7.2.5 Hardness Results

It this section, we give some easy to observe hardness results that show that
our main fixed-parameter tractability result (Theorem 7.3) presumably cannot be
significantly improved from a classification standpoint.

Observation 7.1. TEMPORAL CLIQUE and TEMPORAL s-PLEX for all s ≥ 1 are NP-
complete even if the degeneracy of every layer of the input temporal graph is one.

Proof. This can be shown by an easy polynomial-time reduction from the NP-
complete problems CLIQUE [Kar72] and s-PLEX [BBH11], respectively. Given an
input instance (H = (U ,F),k) of CLIQUE or s-PLEX, respectively, we construct a tem-
poral graph G with U as vertex set and where for each edge e ∈ F we create one layer
that only contains e. It follows that ℓ= |F |. We set ∆= ℓ and t = 1. It is easy to see that
(G ,k, t ,∆) is a YES-instance of the respective temporal problem if and only if (H ,k) is
a YES-instance of the respective original problem.

This observation implies that we cannot hope to use the maximum degeneracy
value of any layer as a parameter to show fixed-parameter tractability unless P = NP.

We can further show that we presumably cannot hope to improve our main fixed-
parameter tractability result to a polynomial kernel, even if we increase our parame-
ter to the number |V | of vertices.

Proposition 7.2. TEMPORAL CLIQUE and TEMPORAL s-PLEX for all s ≥ 1 parameter-
ized by the number |V | of vertices do not admit a polynomial kernel for all ∆≥ 1 and
t ≥ 1 unless NP ⊆ coNP/poly.

15The arboricity of an undirected graph G is the minimum number of forests into which its edges can be
partitioned.

129

7 Temporal Cliques and s-Plexes

Proof. We provide an OR-cross-composition (for a definition see Section 2.3) from
the NP-complete problems CLIQUE [Kar72] and s-PLEX [BBH11] to TEMPORAL CLIQUE

and TEMPORAL s-PLEX, respectively. Intuitively, we can just string together instances
in the time axis such that the large instance contains a ∆-clique or ∆-s-plex if and
only if one of the original instances is a YES-instance.

We define an equivalence relation R as follows: Two instances (H = (U ,F),k) and
(H ′ = (U ′,F ′),k ′) are equivalent under R if and only if |U | = |U ′| and k = k ′. Clearly, R
is a polynomial equivalence relation.

Now let (H1 = (U1,F1),k1), . . . , (Hn = (Un ,Fn),kn) be R-equivalent instances of CLIQUE

or s-PLEX, respectively. We arbitrarily identify the vertices of the instances, that is,
let V =U1 = . . . =Un and create a temporal graph G = (V ,F1,F2, . . . ,Fn). Further, we set
∆= 1, t = 1 and k = k1.

This instance can be constructed in polynomial time and the number of vertices
is the same as the vertices of the input instances, hence |V | is polynomially upper-
bounded by the maximum size of an input instance. Furthermore, it is easy to check
that G contains a ∆-clique or ∆-s-plex with at least k vertices and a lifetime of one if
and only if there is an i ∈ [n] such that Hi contains a clique or an s-plex with k vertices,
respectively. The result follows.

7.2.6 The Classic Bron-Kerbosch Algorithm

The Bron-Kerbosch algorithm is a classic algorithm that enumerates all maximal
cliques in a static graph and hence also solves the CLIQUE problem [BK73]. It is a
simple yet clever backtracking algorithm, which can be made to perform very well on
real-world networks [ELS13]. We give a short description here since our adaptation
inherits several ideas of this algorithm.

See Algorithm 1 for pseudo-code of the Bron-Kerbosch algorithm. The algorithm
maintains three distinct sets of vertices. The first set R contains the current clique.
The other two sets P and X contain the vertices that can be added to R such that R
is still a clique. The set P contains all candidate vertices which have not been
considered in previous iterations, while the set X contains vertices that have been
considered before. In each recursive call, the algorithm first checks whether the
current clique R is maximal, that is, whether P ∪ X =∅. If so, then it adds R to the
solution, otherwise it iterates through all vertices v ∈ P , adds v to R, and recursively
calls itself with updated sets P ′ and X ′ where all vertices that are not adjacent to v
are removed. Afterwards, it removes v from P and adds it to X . The initial call is
with P =V and R = X =∅.

130

7.3 Enumerating Temporal Cliques and s-Plexes

Algorithm 1 Enumerating all Maximal Cliques

1: function BRONKERBOSCH(P,R, X)
▷ R: a clique.
▷ P ∪X : set of all vertices v such that R ∪ {v} is a clique and where

• vertices in P have not yet been considered as additions to R and
• vertices in X already have been considered in earlier iterations.

2: if P ∪X =∅ then
3: add R to the solution
4: end if
5: for v ∈ P do
6: BRONKERBOSCH(P ∩N (v),R ∪ {v}, X ∩N (v)))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

10: end function

7.3 Enumerating Temporal Cliques and s-Plexes

In this section we give an algorithm that shows that TEMPORAL CLIQUE and TEM-
PORAL s-PLEX with fixed s are fixed-parameter tractable when parameterized with
the ∆-slice degeneracy of the input temporal graph. Formally, we prove the following.

Theorem 7.3. TEMPORAL s-PLEX can be solved in O(
(︁ |V |

s−1

)︁ ·2d+s ·min{(
∑︁ℓ

i=1 |Ei |)2,ℓ2} ·
|V |3) time, where d is the ∆-slice degeneracy of the input graph.

The algorithm we present even enumerates all maximal ∆-cliques or ∆-s-plexes.
Note that since TEMPORAL CLIQUE is equivalent to TEMPORAL 1-PLEX, we focus on
the more general TEMPORAL s-PLEX problem in the remainder of this chapter.

The classic Bron-Kerbosch algorithm enumerates all maximal cliques in a static
graph [BK73] and has been adapted to enumerate s-plexes in static graphs [Con+18,
WP07]. In the following, we describe how to adapt the Bron-Kerbosch algorithm
to enumerate maximal ∆-s-plexes in temporal graphs. We call the new algorithm
∆-s-BRONKERBOSCH, see Algorithms 2 to 4 for pseudocodes.

The Bron-Kerbosch algorithm is a recursive backtracking algorithm that works on
the idea of maintaining a current clique and two candidate sets containing vertices
that may be added to the clique, one that contains vertices that are recursively
added to the clique and one that contains vertices that already have been part of the
clique in an earlier recursive call. The latter prevents the algorithm from discovering

131

7 Temporal Cliques and s-Plexes

Algorithm 2 Enumerating all Maximal ∆-s-Plexes

1: function ∆-s-BRONKERBOSCH(P,R = (C ,I), X ,B)
▷ R = (C ,I): for every I ⊏− I, (C , I) is a time-maximal ∆-s-plex.
▷ P ∪ X : set of all vertex-interval-set pairs (v,Iv) such that for all Iv ⊏− Iv it holds that Iv ⊆ I and
(C ∪ {v}, Iv) is a time-maximal ∆-s-plex and where

• vertex-interval-set pairs in P have not yet been considered as additions to R and
• vertex-interval-set pairs in X have been considered in earlier iterations.

▷ B : V × [ℓ−∆+1] ↦→N with B(v, t) = |N∆
(v, t)∩C |, that is, function B returns for every vertex v ∈V

and every time step t ∈ [ℓ−∆+1] the number of non-neighbors of v from C in ∆-window W ∆
t .

2: for I ⊏− I do
3: if ∀(v,Iv) ∈ P ∪X and ∀Iv ⊏− Iv : Iv ̸= I then
4: add (C , I) to the solution
5: end if
6: end for
7: for (v,Iv) ∈ P do
8: C ′ ←C ∪ {v}
9: I′ ← Iv

▷ Update of the function B and the sets P and X for the new set of ∆-s-plexes (C ′,I′). Crit contains

all pairs (v,Iv) where v has exactly s non-neighbors from C ′ in I ⊏− Iv .

10: B ′,Crit ← UPDATEPOOL(B ,C ′, (v,Iv))
11: P ′ ← UPDATE(P,C ′,Crit, (v,Iv))
12: X ′ ← UPDATE(X ,C ′,Crit, (v,Iv))
13: ∆-s-BRONKERBOSCH(P ′,R ′ = (C ′,I′), X ′,B ′)
14: P ← P \ {(v,Iv)}
15: X ← X ∪ {(v,Iv)}
16: end for
17: end function

a clique several times. If those sets are empty, we know that the clique must be
maximal. In the case of s-plexes one need to introduce additional data structures
that essentially count the number of “missing neighbors” for every vertex in the
current s-plex. This basic idea stays the same in the temporal case, with the main
difference that apart from vertices, we also have to manage time intervals. In the
following, we give a more formal explanation on how our temporal adaptation of the
Bron-Kerbosch algorithm works.

The input of ∆-s-BRONKERBOSCH consists of two sets P and X of vertex-interval-set
pairs, an implicit set of current time-maximal ∆-s-plexes R = (C ,I), as well as a pool B ,

132

7.3 Enumerating Temporal Cliques and s-Plexes

Algorithm 3 Updating the Pool Function B

1: function UPDATEPOOL(B ,C , (v,Iv))
▷ B : V × [ℓ−∆+1] →N with B(v, t) = |N∆

(v, t)∩C |.
▷ C , (v,Iv): v ∈C and for every I ⊏− Iv it holds that (C , I) is a time-maximal ∆-s-plex.

▷ Update function B for v ∈C ; store critical vertex-interval-set pairs.

2: Crit ← {(c,∅) | c ∈C ∪V (P)}
3: B ′ ← B
4: for (w,Iw) ∈ P ∪X ∪ {(c,Iv) | c ∈C } do

▷ Function B only changes if a vertex is in the ∆-non-neighborhood of v during Iv .

5: (w,Icrit) ← (w,Iw)⊓N
∆

(v,Iv)
6: for t ∈ Icrit do
7: B ′(w, t) ← B ′(w, t)+1

▷ If a vertex v already has s non-neighbors from C in ∆-window W ∆
t , then this vertex is critical.

8: if B ′(w, t) = s then
9: Crit ← (w, {t })⊔Crit

10: end if
11: end for
12: end for
13: return B ′,Crit
14: end function

which is a data structure that keeps track of the missing neighbors of each vertex of
the current ∆-s-plexes. Herein, C is the set of vertices of the ∆-s-plexes and I is a set
of intervals such that for all I ⊏− I we have that (C , I) forms a time-maximal ∆-s-plex.
The pool is an auxiliary data structure that stores the number of ∆-non-neighbors of
the vertices of the ∆-s-plex in any ∆-window. While in the original Bron-Kerbosch
algorithm the sets P and X contain the common neighborhood of all vertices in R,
our sets P and X contain all vertices v with interval sets Iv such that for all Iv ⊏− Iv it
holds that Iv ⊆ I and (C∪{v}, Iv) is a time-maximal ∆-s-plex. These vertices cannot be
contained in the ∆-non-neighborhood of more than s−1 other vertices of C in each ∆-
window W ∆

i with i ∈ Iv . They can neither be contained in the ∆-non-neighborhood
of a vertex w ∈ C during its critical intervals, that is, the intervals where w has
exactly s ∆-non-neighbors in C (including w itself). To maintain these properties
after expanding the current ∆-s-plex, we update the pool B with the UPDATEPOOL

procedure (Algorithm 3) after adding a new vertex v ∈ V (P) to C and then update
the sets P and X with the UPDATE procedure (Algorithm 4). For each vertex in

133

7 Temporal Cliques and s-Plexes

Algorithm 4 Updating all Vertex-Interval-Sets

1: function UPDATE(P,C ,Crit, (v,Iv))
▷ Update P such that for all (w,Iw) and all Iw ⊏− Iw with Iw ⊆ Iv it holds that (C ∪ {w}, Iw) is a

time-maximal ∆-s-plex.

2: Preduced ← P [Iv]
3: P ′ ←∅
4: for (w,Iw) ∈ Preduced[V (P) \ {v}] do

▷ If w has a non-neighbor u ∈C in some W ∆
i with i ∈ Iw and u is critical in W ∆

i , then we cannot add

w to C at time step i .

5: for (u,Iu) ∈ Crit[C ∪ {w}]⊓N
∆

(w,Iw) do
6: Iw ← Iw \Iu

7: end for
8: P ′ ← P ′∪ {(w,Iw)}
9: end for

10: return P ′

11: end function

V (P)∪V (X)∪C , we save the number of ∆-non-neighbors of vertices in C for each ∆-
window in the pool B . We iterate through all vertex-interval-set pairs (v,Iv) ∈ P , call
the UPDATEPOOL and UPDATE procedures, and then do a recursive call with the
updated sets R ′, P ′, and X ′.

For a given temporal graph G = (V , (Ei)i∈[ℓ]), the input for the initial call of ∆-s-
BRONKERBOSCH to enumerate all maximal ∆-s-plexes is P = {(v, [ℓ−∆+1]) | v ∈V },
X =∅, R = (∅, [ℓ−∆+1]), and B(v, i) = 0 for all v ∈V and i ∈ [ℓ−∆+1]. In the remain-
der of this chapter, we always assume this initial call of the algorithm, that is, the
correctness of all theorem, proposition, and lemma statements is conditioned on
this assumption.

7.3.1 Correctness of ∆-s-BRONKERBOSCH

In this section we prove the correctness of our proposed algorithm ∆-s-BRON-
KERBOSCH (Algorithm 2).

We start by showing that the pools are correctly maintained by the UPDATEPOOL

function (see Algorithm 3), that is, the value of each pool on each relevant ∆-window
is equal to the amount of non-neighbors in the current ∆-s-plex R. Afterwards we
show an invariance for all recursive calls of ∆-s-BRONKERBOSCH that then allows us
to prove the correctness of ∆-s-BRONKERBOSCH. Formally, we show the following
property of the recursive calls of ∆-s-BRONKERBOSCH.

134

7.3 Enumerating Temporal Cliques and s-Plexes

Lemma 7.4. In each recursive call of ∆-s-BRONKERBOSCH(P,R = (C ,I), X ,B), for each
vertex-interval-set-pair (w,Iw) ∈ P ∪X ∪ {(c,I) | c ∈C } and each t ∈ Iw we have

B(w, t) = |N∆
(w, t)∩C |.

Proof. We prove this lemma by induction on the recursion depth, that is, the num-
ber |C | of vertices of the ∆-s-plex in the current recursive call.

Initially, the ∆-s-BRONKERBOSCH (Algorithm 2) is called with R = (∅, [ℓ−∆+1]) and

the pool B is initialized for all w ∈V and t ∈ [ℓ−∆+1] with B(w, t) = 0 = |N∆
(w, t)∩∅|.

Hence, the initialization is correct.
Now let us assume that for a recursive call ∆-s-BRONKERBOSCH(P,R = (C ,I), X ,B)

it holds that for each vertex-interval-set-pair (v,Iv) ∈ P ∪X ∪ {(c,I) | c ∈C } and t ∈ Iv

we have B(v, t) = |N∆
((, v), t)∩C |. Let (v,Iv) ∈ P be a vertex-interval-set-pair added

to R (Lines 8 and 9 of Algorithm 2), that is, R ′ = (C ∪ {v},Iv). Now for each (w,Iw) ∈
P ∪ X ∪ {(c,Iv) | c ∈ C } and t ∈ Iw ∩Iv the pool-function value B(w, t) is increased
by one if w and v are non-neighbors in the ∆-window W ∆

t in Lines 4 to 7 in the
UPDATEPOOL procedure (Algorithm 3), that is,

B ′(w, t) =
{︄

B(w, t)+1 if v ∈ N
∆

(w, t)

B(w, t) else

= B(w, t)+|N∆
(w, t)∩ {v}|

= |N∆
(w, t)∩C |+ |N∆

(w, t)∩ {v}|
= |N∆

(w, t)∩ (C ∪ {v})|.

The last equality holds because v ∉C . Next in the UPDATE procedure (Algorithm 4),
the sets P and X are updated according to the new ∆-s-plexes in R ′. For each vertex-
interval-set-pair (w,I′

w) in the new sets P ′ and X ′ it holds that (w,Iw) ∈ P ∪ X with
I′

w ⊆ Iw , I′
w ⊆ Iv , and consequently I′

w ⊆ (Iw ∩Iv)—see Lines 2 and 6 of the UP-
DATE procedure (Algorithm 4). Hence, the pool-function in the new recursive call
∆-s-BRONKERBOSCH(P ′,R ′ = (C ∪ {v},Iv), X ′,B ′) fulfills the claimed condition.

Next, we show that R contains time-maximal ∆-s-plexes. We further show that the
sets P and X contain all time-maximal vertex-interval-set pairs, which can be added
to R such that the result still remains a time-maximal ∆-s-plex.

Lemma 7.5. In each recursive call of ∆-s-BRONKERBOSCH(P,R = (C ,I), X ,B) the fol-
lowing holds:

135

7 Temporal Cliques and s-Plexes

1. for all I ⊏− I it holds that (C , I) is a time-maximal ∆-s-plex,

2. for all (v,Iv) ∈ P ∪X it holds that for all Iv ⊏− Iv , (C ∪ {v}, Iv) is a time-maximal
∆-s-plex, and

3. all vertex-interval-set pairs (v,Iv) satisfying the second property are contained
in either P or X .

Proof. All properties can be proven by induction on the recursion depth, that is, the
number |C | of vertices of the ∆-s-plex in the current recursive call.

Initially, ∆-s-BRONKERBOSCH (Algorithm 2) is called with R = (C ,I) = (∅, [ℓ−∆+
1]), P = {(v, [ℓ−∆+ 1]) | v ∈ V }, and X = ∅. We have that (∅, [ℓ−∆+ 1]) is a trivial
time-maximal ∆-s-plex. For all (v,Iv) ∈ P ∪X it holds that Iv = [ℓ−∆+1] and, thus,
that (∅∪ {v}, [ℓ−∆+1]) is a time-maximal ∆-s-plex. Obviously, P ∪ X contains all
vertex-interval-set pairs that form time-maximal ∆-s-plexes with R. Hence, the
induction base case holds.

Now let us assume that for a recursive call ∆-s-BRONKERBOSCH(P,R = (C ,I), X ,B)
all properties stated in Lemma 7.5 hold. Let (v,Iv) ∈ P be a vertex-interval-set-pair
added to R (Lines 8 and 9 of Algorithm 2), that is, R ′ = (C ′,Iv) with C ′ = C ∪ {v}. By
induction hypothesis, for all I ⊏− Iv it holds that (C ′, I) is a time-maximal ∆-s-plex.
Hence, we have that the first property of Lemma 7.5 holds. It remains to show that P
and X are suitably adapted for the new recursive call on R ′.

We show that P ′ and X ′ satisfy the above properties after a call of the UPDATE

procedure (Algorithm 4). The UPDATE procedure takes as input the set P (or X) of
vertex-interval-set pairs, the vertex set C ′ of the current ∆-s-plex set R ′, a set Crit of
critical vertex-interval-set pairs, and the newly added vertex-interval-set pair (v,Iv).
The set Crit contains all vertex-interval-set pairs (w,ICrit) such that ICrit ⊆ Iv and
for all i ∈ ICrit we have that the vertex w has s ∆-non-neighbors in C ′ in W ∆

i , that

is, |N∆
(w, i)∩C ′| = s (Lines 5 to 9).

We now show that UPDATE works as intended for P . The case for X is analogous.
The set P ′ is created as follows: For each (w,Iw) ∈ P with w ̸= v , the UPDATE proce-
dure “reduces” the interval set Iw to Iv , that is, I′

w = Iw ∩Iv . Now, all ∆-windows W ∆
i

with i ∈ I′
w , are removed in Lines 5 to 7 of the UPDATE procedure (Algorithm 4) for

which

1. vertex w has already s ∆-non-neighbors in C ′, that is, |N∆
(w, i)∩C ′| = s (recall

that w ∈ N
∆

(w, i)), or

2. vertex w has a non-neighbor in C ′ that has already s ∆-non-neighbors in C ′,

that is, there exists a vertex c ∈C ′ with c ∈ N
∆

(w, i) and |N∆
(c, i)∩ C ′| = s.

136

7.3 Enumerating Temporal Cliques and s-Plexes

In both cases, w cannot be added to C ′. In the end, all starting time steps of the re-
maining ∆-windows are collected (Line 6). Hence, the second property of Lemma 7.5
holds. By induction hypothesis all intervals I ⊏− Iw were time-maximal with respect
to C ∪ {w} and all intervals that form a time-maximal ∆-s-plex with C ∪ {w} were
contained in Iw . Adding a vertex v to a ∆-s-plex only reduces the size of the set of
possible ∆-windows of an additional vertex w . It follows that also the third property
of Lemma 7.5 holds and all vertex-interval-set pairs in P ′ (and X ′) are time-maximal
and complete with respect to C ′.

Thus, the recursive call ∆-s-BRONKERBOSCH(P ′,R ′ = (C ′,Iv), X ′,B ′) fulfills the con-
ditions stated in Lemma 7.5.

We are now ready to prove the correctness of ∆-s-BRONKERBOSCH.

Proposition 7.6. For any given temporal graph G = (V , (Ei)i∈[ℓ]), ∆-s-BRONKERBOSCH

computes all maximal ∆-s-plexes of G .

Proof. Let R⋆ = (C⋆, I⋆) be a maximal ∆-s-plex. We first show that there will be a
recursive call adding R⋆ to the solution. Since we are building ∆-s-plexes bottom
up, there will be a recursive call of ∆-s-BRONKERBOSCH (Algorithm 2) on (P,R, X ,B)
with R = (C ,I), C ⊆C⋆, I⋆ ⊆ I and |C | = |C⋆|− c for all c = 0,1, . . . , |C⋆|. Additionally, all
vertices v ∈C⋆ \C with I⋆ ⊆ Iv , called candidates, will be contained in P . We show
this by induction on |C |.

Clearly, in the initial call, C =∅⊆C⋆ and I⋆ ⊆ [ℓ−∆+1]. Since P = {(v, [ℓ−∆+1]) |
v ∈V }, every vertex v ∈ C⋆ is contained in P . Hence, the induction base case holds.

Now assume that there is a recursive call with (P,R, X ,B), where R = (C ,I), C ⊆C⋆,
I⋆ ⊆ I, and all candidates are contained in P . Consider the first candidate (v,Iv) with
v ∈C⋆ in the for-loop (Line 7 of Algorithm 2) of that recursive call. After adding v
to C , since R⋆ is a ∆-s-plex, according to Lemma 7.5 all other candidates are still
contained in P ′ after a call of UPDATE (Algorithm 4). Since (v,Iv) was a candidate, it
holds for the new ∆-s-plex set R ′ = (C ′ =C ∪ {v},Iv) that C ′ ⊆C⋆ and I⋆ ⊆ Iv . Hence,
by induction, there is a recursive call with R = (C⋆,I⋆) with I⋆ ⊏− I⋆ and, since R⋆ is
maximal, there is no vertex-interval-set pair (v,I) ∈ P ∪X with I⋆ ⊆ I. Thus, (C⋆, I⋆)
is enumerated in Line 4 of Algorithm 2.

Now assume that some pair (C , I) is added to the solution in Line 4 of Algorithm 2.
We show that (C , I) is a maximal ∆-s-plex. By Lemma 7.5 we know that (C , I) is a time-
maximal ∆-s-plex and we know that all vertex-interval-set pairs (v,Iv), where R ′ =
(C ∪ {v},Iv) is a set of ∆-s-plexes, are contained in P ∪ X . Since we check whether
∀(w,Iw) ∈ P ∪ X and ∀Iw ⊏− Iw : Iw ̸= I in Line 3 of Algorithm 2, it follows that there

137

7 Temporal Cliques and s-Plexes

is no vertex in P or X which can be added without decreasing the interval I , hence,
(C , I) is also vertex-maximal. Thus, (C , I) is a maximal ∆-s-plex.

7.3.2 Running Time of ∆-s-BRONKERBOSCH

We have shown that ∆-s-BRONKERBOSCH (Algorithm 2) enumerates all maximal ∆-
s-plexes in a temporal graph. In this section, we analyze its running time in four steps.
First, we determine the running time of precomputing the ∆-non-neighborhoods.
Then, we analyze the running time of UPDATEPOOL (Algorithm 3) and UPDATE

(Algorithm 4). In a third step, we prove an upper bound on the number of time-
maximal ∆-s-plexes that depends on the ∆-slice degeneracy of the temporal graph
and show that there is at most one recursive call for each of them. Finally, we combine
our findings to obtain an upper bound on the running time of ∆-s-BRONKERBOSCH.

The running time of computing the ∆-non-neighborhood has a big influence on
the overall running time since it is accessed multiple times in each recursive call.
However, it can be precomputed once before the initial call of ∆-s-BRONKERBOSCH.
In the following lemma, we show an upper bound on the running time of this
computation assuming that the edges are sorted by their time stamps.

Lemma 7.7. If the edges are sorted by their time stamps, then the ∆-non-neighborhood

for all vertices over the whole lifetime, that is, N
∆

(v, [ℓ−∆+1]) for all v ∈ V , can be
computed in O(|V |2 +∑︁ℓ

i=1 |Ei |) time.

Proof. First, for each pair of vertices v, w we initially set their ∆-non-neighborhood
to the whole lifetime of the temporal graph. The initialization can be done in O(|V |2)
time. Then, for each time step t ∈ [ℓ] and each edge {v, w} ∈ Et the ∆-neighborhood
interval [t −∆+ 1, t] is cut out of the ∆-non-neighborhood of v and of w . Due to
the sorting of the edges by time stamps, this can be done in O(

∑︁ℓ
i=1 |Ei |) time. We

end up with a sorted list of ∆-non-neighborhood intervals for each vertex pair with
at most O(min{

∑︁ℓ
i=1 |Ei |,ℓ}) many non-overlapping time intervals. In the last step,

the ∆-non-neighborhood N
∆

(v, [ℓ−∆+1]) for each vertex v is computed in O(|V |2 +∑︁ℓ
i=1 |Ei |) time using the sorted lists of ∆-non-neighborhood intervals of all vertex

pairs containing v .

Next, we determine the running time of UPDATEPOOL and UPDATE. To do that, we
first show how we compute unions, intersections, and differences of sets of intervals.

Lemma 7.8. Let I and J be two sets of intervals appearing at some computation step
of ∆-s-BRONKERBOSCH that are both sorted by the starting points of the intervals.
Then I∪J, I∩J, and I\J can all be computed in O(min{

∑︁ℓ
i=1 |Ei |,ℓ}) time. such that

the outcoming interval sets are sorted by the starting points of the intervals.

138

7.3 Enumerating Temporal Cliques and s-Plexes

Proof. We first discuss how we store sets of intervals: Given an interval set I we
store the list of its “maximal” intervals I , that is, all I ⊏− I. These intervals can be
represented by their starting points and end points. The list of intervals is stored
ordered by the starting points of the intervals. Furthermore, each interval in an
interval set is induced by a different time-stamped edge. Hence, the size of each
set of intervals can be bounded by O(min{

∑︁ℓ
i=1 |Ei |,ℓ}). We briefly discuss how we

compute I∪ J, I∩ J, and I \ J efficiently given two interval sets I and J in the
above described representation. We claim that each set operation can be performed
O(min{

∑︁ℓ
i=1 |Ei |,ℓ}) time in the following way such that the output interval set is also

in the described representation.

1. Select the first interval I and J from I and J, respectively. Set I⋆ = ∅ (only
needed for the computation of I∪J).

2. Depending on which operation should be computed, do one of the following:

I∪J: If I⋆ =∅ then set I⋆ = I , if the startpoint of I is smaller than the startpoint
of J , and set I⋆ = J otherwise. If I ∪ J = [a,b] for some a,b ∈N, that is,
I ∪ J is also an interval, then set I⋆ = I⋆∪ I ∪ J , otherwise, if I⋆ ̸= ∅, then
add I⋆ to the output interval set and set I⋆ = ∅. If the endpoint of I is
smaller than the endpoint of J , then replace I with the next interval in I,
otherwise replace J with the next interval in J.

I∩J: If I ∩ J ̸= ∅, then add I ∩ J to the output interval set. If the endpoint of I
is smaller than the endpoint of J , then replace I with the next interval
in I, otherwise replace J with the next interval in J.

I\J: If I \ J = I , then add I to the output interval set. Otherwise, if I \ J =
[a,b] for some a,b ∈N, that is, I \ J is also an interval, then set I = I \ J .
If I \ J = [a,b]∪ [a′,b′] with b < a′ for some a,b, a′,b′ ∈N, that is, I \ J is
composed of two intervals, then add [a,b] to the output interval set and
set I = [a′,b′]. If the endpoint of I is smaller than the endpoint of J , then
replace I with the next interval in I, otherwise replace J with the next
interval in J.

3. Repeat Step 2 until all intervals in I and J are processed.

It is easy to verify that the above procedure runs in O(min{
∑︁ℓ

i=1 |Ei |,ℓ}) time for each
set operation.

Now we are ready to analyze the running time of UPDATEPOOL and UPDATE.

139

7 Temporal Cliques and s-Plexes

Lemma 7.9. The procedures UPDATEPOOL and UPDATE run in O(min{
∑︁ℓ

i=1 |Ei |,ℓ} ·
|V |2) time.

Proof. First, let us briefly discuss the structure of the pool function. In the pool
function B , we store for each vertex v and each ∆-window W ∆

t the number of ∆-
non-neighbors in the current ∆-s-plex. This information can be stored for each
vertex in the following way. For each vertex v , we can store a set of integer-interval
pairs (iv , Iv) such that for all t ∈ Iv we have that B(v, t) = iv . Note that for a vertex v ,
each change in the number of ∆-non-neighbors in the current ∆-s-plex is induced
by a time-stamped edge between v and a vertex in the current ∆-s-plex. Hence,
the number of different integer-interval pairs for each vertex v in B is bounded
by O(min{

∑︁
t∈[ℓ] |{{v, w} | {v, w} ∈ Et }|,ℓ}). In the following argument, we make use of

Lemma 7.8 whenever unions, intersections or differences of sets of intervals are
computed.

We first analyze the running time of the UPDATEPOOL (Algorithm 3) procedure.
Initializing Crit and B ′ in Lines 2 and 3 takes O(|V |) and O(min{

∑︁ℓ
i=1 |Ei |, |V |ℓ}) time,

respectively. Next, for each (w,Iw) ∈ P ∪ X ∪ {(c,Iv) | c ∈ C } (Line 4) we compute

the cut with the ∆-non-neighborhood N
∆

(v,Iv) (Line 5) in O(|V | ·min{
∑︁ℓ

i=1 |Ei |,ℓ})
time. Updating the pool function (Lines 6 and 7) also takes O(min{

∑︁ℓ
i=1 |Ei |,ℓ}) time.

Filtering the critical time intervals (Lines 8 and 9) can be done during the update with
no extra time consumption. There are |V | vertex-interval-set pairs in P ∪X ∪ {(c,Iv) |
c ∈C }. Hence, the overall time is in O(|V | ·min{

∑︁ℓ
i=1 |Ei |,ℓ})).

Next, consider the UPDATE (Algorithm 4) procedure. Reducing P to the interval
set IV (Line 2) can be done in O(|V | ·min{

∑︁ℓ
i=1 |Ei |,ℓ}) time. There are at most |V |

elements in the set Preduced. For each (w,Iw) ∈ Preduced[V (P)\{v}] (Line 4), we compute

the cut Crit[C ∪ {w}]⊓N
∆

(w,Iw) (Line 5) in O(|V | ·min{
∑︁ℓ

i=1 |Ei |,ℓ}) time. In this cut,
there are at most O(|V | ·min{

∑︁ℓ
i=1 |Ei |,ℓ} vertex-interval-set pairs. For each of these el-

ements (u,Iu) we can compute Iw \Iu (Line 6) in O(min{
∑︁ℓ

i=1 |Ei |,ℓ} time. Altogether,
the running time of this whole procedure is in O(|V |2 ·min{

∑︁ℓ
i=1 |Ei |,ℓ}).

Moving forward, we now upper-bound the number of recursive calls of ∆-s-BRON-
KERBOSCH.

Lemma 7.10. For each time-maximal ∆-s-plex (C , I) of a temporal graph G , there is
at most one recursive call of ∆-s-BRONKERBOSCH with R = (C ,I) with I ⊏− I as input.

Proof. Assume that there are two recursive calls A and B of ∆-s-BRONKERBOSCH

with RA = (C ,IA) with I ⊏− IA , and RB = (C ,IB) with I ⊏− IB , respectively, as part
of the input. Let R⋆ = (C⋆,I⋆) with C⋆ ⊂ C and IA ⊆ I⋆, IB ⊆ I⋆, be in the input

140

7.3 Enumerating Temporal Cliques and s-Plexes

of the least common ancestor of A and B in the tree of recursive calls. Let P⋆

be the candidate set of that recursion call. There must be two vertex-interval-set
pairs (v,Iv), (w,Iw) ∈ P⋆ that lead to the recursive calls A and B, respectively.

Clearly, for all I ⊏− I it holds that I ⊆ Iv and I ⊆ Iw , and we have that {v, w} ⊆ C .
Since for a fixed vertex all intervals in a candidate set are distinct, as shown in
Lemma 7.5, it follows that v ̸= w . Without loss of generality, assume that (v,Iv) is
considered first in the for-loop over all candidates in P⋆ (Line 8 of Algorithm 2) and
its selection leads to recursive call A . After (w,Iw) is considered, the vertex-interval-
set pair (v,Iv) is moved to X ⋆ and removed from P⋆. Hence, all following recursive
calls do not consider (v,I′

v) for any I′
v . Recall that we assumed that the recursive

call B outputs R = (C ,IB). Since for all I ⊏− I it holds that I ⊆ Iv and v ∈C , it follows
that a vertex-interval-set pair (v,I′

v) with the property that

a) for all I ⊏− I, it holds that I ⊆ I′
v and

b) for all I ′ ⊏− I′
v , it holds that I ′ ⊆ Iv

needs to be considered in a future call. This contradicts the fact that we do not
consider vertex-interval-set pairs that are contained in X . Thus, there cannot be
two recursive calls of ∆-s-BRONKERBOSCH with the same C and it follows that for
each time-maximal ∆-s-plex (C , I) there is at most one recursive call of ∆-s-BRON-
KERBOSCH with R = (C ,I) with I ⊏− I as input.

Finally, we upper-bound the number of time-maximal ∆-s-plexes in a temporal
graph G = (V , (Ei)i∈[ℓ]) using the ∆-slice degeneracy value d (Definition 7.7) of G .

Proposition 7.11. Let G = (V , (Ei)i∈[ℓ]) be a temporal graph with ∆-slice degeneracy d .
The number of time-maximal ∆-s-plexes in G is at most |V |·(︁ |V |

s−1

)︁·2d+s ·min{
∑︁ℓ

i=1 |Ei |,ℓ}.

Proof. The statement can be shown by a simple counting argument. For each ∆-
window, we count how many time-maximal ∆-s-plexes have a lifetime that contains
this ∆-window. For a given ∆-window W ∆

i , there exists a degeneracy ordering of GW ∆
i
=

(V ,EW ∆
i

), where EW ∆
i
= {e | e ∈ Et ∧ t ∈ W ∆

i }. The degeneracy ordering of a graph is a

linear ordering of its vertices with the property that for each vertex v at most d of its
neighbors occur at a later position.

Now for each ∆-window W ∆
i with the property that E∆i contains a unique set

of time edges and for each vertex v (that is, min{
∑︁ℓ

i=1 |Ei |,ℓ} · |V | possibilities) we
consider the degeneracy ordering of graph G∆i = (V ,E∆i). We count the number of
s-plexes of G∆i which only contain v and vertices that appear at a later position in the
ordering. By definition, v has at most d neighbors that appear later in the ordering

141

7 Temporal Cliques and s-Plexes

and v can be connected to s −1 other vertices. For the latter, we consider all vertices,
yielding the factor

(︁ |V |
s−1

)︁
in the upper bound. Each subset of these d + s vertices in G∆i

can, together with v , potentially be the vertex set of several ∆-s-plexes. The number
of such subsets is at most 2d+s . This yields our upper bound since each of these
vertex sets can potentially form at most one time-maximal ∆-s-plex with a lifetime
that contains ∆-window W ∆

i . Putting all pieces together, we arrive at the claimed
upper bound on the number of time-maximal ∆-s-plexes in a temporal graph.

We now combine the previous results to upper-bound the running time of ∆-s-
BRONKERBOSCH (Algorithm 2).

Proposition 7.12. ∆-s-BRONKERBOSCH runs in O(
(︁ |V |

s−1

)︁·2d+s ·min{(
∑︁ℓ

i=1 |Ei |)2,ℓ2}·|V |3)
time, where d is the ∆-slice degeneracy of the input graph.

Proof. First, recall that by Lemma 7.7 the ∆-non-neighborhood can be precomputed
once at the start of the algorithm in O(|V |2 +∑︁ℓ

i=1 |Ei |) time assuming that the edges
are sorted. If they are unsorted, then we can sort them in O(

∑︁ℓ
i=1 |Ei | · log

∑︁ℓ
i=1 |Ei |)

time.
We first give an upper bound on the number of recursive calls in an execution of ∆-

s-BRONKERBOSCH. By Lemma 7.5(1) we know that in each recursive call of ∆-s-BRON-
KERBOSCH, we have that (C , I) is a time-maximal ∆-s-plex for all I ⊏− I. Lemma 7.10
tells us that the time-maximal ∆-s-plexes in all recursive calls are distinct. Finally,
Proposition 7.11 gives us an upper bound on the number of distinct time-maximal ∆-
s-plexes. We can conclude that for an execution of ∆-s-BRONKERBOSCH the number
of recursive calls is bounded by O(

(︁ |V |
s−1

)︁ ·2d+s ·min{
∑︁ℓ

i=1 |Ei |,ℓ} · |V |).
Now, we analyze the running time of each recursive call. For this, notice that there

is exactly one call to UPDATEPOOL and two calls to UPDATE in each recursive call
of ∆-s-BRONKERBOSCH. Hence, the running time of the for-loop is dominated by
the complexity of UPDATEPOOL and UPDATE which run in O(min{

∑︁ℓ
i=1 |Ei |,ℓ} · |V |2)

time by Lemma 7.9. Concluding the proof, there are O(
(︁ |V |

s−1

)︁·2d+s ·min{
∑︁ℓ

i=1 |Ei |,ℓ}·|V |)
recursive calls and each of these recursive calls runs in O(min{

∑︁ℓ
i=1 |Ei |,ℓ} · |V |2) time.

This yields a total running time of O(
(︁ |V |

s−1

)︁·2d+s ·min{(
∑︁ℓ

i=1 |Ei |)2,ℓ2}·|V |3) for ∆-s-BRON-
KERBOSCH.

Theorem 7.3 now follows immediately from Proposition 7.6 and Proposition 7.12.

7.4 Conclusion

In this chapter, we introduced a temporal adaptation of s-plexes and adapted
the classic Bron-Kerbosch algorithm for enumerating all maximal ∆-s-plexes in a

142

7.4 Conclusion

temporal graph. We studied its running time, showing that TEMPORAL CLIQUE and
TEMPORAL s-PLEX for all s ≥ 1 are fixed-parameter tractable when parameterized by
the ∆-slice degeneracy of the input temporal graph.

We remark that the papers this chapter is based on [Ben+19, Him+17] also contain
an implementation and an experimental evaluation of the proposed algorithm. In
experiments on real-world networks, it was shown that our algorithm performs
better than the state-of-the-art algorithm by Viard, Magnien, and Latapy [VML18] on
most instances but is also heavily out-performed on one of our instances. Moreover,
Bentert et al. [Ben+19] also measured the ∆-slice degeneracy of many real-world
instances showing that it is indeed small. Hence, our parameterized complexity
analysis of this problem gives a sound theoretical explanation for the good practical
performance of our algorithm.

The experiments of Bentert et al. [Ben+19] also suggest that the number of trivial
solutions16 for increasing s greatly limits the scalability of any algorithm enumerating
all maximal ∆-s-plexes. Thus, they proposed to instead enumerate all maximal
connected s-plexes of minimum order 2s +1. This allowed them to design heuristics
to speed up their algorithm in practice.

We believe that in the context of TEMPORAL CLIQUE and TEMPORAL s-PLEX, re-
stricting the input to temporal unit interval graphs (as discussed in Chapter 4 in the
context of TEMPORAL (s, z)-SEPARATION) would be an interesting starting point to
develop tailored algorithms for clique enumeration in physical proximity networks.
The goal would be to exploit additional structure that the network model provides
to obtain faster algorithms. Notably, ∆-cliques were originally introduced in the
context of analyzing physical proximity networks [VLM16].

16Any vertex set of size s is a trivial s-plex.

143

CHAPTER 8

Temporal Cluster Editing

Motivated by the recent rapid growth of research for algorithms to cluster temporal
graphs, we study extensions of the classic CLUSTER EDITING problem. In TEMPORAL

CLUSTER EDITING we aim to transform all layers of a temporal graph into cluster
graphs (disjoint unions of cliques) such that the resulting clusterings “look similar”.
we want to mark at most d vertices and to transform each layer into a cluster graph
using at most k edge additions or deletions per layer so that, if we remove the
marked vertices, then we obtain the same cluster graph in all layers. We study
the combinatorial structure of this problem and fully classify its parameterized
complexity with respect to the parameters d , k, the number of vertices, and the
lifetime ℓ of the input temporal graph. Among other things, we show that TEMPORAL

CLUSTER EDITING is fixed-parameter tractable when parameterized by k +d and
admits a polynomial kernel when parameterized by k +d +ℓ.

This chapter is based on the paper “Cluster Editing in Multi-Layer and Temporal
Graphs” by Chen et al. [Che+18].

8.1 Introduction

CLUSTER EDITING and its weighted form CORRELATION CLUSTERING are two im-
portant and well-studied models of graph clustering [BB13, BBC04, SST04]. In the
former, we are given a graph and we aim to edit (that is, add or delete) the fewest
number of edges in order to obtain a cluster graph, a graph in which each connected
component is a clique. CLUSTER EDITING has attracted a lot of attention from a
parameterized-algorithms point of view [BB13, BFK18, CC12, Fom+14, Gra+05, KU12,
Luo+18] and many of the resulting contributions have found their way back into
practice [BB13, Section 6].

However, in many application areas additional information is available and used
in clustering methods. In particular, research on clustering multi-layer and tem-
poral graphs grows rapidly [KL15, TAG17, TB11, TBK07, TLD09]. In the context of
multi-layer networks, a layer can represent social interactions, geographic closeness,
common interests or activities [KL15].

The goals in clustering multi-layer and temporal graphs are, respectively, to find
a clustering that is consistent with all layers [Kiv+14, KL15, TAG17, TLD09] or a

145

8 Temporal Cluster Editing

clustering that slowly evolves over time consistently with the graph [TB11, TBK07].
The methods used herein are often heuristic and, beyond observing NP-hardness, to
the best of our knowledge, there is no deeper analysis of the complexity of the general
underlying computational problems that are attacked in this way. Hence, there is
also a lack of knowledge about the possible avenues for algorithmic tractability. We
initiate this research here.

We analyze the combinatorial structure behind cluster editing for temporal graphs
via studying the parameterized complexity with respect to the most basic parameters,
such as the number of edits.

Informally, we model TEMPORAL CLUSTER EDITING as follows. We receive an
input temporal graph and aim to transform all layers into cluster graphs that differ
only slightly. We use a very basic approach to model this: We want to mark at
most d vertices and to transform each layer into a cluster graph using at most k
edge additions or deletions per layer so that, if we remove the marked vertices, we
obtain the same cluster graph in all layers. We believe that this is a canonical way to
allow “small changes over time” in the clustering. An alternative would be to only
require the clusterings of adjacent layers to be similar. This model has been studied
by Chen et al. [Che+18] and even though it might be better suited than our model
for certain applications, this alternative model seems to be computationally much
harder [Che+18].

As we will see, our problem offers rich interactions between the layers on top of the
structure inherited from CLUSTER EDITING. Our main contributions are an intricate
fixed-parameter algorithm for TEMPORAL CLUSTER EDITING, whose underlying
techniques should be applicable to a broader range of temporal and multi-layer
graph problems, and a polynomial kernel for TEMPORAL CLUSTER EDITING for a
larger parameter combination.

8.1.1 Related Work

In the static setting CLUSTER EDITING has been thoroughly investigated [BB13,
BBC04, BFK18, CC12, Fom+14, Gra+05, KU12, SST04].

We remark that Chen et al. [Che+18] also study another model for temporal cluster
editing.17 In that model, also each layer is transformed into a cluster graph but rather
than marking vertices that may change clusters, the cluster graphs may change over
time. In particular, this means that the cluster graph of the first and the last layer
may look very different if the temporal graph has a sufficiently long lifetime.

In terms of parameterized algorithms, only the indirect approach of aggregating

17The model we study in this chapter is called MULTI-LAYER CLUSTER EDITING by Chen et al. [Che+18].

146

8.1 Introduction

clusterings into one has been studied for multi-layer [Bet+11, Dör+14] and temporal
graphs [TB11, TBK07]. The approximability of temporal versions of k-means cluster-
ing and its variants was studied by Dey, Rossi, and Sidiropoulos [DRS17]. A dymanic
version of cluster editing has been studied by Luo et al. [Luo+18]. In the dynamic
setting a given cluster graph for a first input graph should be transformed into a
“similar” cluster graph for a second input graph.

8.1.2 Our Contributions and Organization of the Chapter

We completely classify TEMPORAL CLUSTER EDITING in terms of fixed-parameter
tractability and existence of polynomial-size problem kernels with respect to the pa-
rameters “number d of marked vertices”, “number k of edge modifications per layer”,
“number |V | of vertices”, and “number ℓ of layers”, and all of their combinations, see
Figure 8.1 for an overview. TEMPORAL CLUSTER EDITING is para-NP-hard (NP-hard
for constant parameter values) for all parameter combinations which are smaller
or incomparable to k +d . While it is known that the problem is NP-complete even
if both d = 0 and ℓ = 1 or both k = 0 and ℓ = 3 [Che+18], we show that TEMPORAL

CLUSTER EDITING is polynomial-time solvable if k = 0 and ℓ≤ 2. Finally, we show
that TEMPORAL CLUSTER EDITING admits a polynomial kernel with respect to the
parameter combination d +k +ℓ and does not admit a polynomial kernel for the
parameter “number n of vertices” unless NP ⊆ coNP/poly.

The chapter is organized as follows. In Section 8.2 we formally introduce all
necessary concepts related to (temporal) cluster editing that we need in this chapter,
we formally define our problem setting, and we report some basic observations
about the problem. In Section 8.3 we present our main FPT-algorithm for TEMPORAL

CLUSTER EDITING. In Section 8.4 we present a polynomial kernel for TEMPORAL

CLUSTER EDITING. We conclude in Section 8.5.

8.1.3 Further Contributions of the Paper this Chapter is Based on

Additionally to the contributions we present in this chapter, Casteigts et al. [Cas+20]
show that TEMPORAL CLUSTER EDITING is NP-complete even if k = 0 and ℓ≥ 3.

Chen et al. [Che+18] further studied an alternative model for temporal cluster edit-
ing where between adjacent time steps only few vertices may change their clusters.
They show that this problem is W[1]-hard when parameterized by the number k of
modifications per layer even if only three vertices may change cluster when going
from one time step to the next. On the positive side they showed that this problem
can be solved in polynomial time if k is constant and that the polynomial kernel for
TEMPORAL CLUSTER EDITING can be adapted to this alternative model.

147

8 Temporal Cluster Editing

dk ℓ

d +k
FPT, Theorem 8.4

d +ℓ

para-NP-hard, Observation 8.1
k +ℓ

para-NP-hard, [Che+18]

n (same as (d +n), (k +n), (d +k +n))
No poly kernel, Proposition 8.3

d +k +ℓ

Poly kernel, Theorem 8.15

n +ℓ

(same as (d +n +ℓ), (k +n +ℓ), (d +k +n +ℓ); “instance size”)

Figure 8.1: Our results (and to give a complete picture, one result from Chen et al. [Che+18])
for TEMPORAL CLUSTER EDITING in a Hasse diagram of the upper-boundedness relation
between the parameters “number k of edge modifications per layer”, “number d of marked
vertices”, “number ℓ of layers”, and “number n = |V | of vertices” and all of their combinations.
Red entries mean that TEMPORAL CLUSTER EDITING parameterized by the parameter in the
entry is para-NP-hard (NP-hard for constant parameter values). It is in FPT for all parameter
combinations colored yellow or green and admits a polynomial kernel for all parameter
combinations colored green. For all parameter combinations that are colored yellow, it does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

8.2 Preliminaries

In this section, we formally introduce the most important concepts related to
static and temporal cluster editing and give the formal problem definition of TEMPO-
RAL CLUSTER EDITING. We further discuss some basic observations for TEMPORAL

CLUSTER EDITING.

8.2.1 Static Cluster Editing

We call a static graph G = (V ,E) a cluster graph if every connected component of G
is a clique. Alternatively, we can define a cluster graph as a graph that does not
contain an induced P3, where a P3 is a path on three vertices, that is, it is isomorphic
to a graph with three vertices and two edges.

The NP-complete CLUSTER EDITING problem asks whether it is possible to trans-
form a given graph into a cluster graph by performing at most k edge modifications,
that is, adding or removing edges [BBC04, SST04]. We formally define this as follows.

An edge modification or edit for a graph G = (V ,E) is an unordered pair of vertices

148

8.2 Preliminaries

G1: G2: G3:

Figure 8.2: Example temporal graph with lifetime three and with a 1-consistent 3-bounded
clustering. The marked vertex is colored in yellow. The modification sets consist of thick and
dashed edges, where thick edges are added and dashed edges are removed.

from V . Let M be a set of edits for G. If the graph G ′ = (V ,E ⊕M) is a cluster graph,
then we say that M is a cluster editing set for G. Herein, ⊕ denotes the symmetric
difference: A⊕B = (A \ B)∪ (B \ A).

8.2.2 Temporal Cluster Editing

To transfer CLUSTER EDITING to the temporal setting, we propose the following.
We want to transform every layer of the input temporal graph by performing at
most k edge modifications per layer. We call a clustering produced in this way k-
bounded. However, without any further restrictions the resulting cluster graphs can
look vastly different and we are essentially solving ℓ independent CLUSTER EDITING

instances. Since we want that there are no big changes in the clustering over time, we
introduce a set of “marked vertices” into our model. These vertices may change their
clusters over time, but the rest of the cluster graphs must stay the same. If we have
to mark at most d vertices in a clustering to achieve this, then we call the clustering
d-consistent. We give an example in Figure 8.2. Formally, we define these concepts
as follows.

Definition 8.1 (d-Consistent k-Bounded Clustering). Let G = (V , (Ei)i∈[ℓ]) be a tem-
poral graph. A clustering for G is a sequence M = (Mi)i∈[ℓ] of edge modification sets
such that Mi is a cluster editing set for layer Gi . For that, we say that M is k-bounded
for some integer k ∈N if |Mi | ≤ k for each i ∈ [ℓ]. Let G ′

i = (V ,Ei ⊕Mi) for all i ∈ [ℓ].
Clustering M is d-consistent for some integer d ∈N if there is a single subset D ⊆V
of vertices with |D| ≤ d such that G ′

i [V \ D] =G ′
j [V \ D] for all i , j ∈ [ℓ]. We say that D

witnesses that M is d-consistent.

A tuple (M1, . . . , Mℓ,D) of edge modification sets and a set of “marked” vertices D is

149

8 Temporal Cluster Editing

a solution if D witnesses that M = (Mi)i∈[ℓ] is a d-consistent k-bounded clustering.
Intuitively, the sets Mi contain the data that we need to disregard in order to

cluster our input and hence we want to minimize their sizes [TB11, TBK07]. The set
D contains the vertices that may move around between clusters over time and hence
we also want to keep its size small.

Now we are ready to state the main decision problem of this chapter.

TEMPORAL CLUSTER EDITING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k,d ∈N.
Question: Is there a d-consistent k-bounded clustering for G ?

TEMPORAL CLUSTER EDITING clearly generalizes the NP-complete CLUSTER EDIT-
ING problem [BBC04, KM86, SST04] and it is further easy to check that, given a
temporal graph G = (V , (Ei)i∈[ℓ]), it can be verified in polynomial time whether a tuple
(M1, . . . , Mℓ,D) of edge modification sets and a set of marked vertices D is a solution
for G . Hence, we have that TEMPORAL CLUSTER EDITING in contained in NP and
thus is NP-complete.

We remark that from a mathematical point of view, TEMPORAL CLUSTER EDITING

can be treated as a multi-layer graph problem: It is easy to check that, given a
temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k,d ∈ N, it holds that for every
permutation π : [ℓ] → [ℓ] we have that (G ,k,d) is a YES-instance if and only if (G ′ =
(V , (Eπ(i))i∈[ℓ]),k,d) is a YES-instance.

8.2.3 Basic Observations

We now present some observations on the complexity of TEMPORAL CLUSTER EDIT-
ING on few layers. In particular, we obtain a complexity dichotomy for TEMPORAL

CLUSTER EDITING with k = 0 showing that for ℓ ≤ 2 the problem is polynomial-
time solvable. Chen et al. [Che+18] showed that TEMPORAL CLUSTER EDITING is
NP-complete if k = 0 for all ℓ≥ 3.

Since CLUSTER EDITING is NP-complete [BBC04, KM86, SST04], we immediately
get NP-hardness for TEMPORAL CLUSTER EDITING even if d = 0.

Observation 8.1. TEMPORAL CLUSTER EDITING is NP-complete for all d ≥ 0 and ℓ≥ 1.

Now, we turn to the scenario where we are not allowed to edit any edges (that
is, k = 0). We find that for two layers our problem is related to computing a maximum-
weight matching in a bipartite graph, which is polynomial-time solvable.

Proposition 8.2. If k = 0 and ℓ= 2, then TEMPORAL CLUSTER EDITING can be solved
in O(|V |2 log |V |) time.

150

8.2 Preliminaries

Proof. Let (G = (V ,E1,E2),k = 0,d) be an input instance of TEMPORAL CLUSTER EDIT-
ING. We claim that the following procedure decides in O(|V |2 log |V |) time whether
there is a subset D ⊆V of at most d vertices such that G1[V \ D] =G2[V \ D].

1. Check whether G1 and G2 are both cluster graphs, if at least one is not, answer
NO.

2. Create a complete (edge-weighted) bipartite graph H = (A⊎B ,E , w : E → [|V |])
in the following way:

a) For each maximal clique X in G1 add a vertex vX to A.

b) For each maximal clique X in G2 add a vertex vX to B .

c) Add an edge between each two vertices vX ∈ A and vY ∈ B with edge
weight w({vX , vY }) = |X ∩Y |.

3. Compute a maximum-weight matching for H . If the weight of the matching is
at least |V |−d , answer YES, otherwise answer NO.

Running Time. It is well-known that the first step reduces to checking whether
there is an induced P3 in one of the graphs, which can be done in O(|V |+ |E1|+ |E2|)
time.18 The second step can be performed in O(|V | + |E1| + |E2|) time as follows.
Find all connected components in G1 and label the vertices in G1 according to the
components that contain them. Add a vertex vX to A for each label X . The vertices
in B are constructed analogously. Now, to compute the edge weights in H , iterate
over all vertices in V and add an edge of weight one to H that is incident to the
two corresponding vertices or increase the edge weight if the edge was added in a
previous iteration. Note that H contains at most n edges. Finally, the third step can
be carried out in O(|V |2 log |V |) time using the Hungarian algorithm [Kuh55], which
also dominates the running time.

Correctness. First, note that if one of G1 and G2 is not a cluster graph, then we clearly
face a NO-instance, which is correctly identified by the algorithm in the first step.
So from now on, let us assume that both G1 and G2 are cluster graphs. To show
the correctness of the last step, assume that there is a vertex subset D ⊆ V of size
at most d such that G1[V \ D] = G2[V \ D]. Let q1, q2, . . . , qx be the maximal cliques
remaining in G1[V \ D]. One can verify that the following matching M has weight

18This can be done using breadth-first search (BFS) roughly in the following way: Start BFS at a vertex v
that is not connected to all other vertices in its component (if such vertex does not exist, then the
component is already a clique). As soon as BFS reaches a vertex of distance two to v , one has found an
induced P3.

151

8 Temporal Cluster Editing

|V |− |D|: For each clique qi , add to M the edge {vX , vY } where X and Y are the two
cliques that contain qi in G1 and G2, respectively. Note that since G1 and G2 are two
cluster graphs on the same vertex set, no maximal clique remaining in G1[V \ D]
belongs to two different maximal cliques in G1 or G2. Thus, M is indeed a matching.
It is straightforward to see that it has weight |V |− |D|.

In the opposite direction, assume that H admits a matching M with weight at
least |V |−d . We consider the following subset V ′ of vertices: For each edge {vX , vY }
in M , add to V ′ all vertices in X ∩Y , which is the weight of {vX , vY } in H . By the
definition of the edge weights in H , it follows that G1[V ′] =G2[V ′]. Thus, if we remove
by marking all vertices in V \V ′, then both cluster graphs become the same. Since M
is a matching, it follows |V ′| = w(M) ≥ |V |−d . Thus, at most d vertices, namely those
in V \V ′, are marked.

Finally, we show that for the parameter |V | number of vertices TEMPORAL CLUSTER

EDITING does not a admit polynomial kernel unless NP ⊆ coNP/poly.

Proposition 8.3. TEMPORAL CLUSTER EDITING parameterized by the number |V | of
vertices does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We provide an AND-cross-composition (for a definition see Section 2.3) from
classic CLUSTER EDITING. Intuitively, we can just string together instances in the time
axis such that the large instance can be transformed into a cluster graph where every
vertex can be marked if and only if all of the original instances are YES-instances.

We define an equivalence relation R as follows: Two instances (G1,k1) and (G2,k2)
are equivalent under R if and only if k1 = k2 and |V (G1)| = |V (G2)|. Clearly, R is a
polynomial equivalence relation.

Now let (G1,k1), . . . , (Gn ,kn) be R-equivalent instances of CLUSTER EDITING. Then
there is an integer k ∈ N such that k = ki for every i ∈ [n]. Moreover, since the
names of the vertices are not important for the problem and |V (Gi)| = |V (G j)| for
every i , j ∈ [n], we can assume without loss of generality that there is a set V such
that V =V (Gi) for every i ∈ [n]. Hence, ((V ,E1,E2, . . . ,En),k,d), where d = |V |, is a valid
instance of TEMPORAL CLUSTER EDITING.

This instance can be constructed in polynomial time and no extra vertices are
added, hence |V | is upper-bounded by the maximum size of an input instance. Fur-
thermore, as we are allowed to mark all vertices, it follows directly from the definition
of TEMPORAL CLUSTER EDITING that ((V ,E1,E2, . . . ,En),k,d), is a YES-instance if and
only if for every i ∈ [n] it is possible to turn Gi into a cluster graph by at most k edge
modifications.

152

8.3 An Algorithm for Temporal Cluster Editing

Since CLUSTER EDITING is NP-hard [BBC04] and we AND-cross-composed it into
TEMPORAL CLUSTER EDITING parameterized by |V |, the result follows.

8.3 An Algorithm for Temporal Cluster Editing

In this section, we present an FPT-algorithm for TEMPORAL CLUSTER EDITING with
respect to the combined parameter k +d . Formally, we show the following result.

Theorem 8.4. TEMPORAL CLUSTER EDITING can be solved in kO(k+d) · |V |3 ·ℓ time.

To prove this theorem, we describe a recursive search-tree algorithm (see Algo-
rithm 5) that is an extension of a simple branching algorithm to solve CLUSTER

EDITING on static graphs that was first described by Gramm et al. [Gra+05] but im-
plicitly already observed by Cai [Cai96]. For CLUSTER EDITING on static graphs the
algorithm roughly works as follows: We find an induced P3 and then try the three
possibilities to destroy this P3, namely either adding the missing edge, or removing
one of the two edges in the P3.

To use a similar strategy in the temporal case we have to perform a preprocessing
step first that makes all layers look the same. More specifically, our algorithm expects
some initial modification sets as input that, when applied to all layers, makes them
equal up to marked vertices. These initial edge modification sets are computed
greedily, hence the algorithm follows the greedy localization approach [Deh+04] in
which we make decisions greedily and possibly revert them through branching later
on. The greedy decisions herein give us some structure that we can exploit to keep
the search-tree size bounded in k and d . The edge modification sets Mi represent
both the greedy decisions and those that we made through branching. The set B
contains only those made by branching. More specifically, the algorithm expects the
following input:

• An instance I of TEMPORAL CLUSTER EDITING consisting of a temporal graph
G = (V , (Ei)i∈[ℓ]) and two integers k and d .

• A constraint P = (D, (Mi)i∈[ℓ],B), consisting of a set of marked vertices D ⊆ V ,
edge modification sets M1, . . . , Mℓ ⊆

(︁V
2

)︁
, and a set B ⊆ (︁V \D

2

)︁
of permanent vertex

pairs.

Intuitively, the constraint describes decisions that have been made by the algorithm
earlier in the search-tree. Moreover, we require the constraint given to the recursive
algorithm to be aligning. A constraint P = (D, (Mi)i∈[ℓ],B) is aligning if G ′

i [V \ D] =
G ′

j [V \ D] for all i , j ∈ [ℓ], where G ′
i = (V ,Ei ⊕Mi) for all i ∈ [ℓ].

153

8 Temporal Cluster Editing

Algorithm 5 TEMPORAL CLUSTER EDITING

Input:
• A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k and d .
• A set of marked vertices D and edge modification sets M1, . . . , Mℓ.
• A set B ⊆ (︁V \D

2

)︁
of permanent vertex pairs.

1: Apply the first applicable rule in the following ordered list:
• Rule 0
• Clean-up Rule
• Branching Rule 1
• Branching Rule 2
• Branching Rule 3

2: If none of the rules applies, then return YES.

The initial modification sets are constructed according to the following rule that
adds all edges that appear in at least half of all layers to all of the remaining layers
and removes all other edges.

Greedy Rule. Let Mi = ∅ for every i ∈ [ℓ]. For every vertex pair {u, v} ∈ (︁V
2

)︁
do the

following:

• If |{Ei | {u, v} ∈ Ei }| ≥ ℓ
2 , then for all i ∈ [ℓ] set Mi ← Mi ∪ ({{u, v}} \ Ei).

• If |{Ei | {u, v} ∈ Ei }| < ℓ
2 , then for all i ∈ [ℓ] set Mi ← Mi ∪ ({{u, v}}∩Ei).

From now on, we assume that the input constraint of the algorithm contains edge
modification sets produced by the Greedy Rule, together with an empty set of marked
vertices and an empty set of permanent vertex pairs. We call this constraint Pgreedy.
Note that Pgreedy is an aligning constraint.

Throughout the algorithm, we try to maintain a good aligning constraint which
intuitively means that the constraint can be turned into a solution (if one exists).

Definition 8.2 (Good Constraint). Let I be an instance of TEMPORAL CLUSTER EDIT-
ING. A constraint P = (D, M1, . . . , Mℓ,B) is good for I if I is a YES-instance and there is
a solution S = (M⋆

1 , . . . , M⋆
ℓ

,D⋆) for I such that

1. D ⊆ D⋆,

2. there is no {u, v} ∈ B such that u ∈ D⋆, and

3. for all i ∈ [ℓ] we have Mi ∩B = M⋆
i ∩B .

154

8.3 An Algorithm for Temporal Cluster Editing

We also say that S witnesses that P is good.

If a constraint is not good, we call it bad. It is easy to see that if we face a yes-
instance, then any constraint containing an empty set of marked vertices and an
empty set of permanent vertex pairs is good. We call such constraints trivial.

Observation 8.5. For any YES-instance I = (G1, . . . ,Gℓ,d ,k) of TEMPORAL CLUSTER

EDITING, we have that the constraint P = (D =∅, M1, . . . , Mℓ,B =∅) is a good constraint
for I for any sets Mi ⊆

(︁V
2

)︁
with i ∈ [ℓ].

It is obvious that the constraint Pgreedy is trivial. Hence if the input instance of
TEMPORAL CLUSTER EDITING for our algorithm is a YES-instance, then the initial call
is with a good constraint. The algorithm is supposed to return YES if the supplied
constraint is good and NO otherwise.

Our algorithm uses various different branching rules to search for a solution to a
TEMPORAL CLUSTER EDITING input instance. Formally, branching rules are defined
as follows.

Definition 8.3 (Branching Rule). A branching rule takes as input an instance I of
TEMPORAL CLUSTER EDITING and an aligning constraint P and returns a set of
aligning constraints P (1), . . . ,P (x).

When a branching rule is applied, the algorithm invokes a recursive call for each
constraint returned by the branching rule and returns YES if at least one of the
recursive calls returns YES, otherwise, it returns NO. For that to be correct, whenever
a branching rule is invoked with a good constraint, at least one of the constraints
returned by the branching rule has to be a good constraint as well. Furthermore, if a
branching rule is invoked with a bad constraint, none of the constraints returned by
the branching rule should be good. In this case we say that a branching rule is safe.

Definition 8.4 (Safeness of a Branching Rule). We say that a branching rule is safe if
the following holds:

• If the branching rule is applied on an instance of TEMPORAL CLUSTER EDITING

together with a good constraint for that instance, then at least one of the
constraints returned by the branching rule is good.

• If the branching rule is applied on an instance of TEMPORAL CLUSTER EDITING

together with a bad constraint for that instance, then none of the constraints
returned by the branching rule is good.

155

8 Temporal Cluster Editing

In the following, we introduce the branching rules used by the algorithm and prove
that each of them is safe (in some cases under the condition that certain other rules
are not applicable). This together with Observation 8.5 will allow us to prove by
induction that the algorithm eventually finds a solution for the input instance of
TEMPORAL CLUSTER EDITING if it is a YES-instance.

The following notion and observation will be useful for the safeness proofs.

Definition 8.5. Let I be an instance of TEMPORAL CLUSTER EDITING and let P =
(D, M1, . . . , Mℓ,B) and P ′ = (D ′, M ′

1, . . . , M ′
ℓ
,B ′) two constraints. We say that P ′ extends P

if D ′ ⊇ D, B ′ ⊇ B , and for each i ∈ [ℓ] we have M ′
i ∩B = Mi ∩B .

Observation 8.6. Let I be an instance of TEMPORAL CLUSTER EDITING, let P and P ′

be two constraints such that P ′ extends P , and let S be a solution witnessing that P ′ is
good, then S also witnesses that P is good.

We start with a rule that checks obvious constraints and aborts the recursion if
they are not fulfilled.

Rule 0. If |D| > d or there is an i ∈ [ℓ] such that |Mi ∩B | > k, then abort the current
branch and return NO.

The correctness of this rule is obvious. With the next rule we edit the subgraphs
induced by all non-marked vertices into cluster graphs. Similar to classic CLUSTER

EDITING, we branch on all edits that destroy induced P3s. Additionally, we have to
take into account that it may be necessary to mark vertices because otherwise they
may force us to edit too many edges in some layer.

Branching Rule 1. If there is an induced P3 = ({u, v}, {v, w}) in G ′
i [V \ D] for some

i ∈ [ℓ], where G ′
i = (V ,Ei ⊕Mi), then return the following up to six constraints:

1. If {u, v} ∉ B : for all i ∈ [ℓ] put M (1)
i = Mi ⊕ {{u, v}}, D (1) = D, and B (1) = B ∪ {{u, v}}.

2. If {v, w} ∉ B : for all i ∈ [ℓ] put M (2)
i = Mi ⊕ {{v, w}}, D (2) = D, and B (2) = B ∪ {{v, w}}.

3. If {u, w} ∉ B : for all i ∈ [ℓ] put M (3)
i = Mi ⊕{{u, w}}, D (3) = D, and B (3) = B ∪{{u, w}}.

4. For each x ∈ {u, v, w}: If there is no y ∈V \ D such that {x, y} ∈ B , then return a
constraint with D (·) = D ∪ {x}, the rest stays the same.

If none of the above possibilities applies, then return NO.19

19This technically does not fit the definition of a branching rule but we can achieve the same effect by
returning trivially unsatisfiable constraints such as a constraint with |D(·)| > d which is rejected by
Rule 0.

156

8.3 An Algorithm for Temporal Cluster Editing

Lemma 8.7. Branching Rule 1 is a safe branching rule.

Proof. It is easy to check that Branching Rule 1 is indeed a branching rule since
it always modifies the pairs in the edge modifications sets of all layers, hence if
the input constraint is aligning so are all output constraints. Since each output
constraint extends the input constraint, by Observation 8.6, if any of the output
constraints is good, then so is the input constraint.

Now we show that if the input constraint is good, at least one output constraint is.
Let the input constraint P = (D, M1, . . . , Mℓ,B) be good and let S = (M⋆

1 , . . . , M⋆
ℓ

,D⋆) be
a solution for the input instance witnessing that P is good. Since each M⋆

i is a cluster
editing set for Gi , it holds that, for all i ∈ [ℓ], graph G⋆

i [V \ D⋆] does not contain a P3

as an induced subgraph, where G⋆
i = (V ,Ei ⊕M⋆

i). Hence, if there is some i ∈ [ℓ] and
three vertices u, v, w that induce a P3 in G ′

i [V \ D], where G ′
i = (V ,Ei ⊕Mi), then there

are two cases.
In the first case, one of u, v, w is also in D⋆, say v ∈ D⋆. Note that, then, v cannot

be part of any permanent vertex pair, by the definition of good constraints. Thus,
the constraint that puts v ∈ D output in the fourth part of Branching Rule 1 is good.

The second case is that u, v, w ∈V \ D⋆. Then, since G⋆
i [V \ D⋆] is a cluster graph,

at least one of the vertex pairs formable from u, v, w is modified by S, that is, in M⋆
i .

Say {u, v} ∈ M⋆
i . Since the solution is consistent, {u, v} either appears in G⋆

i for all
i ∈ [ℓ] or in none of them. Note that {u, v} cannot be permanent since otherwise
we already have that {u, v} ∈ Mi by the definition of a good constraint. Thus the
constraint which adds {u, v} to Mi and makes it permanent is good. Hence, the rule
is safe.

The next rule keeps the sets of edge modifications Mi free of marked vertices. Pairs
in Mi can become marked if vertices of vertex pairs processed by the Greedy Rule are
marked by other branching rules further down the search tree. We invoke this rule at
the beginning of each recursive call to modify the constraint before the applicability
of other rules is tested.

Clean-up Rule. For each i ∈ [ℓ] and each {u, v} ∈ Mi : If {u, v}∩D ̸= ∅, then remove
{u, v} from Mi .

To show the safeness of this rule, we can formally treat the Clean-up Rule as a
special case of a branching rule, that is, it produces one constraint.

Lemma 8.8. The Clean-up Rule (when treated as a branching rule) is a safe branching
rule.

157

8 Temporal Cluster Editing

Proof. It is easy to check that Clean-up Rule is indeed a branching rule since it
only removes vertex pairs that contain marked vertices from the edge modification
sets, hence if the input constraint is aligning so are all output constraints. Note
that permanent vertex pairs cannot contain marked vertices by the definition of
constraints. It follows that the Clean-up Rule does not add or remove permanent
vertex pairs from any set Mi . Furthermore, it does not change the sets D and B . It
follows that the input constraint cannot become bad if it was good or vice versa.
Hence, the Clean-up Rule is safe.

The next rule tries to repair any budget violations that might occur. Since with the
Greedy Rule we greedily make decisions in the beginning we expect that some of
the choices were not correct. This rule will then revert these choices. Also, to have a
correct estimate of the sizes of the current edge modification sets, this rule requires
that the Clean-up Rule was applied.

Branching Rule 2. If there is an Mi for some i ∈ [ℓ] with |Mi | > k, then take any set
M ′

i ⊆ Mi \ B such that |M ′
i |+ |B ∩Mi | = k +1 and return the following constraints:

1. For each {u, v} ∈ M ′
i return a constraint in which for all j ∈ [ℓ] we put M (·)

j =
M j ⊕ {{u, v}}, D (·) = D, and B (·) = B ∪ {{u, v}}.

2. For each {u, v} ∈ M ′
i :

• If there is no x ∈V \ D such that {u, x} ∈ B , then return a constraint with
D (·) = D ∪ {u}, B (·) = B , and for all j ∈ [ℓ] we put M (·)

j = M j \ {{u, v}}.

• If there is no x ∈V \ D such that {v, x} ∈ B , then return a constraint with
D (·) = D ∪ {v}, B (·) = B , and for all j ∈ [ℓ] we put M (·)

j = M j \ {{u, v}}.

Lemma 8.9. If the Clean-up Rule was applied and Rule 0 is not applicable, then
Branching Rule 2 is a safe branching rule.

Proof. It is easy to check that Branching Rule 2 is indeed a branching rule since
it always modifies the pairs in the edge modifications sets of all layers, hence if
the input constraint is aligning, so are all output constraints. Since each output
constraint extends the input constraint, by Observation 8.6, if any of the output
constraints is good, then so is the input constraint.

Now we show that if the input constraint is good, at least one output constraint
is. Let P = (D, M1, . . . , Mℓ,B) be the input constraint. Suppose that P is good and let
S = (M⋆

1 , . . . , M⋆
ℓ

,D⋆) be a solution for the input instance witnessing that P is good.
Since Rule 0 is not applicable, we have |Mi ∩B | ≤ k and, thus, Mi \ B ̸= ∅.

158

8.3 An Algorithm for Temporal Cluster Editing

Since |M ′
i |+ |Mi ∩B | = k +1, Mi ∩B ⊆ M⋆

i , and |M⋆
i | ≤ k, we have M ′

i \ M⋆
i ̸= ∅, i.e.,

there is at least one vertex pair {u, v} ∈ M ′
i such that {u, v} ∉ M⋆

i . The branching rule
creates constraints for each possible vertex pair in M ′

i to remove it from Mi . Thus, in
particular, there is one output constraint where {u, v} is removed from Mi .

If {u, v}∩D⋆ =∅, then, since the solution is consistent, either {u, v} ∈ Ei ⊕M⋆
i for

all i ∈ [ℓ] or {u, v} ∉ Ei ⊕M⋆
i for all i ∈ [ℓ]. However, since P is aligning, we also have

that {u, v} ∈ Ei ⊕ Mi for all i ∈ [ℓ] or {u, v} ∉ Ei ⊕ Mi for all i ∈ [ℓ] and furthermore,
{u, v} ∈ Ei ⊕Mi if and only if {u, v} ∉ Ei ⊕M⋆

i . Since we have that {u, v} ∈ Ei ⊕Mi if and
only if {u, v} ∉ Ei ⊕Mi ⊕ {{u, v}}, one of the constraints in the first case is good.

Otherwise at least one endpoint of {u, v} is marked in S implying that one of the
constraints in the second case is good.

The last rule, Branching Rule 3, requires that all other rules are not applicable.
In this case the non-marked vertices induce the same cluster graph in every layer.
Branching Rule 3 checks whether in every layer it is possible to turn the whole layer
(including the marked vertices) into a cluster graph such that the cluster graph in-
duced by the non-marked vertices stays the same and the edge modification budget
is not violated in any layer. If this is not the case for a layer i , then we will see that
there are essentially two reasons for that. Either, (a), a modification in Mi that was
added greedily introduced many P3’s containing marked vertices and the only way
to remedy it is to roll back this modification. Or, (b), in order to make layer i a cluster
graph including the marked vertices, we need to mark more vertices or make more
edits outside of the marked vertices. Both cases will be treated by Branching Rule 3
simultaneously. Since Mi has bounded size, branching on the possibilities to roll
back one of the edits (Case (a)) already results in a bounded number of branches.
These possibilities are tested in Step 1 of Branching Rule 3. Case (b) is treated in
Steps 2, 3, and 4. However, we need additional processing to upper-bound the num-
ber of vertex markings or edge edits that we need to consider. To obtain the bound,
we introduce a modified version of a known kernelization algorithm [Gra+05] for
classic CLUSTER EDITING. We call this algorithm K and it takes as input a tuple
(G , s,D,O). Herein, G will represent the current, modified state of a layer, D the cur-
rently marked vertices, s the number of edits still allowed, and O a set of vertex pairs
that are obligatory, meaning that they cannot be modified anymore. Algorithm K

either outputs a distinct failure symbol or two sets R and C , where R contains all
unmarked vertex pairs modified by K and C contains all unmarked vertex pairs of
the produced kernel which are not obligatory. (A vertex pair is unmarked if it does
not contain a marked vertex.) In the following we give a formal description.

159

8 Temporal Cluster Editing

Modified Kernelization Algorithm K . Given an input (G , s,D,O). First, set all vertex
pairs in O to obligatory and exhaustively apply the following modified versions of
standard data reduction rules for CLUSTER EDITING. Let R = ∅. Then, apply the
following rules until none applies anymore.

K1. If s < 0 or there is an induced P3 where all vertex pairs are obligatory, then
abort and output a failure symbol.

K2. If a vertex pair {u, v} is contained in the vertex set of s +1 distinct induced P3s
of G, then, if {u, v} is obligatory, abort and output a failure symbol, otherwise
modify {u, v}, set it to obligatory, and decrease s by one. If u ∉ D and v ∉ D,
then add {u, v} to R.

K3. If there is an isolated clique, then remove it.

Let G (R) be the resulting graph. If the number of vertices in G (R) is larger than s2 +2s,
then abort and output a failure symbol. Otherwise, let C be the set of all unmarked
vertex pairs in G (R) which are not obligatory. Output R and C . This concludes the
description of K .

In the description of the branching rule, we use the following notation. For all
i ∈ [ℓ] we use Mi to denote the set of all possible edge modifications that turn
G ′

i = (V ,Ei ⊕Mi) into a cluster graph, and where each edge of the modification set is
incident to at least one marked vertex. More specifically, we have

Mi = {M ⊆ (︁V
2

)︁ | ∀e ∈ M : e ∩D ̸= ∅ ∧ G ′′
i = (V ,Ei ⊕ (Mi ∪M)) is a cluster graph}.

Note that, since each G ′
i \ D is a cluster graph, each set Mi is non-empty.

Branching Rule 3. If there is an i ∈ [ℓ] such that minM∈Mi |M | > k−|Mi |, then let M ′
i =

Mi \ B and invoke the modified kernelization algorithm K on (G ′
i ,k −|Mi |,D, Mi ∩B),

where G ′
i = (V ,Ei ⊕Mi). If K outputs a failure symbol and M ′

i =∅, then return NO. If
M ′ ̸= ∅, then return the following constraints:

1. For each {u, v} ∈ M ′
i :

• If there is no x ∈V \ D such that {u, x} ∈ B , then return a constraint with
D (·) = D ∪ {u}, B (·) = B , and for each j ∈ [ℓ] with M (·)

j = M j \ {{u, v}}.

• If there is no x ∈V \ D such that {v, x} ∈ B , then return a constraint with
D (·) = D ∪ {v}, B (·) = B , and for each j ∈ [ℓ] with M (·)

j = M j \ {{u, v}}.

160

8.3 An Algorithm for Temporal Cluster Editing

• Return a constraint in which for all j ∈ [ℓ] we put M (·)
j = M j ⊕ {{u, v}},

D (·) = D, and B (·) = B ∪ {{u, v}}.

If K does not output a failure symbol, then let R and C be the sets output by K and
return the following constraints:

2. For each {u, v} ∈ R:

• If u ∉ D and there is no x ∈ V \ D such that {u, x} ∈ B , then return a
constraint with D (·) = D ∪ {u}, B (·) = B , and for each j ∈ [ℓ] with M (·)

j =
M j \ {{u, v}}.

• If v ∉ D and there is no x ∈ V \ D such that {v, x} ∈ B , then return a
constraint with D (·) = D ∪ {v}, B (·) = B , and for each j ∈ [ℓ] with M (·)

j =
M j \ {{u, v}}.

3. If R ̸= ∅, then output a constraint with D (·) = D, B (·) = B ∪Mi ∪R, and M (·)
j =

M j ⊕R for each j ∈ [ℓ].

4. For each {u, v} ∈C :

• If there is no x ∈V \ D such that {u, x} ∈ B , then return a constraint with
D (·) = D ∪ {u}, and the rest stays the same.

• If there is no x ∈V \ D such that {v, x} ∈ B , then return a constraint with
D (·) = D ∪ {v}, and the rest stays the same.

• Return a constraint with D (·) = D, B (·) = B ∪ {{u, v}}, and M (·)
j = M j ⊕ {{u, v}}

for each j ∈ [ℓ].

Lemma 8.10. If the Clean-up Rule was applied and Branching Rules 1 and 2 are not
applicable, then Branching Rule 3 is a safe branching rule.

Proof. It is easy to check that Branching Rule 3 is indeed a branching rule since it
always modifies the edge modifications sets of all layers, hence if the input constraint
is aligning so are all output constraints. Since each output constraint extends the
input constraint, by Observation 8.6, if any of the output constraints is good, then so
is the input constraint.

Now we show that if the input constraint is good, at least one output constraint
is. Let the input constraint P = (D, M1, . . . , Mℓ,B) be good and let S = (M⋆

1 , . . . , M⋆
ℓ

,D⋆)
be a solution for the input instance witnessing that P is good. For each layer i ,
Branching Rule 3 checks the minimum number of edge modifications involving at
least one marked vertex to turn G ′

i into a cluster graph. Since G ′
i [V \ D] is already a

161

8 Temporal Cluster Editing

cluster graph, this number always exists. Since Branching Rule 3 is applicable, there
is a layer i ∈ [ℓ] such that minM∈Mi |M | > k −|Mi |. Fix this layer i in the following.

Suppose that there is a vertex pair {u, v} ∈ Mi \ M⋆
i . Since P is good, we have

Mi ∩B = M⋆
i ∩B , giving {u, v} ∈ M ′

i = Mi \B . Thus, M ′
i ̸= ∅ which means that the branch

is not rejected after applying K . In other words, there is one modification in Mi

which is not in the solution witnessing that P is good, similar to Branching Rule 2. It
follows from an analogous argumentation to the one in the proof of Lemma 8.9 that
Branching Rule 3 produces a good constraint in Step 1. That is, Branching Rule 3 is
safe in this case. Thus, from now on we assume Mi ⊆ M⋆

i .
We claim that K does not produce a failure symbol. In fact, we now show the

stronger statement that K produces R and C such that R ⊆ M⋆
i \ Mi . To obtain this,

we show the following Invariant (I) to hold before and after each application of a rule
of K . Invariant (I) states that

(i) K has not produced a failure symbol,

(ii) each edit made by K is in M⋆
i , and

(iii) s = k −|Mi |− |L|, where L is the set of modifications made by K so far.

Clearly, (I) holds in the beginning of K , before any application of a rule. Since Rule K2
is the only rule that makes modifications, and it clearly maintains (I) (iii), we will
focus on (I) (i) and (ii). Furthermore, (I) is clearly maintained by Rule K3. It remains
to treat Rules K1 and K2.

Consider Rule K1. Let L be the set of modifications made by K so far. By (I) (ii) we
have L ⊆ M⋆

i . Observe that L∩Mi =∅ since each pair in Mi is obligatory. Hence, (L∪
Mi) ⊆ M⋆

i which, since M⋆
i is part of a solution, implies that there are no induced P3s

where all three vertex pairs are obligatory. Furthermore, we have that |M⋆
i | ≥ |Mi |+|L|

and hence k ≥ |M⋆
i | ≥ |Mi | + |L|. By (I) (iii) we have s = k − |Mi | − |L|. Thus, s ≥

|M⋆
i |− |Mi |− |L| ≥ 0, meaning that no failure symbol is produced by Rule K1. Hence,

Rule K1 maintains Invariant (I).
Now consider Rule K2. Assume that the pair {u, v} edited by Rule K2 is not in M⋆

i .
Since Rule K2 applies, there are s+1 distinct P3s contained in the current graph G (L) :=
(V ,Ei ⊕ (Mi ∪L)), where L are the modifications made by K so far. As P is good,
G⋆ := (V ,Ei ⊕M⋆

i) is a cluster graph. To compare G (L) and G⋆, recall that L⊎Mi ⊆ M⋆
i ,

where ⊎ denotes a disjoint union: Mi ⊆ M⋆
i by the considerations above, L ⊆ Mi

by (I) (ii), and L ∩ Mi = ∅ because each pair in Mi is obligatory. Hence, for each
of the induced P3s in G (L) there is at least one distinct vertex pair in M⋆

i \ (L ∪Mi).
Thus, |M⋆

i | ≥ |L|+|Mi |+s+1. Since s = k−|Mi |−|L|, we have |M⋆
i | ≥ k+1, a contradiction

162

8.3 An Algorithm for Temporal Cluster Editing

to the fact that M⋆
i is part of a solution. Thus, indeed {u, v} ∈ M⋆

i . It follows that
Invariant (I) is maintained by Rule K2.

By Invariant (I), after applying all rules in K we have L ⊆ M⋆
i \Mi , where L = R is the

set of modifications made by K . We now bound the number of vertices in G (R). Since
s = k −|Mi |− |L| which we obtain from Invariant (I) (iii), we have |M⋆

i \ (Mi ∪L)| ≤ s
(recall that Mi ∩L =∅). Each vertex in G (R) is contained in an induced P3. Each such
P3 contains a pair of M⋆

i \(Mi ∪L). Each such pair is contained in at most s P3s by inap-
plicability of Rule K2. Thus, graph G (R) contains at most s2+2s vertices. Thus, K does
not produce a failure symbol. Furthermore, by Invariant (I) (ii), R ⊆ M⋆

i and, more-
over, since no modification made by K is in Mi , R ⊆ M⋆

i \ Mi . Thus, K produces the
sets R ⊆ M⋆

i \ Mi and C as required.
Suppose that for one edge modification {u, v} ∈ R we have that {u, v}∩D⋆ ̸= ∅, say

u ∈ D⋆. Since P is good, property (ii) of being good gives that there is no pair {u, w} ∈ B
for any w ∈V . Thus, Branching Rule 3 outputs a good constraint in Step 2. Hence,
we now assume that R does not contain edge modifications containing vertices
from D⋆.

Suppose that R ̸= ∅. As argued above, R ⊆ M⋆
i \ Mi . Since D ⊆ D⋆ and no pair in R

contains a vertex of D⋆, we have that the constraint produced in Step 3 is good. Thus,
we now assume that R =∅.

Suppose that C contains a pair which contains a vertex in D⋆, say u. By property (ii)
of being good, there is no pair {u, w} ∈ B for any w ∈V . Thus, one of the first group
of constraints produced in Step 4 is good. Thus, we now assume that no pair in C
contains a vertex in D⋆ and hence also no pair in C contains a vertex in D.

Finally, we claim that M⋆
i ∩C ̸= ∅. Suppose that M⋆

i ∩C =∅. Since R =∅, we have
that G (R) is G ′

i with some isolated cliques removed. Let Mˆ︂i be Mi restricted to G (R)

and, similarly, Mˆ︂⋆

i be M⋆
i restricted to G (R). Note that, since Mi ⊆ M⋆

i and |M⋆
i | ≤ k,

we have |M⋆
i \ Mi | ≤ k −|Mi | and, thus, also |Mˆ︂⋆

i \ Mˆ︂i | ≤ k −|Mi |. Since (V ,Ei ⊕M⋆
i) is

a cluster graph, also its subgraph induced by V (G (R)) is a cluster graph, and, hence,
also (V ,Ei ⊕ (Mˆ︂⋆

i ∪Mi)) is a cluster graph, since the last two only differ in the isolated
cliques.

Every pair of unmarked vertices in G (R) is in Mˆ︂i ∪C by the definition of C . Hence,
Mˆ︂i ⊆ Mˆ︂⋆

i and Mˆ︂⋆

i ∩C =∅ implies Mˆ︂⋆

i \ Mˆ︂i ⊆
(︁V

2

)︁
\
(︁V \D

2

)︁
, and, therefore, (Mˆ︂⋆

i \ Mˆ︂i) ∈Mi .

As |Mˆ︂⋆

i \ Mˆ︂i | ≤ k − |Mi | and (V ,Ei ⊕ (Mˆ︂⋆

i ∪ Mi)) is a cluster graph, this contradicts
minM∈Mi |M | > k −|Mi |. Thus, indeed M⋆

i ∩C ̸= ∅. It follows that one of the last group
of constraints produced in Step 4 is good.

With Branching Rule 3 we can present the complete algorithm—see Algorithm 5.
To prove correctness of the algorithm, we first argue that, whenever the algorithm

163

8 Temporal Cluster Editing

outputs YES, then the input instance of TEMPORAL CLUSTER EDITING was indeed
a YES-instance. This follows in a straightforward manner from the fact that, if the
algorithm outputs YES, then none of the branching rules is applicable.

Lemma 8.11. Given an instance I of TEMPORAL CLUSTER EDITING, if Algorithm 5
outputs YES on input I and the constraint Pgreedy, then I is a YES-instance.

Proof. Let I be the input instance of TEMPORAL CLUSTER EDITING. If the algorithm
outputs YES, then there is an aligning constraint P = (D, M1, . . . , Mℓ,B) such that for
all e ∈ Mi we have that e ∩D =∅, and none of the branching rules are applicable. Let
D⋆ = D and for every i ∈ [l] let M ′

i = argminM∈Mi |M | and M⋆
i = Mi ∪M ′

i , where Mi is
as defined for Branching Rule 3. In the following we show that S = (M⋆

1 , . . . , M⋆
ℓ

,D⋆) is
a solution for I (witnessing that P is good).

Since Branching Rule 3 is not applicable, we know that |M ′
i | ≤ k −|Mi | and hence

|Mi ∪M ′
i | ≤ k. Also, since Rule 0 is not applicable, we know that |D⋆| = |D| ≤ d . Let

G⋆
i = (v,Ei ⊕M⋆

i) for all i ∈ [ℓ]. For all i , j ∈ [ℓ] we have that G⋆
i [V \D] =G⋆

j [V \D] since
the constraint P is aligning, and M ′

i contains no unmarked pairs. Furthermore, for
all i ∈ [ℓ] we have that G⋆

i is a cluster graph by the definition of Mi .

It remains to show that, whenever the input instance I of the algorithm is a YES-
instance, then the algorithm outputs YES. To this end, we define the quality of a
good constraint and show that the algorithm increases the quality until it eventually
finds a solution or determines that there is none.

Definition 8.6 (Quality of a constraint). Let I = (G = (V , (Ei)i∈[ℓ]),k,d) be an instance
of TEMPORAL CLUSTER EDITING. The quality γI (P) of a constraint P = (D, M1, . . . , Mℓ,B)
for I is γI (P) = |D|+ |B |.

Lemma 8.12. Let P be a good constraint for a yes-instance of TEMPORAL CLUSTER

EDITING. If applicable, each of Branching Rules 1, 2, and 3 returns a good constraint
with strictly increased quality in comparison to P .

Proof. We show the claim individually for each of the rules. We consider each of the
possible returned constraints P ′ and show that, assuming that P ′ is good, then the
quality of P ′ is strictly larger than P .

Consider Branching Rule 1. In the first three cases, the branching rule increases |B |.
In the remaining cases, the branching rule increases |D|. Branching Rule 2 increases‘|B |
in the first case and |D| in the second case. Branching Rule 3 also increases |B | or |D|
in each of the four steps.

164

8.3 An Algorithm for Temporal Cluster Editing

We can now show the correctness of Algorithm 5. Lemma 8.11 ensures that we
only output true if the input is actually a yes-instance and Lemma 8.12 together
with the safeness of all branching rules ensures that if the input is a yes-instance, the
algorithm outputs true.

Proposition 8.13 (Correctness of Algorithm 5). Given a TEMPORAL CLUSTER EDITING

instance I , Algorithm 5 outputs YES on input I and the initial constraint Pgreedy if and
only if I is a YES-instance.

Proof. By Lemma 8.11, if Algorithm 5 outputs YES on input I and the initial con-
straint Pgreedy, then I is a YES-instance. It remains to show the other direction.

Let I be a YES-instance of TEMPORAL CLUSTER EDITING. By Observation 8.5 we
have that Pgreedy is a good constraint. Note that the order in which rules are applied
(see Algorithm 5) ensures safeness for all branching rules (Lemmata 8.7, 8.8, 8.9,
and 8.10). Furthermore, by Lemma 8.12 we have that all branching rules except the
Clean-up Rule strictly increase the quality of a good constraint. It is easy to see that
the Clean-up Rule does not decrease the quality of a good constraint and it is applied
only once before either one of the other rules apply or the algorithm terminates. Let
Pmax be a good constraint with the highest quality produced during the run of the
algorithm. Since the quality is an integer bounded from above by |V |+(︁|V |

2

)︁
, there must

be such a constraint. As the Clean-up Rule does not decrease the quality, we can also
assume that it was exhaustively applied to Pmax. If any of the branching rules would
apply to Pmax, then, by safeness of the branching rules and Lemma 8.12, it would
produce a good constraint of strictly higher quality, contradicting the maximality
of Pmax. Hence the algorithm run on Pmax returned true and, therefore, the whole
algorithm returned YES.

It remains to show that Algorithm 5 has the claimed running time upper bound.
We can check that all branching rules create at most O(k4) recursive calls. The
preprocessing by the Greedy Rule and the alignment of the constraints ensures that
the edge modification sets in sufficiently many layers increase for the search tree
to have depth of at most O(k +d). The time needed to apply a branching rule is
dominated by Branching Rule 3, where we essentially have to solve classic CLUSTER

EDITING in every layer.

Proposition 8.14. The running time of Algorithm 5 is kO(k+d) · |V |3 ·ℓ.

Proof. We bound the running time of Algorithm 5 by the following straightforward
approach. Note that the recursive calls of Algorithm 5 define a tree in which each
node corresponds to a call of Algorithm 5 and two nodes are connected by an edge

165

8 Temporal Cluster Editing

if one of the corresponding calls of the algorithm is a recursive call of the other.
The tree is rooted at the node corresponding to the initial constraint Pgreedy. Note
that Pgreedy can be computed in O(|V |2 ·ℓ) time. We first bound the size of the search
tree, and then the computation spent in each node of the search tree. Note that we
apply Clean-up Rule at the beginning of each recursive call, that is, without creating
further recursive calls. Hence we call this rule degenerate.

To bound the depth of the search tree, the length of a path from the root to the
farthest leaf, we show that each (nondegenerate) branching rule increases either |D|
by at least one or it increases

∑︁
1≤i≤ℓ |Mi ∩B | by at least ℓ

2 . If |D| > d or
∑︁

1≤i≤ℓ |Mi ∩
B | > ℓ ·k, then the algorithm terminates (Rule 0). Before we show this, we prove
an invariant that for every constraint produced by the algorithm and for every
{u, v} ∈ Mi \ B for some i with u, v ∉ D we have |{ j | {u, v} ∈ M j }| ≤ ℓ

2 . To this end, note
that is initially fulfilled when Pgreedy is computed by the Greedy Rule and whenever
any other rule touches a pair {u, v} then in the produced constraint we have that
{u, v} ∈ B , u ∈ D, or v ∈ D. That is, these rules cannot break the invariant.

Consider Branching Rule 1. In the first three cases
∑︁

1≤i≤ℓ |Mi ∩B | increases by at
least ℓ

2 , since the pair was not in B before the application of the rule and thus could
appear in Mi for at most ℓ

2 different layers i by the above proven invariant and, hence,
after the application of the rule it appears in |Mi ∪B | for at least ℓ

2 different layers i .
By a similar argument, also Branching Rules 2 and 3 increase either |D| by one or∑︁

1≤i≤ℓ |Mi ∩B | by at least ℓ
2 . Hence, we can upper-bound the depth of the search tree

with 2k +d .
Observe that the number of children of each node in the search tree where Branch-

ing Rule 1 or 2 is applied is upper-bounded by 3k +3. Branching Rule 3 creates at
most 3k recursive calls in the first step. In the second step it creates at most 2|R|
recursive calls, at most one in the third step and in the fourth step the number of
recursive calls created is at most 3|C |. By the description of the modified kerneliza-
tion algorithm K we have |R| ≤ s and |C | ≤ (s2 +2s)2. By the way K is invoked by
Branching Rule 3 we have s ≤ k and, thus, the number of recursive calls is O(k4). It
follows that the size of the whole search tree is in kO(k+d).

The Clean-up Rule plays a special role. The Clean-up Rule can be exhaustively
applied in O(|(︁V

2

)︁| ·ℓ) =O(|V |2 ·ℓ) time on the beginning of each recursive call.
Lastly, we analyze for each rule, how much time is needed to check whether the

rule is applicable and, if so, to compute the constraints it outputs. To check the
applicability of Branching Rule 1, the algorithm needs to check whether there is a
layer containing an induced P3. This can be done in O(|V | +m) time, where m is
the maximum number of edges in a layer. Hence, overall we need O((|V | +m) ·ℓ)
time to check whether Branching Rule 1 is applicable and in this time we can also

166

8.4 Kernelization for Temporal Cluster Editing

compute the output constraints. In the case of Branching Rule 2, we need O(|V |2 ·ℓ)
time to check whether it is applicable and to output the constraints. For the last
rule, Branching Rule 3, we need to check whether the set families Mi are nonempty.
To do this we essentially need to solve CLUSTER EDITING on each layer to check
whether the rule is applicable. This can be done in O(3k · (|V |+m)) time, similarly
to the straightforward algorithm for CLUSTER EDITING. That is, recursively find
a P3 and branch into the at most three cases of modifying vertex pairs in the P3

which contain at least one marked vertex. The time to compute the constraints is
dominated by the application of the modified kernelization algorithm K . The data
reduction rules of K can be applied exhaustively in O(|V |3) time [Gra+05]. Hence,
overall, the algorithm has running time kO(k+d) · |V |3 ·ℓ.

This concludes the proof of Theorem 8.4, since it follows directly from Proposi-
tion 8.13 and Proposition 8.14. Furthermore, Proposition 8.3 implies that this FPT
result presumably cannot be improved to yield a polynomial kernel since k+d ≤ |V |3.

We remark that it is not difficult to see that TEMPORAL CLUSTER EDITING can
also be solved in |V |O(|V |) · ℓ time, which is incomparable to the running time of
Algorithm 5 since k might be as large as Ω(|V |2): First guess the marked vertices
(2|V | possibilities). Then guess how many clusters (that is, disjoint cliques) there
are in the modified graph induced by the non-marked vertices (|V | possibilities),
and for every non-marked vertex, guess to which cluster it belongs (at most |V ||V |

possibilities). Now for every layer, independently guess how many additional clusters
there are consisting only of marked vertices, and for every marked vertex, guess to
which cluster it belongs (at most |V ||V | ·ℓ possibilities). Finally check, whether such a
solution can be obtained by at most k modifications per layer, which can be done in
polynomial time.

8.4 Kernelization for Temporal Cluster Editing

In this section we present a polynomial kernel for TEMPORAL CLUSTER EDITING

for the parameter combination k +d +ℓ.

Theorem 8.15. TEMPORAL CLUSTER EDITING admits a kernel of size O(ℓ3 · (k +d)4)
which can be computed in O(ℓ · |V |3) time.

The rest of this section is devoted to the proof of this theorem. To this end, we
introduce a number of so-called data reduction rules. A data reduction rule is a
description of a procedure that takes a problem instance as input (in our case an
instance of TEMPORAL CLUSTER EDITING) and outputs an instance of the same

167

8 Temporal Cluster Editing

problem. We say that a data reduction rule is correct, if it holds that the input
instance is a YES-instance if and only if the output instance is a YES-instance.

We provide several data reduction rules that subsequently modify the instance
and we assume that if a particular rule is to be applied, then the instance is reduced
with respect to all previous rules, that is, all previous rules were already exhaustively
applied. To keep track of the budget in the individual layers we introduce TEMPORAL

CLUSTER EDITING WITH SEPARATE BUDGETS which differs from TEMPORAL CLUSTER

EDITING only in that, instead of a global upper bound k on the number of edits, we
receive ℓ individual budgets ki for all i ∈ [ℓ], and we require that |Mi | ≤ ki .

We first transform the input instance of TEMPORAL CLUSTER EDITING to an equiv-
alent instance of TEMPORAL CLUSTER EDITING WITH SEPARATE BUDGETS by let-
ting ki = k for every i ∈ [ℓ]. Then we apply all our data reduction rules to TEMPORAL

CLUSTER EDITING WITH SEPARATE BUDGETS. Finally, we show how to transform the
resulting instance of TEMPORAL CLUSTER EDITING WITH SEPARATE BUDGETS to an
equivalent instance of TEMPORAL CLUSTER EDITING with just a small increase of the
vertex set.

Throughout the presentation, let (G = (V , (Ei)i∈[ℓ]),k1, . . . ,kℓ,d) be the current in-
stance and let k = max{ki | i ∈ [ℓ]}.

The following rules represent well known data reduction rules for classic CLUSTER

EDITING [Gra+05] applied to the individual layers of the temporal graph. The first
rule formalizes the obvious constraint on the solvability of the instance. We omit a
proof of correctness for this rule.

Reduction Rule 1. If there is a layer i ∈ [ℓ] such that ki < 0, then answer NO.20

Reduction Rule 2. If there is a layer i ∈ [ℓ] and an edge {u, v} ∈ Ei in layer i such that
Gi contains at least ki +1 different induced P3s each of which contains the edge {u, v},
then remove {u, v} from Ei and decrease ki by one.

Lemma 8.16. Reduction Rule 2 is correct.

Proof. Let I = (G = (V , (Ei)i∈[ℓ]),k1, . . . ,kℓ,d) be the original instance and Iˆ︁ = (Gˆ︁ =
(V ,E1, . . . ,Eiˆ︂, . . .Eℓ),k1, . . . ,ki

ˆ︁ , . . . ,kℓ,d) be the instance after the application of the rule,
where Eiˆ︂ = Ei \ {{u, v}} and ki

ˆ︁ = ki − 1 . If Iˆ︁ is a YES-instance, then I is also a YES-
instance with the same solution as the one for Iˆ︁ and the pair {u, v} added.

For the converse, assume that S = (D, M1, . . . Mℓ) is a solution for I and let G ′
i =

(V ,Ei ⊕Mi). We claim that there is also a solution S ′ for Iˆ︁. Since the input temporal

20This technically does not fit the definition of a data reduction rule and should be read as an abbreviation
for returning a trivial NO-instance, that is, an arbitrary but fixed NO-instance of constant size.

168

8.4 Kernelization for Temporal Cluster Editing

graphs in I and Iˆ︁ only differ by one edge {u, v}, suppose towards a contradiction
that G ′

i still contains {u, v}, meaning that {u, v} ∉ Mi . By the assumptions of the rule
we know that there are ki +1 vertices w1, . . . , wki +1 such that for each i ∈ [ki +1] the
induced subgraph Gi [{u, v, w j }] is a P3, which has to be destroyed to obtain a cluster
graph. Since {u, v} ∈ Ei ⊕Mi , in order to destroy all P3s, for each j ∈ [ki +1] we have to
either add the absent edge to or delete an existing edge e (with e ̸= {u, v}) from the
induced subgraph G[{u, v, w j }]. However, since for two different indices j1, j2 ∈ [ki +1]
the pair {u, v} is the only pair of vertices shared between {u, v, w j1 } and {u, v, w j2 }, we
have to modify at least ki +1 edges, a contradiction to |Mi | ≤ k, Hence G ′

i does not
contain {u, v}, i.e., {u, v} ∈ Mi and S ′ obtained from S by replacing Mi with Mi \ {{u, v}}
is a solution to Iˆ︁.

Reduction Rule 3. If there is a layer i ∈ [ℓ] and a pair {u, v} ∈ V of vertices with
{u, v} ∉ Ei (a non-edge) in layer i such that Gi contains at least ki +1 different induced
P3s each of which involves both u and v , then add {u, v} to Ei and decrease ki by one.

Lemma 8.17. Reduction Rule 3 is correct.

Proof. The proof is almost the same as for Lemma 8.16, the obvious difference is
that we assume Eiˆ︂= Ei ∪ {{u, v}}. Also in the second implication, supposing that Mi

does not contain {u, v} leads to a contradiction.

As with the classic CLUSTER EDITING we can upper-bound the number of vertices
involved in a P3 in each layer. Let Ri ⊆V be the set of the vertices v that appear in
some induced P3 in Gi and let R =⋃︁ℓ

i=1 Ri .

Reduction Rule 4. If there is a layer i ∈ [ℓ] such that |Ri | > k2
i +2ki , then answer NO.

Lemma 8.18. Reduction Rule 4 is correct.

Proof. Suppose towards a contradiction that |Ri | > k2
i +2ki and I = (G = (V , (Ei)i∈[ℓ]),

k1, . . . ,kℓ,d) is a YES-instance. Let (M1, . . . Mℓ,D) be a solution to I and define G ′
i =

(V ,Ei ⊕Mi). For each modified edge {u, v} ∈ Mi denote by Ruv the set of vertices w
such that the induced subgraph Gi [{u, v, w}] is a P3. Since the instance is reduced
with respect to Reduction Rules 2 and 3, for each modified edge {u, v} ∈ Mi we have
|Ruv | ≤ ki . Since G ′

i is a cluster graph and, thus, does not contain a P3 as an induced
subgraph, we know that Ri ⊆⋃︁

{u,v}∈Mi
({u, v}∪Ruv). It follows that |Ri | ≤ ki · (2+ki) =

k2
i +2ki —a contradiction.

As a major difference to CLUSTER EDITING for a single layer, we cannot simply
remove the vertices that are not involved in any P3 since we require the cluster graphs

169

8 Temporal Cluster Editing

in individual layers not to differ too much. We show that the vertices in the clusters
that do not change can be freely removed.

Reduction Rule 5. If there is a subset A ⊆ V \ R such that for each layer i ∈ [ℓ], the
subset A is the vertex set of a connected component of Gi , then remove A (and the
corresponding edges) from every Gi .

Lemma 8.19. Reduction Rule 5 is correct.

Proof. Let I = (G = (V , (Ei)i∈[ℓ]),k1, . . . ,kℓ,d) be the original instance and Iˆ︁ = (Gˆ︁ =
(V \ A, (Eiˆ︂)i∈[ℓ]),k1, . . . ,kℓ,d) be the instance after the application of the rule, where
for each i ∈ [ℓ], we have Eiˆ︂= E(Gi [V \ A]). Since A∩R =∅, we have that A induces a
complete subgraph in each layer i ∈ [ℓ]. Moreover, for each layer i ∈ [ℓ], the set A
is the vertex set of a connected component of graph Gi . Thus, Gi [A] is a complete
connected component in Gi , meaning that Ei = Eiˆ︂∪ (︁A

2

)︁
.

Let (M1, . . . , Mℓ,D) be a solution for I and let Dˆ︁ = D \ A and Miˆ︂ = Mi ∩
(︁V \A

2

)︁
for every

i ∈ [ℓ]. Then (M1ˆ︂ , . . . , Mℓ
ˆ︂ ,Dˆ︁) forms a solution to Iˆ︁.

Conversely, let Sˆ︁ = (Dˆ︁ , M1ˆ︂ , . . . , Mℓ
ˆ︂) be a solution for Iˆ︁. We claim that Sˆ︁ is also a

solution for I . Indeed, each G ′
i = (V ,Ei ⊕Mˆ︂) is a cluster graph (note that A is the vertex

set of a complete connected component in Gi), |Miˆ︂ | ≤ ki and for all i , j ∈ [ℓ] we have
that Ei ⊕Miˆ︂ ∩ (︁V \D

2

)︁= E j ⊕M jˆ︂ ∩ (︁V \D
2

)︁
since Eiˆ︂⊕Miˆ︂ ∩ (︁V \(A∪D)

2

)︁= E jˆ︂⊕M jˆ︂ ∩ (︁V \(A∪D)
2

)︁
.

The next rule allows us to reduce vertices that appear in exactly the same clusters,
if there are many.

Reduction Rule 6. If there is a set A ⊆ V \ R with |A| ≥ k +d +3 such that for every
layer i ∈ [ℓ] it holds that all vertices of A are in the same connected component of Gi ,
then select an arbitrary v ∈ A and remove v from every Gi .

For the correctness proof of this and subsequent data reduction rules we find the
following observation handy.

Observation 8.20. Let G be a complete graph on at least k +2 vertices and let H be a
cluster graph such that V (G) =V (H). If H is not complete, then G and H differ in at
least k +1 edges, that is, |E(G)⊕E(H)| ≥ k +1.

Proof. The statement is obviously true for k ≤ 0, let us assume that k > 0. Since H
is a cluster graph which is not a complete graph, it must have several connected
components. Let X be the smallest of these connected components and define
Y =V (G) \ X . The set E(G)⊕E(H) must contain at least all the edges between X and
Y , hence |E(G)⊕E(H)| ≥ |X | · |Y |.

170

8.4 Kernelization for Temporal Cluster Editing

If |X | ≥ k+2
2 , then also |Y | ≥ k+2

2 since X is the smallest component. But then

|X | · |Y | ≥ (k+2
2)2 = k2+4k+4

4 ≥ k +1.
If |X | < k+2

2 , then let us denote x = |X | and we have |Y | ≥ k + 2 − x. We know
that |X | · |Y | ≥ x · (k +2−x). The function f (x) = x · (k +2−x) is increasing for x < k+2

2

with f (1) = k +1, hence |X | · |Y | ≥ k +1, finishing the proof.

Lemma 8.21. Reduction Rule 6 is correct.

Proof. Let I = (G = (V , (Ei)i∈[ℓ]),k1, . . . ,kℓ,d) be the original instance and Iˆ︁= (Gˆ︁ = (V \
{v}, (Eiˆ︂)i∈[ℓ]),k1, . . . ,kℓ,d), where Eiˆ︂= E(Gi [V \{v}]) be the instance after the application
of the rule. Let (M1, . . . , Mℓ,D) be a solution to I , and let Dˆ︁ = D \{v} and for every i ∈ [ℓ]
let Miˆ︂ = Mi ∩

(︁V \{v}
2

)︁
. Then (M1ˆ︂ , . . . , Mℓ

ˆ︂ ,Dˆ︁) forms a solution to Iˆ︁.
Conversely, let Sˆ︁ = (Dˆ︁ , M1ˆ︂ , . . . , Mℓ

ˆ︂) be a solution to Iˆ︁. Let w be an arbitrary vertex
of A \ (Dˆ︁ ∪ {v}) (note that since |A| ≥ k +d +3, |Dˆ︁ | ≤ d and k ≥ 0, the set A \ (Dˆ︁ ∪ {v}) is
not empty). We will construct a solution for I such that after applying the solution
we have that v is a true twin of w in every layer, that is, we will put v into the
same clusters as w . Formally, for each layer i ∈ [ℓ], we define Eiˆ︂′ = E(Giˆ︂)⊕Miˆ︂ , E ′

i =
Eiˆ︂′∪ {{x, v} | {x, w} ∈ Eiˆ︂′

}∪ {{v, w}} and Mi = Ei ⊕E ′
i . We claim that (M1, . . . , Mℓ,Dˆ︁) is a

solution to I .
First, each G ′

i = (V ,E ′
i) is a cluster graph. If there are two layers i , j ∈ [ℓ] such that

G ′
i \ D ̸=G ′

j \ D, then without loss of generality we can assume that there is some x ∈
V \ (D ∪ {v}) such that {v, x} ∈ E ′

i but {v, x} ∉ E ′
j . But then {w, x} ∈ Eiˆ︂′

and {w, x} ∉ E jˆ︂′
, a

contradiction since neither w nor x is in Dˆ︁ .
Finally, let us show that for each layer i ∈ [ℓ] we have that |Mi | ≤ |Miˆ︂ | ≤ ki . To

this end, we first observe that all vertices of A \ {v} are in the same component of
(V \{v},Eiˆ︂′

). Since A∩R =∅ and all vertices of A are in the same connected component
of Gi , we have that Giˆ︂[A\{v}] is complete. Hence, if A\{v} does not induce a complete
subgraph in (V \ {v},Eiˆ︂′

), then by Observation 8.20 we can conclude that Miˆ︂ contains
at least k +1 edges, as |A \ {v}| ≥ k +d +2 ≥ k +2.

Now for every x ∈ V \ A and every i ∈ [ℓ] we have that {v, x} ∈ E(Gi) if and only if
{u, x} ∈ E(Gi) for every u ∈ A as otherwise the induced subgraph Gi [{v,u, x}] would
be a P3, contradicting A ∩R = ∅. Similarly, for every x ∈ V \ A and every i ∈ [ℓ] we
have that {v, x} ∈ E ′

i if and only if {u, x} ∈ E ′
i for every u ∈ A, since (V \ {v},Eiˆ︂′

) is a
cluster graph and since E ′

i is constructed in this way. It follows that if {x, v} ∈ Mi

for some x ∈ V \ A, then {x,u} ∈ Miˆ︂ for every u ∈ A \ {v} and |Miˆ︂ | ≥ k +1 ≥ ki +1—a
contradiction. Hence {x, v} ∉ Mi for every x ∈V \ {v} and thus Mi ⊆ Miˆ︂ .

The next rule shows that the remaining clusters in a YES-instance cannot be large.

171

8 Temporal Cluster Editing

Reduction Rule 7. If there is a layer i ∈ [ℓ] and a connected component A of Gi with
|A \ R| ≥ k +2d +3, then answer NO.

Before we prove correctness of this rule, let us first make a folklore observation.

Observation 8.22. If a connected component C of a graph has at least three vertices
and is not complete, then every vertex of C appears in some induced P3.

Proof. Consider an arbitrary vertex u ∈V (C). If u is adjacent to v for every v ∈V (C) \
{u}, then there must be some pair {x, y} ⊆V (C) \ {u} of vertices such that {x, y} ∉ E(C)
since the component is not complete. Then, C [{u, x, y}] is a P3.

Otherwise u is not adjacent to some vertex v ∈V (C)\{u}. Then let P be the shortest
path between u and v . This path has at least three vertices and each three consecutive
vertices of this path induce a subgraph which is a P3.

Lemma 8.23. Reduction Rule 7 is correct.

Proof. Suppose towards a contradiction that A is a connected component of Gi

for some layer i ∈ [ℓ] with |A \ R| ≥ k +2d +3, and (G = (V , (Ei)i∈[ℓ]),k1, . . . ,kℓ,d) is a
YES-instance. Let (M1, . . . Mℓ,D) be a solution to the instance. For every layer j ∈ [ℓ],
let E ′

j = E j ⊕M j and let G ′
j = (V ,E ′

j). Let A′ = A\(D∪R) and note that |A′| ≥ k+d+3. We
claim that for every j ∈ [ℓ], all vertices of A′ are in the same connected component
of G j , contradicting the instance being reduced with respect to Reduction Rule 6.

Since A′∩R =∅ and all vertices of A are in the same connected component of Gi ,
by Observation 8.22 we have that Gi [A′] is complete. Hence, if G ′

i [A′] is not complete,
then by Observation 8.20 we have that Mi contains at least k +1 ≥ ki +1 edges, as
|A′| ≥ k +2, which is a contradiction. Hence, G ′

i [A′] is complete. For every j ∈ [ℓ],
since G ′

j [V \ D] =G ′
i [V \ D], the graph G ′

j [A′] is complete. Now again, if G j [A′] is not
complete for some layer j ∈ [ℓ], then again by Observation 8.20 we have that M j

contains at least k +1 ≥ k j +1 edges—a contradiction.

Now we introduce our final rule bounding the number of vertices in the instance.

Reduction Rule 8. If |V | > ℓ · (k2 +2k +d · (k +2d +2)+2k), then answer NO.

Lemma 8.24. Reduction Rule 8 is correct.

Proof. Suppose towards a contradiction that |V | > ℓ · (k2 +2k +d · (k +2d +2)+2k)
and (G = (V , (Ei)i∈[ℓ]),k1, . . . ,kℓ,d) is a YES-instance. Let (M1, . . . Mℓ,D) be a solution to
the instance. For each i ∈ [ℓ], let E ′

i = Ei ⊕Mi and let G ′
i = (V ,E ′

i). Let us denote by

172

8.4 Kernelization for Temporal Cluster Editing

S =⋃︁ℓ
i=1

⋃︁
{u,v}∈Mi

{u, v} the set of vertices adjacent to any modification. Obviously, we
have that |S| ≤ ℓ ·2k.

For every layer i ∈ [ℓ] and every x ∈ D let us denote by Q i
x ⊆ V \ R the set of

vertices from V \ R in the same connected component of G ′
i as the vertex x and

Q =⋃︁ℓ
i=1

⋃︁
x∈D Q i

x . Since the instance is reduced with respect to Reduction Rule 7, we
know that |Q i

x | ≤ k +2d +2 and, thus, we have that |Q| ≤ ℓ ·d · (k +2d +2).
Note also that |R| ≤ ℓ · (k2 + 2k), since the instance is reduced with respect to

Reduction Rule 4. Now since |V | > ℓ · (k2 +2k +d · (k +2d +2)+2k), |R| ≤ ℓ · (k2 +2k),
|Q| ≤ ℓ ·d · (k +2d +2), and |S| ≤ ℓ ·2k, the set V ′ =V \ (Q ∪R ∪S) is not empty. Let u be
an arbitrary vertex from V ′. Since the instance is reduced with respect to Reduction
Rule 5, we know that there are two distinct layers i , j ∈ [ℓ] and a vertex v such
that u and v are in the same connected component of Gi and in different connected
components of G j . Since v is not in S, we know that the same holds for the graphs G ′

i

and G ′
j . However, since v is neither in Q nor in R, we have that neither u nor v is in D.

But then G ′
i [V \ D] and G ′

j [V \ D] are different—a contradiction.

After bounding the size of the instance through Reduction Rule 8 it remains to
transform the resulting instance of TEMPORAL CLUSTER EDITING WITH SEPARATE

BUDGETS to an equivalent instance of TEMPORAL CLUSTER EDITING. To this end
we introduce new vertex set A of size exactly 2k +2 to V and to each Ei introduce
all edges from

(︁A
2

)︁
. Then, for each i ∈ [ℓ] we remove k −ki arbitrary edges between

vertices of A from Ei and set ki = k.
If {u, v} is an edge removed in this step, then u and v had 2k common neighbors in

A and by at most k −1 other edge removals they could loose at most k −1 of them.
Hence, Reduction Rule 3 would apply to each pair of vertices from A with an edge
removed. Applying Reduction Rule 3 exhaustively and then Reduction Rule 5 would
revert all the changes made. Hence, the constructed instance is equivalent to the
one obtained after exhaustive application of all the data reduction rules.

The constructed instance can be turned into an equivalent instance of TEMPORAL

CLUSTER EDITING in an obvious way. Since no rule increases k, d , or ℓ, and we have
that |V | =O(ℓ · (k +d)2), the resulting instance can be described using O(ℓ3 · (k +d)4)
bits and it is equivalent to the original instance, it remains to show that the kernel
can be computed in polynomial time.

Lemma 8.25. All data reduction rules introduced in this section can be exhaustively
applied in O(ℓ · |V |3) time.

Proof. If |V | < k2, then we can output the original instance as the kernel. Let us
assume that k2 ≤ |V |.

173

8 Temporal Cluster Editing

We can check whether Reduction Rule 1 applies in O(ℓ) time on the beginning and
in constant time whenever any later rule changes the budget. Applying the rule takes
constant time.

For each layer i ∈ [ℓ] we can count in O(|V |3) time in how many induced subgraphs
isomorphic to P3 each pair of vertices appears and classify the pairs according to
that count. Then we apply Reduction Rules 2 and 3 to the pairs which appear in
many P3’s. Each application takes O(|V |) time and at the same time we can update
the counts for affected pairs. Hence, these data reduction rules can be exhaustively
applied to one layer in O(|V |3) time. Also in the same time we can determine the sets
Ri and eventually apply Reduction Rule 4. Since the later rules only delete vertices
or answer NO, no application of a later rule can create an opportunity to apply
Reduction Rule 2, 3, or 4. Hence, these data reduction rules can be exhaustively
applied to the instance in O(ℓ · |V |3) time.

In O(ℓ · |V |2) time we can compute the graphs G∩ = (V ,
⋂︁ℓ

i=1 Ei) and G∪ = (V ,
⋃︁ℓ

i=1 Ei).
Then Reduction Rule 5 applies to all connected components of G∪ not containing
vertices of R that are also connected components of G∩. All of these applications can
be recognized in O(|V |2) time and all of them together applied in O(ℓ · |V |2) time. No
application of a later rule can create an opportunity to apply Reduction Rule 5.

Reduction Rule 6 applies to each connected component of G∩ which has the
appropriate number of vertices that are not in R. All of these applications can be
recognized in O(|V |2) time and all of them together applied in O(ℓ · |V |2) time. Since
later rules only answer NO, no application of a later rule can create an opportunity
to apply Reduction Rule 6.

We can check whether the rule applies in O(ℓ · |V |2) time for Reduction Rule 7 and
in constant time for Reduction Rule 8 and apply any of them in constant time.

Hence the data reduction rules can be exhaustively applied in O(ℓ · |V |3) time, the
final reduction back to TEMPORAL CLUSTER EDITING takes O(k2) ⊆O(|V |) time and
the result follows.

Theorem 8.15 is now directly implied by the correctness of all introduced data
reduction rules and Lemma 8.25.

8.5 Conclusion

Our results highlight that TEMPORAL CLUSTER EDITING is much richer in structure
than classic CLUSTER EDITING. Techniques for the classic problem somewhat carry
over but incorporating new methods, such as the greedy localization step, seem
necessary. We employ the latter in our fixed-parameter algorithm for TEMPORAL

CLUSTER EDITING with respect to the combination of k and d . However, we believe

174

8.5 Conclusion

that both the running time of the FPT-algorithm and the size of the polynomial
kernel leave room for improvement. Also, lower bounds on running time and kernel
size for this problem would further help to understand its computational complexity.

There are also a number of natural generalizations and restrictions for the prob-
lem that are worth considering. It might be especially interesting to put further
constraints on the marking of vertices, like giving marked vertices a weight cor-
responding to the number of different clusters they are part of in different layers.
Furthermore, canonical restrictions such as allowing only edge removals [Gra+05,
SST04] might be promising candidates for future research.

An interesting generalization would be to only require that each cluster is a ∆-
clique that is present over the whole lifetime of the temporal graph.

175

CHAPTER 9

Conclusion
In this thesis, we have seen six classic graph problems viewed from a temporal

perspective. There are usually various canonical ways to transfer a static graph
problem into the temporal setting. For some of the problems, we used already ex-
isting temporal models, for others we have proposed new models. An immediate
observation is that polynomial-time solvable problems tend to become NP-hard
when transferred to the temporal setting, even on temporal graphs with a constant
lifetime. In this thesis, we have seen four examples where this is the case: RESTLESS

TEMPORAL (s, z)-PATH, (RESTLESS) TEMPORAL (s, z)-SEPARATION, TEMPORAL MATCH-
ING, and (SLIDING WINDOW) TEMPORAL COLORING (for two colors). In the following,
we review the main contributions and try to put them into a larger context. We
further discuss general directions for future research in the field of temporal graph
algorithms. For discussions of specific open questions related to the problems we
investigated, we refer to the concluding sections of the respective chapters.

9.1 Main Contributions and General Messages

In the following, we adopt a bird’s-eye view on the results of this thesis and try to
point out interesting similarities between the results for the problems we investi-
gated.

Sparsity does not help. Or, as this should maybe rather say, “we have not found
a good way to measure sparsity of temporal graphs yet”. We say that parameters
measure sparsity roughly if they have the property that if they are small, it implies
that a graph has a small number of edges in comparison to the maximum number of
edges that it could have. In the computational hardness results we presented in this
thesis, we put an emphasis on restricting the instances produced by the reductions as
much as possible, often with the goal to create sparse temporal graphs. This usually
strengthens the results since it is often easy to see that computational hardness
on sparse instances also implies computational hardness on non-sparse or dense
instances. Let us review the results for some of the problems we considered.

• RESTLESS TEMPORAL (s, z)-PATH (Chapter 3): Here, we have shown that the
problem is NP-hard on graphs with lifetime three, even if the underlying graph

177

9 Conclusion

has maximum degree six (Theorem 3.3). We have further shown that the prob-
lem is W[1]-hard when parameterized by the feedback vertex number of the
underlying graph (Theorem 3.5). Additionally, we have that the instances pro-
duced by the reductions that we used to show these results have the property,
that every edge appears in at most one layer.

• (RESTLESS) TEMPORAL (s, z)-SEPARATION (Chapter 4): For TEMPORAL (s, z)-
SEPARATION, it was already known that it is NP-hard even on graphs with
lifetime two, even if the underlying graph has constant degeneracy and every
edge appears in at most one layer [Zsc+20]. We have shown the problem
remains NP-hard even if every layer contains only one edge (Proposition 4.1),
which we have done by describing how to transform an instance of TEMPORAL

(s, z)-SEPARATION to an equivalent instance with this property. However, this
should rather be seen as a redistribution of the edges to different time steps
and it actually increases the total number of time edges and the lifetime of the
instance. For the problem variant RESTLESS TEMPORAL (s, z)-SEPARATION, we
have shown that it is ΣP

2 -hard even if every edge appears in at most one layer
(Theorem 4.9).

• TEMPORAL MATCHING (Chapter 5): Here, we have shown that the problem
is NP-hard on graphs with lifetime three, even if the underlying graph has
maximum degree three and every edge appears in at most one layer (Theo-
rem 5.3). We have further shown that this problem remains NP-hard even if
the underlying graph of the input temporal graph is a path (Theorem 5.6).

• (SLIDING WINDOW) TEMPORAL COLORING (Chapter 6): For TEMPORAL COLOR-
ING, we have shown that it is NP-hard even if the degeneracy of the underlying
graph is linear in the number of colors and the number of edges in every layer
is quadratic in the number of colors (Theorem 6.4). For the problem variant
SLIDING WINDOW TEMPORAL COLORING, we have shown that it is NP-hard
on graphs with lifetime three, even if the maximum degree of the underlying
graph is linear in the number of colors (Theorem 6.5). We have further shown
that SLIDING WINDOW TEMPORAL COLORING remains NP-hard even if the
vertex cover number of the underlying graph is linear in the number of colors
(Theorem 6.12). In particular, all mentioned results hold even if the number of
colors is two.

We remark that we do not discuss TEMPORAL CLIQUE, TEMPORAL s-PLEX, and TEM-
PORAL CLUSTER EDITING here since their static counterparts are already NP-hard
and this thesis does not feature dedicated hardness reductions.

178

9.1 Main Contributions and General Messages

In summary, we can see that for all problems listed above, the reductions we use to
show our hardness results create very sparse instances. In particular, this shows that
the temporal dimension adds so much complexity to the problem settings that we
do not need to create temporal graphs with sophisticated structure in the layers or
the underlying graph to encode computationally hard problems. However, as in the
static case [ELS13], we know that many real-world instances of temporal graphs are
sparse [Ben+19, Him+17], so it is still well-motivated to try to algorithmically exploit
sparsity. However, it seems that we have not found many good ways to do that yet.

Adapting existing algorithms is promising. Of course, a (presumably) necessary
condition that we need if we want to adapt an existing algorithm to the temporal
setting is that the problem which the algorithm solves does not make a computa-
tional complexity jump when being transferred to the temporal setting. For most of
the problems we discussed in this thesis we have observed a change in the compu-
tational complexity, going from being polynomial-time solvable to being NP-hard.
However, we successfully adapted existing algorithm for the problems TEMPORAL

CLIQUE, TEMPORAL s-PLEX, and TEMPORAL CLUSTER EDITING, which are all already
NP-hard in the static case. Still, it is necessary to make a number of non-trivial modi-
fications to the algorithms to adapt them for the temporal versions of the problems.
In the following, we briefly review the algorithms and how we adapted them.

• TEMPORAL CLIQUE and TEMPORAL s-PLEX (Chapter 7): To solve these two
problems, we have adapted the famous Bron-Kerbosch algorithm to enumer-
ate cliques in static graphs [BK73]. Our adaptation, as its static role model, is
also able to enumerate all maximal temporal cliques and s-plexes as opposed
to “just” solving the decision problem. In our adaptation, we mainly had to up-
grade the functionality of the data structures used in the algorithm to be able
to handle the temporal dimension of the problem. In particular, the notion of
neighborhoods had to be adapted to the temporal setting and along with it
the data structures to save neighbors or non-neighbors of vertices. Similarly
to the static case [ELS13], we were also able to use this algorithm to obtain
fixed-parameter tractability for TEMPORAL CLIQUE and TEMPORAL s-PLEX

(with fixed s) parameterized by the (temporal) degeneracy (Theorem 7.3).

• TEMPORAL CLUSTER EDITING (Chapter 8): For this problem, we have presented
a search-tree algorithm showing fixed-parameter tractability for the parame-
ter combination “edit budget” and “marking budget” (Theorem 8.4) and we
have shown that the problem admits a polynomial kernel for the parameter
combination “edit budget”, “marking budget”, and “lifetime” (Theorem 8.15).

179

9 Conclusion

Our search-tree algorithm is based on a simple branching algorithm to solve
CLUSTER EDITING on static graphs that was first described by Gramm et al.
[Gra+05] but implicitly already observed by Cai [Cai96]. However, we were not
able to deal with the temporal nature of TEMPORAL CLUSTER EDITING without
introducing some modifications. In particular, it seemed necessary to start
with a greedy localization step, where we (greedily) add and remove edges
from the input temporal graph to make all layers “look the same” knowing that
we might have to revert some of these greedy decisions later. We also had to
introduce a kernelization step within the search-tree algorithm to be able to
upper-bound the number of branches in certain situations.

Our kernelization algorithm for TEMPORAL CLUSTER EDITING is based on
one of the first kernelization algorithms discovered for CLUSTER EDITING

by Gramm et al. [Gra+05]. The main difference was that we cannot simply
remove isolated cliques from layers, unless they appear in every layer. This
alone however was not enough to upper-bound the size of a reduced instance.
Hence, we needed a number of additional data reduction rules to handle the
temporal nature of the problem.

We remark that our algorithm to enumerate temporal cliques and s-plexes was also
evaluated empirically by Bentert et al. [Ben+19] and Himmel et al. [Him+17] showing
a good performance in practical applications.

In the literature, we can find more examples where algorithms for static graph prob-
lems were successfully adapted to the temporal case, such as algorithms to find tem-
poral paths [Him+19, Wu+16, XFJ03] or algorithms to find isolated cliques [MNR19].
We have added two further examples to this list, showing that adaptation of existing
algorithms is a canonical and promising way to approach temporal graph problems
on an algorithmic level.

Efficient data reduction is difficult. We use the concept of (polynomial) kerneliza-
tion to analyze the efficiency of data reduction rules in terms of how much they can
(provably) reduce the size of an input instance (measured by some parameter). We
use the framework of cross-compositions [BJK14, Bod+09, Dru15, Fom+19, FS11]
to refute the existence of polynomial kernels based on widely believed complexity
assumptions.

For almost all problems considered in this thesis we have shown that they do not
admit a polynomial kernel for the number of vertices of the input temporal graph.
In other words, for many temporal graph problems it is presumably not possible
to design data reduction rules that significantly reduce the lifetime of the input

180

9.2 Zukunftsmusik

temporal graph. To give an intuition why this is the case, we give a (very rough)
reminder on how cross-compositions work. In a cross-composition, we have to
compose many problem instances of an NP-hard problem into one big instance of
the problem we want to investigate such that the big instance is either a YES-instance
if and only if at least one of the input instances is a YES-instance, or if and only if
all input instance are YES-instances. This then refutes polynomial kernels for the
problem under investigation for parameters of the big instance that only depend on
the maximum size of the input instances (and not on the number of input instances).

With temporal graph problems, we have the whole temporal dimension to com-
pose instances. The rough idea for all our results that refute polynomial kernels is
as follows. We string the input instances together in the temporal dimension in a
clever way, this then results in a large lifetime of the composed instance, but the
number of vertices is typically small (that is, only depends on the maximum size of
the instances). This rough idea seems to work with many different temporal graph
problems.

9.2 Zukunftsmusik

The observations we made in the previous section lead to some general yet canon-
ical future research directions.

• There seems to be much room for new ideas on how to define parameters for
temporal graphs, especially ones that measure sparsity. Our results suggest
that investigating the structure of the underlying graph is not enough in many
cases. Since the complexity of temporal graph problems seems to be “hidden”
in the temporal dimension, it would also make sense to explore the idea of
measuring the change over time in a temporal graph. To some degree we
attempted this successfully with the “shuffle number” (Definition 4.5), which
however is a parameter for an already restricted class of temporal graphs.
Another example from the literature would be the size of the temporal core,
that is, the number of vertices adjacent to edges that are not present in all layers.
This concept has been successfully employed by Zschoche et al. [Zsc+20] in
the context of TEMPORAL (s, z)-SEPARATION.

• The concept of polynomial kernelization does not seem very well-suited for
the task of analyzing data reduction rules for temporal graph problems. Our
results suggest that concepts such as partial kernels [Bet+11] could be more
appropriate for this task, where only some dimensions of the input instance
are reduced.

181

9 Conclusion

Apart from this, we believe that some of our results for TEMPORAL (s, z)-SEPARA-
TION are a first step to an alternative way to approach temporal graph problems by
restricting the input instances. In this context we introduced temporal unit interval
graphs as a very basic model for physical proximity networks and were able to obtain
encouraging tractability results on input instances with this restriction. This spawns
some canonical future research directions. On the one hand, it would be interesting
how far we can generalize the model for temporal physical proximity networks and
still obtain tractability results. A first step into this direction would be to consider
temporal unit square graphs or temporal unit disk graphs. On the other hand, it
makes sense to also investigate other problems under this restriction, especially if
they are well-motivated on physical proximity networks. A canonical candidate to
start with would be TEMPORAL CLIQUE, since this problem was originally investigated
on temporal physical proximity networks [VLM16] and in the static case we know that
this problem becomes tractable for example on unit disk intersection graphs [CCJ90].

182

Bibliography
[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, 2009 (cited on pp. 63, 66).

[AF16] K. Axiotis and D. Fotakis. “On the size and the approximability of minimum tempo-
rally connected subgraphs”. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming (ICALP ’16). 2016, 149:1–149:14 (cited
on p. 22).

[Akr+17] E. C. Akrida, L. Gąsieniec, G. B. Mertzios, and P. G. Spirakis. “The complexity of
optimal design of temporally connected graphs”. In: Theory of Computing Systems
61(3) (2017), pp. 907–944 (cited on p. 22).

[Akr+19a] E. C. Akrida, J. Czyzowicz, L. Gąsieniec, Ł. Kuszner, and P. G. Spirakis. “Temporal
flows in temporal networks”. In: Journal of Computer and System Sciences 103
(2019), pp. 46–60 (cited on pp. 22, 40).

[Akr+19b] E. C. Akrida, G. B. Mertzios, S. Nikoletseas, C. Raptopoulos, P. G. Spirakis, and V.
Zamaraev. “How fast can we reach a target vertex in stochastic temporal graphs?”
In: Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming (ICALP ’19). Vol. 132. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2019, 131:1–131:14 (cited on p. 22).

[Akr+20] E. C. Akrida, G. B. Mertzios, P. G. Spirakis, and V. Zamaraev. “Temporal vertex cover
with a sliding time window”. In: Journal of Computer and System Sciences 107
(2020), pp. 108–123 (cited on p. 71).

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and
Applications. Prentice Hall, 1993 (cited on p. 39).

[AMS19] E. C. Akrida, G. B. Mertzios, and P. G. Spirakis. “The temporal explorer who returns
to the base”. In: Proceedings of the 11th International Conference on Algorithms and
Complexity (CIAC ’19). 2019, pp. 13–24 (cited on p. 22).

[Bam+18] E. Bampis, B. Escoffier, M. Lampis, and V. T. Paschos. “Multistage matchings”. In:
Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm The-
ory (SWAT ’18). Vol. 101. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2018, 7:1–7:13 (cited on pp. 70, 71, 117).

[Bar16] A.-L. Barabási. Network Science. Cambridge University Press, 2016 (cited on p. 21).

[BB13] S. Böcker and J. Baumbach. “Cluster Editing”. In: Proceedings of the 9th Conference
on Computability in Europe (CiE ’13). Vol. 7921. Lecture Notes in Computer Science.
Springer, 2013, pp. 33–44 (cited on pp. 145, 146).

183

Bibliography

[BBC04] N. Bansal, A. Blum, and S. Chawla. “Correlation clustering”. In: Machine Learning
56 (2004), pp. 89–113 (cited on pp. 145, 146, 148, 150, 153).

[BBH11] B. Balasundaram, S. Butenko, and I. V. Hicks. “Clique relaxations in social network
analysis: The maximum k-plex problem”. In: Operations Research 59(1) (2011),
pp. 133–142 (cited on pp. 120, 121, 127, 129, 130).

[BBR20] J. Baste, B.-M. Bui-Xuan, and A. Roux. “Temporal matching”. In: Theoretical Com-
puter Science 806 (2020), pp. 184–196 (cited on pp. 69, 70, 72, 73, 75, 76, 79, 80).

[BCK15] D. Berlowitz, S. Cohen, and B. Kimelfeld. “Efficient enumeration of maximal k-
plexes”. In: Proceedings of the 21st ACM SIGMOD International Conference on
Management of Data. ACM. 2015, pp. 431–444 (cited on pp. 120, 121).

[Ben+18] M. Bentert, A.-S. Himmel, H. Molter, M. Morik, R. Niedermeier, and R. Saiten-
macher. “Listing all maximal k-plexes in temporal graphs”. In: Proceedings of the
2018 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM ’18). IEEE Computer Society, 2018, pp. 41–46 (cited on pp. vii,
119).

[Ben+19] M. Bentert, A.-S. Himmel, H. Molter, M. Morik, R. Niedermeier, and R. Saiten-
macher. “Listing all maximal k-plexes in temporal graphs”. In: ACM Journal of
Experimental Algorithmics 24(1) (2019), 13:1–13:27 (cited on pp. vii, 68, 119, 122,
143, 179, 180).

[Ber96] K. A. Berman. “Vulnerability of scheduled networks and a generalization of Menger’s
theorem”. In: Networks: An International Journal 28(3) (1996), pp. 125–134 (cited
on pp. 21, 40).

[Bet+11] N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. “Average parameterization
and partial kernelization for computing medians”. In: Journal of Computer and
System Sciences 77(4) (2011), pp. 774–789 (cited on pp. 147, 181).

[Bev+16a] R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý.
“Finding secluded places of special interest in graphs”. In: Proceedings of the 11th
International Symposium on Parameterized and Exact Computation (IPEC ’16).
Vol. 63. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, 5:1–5:16
(cited on p. viii).

[Bev+16b] R. van Bevern, H. Molter, C. Komusiewicz, R. Niedermeier, M. Sorge, and T. Walsh.
“H-Index manipulation by undoing merges”. In: Proceedings of the 22nd Euro-
pean Conference on Artificial Intelligence (ECAI ’16). Vol. 285. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2016, pp. 895–903 (cited on p. viii).

[Bev+18] R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý.
“The parameterized complexity of finding secluded solutions to some classical
optimization problems on graphs”. In: Discrete Optimization 30 (2018), pp. 20–50
(cited on p. viii).

184

Bibliography

[Bev+20] R. van Bevern, H. Molter, C. Komusiewicz, R. Niedermeier, M. Sorge, and T. Walsh.
“H-Index manipulation by undoing merges”. In: Quantitative Science Studies (2020).
Accepted for publication. (cited on p. viii).

[BF14] A. Barrat and J. Fournet. “Contact patterns among high school students”. In: PLoS
ONE 9(9) (2014), e107878:1–e107878:17 (cited on p. 121).

[BFK18] R. van Bevern, V. Froese, and C. Komusiewicz. “Parameterizing edge modification
problems above lower bounds”. In: Theory of Computing Systems 62(3) (2018),
pp. 739–770 (cited on pp. 145, 146).

[BG93] J. F. Buss and J. Goldsmith. “Nondeterminism within P”. In: SIAM Journal on Com-
puting 22(3) (1993), pp. 560–572 (cited on p. 116).

[BJK14] H. L. Bodlaender, B. M. Jansen, and S. Kratsch. “Kernelization lower bounds by
cross-composition”. In: SIAM Journal on Discrete Mathematics 28(1) (2014), pp. 277–
305 (cited on pp. 12, 13, 180).

[BK73] C. Bron and J. Kerbosch. “Algorithm 457: Finding all cliques of an undirected graph”.
In: Communications of the ACM 16(9) (1973), pp. 575–577 (cited on pp. 119–122,
130, 131, 179).

[BKZ05] D. Berend, E. Korach, and S. Zucker. “Two-anticoloring of planar and related
graphs”. In: Proceedings of the 2005 International Conference on Analysis of Al-
gorithms. 2005, pp. 335–342 (cited on p. 83).

[BL76] K. S. Booth and G. S. Lueker. “Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms”. In: Journal of Computer
and System Sciences 13(3) (1976), pp. 335–379 (cited on p. 53).

[Boc+14] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Ro-
mance, I. Sendina-Nadal, Z. Wang, and M. Zanin. “The structure and dynamics of
multilayer networks”. In: Physics Reports 544(1) (2014), pp. 1–122 (cited on pp. 4,
10).

[Bod+09] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. “On problems
without polynomial kernels”. In: Journal of Computer and System Sciences 75(8)
(2009), pp. 423–434 (cited on pp. 12, 13, 180).

[BP19] S. Banerjee and B. Pal. “On the enumeration of maximal (∆, γ)-cliques of a temporal
network”. In: Proceedings of the ACM India Joint International Conference on Data
Science and Management of Data (CoDS-COMAD ’19). ACM. 2019, pp. 112–120
(cited on p. 121).

[Bre+17] R. Bredereck, C. Komusiewicz, S. Kratsch, H. Molter, R. Niedermeier, and M. Sorge.
“Assessing the computational complexity of multi-layer subgraph detection”. In:
Proceedings of the 10th International Conference on Algorithms and Complexity
(CIAC ’17). Vol. 10236. Lecture Notes in Computer Science. Springer, 2017, pp. 128–
139 (cited on p. viii).

185

Bibliography

[Bre+19] R. Bredereck, C. Komusiewicz, S. Kratsch, H. Molter, R. Niedermeier, and M. Sorge.
“Assessing the computational complexity of multilayer subgraph detection”. In:
Network Science 7(2) (2019), pp. 215–241 (cited on pp. viii, 71).

[Buß+20] S. Buß, H. Molter, R. Niedermeier, and M. Rymar. “Algorithmic aspects of temporal
betweenness”. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’20). ACM, 2020, pp. 2084–2092 (cited on p. viii).

[BZ19] H. L. Bodlaender and T. C. van der Zanden. “On exploring always-connected tem-
poral graphs of small pathwidth”. In: Information Processing Letters 142 (2019),
pp. 68–71 (cited on p. 22).

[Cai03] L. Cai. “Parameterized complexity of vertex colouring”. In: Discrete Applied Mathe-
matics 127(3) (2003), pp. 415–429 (cited on p. 58).

[Cai96] L. Cai. “Fixed-parameter tractability of graph modification problems for hereditary
properties”. In: Information Processing Letters 58(4) (1996), pp. 171–176 (cited on
pp. 153, 180).

[Cas+12] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. “Time-varying graphs
and dynamic networks”. In: International Journal of Parallel, Emergent and Dis-
tributed Systems 27(5) (2012), pp. 387–408 (cited on pp. 4, 10).

[Cas+15a] A. Casteigts, P. Flocchini, E. Godard, N. Santoro, and M. Yamashita. “On the ex-
pressivity of time-varying graphs”. In: Theoretical Computer Science 590 (2015),
pp. 27–37 (cited on p. 21).

[Cas+15b] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. “Shortest, fastest, and fore-
most broadcast in dynamic networks”. In: International Journal of Foundations of
Computer Science 26(4) (2015), pp. 499–522 (cited on p. 21).

[Cas+20] A. Casteigts, A.-S. Himmel, H. Molter, and P. Zschoche. “The computational com-
plexity of finding temporal paths under waiting time constraints”. In: Proceedings
of the 31st International Symposium on Algorithms and Computation (ISAAC ’20).
LIPIcs. Accepted for publication. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2020 (cited on pp. v, vi, 19, 22, 31, 37, 147).

[CC12] Y. Cao and J. Chen. “Cluster Editing: Kernelization based on edge cuts”. In: Algo-
rithmica 64(1) (2012), pp. 152–169 (cited on pp. 145, 146).

[CCJ90] B. N. Clark, C. J. Colbourn, and D. S. Johnson. “Unit disk graphs”. In: Discrete
Mathematics 86(1-3) (1990), pp. 165–177 (cited on pp. 71, 83, 182).

[CF13a] A. Casteigts and P. Flocchini. Deterministic Algorithms in Dynamic Networks: For-
mal Models and Metrics. Tech. rep. Defence R&D Canada, 2013 (cited on pp. 4,
10).

[CF13b] A. Casteigts and P. Flocchini. Deterministic Algorithms in Dynamic Networks: Prob-
lems, Analysis, and Algorithmic Tools. Tech. rep. Defence R&D Canada, Apr. 2013
(cited on pp. 4, 10).

186

Bibliography

[Cha13] G. J. Chang. “Algorithmic aspects of domination in graphs”. In: Handbook of Com-
binatorial Optimization (2013), pp. 221–282 (cited on pp. 82, 83).

[Che+18] J. Chen, H. Molter, M. Sorge, and O. Suchý. “Cluster editing in multi-layer and tem-
poral graphs”. In: Proceedings of the 29th International Symposium on Algorithms
and Computation (ISAAC ’18). Vol. 123. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2018, 24:1–24:13 (cited on pp. viii, 145–148, 150).

[Con+17] A. Conte, D. Firmani, C. Mordente, M. Patrignani, and R. Torlone. “Fast enumer-
ation of large k-plexes”. In: Proceedings of the 23th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’17). ACM. 2017, pp. 115–
124 (cited on pp. 120, 121).

[Con+18] A. Conte, T. De Matteis, D. De Sensi, R. Grossi, A. Marino, and L. Versari. “D2k:
scalable community detection in massive networks via small-diameter k-plexes”.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’18). ACM. 2018, pp. 1272–1281 (cited on pp. 120,
121, 131).

[CPS19] A. Casteigts, J. Peters, and J. Schoeters. “Temporal cliques admit sparse spanners”.
In: Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming (ICALP ’19). Vol. 132. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2019, 134:1–134:14 (cited on p. 22).

[Cyg+15] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015 (cited on p. 12).

[Deh+04] F. Dehne, M. Fellows, F. Rosamond, and P. Shaw. “Greedy Localization, Iterative
Compression, and Modeled Crown Reductions: New FPT Techniques, an Improved
Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover”. In: Pro-
ceedings of 1st International Workshop on Parameterized and Exact Computation
(IWPEC ’04). Vol. 3162. Lecture Notes in Computer Science. Springer, 2004, pp. 271–
280 (cited on p. 153).

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013 (cited on p. 12).

[DF95] R. G. Downey and M. R. Fellows. “Parameterized computational feasibility”. In:
Feasible Mathematics II. Springer, 1995, pp. 219–244 (cited on p. 116).

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999 (cited
on pp. 12, 67).

[Die16] R. Diestel. Graph Theory, 5th Edition. Vol. 173. Graduate Texts in Mathematics.
Springer, 2016 (cited on pp. 9, 74).

[Dör+14] M. Dörnfelder, J. Guo, C. Komusiewicz, and M. Weller. “On the parameterized
complexity of consensus clustering”. In: Theoretical Computer Science 542 (2014),
pp. 71–82 (cited on p. 147).

187

Bibliography

[DRS17] T. Dey, A. Rossi, and A. Sidiropoulos. “Temporal clustering”. In: Proceedings of the
25th Annual European Symposium on Algorithms (ESA ’17). Vol. 87. LIPIcs. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017, 34:1–34:14 (cited on p. 147).

[Dru15] A. Drucker. “New limits to classical and quantum instance compression”. In: SIAM
Journal on Computing 44(5) (2015), pp. 1443–1479 (cited on pp. 12, 13, 180).

[EHK15] T. Erlebach, M. Hoffmann, and F. Kammer. “On temporal graph exploration”. In:
Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP ’15). Vol. 9134. Lecture Notes in Computer Science. Springer,
2015, pp. 444–455 (cited on p. 22).

[ELS13] D. Eppstein, M. Löffler, and D. Strash. “Listing all maximal cliques in large sparse
real-world graphs in near-optimal time”. In: ACM Journal of Experimental Algorith-
mics 18(3) (2013), 3.1:1–3.1:21 (cited on pp. 120, 128, 130, 179).

[EMS21] J. Enright, K. Meeks, and F. Skerman. “Changing times to optimise reachability in
temporal graphs”. In: Journal of Computer and System Sciences 115 (2021), pp. 169–
186 (cited on p. 22).

[Enr+19] J. Enright, K. Meeks, G. Mertzios, and V. Zamaraev. “Deleting edges to restrict the
size of an epidemic in temporal networks”. In: Proceedings of the 44th International
Symposium on Mathematical Foundations of Computer Science (MFCS ’19). Vol. 138.
LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019, 57:1–57:15 (cited
on p. 22).

[Erl+19] T. Erlebach, F. Kammer, K. Luo, A. Sajenko, and J. T. Spooner. “Two moves per
time step make a difference”. In: Proceedings of the 46th International Colloquium
on Automata, Languages, and Programming (ICALP ’19). Vol. 132. LIPIcs. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019, 141:1–141:14 (cited on p. 22).

[ES18] T. Erlebach and J. T. Spooner. “Faster exploration of degree-bounded temporal
graphs”. In: Proceedings of the 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS ’18). Vol. 117. LIPIcs. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2018, 36:1–36:13 (cited on p. 22).

[Fel+09] M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. “On the parameterized
complexity of multiple-interval graph problems”. In: Theoretical Computer Science
410(1) (2009), pp. 53–61 (cited on p. 31).

[Fer+18] H. Fernau, T. Fluschnik, D. Hermelin, A. Krebs, H. Molter, and R. Niedermeier.
“Diminishable parameterized problems and strict polynomial kernelization”. In:
Proceedings of the 14th Conference on Computability in Europe (CiE ’18). Vol. 10936.
Lecture Notes in Computer Science. Springer. 2018, pp. 161–171 (cited on p. viii).

[Fer+20] H. Fernau, T. Fluschnik, D. Hermelin, A. Krebs, H. Molter, and R. Niedermeier.
“Diminishable parameterized problems and strict polynomial kernelization”. In:
Computability 9(1) (2020), pp. 1–24 (cited on p. viii).

188

Bibliography

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Vol. XIV. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 2006 (cited on p. 12).

[Flu+17] T. Fluschnik, M. Hatzel, S. Härtlein, H. Molter, and H. Seidler. “The minimum
shared edges problem on grid-like graphs”. In: Proceedings of the 43rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’17). Vol. 10520.
Lecture Notes in Computer Science. Springer, 2017, pp. 249–262 (cited on p. viii).

[Flu+18] T. Fluschnik, H. Molter, R. Niedermeier, and P. Zschoche. “Temporal graph classes:
A view through temporal separators”. In: Proceedings of the 44th International
Workshop of Graph-Theoretic Concepts in Computer Science (WG ’18). Vol. 11159.
Lecture Notes in Computer Science. Springer, 2018, pp. 216–227 (cited on pp. vi,
39).

[Flu+19] T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche. “Multistage vertex cover”.
In: Proceedings of the 14th International Symposium on Parameterized and Exact
Computation (IPEC ’19). Vol. 148. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2019, 14:1–14:14 (cited on pp. 71, 117).

[Flu+20a] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, and P. Zschoche. “As time
goes by: reflections on treewidth for temporal graphs”. In: Treewidth, Kernels, and
Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday. Vol. 12160. Lecture Notes in Computer Science. Springer, 2020, pp. 49–77
(cited on p. viii).

[Flu+20b] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, and P. Zschoche. “Tempo-
ral graph classes: a view through temporal separators”. In: Theoretical Computer
Science 806 (2020), pp. 197–218 (cited on pp. vi, 39, 42).

[FMS13] P. Flocchini, B. Mans, and N. Santoro. “On the exploration of time-varying net-
works”. In: Theoretical Computer Science 469 (2013), pp. 53–68 (cited on p. 22).

[Fom+14] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. “Tight bounds
for parameterized complexity of Cluster Editing with a small number of clusters”.
In: Journal of Computer and System Sciences 80(7) (2014), pp. 1430–1447 (cited
on pp. 145, 146).

[Fom+19] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, 2019 (cited on pp. 12,
180).

[FS11] L. Fortnow and R. Santhanam. “Infeasibility of instance compression and succinct
PCPs for NP”. In: Journal of Computer and System Sciences 77(1) (2011), pp. 91–106
(cited on pp. 12, 13, 180).

[GCV91] F. Göbel, J. O. Cerdeira, and H. J. Veldman. “Label-connected graphs and the gossip
problem”. In: Discrete Mathematics 87(1) (1991), pp. 29–40 (cited on p. 21).

189

Bibliography

[GG15] S. Ghosal and S. C. Ghosh. “Channel assignment in mobile networks based on
geometric prediction and random coloring”. In: Proceedings of the 40th IEEE Con-
ference on Local Computer Networks (LCN ’15). IEEE. 2015, pp. 237–240 (cited on
p. 90).

[GHN04] J. Guo, F. Hüffner, and R. Niedermeier. “A structural view on parameterizing prob-
lems: Distance from triviality”. In: Proceedings of the 1st International Workshop on
Parameterized and Exact Computation (IWPEC ’04). Springer. 2004, pp. 162–173
(cited on p. 58).

[GJ77] M. R. Garey and D. S. Johnson. “The rectilinear Steiner tree problem is NP-complete”.
In: SIAM Journal on Applied Mathematics 32(4) (1977), pp. 826–834 (cited on p. 81).

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979 (cited on pp. 47, 76, 80, 81, 93, 96, 112).

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. “Some simplified NP-complete
problems”. In: Theoretical Computer Science 1(3) (1976), pp. 237–267 (cited on
pp. 76, 80, 81, 93, 96).

[Gra+05] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. “Graph-modeled data clustering:
exact algorithms for clique generation”. In: Theory of Computing Systems 38(4)
(2005), pp. 373–392 (cited on pp. 145, 146, 153, 159, 167, 168, 175, 180).

[GTW14] A. Gupta, K. Talwar, and U. Wieder. “Changing bases: multistage optimization for
matroids and matchings”. In: Proceedings of the 41st International Colloquium on
Automata, Languages, and Programming (ICALP ’14). Vol. 8572. Lecture Notes in
Computer Science. Springer. 2014, pp. 563–575 (cited on pp. 70, 71, 117).

[Guo+10] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. “A more relaxed model
for graph-based data clustering: s-plex cluster editing”. In: SIAM Journal on Discrete
Mathematics 24(4) (2010), pp. 1662–1683 (cited on p. 120).

[GZW18] D. Guo, H. Zhang, and M. D. Wong. “On coloring rectangular and diagonal grid
graphs for multiple patterning lithography”. In: Proceedings of the 23rd Asia and
South Pacific Design Automation Conference. IEEE Press. 2018, pp. 387–392 (cited
on pp. 82, 83).

[Haa+20] R. Haag, H. Molter, R. Niedermeier, and M. Renken. “Feedback edge sets in tempo-
ral graphs”. In: Proceedings of the 46th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’20). Vol. 12301. Lecture Notes in Computer
Science. Springer, 2020, pp. 200–212 (cited on p. viii).

[Him+16] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. “Enumerating maximal
cliques in temporal graphs”. In: Proceedings of the 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM ’16).
IEEE Computer Society, 2016, pp. 337–344 (cited on pp. vii, 119).

190

Bibliography

[Him+17] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. “Adapting the Bron-Kerbosch
algorithm for enumerating maximal cliques in temporal graphs”. In: Social Network
Analysis and Mining 7(1) (2017), 35:1–35:16 (cited on pp. vii, 68, 119, 122, 143, 179,
180).

[Him+19] A.-S. Himmel, M. Bentert, A. Nichterlein, and R. Niedermeier. “Efficient computa-
tion of optimal temporal walks under waiting-time constraints”. In: Proceedings
of the 8th International Conference on Complex Networks and Their Applications
(COMPLEX NETWORKS ’19). Vol. 882. SCI. Springer, 2019, pp. 494–506 (cited on
pp. 21, 27, 180).

[Him16] A.-S. Himmel. “Enumerating Maximal Cliques in Temporal Graphs”. Bachelor’s
thesis. TU Berlin, Jan. 2016 (cited on p. vii).

[Him18] A.-S. Himmel. “Algorithmic Investigations into Temporal Paths”. Master’s thesis.
TU Berlin, Apr. 2018 (cited on pp. v, 21, 27).

[HMS18] C. Hoffmann, H. Molter, and M. Sorge. “The parameterized complexity of centrality
improvement in networks”. In: Proceedings of the 44th International Conference
on Current Trends in Theory and Practice of Informatics (SOFSEM ’18). Vol. 10706.
Lecture Notes in Computer Science. Springer. 2018, pp. 111–124 (cited on p. viii).

[Hol15] P. Holme. “Modern temporal network theory: a colloquium”. In: The European
Physical Journal B 88(9) (2015), 234:1–234:30 (cited on pp. 4, 10).

[Hol16] P. Holme. “Temporal network structures controlling disease spreading”. In: Physical
Review E 94.2 (2016), 022305:1–022305:8 (cited on p. 21).

[HS12] P. Holme and J. Saramäki. “Temporal networks”. In: Physics Reports 519(3) (2012),
pp. 97–125 (cited on pp. 4, 10, 21).

[HS13] P. Holme and J. Saramäki. Temporal Networks. Springer, 2013 (cited on pp. 4, 10).

[HS19] P. Holme and J. Saramäki. Temporal Network Theory. Springer, 2019 (cited on pp. 4,
10).

[Hüf+09] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. “Isolation concepts for
clique enumeration: comparison and computational experiments”. In: Theoretical
Computer Science 410(52) (2009), pp. 5384–5397 (cited on p. 120).

[Hun+98] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. “NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs”. In: Journal of Algorithms 26(2) (1998), pp. 238–274 (cited
on p. 88).

[II09] H. Ito and K. Iwama. “Enumeration of isolated cliques and pseudo-cliques”. In:
ACM Transactions on Algorithms 5(4) (2009), 40:1–40:21 (cited on p. 120).

[IP01] R. Impagliazzo and R. Paturi. “On the complexity of k-SAT”. In: Journal of Computer
and System Sciences 62(2) (2001), pp. 367–375 (cited on pp. 14, 30, 31, 107).

191

Bibliography

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. “Which problems have strongly exponential
complexity?” In: Journal of Computer and System Sciences 63(4) (2001), pp. 512–530
(cited on pp. 14, 30, 31, 107).

[JT11] T. R. Jensen and B. Toft. Graph Coloring Problems. Vol. 39. John Wiley & Sons, 2011
(cited on p. 91).

[Kar72] R. M. Karp. “Reducibility among combinatorial problems”. In: Complexity of Com-
puter Computations. Springer, 1972, pp. 85–103 (cited on pp. 47, 93, 119, 120, 127,
129, 130).

[Ken38] M. G. Kendall. “A new measure of rank correlation”. In: Biometrika 30(1/2) (1938),
pp. 81–93 (cited on p. 58).

[Kiv+14] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter.
“Multilayer networks”. In: Journal of Complex Networks 2(3) (2014), pp. 203–271
(cited on pp. 16, 145).

[KKK02] D. Kempe, J. Kleinberg, and A. Kumar. “Connectivity and inference problems for
temporal networks”. In: Journal of Computer and System Sciences 64(4) (2002),
pp. 820–842 (cited on pp. 21, 39–41, 44, 45).

[KL15] J. Kim and J.-G. Lee. “Community detection in multi-layer graphs: A survey”. In:
ACM SIGMOD Record 44(3) (2015), pp. 37–48 (cited on p. 145).

[KM86] M. Křivánek and J. Morávek. “NP-hard problems in hierarchical-tree clustering”.
In: Acta informatica 23(3) (1986), pp. 311–323 (cited on p. 150).

[Kom+09] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. “Isolation concepts
for efficiently enumerating dense subgraphs”. In: Theoretical Computer Science
410(38) (2009), pp. 3640–3654 (cited on p. 120).

[KU12] C. Komusiewicz and J. Uhlmann. “Cluster editing with locally bounded modifica-
tions”. In: Discrete Applied Mathematics 160 (2012), pp. 2259–2270 (cited on pp. 145,
146).

[Kuh55] H. W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval
research logistics quarterly 2(1-2) (1955), pp. 83–97 (cited on p. 151).

[LM17] Q. Liang and E. Modiano. “Survivability in time-varying networks”. In: IEEE Trans-
actions on Mobile Computing 16(9) (2017), pp. 2668–2681 (cited on p. 40).

[LMS18] J. Luo, H. Molter, and O. Suchý. “A parameterized complexity view on collapsing k-
cores”. In: Proceedings of the 13th International Symposium on Parameterized and
Exact Computation (IPEC ’18). Vol. 115. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2018, 7:1–7:14 (cited on p. viii).

[LO93] P. J. Looges and S. Olariu. “Optimal greedy algorithms for indifference graphs”. In:
Computers & Mathematics with Applications 25(7) (1993), pp. 15–25 (cited on pp. 43,
53).

192

Bibliography

[LP09] L. Lovász and M. D. Plummer. Matching Theory. Vol. 367. AMS, 2009 (cited on pp. 69,
71, 72).

[Luo+18] J. Luo, H. Molter, A. Nichterlein, and R. Niedermeier. “Parameterized dynamic clus-
ter editing”. In: Proceedings of the 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS ’18. Vol. 122.
LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 46:1–46:15 (cited
on pp. viii, 145, 147).

[Luo+20] J. Luo, H. Molter, A. Nichterlein, and R. Niedermeier. “Parameterized dynamic
cluster editing”. In: Algorithmica (2020), pp. 1–44 (cited on p. viii).

[LVM18] M. Latapy, T. Viard, and C. Magnien. “Stream graphs and link streams for the
modeling of interactions over time”. In: Social Network Analysis and Mining 8(1)
(2018), 61:1–61:29 (cited on pp. 4, 10, 74).

[LW70] D. R. Lick and A. T. White. “k-Degenerate graphs”. In: Canadian Journal of Mathe-
matics 22(5) (1970), pp. 1082–1096 (cited on pp. 121, 128).

[Mat98] T. Matsui. “Approximation algorithms for maximum independent set problems and
fractional coloring problems on unit disk graphs”. In: Proceedings of the Japanese
Conference on Discrete and Computational Geometry (JCDCG ’98). Springer. 1998,
pp. 194–200 (cited on p. 88).

[Men27] K. Menger. “Zur allgemeinen Kurventheorie”. German. In: Fundamenta Mathemat-
icae 10(1) (1927), pp. 96–115 (cited on p. 40).

[Mer+20] G. B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche. “Comput-
ing maximum matchings in temporal graphs”. In: Proceedings of the 37th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS ’20). Vol. 154.
LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 27:1–27:14 (cited
on pp. vi, 69, 72, 75, 79–81, 88).

[MH12] B. McClosky and I. V. Hicks. “Combinatorial algorithms for the maximum k-plex
problem”. In: Journal of Combinatorial Optimization 23(1) (2012), pp. 29–49 (cited
on pp. 120, 121).

[Mic16] O. Michail. “An introduction to temporal graphs: an algorithmic perspective”. In:
Internet Mathematics 12(4) (2016), pp. 239–280 (cited on pp. 4, 10).

[Mil+18] M. G. Millani, H. Molter, R. Niedermeier, and M. Sorge. “Efficient algorithms for
measuring the funnel-likeness of DAGs”. In: Proceedings of the 5th International
Symposium on Combinatorial Optimization (ISCO ’18). Vol. 10856. Lecture Notes
in Computer Science. Springer. 2018, pp. 183–195 (cited on p. viii).

[Mil+20] M. G. Millani, H. Molter, R. Niedermeier, and M. Sorge. “Efficient algorithms for
measuring the funnel-likeness of DAGs”. In: Journal of Combinatorial Optimization
39(1) (2020), pp. 216–245 (cited on p. viii).

193

Bibliography

[MMS19] G. B. Mertzios, O. Michail, and P. G. Spirakis. “Temporal network optimization
subject to connectivity constraints”. In: Algorithmica 81(4) (2019), pp. 1416–1449
(cited on pp. 22, 41).

[MMZ19] G. B. Mertzios, H. Molter, and V. Zamaraev. “Sliding window temporal graph color-
ing”. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI ’19).
AAAI Press, 2019, pp. 7667–7674 (cited on pp. vii, 89, 92, 111).

[MNR19] H. Molter, R. Niedermeier, and M. Renken. “Enumerating isolated cliques in tem-
poral networks”. In: Proceedings of the 8th International Conference on Complex
Networks and Their Applications (COMPLEX NETWORKS ’19). Vol. 882. Studies in
Computational Intelligence. Springer, 2019, pp. 519–531 (cited on pp. viii, 121, 180).

[MNR20] H. Molter, R. Niedermeier, and M. Renken. “Isolation concepts applied to temporal
clique enumeration”. In: Network Science (2020), pp. 1–23 (cited on p. viii).

[MNS12] H. Moser, R. Niedermeier, and M. Sorge. “Exact combinatorial algorithms and
experiments for finding maximum k-plexes”. In: Journal of Combinatorial Opti-
mization 24(3) (2012), pp. 347–373 (cited on pp. 120, 121).

[MS16] O. Michail and P. G. Spirakis. “Traveling salesman problems in temporal graphs”.
In: Theoretical Computer Science 634 (2016), pp. 1–23 (cited on pp. 22, 71).

[MV80] S. Micali and V. V. Vazirani. “An O(
⎷|V ||E |) algorithm for finding maximum match-

ing in general graphs”. In: Proceedings of the 21st Annual Symposium on Foun-
dations of Computer Science (FOCS ’80). IEEE. 1980, pp. 17–27 (cited on pp. 71,
74).

[MZZ16] C. Ma, T. Zhou, and H.-F. Zhang. “Playing the role of weak clique property in
link prediction: A friend recommendation model”. In: Scientific Reports 6 (2016),
30098:1–30098:11 (cited on p. 120).

[Nas61] C. S. J. A. Nash-Williams. “Edge-disjoint spanning trees of finite graphs”. In: Journal
of the London Mathematical Society 1(1) (1961), pp. 445–450 (cited on p. 129).

[Nas64] C. S. J. A. Nash-Williams. “Decomposition of finite graphs into forests”. In: Journal
of the London Mathematical Society 1(1) (1964), pp. 12–12 (cited on p. 129).

[ND12] J. Nešetřil and P. O. De Mendez. Sparsity: Graphs, Structures, and Algorithms. Springer,
2012 (cited on p. 37).

[New18] M. E. J. Newman. Networks. Oxford University Press, 2018 (cited on p. 21).

[Nic+13] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. “Graph metrics
for temporal networks”. In: Temporal networks. Springer, 2013, pp. 15–40 (cited
on p. 120).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006 (cited on p. 12).

194

Bibliography

[PM81] A. Paz and S. Moran. “Non deterministic polynomial optimization problems and
their approximations”. In: Theoretical Computer Science 15(3) (1981), pp. 251–277
(cited on p. 67).

[Pol74] S. Poljak. “A note on stable sets and colorings of graphs”. In: Commentationes
Mathematicae Universitatis Carolinae 15(2) (1974), pp. 307–309 (cited on p. 87).

[PS11] R. K. Pan and J. Saramäki. “Path lengths, correlations, and centrality in temporal
networks”. In: Physical Review E 84(1) (2011), 016105:1–016105:10 (cited on p. 21).

[PYB13] J. Pattillo, N. Youssef, and S. Butenko. “On clique relaxation models in network
analysis”. In: European Journal of Operational Research 226(1) (2013), pp. 9–18
(cited on pp. 120, 121).

[Qin+19] H. Qin, R.-H. Li, G. Wang, L. Qin, Y. Cheng, and Y. Yuan. “Mining periodic cliques in
temporal networks”. In: Proceedings of the 2019 IEEE 35th International Conference
on Data Engineering (ICDE ’19). IEEE. 2019, pp. 1130–1141 (cited on p. 121).

[Sch78] T. J. Schaefer. “The complexity of satisfiability problems”. In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC ’78). ACM. 1978,
pp. 216–226 (cited on p. 112).

[Sch98] A. Schrijver. “Bipartite edge coloring in O(∆m) time”. In: SIAM Journal on Comput-
ing 28(3) (1998), pp. 841–846 (cited on p. 76).

[SF78] S. B. Seidman and B. L. Foster. “A graph-theoretic generalization of the clique
concept”. In: Journal of Mathematical Sociology 6(1) (1978), pp. 139–154 (cited
on pp. 120, 121, 127).

[SST04] R. Shamir, R. Sharan, and D. Tsur. “Cluster graph modification problems”. In:
Discrete Applied Mathematics 144(1-2) (2004), pp. 173–182 (cited on pp. 145, 146,
148, 150, 175).

[Sto76] L. J. Stockmeyer. “The polynomial-time hierarchy”. In: Theoretical Computer Sci-
ence 3(1) (1976), pp. 1–22 (cited on pp. 63, 66).

[SW19] M. Sorge and M. Weller. The graph parameter hierarchy (manuscript). 2019. URL:
https://manyu.pro/assets/parameter-hierarchy.pdf (cited on pp. 15, 129).

[TAG17] A. Tagarelli, A. Amelio, and F. Gullo. “Ensemble-based community detection in mul-
tilayer networks”. In: Data Mining and Knowledge Discovery 31(5) (2017), pp. 1506–
1543 (cited on p. 145).

[TB11] C. Tantipathananandh and T. Y. Berger-Wolf. “Finding Communities in Dynamic
Social Networks”. In: Proceedings of the 11th IEEE International Conference on Data
Mining (ICDM ’11). IEEE Computer Society, 2011, pp. 1236–1241 (cited on pp. 145–
147, 150).

[TBK07] C. Tantipathananandh, T. Y. Berger-Wolf, and D. Kempe. “A Framework for Commu-
nity Identification in Dynamic Social Networks”. In: Proceedings of the 13th ACM

195

https://manyu.pro/assets/parameter-hierarchy.pdf

Bibliography

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’07). ACM, 2007, pp. 717–726 (cited on pp. 145–147, 150).

[TLD09] W. Tang, Z. Lu, and I. S. Dhillon. “Clustering with Multiple Graphs”. In: Proceedings
of the 9th IEEE International Conference on Data Mining (ICDM ’09). IEEE Computer
Society, 2009, pp. 1016–1021 (cited on p. 145).

[Tov84] C. A. Tovey. “A simplified NP-complete satisfiability problem”. In: Discrete Applied
Mathematics 8(1) (1984), pp. 85–89 (cited on pp. 27, 28, 30, 97, 102, 107, 111, 112).

[TTT06] E. Tomita, A. Tanaka, and H. Takahashi. “The worst-case time complexity for gener-
ating all maximal cliques and computational experiments”. In: Theoretical Com-
puter Science 363(1) (2006), pp. 28–42 (cited on p. 120).

[Tut61] W. T. Tutte. “On the problem of decomposing a graph into n connected factors”.
In: Journal of the London Mathematical Society 1(1) (1961), pp. 221–230 (cited on
p. 129).

[Val81] L. G. Valiant. “Universality considerations in VLSI circuits”. In: IEEE Transactions
on Computers 100(2) (1981), pp. 135–140 (cited on pp. 83, 84).

[Viz15] V. G. Vizing. “On coloring problems for two-season multigraphs”. In: Journal of
Applied and Industrial Mathematics 9(2) (2015), pp. 292–296 (cited on p. 90).

[Viz64] V. G. Vizing. “On an estimate of the chromatic class of a p-graph”. In: Diskretnyi
Analiz 3 (1964), pp. 25–30 (cited on p. 76).

[VLM16] T. Viard, M. Latapy, and C. Magnien. “Computing maximal cliques in link streams”.
In: Theoretical Computer Science 609 (2016), pp. 245–252 (cited on pp. 68, 119–121,
126, 127, 143, 182).

[VML18] T. Viard, C. Magnien, and M. Latapy. “Enumerating maximal cliques in link streams
with durations”. In: Information Processing Letters 133 (2018), pp. 44–48 (cited
on pp. 121, 143).

[WP07] B. Wu and X. Pei. “A parallel algorithm for enumerating all the maximal k-plexes”.
In: Proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD ’07). Vol. 4819. Lecture Notes in Computer Science. Springer.
2007, pp. 476–483 (cited on pp. 120, 121, 131).

[Wu+16] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. “Efficient algorithms for tem-
poral path computation”. In: IEEE Transactions on Knowledge and Data Engineering
28(11) (2016), pp. 2927–2942 (cited on pp. 19, 21, 180).

[XFJ03] B. B. Xuan, A. Ferreira, and A. Jarry. “Computing shortest, fastest, and foremost jour-
neys in dynamic networks”. In: International Journal of Foundations of Computer
Science 14(02) (2003), pp. 267–285 (cited on pp. 19, 21, 43, 180).

[Xia+17] M. Xiao, W. Lin, Y. Dai, and Y. Zeng. “A fast algorithm to compute maximum k-
plexes in social network analysis”. In: Proceedings of the 31st AAAI Conference on

196

Bibliography

Artificial Intelligence (AAAI ’17). AAAI Press, 2017, pp. 919–925 (cited on pp. 120,
121).

[Yu+13] F. Yu, A. Bar-Noy, P. Basu, and R. Ramanathan. “Algorithms for channel assignment
in mobile wireless networks using temporal coloring”. In: Proceedings of the 16th
ACM International Conference on Modeling, Analysis & Simulation of Wireless and
Mobile Systems (MSWiM ’13). ACM. 2013, pp. 49–58 (cited on p. 90).

[Zsc+18] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. “The complexity of finding
separators in temporal graphs”. In: Proceedings of the 43rd International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS ’18). Vol. 117. LIPIcs.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 45:1–45:17 (cited on pp. vi,
39).

[Zsc+20] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. “The complexity of finding
separators in temporal graphs”. In: Journal of Computer and System Sciences 107
(2020), pp. 72–92 (cited on pp. vi, 27, 39, 41, 44, 45, 47, 49, 67, 178, 181).

[Zsc17] P. Zschoche. “On Finding Separators in Temporal Graphs”. Master’s thesis. TU
Berlin, Aug. 2017 (cited on pp. v, vi, 21, 67).

197

Problem Compendium

Temporal Graph Problems

For easy reference, we list (in alphabetical order) below the problem definitions of
the temporal graph problems that are under consideration in this thesis.

RESTLESS TEMPORAL (s, z)-PATH

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
an integer ∆≤ ℓ.

Question: Is there a ∆-restless temporal path from s to z in G ?

Chapter 3

RESTLESS TEMPORAL (s, z)-SEPARATION

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
two integers k ∈N and ∆≤ ℓ.

Question: Does G admit a ∆-restless temporal (s, z)-separator of size at most k?

Chapter 4

SHORT RESTLESS TEMPORAL (s, z)-PATH

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
two integers k ∈N and ∆≤ ℓ.

Question: Is there a ∆-restless temporal path of length at most k from s to z
in G ?

Chapter 3

SLIDING WINDOW TEMPORAL COLORING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k ∈N and ∆≤ ℓ.
Question: Is there a proper sliding ∆-window temporal coloring Υ of G using

|Υ| ≤ k colors?

Chapter 6

199

Bibliography

TEMPORAL CLIQUE

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and three integers k, t ∈ N, and
∆≤ ℓ.

Question: Does G contain a ∆-clique (C , [a,b]) with |C | ≥ k and b −a ≥ t?

Chapter 7

TEMPORAL CLUSTER EDITING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k,d ∈N.
Question: Is there a d-consistent k-bounded clustering for G ?

Chapter 8

TEMPORAL COLORING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and an integer k ∈N.
Question: Is there a proper temporal coloring Υ of G using |Υ| ≤ k colors?

Chapter 6

TEMPORAL MATCHING

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and two integers k ∈N and ∆≤ ℓ.
Question: Is there a ∆-temporal matching in G of cardinality at least k?

Chapter 5

TEMPORAL s-PLEX

Input: A temporal graph G = (V , (Ei)i∈[ℓ]) and three integers k, t ∈ N, and
∆≤ ℓ.

Question: Does G contain a ∆-s-plex (C , [a,b]) with |C | ≥ k and b −a ≥ t?

Chapter 7

TEMPORAL (s, z)-SEPARATION

Input: A temporal graph G = (V , (Ei)i∈[ℓ]), two distinct vertices s, z ∈ V , and
an integer k ∈N.

Question: Does G admit a temporal (s, z)-separator of size at most k?

Chapter 4

200

Bibliography

Non-Temporal Problems

We list (in alphabetical order) below the problem definitions of problems that are
mentioned or used for reductions in this thesis.

∃∀-SAT

Input: A Boolean formula φ in conjunctive normal form and a partitioning
of the variables of φ into two sets X and Y .

Question: Is there an assignment of truth values for the variables in X such that,
for all possible assignments of truth values for the variables in Y , the
formula φ evaluates to true?

3-SAT

Input: A Boolean formula φ in conjunctive normal form where every clause
has three literals.

Question: Is φ satisfiable?

4-COLORING

Input: An undirected graph G = (V ,E).
Question: Is there a vertex coloring function Υ : V → [4] such that for all {v, w} ∈ E

it holds that Υ(v) ̸=Υ(w)?

CLIQUE

Input: An undirected graph G = (V ,E) and an integer k ∈N.
Question: Is there a vertex set V ′ ⊆ V with |V ′| ≥ k such that for all v, w ∈ V ′ it

holds that {v, w} ∈ E?

CLUSTER EDITING

Input: An undirected graph G = (V ,E) and an integer k ∈N.
Question: Is there an edge modification set M ⊆ (︁V

2

)︁
with |M | ≤ k such that

G ′ = (V ,E ⊕M) is a cluster graph?

COLORING

Input: An undirected graph G = (V ,E) and an integer k ∈N.
Question: Is there a vertex coloring function Υ : V → [k] such that for all {v, w} ∈

E it holds that Υ(v) ̸=Υ(w)?

201

Bibliography

EXACT (3,4)-SAT

Input: A Boolean formula φ in conjunctive normal form where every clause
has exactly three distinct literals and every variable appears in exactly
four clauses.

Question: Is φ satisfiable?

HITTING SET

Input: A universe set U , a family of sets S1, . . . ,Sm ⊆U , and an integer k ∈N.
Question: Is is a set S⋆ ⊆U with |S⋆| ≤ k such that for all i ∈ [m] we have that

S⋆∩Si ̸= ∅?

INDEPENDENT SET

Input: An undirected graph G = (V ,E) and an integer k ∈N.
Question: Is there a vertex set V ′ ⊆ V with |V ′| ≥ k such that for all v, w ∈ V ′ it

holds that {v, w} ̸∈ E?

MAXIMUM MATCHING

Input: An undirected graph G = (V ,E).
Output: A set M ⊆ E of maximum cardinality such that for all e,e ′ ∈ M with

e ̸= e ′ it holds that e ∩e ′ =∅.

MONOTONE EXACTLY 1-IN-3 SAT

Input: A collection of triples of variables.
Question: Is there an assignment of truth values for the variables such that

exactly one variable of each triple is set to true?

MULTICOLORED CLIQUE

Input: An undirected k-partite graph G = (V1 ⊎V2 ⊎ . . .⊎Vk ,E).
Question: Is there a vertex set V ′ ⊆⋃︁

i∈[k] Vi with |V ′| = k such that for all v, w ∈V ′

it holds that {v, w} ∈ E?

s-PLEX

Input: An undirected graph G = (V ,E) and an integer k ∈N.
Question: Is there a vertex set V ′ ⊆V with |V ′| ≥ k such that for all v ∈V ′ it holds

that |N (v)∩V ′| ≥ |V ′|− s?

202

Bibliography

VERTEX COVER

Input: An undirected graph G = (V ,E) and an integer k ∈N.
Question: Is there a vertex set V ′ ⊆ V with |V ′| ≤ k such that for all {v, w} ∈ E it

holds {v, w}∩V ′ ̸= ∅?

203

Index

∆-
s-Plex, 119, 125
Clique, 119, 125
Independence, 72
Neighborhood, 123
Non-Neighborhood, 123
Restless Temporal Path, 19, 23,

44
Restless Temporal Separator, 44
Restless Temporal Walk, 23
Slice Degeneracy, 128
Temporal Line Graph, 73
Temporal Matching, 72
Window, 11

s-Plex, 125

Adjacent Layers, 10
AND-Cross-Composition, 12

Bron-Kerbosch Algorithm, 130, 131

Clique, 125
Cluster

Editing, 145, 148
Graph, 148

Clustering, 149
Coloring, 89
Composition, 12
Cross-Composition, 12

Degeneracy, 14, 128
Degree, 9
Domination Number, 14

Edge Modification, 148

Edge Subdivision, 9
Equivalence Relation, 12
ETH, 13
Exponential Time Hypothesis, 13

Fastest Temporal Path, 26
Feedback Vertex Number, 14
Fixed-Parameter Tractability, 12
Foremost Temporal Path, 26
FPT, 12

Graph, 9
Isomorphism, 9
Minor, 9

Induced
Subgraph, 9
Temporal Subgraph, 11
Topological Minor, 9

Interval, 9, 122
Set, 122

Isolated Vertex, 9
Isomorphism, 9

Journey, 19

Layer, 10
Lifetime, 10
Line Graph, 73

Matching, 69, 72
Maximum Degree, 14
Minor, 9
Monochromatic, 92
Multi-Layer Graph, 16

205

Index

Neighborhood, 9

Optimal Temporal Path, 26
OR-Cross-Composition, 12

para-NP, 12
Parameterized Complexity, 12
Parameterized Reduction, 12
Path, 9, 23
Polynomial Equivalence Relation, 12
Polynomial Kernel, 12
Proper

Coloring, 92
Sliding ∆-Window Temporal Col-

oring, 93
Temporal Coloring, 92

Restless
Temporal Path, 19, 23, 44
Temporal Separator, 39, 44
Temporal Walk, 23

Set of Intervals, 122
Shortest Temporal Path, 26
Sliding Window Temporal Coloring,

89
Static Graph, 9
Structural Graph Parameter, 14
Subdivision, 9

Temporal
s-Plex, 119, 125
Clique, 119, 125
Cluster Editing, 145, 149

Coloring, 89, 95
Graph, 10
Graph Parameter, 16
Line Graph, 69, 73
Matching, 69, 72
Neighborhood, 123
Path, 19, 23, 42
Separator, 39, 42
Subgraph, 11
Unit Interval Graph, 43
Walk, 23

Time
Edge, 10
Stamp, 10
Step, 10
Window, 11

Time-Maximal, 127
Topological Minor, 9
Treedepth, 14
Trivial Layer, 10

Underlying Graph, 10
Unit Interval Graph, 43

Vertex Appearance, 10
Vertex Cover Number, 14
Vertex-Interval Pair, 122
Vertex-Interval-Set Pair, 122
Vertex-Maximal, 127

W[1], 12
W[2], 12
Walk, 23

206

Schriftenreihe Foundations of computing
Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter Linear-
Time Algorithms for NP-hard Graph and
Hypergraph Problems Arising in Industrial
Applications. - 2014. - 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-Constrained
Editing of Small-Degree Graphs. - 2015. -
xiv, 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate Com-
plexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.
ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects of
Manipulation and Anonymization in Social
Choice and Social Networks. - 2016. - xiv,
275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00
ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense Classes
of Graphs. Characterisations and Algorith-
mic Meta-Theorems. - 2016. - xxii, 149 S.
ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

06: Chen, Jiehua: Exploiting Structure in Com-
putationally Hard Voting Problems. - 2016. -
xxi, 255 S.
ISBN 978-3-7983-2825-9 (print) EUR 13,00
ISBN 978-3-7983-2826-6 (online)

07: Arbach, Youssef: On the Foundations of
dynamic coalitions. Modeling changes
and evolution of workflows in healthcare
scenarios. - 2016. - xv, 171 S.
ISBN 978-3-7983-2856-3 (print) EUR 12,00
ISBN 978-3-7983-2857-0 (online)

08: Sorge, Manuel: Be sparse! Be dense! Be
robust! Elements of parameterized algorith-
mics. - 2017. - xvi, 251 S.
ISBN 978-3-7983-2885-3 (print) EUR 13,00
ISBN 978-3-7983-2886-0 (online)

09: Dittmann, Christoph: Parity games, sepa-
rations, and the modal µ-calculus. - 2017. -
x, 274 S.
ISBN 978-3-7983-2887-7 (print) EUR 13,00
ISBN 978-3-7983-2888-4 (online)

10: Karcher, David S.: Event Structures with
Higher-Order Dynamics. - 2019. - xix, 125 S.
ISBN 978-3-7983-2995-9 (print) EUR 11,00
ISBN 978-3-7983-2996-6 (online)

11: Jungnickel, Tim: On the Feasibility of Multi-
Leader Replication in the Early Tiers. -
2018. - xiv, 177 S.
ISBN 978-3-7983-3001-6 (print) EUR 13,00
ISBN 978-3-7983-3002-3 (online)

12: Froese, Vincent: Fine-Grained Complexity
Analysis of Some Combinatorial Data Sci-
ence Problems. - 2018. - xiv, 166 S.
ISBN 978-3-7983-3003-0 (print) EUR 11,00
ISBN 978-3-7983-3004-7 (online)

Universitätsverlag der TU Berlin

Universitätsverlag der TU Berlin

Foundations of computing Volume 13

This thesis investigates the parameterized computational complexity of six classic graph prob-
lems lifted to a temporal setting. More specifically, we consider problems defined on tempo-
ral graphs, that is, a graph where the edge set may change over a discrete time interval, while
the vertex set remains unchanged. Temporal graphs are well-suited to model dynamic data and
hence they are naturally motivated in contexts where dynamic changes or time-dependent inter-
actions play an important role, such as, for example, communication networks, social networks,
or physical proximity networks. The most important selection criteria for our problems was that
they are well-motivated in the context of dynamic data analysis.
Since temporal graphs are mathematically more complex than static graphs, it is maybe not sur-
prising that all problems we consider in this thesis are NP-hard. We focus on the development
of exact algorithms, where our goal is to obtain fixed-parameter tractability results, and refined
computational hardness reductions that either show NP-hardness for very restricted input in-
stances or parameterized hardness with respect to “large” parameters.

He

nd
rik

 M
ol

te
r

13

Classic Graph Problems Made Temporal – A Parameterized Complexity
Analysis

http://verlag.tu-berlin.de

ISBN 978-3-7983-3172-3 (print)
ISBN 978-3-7983-3173-0 (online)

I S B N 9 7 8 - 3 - 7 9 8 3 - 3 1 7 2 - 3

Hendrik Molter

9 783798 331723

	Frontcover
	Title Page
	Imprint
	Zusammenfassung
	Abstract
	Preface
	Contents
	1 Introduction and Overview
	1.1 Invitation to Temporal Graph Problems
	1.2 Related Work
	1.3 Thesis Contribution and Overview

	2 Preliminaries and Notation
	2.1 Static Graphs
	2.2 Temporal Graphs
	2.3 Parameterized Complexity
	2.4 (Temporal) Graph Parameters
	2.5 Temporal Graph Problems vs. Multi-Layer Graph Problems

	3 Restless Temporal Paths
	3.1 Introduction
	3.2 Preliminaries
	3.3 Finding Restless Temporal Paths
	3.4 Conclusion

	4 Temporal Separators
	4.1 Introduction
	4.2 Preliminaries
	4.3 Separators in Temporal Unit Interval Graphs
	4.4 Restless Temporal Separators
	4.5 Conclusion

	5 Temporal Matchings
	5.1 Introduction
	5.2 Preliminaries
	5.3 NP-Hardness of Temporal Matching with Few Layers
	5.4 NP-Hardness of Temporal Matching with Underlying Paths
	5.5 Conclusion

	6 Temporal Coloring
	6.1 Introduction
	6.2 Preliminaries
	6.3 Hardness Results for Temporal Coloring
	6.4 Complexity of Sliding Window Temporal Coloring
	6.5 Conclusion

	7 Temporal Cliques and s-Plexes
	7.1 Introduction
	7.2 Preliminaries
	7.3 Enumerating Temporal Cliques and s-Plexes
	7.4 Conclusion

	8 Temporal Cluster Editing
	8.1 Introduction
	8.2 Preliminaries
	8.3 An Algorithm for Temporal Cluster Editing
	8.4 Kernelization for Temporal Cluster Editing
	8.5 Conclusion

	9 Conclusion
	9.1 Main Contributions and General Messages
	9.2 Zukunftsmusik

	Bibliography
	Problem Compendium
	Index
	Backcover

