Skip to main content
Log in

Synthesis and Photoluminescence Properties of Deep-Red-Emitting CaYAlO4:Cr3+ Phosphors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Deep-red-emitting CaYAlO4:Cr3+ phosphors were synthesized by the sol–gel method followed by heat treatment. The effects of sintering temperature on the phase structure, morphology, and luminescence properties of the phosphors were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, Raman scattering spectroscopy, energy-dispersive X-ray spectroscopy, steady-state photoluminescence (PL), and time-resolved luminescence spectroscopy. The XRD patterns showed that tetragonal CaYAlO4 crystals with space group I4/mmm were obtained after sintering at > 900°C. These experimental data were consistent with Raman spectra and FESEM images. A deep-red emission band at approximately 742 nm from CaYAlO4:Cr3+ phosphors was observed. This band was attributed to the transitions between the 2Eg and 4A2g energy levels of Cr3+ ions located at the CaYAlO4 host's lattice sites with D3d symmetry. Two absorption bands were recorded at near-ultraviolet and yellow regions. The highest PL intensity was obtained for phosphors with a Cr3+ doping concentration of about 0.7 mol.%. The PL decay dynamics of the materials with different doping Cr3+ concentrations were further investigated. All decay dynamics were featured with multiple decay components. The longest decay component with a lifetime of about 5.5 ms was obtained for the sample with the highest PL intensity. These optical behaviors were correlated with the critical distances of Cr3+ ions for energy transfers. Finally, the temperature dependence of deep-red PL emission was also investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pust, V. Weiler, C. Hecht, A. Tucks, A.S. Wochnik, A.K. Henss, D. Wiechert, C. Scheu, P.J. Schmidt, and W. Schnick, Nat. Mater. 13, 891 (2014).

    CAS  Google Scholar 

  2. K. Li, M. Shang, H. Lian, and J. Lin, J. Mater. Chem. C 4, 5507 (2016).

    CAS  Google Scholar 

  3. J.Y. Park, J.S. Joo, H.K. Yang, and M. Kwak, J. Alloys Compd. 714, 390 (2017).

    CAS  Google Scholar 

  4. Y. Chen, F. Pan, M. Wang, X. Zhang, J. Wang, M. Wu, and C. Wang, J. Mater. Chem. C 4, 2367 (2016).

    CAS  Google Scholar 

  5. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, and Q.Y. Zhang, Mater. Sci. Eng. Rep. 71, 1 (2010).

    Google Scholar 

  6. Z.Y. Mao, J.J. Chen, J. Li, and D.J. Wang, Chem. Eng. J. 284, 1003 (2016).

    CAS  Google Scholar 

  7. J. Chen, N. Zhang, C. Guo, F. Pan, X. Zhou, H. Suo, X. Zhao, and E.M. Goldys, ACS Appl. Mater. Interfaces 8, 20856 (2016).

    CAS  Google Scholar 

  8. M. Olle and A. Virsile, Agric. Food Sci. 22, 223 (2013).

    Google Scholar 

  9. G. Samuolienė, A. Brazaitytė, J. Jankauskienė, A. Viršilė, R. Sirtautas, A. Novičkovas, S. Sakalauskienė, J. Sakalauskaitė, and P. Duchovskis, Cent. Eur. J. Biol. 8, 1241 (2013).

    Google Scholar 

  10. Z.H. Bian, Q.C. Yang, and W.K. Liu, J. Sci. Food Agric. 95, 869 (2015).

    CAS  Google Scholar 

  11. A.C. Wollenberg, B. Strasser, P.D. Cerdán, and R.M. Amasino, Plant Physiol. 148, 1681 (2008).

    CAS  Google Scholar 

  12. M. Chen, J. Chory, and C. Fankhauser, Annu. Rev. Genet. 38, 87 (2004).

    CAS  Google Scholar 

  13. K.A. Franklin, U. Praekelt, W.M. Stoddart, O.E. Billingham, K.J. Halliday, and G.C. Whitelam, Plant Physiol. 131, 1340 (2003).

    CAS  Google Scholar 

  14. S. Adachi, J. Lumin. 197, 119 (2018).

    CAS  Google Scholar 

  15. S. Adachi, J. Lumin. 202, 263 (2018).

    CAS  Google Scholar 

  16. S. Adachi, ECS J. Solid State Sci. Technol. 9, 026003 (2020).

    CAS  Google Scholar 

  17. F. Zhou, F. Qiu, C. Wang, S. Xin, M. Gao, Z. Li, and G. Zhu, ECS J. Solid State Sci. Technol. 8, R119 (2019).

    CAS  Google Scholar 

  18. Y. Zhong, N. Zhou, M. Xia, Y. Zhou, H. Chen, and Z. Zhou, Ceram. Int. 45, 23528 (2019).

    CAS  Google Scholar 

  19. Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, and X. Huang, RSC Adv. 9, 3303 (2019).

    CAS  Google Scholar 

  20. D. Yu, Y. Zhou, C. Ma, J.H. Melman, K.M. Baroudi, M. LaCapra, and R.E. Riman, ACS Appl. Electron. Mater. 1, 2325 (2019).

    CAS  Google Scholar 

  21. N.T.K. Chi, N.V. Quang, N.T. Tuan, N.D.T. Kien, D.Q. Trung, P.T. Huy, P.D. Tam, and D.H. Nguyen, J. Electron. Mater. 48, 5891 (2019).

    CAS  Google Scholar 

  22. J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, Opt. Mater. Express 7, 1725 (2017).

    CAS  Google Scholar 

  23. H. Zhu, Y. Zhang, Y. Duan, Y. Yu, C. Xu, X. Xu, D. Li, J. Zhang, and J. Xu, J. Lumin. 195, 225 (2018).

    CAS  Google Scholar 

  24. Y. Zhao, Y. Wang, X. Zhang, X. Mateos, Z. Pan, P. Loiko, W. Zhou, X. Xu, J. Xu, D. Shen, S. Suomalainen, A. Harkonen, M. Guina, U. Griebner, and V. Petrov, Opt. Lett. 43, 915 (2018).

    CAS  Google Scholar 

  25. W. Yao, F. Wu, Y. Zhao, H. Chen, X. Xu, and D. Shen, Appl. Opt. 55, 3730 (2016).

    CAS  Google Scholar 

  26. C.F. Woensdregt, H.W.M. Janssen, A. Gloubokov, and A. Pajaczkowska, J. Cryst. Growth 171, 392 (1997).

    CAS  Google Scholar 

  27. E.F. Kustov, V.P. Petrov, D.S. Petrava, and J.P. Udalov, Phys. Status Solidi A 41, 379 (1977).

    CAS  Google Scholar 

  28. A. Pajaczkowska and A. Gloubokov, Prog. Cryst. Growth Charact. 36, 123 (1998).

    CAS  Google Scholar 

  29. D. Zhou, X. Xu, X. Chen, H. Zhu, D. Li, J. Di, C. Xia, F. Wu, and J. Xu, Phys. Status Solidi A 209, 730 (2012).

    CAS  Google Scholar 

  30. Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, ACS Appl. Mater. Interfaces 7, 2715 (2015).

    CAS  Google Scholar 

  31. F. Rey-García, J. Rodrigues, T. Monteiro, and F.M. Costa, J. Mater. Sci. Mater. Electron. 30, 21454 (2019).

    Google Scholar 

  32. H. Chen, P. Loiseau, and G. Aka, J. Lumin. 199, 509 (2018).

    CAS  Google Scholar 

  33. J. Di, X. Xu, C. Xia, D. Li, D. Zhou, Q. Sai, L. Wang, and J. Xu, Phys. B 408, 1 (2013).

    CAS  Google Scholar 

  34. T.S. Lyubenova, J.B. Carda, and M. Ocaña, J. Eur. Ceram. Soc. 29, 2193 (2009).

    CAS  Google Scholar 

  35. A. Ueda, M. Higuchi, D. Yamada, S. Namiki, T. Ogawa, S. Wada, and K. Tadanaga, J. Cryst. Growth 404, 152 (2014).

    CAS  Google Scholar 

  36. M. Yamaga, T. Yosida, M. Fukui, H. Takeuchi, N. Kodama, Y. Inoue, B. Henderson, K. Holliday, and P.I. Macfarlane, J. Phys. Condens. Matter 8, 10633 (1996).

    CAS  Google Scholar 

  37. M. Yamaga, P.I. Macfarlane, K. Holliday, B. Henderson, N. Kodama, and Y. Inoue, J. Phys. Condens. Matter 9, 1575 (1997).

    CAS  Google Scholar 

  38. M. Yamaga, H. Takeuchi, K. Holliday, P. Macfarlane, B. Henderson, Y. Inoue, and N. Kodama, Radiat. Effects Defects Solids 135, 223 (2006).

    Google Scholar 

  39. M. Yamaga, P.I. Macfarlane, K. Holliday, B. Henderson, N. Kodama, and Y. Inoue, J. Phys. Condens. Matter 8, 3487 (1996).

    CAS  Google Scholar 

  40. Y. Zhou, X. Lu, H. Xiang, and Z. Feng, J. Adv. Ceram. 4, 94 (2015).

    CAS  Google Scholar 

  41. W. Ryba-Romanowski, S. Gołab, J. Hanuza, M. Maczka, A. Pietraszko, M. Berkowski, and A. Pajaczkowska, J. Phys. Chem. Solids 52, 1043 (1991).

    CAS  Google Scholar 

  42. Z. Pan, X. Dai, Y. Lei, H. Cai, J.M. Serres, M. Aguiló, F. Díaz, J. Ma, D. Tang, E. Vilejshikova, W. Griebner, V. Petrov, P. Loiko, and X. Mateos, CrystEngComm 20, 3388 (2018).

    CAS  Google Scholar 

  43. V.G. Hadjiev, M. Cardona, I. Ivanov, V. Popov, M. Gyulmezov, M.N. Iliev, and M. Berkowski, J. Alloys Compd. 251, 7 (1997).

    CAS  Google Scholar 

  44. Q. Hu, Z. Jia, C. Tang, N. Lin, J. Zhang, N. Jia, S. Wang, X. Zhao, and X. Tao, CrystEngComm 19, 537 (2017).

    CAS  Google Scholar 

  45. A.A. Kaminskii, X. Xu, O. Lux, H. Rhee, H.J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, Laser Phys. Lett. 9, 306 (2012).

    CAS  Google Scholar 

  46. G. Blasse and G.J. Dirksen, J. Solid State Chem. 65, 283 (1986).

    CAS  Google Scholar 

  47. D. Gao, H. Zheng, X. Zhang, W. Gao, Y. Tian, J. Li, and M. Cui, Nanotechnology 5, 175702 (2011).

    Google Scholar 

  48. G.R. Dillip, B. Ramesh, C.M. Reddy, K. Mallikarjuna, O. Ravi, S.J. Dhoble, S.W. Joo, and B. Deva Prasad Raju, J. Alloys Compd. 615, 719 (2014).

    CAS  Google Scholar 

  49. J. Uedaa, M. Back, M.G. Brik, Y. Zhuang, M. Grinberg, and S. Tanabe, Opt. Mater. 85, 510 (2018).

    Google Scholar 

  50. S. Adachi, ECS J. Solid State Sci. Technol. 9, 016001 (2020).

    CAS  Google Scholar 

Download references

Acknowledgments

The present research was supported by Vietnam Ministry of Education and Training under grant number B2019-BKA-08. The authors also thank Hanoi University of Technology and Science and Phenikaa University for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, L.Q., Tuan, N.T., Quang, N.V. et al. Synthesis and Photoluminescence Properties of Deep-Red-Emitting CaYAlO4:Cr3+ Phosphors. J. Electron. Mater. 49, 7464–7471 (2020). https://doi.org/10.1007/s11664-020-08457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08457-4

Keywords

Navigation