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Abstract

Assurance of image quality has become a basic need in our society as images play a crucial role
in this era of social media and digitization. Applications range from surveillance to medical
imaging. Image quality is defined as the degree of clarity of its elements. Images undergo a chain
of processes before being perceived by the viewer, starting from acquisition to digitization,
compression, pre-processing and final presentation. Image quality expresses the extent of
distortion of the original image information by various degradation processes.

In mammography, image quality specifically defines the perceptibility of clinically relevant
structures, like abnormal masses and suspicious micro-calcifications, that allows one to reliably
detect breast cancer at an early stage. The image quality in mammography can be assessed by
analyzing recordings of technical phantoms that contain artificial lesions with various diameters
and contrast levels. This way, a contrast-detail information can be determined, which expresses
the ability of an observer to detect the individual lesions with prescribed accuracy. Automatic
procedures are favored for objectively determining this contrast-detail information.

In this thesis, several data analysis methods for assessing image quality in mammography are
developed, tested and compared to the current state-of-the-art procedure which is recommended
by a European organization. The first contribution of this thesis is the implementation of a
virtual mammography for the simulation of realistic images of a technical phantom. Simulated
images of a known virtual specimen allow different image quality assessment procedures to be
assessed and compared. In addition, virtual mammography makes it possible to set up large
data sets at low cost that are required for the application of data-intensive techniques, such as
deep learning.

Automatic procedures for image quality assessment in mammography usually comprise
expert pre-processing and the utilization of mathematical model observers. Our second
contribution is the development of a method that utilizes a recently developed parametric
model observer. This way, the contrast-detail information is based on established measures
of image quality. Furthermore, an uncertainty of the prediction can be estimated. Compared
to the current practice, our proposed approach reduces the workload for quality assurance
measurements. Even though our method needs fewer images, it still requires expert pre-
processing.

Deep learning is able to avoid such expert pre-processing and to derive representative
features automatically from the images. Our third contribution is the exploration of the
applicability of deep learning methods for image quality assessment in mammography.
Specifically, a deep learning observer is developed that estimates the contrast-detail information
directly from a single image. No cumbersome pre-processing of the images is required.

Our last contribution is the explanation of predictions of the developed deep learning
observer as well as the estimation of the uncertainty of its prediction. The former gives
interesting insights into the learned strategy, whereas the latter expresses the confidence about
our proposed model.





Zusammenfassung

Das Sichern der Bildqualität ist von enormer Bedeutung für unsere Gesellschaft, da Bilder
diese Ära der sozialen Medien und Digitalisierung prägen; die Anwendungen reichen von
Überwachung bis zu medizinischer Bildgebung. Die Qualität eines Bildes ist definiert als
Grad der Klarheit seiner Bestandteile. Bevor Bilder von einem Beobachter wahrgenommen
werden, durchlaufen sie eine Prozesskette, angefangen von der Aufnahme zu Digitalisierung,
Bildkompression, Bildbearbeitung und schließlich Darstellung. Die Bildqualität beschreibt
dann in welchem Ausmaß das ursprüngliche Bild durch verschiedene Artefakte gestört wird.

In der Mammographie beschreibt Bildqualität die Wahrnehmbarkeit von klinisch relevanten
Strukturen wie abnormen Massen und verdächtigem Mikrokalk, deren Nachweis ermöglicht,
Brustkrebs in einem frühen Stadium zu erkennen. Die Bildqualität kann durch das Analysieren
von Aufnahmen technischer Phantome, die künstliche Läsionen unterschiedlicher Größe und
Kontrastniveaus enthalten, bestimmt werden. Dadurch wird eine Kontrast-Detail Information
ermittelt, die angibt, ob ein Beobachter die Läsionen mit ausreichender Genauigkeit erkennen
kann. Favorisiert werden dabei automatische Prozeduren, die Objektivität gewährleisten.

In dieser Arbeit werden verschiedene Analysemethoden zur Bestimmung der Bildqualität
in der Mammographie entwickelt, getestet und mit dem aktuellen Standard verglichen, der von
einer europäischen Organisation empfohlen wird. Unser erster Beitrag ist die Implementierung
einer virtuellen Mammographie, um realistische Bilder eines technischen Phanomts simulieren zu
können. Simulierte Bilder eines bekannten, virtuellen Testobjekts gewährleisten Vergleichbarkeit
und ermöglichen die Validierung verschiedener Verfahren. Des Weiteren können mittels virtueller
Mammographie große Datensätze mit geringem Aufwand erstellt werden, die notwendig sind
um datenintensive Methoden, wie deep learning, anzuwenden.

Typischerweise setzen sich automatische Prozeduren zur Bestimmung der Bildqualität
in der Mammographie zusammen aus aufwendiger Bildbearbeitung und Anwendung eines
modellbasierten Beobachters. Unser zweiter Beitrag ist die Entwicklung einer Methode, die auf
einem kürzlich entwickelten parametrischen Modell basiert. Dadurch lässt sich die Kontrast-
Detail Information auf etablierte Maße für die Bildqualität zurückführen. Außerdem kann
eine Unsicherheit der Vorhersage angegeben werden. Verglichen mit dem gängigen Standard
reduziert unser Verfahren den Aufwand von Qualitätskontrollmessungen. Auch wenn unser
Verfahren weniger Bilder braucht, müssen diese zunächst aufwendig bearbeitet werden.

Deep learning ermöglicht es aufwendige Bildbearbeitung zu umgehen, indem repräsentative
Merkmale direkt aus den Bildern bestimmt werden. In unserem dritten Beitrag versuchen wir
herauszufinden, ob sich deep learning für die Bestimmung der Bildqualität in der Mammographie
eignet. Ein deep learning observer wurde entwickelt, der die Kontrast-Detail Information direkt
aus einem Einzelbild bestimmen kann. Die Bilder müssen nun nicht mehr aufwändig bearbeitet
werden. Unser letzter Beitrag behandelt das Nachvollziehen spezifischer Vorhersagen unseres
deep learning observers sowie eine Abschätzung der Unsicherheit derselben. Ersteres liefert
interessante Einblicke in die erlernte Strategie, wohingegen letzteres ermöglicht abzuschätzen
wie sicher die Vorhersagen unseres Modells sind.
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1
Introduction

1.1 Motivation

According to the Word Health Organization (WHO), breast cancer is the leading cancer among
women worldwide (WHO, 2014). In 2018, worldwide 54.4 breast cancer cases were reported
per 100, 000 women in highly developed countries while less developed countries were shown
to have 31.3 breast cancer cases per 100, 000 women (Bray et al., 2018). The overall mortality
rate in highly developed countries in 2018 was 21% (Bray et al., 2018). In less developed
countries breast cancer is usually detected in an advanced stage (Anderson et al., 2003) leading
to a higher mortality of around 47.6% in 2018 (Bray et al., 2018).

Obviously, the survival rate depends on the stage in which cancer is diagnosed (Richards,
2009). Cancer that is diagnosed in early stages is more likely to be treated successfully (Hiom,
2015). For this purpose, early detection of breast cancer in asymptomatic women plays an
important role in reducing breast cancer mortality (Kösters and Gøtzsche, 2003). Once an
abnormality is detected, it can be accurately diagnosed via biopsy, where a part of the abnormal
structure is extracted and examined in a laboratory (Veronesi et al., 1997).

One major criticism of early detection is its tendency of overdiagnosis. Overdiagnosis
in general describes the diagnosis of a disease that would not cause symptoms or cause
deaths (Welch and Black, 2010). In breast cancer, overdiagnosis can lead to unnecessary
surgeries and psychological stress of patients that would not develop symptoms in their lifetime
or die from breast cancer due to a rather slowly progressing cancer type (Paci and Duffy,
2005). Nevertheless the WHO recommends the use of early detection (WHO, 2014). Especially
mammography, where the breast is imaged with low energy X-Rays (ICRU, 2009), has shown
evidence for early detection (Oeffinger et al., 2015). For this purpose, mammography screening
programs are implemented in many countries all over the world (Althuis et al., 2005). As
a consequence, efficiency studies, like the Swedish randomized trials (Nyström et al., 2002),
report a reduction of breast cancer mortality of around 21% for woman. However, some other
studies such as the Canadian randomized trial report no significant decrease of mortality by
mammography screening (Miller et al., 2014).
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1. Introduction

Another objection that may be raised is that by screening a predominantly healthy
population the disadvantages outweigh the benefits of mammography screening (Gøtzsche and
Olsen, 2000; Gøtzsche and Jørgensen, 2013). Not only is the use of X-Ray radiation connected
with the risk of inducing cancer (Colin et al., 2011; Yaffe and Mainprize, 2011), especially when
the patients belong to a high risk group for breast cancer (Nadine et al., 2006), but falsely
positive diagnosed cases result in unnecessary operations and stress to the patients (Jørgensen
and Gøtzsche, 2009; Biller-Andorno and Jüni, 2014). The latter may be addressed by reducing
the frequency of medical examinations from annual to biennial while conserving the benefits
from significant mortality reduction (Mandelblatt et al., 2009). The examinations employing
X-Ray radiation are always connected with the risk of inducing cancer. The absorbed dose
is taken as a metric to quantify this risk. A higher radiation dose increases this risk but at
the same time increases the signal-to-noise-ratio (SNR), making it more likely to detect the
abnormalities (Boone et al., 2001). Thereby, a higher radiation dose improves the quality of
the image.

Consequently, mammography poses the problem of trading off radiation dose with the
achieved image quality. The ultimate goal is to keep the radiation dose low while maintaining
sufficient image quality.

In mammography the term image quality is usually defined as the ability of a device to depict
radiologically significant details (ICRU, 2009). In other words, image quality evaluates how
likely breast cancer can be detected in the presented image. A higher image quality indicates a
higher success rate for cancer detection. More general, image quality describes the visual effect
of an image (Wang et al., 2002). Image acquisition, processing and representation introduce
image distortions that decrease the obtained visual performance measured by observers (Liu
et al., 2019). Accurate image quality assessment methods can be divided into methods where
a reference image is available and methods where no reference image is available (Bosse et al.,
2017). In both cases, a metric has to be chosen to quantify image quality. Full-reference
image quality assessment commonly measures the deviation to the reference image (Bosse
et al., 2017). The more an image deviates from a reference, the lower is the image quality.
No-reference image quality assessment aims to determine subjective quality measures like the
mean opinion score (Wang et al., 2002) or objective image quality metrics based on modelling
parameters of visual perception (Liu et al., 2019).

For mammography, no reference images are available but image quality can be technically
assessed by recording images of technical phantoms (Perry et al., 2006). One type of such
technical phantoms comprise several details of different size and contrast embedded in a
uniform background. A suitable measure of image quality is an observer’s performance
to successfully detect these lesions in a recorded image. These observers can be humans
as well as mathematical model observers. Employing humans to measure image quality is
time consuming and yields highly subjective scores that vary significantly between different
observers (Karssemeijer and Thijssen, 1996). Mathematical model observers, on the other
hand, enable fast and objective measurement of image quality. Such model observers define a
metric that enables to distinguish features relevant for certain tasks, e.g. lesion detection.

It has been shown that the assessment of image quality using technical phantoms is linked
to the detection of calcifications in clinical images (Warren et al., 2014; Mackenzie et al.,
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2016). Here, the targets that serve as a surrogate for the calcifications, are embedded in the
anthropomorphic structure of the breast.

Technical estimations of image quality depend on the method to analyze images as well as
on the manufacturing performance of the technical phantoms (Fabiszewska et al., 2016). It
has been reported that the reproducibility of the targets in technical phantoms can vary up to
10% (Borowski et al., 2012) leading to a variance of the determined image quality of the same
device with different phantoms of the same type (Fabiszewska et al., 2016). For the purpose
of standardized image quality measurement, such a behavior is undesired and procedures
to robustly estimate the image quality are required. Current procedures to automatically
estimate image quality rely on the exact knowledge of the signature induced by these targets.
In addition, sophisticated pre-processing is required to derive image quality estimates and
many images are needed for a reliable determination (Mackenzie et al., 2017).

Deep learning could be an alternative for robust estimation of image quality in
mammography without further pre-processing. Deep learning comprises methods where
large models are trained to solve a specific task. It has been shown that deep learning can be
used as a tool for computer aided detection of lesions in mammography with a performance
comparable to expert radiologists (e.g. Kooi et al. (2017)). Furthermore, deep learning has
been proposed for quantifying the quality of visual perception of images in the context of
image quality assessment (e.g. Hou et al. (2014); Bosse et al. (2017)). Even though these
studies prove the benefit of using deep learning for image quality assessment, it has not been
used to assess mammography image quality so far.

In this thesis, different methods for mammography image quality analysis will be developed
that comprise conventional approaches as well as deep learning. A conventional method
utilizing a recent parametric mathematical model observer determines contrast-detail with
fewer images than the current practice. Furthermore, the derived quantities are accompanied
with an estimation of the uncertainty, which is crucial for reliable conformity assessment.
In addition, a deep learning oberserver shall be developed and its potential benefit shall be
explored. Virtual mammography is implemented and used to create a data base for training a
deep learning observer as well as test data bases for assessing its performance in comparison
with the current practice. Finally, methods of interpretability and uncertainty for deep learning
are applied to explain the deep learning observer’s predictions and to estimate the accompanied
uncertainty of these predictions.

1.2 Objective and Aims

The goal of this work is to develop precise and reproducible procedures to improve and ease the
estimation of image quality in mammography from images of a technical phantom. Specifically,
different methods are developed and assessed in terms of their performance and uncertainty.
The main objectives of this thesis can be summarized as follows:

• Objective 1: Implementation of a virtual mammography to simulate radio-
graphic images. Virtual mammography is a tool for simulating realistic mammography
images and can be used for method assessment and to develop data-intensive analysis
procedures. We aim to explore state-of-the-art procedures to implement such a virtual
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mammography. This simulation tool shall then be used to simulate mammography
images of a technical phantom to develop and asses methods that determine the image
quality. Furthermore, the virtual mammography will be used to set up a large data base
to explore the benefits of the application of deep learning, as well as of other methods,
for image quality assessment.

• Objective 2: Application of a parametric model observer for mammography
image quality assessment. Mammography image quality can be assessed by measuring
the performance of an observer to detect structure details in images of a technical phantom.
Mathematical observers assess image quality objectively but current procedures do not
include estimations of the uncertainties of predictions. We aim to develop a procedure for
mammography image quality assessment that utilizes a parametric model observer. For a
reliable decision whether a device produces images of sufficient quality, an uncertainty has
to be determined. Therefore, we also aim to quantify the uncertainty that is accompanied
with the results of our method. The virtual mammography will be used to assess our
proposed approach and to compare it with a reference method that is suggested in the
EUREF guideline for mammography quality assurance.

• Objective 3: Development of deep learning methods for mammography image
quality assessment. Common automatic techniques to determine the image quality
in mammography require error prone pre-processing of recorded images and depend
critically on the manufacturing accuracy of technical phantoms. In this thesis, different
approaches to apply deep learning for mammography image quality assessment shall
be explored. The virtual mammography will be used to simulate large data sets to
facilitate the training of data-intensive deep learning models. In particular, it shall be
investigated, if deep learning can be applied such that the contrast-detail information is
determined directly from the images of the CDMAM phantom. This way, image quality
can be determined without pre-processing. Our proposed method will be compared to
the current automatic procedure recommended in the EUREF guideline.

• Objective 4: Estimation of the uncertainty and analysis of the explainability
of the developed deep learning observer. Neural networks are usually designed to
predict point estimates of some values of interest and can be viewed as black box solutions
for specific problems. Recent progress in the field of the interpretability of deep learning
models makes robust explanation of deep learning predictions possible, especially for
classification problems. Such explanations give insights why the model ends up with a
particular prediction. We aim to explore recent explanation methods and apply them to
our developed deep learning procedure.

In addition to interpretability, growing interest towards methods that aim for an
assessment of the predictive uncertainty of deep learning initiated a vast amount of
research resulting in a variety of different methods. Here, we will review different methods
for the estimation of the predictive uncertainty and apply them to our deep learning
method. A benchmark shall be proposed to compare different uncertainty methods in
the context of multivariate regression.
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1.3 Thesis Structure and Overview

Chapter 2 (Fundamentals) provides a brief overview of the background information for
the topics mammography and machine learning. The fundamental imaging physics are briefly
reviewed that are needed to set up virtual mammography for realistic image simulation. The
importance of mammography image quality assessment is explained along with a description of
the protocol for image quality assurance in mammography according to the current European
guideline. Furthermore, machine learning is introduced as a tool to automatically derive
methods that learn from data to solve a certain task. Specifically, neural networks are
described along with an algorithm how they can be trained efficiently. The probabilistic
interpretation, that can be used to model predictive uncertainties, concludes the brief review
of machine learning.

Chapter 3 (Virtual mammography) is dedicated to the description of our implemented
virtual mammography as a framework to simulate realistic mammography images. In addition,
an alternative method for image quality assessment in mammography is developed that employs
a recently published parametric model observer. Virtual mammography is used to assess our
proposed approach and to compare it with the current practice. The limitations and benefits
of our novel approach are discussed. Furthermore, virtual mammography is an essential tool
for the development of deep learning approaches for image quality estimation. It is used to
develop a large data set to facilitate the training of deep learning methods.

Chapter 4 (Mammography Image Quality Assurance Using Deep Learning)
describes the developments of methods to assess image quality in mammography using deep
learning. Two methods that follow two different strategies are described. As a result, a
semantic segmentation observer (SSO) and a deep learning observer (DLO) are presented. The
SSO estimates a global figure of merit for image quality and is therefore difficult to compare
with the current practice that uses local contrast information. Our DLO, on the other hand,
can extract the local contrast information and is therefore compared with the current practice.
A sparse sampling approach further ensures that our method is robust against variations of
the phantom due to deviations in the manufacturing process of technical phantoms.

Chapter 5 (Explainability and Uncertainty of the deep learning observer) is
dedicated to the interpretability as well as to the estimation of uncertainty of our newly
developed DLO. Interpretability aims to open the black box nature of deep learning by
providing an explanation why a model yielded its prediction for a given input. Different
explanation methods are reviewed and applied to our developed DLO. This leads to interesting
insights in how the observer determines image quality. Growing interest in estimating the
predictive uncertainty resulted in the development of different models. For a simplified example,
it is described, how state of the art methods can be easily modified to predict point estimates
along with an associated uncertainty. Different approaches are explained and the corresponding
results are compared. A benchmark test is proposed that allows one to recommend a method
and a strategy to estimate the uncertainty for mammography image quality assessment using
deep learning. These findings are finally applied to determine the uncertainty of contrast-detail
curves derived by our DLO.
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2
Fundamentals

This chapter provides relevant fundamentals before immersing into the detailed description
of our contributions. For better understanding, this chapter is split into two parts starting
with the fundamentals of mammography, followed by machine learning. More specifically, an
introduction to mammography and its imaging physics is given in the beginning. A definition
of the term image quality in the context of mammography is provided, followed by a description
of the current practice to estimate image quality that will be used as a reference method in
this work.

Image quality estimation methods can be assessed in general by virtual mammography,
that realistically simulates real mammography image recordings. Realistic simulated images
are also useful to generate large data sets and hence virtual mammography supports the
development of deep learning approaches. For a realistic simulation of mammography images
the image formation process needs to be modeled. Thus, a brief review of the image formation
process is provided in the mammography section. A detailed review is out of scope for this
work and the interested reader is referred to the dedicated literature (e.g. Russo (2017); Barrett
and Myers (2013)).

The second part of this chapter focuses on a brief description of machine learning. Artificial
neural networks (ANN) are reviewed as a powerful tool in machine learning to solve a variety
of tasks. Such complex models can be trained with the back-propagation algorithm by using
reference data. Again, the interested reader is referred to the dedicated reference literature for
more detailed information (e.g. Bishop (2006); Mitchell (1997); Orr and Müller (1998)).

The fundamental descriptions of mammography and image quality assessment are mainly
important for chapter 3 whereas the basics of machine learning are used in chapters 4 and 5 to
develop and assess deep learning applications for mammography image quality assessment.

2.1 Mammography

The term mammography describes a radiography technique where the breast tissue is exposed
to X-Ray radiation to look for abnormalities in the imaged breast. Abnormalities in the
breast tissue include large, low-contrast (cancerous) masses and small high-contrast micro-
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calcifications (ICRU, 2009). The goal of mammography is to record an image of the patient
breast such that these abnormalities can be diagnosed by a radiologist. In this section a brief
overview of the underlying imaging physics of mammography shall be given.

The mammography imaging process can be roughly split into three different stages that are
the production, the interaction with matter and the detection of transmitted X-Ray photons.
A detailed description can be found in e.g. Russo (2017); Barrett and Myers (2013); ICRU
(2009), since the description of the underlying physics is reduced to those processes that are
necessary for the development of a computer model of mammography that produces realistic
simulated images.

Production of X-Rays

X-Rays are a form of high energy electromagnetic radiation, that can be found naturally in
our universe and can be produced artificially by X-Ray tubes (Barrett and Myers, 2013). The
X-Ray tube consists of a vacuum tube in which electrons are emitted from a cathode and
accelerated in an electric field. The resulting high energy electrons are then used to bombard
a metal anode. As part of the interaction of the electrons with the atoms of the metal anode
X-Rays are created (Russo, 2017).

The interaction of high energy electrons with the atoms of the target material generates
two kinds of X-Rays: Bremsstrahlung and characteristic X-Rays (Barrett and Myers, 2013).
Bremsstrahlung occurs when the negatively charged electrons are decelerated in the electric
field of the positively charged protons in the nucleus of the target atoms (Koch and Motz,
1959). Bremsstrahlung exhibits a continuous spectrum (Reed, 2005) which means that the
electrons can lose between 0% and 100% of their initial kinetic energy. The energy loss is
then emitted as X-Ray photons with corresponding photon energy. If the impinging electron
has sufficient energy, it can hit an inner orbital electron of the atoms of the target material
causing its emission. The resulting vacancy then causes electrons from higher energy levels
to be transferred into the inner shells. If an electron jumps from a outer shell to an inner
shell, the difference of the corresponding energy levels is emitted as a photon (Archer and
Wagner, 1988). This effect produces an characteristic spectrum with many X-Ray photons
of few discrete energies. The spectrum produced by an X-Ray tube combines characteristic
radiation and Bremsstrahlung into a single spectrum. This depends on the target material,
the tube voltage that accelerates the electrons and the number of free electrons, which is
proportional to the time current product.

For mammography, soft X-Rays with low energies between 15 keV and 30 keV achieve a
high contrast between normal breast tissue and abnormal masses (Russo, 2017). Molybdenum
(Mo), Rhodium (Rh) or Tungsten (W ) are commonly used as target materials for tube anodes
in mammography (ICRU, 2009). Using Mo as an anode material produces a spectrum with
characteristic X-Rays at 17.9 keV and 19.5 keV which is optimal for small breasts (Russo,
2017). Rh, on the other hand, produces characteristic X-Rays at 20.2 keV and 22.7 keV which
are more eligible for the imaging of dense breasts, due to the higher energy (Russo, 2017).
Incorporating W as an anode material yields X-Rays at very low energies between 8 keV and
10 keV .
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2.1 Mammography

Table 2.1: Typical anode material/filter combinations to generate X-Ray spectra with different
beam qualities to optimally image different breast sizes in digital mammography.

Anode material Filter material Filter thickness [µm]

Mo Mo 0.030
Mo Rh 0.025
Rh Rh 0.025
W Rh 0.050

Especially for Mo and Rh anodes, the additional continuous spectrum generated by the
Bremsstrahlung is typically undesired since it adds unnecessary radiation dose while reducing
the contrast between healthy and malignous tissue (Russo, 2017). Filters are frequently used
to minimize the contribution of the continuous spectrum . For Mo and Rh anodes, the filters
are typically made of the same materials as the anode, while for W anodes, Rh filters are
commonly used in order to suppress the contribution of the low energetic characteristic peak
in the W spectrum. Table 2.1 summarizes typical anode material and filter combinations used
in digital mammography.
Figure 2.1 shows a typical spectrum from a W anode (blue) and a Mo anode (orange) for a tube

voltage of 28 kV . The unfiltered spectra shown in Figure 2.1a comprise characteristic radiation
and the continuous Bremsstrahlung. The undesired continuous radiation can be filtered out of
the spectrum as shown in Figure 2.1b using typical anode material filter combinations which
are listed in Table 2.1. The design of the X-Ray tube influences the image quality or, more
precisely, the spatial resolution (Huda et al., 2003). This occurs because the initial electron
beam that targets the anode is spatially distributed. Hence, different electrons hit the anode
in a slightly different position. Therefore, the different X-Ray photons are not generated at the
exact same position. The area of the anode that is targeted by the incoming electron beam is
often referred to as the focal spot (Curry et al., 1990). This focal spot is the area from which

(a) (b)

Figure 2.1: Typical normalized X-Ray spectra for breast cancer detection in mammography for a
tube voltage of 28 kV . (a) Unfiltered spectra for a Tungsten (W ) and a Molybdenum (Mo) anode
comprise characteristic radiation (peaks) and a continuous part. (b) Achieved X-Ray spectra for
W and Mo after filtering the undesired continuous part using typical anode filter combinations (cf.
Table 2.1).
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X-Ray photons are emitted. The smaller the focal spot size, the better the resulting spatial
resolution of the system, which contributes to the image quality that can be achieved with the
corresponding mammography device (Curry et al., 1990).

Interaction of Photons with Matter

When photons pass through an object, they can either penetrate the object without any
interaction or interact with the atoms of the target by depositing all or a part of their
kinetic energy. The interaction of photons with the atoms of the target can be divided into
photoelectric absorption, Compton scattering and coherent scattering (Tipler and Mosca,
2007). Theoretically, a photon that is near the nucleus of an atom, can also interact via
pair production if its kinetic energy exceeds 1.02 MeV (Ashok and Thomas, 2003). However,
typical photon energies of X-Ray radiation fall in the range 100 eV to 200 keV (Seibert, 2004)
where photoelectric absorption and Compton scattering are the predominant processes (Seibert
and Boone, 2005).

Rather than understanding the interaction of single photons with matter, one is more
interested how a beam that comprises many X-Ray photons interacts with matter. Some of the
photons in the beam will penetrate the target without interaction, while others will interact
and thus be removed from the beam via interaction. Hence, the initial beam is attenuated by
the target. The Beer-Lambert law describes an exponential decrease of the intensity if the
beam passes through a homogeneous material:

N(E) = N0(E)e−
∫︁ x

0 µ(E,x)·dx , (2.1)

where N0(E) describes the initial intensity, x denotes the thickness of the material and µ(E, x)
denotes the energy dependent attenuation coefficient.

The human breast is composed of skin, adipose and glandular tissue. Micro-calcifications
consist of denser matter, whereas masses consist of soft materials with attenuation properties
similar to glandular tissue (Russo, 2017). The differences of the linear attenuation coefficients
of the soft composites of the breast tissue tend to increase for decreasing energy. For very
low energies, photoelectric absorption is the predominant process of photon interaction. The
Compton scattering is more likely to occur with increasing energy. At energies above 25 keV ,
the Compton scattering is more likely than the photoelectric absorption. This incoherent
scattering reduces the energy of X-Ray photons and changes their path such that they reach
the detector in a slightly different angle or even at a different position. This undesired effect
reduces the contrast of the image. Therefore, mammography primarily uses anode materials
that yield many low energetic X-Ray photons like Mo, Rh and W .

Detection of photons

The goal of mammography is to translate the locally different attenuation properties of an
object into an image such that these differences can be perceived as contrasts. After penetrating
the target, the X-Ray radiation has to be transformed into an image. This can be done by
either transforming the incoming X-Ray radiation into light or by direct transformation to an
electric signal (Barrett and Myers, 2013).
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The detection of X-Ray photons is more difficult as they have higher energies than visible
light, so they are more likely to penetrate through thin materials. However, fluorescent
materials such as cesium iodide (CsI) can be used to transform the incoming X-Ray radiation
into photons with lower energy that can be detected either with film-screen methods or with
CMOS cameras (Noel and Thibault, 2004). The number of low-energy photons induced by an
incoming X-Ray beam depends on the energy distribution of the X-Ray photons in the beam
and on the number of photons per energy.

Film-screen detectors use a chemical reaction of silver atoms to locally record the photon
intensity and the developed film can then be presented on an illuminated screen (Del Guerra,
2004). In digital mammography, fluorescent layers are directly combined with CMOS cameras
that translate the intensity of optical photons into an electric signal that can be further
digitized into pixel intensities (Spahn, 2005). Direct digital mammography allows to convert
the incoming X-Ray radiation directly into an electric signal. Such direct conversion detectors
consist of photo-conductive layers (e.g. amorphous Selenium) where the incoming X-Ray
photons generate electron-hole pairs (Russo, 2017). The number of produced primary electrons
is determined by the spectrum of the incoming X-Rays. For any conversion procedure, the
efficiency of the detection depends on the dimension of the reactive layer as well as on the
material properties and can be expressed as the detector quantum efficiency (Yaffe and
Rowlands, 1997)

η (E) = 1− e−
∫︁ x

0 µ(E,x)·dx , (2.2)

where µ denotes the attenuation coefficient of the conversion material and x denotes the
thickness of the conversion layer.

In the detection stage, image quality is mainly influenced by noise. The total variance of
the pixel values in the raw image contains contributions of quantum noise, electronic noise and
additional spatial noise (Burgess, 2004). Electronic noise, such as shot noise, is independent of
the incoming radiation while quantum noise and additional spatial noise are directly correlated
with the incoming exposure (Burgess, 2004). At this point, we do not aim for an extensive
analysis of noise and its characteristics but refer the interested reader to dedicated literature
(e.g. Pisano and Yaffe (2005); Whitman and Haygood (2012)).

In summary, the underlying principle physics in mammography can be divided into the
three stages production, interaction and detection of X-Ray photons. In the same way, it is
necessary to model these stages for realistic simulation of mammography images. Each of
the three stages contributes substantially to the limitations of the resulting image quality.
The main contribution during the X-Ray production comes from blurring that occurs if the
focal spot is not a point source. In the interaction stage, scattering becomes the dominant
process for photons with energies higher than 25 keV . In x-ray projection imaging, including
mammography, scattering adds to the quantum noise and thus reduces the resulting contrast
to noise ratio and hence image quality. Finally, in the detection stage detector noise and
spatial resolution substantially degrades the image quality of the recorded image.

Besides mammography, other imaging modalities can also be used to diagnose breast
cancer at an early stage. Mammography as a 2D planar imaging modality can be extended
to breast tomosynthesis by combining several 2D planar images from different angles to
produce a pseudo-3D image (Niklason et al., 1997). Besides that, breast Magnetic Resonance
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Imaging (MRI) and breast Computer Tomography (CT) are modalities especially designed
to image the human breast for early diagnosis of breast cancer (ICRU, 2009). Also infrared
(IR) spectroscopy (Obrig et al., 2000) was successfully used to diagnose breast cancer (Pogue
et al., 2001). Breast MRI, breast tomosynthesis, IR spectroscopy, and breast CT can improve
the accuracy of the detection of abnormalities, especially in dense breasts, but a nation wide
screening using these modalities would be too expensive (e.g. Gilbert et al. (2016); Plevritis
et al. (2006)). So far, mammography is the only imaging modality with proven evidence to
affect the mortality by early detection of breast cancers. A thorough image quality assurance
is necessary to ensure that mammography devices produce images of sufficient quality. This
has to be done so that the low contrast lesions and small micro-calcification can be perceived
and diagnosed reliably in recorded images.

2.1.1 Image Quality Assessment

In general, the term image quality describes the quality of human perception of images (Wang
et al., 2002). Before an image is perceived by a viewer, it undergoes several steps starting from
acquisition to digitization or compression and finally presentation. Each of these procedures
can induce distortions that later affect the visual perception of the image. Methods that
assess image quality can be divided in two groups, depending on the availability of a reference
image (Bosse et al., 2017). Full-reference image quality assessment allows one to determine
the effects of image processing, such as compression, by comparing the final image with a
prior reference image. The closer the final image resembles the reference image, the better
the image quality. Common measures in full reference image quality assessment are the mean
standard error (MSE) or the structural similarity index (SSIM) (Bosse et al., 2017). In contrast,
no-reference image quality assessment aims to assess image quality without further requirement
of reference images. Here, image quality can be assessed in terms of subjective scores, such
as the mean opinion score of viewers (Liu et al., 2019), or objective measures like the model
parameters of visual perception from image statistics (Wang et al., 2002).

In mammography, the term image quality comprises the performance of a device to depict
clinically relevant details in a recorded image (Haus and Yaffe, 2000). Such details include
micro-calcifications and masses. A micro-calcification is usually shown as a small detail with
higher contrast, whereas abnormal masses are larger in dimension, but lower in contrast (ICRU,
2009). Image quality in mammography can be estimated in a no-reference manner by recording
images of technical phantoms and reporting an observer’s performance on a specific task, such
as lesion detection (Perry et al., 2006). Such observers can be either humans or mathematical
model observers. Mathematical model observers make a fast and objective assessment of image
quality possible, whereas human observer studies are highly subjective and time consuming.
Model observers estimate image statistics that are specific to a certain task (Barrett et al.,
1993). For image quality estimation in mammography this task is lesion detection. To be more
specific, the observer determines whether a lesion is present in an image or not.

In general, mammography image quality is related to a set of certain technical parameters.
In practice, radiologists classify images as inadequate quality if the image has low measured
values of radiographic contrast, signal-to-noise-ratio (SNR) and spatial resolution as well as
high presence of artifacts in the image (Haus and Yaffe, 2000). A clear understanding of
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how the individual parameters contribute to the image quality is still missing(ICRU, 2009).
Furthermore, these technical parameters depend on the acquisition parameters and of course
they are task dependent: a set of acquisition parameters well suited to depict a small, high
contrast micro-calcification might not be optimal to visualize low contrast masses in the
image (Huda et al., 2003). Besides, determining image quality by measuring these technical
parameters, such as the modulation transfer function (MTF) or the noise power spectrum (NPS)
requires the validity of the assumption of the linear system theory (Chen, 1998) (cf. Anton
et al. (2018)). However, nonlinear image processing violates these assumptions. Therefore,
task-based image quality assessment with model observers are usually preferred (Anton et al.,
2018).

Recalling that mammography image quality is interpreted as the ability of an observer to
perceive clinical relevant details in the image, the receiver operating characteristic (ROC) curve
methodology can be used as a tool to infer the observer performance with the mammography
device (Metz, 1979).
The ROC analysis provides a measure of the performance for a binary classification task,

such as the presence or absence of abnormalities in a medical image(Obuchowski, 2003). For
each image, a numeric test statistic is computed. This test statistic varies for different images.
It follows that different images with and without lesions (i.e. the signature of a target) can be
described by the two distributions of the numeric test statistic for both classes. Figure 2.2
visualizes an example ROC analysis. The Figure shows the distributions of the test statistic of
the two classes for a binary task in two different cases. As it can be seen, the overlap between
the two class distributions is reduced in case 2. Figure 2.2 shows the corresponding ROC
curves for the two cases along with the ideal and the random performance. Ideally, both class
distributions do not overlap, which means that the observer can perfectly distinguish between
both classes. The random performance defines the scenario where the distribution of the test

Figure 2.2: Example ROC study for a binary task where the class samples are distributed with
respect to a test statistic as shown on the left for two different cases. On the right the corresponding
ROC curves are shown together with the ideal scenario without overlap of the different class
distributions and the random case, where the class distributions for both classes are equal.

13



2. Fundamentals

statistic of both classes overlaps completely, which means that the observer cannot distinguish
between the different classes. The ROC curve plots the true positive fraction (TPF) against
the false positive fraction (FPF). Both parameters, TPF and FPF, are calculated as a function
of a threshold for the test statistic. TPF and FPF are the part of the distribution of class 1
and class 0 that are greater than the chosen threshold. The area under curve (AUC) (Hanley
and McNeil, 1983) is the integrated area under the ROC curve and is useful as a metric for the
image quality. The AUC is always in the range between the random performance (AUC = 0.5)
and the ideal performance (AUC = 1).

Implementing meaningful ROC studies, however, requires many images to be analyzed. Only
with a sufficient number of images the distribution of the test statistic can be inferred reliably.
ROC studies are complex and time consuming and hence are often not very practical (ICRU,
2009). Instead, image quality can be expressed by system measurements or observer properties.
Objective measures of the system properties determine technical parameters like noise, spatial
resolution, contrast and artifacts and are shown to correlate with observer-dependent contrast-
detail measurements (Marshall, 2006). Contrast-detail measurements employ test patterns
that contain different structures that vary in their dimension (e.g. diameter of circular discs)
and their radiation contrast, given by the structure thickness (ICRU, 2009). Images of this
test phantom are then viewed by observers to decide which structures are visible. The observer
decision can then be translated into contrast-detail curves that display the corresponding
minimum structure thickness for each structure diameter such that an employed observer can
detect this structure with prescribed accuracy (Loo et al., 1983).

In Europe, the European Reference Organization for Quality Assured Breast Cancer
Screening and Diagnostic Services (EUREF) developed a guideline on how to assess the image
quality in mammography (Perry et al., 2006). Rather than measuring the system parameters
directly, the image quality is evaluated in terms of contrast-detail measurements. This can
either be done by employing a radiologist or by an automatic procedure. By annually assessing
the image quality of mammography devices in terms of contrast-detail measurements, their
depreciation can be tracked and a recommendation of when certain units have to be replaced
can be given. Devices from different vendors can be compared and new devices can be checked
whether they produce images of sufficient quality for breast cancer diagnosis.

2.1.2 CDMAM Phantom

Image quality assurance in mammography is important to ensure that (new) devices produce
images with a sufficient contrast resolution in order to reliably depict abnormalities in patient
images (acceptance test). Furthermore, image quality measurements are carried out to test
whether devices that were already approved once, still reach the sufficient image quality
prerequisites (constancy test). Therefore, image quality measurements need to be reproducible
and consistent. For this purpose, usually technical phantoms are developed to be used for
the assessment of the diagnostic image quality. Guidelines were developed by the American
College of Radiology as well as by a European commission to standardize quality assurance.
They particularly describe which phantoms should be used and how image quality can be
assessed (Li et al., 2010).
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2.1 Mammography

Figure 2.3: Schematic representation of the CDMAM phantom for mammography image quality
assessment according to European guidelines. The different thicknesses are indicated as different
gray levels. Figure from Kretz et al. (2019).

In this work, the focus is on the European guideline that recommends to use the contrast-
detail phantom for mammography (CDMAM) phantom (version 3.4, Artinis) to evaluate the
imaging performance of a device. The CDMAM phantom comprises 205 individual square
cells arranged in a regular grid pattern as illustrated in Figure 2.3. The individual cells are
separated from each other by solid thick grid lines. The choice of different materials with
different attenuation properties cause different transmission of X-Ray radiation and hence,
varying intensities in the recorded image. The CDMAM phantom consists of a 16 cm× 24 cm
aluminium plate with a thickness of 0, 5 mm, pure gold discs and a polymethyl methacrylate
(PMMA) cover (Thijssen et al., 2007).
Within each cell, two gold disc are located: one in the center of the cell and one randomly

located in one of the four corners. The two gold discs in one cell have the same diameter
and thickness. These two properties vary in each row and column, respectively, as it can be
seen in Figure 2.3. In total, sixteen different diameters uniformly separated on a logarithmic
scale from 0, 06 mm to 2, 00 mm and sixteen different thicknesses uniformly separated on a
logarithmic scale from 0, 03 µm to 2, 00 µm are present in the CDMAM phantom. A lower
thickness and a lower diameter reduce the amount of X-Ray photons that interact with the
gold atoms and thus more radiation can pass, resulting in a transmission profile that is similar
to that of the surrounding background. As a consequence, the SNR of image regions from
targets with small thickness is more similar to the SNR of the background regions. Therefore,
these artificial lesions are harder to detect in the resulting image.

The CDMAM phantom was designed in such a way that an observer was supposed to
determine the location of the second gold disc in one of the four corners. Comparing the
estimated position with the actual known position enables to decide whether the lesion was
correctly detected or not. This procedure is repeated for a series of images for every cell of
the CDMAM phantom. This way, the threshold gold thickness can be determined for every
diameter such that the proportion of correctly detected discs crosses a pre-defined threshold.
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This information is then used to evaluate the image quality. Solving this task with human
observers is a slow and tedious task (Yip et al., 2009) and hence automatic procedures were
developed for an objective and fast evaluation of mammography image quality in terms of
contrast-detail curves.

2.1.3 EUREF Guideline Automatic Procedure

A standardized guideline to evaluate mammography image quality is important to guarantee
consistent and robust quality assurance protocols that are comparable for different imaging
devices. In Europe, the European Reference Organization for Quality Assured Breast Cancer
Screening and Diagnostic Services (EUREF) proposed a guideline that defines the protocol for
quality assurance in mammography (Perry et al., 2006), that will be referred to as EUREF
guideline in the following.

Among other things, this guideline defines how to evaluate the contrast resolution by
means of recordings of the CDMAM phantom. According to the EUREF guideline, images of
the CDMAM phantom can be evaluated by either human observers or automatic procedures.
Besides long evaluation times, the employment of humans may introduce a bias since human
performance is highly subjective. Computer algorithms, on the other hand, enable an objective
and fast assessment of image quality and the EUREF guideline further describes how to relate
automatic procedures with a corresponding expectation from a human observer (Perry et al.,
2006).

Evaluating images of the CDMAM phantom to assess image quality in mammography is
a multistage process: the image needs to be pre-processed before an observer carries out a
scoring that can be translated into a metric that expresses image quality. This metric is the
so called contrast-detail curve, that links the diameter of gold discs with a thickness, such
that an observer can localize the position of the disc in a series of images with a prescribed
accuracy (Perry and Puthaar, 2006). For the automatic CDMAM readout, a minimum of
16 recorded images is required according to the EUREF guideline (Perry et al., 2006). The
contrast-detail curve summarizes local information: in each column of the CDMAM phantom
the gold discs have a fixed diameter, whereas their thickness varies in each row. Thus, the
CDMAM scoring procedure aims to identify that row of one specific column, where the observer
cannot detect the position of the second gold disc with sufficient accuracy.

2.1.3.1 Pre-processing

The contrast-detail curve summarizes local detectability information in the phantom. To
compute this local information, many procedures require an error-prone pre-processing of the
image of the CDMAM phantom. A decision has to be carried out for the individual cells of
the CDMAM phantom. Therefore, the full image should be segmented into its individual cells,
which can be done by aligning a mask of the known grid pattern with the image. Then, in
each cell the actual position of the lesion has to be determined, which again can be done by
comparing the cell with a mask that is known a priori. Different specimen of the CDMAM
phantom, however, show deviations of up to 10% in diameter and < 10% in thickness of the
gold discs, which cause a significant deviation of the estimated contrast-detail curves for the
same imaging device but different phantoms (Borowski et al., 2012; Fabiszewska et al., 2016).
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This introduces an uncertainty of the known ground truth mask and hence the positioning of
the individual lesions has to be refined to achieve a reliable contrast-detail curve estimation.

All in all, a combination of pre-processings are applied to an image of the CDMAM
phantom prior to the CDMAM scoring. First of all, the CDMAM phantom with its dimensions
(16 cm × 24 cm) does not cover the whole area of the detector (typically 24 cm × 30 cm).
Hence, the images contain bright areas outside the actual phantom image. These margins have
to be cropped before further evaluation. Since photons not passing the phantom reach the
detector more or less without any interaction on their path, the margins appear with higher
pixel intensity. Therefore, they can be excluded simply by filtering out those pixels with gray
values above a certain threshold. In addition, the CDMAM phantom image has to be aligned
with a template mask to map the ground truth positions of the gold discs to the local pixels in
the image in order to determine the position of each artificial lesion. Doing this for each image
individually, further accounts for shifts in the positioning of the phantom in the acquisition
procedure. An efficient alignment can be done by determining the position of the grid lines.
The grid is presented in the phantom as thick straight lines and thus the Hough transform can
be applied to detect them (Karssemeijer and Thijssen, 1996). Once the grid lines are detected,
their intersections mark the four corners of each cell in the CDMAM phantom. This way, the
whole phantom image can be segmented into its individual cell. Knowing the exact positions
of the artificial lesions in each cell, makes it possible to check whether lesions are detected
correctly, to compute the scoring of an observer.

2.1.3.2 Contrast-detail Scoring

After successfully segmenting the image of the whole CDMAM into its individual cells, a
mathematical observer is employed to localize the position of the second gold disc. This disc is
positioned in one of the four corners of the square cell in a specified distance to the disc located
in the center of the cell. In the current EUREF guideline, this observer simply calculates the
intensity mean of the four potential corner disc positions and chooses the one out of the four
possibilities with the minimum mean intensity. Note that gold has a higher X-Ray attenuation,
thus, less radiation is transmitted which results in a lower intensity of the image regions that
are in the shadow of the gold discs.

In practice, nimages of the CDMAM phantom are recorded, and for each cell a proportion
of correctly detected gold discs is reported (Perry et al., 2006). Figure 2.4a shows an example
image of one individual CDMAM cell, along with the true disc positions (green) and the three
potential corner positions (red) that do not contain the gold disc. The values θk denote the
mean (lesion) intensities in the corresponding region.
The mean lesion intensity of each true location is then compared with the mean intensity in

the three potential red corner positions. For a cell with gold disc diameter d and thickness t,
the proportion of correctly detected discs is obtained as

pd(t) = ncorrect

2nimages
, (2.3)
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(a) (b)

Figure 2.4: (a) Illustration of the disc localization in a CDMAM cell. Green locations show the
true position in the center and the true corner position, while red positions mark the potential
corner positions that do not contain the gold disc. (b) Scoring result for the localisation of discs
with diameter 0.25 mm for 16 images of all relevant thicknesses of the CDMAM phantom.

where ncorrect denotes the number of correctly located lesions. This can be calculated as

ncorrect =
nimages∑︂

i=1
H
(︂
min(θi
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2, θ

i
3)− θi

corner

)︂
+H

(︂
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i
2, θ

i
3)− θi

center

)︂
,

where H(x) denotes the Heavyside function.
This means that for each of the nimages images the observer reports two scorings by comparing
first the average intensity in the center lesion region θcenter with the three potential positions
θ1, θ2, θ3 and repeating the same with the true corner position θcorner. The combined result
for a series of nimages images for one cell is then computed via equation 2.3. According to the
EUREF guideline at least 16 images have to be analyzed leading to a total of 32 localizations
per CDMAM cell (Perry et al., 2006). For gold discs with high thickness the difference between
average intensities in the lesion and background region increases, thus, the observer correctly
detects the corresponding lesion more often than lesions with low thickness. For a given
diameter, the proportion of corrected thicknesses for all available thicknesses is collected as
demonstrated in Figure 2.4b. For small thicknesses the curve tends to 0.25 which is the
expected proportion of correctly detected lesions by chance for this one out of four task. For
higher thicknesses, the curve tends to unity, which means that the observer correctly detects
(almost) all lesions. The raw data is then fitted by assuming an underlying psychometric
curve (Karssemeijer and Thijssen, 1996) given as

pd(t) = 0.75
1 + exp [−ζ(C(t)− CT )] + 0.25 ,

where t denotes the thickness, ζ and CT denote fit parameters that are estimated using a
nonlinear least-square procedure and C(t) denotes the contrast at thickness t given as

C(t) = ln
(︂
1− e−µgoldt

)︂
.
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Figure 2.5: Psychometric curves for the localization performance of the automatic readout
procedure of the EUREF guideline using 16 simulated images of the CDMAM phantom. The red
horizontal line marks the minimum prescribed accuracy. The Figure was taken from Kretz et al.
(2019) and modified by adding the critical value.

Figure 2.6: Example contrast-detail curve obtained by the EUREF guideline procedure for 16
simulated images. The red line illustrates the acceptable limit curve. The contrast-detail curve
must be below the limit curve to meet the acceptance criterion. Figure from Kretz et al. (2019).

For a photon energy of 31 keV , the mass attenuation coefficient of gold is µgold = 0.047 µm.
The psychometric fit is carried out for all diameters, which is visualized in Figure 2.5 for a

scoring of 16 simulated images of the CDMAM phantom.
The bigger the diameter of the gold discs, the more the corresponding psychometric curve

shifts to the left, meaning that high detection accuracy is achieved for lower threshold gold
thicknesses. For the determination of contrast-detail curves, the EUREF guideline prescribes
a minimum accuracy of 0.625 which marks the center of the interval between pure guessing
(0.25) and certainty (1) (Perry et al., 2006). This limit value is illustrated as the red horizontal
line in Figure 2.5. Calculating the intersection of the psychometric curves with this limit value
results in a predicted threshold gold thickness for each diameter that can be plotted as a
contrast-detail curve, see Figure 2.6.
The contrast-detail curve displays the minimum gold thickness for each diameter, such that

an observer can locate the position with at least 62.5% accuracy.
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2.2 Machine Learning

The term machine learning frames a broad field within the area of Artificial Intelligence (AI).
All you need for machine learning is data, a task and a performance measure of how good you
solve this given task. Then, machine learning describes the process how an algorithm improves
its performance to solve a given task by learning an optimal solving strategy from the data.
In more technical terms, Mitchell (1997) defines machine learning as follows:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.

Thus, after defining the performance measure P for a specific task T , the task of machine
learning is to optimize the parameters of a selected model to accurately solve this task on a
given set of data.
A remarkable benefit of machine learning is that the strategy of solving the task T is not
explicitly programmed, but an algorithm is trained to solve this task, given a set of data (Bishop,
2006).

The learning process itself can be categorized into different stages: representation, evaluation
and optimization (Domingos, 2012).
Representation addresses the challenge to represent the model in such a way that a computer
can handle. Practically, this is done by selecting the kind of model that should be trained.
Examples for such model representations are artificial neural networks (LeCun et al., 2015;
Schmidhuber, 2015; Hassoun et al., 1995), support vector machines (Cortes and Vapnik,
1995; Müller et al., 2001; Suykens and Vandewalle, 1999; Schölkopf et al., 2002), random
forests (Breiman, 2001; Ho, 1995) and many more. Besides the representation of the model,
also the question of how to represent the data needs to be considered. For a given task T , it
can be profitable to use a set of engineered features from the data rather than using the raw
data directly (Zheng and Casari, 2018).
Evaluation is needed to separate good models and bad models or to ensure that a chosen
model successfully improves over time. It is done by evaluating the performance measure P
which is commonly referred to as the objective function or loss function.
Finally, optimization describes the (fine)-tuning of the parameters of the best model to
achieve the highest scoring as measured by the performance measure P . Optimization thus
defines an algorithm to update the model parameters to optimally solve the task T . Ideally,
the scoring, measured by the performance measure P , is high on an particular training set as
well as an independent test set that was not used for training. In this situation, the method
successfully learned to generalize solving the task even on data that was never seen before.

The field of machine learning can be categorized according to different kinds of learning:
supervised, semi-supervised, unsupervised and reinforcement learning (Lison, 2015). They all
try to solve a task T by improving a performance measure P but utilize different concepts to
reach that goal. In supervised learning, the data contains samples along with known labels
for each sample. The set of known labels is often referred to as the ground truth. A model
can then be used to make a prediction on the data, and the performance measure compares
the prediction with the actual label and forces the model to predict the labels accurately.
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In contrast, unsupervised learning learns to solve a task T , such as feature detection (Le,
2013), solely by using the data without further knowledge of labels. Semi-supervised learning
is a hybrid between supervised and unsupervised learning: the data contains samples that
are labeled as well as samples without labels. Reinforcement Learning (Sutton and Barto,
2018), on the other hand, describes a totally different approach. Here, an agent is trained to
solve task T . Every good decision of this agent is rewarded and every bad decision punished,
respectively. The agent is trained to avoid punishments, but collect many rewards instead. All
different approaches brought tremendous success in their relevant fields. This work focuses
only on supervised learning.

The supervised learning problem can be technically formulated as:

Given D : {(x1, y1), (x2, y2), ..., (xN , yN )}
find ψ(x, θ)
that best approximates xi ↦→ yi∀i

where D denotes a data set containing N training examples xi with corresponding labels yi,
and ψ(x, θ) is the model function with model parameters θ.
Machine learning can be interpreted as a method for function approximation. Commonly, it is
assumed, that the data y is generated by an unknown function f

yi = f(xi) + ϵi ,

where ϵi ∼ N (0, σ2
i ) denotes some additional noise with variance σ2

i . This function f can be
either continuous, in case of a regression task, or discrete, for classification tasks. Machine
learning aims to optimize the parameters θ of a selected model ψ(x, θ) to optimally approximate

xi ↦→ yi∀i .

Theoretically, machine learning benefits from the universal approximation theorem (Cybenko,
1989) which states that any continuous function can be approximated arbitrarily accurately
with neural networks. Later, an algorithm is introduced that allows one to optimize these
parameters for several different models to closely approximate the ground truth labels.

Besides a correct prediction of the data in the training set, an optimal model should be
able to generalize well, such that future unseen data can be predicted as well. One common
challenge is here to avoid overfitting during the training procedure (see e.g. (Hastie et al.,
2009)). Overfitting is when the model accurately predicts the labels of the data in the training
set, but fails when it comes to the prediction of data that was not represented in the training
set. This means that the model starts to fit the noise in the data, which leads to bad parameters
estimates. To avoid overfitting, the training needs to be regularized. Common regularization
strategies comprise data augmentation (Hernández-García and König, 2018), dropout (Hinton
et al., 2012), early stopping (Orr and Müller, 1998) and regularization costs in the objective
function (Wang and Klabjan, 2017).

Among other potential machine learning models, the artificial neural network (ANN) is one
strong driver to open up one additional field of machine learning: the so-called deep learning.
Deep learning usually employs big models with many layers of individual units, each described
by a set of parameters. As mentioned earlier, representation is one important component of
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the great success of machine learning algorithms. If the data can be represented by certain
features, a machine learning algorithm can successfully solve a task on them. Identifying
a suitable set of features, however, requires a lot of expert knowledge. In many cases it is
unknown which features should be extracted to represent the data for optimally solving a
certain task. Deep learning bypasses the problem of feature engineering by discovering a
suitable representation of the data by itself (Goodfellow et al., 2016). Deep models learn simple
representations in the initial structure, and the deeper the model gets, the more complex
the representations become (Sun et al., 2014). The initial elements, for example will only
identify the colors of a pixel whereas a deep network can learn complex representations,
for example, object shapes in its late elements. Thus, increasing the complexity of the
model enables a better representation, whereas on the other hand, the number of learnable
parameters increases significantly. Therefore, (high) computational power is a good friend of
deep learning (LeCun, 2019). The absence of large data sets as well as lacking high performance
computer hardware caused a decreasing popularity of deep learning, despite its introduction
in the 1980’s (LeCun, 2019). Finally, in 2012, Krizhevsky et al. (2012) implemented deep
learning for image classification on the large ImageNet (Berg et al., 2010) data set, achieving
better results than every state-of-the-art algorithm so far. They report a highly optimized
implementation using graphics processing units (GPUs) to successfully train a deep model
with around 60 million parameters. Since then, deep learning was successfully applied in
various fields including speech-recognition, object detection and natural language processing
(see e.g. LeCun et al. (2015)).

For more in-depth information on the subject, we refer the interested reader to the dedicated
literature (Bishop, 2006; Orr and Müller, 1998; Lison, 2015; Mitchell, 1997; Goodfellow et al.,
2016). In the following, we focus on a detailed description of the ANN and how to train a
model.

2.2.1 Artificial Neural Networks

In neurophysiology a neuron describes a biological cell for information processing. A neuron
consists of a cell body, dendrites and the so called axon (Jefferys and Cooper, 2007). A neuron
receives information from other neurons and, depending on whether the information reaches a
certain threshold, the neuron transmits a signal through its axon. Motivated by its biological
counterpart, an endeavour to develop such neurons artificially was started in the early 1940s
by McCulloch and Pitts (see McCulloch and Pitts (1943)). Based on their pioneering work,
Rosenblatt introduced the perceptron in 1958 as a unit that linearly combines its inputs. It
gives 1 as an output if the sum of all inputs is greater than 0 and 0 otherwise (Rosenblatt,
1958). Figure 2.7a depicts the Rosenblatt perceptron.
Mathematically, an artificial neuron j multiplies its inputs αl−1

i with weight factors wl
ij and

outputs a sum of all weighted inputs and a bias bj after applying an nonlinear activation
function σ

αl
j = σ

(︄∑︂
i

wl
ij ∗ αl−1

i + bl
j

)︄
.

A feed-forward ANN combines several artificial neurons and arranges them in layers as shown
in Figure 2.7b. The first layer is referred to as input layer and the last layer is called output
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(a) (b)

Figure 2.7: (a) Schematic visualization of an artificial neuron according to the McCulloch-Pitts
model. A neuron outputs the weighted sum of its inputs after applying a activation function σ.
(b) A feedforward ANN combines multiple artificial neurons in layers and stacks the several layers
to a network structure. Each neuron is connected to every neuron in the following layer.

layer. An ANN combines these with (several) hidden layers in between. Especially in deep
learning, the number of hidden layers is high. In a fully connected layer, every neuron is
connected with every neuron of the next following layer. The parameters θ of such an ANN
comprise all the weights and biases of every neuron and need to be optimized for an accurate
prediction of the underlying ground truth.

The output can be mathematically expressed as a nested evaluation of all the layers
outputs. Assuming there are nk neurons in layer k of a fully connected network, the weights
can be expressed as a matrix W k ∈ Rnk×nk−1 . The inputs for layer k, are the nk−1 outputs
αk−1 ∈ Rnk−1×1 of the previous layer. With the vector of all biases bk ∈ Rnk×1 in layer k, the
output of layer can be calculated using the matrix-vector multiplication:

hk

(︂
αk−1

)︂
= σk

(︂
W k ·αk−1 + bk

)︂
, (2.4)

where σk denotes the activation function in layer k. In this notation, it is assumed that the
input x can be expressed as a one dimensional vector and is denoted by α0.
For a fully connected neural network with four layers, as illustrated in Figure 2.7b, the output
ŷ can be computed as:

ŷ = ψ (x, θ) = h4(h3(h2(h1(x))))

ANNs were introduced in the 1960s where they were computationally difficult to train (Good-
fellow et al., 2016). In the late 1980s, ANNs gained new popularity with the development
of the back-propagation algorithm (Rumelhart et al., 1986), which will be explained in more
detail in the next section.

Since their introduction ANNs were further developed. New kinds of layers were introduced
to ease the training and consider correlations in the inputs. In 1998, LeCun et al. (1998)
introduced a neural network architecture which achieved remarkable results in hand written
digit recognition. Here, the input are images. Adjacent pixels in images are usually highly
correlated and not independent. A fully connected layer does not consider such correlations,
which led to the development of convolutional layers that are able to account for correlations in
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the local neighborhood of a pixel. Such convolutional neural network (CNN) usually combine
convolutional layers and pooling layers together with batch-normalization and nonlinear
activation functions, which are briefly reviewed in the following.
Convolutional Layers: An image usually consists of several hundreds or thousands of pixels.
Representing each pixel individually as an input neuron for a fully connected network would
lead to a huge number of parameters that is computationally difficult to handle. Convolutional
layers act as filters and use parameter sharing to reduce the number of learnable parameters.
Such convolutional layers learn the entries of a convolution kernel that is referred to as filter.
By defining a filter size, one can shift the filter over the pixels of the image to calculate a
feature map that expresses, how present the feature of the filter is in parts of the image. The
development of such convolutional layers was motivated by local receptive fields as described
in (LeCun et al., 1998). Instead of learning a weight for every pixel, only the filter weights are
optimized, leading to a great reduction of the number of trainable parameters.
Pooling Layers: Once a feature is detected by a convolutional filter, its exact position is
less relevant (LeCun et al., 1998). Position invariance, which is an essential requirement in
many applications, can be achieved by sub-sampling the feature map. This further reduces
the dimension of the feature map, which can additionally reduce the number of learnable
parameters. Commonly, max-pooling only keeps the maximum activation in a 2× 2 receptive
field in the feature map. Sub-sampling of the feature maps reduces the dimensions and thus the
complexity. Additionally, it also reduces the output’s sensitivity on shifts and distortions. For
many tasks (e.g. image classification), the position of the object in the image is less relevant
and shift invariance is a desired property of the trained neural net.
Activation Layers: Without the application of an activation function the layer output as
described in Equation 2.4 and thus the neural network output, reduces to a linear function.
Thus, to account for nonlinearities, nonlinear activation functions are a key feature. Sigmoid
functions were initially used to model the biological neuron’s behavior that only fires a pulse if
the excitation reaches a certain threshold (Rumelhart et al., 1986). Similarly, sigmoid logistic
functions are zero until the input reaches a threshold, and one for values significantly larger
than the threshold. However, sigmoid activation functions exhibit bad convergence due to
the vanishing gradient problem (Pascanu et al., 2013). Therefore, Nair and Hinton (2010)
introduced rectified linear units (ReLU) to avoid this problem.

ReLU(x) =
{︄
x if x > 0
0 else.

This function was found to be computationally stable and is therefore widely used in neural
networks.
Normalization Layers: It was found that the convergence of neural network training is in
general much faster if the average over each input over the training set is close to zero (LeCun
et al., 2012). Therefore, a normalization of the input over the training set can be used to
stabilize the training process. Similarly, Ioffe and Szegedy (2015) state in their work that the
same phenomena occur in the distribution of each layer’s input. These distributions change
during the training, and Ioffe and Szegedy (2015) introduce batch-normalization layers to
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Table 2.2: Overview of different loss functions. M can be either the total number of examples in
the whole training set or the size of a mini-batch.

Name L (yi, ψ (xi, θ)) setting

Mean squared error (yi − ψ (xi, θ))2 regression
Mean absolute error |yi − ψ (xi, θ) | regression
Huber loss

{︄
1
2 (yi − ψ (xi, θ))2 if |yi − ψ (xi, θ) | < δ
δ|yi − ψ (xi, θ) | − 1

2δ
2 else.

regression

Log loss yi log (ψ (xi, θ)) + (1− yi) log (1− ψ (xi, θ)) ,
ψ (xi, θ) ∈ (0, 1)

binary
classification

Cross entropy
∑︁c

j=1 y
(j)
i log

(︂
ψ(j) (xi, θ)

)︂
,

ψ(j) (xi, θ) ∈ (0, 1) ∀j
classification

normalize the input of each layer for every training batch. This way, they achieved a more
robust training procedure.

2.2.2 Learning and Back-propagation

Until now, the general concept of machine learning was discussed and ANNs were introduced
as one possible kind of models among many others. ANNs can be described by their model
parameters θ, which are the weights and biases of each neuron of the net, respectively. The
idea is to optimize the model parameters θ of our model ψ such that the resulting predictions
fit the underlying label y.

As mentioned in the definition of machine learning a performance measure P is needed to
determine the deviation between model output and ground truth. This performance measure is
more commonly referred to as the loss function, here denoted as L. The loss function penalizes
large deviations of the ground truth y and the model output ψ (x, θ), and therefore it should
be minimized during the training

arg min
θ

M∑︂
i=1
L (yi, ψ (xi, θ)) ,

where M denotes either the total number of samples or the size of a mini-batch, which will
be explained later. Table 2.2 provides an overview of commonly used loss functions. Note
that the log loss and the cross entropy are special loss functions, requiring that ψ(xi, θ) is
non-negative and normalized. In classification problems this is usually ensured by computing
the softmax function (Murphy, 2012).
Once a loss function is defined, the question arises, how this function can be used to minimize

the deviation between the model and the ground truth. Among other examples, the gradient
descent algorithm (Cauchy, 1847) describes how the gradients of the loss function can be used
to minimize its values stepwise. In a small neighborhood ∆x, any differentiable function f

can be approximated by using its gradient:

f(x + ∆x) ≈ f(x) + ∆x ·∇f(x).
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Following this concept, the function f can be reduced by taking small steps η > 0 in the
direction of the negative gradient.

f(x− η∇f(x)) ≈ f(x)− η∇f(x) ·∇f(x) < f(x)

The parameters to optimize are the model parameters θ. To reduce the loss function with
respect to θ, the gradient descent algorithm determines the updates of the model parameters
by moving θ a small step along the direction of the gradient of the loss function.

θ ← θ − η∂L (y, ψ (x, θ))
∂θ

(2.5)

The step size η is called learning rate and defines how much the parameters θ change with
each update. The choice of η is crucial. Choosing η too small results in slow convergence or
converge into a local minimum. On the other hand, if η is chosen too big, then the optimizer
can step out of the minimum and diverge to infinity (Zeiler, 2012). Besides, the assumption of
linearity is no longer valid for large values of η.

To estimate the parameters and their updates for all samples in the training set can be very
time and memory consuming. Therefore, stochastic gradient descent methods are commonly
used that approximate the true gradient by considering only a single sample or a small sub-
sample of the whole training set in one parameter update (Bottou, 2010). The stochastic
nature of this process is introduced through the fact that these sub-samples, which are referred
to as batches, are drawn randomly from the data. Stochastic gradient descent further acts as
a regularization, avoiding that the optimization gets stuck in a local minimum (Ruder, 2016).

However, the approximation of exact gradients of the loss function introduces some noise,
so that the optimizer will not always go into the optimal direction. As a consequence, stochastic
gradient decent with momentum (SGDM) was introduced to avoid this. SGDM updates its
parameters based on the gradient as well as on the previous gradient (Qian, 1999). The
sequence of gradients Vi is then computed by

Vi = βVi−1 + η
∂L (y, ψ (x, θ))

∂θ
,

with a momentum factor β. The parameter updates are then given by

θ ← θ − Vi .

Stochastic gradient descent with momentum resembles conjugate gradient methods (Fletcher
and Reeves, 1964). Such conjugate gradient methods avoid taking multiple steps in the
same direction of the gradient and hence ensure a faster convergence (Qian, 1999). In fact,
conjugate gradient methods terminates provably in the minimum after n line-searches for a
positive-definite n-dimensional quadratic form (Qian, 1999).

In order to determine the updates of the model parameters θ, their gradients of the loss
function need to be calculated. For a hierarchical model, such as an ANN, the gradients of
the model parameters can be obtained by applying the chain rule. To demonstrate this, we
assume a simple model of one input neuron x = α0, one single hidden neuron α1 and the
output neuron ŷ = ψ(x, θ), as depicted in Figure 2.8.
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Figure 2.8: Schematic to demonstrate the back-propagation algorithm for a hierarchical model
with one input, one hidden, and one output neuron.

The model is ψ is described by its parameters θ = {θ1, θ2}. For given x, θ1, θ2 we can evaluate
the model and calculate the loss function L (y, ŷ). The question is how to update the model
parameters such that the model approximates the true output closely. As mentioned, the
(stochastic) gradient descent method allows the model parameters to be updated once the
gradients are determined. The gradients to be determined are:

∂L (y, ψ (x, θ))
∂θ1

and ∂L (y, ψ (x, θ))
∂θ2

.

The loss function L (y, ŷ) depends only implicitly on the model parameters θ. However, ŷ
depends explicit on the model parameters θ2 in our case. Thus, we can apply the chain rule to
determine the gradient with respect to θ2:

∂L (y, ŷ)
∂θ2

= ∂L (y, ŷ)
∂ŷ

· ∂ŷ (α1, θ2)
∂θ2

.

For differentiable loss and activation functions, these gradients can be expressed analytically.
In the same way, the gradient with respect to θ1 can be determined. The loss function depends
explicitly on ŷ, but ŷ does depend only implicitly on θ1. However, α1 = α1(x, θ1) depends
explicitly on θ1 and thus applying the chain rule once more yields

∂L (y, ŷ)
∂θ1

= ∂L (y, ŷ)
∂ŷ

· ∂ŷ (α1, θ2)
∂α1

· ∂α1 (x, θ1)
∂θ1

.

By applying the chain rule, the gradient of the loss function can be traced back to the influence
of the individual model parameters. With the knowledge of the gradients, the updates of
the individual parameters can then be performed according to Equation 2.5, in order to
reduce the loss function and thus better approximate the ground truth values. The improved
efficiency of the back-propagation algorithm relies on the fact that all the gradients are
computed simultaneously, requiring only the evaluation of one forward pass, followed by a
single backward pass (Rumelhart et al., 1986).

2.2.3 Probabilistic Interpretation

So far, machine learning was introduced in general and ANNs were discussed as one type
of model to approximate functions. Models can be trained using the back-propagation
algorithm. In addition, there is a probabilistic interpretation of deep learning which aims
for the determination of probability distributions to enable an understanding of the model’s
confidence and uncertainty.

If we assume that the data x of our data set D follows an underlying probability distribution,
we are looking for the parameters θ of our model ψ that are most likely to generate the ground
truth y. By starting with an initial prior distribution p(θ) we are interested in how to update
the parameters after seeing the data, which is denoted as the posterior distribution p(θ | D).
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The Bayes rule (Bayes, 1763) enables the determination of the posterior

p(θ | D) = p(y | x, θ)p(θ)
p(D) (2.6)

by multiplying the prior p(θ), with the likelihood p(y | x, θ) which equals the distribution of
the output y viewed as a function of the model parameters θ. The expression

p(D) =
∫︂
p(y | x, θ)p(θ)dθ

is called model evidence and acts as a normalization of the posterior in equation 2.6.
For simple models, as in linear regression, the marginalisation can be expressed analytically,

whereas for most applications, the marginalisation and thus the posterior p(θ | D) needs to be
approximated.

After finding distributions that describe the parameters θ to optimally represent the training
set D, the ultimate goal is to find a way to determine a prediction for any new datapoint x∗.
This can be done by invoking Bayesian inference

p(y∗ | x∗, D) =
∫︂
p(y∗ | x∗, θ)p(θ | D)dθ

where the posterior predictive distribution p(y∗ | x∗, D) is the prediction according to the
assumed statistical model averaged over the posterior for all model parameters θ.

2.2.3.1 Variational inference

As stated above, for most problems it is not tractable to compute the true posterior. Thus,
rather than calculating the true posterior directly, a good approximation qϕ(θ) of the posterior
p(θ | D) has to be determined which can be expressed analytically and represents the true
posterior sufficiently, with respect to parameters ϕ. Variational inference (Jordan et al., 1999)
replaces the true posterior in Equation 2.6 with an optimization of the parameters ϕ of an
approximate distribution qϕ(θ) such that the approximate distribution is as close as possible
to the true posterior p(θ | D). Commonly the Kullback-Leibler (KL) divergence is used to
measure the similarity between to distributions (Kullback and Leibler, 1951). The KL is given
as

KL [qϕ(θ)||p(θ | D)] =
∫︂
qϕ(θ) log qϕ(θ)

p(θ | D)dθ = Eqϕ(θ) [log(qϕ(θ))]− Eqϕ(θ) [log(p(θ | D))] .

The optimal approximation q∗
ϕ(θ) minimizes the KL divergence

q∗
ϕ(θ) = arg min

ϕ
KL [qϕ(θ)||p(θ | D)] .

With this approximation of the true posterior in equation 2.6, variational inference defines the
posterior predictive distribution as

p(y∗ | x∗, D) =
∫︂
p(y∗ | x∗, θ)q∗

ϕ(θ)dθ .
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The integral to calculate the KL divergence between the approximate distribution and the
true posterior cannot be computed directly, but minimizing the KL divergence is equivalent to
maximizing the so called evidence lower bound (ELBO) (Blei et al., 2017), which is given as

ELBO = Eqϕ(θ) [log(p(y | x, θ))]−KL [qϕ(θ)||p(θ)] . (2.7)

Maximizing the ELBO is equivalent to maximizing the first term in Equation 2.7, whereas the
KL divergence between qϕ(θ) and the prior p(θ) is minimized. The first term is the expected
log-likelihood, and maximizing it forces qϕ(θ) to explain the data well, while the KL divergence
punishes large deviations of the approximate distribution from the prior distribution of the
parameters. In this way, the KL divergence can be interpreted as a stochastic regularization
technique (Gal, 2016).

In practice, a Monte Carlo approximation of the negative ELBO is commonly used as
learning objective (Gal and Ghahramani, 2016)

LMC (θ) = 1
M

M∑︂
m=1
− log (p (yi | xi, θ)) + 1

N
KL [qw(θ)∥p(θ)] , (2.8)

where M is the size of a mini-batch and N is the total number of training samples. The second
term, the KL divergence, can often be expressed analytically, and therefore this loss function
is commonly used as learning objective.
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3
Virtual Mammography

Simulations are widely used to understand and study physical processes. In medical imaging,
simulations can be used to conduct large virtual clinical trials, rather than time and money
consuming real data clinical trials. This way, simulations provide a tool to gain understanding
of the underlying imaging physics and thus provide useful information for developers of systems
as well as their end users.

In this chapter we will implement a virtual mammography to simulate radiographic images
of the CDMAM phantom. Virtual mammography guarantees that the ground truth of the
virtual specimen is known. A known ground truth along with the ease of generating large image
data sets makes virtual mammography a useful tool for the development of data-intensive
methods, such as deep learning. Furthermore, the known ground truth allows an inference to
be judged based on the simulated images, which makes virtual mammography a suitable tool
for the assessment of methods that quantify the image quality.

As outlined in chapter 2, the image formation process in mammography can be divided into
three sub-processes, namely generation, interaction and detection of X-Ray radiation. In order
to simulate realistic mammography images, each of these has to be modeled subsequently. First,
an X-Ray source is simulated to generate an (initial) X-Ray spectrum that can be pre-filtered
to obtain the desired properties. The fundamental principle of imaging in mammography is to
record the X-Ray transmission profile of an object in the beam path. Such images can then be
used to detect breast cancer. Modeling the transmission profile requires the simulation of the
interaction of X-Ray photons with the matter of the object. Every material has its own, unique
X-Ray absorption properties. Therefore, an object like the CDMAM phantom that is composed
of different materials has to be represented by a digitized phantom. This digitized phantom
needs to summarize local X-Ray attenuation properties such that a transmission profile can
be computed. After computing the transmission profile for every beam, the detection of the
X-Ray’s has to be modeled to translate the incoming radiation into pixel intensities to yield
the final image.

Additional to the implementation of virtual mammography, the application of a parametric
model observers for mammography image quality assessment is proposed in this chapter.
Mathematical model observers are commonly used to develop fast and objective automatic
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procedures for image quality assessment. Such model observers determine a test statistic from a
set of training data which is suitable to solve a given task, e.g. lesion detection. The automatic
procedure recommended in the EUREF guideline for mammography quality assurance employs
a basic model observer to determine the image quality in terms of contrast-detail curves.
This procedure, introduced previously in section 2.1.3, is used as a reference to discuss the
advantages as well as the limitations of the proposed alternative approach.

Most of the work presented in this chapter is based on Kretz et al. (2019).

3.1 Related Work

Simulations have been widely used to model realistic radiographic images.
For example, Elangovan et al. (2014) developed a tool to model 2D mammography as well
as tomosynthesis, which can be used to report useful information to different vendors. Their
simulation pipeline starts with the definition of a mathematical phantom. Then the primary
transmission through this phantom is calculated and subsequently degraded by adding noise
and scattering. The images simulated this way show good agreement with real images with
respect to their contrast-to-noise ratio and image blurring of test objects.

Similarly, Gong et al. (2006) set up a simulation of digital mammography, breast
tomosynthesis and cone-beam computer tomography to analyze the lesion detectability for
these different breast imaging modalities. Again, the image is simulated by deriving a primary
transmission through a digital phantom. This primary image is subsequently degraded by
various effects in the image receptor such as electronic noise.

Also, Mackenzie et al. (2017) use virtual mammography to study the uncertainty related
to the determination of contrast-detail curves in mammography quality assurance. As a result,
the authors demonstrate the use of 16 images only, which is recommended in the EUREF
guideline, is insufficient since the uncertainty of the determined parameters is too high.

Furthermore, simulations have been designed to study the influence of several acquisition
parameters in digital tomosynthesis (Malliori et al., 2013) as well as in mammography (Bakic
et al., 2002), where the latter work focuses more on a realistic modeling of breast tissue and
compressing dynamics.

This list of simulation tools is not complete, cf. also Lazos et al. (2000); Freud et al. (2004,
2005) for further approaches. Altogether, the current state-of-the-art simulations favor the
simulation of a primary image that is degraded considering various noise effects in a second
step.

3.2 Simulation Tool for Mammography

Following the current practice in radiography simulations, a tool is implemented to simulate
mammography images to create a data base of images for the assessment and development
of methods. The virtual mammography was designed and optimised for the simulation of
images of the CDMAM phantom that is used to determine the image quality in terms of a
contrast-detail curve. The basic workflow of our simulation is visualized in Figure 3.1. A
primary image is derived that is then phenomenologically degraded by adding scattering, noise
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scatter blur noise

image degradation

primary image
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Figure 3.1: Schematic of the simulation pipeline for the virtual mammography. A backward ray
casting procedure is used to simulate the transmission of an initial spectrum through a mathematical
object. The transmitted radiation is recorded in a primary image and then further degraded by
adding scatter, blurring and noise. Figure from Kretz et al. (2019).

and blurring to the primary image.
For the production of the primary image, the object to be imaged has to be represented

mathematically, the X-Ray spectrum has to be modeled and the transmission profile for each
individual beam path has to be calculated.

3.2.1 Primary Image Simulation

In order to simulate a radiographic image of an object, a digital phantom that describes the
object is required. For X-Ray radiography, the material in terms of its X-Ray attenuation
parameters and its thickness define the contrast in the resulting image. We implemented
a digital CDMAM phantom as a 3D voxel object. The voxels are defined such that each
voxel contains only one material. By further specifying the dimensions of the voxels, both
parameters, material composition and thickness, are known such that the transmission of
incoming radiation can be determined. The dimension of the voxels has to be chosen small
enough, so that the discretization error can be neglected.

The CDMAM phantom (see section 2.1.2) is composed of background material, grid
material and gold for the discs. The CDMAM phantom comprises various cells each containing
gold discs of varying diameter and thickness. To model gold discs of different thicknesses,
multiple layers of gold voxels are stacked until the desired thickness is reached. Every voxel
that does not belong to the grid region or the gold disc region is modeled as a voxel containing
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3. Virtual Mammography

the background material. This way, a model of the entire CDMAM phantom was built, as
well as models of the individual cells of the phantom.

As a next step, X-Ray radiation, its absorption and detection need to be modeled. As
described in chapter 2, in mammography usually Molybdenum (Mo), Rhodium (Rh) or
Tungsten (W ) anodes are used to generate the X-Ray spectra. The methodology of interpolating
polynomials, developed by Boone et al. (1997), is employed to simulate an initial virtual
spectrum. They provide data of measured spectra for all three relevant anode materials and
developed a method to calculate spectra for various tube voltages. The spectra modeled this
way are normalized to the time-current product that was used in the original measurements
and comprise Bremsstrahlung as well as characteristic radiation. Usually the initial spectrum
is pre-filtered to reduce the effect of the undesired Bremsstrahlung that adds to the applied
radiation dose and reduces the contrast. The pre-filtering can be modeled by applying the
Beer-Lambert law (cf. 2.1) for a given initial spectrum and a filter of specified material and
thickness.

A real X-Ray tube emits radiation as an area source, whereas it is modeled as a point source
in our simulation. This means that all rays originate from the same position. Different starting
positions would result in a blurring in the simulated image (Elangovan et al., 2014) but increase
the computational complexity of the simulation by increasing the number of potential beam
paths. Therefore, blurring will be added during the degradation stage phenomenologically. As
a consequence, the geometry of the X-Ray beams is only determined by the position of the
source and the target point at the detector. The center of the individual detector pixels is
taken as target points. Hence, the resulting number of beams equals the number of pixels in
the detector.

With a known initial spectrum, a digital phantom and the radiological beam path, the
absorption profile of each individual beam can be determined. The path of the X-Rays
from the source through the object to the detector pixel is calculated by using Siddon’s
algorithm (Siddon, 1985). For each detector pixel, the X-Ray’s path through the phantom is
a little bit different, resulting in a slightly varying distance that the X-Rays travel through
different materials. Siddon’s algorithm calculates for each detector pixel ij the distances
that the X-Rays travel through each of the three materials δxij

background, δxij
grid and δxij

gold as
indicated in Figure 3.2.

The resulting radiation N ij(E) reaching the detector pixel ij can then be calculated by
applying the Beer-Lambert law (cf. equation 2.1)

N ij(E) = Nf (E) exp−(µbg(E)δxij
bg

+µgrid(E)δxij
grid

+µgold(E)δxij
gold

) , (3.1)

where Nf (E) denotes the pre-filtered initial spectrum and µ denote the attenuation coefficient
for background (bg), grid and gold, respectively.

The transmitted radiation of each beam targets one single pixel of the detector without
further attenuation. To translate this information into an image, the detector needs to be
modeled. Each detector pixel is hit by an attenuated X-Ray spectrum and transforms the
incoming photon fluence into a pixel intensity by integrating over all energies. The characteristic
curve of the detector is assumed to be linear which means that an increase in the incoming
radiation intensity linearly increases the pixel intensity. The resulting pixel intensity PV ij for

34



3.2 Simulation Tool for Mammography

Figure 3.2: Schematic of the detection of transmitted radiation created by an X-Ray point source.
The ray targeting detector pixel ij travels through the phantom in a unique way resulting in
different distances in different materials that are calculated by Siddon’s algorithm to determine
the transmitted radiation after the phantom.

pixel ij can be expressed as

PV ij =
∫︂
η(E)N ij(E)EdE ,

where N ij(E)E denotes the incoming exposure given in equation 3.1 and η(E) denotes the
energy dependent detector efficiency (cf. chapter 2).
Following these steps a primary image can be simulated.

3.2.2 Image Degradation

The primary image is simulated without considering any degradation effects. In reality,
however, images are degraded by several effects like detector noise, scattered radiation and
limited spatial resolution. Recalling that each sub-process of the image formation procedure
in mammography has an effect on the resulting image quality, these contributions have to be
modeled if we want to infer image quality from the simulated images.

During the generation of the X-Rays, blurring is the major effect that limits the spatial
resolution and hence the resulting image quality (ICRU, 2009). Photon scattering adds
quantum noise in digital mammography and reduces the contrast-to-noise-ratio in the final
image (ICRU, 2009). Finally, image quality is also limited by the detector noise (ICRU, 2009).

In our virtual mammography, these three image degradation processes are considered
phenomenologically which produces images that are visually very similar to real images as
will be shown. Blurring occurs when the focal spot of the X-Ray source is not a single spot.
Then the rays targeting the pixel ij originate from different positions in the source and the
corresponding beams take slightly different paths through the phantom, resulting in a different
attenuation profile. As a result, the sharp edges that occur when considering a point source
are softened for realistic focal spots. Besides this focal spot blur, blurring also occurs in the
scintillator and as an effect of the pixel size. In our simulation tool, blurring is simulated
by filtering the primary image with a Gaussian filter with standard deviation 0.7 Pixels
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(cf. Spyrou et al. (2002)). The Gaussian filter softens the edges of the imaged objects. The
degree of how much the edges are softened is determined by the standard deviation of the
Gaussian filter.

Scattering is known to significantly reduce the contrast in film/screen imaging (Ducote and
Molloi, 2010). In digital imaging, scattering furthermore adds quantum noise and thus reduces
the contrast-to-noise-ratio. To realistically model scattering, one would have to perform time
consuming Monte-Carlo simulations. We use a phenomenological approach by applying a
convolution technique, as suggested in (Love and Kruger, 1987). A scattered image is calculated
by a convolution of the primary image with a point spread function. This convolution can be
performed in the Fourier domain: the Fourier transform of the primary image is multiplied
with the Fourier transform of an ideal low-pass filter with D0 = 2 Pixels. By applying the
inverse Fourier transform to this product, the final scattering image results.

The amount of scattering is controlled by the scatter-to-primary-ratio (SPR) (Boone et al.,
2000). Setting the SPR allows the pixel intensities of the scattering image to be scaled to
similar values as those in the primary image. This way, scattering becomes a noticeable effect
that reduces the contrast-to-noise-ratio in the resulting image. In Boone et al. (2000), the
authors describe how to choose the SPR realistically for an equivalent breast thickness of 6 cm.
The scattering image is then added to the blurred primary image.

The noise characteristics of a recorded mammography image are strongly influenced by
the type of detector that is used as image receptor (Ravaglia et al., 2009). Thus, rather
than trying to perfectly model one specific type of detector, the detector noise is modeled
phenomenologically. Noise in mammography images is spatially correlated. Therefore, we use
a combination of Gaussian white noise with standard deviation σwn and a spatial Gaussian
filter with standard deviation σsc = 0.55 Pixels, to simulate such correlated noise.
The strength of noise is controlled by the signal-to-noise-ratio (SNR) which is a free parameter

in our simulation. The SNR combines the pixel intensity of the signature of a lesion with the
strength of the noise. The total standard deviation of the noise image is determined through
the standard deviation of the Gaussian white noise σwn and the standard deviation of the
Gaussian filter σsc. The obtained noise image is then added to the primary image degraded by
blurring and scattering.

The simulation parameters of our virtual mammography are listed in Table 3.1. The main
parameters that influence the resulting image quality are the tube voltage (18− 40 kV ), the
time-current product (100 − 140 mAs) and the SNR (≈ 3 − 10). To avoid discretization
errors, the object should be shifted in x- and y-direction relative to the detector for different
realizations. This is implemented by including random shifts in the objects x- and y-positions
that follow random normal distributions with zero mean and a standard deviation of 1 Pixel.

3.2.3 Results

The goal of virtual mammography is to simulate images that are similar to real images. As a
reference, a set of 16 images acquired at the German reference center in Münster by a Hologic®
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Table 3.1: Free parameters that are used to control the virtual mammography to simulate
radiographic images of digital objects.

Parameter Description Value

Anode material Target material of the X-Ray tube
anode

Mo, W

Tube voltage Tube voltage to accelerate free
electrons for X-Ray production.

18− 40 kV

Time-current
product

Exposure produced by the X-Ray
tube

100− 140 mAs

Filter Material and thickness to filter
initial spectrum for specific beam
quality

Rh (0.025 µm)
Rh (0.05 µm)
Mo (0.03 µm)

Source to imager dis-
tance

Distance between detector and
X-Ray tube

≈ 700 mm

Source to object dis-
tance

Position of the object ≈ 600 mm

Nx Number of pixels of the detector in
x dimension

e.g. 2323 px

Ny Number of pixels of the detector in
y dimension

e.g. 3654 px

Pixel pitch Size and distance of neighbored
pixels

0.04 −
0.07 mm/px

SNR Noise level to control image quality 3− 10
SPR Scatter level to control contrast to

noise ratio
≈ 0.18
equiv. thickness
6 cm

Number of images Total number of images e.g. 200
Number of random
positions

Number of applied random shifts e.g. 10

Selenia® Dimensions® mammography system using a tube voltage of 31 kV for a tungsten
anode with a 0.05 µm Rh filter and a time-current product of 139 mAs1.

The digital models of the individual cells of the CDMAM phantom were taken to simulate
images. The simulation parameters were chosen in accordance with the acquisition parameters
from the real images and are listed in Table 3.2. The noise parameters were chosen such that
the resulting simulated images matched the real images visually closely.

One of the resulting simulated CDMAM cell images is displayed in Figure 3.3 together
with the corresponding cell from a real image. The visual similarity is obvious. The plotted
pixel intensities in the middle of the image demonstrate that the difference between lesion
and background is the same for simulated and real images, whereas the mean pixel values of
background and lesion of the real image are slightly higher than in the simulated image. This

1At this point I want to thank Mr. A. Sommer from the German reference center in Münster for providing
us these reference images.
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Table 3.2: Parameters of simulated images that are visually in good agreement with a set of real
images.

Parameter Value

Anode Material W
Tube voltage 31 kV
Time-current product 139 mAs
Filter Rh (0.05 µm)
Source to imager distance 700 mm
Source to object distance 629 mm
Pixel pitch 0.07 mm/px
SNR 5.7
SPR 0.18
Number of images 500
Number of random positions 10

Figure 3.3: Comparison of an exemplarily simulated image with the corresponding cell of a real
image of a CDMAM phantom The images are shown in the top with the simulated cell on the left
and the real cell on the right. The plots below show the pixel intensities (blue) for a horizontal cut
through the middle of the cells. The red curve indicates the mean of the lesion and the background
regions, respectively for both the simulated and the real image.

might be caused by the choice of the SPR and the normalization of the detector. Also, the
discs appear a little bigger in diameter in the simulated images. A reason for the observed
discrepancy may be that a real CDMAM phantom is manufactured with a production error
and thus the diameters can vary significantly from the true value (Borowski et al., 2012). For
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(a) (b)

Figure 3.4: (a) Noise auto correlation function for simulated images (blue) and real images (red).
(b) Normalized noise power spectrum for the simulated images (blue) and the real images (red).
Figure from Kretz et al. (2019).

our digital voxel phantom, the actual diameters according to the specification were considered.
Note that the diameter difference between the real images and our simulations is irrelevant if
we compare different methods applied on the latter. However, this difference influences the
results obtained by the application of the same method on real and simulated images.

Especially the noise characteristics are important to achieve a satisfactory similarity between
simulated and real images. Image noise can be characterized by different properties. The
simplest parameter is the standard deviation over all image pixels or a sub-region of the image,
respectively. The standard deviation of the simulated images was chosen such that it matched
the standard deviation of the real images. Besides this, the spatial structure of the noise and
hence its correlations are also an important indicator.

The autocorrelation function (ACF) expresses the correlation of the noise between different
pixels of the image. It can be applied as a measure of the correlation as a function of the
distance between pixels. For an image B, the autocorrelation function can be calculated by
shifting the image B by d pixels and calculating the 2-dimensional correlation ACF for the
image B and the shifted image Bd

ACF (d) =
∑︁

m

∑︁
n

(︂
Bmn −B

)︂ (︂
Bd

mn −Bd
)︂

√︄(︃∑︁
m

∑︁
n

(︂
Bmn −B

)︂2
)︃(︃∑︁

m

∑︁
n

(︂
Bd

mn −Bd
)︂2
)︃

with mean images B and Bd.
Figure 3.4a shows the auto-correlation for a 65× 65 Pixels region in a simulated image (blue)

and a real image (red), respectively. The correlation length in both cases is about 1 Pixel,
where the simulated images show a slightly higher correlation length. Pixels with a distance of
more than two Pixels appear to be uncorrelated.

The spatial structure of the noise can be further described by the noise-power spec-
trum (Bendat and Piersol, 2011). In a finite region b̃ of the image and a discrete set of
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frequencies, a sample j of the noise-power spectrum can be obtained as

NPS(j)(k, l) = x0y0
NxNy

⃓⃓⃓⃓
⃓∑︂
m,n

b̃
(j)(m,n)e−2πi(k·m/Nx+l·n/Ny)

⃓⃓⃓⃓
⃓
2

,

with x0 and y0 as characteristic length scales and Nx and Ny defining the dimensions of the
region b̃ in x- and y-direction, respectively (ICRU, 2009). This formula describes the square of
the absolute Fourier transformation of the image region b̃ multiplied by a length factor. An
estimate of the noise-power spectrum can be calculated by averaging over N samples (ICRU,
2009)

NPS(k, l) = 1
N

N∑︂
j=1

NPS(j)(k, l).

Figure 3.4b visualizes the normalized noise-power spectrum for a 25×25 Pixels sub-region of a
real image (red) and a simulated image (blue), for a characteristic length of x0 = y0 = 0.06 µm.
It can be seen that the normalized noise-power spectrum of simulated and real images appear
similar. This shows that the simulated images exhibit a sufficiently similar noise in terms of
their auto correlation and their noise-power spectrum, even though noise effects were treated
only phenomenologically. Therefore, our virtual mammography appears to produce realistic
simulations of images of the CDMAM phantom.

3.2.4 Discussion

Virtual mammography was implemented and optimized to simulate realistic mammography
images of the CDMAM phantom. Our results show that the simulated images have
similar noise properties as a set of real reference images. The images were simulated by
subsequently degrading primary images that were modeled following state-of-the-art virtual
mammography (Elangovan et al., 2014; Mackenzie et al., 2017). Simulations in general
have to find a compromise between the closeness of the simulation to the reality and the
computational cost (see e.g. (Elangovan et al., 2014)). The degradation was modeled only
phenomenologically to efficiently simulate mammography images. Blurring, scattering and
detector noise were considered as degradation effects since they largely determine the resulting
image quality (ICRU, 2009). Blurring occurs because the X-Rays do not originate from a
point source but from multiple spots from a source area. To capture this effect correctly, one
has to model a ray for every detector pixel and every origin and calculate their transmission
profile through the phantom. The number of rays increases linearly with the number of origin
points, thereby increasing the computational cost. Instead, in our approach blurring was
modeled by applying a Gaussian filter to the primary image. This operation is much faster and
captures the reduction of the spatial resolution closely. Scattering and detector noise can be
simulated more correctly by using time consuming Monte Carlo experiments (Dance and Day,
1984). Again, the approximation of the scattering effects via convolutional filtering and the
phenomenological treatment of noise save time while maintaining a close similarity between
simulated images and real images. Basic noise characteristics of the simulated images and a
set of reference real images matched in terms of noise standard deviation, auto correlation
function and normalized noise power spectrum. This indicate that the phenomenological
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virtual mammography presented here is a powerful tool to simulate images that are similar to
real mammography images.

Conducting real clinical trials is both time and money consuming. Virtual mammography,
on the other hand, is a good alternative to simulate realistic images to conduct large virtual
trials at low cost. For image quality measurements in mammography, several images of technical
phantoms such as the CDMAM phantom are recorded (Perry et al., 2006). It has been shown
that the CDMAM phantom is produced with a manufacturing tolerance which is high enough
to influence image quality measurements (Fabiszewska et al., 2016). Such an uncertainty is
critical for a reliable assessment and the development of automatic procedures to determine
image quality. The virtual specimen, on the other, is known exactly. Furthermore, virtual
mammography can be used to create large data sets, which allow data-intensive methods, such
as deep learning, to be applied.

3.3 Parametric Model Observer for Image Quality Estimation

In this section the application of a recently published parametric model observer for
mammography image quality assessment is proposed. Virtual mammography, as described
above, is used to assess the proposed alternative procedure and compare it with a reference
method. In chapter 2.1.3, the current automatic procedure, referred to as the EUREF
guideline procedure, was introduced which estimates mammography image quality in terms
of the contrast-detail curve. Contrast-detail curves summarize local contrast information by
showing the minimum thickness of the object to be detected with a specified probability as
a function of the object’s diameter. In order to obtain this curve, the guideline procedure
recommends that multiple (at least 16) images of the CDMAM phantom are acquired and
pre-processed by segmenting the phantom into its individual cells and aligning a phantom mask
to determine the artificial lesion positions in each cell. The contrast-detail curve is determined
by applying an observer to localize these lesions in each cell individually. By doing this for
different images of the same cell, a proportion of correctly detected lesions for each combination
of diameter and thickness can be recorded, which is then recast into a contrast-detail curve by
choosing a minimum threshold for the probability of correctly detecting the lesion position.
The figure of merit of this four-alternative-forced-choice (4AFC) procedure is the proportion
of correctly detected discs in a series of image. The 4AFC approach was originally designed
for a human observer in order to reduce the probability of just guessing the correct position.
The contrast-detail curve obtained by the EUREF guideline procedure relies on an observer’s
ability to correctly localize a disc in one out of four corners. The uncertainty of the curve
determined by this approach is derived assuming a binomial distribution and thus strongly
depends on the number of images that are used. Therefore, the EUREF guideline procedure
requires the acquisition of more than one image and its uncertainty depends strongly on the
number of images (Mackenzie et al., 2017).

An advantage of mathematical model observers is their objectivity. The use of a
mathematical observer prevents a possible bias of the results due to learning effects which
may be present with human observers. However, many established methods for objective task-
based images quality assessment incorporate mathematical model observers to solve a binary

41



3. Virtual Mammography

task, such as lesion detection (Barrett and Myers, 2013; Barrett et al., 2006). As described
earlier, the AUC is a meaningful figure of merit to quantitatively measure a models predictive
performance (Bradley, 1997) and is frequently used as a measure for image quality (Barrett
et al., 1993, 1998) (cf. section 2.1.1).

Recently, a parametric model observer was developed and applied to images obtained
using computer tomography (Anton et al., 2018). This parametric observer assumes a simple
geometry of the image and estimates the area under curve (AUC) (cf. Chapter 2) by an
analytically derived expression. Here, an approach is explored where this parametric observer is
employed to determine contrast-detail curves that are derived from the AUC as an established
measure for image quality. The parametric model observer derives the AUC for every cell of
the phantom separately. Similar to the EUREF guideline procedures, the proposed method
requires the pre-processing of images. To be more specific, the whole phantom image has to
be segmented into its individual cells.

Our study is restricted solely to the effect of employing different observers. Using the
virtual mammography, the cells of the CDMAM phantom are simulated individually to avoid
the need of implementing an error-prone pre-processing. For all simulations, the position of
the discs is known exactly.

3.3.1 Parametric Model Observer

The individual cells of the CDMAM phantoms are of a relatively simple structure. Two
discs are placed on a flat background. The decision whether a lesion is present in an image
or not can be taken by model observers. Model observers can be divided into two groups,
namely, non-parametric and parametric model observer. Non-parametric observers, such as
the Channelized Hotelling Observer (CHO) (Myers and Barrett, 1987) or the nonprewhitening
matched filter (NPW) (Barrett et al., 1993) assume underlying statistical distributions in the
images without parametrizing the distribution of lesion and background regions. Based on a set
of training images, a test statistic can be calculated for test images. A suitable observer allows
a specific task to be solved according to this test statistic. For the task of lesion detection
(classification) this test statistic should make it possible to distinguish between images with
lesions and images without a lesion present. For such a binary task, the performance of an
observer can be assessed via ROC analysis, as described in chapter 2. Parametric approaches
assume in addition specific parametrizations of the lesion and background regions as well as
the image noise. Since more prior information is thus used, parametric model observers for
image quality assessment require fewer images than non-parametric observers (Anton et al.,
2018).

In Anton et al. (2018) a parametric model observer was developed which assumes that
a single image consists of a flat background with mean µ and the signature of a lesion with
mean θ. The noise in the image is assumed to be independent Gaussian noise with constant
standard deviation σ. Figure 3.5a visualizes the basic assumptions of the parametric observer.

The background region x0 can be described by a vector of length n0, while x1 denotes a
vector of length n1 that includes all pixels from the lesion region

x0 ∼ N
(︂
µ · 1n0 , σ

2In0

)︂
, x1 ∼ N

(︂
θ · 1n1 , σ

2In1

)︂
,
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(a) (b)

Figure 3.5: (a) The image comprises a background region x0 and a lesion region x1. The
background and lesion regions have mean pixel intensities of µ and θ, respectively. The noise in the
image is assumed to be the same for background and lesion regions with a standard deviation σ.
(b) Only a subset of ñ1 of all pixels in the lesion region are used for testing . Figure from Anton
et al. (2018).

where 1n stands for an n× 1 all-ones matrix and In denotes the identity matrix of dimension
n. Then an analytical expression for the AUC can be expressed as

AUC = ϕ

(︄
1√
2
|µ− θ|
σ/
√
n1

)︄
,

where ϕ denotes the standard cumulative distribution function of the standard normal
distribution (Anton et al., 2018). The analytical expression of the AUC allows us to determine
its value directly, by estimating the mean lesion intensity θ, the mean background intensity µ
and the standard deviation of the noise σ. The EUREF guideline procedure requires multiple
images, whereas the AUC can - at least in principle - be estimated for single images.

The AUC depends on the number of pixels n1 in the lesion region. It can be tuned by
using only a subset ñ1 of the lesion pixels as indicated in Figure 3.5b. A smaller fraction
ñ1 = f · n1 with f between 0 and 1 decreases the uncertainty of AUC (Anton et al., 2018).
The estimate of the AUC can then be determined as follows

AUCˆ = ϕ

(︄
1√
2
|µ̂− θ̂|
σ̂/
√
ñ1

)︄
= ϕ

(︄
1√
2
|µ̂− θ̂|

σ̂/
√
f · n1

)︄
,

with the estimates for the mean of the signature of a lesion θ̂ and the mean background µ̂ and
a pooled estimate of the noise σ̂ as

σ̂ =
√︄

1
n0 + n1 − 2

(︁
(n0 − 1)σ2

0 + (n1 − 1)σ2
1
)︁
,

where σ1 and σ0 are the standard deviations in the lesion and background region, respectively.
Note that while the AUC is estimated with the sub-region ñ1, the estimates µ̂, θ̂, σ̂ are obtained
on the complete background and lesion regions with n0 and n1 pixels, respectively.

A drawback of the procedure is that the number of pixels might be too low. This can be
avoided by pooling p images with the same parameters. This pooling is done by concatenating
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the vectors x0 and x1 of p images. Pooling allows the estimations of µ, θ and σ to be obtained
more robustly. The described parametric model observer is introduced as the modified simple
observer for pooled images (MSOpi) in (Anton et al., 2018) and will be further employed for
the assessment of image quality in mammography.

3.3.2 Modified Mammography Image Quality Assessment

In this section a procedure is developed that utilizes the parametric model observer MSOpi
presented above to determine contrast-detail curves from images of single cells of the CDMAM
phantom.

The MSOpi parametrizes each CDMAM cell image in the same way as the EUREF observer
and makes use of the simple geometry in images of CDMAM cells. In contrast to the EUREF
guideline procedure, the MSOpi determines the AUC as a figure of merit. This transforms
the 4AFC disc localization in each cell into a two-alternative-forced choice (2AFC) approach
of detection a lesion in each cell. The AUC as figure of merit is an established measure in
task-based image quality assessment (Barrett and Myers, 2013). Under the assumption of
independent Gaussian noise, an analytical expression allows the AUC to be calculated by
estimates pixel intensity in the lesion and background region, an estimate of the standard
deviation of the noise and the number of pixels that form the lesion. The AUC is calculated for
every cell in the CDMAM phantom and measures how accurate the observer can distinguish
between lesion and background. The AUC increases with increasing difference of the pixel
intensity in the lesion and background region. This image contrast, on the other hand, is
defined by the thickness of the gold disc. Therefore, the AUC depends on the thickness of
the gold disc and choosing a threshold for the AUC allows to determine the thickness, for
which the observer can detect the lesion with sufficient accuracy. Computing this thickness,
where the AUC reaches the limit value, for every diameter individually directly results in the
contrast-detail curves.

Since the AUC is estimated per cell, our modified procedure requires the same pre-processing
steps as the EUREF guideline procedure. Also the assumption of knowing the lesion region
exactly is required. The pre-processing is avoided by simulating the images of single cells. This
enables us to solely test the observer performance and compare our method against the current
practice. A CDMAM cell comprises two artificial lesions: one in the center and the other one
in one of the four corners. Both of these regions are merged together for the estimation of θ̂.
All remaining pixels are used for the estimate µ̂ of the background area.

The AUC estimate of the MSOpi depends on the number of pixels and hence on the
diameter of the gold discs in the particular cell. To express the dependence of the AUC on the
number of pixels by its dependence on the true disc diameter d, we modify the fraction f of
pixels as

f = f(d) = γ
d2

d2
min

,

where dmin stands for the minimum diameter of interest, which is dmin = 0.1 mm in our
case, in accordance with the EUREF guideline. Hence, the fraction f scales with d2 which
is proportional to the number of pixels, but does not change when several pictures of the
same cell are pooled. The factor γ is a free factor and can be used to shift the resulting
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contrast-detail curves. Hence, an AUC estimate is expressed by

AUCˆ = ϕ

(︄
1√
2
|µ̂− θ̂|
σ̂2

√
γd

dmin

)︄
. (3.2)

For each cell of the CDMAM phantom, the AUC estimate is calculated. For a fixed diameter d,
the AUC estimate depends on the difference between lesion and background and hence on the
thickness of the gold disc. In accordance with the EUREF guideline procedure the dependence
of the AUC for a given diameter d on thickness t is modeled as a psychometric curve

AUC(t) = 0.5
1 + exp [−ζ (C(t)− CT )] + 0.5 ,

where C(t) denotes the contrast of a gold disc with thickness t. ζ and CT stand for free
parameters that are determined using a nonlinear least square fit procedure. The AUC varies
between 0.5 for very small thicknesses and 1 for large thicknesses. We define a critical AUC
value of 0.75 which marks the center between pure guessing and certainty for a binary task.
By estimating the free parameters ζ and CT we can determine the thickness tcd for which
AUC(tcd) = 0.75 for each diameter. Plotting theses thicknesses for each diameter yields the
contrast-detail curve.

3.3.3 Data

The virtual mammography was used to simulate different sets of images of individual cells of
the CDMAM phantom. Each cell was simulated individually with a tube voltage of 31 kV ,
a time-current product of 139 mAs and a noise standard deviation σ0 = 5.7. A detailed
list of the simulation parameters was given earlier in Table 3.2. For each cell, 500 images
were simulated. This enables the estimation of the variability of our suggested approach in
comparison with the EUREF guideline procedure. For the 205 cells that are present in the
CDMAM phantom this results in a total of 205 · 500 = 102, 500 simulated images. Additionally,
images with different noise properties were simulated by varying the SNR. Two additional
noise levels σl = 1

2σ0 and σh = 3
2σ0 were chosen to simulate higher and lower image qualities

in order to ensure that our proposed approach is suitable to correctly detect the change in
image quality.

3.3.4 Results

The simulated images with noise level σ0 were found to be visually very similar to real images
acquired under comparable conditions. The suggested approach that employs the MSOpi
for contrast-detail curve estimation can be applied to single images, whereas pooling images
ensures a more accurate estimation of µ, θ and σ. Figure 3.6a shows the logistic regressions
that are used to model the dependence of the AUC on the thickness for each diameter for 5
pooled images that were all simulated using the noise level σ0.

The corresponding contrast-detail curve can be derived from the psychometric cuves in this
case by choosing a minimum threshold for the AUC (0.75). Figure 3.6b shows the corresponding
contrast-detail curves for the psychometric curves in Figure 3.6a.
As mentioned in section 2.1.3, the psychometric curves can be stabilized by smoothing the
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(a) (b)

Figure 3.6: (a) Example of the logistic regressions for the AUC of the MSOpi. For each diameter
the dependence of the AUC on the thickness is plotted from 5 pooled simulated CDMAM images.
(b) Corresponding contrast-detail curve for a threshold of 0.75 for the AUC. Figure from Kretz
et al. (2019).

data of the proportion of correctly detected lesions. However, this smoothing operation can
be done for the AUC in the same way. It was found that this smoothing operation equally
influences the logistic curves obtained by both the procedures. The difference of the methods
is not altered by the smoothing operation. Therefore, we report results without smoothing in
the following.

In order to compare the proposed alternative with the EUREF guideline procedure, both
methods were applied repeatedly using the same simulated images. For the EUREF guideline
procedure 16 images were randomly drawn from the set of 500 images with noise level σ0 and
for the MSOpi procedure 5 and 16 images were randomly drawn and used to determine the
contrast-detail curve, respectively. This procedure was repeated 5000 times, each time drawing
different images. Only for a few repetitions (< 10), outlying results were obtained from both
approaches because of a bad termination of the nonlinear fit. These outliers were removed from
the results. Table 3.3 lists the quantitative results for the mean and 95% coverage intervals for
the repeated applications after outlier removal.

Figure 3.7a displays the mean contrast-detail curve approach for the EUREF guideline
procedure with 16 images (blue) and the MSOpi procedure with 5 images (blue) along with a
plot of their difference in Figure 3.7b.
The mean contrast-detail curves appear very similar, but they are not identical. The difference

plot 3.7b highlights that both methods mainly deviate for the two smallest diameters. Note
that even though the difference between the methods appears to be rather high it is within
the limits of uncertainty, cf. Table 3.3. For all remaining points of the contrast-detail curve,
the method difference is significantly smaller than the corresponding uncertainties.

Depending on the noise, the signatures of the artificial lesions can be detected better or
worse in the image. Increasing noise should decrease the image quality, which in terms of
the contrast-detail curve would result in a shift on the y-axis to higher values. In order to
check whether the proposed approach captures this behavior correctly, two different noise
levels σl and σh were considered in the simulation in addition to σ0. Again, the two different
methods were repeatedly applied to 16 random sample images in case of the EUREF guideline
procedure and 5 random image samples for the MSOpi procedure. The mean contrast-detail
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Table 3.3: Mean threshold gold thickness for the EUREF guideline approach from 16 images
and for the proposed approach from both 5 and 16 images. Uncertainties indicate the intervals
containing (pointwise) 95 % of all contrast-detail curves. Table from Kretz et al. (2019).

mean threshold gold thickness [µm]
diameter [mm] EUREF 16 images MSOpi 5 images MSOpi 16 images

0.10 0.780± 0.210 0.560± 0.150 0.568± 0.089
0.13 0.201± 0.038 0.248± 0.042 0.248± 0.025
0.16 0.116± 0.022 0.120± 0.023 0.120± 0.014
0.20 0.094± 0.018 0.095± 0.019 0.094± 0.010
0.25 0.057± 0.011 0.054± 0.011 0.054± 0.006
0.31 0.044± 0.008 0.040± 0.009 0.040± 0.005
0.40 0.030± 0.007 0.028± 0.007 0.028± 0.004
0.50 0.022± 0.006 0.020± 0.005 0.020± 0.003
0.63 0.014± 0.005 0.013± 0.004 0.013± 0.002
0.80 0.009± 0.005 0.007± 0.003 0.007± 0.002
1.00 0.005± 0.005 0.004± 0.003 0.004± 0.001

(a) (b)

Figure 3.7: (a) Mean contrast-detail curve as obtained by repeatedly applying the EUREF
Guidelines procedure to a random sample of 16 images (blue) and the MSOpi procedure to a
random sample of 5 images. Images were simulated using the virtual mammography with a noise
level σ0. (b) Difference of the contrast-detail curve relative to the EUREF Guidelines curve. Figure
from Kretz et al. (2019).

curves, along with an error bar that represents the intervals containing pointwise 95% of all
contrast-detail curves, are shown in Figure 3.8a for the three different noise levels for the
EUREF guideline procedure and in Figure 3.8b for the MSOpi procedure.
In both cases the results show the expected behavior: the contrast-detail curve indeed shifts to

higher thicknesses with increasing noise level. The contrast-detail curves for both approaches
appear very similar for noise levels σh (blue) and σ0 (red), whereas the contrast-detail curve
for the lowest noise (yellow) shows large deviations for the smallest diameter d = 0.1 mm and
diameters beyond 0.5 mm. Except for the smallest diameter, the contrast-detail curves of the
EUREF Guidelines procedure in Figure 3.8a stay clearly beyond the contrast-detail curves for
the higher noise levels, which raises some doubt as to the determination of the results for the
smallest diameter. For the MSOpi procedure, however, the contrast-detail curve for low noise
levels clearly stays below the results for higher noise levels, which appears to be reasonable.
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(a) (b)

Figure 3.8: (a) Mean contrast-detail curves for repeated application of the EUREF Guidelines
procedure for 16 images simulated with three different noise levels. (b) Same results for the
MSOpi procedure using 5 images. Error bars indicate intervals containing (pointwise) 95% of the
contrast-detail curves. Figure from Kretz et al. (2019).

3.3.5 Bayesian Estimation

So far, the proposed procedure determines point estimates of the AUC that are used to compute
a contrast-detail curve. Repeated applications of our method as well as the EUREF guideline
procedure yield slightly different results. This can be explained by statistical fluctuations
in the data. To get an idea of the fluctuation of a result that is achieved with a specific
measurement its uncertainty has to be determined. A measure of the uncertainty can be derived
using Bayesian statistics (Gelman et al., 2013). The Bayesian approach assumes underlying
distributions for every parameter. Also for the figure of merit, a distribution is assumed that
initially is pre-determined by a prior distribution that summarizes all prior knowledge about
this value (D’Agostini, 2003). Furthermore, a statistical model is introduced for the data. The
statistical model describes the sampling distribution, and the observed data are viewed as
one realization of this sampling distribution. The probability for the observed data viewed
as a function of the unknown parameters is known as the likelihood function (Berger et al.,
1988). In a Bayesian inference the prior distributions for all unknowns are updated in view of
the observed data, resulting in the posterior distribution (Gelman et al., 2013). According
to Bayes theorem (cf. chapter 2), the posterior is proportional to prior times the likelihood.
The posterior distribution encodes one’s state of knowledge about the figure of merit and
can be viewed as the most comprehensive uncertainty characterization of the result (Gelman
et al., 2013) which allows one to carry out probabilistic statements. Derived quantities such as
the posterior mean and posterior standard deviation can be taken as point estimate and its
associated standard uncertainty.

In case of our proposed approach, the Bayesian interpretation implies that all parameters
µ, θ, σ and AUC are described by a distribution. The quantities µ̂, θ̂, AUCˆ and σ̂ can be
derived as point estimates from the corresponding posterior distribution.

In Khanin et al. (2018), a simple Monte Carlo algorithm is provided for an efficient
generation of samples from the posterior distribution p(AUC|D) given the data D. In the case
of the CDMAM phantom, this enables us to compute the posterior function p(AUC|t, d) for
each cell with disc diameter d and lesion thickness t. For very small thicknesses and hence low
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contrasts, this posterior distribution will have a peak at 0.5 while for bigger contrasts, the
distribution will shift towards a value of 1. Figure 3.9 shows this behavior for the cells with a
disc diameter of 0.2 mm.
As it can be seen, the posterior distribution shifts towards 1 the higher the thickness of the

Figure 3.9: Four examplaric histograms of the Bayesian posterior of the AUC for a disc diameter
of 0.2 mm. The red line visualizes the limit value τ .

gold disc in the cell. The higher the AUC, the better the detectability of the lesion in the
cell. The conditional probability p(t | AUC, d) describes how the thickness t of the discs varies
for different values of AUC. Contrast-detail curves can then be expressed by the distribution
p(t | AUC = τ, d), where τ denotes a limit value for AUC above which the decision "lesion
detectable" is assigned to a cell of the phantom. This distribution p(t | AUC = τ, d) is the
distribution of the critical thickness for a given diameter, i.e. a distribution along the standard
contrast-detail curve in the y-direction. The mean of this distribution can be viewed as the
value of the contrast-detail curve at diameter d, and its variance as the associated standard
uncertainty. The Bayes theorem (cf. chapter 2) states that the sought conditional distribution
is given by

p(t | AUC = τ, d) = p(AUC = τ | t, d)p(t | d)
p(AUC = τ | d) ∝ p(AUC = τ | t, d)p(t) ,

where p(t | d) = p(t) is assumed. Choosing a non-informative prior p(t) ∝ 1 then enables us
to determine the contrast-detail curve via the distribution p(t | AUC = τ, d) by recording
p(AUC = τ | t, d) for every cell. The limit value τ is indicated in Figure 3.9 as a red line. For
small t, the values p(AUC = τ |t, d) will be close to zero and peak at a certain thickness before
they decrease again for higher values of the thickness. For each diameter, p(t | AUC = τ, d) is
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evaluated for all (≈ 12) existing values of the thickness in the phantom resulting in a sparse
representation of p(t | AUC = τ, d). A Gamma distribution

f(x, a, b) = 1
Γ(a)ba

xa−1e
−x
b , (3.3)

with a shape parameter a and a scale parameter b is fitted to model p(t | AUC = τ, d) for each
diameter individually. As mentioned above, this can be viewed as an approximate posterior
distribution function for one point of the contrast-detail curve. The unknown fit parameters
are estimated using a nonlinear least-squares procedure. Figure 3.10a shows the resulting
waterfall plot of the posterior distribution functions for each point of the contrast-detail curve.

The Bayesian approach directly yields a point estimate of the contrast-detail curve with

(a) (b)

Figure 3.10: Results of the Bayesian estimation of contrast-detail curves with pooling of 5 images.
(a) Posterior distribution functions for each point of the contrast-detail curve. (b) Comparison of
the contrast-detail curves derived by the classic MSOpi approach with 20 repetitions (blue) and
the Bayesian approach (red). Error bars show extended (k=1.96) standard deviations.

an associated uncertainty. Mean and variance of the Gamma distribution as in Equation 3.3
are given as µ = ab and σ2 = ab2. On the other hand, an estimate of the uncertainty for
the "classical" MSOpi approach can be determined in terms of the standard deviation for
repeated experiments, as described in section 3.3.2. Figure 3.10b depicts the results of the
classic approach with 20 repetitions (blue) and the Bayesian approach (red). In both cases, 5
images were pooled to yield contrast-detail curves of comparable accuracy as those determined
by the EUREF guideline procedure.

Overall, the Bayesian approach accurately determines the contrast-detail curve. In three
cases (d = 0.16 mm, d = 0.2 mm, d = 0.5 mm), the mean threshold gold thickness as predicted
by the Bayesian approach lies significantly higher than the threshold thickness determined using
the standard MSOpi procedure. For diameters of d = 0.2 mm, d = 0.31 mm and d = 0.4 mm,
the Bayesian approach yields significantly larger uncertainties. Note that due to the sparse
sampling of the gamma distribution the fit is sometimes determined by only very few points
(see Figures in Appendix A.2).

Nevertheless, the Bayesian approach yields accurate results and enables the determination
of uncertainties on the basis of single images without the need of repeated analysis.

50



3.3 Parametric Model Observer for Image Quality Estimation

3.3.6 Discussion

Virtual mammography was used to assess a developed alternative procedure for contrast-detail
estimation in mammography image quality assurance. The current EUREF guideline procedure
was taken as a reference. This automatic procedure comprises several pre-processing steps
before the actual determination of the contrast-detail curve (Karssemeijer and Thijssen, 1996).

Our proposed approach requires the same pre-processing of the CDMAM as the current
automatic procedure. The 4AFC task, tackled by the current EUREF guideline procedure, is
transformed into the binary task of lesion detection, following well established procedures of
objective task-based image quality assessment (Barrett and Myers, 2013; Pepe et al., 2003).
As a result, the contrast-detail curve is determined based on the AUC as a meaningful figure
of merit which is frequently used to measure image quality (cf. Barrett and Myers (2013);
Pepe et al. (2003); Barrett et al. (2015)). The AUC is determined by applying the parametric
observer MSOpi to every cell of the CDMAM phantom individually. Since the EUREF guideline
procedure uses a proportion of correctly detected lesions to determine the contrast-detail curve,
it necessarily requires multiple images of the phantom to be taken for the analysis. Our novel
approach, on the other hand can assess the AUC and hence the contrast-detail curve from - at
least in principle - single images only. Using the virtual mammography, we could show that
the novel approach with 5 images works as precise as the EUREF guideline procedure with
16 images in terms of the variability of the methods under repeated application. Thus, the
workload for the quality assurance measurements can be reduced by the novel approach.

The EUREF guideline procedure estimates contrast-detail curves with large variabilities.
Especially for curves close to the limit curve, the decision whether the quality assurance
criteria are fulfilled becomes very unreliable. Mackenzie et al. (2017) demonstrate that for 16
images the variability of the contrast-detail curve for small diameters seems too high, led to
the recommendation to record more than 16 images. A drawback of the current practice is that
uncertainties cannot be estimated directly from 16 images but have to be obtained by repeated
experiments from a large data set. The parametric model observer MSOpi, on the other hand,
can be modified into a Bayesian estimation of the AUC, and the resulting posterior distribution
can be used to characterize the uncertainty. A Bayesian procedure was introduced that
determines an approximate posterior function of each point of the contrast-detail curve. Hence,
an estimate of the uncertainty can be obtained from single applications of our method, rather
than assessing the uncertainty in terms of the variance of repeated experiments. However, to
approximate posterior probability distribution functions for each point of the contrast-detail
curve requires that a gamma distribution is fitted to the corresponding data. Since only a
limited number of thickness values for each diameter are present in the phantom, the actual
posterior distribution function might be under-sampled. This can lead to an error-prone fitting
procedure. Best results where achieved when the fit routine is initialized with parameters close
to the actual value such that the fit routine converges rapidly. Nevertheless, contrast-detail
curves can be determined accompanied with an uncertainty of each point. Especially for
contrast-detail curves close to a limit curve, the uncertainty plays a critical role in reliably
deciding whether the image quality is sufficient or not.

Our contribution can be seen mainly as a proof of principle that the determination of
contrast-detail curves can be improved with the proposed alternative method. Furthermore,

51



3. Virtual Mammography

the uncertainty can be estimated directly along with the prediction of contrast-detail curves.
However, to be used in a clinical routine, further validation and testing has to be done. For
real images, the whole image pre-processing framework has to be implemented, such that
the image is aligned correctly and thus can be segmented into the individual cells prior to
the application of the parametric observer. Also, the lesions in the cell need to be aligned
properly to reliable estimate the parameters for the calculation of the AUC. Even though the
proposed procedure seems promising it still requires cumbersome pre-processing. Rather than
implementing the novel procedure end-to-end for clinical applications and thus serve as an
alternative software for automatic image quality assessment, a different method was explored
that can assess image quality without any pre-processing of the phantom images.

Despite of the promising results presented in this chapter, several limitations are still
inherent in our proposed approach. Similar to the automatic procedure of the EUREF guideline,
our alternative method for determination of mammography image quality requires expert
pre-processing of the images before the contrast-detail curve is determined. In addition, the
uncertainty of the contrast-detail curve can be directly determined, but requires a nonlinear
fitting routine, which can fail in cases where the data is too sparse, or when the starting values
of the fitting routine are poor.

3.4 Summary

We developed a virtual mammography as a framework to simulate radiographic images of any
object, with a known digital representation of its X-Ray attenuation properties. Following
state-of-the-art simulation techniques a primary image is retrieved via backward ray casting
and transformed into a noise free image. A phenomenological degradation was included to
degenerate the primary, noise free images to make them visually comparable to real images with
the same acquisition parameters. It is shown that even with a phenomenological treatment
of image noise the simulated images closely resemble real images in terms of their noise
characteristics.

Virtual mammography was then used to simulate images of the individual CDMAM
phantom cells to develop and assess novel approaches for the determination of image quality
in mammography. An alternative method was developed that utilizes a recently published
parametric model observer to determine contrast-detail curves . The novel approach traces
the contrast-detail curve back to the AUC as an established figure of merit for image quality
assessment, which simplifies the assessment of image quality to a binary task. Extensive
tests on simulated images demonstrated that the proposed alternative procedure requires
fewer images than the current automatic procedure in the EUREF guideline. This reduces
the workload for quality assurance measurements for mammography screening. One further
benefit of the novel procedure is that the contrast-detail curve can be estimated along with
an associated uncertainty. Especially when compared to a threshold, the uncertainty is a
crucial parameter to decide whether a mammography unit has sufficient image quality for
mammography screening or not.

Our results demonstrate the benefits of the proposed methods, while still expert pre-
processing has to be done before the contrast-detail curve is determined. This can be
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interpreted as feature engineering in classical machine learning. Deep learning bypasses such
feature engineering and derives representative features directly from the data. Therefore, deep
learning could be useful for mammography image a´quality assessment. Cumbersome image
pre-processing can be avoided such that the contrast-detail curve is determined directly from
the images. This will be explored in the next chapter.
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Image quality can be estimated from images of technical phantoms, such as the CDMAM
phantom. Local contrast information is expressed in contrast-detail curves by computing the
minimum thickness of a lesion for a specific structure diameter, such that its signature in the
image can be detected with a specified probability. For this purpose, the EUREF guideline
employs an observer to local image patches to carry out the localization of a target. These
local image patches are the individual cells of the CDMAM phantom. Therefore, the image
of the whole phantom has to be pre-processed. Pre-processing an image and employing an
observer to derive a test statistic can be interpreted as feature extraction in machine learning.
Classical machine learning employs expert knowledge to engineer characteristic features to
solve a certain task.

In this chapter our contribution is the development of deep learning methods for
mammography image quality assessment. Using the virtual mammography, introduced in
chapter 3, large data sets of realistic phantom images with known ground truth can be
simulated. This facilitates the training of deep learning methods to assess image quality in
mammography. Deep learning bypasses expert feature extraction as described earlier and is able
to learn features that are representative to solve a certain task. Such methods could become
very handy to avoid error prone pre-processing in mammography image quality assurance.

The benefits of the developed methods are compared with the automatic procedure that is
currently suggested in the EUREF guideline for mammography quality assurance.

After a short review of the history of deep learning in medical imaging, two different newly
developed observers will be introduced that utilize deep learning. One uses segmentation while
the other one aims to directly derive the contrast-detail curve from the entire image. An
extensive and thorough comparison of the trained deep learning observer with the EUREF
guideline procedure is provided.
Most of the work presented in this chapter is published in (Kretz et al., 2020).
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4.1 Deep Learning in Medical Imaging

Machine learning, especially its sub-field deep learning, has been applied in medical imaging for
a long time, (cf. Litjens et al. (2017); Yassin et al. (2018); Sahiner et al. (2019)). In the 1960’s,
algorithms were employed to analyze radiographic images and help to interpret them (Meyers
et al., 1964; Becker et al., 1964). With the increasing performance of algorithms and computer
hardware, machine learning could be applied in the 1980’s to detect and diagnose cancer in
chest radiography (Giger et al., 1988) and mammograms (Chan et al., 1987). The success
of these early machine learning applications, like in traditional machine learning methods in
general, is based on the quality of some features extracted by an expert. After finding a suitable
set of features, algorithms were trained to automatically solve a given task. Therefore, these
methods require expert knowledge before they can be successfully implemented. Deep learning,
on the other hand, is designed to engineer such features on its own. Such algorithms are applied
directly to the data and automatically determine a suitable set of features during the training
process. This approach is substantially different from traditional machine learning. Early
researches that report the first usage of deep learning in medical imaging are the application
of a CNN to classify regions in mammograms as either normal or malignous tissue (Sahiner
et al., 1996) and the development of a massively trained artificial neural network (MTANN)
to reduce the number of false positives in the detection of lung nodules (Suzuki et al., 2003).
However, due to restrictions in computational power, these neural nets could not be designed
to be very deep.

Over the last decade, improvements in computational power paved the way for the great
success of deep learning applications especially in image analysis. At the same time, the number
of applications in medical imaging has increased significantly. Deep learning is used for image
segmentation to detect anatomical structures (Hu et al., 2016) or for lesion segmentation (Kline
et al., 2017) and many more. Neural networks are used to classify lesions in various imaging
modalities and body regions. To some extent, algorithms were already successfully trained
to achieve expert performance, as in the case of skin lesion classification in (Esteva et al.,
2017). Besides these applications, data driven methods are explored for image reconstruction,
e.g. (Schlemper et al., 2017) and artifact reduction, e.g. (Jin et al., 2017).

Deep learning has also been applied for quality assessment in medical imaging. For example,
a CNN has been trained to assess the goodness of the representation of some key structures in
fetal ultrasound images (Wu et al., 2017). Their algorithm achieved comparable performance
to the subjective image quality estimation of three medical doctors. In (Lee et al., 2018), a
method is described where images of the lung are classified by a neural network according
to their diagnostic image quality as rated by a radiologist. To the best of our knowledge,
deep learning has not yet been applied to perform image quality assessment in mammography.
According to the EUREF guideline, image quality is evaluated in terms of a contrast-detail
curve. Hence, the underlying task is a multivariate regression where the method takes images
as input and predicts a multivariate contrast-detail curve.

Additional to the application for classical imaging tasks, deep learning also influenced other
areas like treatment planning in radiotherapy. Tseng et al. (2017) used deep reinforcement to
develop automated radiation adaption protocols for lung cancer treatment. Other research
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focuses on the determination of the response to the treatment, where deep learning is used to
predict the response after combined Chemo-Radiotherapy to identify patients that can benefit
from these treatments (Bibault et al., 2018).

Deep learning is widely used in medical imaging. Several studies report impressive results
for the application of deep learning in medical imaging, whereas most of these tasks are far
from being solved (Summers, 2019). Developing a deep learning method that is robust and
has a high repeatability is a challenging task. Especially in the medical imaging community,
methods are often trained on data sets that are not publicly available and hence different
methods are difficult to evaluate and to compare.

In this chapter, the usefulness of deep learning on the determination of image quality in
mammography is explored. Deep learning can potentially bypass error-prone pre-processing
leading to a more robust and accurate determination of image quality.

4.2 Semantic Segmentation Observer

As described above, deep learning can be applied in medical imaging in many different
ways. Accordingly, deep learning can be used in different ways for mammography image
quality assessment. The task as performed by a radiologist is to detect several signatures
of artificial lesions of a technical phantom, which are very similar to the detection of lesions
in radiographic images. Detecting lesions in radiographic images can be done by so-called
semantic segmentation, where each pixel of an input image is classified into a pre-defined set of
classes. In this section a method is proposed where image quality is determined via semantic
segmentation.

Image quality assessment in mammography takes place in a no-reference setting, where
the image quality is expressed in terms of a contrast-detail curve. No-reference or blind image
quality assessment can be done for natural images as well as for medical images by utilizing
deep learning (Bosse et al., 2017; Hou et al., 2014). Most of those algorithms learn to map
images to a corresponding subjective quality score (Bianco et al., 2018). To this end, few
articles focus on a pixel-wise approach. Bhattacharya et al. (2010) incorporate deep learning
for photo-quality assessment. They use semantic segmentation to elaborate visual aesthetic
features. These features are further mapped to a human rating of the quality of an image by
support vector regression.

Also, Kim and Lee (2017) utilize deep learning to learn a visual sensitivity map that
represents the human visual perception. Inspired by these approaches, we explore the usefulness
of semantic segmentation for image quality assessment in mammography. Each pixel of the
CDMAM image is labeled to belong to either a background, a grid or a lesion class. Image
quality assessment in mammography tries to identify how accurate these lesions can be detected.
Hence, knowing the ground truth mask allows one to determine typical metrics for the quality
of the performed semantic segmentation. These metrics express how successful the semantic
segmentation approach can identify the lesions in the image. This requires that the positions
of each lesion is known exactly. For our virtual mammography the virtual specimen, and hence
the ground truth segmentation mask, is known exactly. For real images this segmentation
mask has to be computed. Since the structure of the CDMAM phantom is known, the ground
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truth mask can be calculated by creating a mask from the known pixel spacing of the detector
and a subsequent cross-correlation of this mask with the image. The cross-correlation makes it
possible to align the mask with the grid structure in the image and in turn, the desired ground
truth segmentation mask is computed. Despite the limitation of requiring a ground truth mask,
image quality measurements via semantic segmentation could also be used as a benchmark for
methods that actually utilize semantic segmentation for computer-aided detection. The hope
could be, that an algorithm that reliably identifies suspicious regions in real patient images is
also good in detecting artificial lesions in a technical phantom.

Semantic segmentation describes the task of assigning a unique label to each pixel that
marks its membership to an object or a region it belongs to (Long et al., 2015). This way,
semantic segmentation comprises "scene understanding" by answering the questions what is
visible in the image and where. Deep learning was found to be a powerful tool for pixel-wise
semantic segmentation and marks the state of the art in this field of research (Noh et al.,
2015; Lin et al., 2017; Chen et al., 2017). Originally, CNN’s were introduced to make use of
spatial correlations of pixels in their neighborhood. However, this spatial information is lost
in the final fully connected layers of a typical CNN. In semantic segmentation, this spatial
information is crucial and thus Fully Convolutional Networks (FCN) were developed by Long
et al. (2015) to overcome this limitation. FCN’s replace the final fully connected layers of
conventional CNN’s with up-sampling layers that transform the downsized feature map into
a pixel-wise output or segmentation map. Thus, the down-sampling path of conventional
CNN’s to extract features to interpret the context or semantic information is combined with
an up-sampling path to recover the spatial information (Long et al., 2015).

The U-net, introduced for biomedical image segmentation (Ronneberger et al., 2015),
modifies such FCN’s by an up-sampling path with many feature channels so that the up-
sampling portion is symmetric to the down-sampling part. Further, skip connections are
used to combine context information and spatial information (Drozdzal et al., 2016). The
U-net was shown to achieve good performance, even when only few annotated images are
available (Ronneberger et al., 2015) and it can be applied to many different tasks.

According to the EUREF guideline, mammography image quality assessment is carried out
by analyzing images of the CDMAM phantom and determining a contrast-detail curve. This
curve determines the detectability of small structures by visualizing the minimum thickness for
each diameter such that an observer can detect the lesion with prescribed accuracy. Contrast-
detail measurements were found to relate to the detection of micro-calcifications (Mackenzie
et al., 2016). However, they are not the only method to assess image quality. As an example
image quality can be determined in terms of the ROC-AUC as described in chapter 2.

Here, a method is developed that utilizes the U-net to segment an image of the CDMAM
phantom into background, grid and lesion pixels. Traditional performance measures for
semantic segmentation require a known ground truth mask. It will be shown that such
performance measures correlate with image quality. Commonly used metrics in semantic
segmentation are the overall accuracy (Long et al., 2015), which is measured by

ˆ︃PA =
∑︁

i nii∑︁
i ti

,
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Figure 4.1: Illustration of the Intersection over Union (IoU). The ground truth target is displayed
on the left with the prediction in the center. On the right the combined target and prediction is
used to demonstrate how to calculate the IoU. ti is the number of pixels in class i in the ground
truth mask. nij denotes the number of pixels belonging to class i while they are predicted as class
j.

and the mean intersection over union (Long et al., 2015), which can be calculated as

ˆ︃IoU = 1
ncl

∑︂
i

nii

ti +∑︁
k ̸=i nki

,

where ti denotes the total numbers of pixel in class i, nij denotes the number of pixels of class
i predicted to belong to class j and ncl stands for the number of classes. Figure 4.1 illustrates
the meaning of the Intersection over Union (IoU) for a simple example. The ground truth
mask consists of 3 classes. In the prediction, class 1 is classified on the opposite site, leading
to a shift of the lesion. From the overlay it can be seen how the IoU can be calculated.
Besides the overall measures, we report the individual accuracy and intersection over union

for the three classes separately. The overall accuracy depicts how many pixels are correctly
classified. The IoU is a measure of similarity of two data sets. If two data sets are equal,
then their IoU is unity since intersection and union are the same in this case. The more the
two data sets deviate from each other, the less they have in common, which means that the
intersection between the two sets decreases. The union on the other hand increases since the
two sets contribute more samples that are only present in one of the sets.

4.2.1 Data

The virtual mammography delivers mammography images from digitized phantoms. As
described in chapter 3, a digital CDMAM phantom can be used to simulate images for the
purpose of image quality assessment. The digitized phantom is a voxel object and the virtual
specimen, specifically the position of the artificial lesions is known exactly for all simulated
images of this phantom.

Four different values of the SNR were simulated with a tube voltage of 31 kV and a
time-current of 100 mAs. For each noise level, 200 images were simulated and randomly split
into training data, test data and validation data. The remaining simulation parameters were
chosen as listed in Table 3.2. To further verify the accuracy of our method, a set of real images
was included as test data in addition.
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To enable an efficient training procedure to be carried out on a single graphics processing
unit (GPU), the images were down-sampled patchwise. From each entire image of the CDMAM
image, sub-images with dimension of 400 × 400 Pixel were cut out with minimum overlap
of 2 pixels. This way, each image yields 60 sub-images that are used as input for the neural
network. Each training sample was labelled with the extracted ground truth segmentation
mask, cut out at the exact same position as the sample image. The images are transformed into
8 bit grayscale images with pixel intensities between 0 and 255 and normalized by subtracting
the median and scaling the intensities to be in the interval between 0 and 1.

4.2.1.1 Data Augmentation

The U-net was shown to be able to outperform state-of-the-art segmentation even in situations
where only a few annotated training samples were available (Ronneberger et al., 2015). This is
achieved by using extensive data augmentation.

Similarly, data augmentation is utilized here to improve the performance of training a
U-net to segment CDMAM images into background, grid and lesion pixels. The goal of data
augmentation is to include perturbed image samples to learn a more robust and generalized
neural net.
The augmentations can be added to the original data set as done in section 4.3 to construct

one whole big data set. Here, a different strategy was chosen where the possible augmentations
are applied randomly whenever the training algorithm draws a data sample from the original
data set (cf. Shorten and Khoshgoftaar (2019)). This way, the same image is represented in a
different variation in each training epoch (cf. chapter 2). As an advantage, this methodology
reduces the amount of data that has to be stored physically. Table 4.1 gives an overview of
the included augmentations along with a short explanation and the corresponding parameter
range of the applied transformations.

Especially blurred samples and images with a gradient in the pixel intensity are important
to account for images of different quality levels. Real images were found to have a gradient in
y-direction in the background level. As a consequence, the background level is dependent on
the position in the image. Therefore, the training data must contain such images that contain
a gradient in the pixel intensities in order to train a neural network robustly. The virtual
mammography simulates images without gradients. Thus, a gradient image of given strength
is added to the image in the augmentation procedure.

The applied random flips effect both image and mask in the same way. All remaining data
augmentation methods leave the mask unaltered.

4.2.2 Neural Network

Inspired by (Ronneberger et al., 2015), we set up a U-net architecture that keeps the dimensions
of the output same as the input image. The basic architecture is shown in Figure 4.2.
In the down-sampling path, each two consecutive convolutions are followed by a max pooling

operation. Each convolution is carried out together with a batch-normalization and a ReLU
operation. This procedure is subsequently used to down-sample the initial 400× 400 Pixel
image into 512 25 × 25 Pixel feature maps. In the up-sampling path, up-convolutions are
employed to up-sample the feature maps to the original image size. In each step, the feature
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Table 4.1: Overview of the different transformations used to augment the image patches of the
CDMAM phantom to train a neural network to segment the image into background, grid and
lesion pixels. The third column specifies the parameter range of the applied transformations. In
each epoch these parameters are randomly and uniformly drawn from the corresponding intervals.

Operation Explanation Values

Flip With probabilities pv and ph, the input image is
flipped vertically and horizontally. pv = ph = 0.5

Brightness
The brightness of the image is adjusted by a
factor b. A factor of b = 0 results in a black
image, whereas b = 1 gives the original image.

b ∈ [0.1, 1.9]

Contrast

The contrast of the image is controlled by a
contrast factor c where a value of c = 1
conserves the original image and a factor
smaller or greater than one reduces or increases
the contrast in the image, respectively.

c ∈ [0.1, 1.9]

Gamma

A gamma correction is applied to the image.
γ, 1 leaves the original image unaltered and
values greater than 1 make shadows in the
image darker.

γ ∈ [1, 1.8]

Blur A Gaussian filter with standard deviation σ is
applied to account for blurring in the images. σ ∈ [0, 5]

Gradient

With a probability of pgrad a gradient is added
to the image. The pixel range lies in [0, 255]. A
gradient image is created such that the pixel
intensities vary linearly between m · 255 for
y = 0 and 255 for y = 255. The gradient image
is then blended into the the original image.

pgrad = 0.2,m = 0.8

map is concatenated to the corresponding map in the down-sampling path and fed into two
consecutive convolution blocks. The final 64 feature maps of size 400×400 Pixel is transformed
into the output segmentation map via 1× 1-convolution. The segmentation maps consists of 3
channels that represent the 3 classes (background, grid and lesion) in our case. The network
was implemented in PyTorch (Paszke et al., 2019). The network was trained for 20 epochs
with a batch size of 32 images using a stochastic gradient descent solver with momentum 0.9
and a learning rate of 5 · 10−4. Cross entropy loss was used as a cost function with a weight
regularization factor of 0.1. During the training procedure the model that achieved the best
overall accuracy on a random set of validation images that were not used for training was kept
for further evaluation.

Splitting the image of a CDMAM phantom into pixels of background, grid and lesion
results in a large imbalance between the different classes since there are more pixels belonging
to the background than to the grid and lesion class. If this is not considered in the training
phase, the neural network will concentrate on correctly classifying the background class since
this is the major contribution to the corresponding loss function. Therefore, we use weighted
cross entropy as a loss function, where each class is multiplied with a weight that corresponds
to the inverse of the relative frequency of class pixels in the ground truth images.
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Figure 4.2: Architecture of the U-net that reads-in an image patch of 400× 400 Pixels image
patch and outputs a segmentation map of the same size with three classes (background, grid and
pixel). Blue boxes visualize feature maps with the number of channels on top of the box. The
arrows denote different operations.

4.2.3 Results

The U-net was trained with the parameters reported in the previous section for 48 hours
on a Nvidia®Tesla®K80 GPU and tested on images that were not used for training the net.
However, the test images were not truly independent, since test images were created with the
same simulation parameters as the training images. Test images as well as training images
were simulated with four different noise parameters and thus four different image quality levels.
We will refer to these as four different SNR values in the following.
Figure 4.3 shows the result of the trained U-net for an example image of the highest SNR

class. The input image, which is a 400× 400 Pixel patch of the whole image, is shown on the
left with the corresponding ground truth in the center and the network output on the right. In
Figure 4.3a the raw image was used as an input image, whereas Figure 4.3b shows the resulting
segmentation, when a Gaussian filter with standard deviation σ = 4 is applied to the input
image. The Gaussian filter leads to a blurring in the grid and lesion regions respectively, at
the same time the fluctuation in the background. As a result, the trained U-net classifies less
pixels as lesion pixels that actually belong to the background. For a more detailed evaluation,
Table 4.2 lists the quality scores for example test images for the four different image quality
levels SNR 1− 4 and different standard deviations σ of the Gaussian filter. The quality of the
semantic segmentation is measured for test images of the whole CDMAM phantom in terms of
the pixel accuracy and the Intersection over Union. Next to the overall results, the individual
results for the three different classes are presented.
It can be seen that for all different SNRs the overall pixel accuracy ˆ︃PA as well as the mean

intersection over union ˆ︃IoU decreases with increasing standard deviation of the Gaussian filter.
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(a)

(b)

Figure 4.3: Results of the segmentation of a patch of the CDMAM phantom into three different
classes: background (black), grid (red) and lesion (green). The left side shows the input patch
with the corresponding ground truth in the center and the network output segmentation mask on
the right. (a) Results for the raw image and (b) results when the same image is blurred with a
Gaussian filter with standard deviation σ = 4 before it is fed into the neural net.

The Gaussian filter blurs the grid lines in the image significantly (cf. Figure 4.3). The U-net
correctly reacts on blurred grid lines and classifies them accurately. However, the ground truth
is not affected by the blurring and thus the grid lines in the ground truth segmentation map
remain the same. As a result, more pixels of the background class are (correctly) classified as
grid pixels by the U-Net. This ground truth, however, was not altered for the blurred images
resulting in a decrease of the overall accuracy and IoU for increasing standard deviation of
the Gaussian filter (cf. Table 4.2).

For image quality assessment, the lesion class plays the crucial role. While the pixel
accuracy of the lesion class also decreases for increasing blurring, the Intersection over Union
increases. This is in accordance with the finding from Figure 4.3, where for a higher blurring less
background pixels are wrongly classified as lesion pixels. The goal of image quality assessment
is to find out whether the device yields a sufficient resolution of small contrasts to ensure
adequate diagnostic quality. Thus, image quality assessment should be able to distinguish
different quality levels. In Table 4.2 the Intersection over Union of the segmentation map and
the ground truth without applying a Gaussian filter (σ = 0) are highlighted as bold numbers
for each quality level. With increasing index SNR i, the images were simulated with a larger
amount of noise, resulting in lower image quality. Indeed, the numbers decrease for decreasing
image quality and thus could be used as an indicator for image quality evaluation.
To investigate this effect in more detail, the confusion matrix (Stehman, 1997) is taken into

account. The confusion matrix or error matrix is a map that reports the observed frequencies
of classes in the ground truth as well as the prediction of a classifier. Besides the total number
of class members in the ground truth as well as in the prediction, a binary confusion matrix
presents the true positives, the false positives, false negatives and the true negatives. For a
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Table 4.2: Quality measures for the performed semantic segmentation for test images for four
different quality levels SNR 1− 4 after applying a Gaussian filter with standard deviation σ. The
SNR decreases monotonically from SNR 1 to SNR 4 Presented are the overall pixel accuracyˆ︃PA and the mean intersection over union ˆ︃IoU as well as the individual class scores for classes
background (bg), grid and lesion.

SNR Gaussian
PÂ IoÛ

P Â P Â P Â IoÛ IoÛ IoÛ
filter bg grid lesion bg grid lesion

SNR 1

σ = 0 0.9348 0.5550 0.9339 0.9944 0.6513 0.9310 0.5940 0.1400
σ = 1 0.9346 0.5513 0.9337 0.9971 0.6274 0.9308 0.5790 0.1440
σ = 2 0.9337 0.5445 0.9331 0.9990 0.5864 0.9299 0.5491 0.1545
σ = 3 0.9298 0.5366 0.9290 0.9997 0.5702 0.9257 0.4984 0.1857
σ = 4 0.9248 0.5342 0.9240 0.9999 0.5236 0.9204 0.4500 0.2321

SNR 2

σ = 0 0.9349 0.5560 0.9338 0.9980 0.6504 0.9311 0.5992 0.1378
σ = 1 0.9353 0.5532 0.9344 0.9987 0.6263 0.9315 0.5843 0.1438
σ = 2 0.9338 0.5455 0.9330 0.9994 0.5974 0.9300 0.5488 0.1577
σ = 3 0.9304 0.5364 0.9297 0.9998 0.5563 0.9263 0.5018 0.1812
σ = 4 0.9250 0.5353 0.9242 0.9999 0.5251 0.9207 0.4502 0.2350

SNR 3

σ = 0 0.9312 0.5521 0.9298 0.9969 0.6709 0.9272 0.6015 0.1276
σ = 1 0.9333 0.5512 0.9321 0.9985 0.6481 0.9294 0.5845 0.1396
σ = 2 0.9338 0.5455 0.9330 0.9994 0.5993 0.9299 0.5494 0.1573
σ = 3 0.9300 0.5377 0.9292 0.9998 0.5776 0.9260 0.4999 0.1873
σ = 4 0.9251 0.5342 0.9244 0.9999 0.5189 0.9208 0.4513 0.2305

SNR 4

σ = 0 0.9284 0.5508 0.9266 0.9989 0.6928 0.9242 0.6076 0.1206
σ = 1 0.9333 0.5516 0.9321 0.9993 0.6515 0.9294 0.5856 0.1398
σ = 2 0.9339 0.5473 0.9330 0.9996 0.6178 0.9301 0.5511 0.1608
σ = 3 0.9302 0.5392 0.9292 0.9999 0.5901 0.9261 0.4999 0.1915
σ = 4 0.9252 0.5359 0.9244 0.1000 0.5316 0.9208 0.4514 0.2356

Table 4.3: Confusion Matrix for "lesion" against "no lesion" classification for an example test
image simulated with the SNR 1, σ = 0 setup. The values indicate the total number of pixels
or the relative fractions with respect to the corresponding total amount. Gray cells highlight the
true positives, false positives, false negatives and true negatives. The precision (red) and the recall
(green) are used to calculate the F1-score (see text).

ground truth
lesion lesion

total 65,447 8,422,795

pr
ed

ic
tio

n lesion 281,732 42,625 239,107 15.13% 84.87%

lesion 228,206,510 22,822 8,183,688 2.78% 99.72%

65.13% 2.84%

34.87% 97.16%

multi-class classification a binary confusion matrix can be determined where the actual class
is evaluated against all other classes.
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True positives are members that were correctly identified by the classifier. False positives
are members that actually belong to class i but are classified as something different. On the
other hand, false negatives are all samples that are classified into class i while they actually
do not belong to class i. True negatives finally are samples that are correctly classified of not
belonging to a certain class i. Several numbers can be extracted from the confusion matrix.
Two very important figures are the so-called precision and the recall. The precision denotes
the fraction of true positives and the total number of predicted members in class i, whereas
the recall divides the true positives by the total number of members in the ground truth class
i. With these two values, the F1 score

F1 = 2 Recall ∗ Precision
Recall + Precision

can be taken as performance measure to evaluate the semantic segmentation.
Table 4.3 shows an example of a confusion matrix for the semantic segmentation result

of a test image of the whole CDMAM phantom, simulated with SNR 1 without applying a
Gaussian filter. The gray cells denote the four values of interest and report the total number
of pixels that fulfil the condition in each cell. The precision is given in the red cell, while the
recall is presented in the green cell of the matrix. The Recall equals the overall pixel accuracyˆ︃PA from Table 4.2. For example test images of the entire CDMAM phantom for the four
different image quality levels SNR 1− 4 the corresponding performance measures of the lesion
class are presented in Table 4.4.

With decreasing image quality, the trained U-net classifies more pixels as lesion. This
increases the true positives and thus the recall since the amount of lesion pixels in the ground
truth mask remains constant. However, the increase in the number of pixels classified as lesions
is higher than the increase of the true positive fraction, resulting in a decrease in the precision
of the U-net. Thus, the F1-score decreases with decreasing image quality as well. Precision
as well as F1-score show the expected behavior that the corresponding values decrease with
decreasing image quality. In case the position of the lesion - and hence the ground truth for our
semantic segmentation - is known exactly, which is a common assumption in mammography
image quality assessment, precision or F1-score could be used to assess the image quality via
semantic segmentation.

Note that the results presented are a proof of principle of how deep learning might be
useful for mammography image quality assessment. The current EUREF guideline procedure
measures image quality in terms of the contrast-detail curve that depicts local contrast-detail
information. The results presented in this section yield a global measure of image quality in

Table 4.4: Performance measures of the lesion class for the segmentation of the entire CDMAM
phantom image. The four different SNR i denote four image sets of different image quality, where
the image quality decreases for increasing index.

predicted lesion pixels true positives precision recall F1

SNR 1 281,732 42,625 15.13% 65.13% 24.55%
SNR 2 285,945 42,568 14.89% 65.04% 24.23%
SNR 3 322,622 43,909 13.61% 67.09% 22.63%
SNR 4 355,820 45,342 12.74% 69.28% 21.52%
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terms of the F1 score or the precision. To transform this into a contrast-detail curve, the
segmentation result needs to be evaluated for the individual cells of the CDMAM phantoms.
Thus, an error-prone post-processing of the segmentation result needs to be carried out in order
to determine a contrast-detail curve. This way, our method could be modified to distinguish
between cells where the signature of the lesion can be detected with sufficient probability and
cells where this is not the case, by choosing a threshold for the derived metric. This can be
recast into contrast-detail curves as described in chapter 3. In other words, the application of
the semantic segmentation observer (SSO) alone is not sufficient to estimate the contrast-detail
curve without cumbersome post-processing.
Nevertheless the developed SSO is able to precisely classify a filtered image into background,
grid and lesion pixels. With known lesion positions, global metrics (e.g. the F1-score) can be
calculated that measure the performance of the semantic segmentation which correlates with
image quality.
Rather than fine tuning and extensive testing of the employed U-net on a bigger data set, we
suggest a completely different approach in the next section where deep learning is directly
applied to images of the CDMAM phantom to predict the contrast-detail curve. In contrast
to the semantic segmentation this approach is directly comparable with the results of the
current EUREF guideline procedure. This will help to see whether a deep learning approach
is beneficial for mammography image quality assurance.

4.2.4 Discussion

Virtual mammography as described in chapter 3 can be used to simulate large image data
sets of the CDMAM phantom. This helps to explore the usefulness of deep learning in the
context of mammography image quality assurance. The goal of image quality assurance in
mammography is to ensure that a device is able to depict small contrasts in the image such
that a reliable diagnostic can be carried out. For quality assurance measurements a technical
phantom is used to determine the contrast resolution that can be achieved by an observer
under standard acquisition parameters.

Over the past decade, deep learning has demonstrated its potential for many different tasks,
especially image analysis. Traditional machine learning algorithms utilize a set of features,
extracted by an expert, that are especially useful to solve the given task. For mammography
image quality assessment, classical data analysis methods or human observers require that
the image of the entire phantom is segmented into single patches that are further analyzed
by comparing average pixel intensities and localizing the signature of a lesion. This analysis
pipeline is especially suitable for the human observer. The question remains whether this
is also the optimal strategy for an algorithm. One great advantage of deep learning is that
during the training phase, the network develops a set of features by itself, according to which
the given task can be solved.

In this section, semantic segmentation was used to train a U-net to classify the individual
pixels into three different classes: background, grid and lesion. Our results show that the U-net
can be successfully learned to distinguish between lesion pixels, grid pixels and background
pixels. The F1-score for the lesion class can be used as a global measure for image quality
since it correctly correlates with the quality of different images. While this is beneficial on its
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own, the current EUREF guideline procedure expresses image quality in terms of a contrast-
detail curve. Rather than being a global measure of image quality, the contrast-detail curve
summarizes local contrast information. To recast our global F1-score into a contrast-detail
curve, the segmentation result needs to be evaluated individually for each cell of the CDMAM
phantom. By choosing a minimum threshold for the F1-score, a contrast-detail curve can be
extracted, similarly to the EUREF method. Therefore, the segmentation result has to be
separated into the individual cells which represents an error-prone post-processing.

The good initial results of the SSO demonstrate its potential for image quality assessment
as a proof of principle. However, a contrast-detail curve cannot be directly obtained without
cumbersome post-processing. Quality assurance measurements, following the EUREF guideline,
compare the determined contrast-detail curve to a limit curve and carry out a binary
classification: sufficient image quality or not. Future research could explore whether this
classification can be done utilizing our proposed segmentation approach. To do this, it has to
be analyzed, if for a set of test images that, according to the EUREF guideline approach, are
classified as sufficient image quality or not there exists a threshold such that the assessment
via our SSO comes to almost the same judgment? However, this is beyond the scope of
this work and therefore, the SSO was not refined any further or compared to the current
practice. Instead, a method shall be developed that directly regresses a contrast-detail curve
from images of the CDMAM phantom via a CNN. The application of semantic segmentation
for mammography quality assurance could be especially beneficial in cases where computer
aided diagnostics or detection is used to analyze images. Using semantic segmentation for
quality assurance could then allow the effect of different acquisition parameters and different
mammography devices on the detectability of lesions in a technical phantom to be studied
in a controlled way. This could potentially lead to an increased performance of computer
aided detection algorithms for breast cancer diagnostics or at least serve as a benchmark for
methods that utilize semantic segmentation. However, this is beyond the scope of this work.
Our results indicate that further research to explore this approach could be worthwhile.

The semantic segmentation observer (SSO) determines a global measure of image quality,
but requires the knowledge of the ground truth segmentation mask. This mask is known for
our virtual specimen, but has to be computed for real images. To determine a contrast-detail
curve, sophisticated post-processing has to be done to translate the global metric into local
information.
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4.3 Deep Learning Observer

Existing methods to determine image quality in mammography in terms of contrast-detail
curves require the exact positions of the lesions to be known as well as error prone pre- or
post-processing. Deep learning, however, is able to learn representative features itself from big
data sets such that a specific task can be solved. In this chapter, a deep learning observer
(DLO) is developed that can be applied directly to images of the phantom to determine
contrast-detail curves. Therefore, a database of labeled training images is required. Such a
data base is created by combining simulated images from the developed virtual mammography,
cf. section 3.2, with a set of real images. In supervised learning each image requires a label.
These labels are the contrast-detail curves determined with the EUREF guideline software, cf.
section 2.1.3. For each set of simulated images the EUREF guideline procedure is applied and
the determined contrast-detail curve is then assigned to each image individually.

4.3.1 Data

High quality representative data plays a critical role for the successful, data intensive training
of deep neural networks (Abu-Mostafa et al., 2012; Gudivada et al., 2017). To train a neural
network for the precise prediction of contrast-detail curves from images of the CDMAM phantom
a data set containing images of several different quality levels and different mammography
devices is needed. The goal is to cover a wide range of different acquisition parameters that
is representative such that the trained neural network generalizes well and thus allows the
regression of contrast-detail curves in most clinically relevant application settings.

Creating such a representative data set can be done by virtual mammography, as described
previously in section 3.2. The three main simulation parameters tube voltage, the time-
current product and the SNR control the modeling of different acquisition settings and devices.
Especially the time-current product and the SNR influence the ability of the device to depict
small contrasts in the resulting image and hence mainly influence the contrast-detail curves. A
higher time-current product equals a higher radiation dose and ultimately leads to a higher
SNR and hence shifts the corresponding contrast-detail curve downwards, which represents a
better image quality. On the other hand, the SNR emulates the quality of the imaging detector
and higher values result in a better image quality as determined in terms of contrast-detail
curves.

In total, sixteen sets of 200 images each were simulated and split into a training set, a test
set and one independent test set to check the generalization ability of the trained network as
illustrated in Figure 4.4.
The corresponding simulation parameters for each set are given in Table 4.5. The 200 images

from each set differ in the random noise and in randomly applied shifts of the position of
the phantom. These shifts are normally distributed with zero mean and a 1 Pixel standard
deviation in x- and y-direction individually.

In order to construct a representative training set, 11 simulated sets were combined such
that the corresponding contrast-detail curves span a range, indicated as the blue area in
Figure 4.5. The parameters of the 4 simulated test sets are chosen differently from the
parameters that were used to construct the training set such that they fall in the range that is
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Figure 4.4: Schematic of the image data set consisting of 48 real images and 16 sets of 200
simulated images, respectively. Real images are split into train and test set but were acquired
using the same acquisition parameters. Simulated images are split into train and test sets, such
that the acquisition parameters are different which ensures the independence of training and test
sets. Figure from Kretz et al. (2020).

Table 4.5: Simulation parameters for the 16 different simulation scenarios used to train and
test a neural network to estimate a contrast-detail curve from a CDMAM phantom image. Table
from Kretz et al. (2020).

Set No. Voltage [kV p] Exposure [mAs] SNR

Training

1 25 110 4.5
2 25 110 4.9
3 31 100 5.8
4 25 110 5.9
5 28 105 6.7
6 31 100 6.7
7 25 110 7.2
8 27 100 7.3
9 31 100 7.6
10 25 100 8.5
11 31 100 8.5

Test
1 28 115 4.9
2 25 110 6.7
3 25 110 9.7
4 25 110 11.7

Generalization Test 1 23 105 3.1

spanned by the training set, as it can be seen as red curves in Figure 4.5. One further set is
simulated with parameters such that the corresponding contrast-detail curve lies outside the
training range, see the orange curve in Figure 4.5.
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Figure 4.5: Overview of the different contrast-detail curves. 11 simulation scenarios form a range
of image quality levels (blue). Four different simulation settings are used to construct independent
test sets that lie within the training range (red). The set is enhanced with real images (green). One
independent test set (orange) falls outside the training range and is used to check the generalization
ability of the trained net. Figure from Kretz et al. (2020).

Simulations are an easy and fast way to construct large data sets with easily controllable
image qualities. However, a trained model should be applied to real images in a clinical quality
assurance procedure and thus, the training set should further include samples of real images.
Therefore, 48 images of the CDMAM phantom were taken that were acquired on a Siemens®

Mammomat Inspiration with an exposure of 100 mAs and a tube voltage of 30 kV p. Since
the acquisition parameters of all 48 images are the same, the EUREF guideline procedure is
applied to all 48 images to determine a contrast-detail curve that is then assigned as a label to
every image individually. Henceforth, all 48 real images have the same label. The 48 images
are then split into two sets of 24 images for training and 24 images for testing. Thus, even
though the real image sets are not truly independent, since they were generated using the same
acquisition parameters, none of the real images used for training are included in the test set.

4.3.1.1 Downsampling

Mammography uses high resolution images (approx. 3, 600× 2, 300 pixels) with typical pixel
distance ≈ 0.05 − 0.07 mm. To achieve a reasonable performance when training a deep
neural network on a huge database, the CDMAM images are compressed before they are
fed into the neural net. Since the CDMAM phantom itself comprises a highly redundant
structure, a sparse sampling approach seems to be feasible to reduce the dimensionality of
the input images. However, dimension reduction algorithms as, for example, the principal
component analysis (PCA) (Wold et al., 1987) or shearlet transformations (Easley et al., 2008)
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reduce the dimensionality with respect to a corresponding basis. To avoid the assumption
of low dimensionality in a specified basis, random down-sampling is chosen to reduce the
image dimensions. Random down-sampling is achieved by choosing random pixel indices in
x- and y-direction individually with respect to their original order. Choosing a high sample
rate preserves more of the original image, while the performance of the training process will
decrease. On the other hand, low sample rates ease the training process, whereas a lot of
image information is lost. In case of the CDMAM phantom, an image dimension reduction to
250× 250 pixels was found to ensure an efficient performance while the achieved accuracy does
not suffer too much from the high down-sampling rate. Higher downsampling rates were found
to leave out too much information such that the contrast-detail curves could not be estimated
with sufficient accuracy. Keeping more information, on the other hand, significantly slowed
down the training process without providing a significantly better accuracy. Using random
downsampling to reduce the original images with a size of 3654× 2323 pixels (cf. section 3.2)
to a size of 250 × 250 pixels means omitting 99% of the original image area. This number
may seem high but note that the CDMAM phantom contains a lot of redundant information
that is not needed by a neural network to estimate a contrast-detail curve.

4.3.1.2 Data Augmentation and Normalization

Even though the orientation of the CDMAM phantom is strictly regulated in the quality
assurance protocol for mammography screening, the trained network should be invariant under
rotation and scaling of the recorded image. For this reason, the training data set is further
augmented. First of all, the imaging area is usually not fully covered by the phantom. This
means that the final image consists of the phantom region and a margin area that has a much
higher intensity since the incoming radiation is not absorbed by the phantom. To enable the
estimation of the contrast-detail curve without prior segmentation of the phantom area, the
training data has to include image samples that contain a margin. In the simulations, a margin
is added to the image simply by placing the image in a bigger image before down-sampling.
Phantom pixels usually have an intensity between 300 and 600, whereas the intensity for the
margin pixels for each image is chosen randomly between values of 2, 600 and 10, 000. The
pixel intensity in the margin region is much higher because the X-Rays in this area are not
attenuated at all. To produce a more realistic margin, a small random perturbation of 2‰
of the pixel intensity was added to each pixel of the margin area. Each simulated training
scenario is augmented by including versions with margins between 0 and 100 pixels. Note that
by adding a margin of 100 pixels the margin area covers over 60% of the original image. This
is far from clinical scenarios where the margin area usually covers between 25% to 50%. Going
beyond the clinical relevant range led to greater robustness and performance of this approach.
Introducing images with different margins for the same ground truth is supposed to lead the
trained neural network to be robust for images of different devices where the size of the detector
determines the margin in the actual image. After adding six different margins, mirroring is
included as data augmentation. The different sets are mirrored vertically, horizontally and
both vertically & horizontally. Thus, the 200 images of each training scenario are multiplied
to 200 · 6 · 4 = 4, 800 images. As mentioned earlier, the training set is enriched by including
24 real images. Since this is strongly under-represented compared to the 4, 800 images of one
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Table 4.6: Final composition of the training set comprising augmented simulated images and real
images and the final test set of 4 simulation sets and real images that were not used for training
plus 1 independent simulation test set. Factors denote the multiplication of images through data
augmentation. Table from Kretz et al. (2020).

Set Type No. images No. scenarios

Training simulation 2200 · 6 · 4 11
real 24 · 200 1

Test
simulation 800 · 6 4
real 24 1
simulation 200 1

simulation scenario, each real training image is copied 200 times, without alteration, to have a
fair representation in the final training data set.
Data augmentation is usually only applied for the training images. Here, we use the different

margins also in the test set, to ensure that the network successfully learned to ignore the
margin pixels which would prove that no initial data processing is needed.

The final sizes of training and test data sets are given in Table 4.6. The training set after
data augmentation consists of 57, 600 images. Testing of the trained network is performed on
4, 800 simulated test images, 24 real images and a further simulated generalization test set of
200 images.

4.3.2 Neural Network Architecture and Training Strategy

After setting up the database to train a neural network to estimate contrast-detail curves
from single images of the CDMAM phantom, a network architecture needs to be chosen. A
contrast-detail curve is estimated only on a finite number of abscissa values. For each of a
discrete set of diameters, the corresponding thickness is computed such that the signature of
this lesion can be detected with prescribed accuracy. This can be understood as simultaneously
solving single regression problems at each abscissa value. As a reference for the regression, the
contrast-detail curve determined with the current EUREF guideline procedure is used. Thus,
the network should learn the regression of the contrast-detail curve and be able to generalize
even beyond the range defined by the training data.

Figure 4.6 shows a schematic overview of the workflow to determine contrast-detail curves
with a neural net. The incoming image is randomly down-sampled and fed into a convolutional
neural network (CNN). CNN’s showed superior performance in several computer vision tasks,
where inputs are commonly images [refs]. Typical elements like convolution, activation,
normalization and pooling are organized into layers and stacked onto each other. These
structures can be interpreted as feature extractors with the derived features fed into one or
more fully connected layers to finally perform the given task. In our case, this is the regression
of the 12 points that form the contrast-detail curve.
Inspired by the image regression example in the Matlab® deep learning Toolbox (MATLAB,

2019), a regression CNN was set up with an architecture as listed in Table 4.7. Stages of
convolutional layers followed by ReLU activation functions and batch-normalization layers are
combined by using 2× 2 pooling layers.
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Figure 4.6: Schematic overview of the processing pipeline. The image is randomly downsampled
and fed into a convolutional neural net. The latter comprises several convolution, pooling,
normalization and fully connected layers to regress a contrast-detail curve. A detailed overview on
the network architecture is given in Table 4.7.

Table 4.7: Architecture of the CNN for contrast-detail curve estimation from CDMAM images.
Table from Kretz et al. (2020).

Layer Type Filter dimensions Output dimensions

1 image input 250× 250× 1
2 convolutional 3× 3× 1× 8 250× 250× 8
3 batchnorm + relu 250× 250× 8
5 maxpool 2× 2 125× 125× 8
6 convolutional 3× 3× 8× 16 125× 125× 16
7 batchnorm + relu 125× 125× 16
9 maxpool 2× 2 62× 62× 16
10 convolutional 3× 3× 16× 32 62× 62× 32
11 batchnorm + relu 62× 62× 32
13 fully connected 123008× 512 1× 1× 512
14 dropout (0.2) 1× 1× 512
15 fully connected 512× 512 1× 1× 512
16 fully connected 512× 12 1× 1× 12
17 regression layer 1× 12

After three convolution stages, a fully connected layer follows. For better training
performance and generalization, a dropout layer with a dropout probability of 0.2 is added,
which transfers into the next fully connected layer. The final layer is a fully connected layer
with 12 neurons that represent the twelve points of the contrast-detail curve. The mean
squared loss (see also chapter 2) was utilized as the corresponding loss function.

4.3.2.1 Incremental Learning

Rather than training the full network architecture directly on all of the data, incremental
learning was applied which makes use of transfer learning. Not only the data was varied in the
training process but also the architecture itself was developed into its final form as presented
in Table 4.7 and learned incrementally via transfer learning (Kretz et al., 2020).

Incremental learning in general describes the procedure when either the network
architecture (Wang and Kuh, 1992; Zhang, 1994) is refined throughout the training process or
the training set is altered over time by adding more or different data, as e.g. in (Engelbrecht
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and Brits, 2001). Incremental learning aims to transfer already acquired knowledge to either a
refinement of the network architecture or to the correct prediction of new data. Restarting
the training of the network with random network parameters would cause the network to
forget all the information that was collected in earlier training epochs and is referred to as
"catastrophic forgetting" in (French, 1999; Kirkpatrick et al., 2017) , while transfer learning
uses the parameters as learned so far as a new starting point for further, refined training.

For the presented method, the network was previously trained without the second fully
connected layer on a subset of the training data. Real images as well as all simulated images
augmented with margins or mirrored images were removed from the training set. Then
the simulated margins were included in the training set, together with the mirrored images.
Transfer learning was used to refine the neural network on the enhanced data set.

After successfully learning on the enhanced training set, the second fully connected layer was
added and trained with dropout of 0.2. Training a deeper network with incremental learning
increased the achieved performance of this approach. If the deep network was trained directly
from scratch without the incremental procedure, the achieved accuracy drops significantly.
This is why an incremental learning procedure was used to achieve a deeper network gradually.

In a final step, the real data was included in the training data and the network was again
trained on the whole data set using transfer learning. In each step the neural network was
trained using stochastic gradient descent with momentum (cf. Chapter 2) and an initial
learning rate of lr = 10−3. The network was trained in batches of 128 images from the training
data set for 150 epochs. At every 30th epoch the learning rate was decreased by multiplying it
with 0.1.

4.3.3 Results

The trained network was applied to the different test scenarios that were previously described,
and compared with the current practice of the EUREF guideline. None of the test images were
used to train the neural net. However, the real test images are not truly independent, since
they were recorded under the same conditions as the real images included in the training set.

Figure 4.7 shows the prediction of the trained CNN of 4 different simulated test scenarios
along with the corresponding ground truth displayed as lines. Each simulated test scenario
consists of 200 images, labeled with the same ground truth. Figure 4.7a shows the mean values
for all single predictions of the corresponding set for the 200 images. Error bars indicate the
corresponding standard deviations. One can see that the trained network is able to correctly
predict the contrast-detail curve of a given image. It is also obvious that the variability of the
network predictions increases with the increase in predicted threshold thickness values. Higher
curves represent devices with a low SNR and hence a low image quality.
In Figure 4.7b averages of 16 contrast detail curves, determined from a single image each, are

shown. As can be seen, this drastically reduces the variability of the resulting contrast-detail
curves. These Figures demonstrate that the trained network is able to correctly predict the
contrast-detail curve.
As mentioned earlier, the simulated images were augmented to include margin areas that do

not contain information for the contrast detectability and hence the trained network should be
able to estimate the contrast-detail curve robustly for different margins. Figure 4.8 displays
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(a) (b)

Figure 4.7: (a) Ground truth contrast-detail curves along with the predictions of the trained
neural network for 200 single images for each of the 4 different simulated test scenarios. Error
bars indicate standard deviations. (b) Averages of 16 predictions of the trained neural net. Figure
from Kretz et al. (2020).

(a) (b)

Figure 4.8: Single predictions of the threshold gold thickness (prediction) vs. ground truth values
obtained by applying the EUREF guideline procedure for the simulated test images with (a) no
additional margin and (b) with additional margin. Figure from Kretz et al. (2020).

the single predictions of the threshold gold thickness against the ground truth as obtained by
applying the EUREF guideline procedure for one of the simulated test sets.

Each test image is labeled with the same ground truth, whereas the predictions of single
CDMAM phantom images by the trained network vary. The variation increases with the higher
values and also with the higher threshold gold thickness. A high threshold gold thickness
corresponds to a low diameter. Figure 4.8a shows the results for test images without additional
margins, while the results displayed in Figure 4.8b are determined for test images with an
additional margin. As can be seen, the mean prediction is the same in both cases, while the
results from the test images with additional margin seem to have a bigger variation. Both
Figures show that the prediction clearly follows the ground truth.
Figure 4.9 visualizes similar results for the real test images. The predictions vary but are

distributed close to the ground truth indicated as black line.
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Figure 4.9: Single predictions of the threshold gold thickness (prediction) vs. ground truth values
obtained by applying the EUREF guideline procedure for the real test images. Figure from Kretz
et al. (2020).

4.3.4 Generalization

Rather than classifying an image as belonging to a predefined quality range, the suggested
approach was designed to regress the contrast-detail curve. If correctly learned, the trained
network should be able to correctly estimate a contrast-detail curve outside the range that
was contained in the training set. For this purpose, an independent generalization test set was
constructed with an exposure and a SNR chosen such that the corresponding ground truth
curve lies outside the training labels, see Figure 4.5. Figure 4.10 shows the single prediction
of the trained network along with the corresponding ground truth. The prediction is highly
accurate, which suggests that the trained network generalizes well. Note that the y-axis is
presented on a logarithmic scale when comparing the standard deviations with previously
shown results.

Figure 4.10: Predicted contrast-detail curve for an independent generalization test set. Ground
truth (red) and predictions by the trained network for 200 single images. Error bars indicate
standard errors. Figure from Kretz et al. (2020).
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4.3.5 Variability

So far, the EUREF guideline procedure was applied once for all images of one specific scenario
and then assigned to each image as the ground truth label individually. However, due to
different noise artifacts in each image, the contrast-detail curve as determined by the EUREF
guideline procedure shows a significant variability for images that are recorded under the same
conditions. By repeatedly drawing only 16 images out of 48 real images or 200 simulated images,
respectively, and applying the EUREF guideline procedure, the resulting contrast-detail curves
show variations as well. This means that there is a relevant uncertainty present in the ground
truth data. Figure 4.11 demonstrates the effect on the ground truth (red) for the 48 real
images. In blue, the single predictions of the trained neural network for the 24 real images of
the test set are shown that were not included in the training.
It can be seen that the variability of the single predictions of the trained network are similar to

the variability of the ground truth data, when determined by 16 images. In case of the smallest
diameter, our approach even shows a smaller variability than the reference method. This
highlights the high performance of the neural net which is able to estimate the contrast-detail
curve from single images of CDMAM phantoms with a precision similar to the current practice
which uses 16 images.

4.3.6 Discussion

Our virtual mammography was taken to simulate realistic images of the CDMAM phantom
under different simulation parameters. For these simulated images the the EUREF guideline
procedure was applied to generate ground truth contrast-detail curves. The images labeled
with the ground truth were then taken to train a DLO to directly estimate contrast-detail
curves.

Our results show that a CNN can be successfully trained to assess the image quality in
mammography by analyzing images of the CDMAM phantom. The presented approach was

Figure 4.11: Repeated application of the EUREF guidelines procedure for 16 randomly drawn
images from the set of 48 real images (red) with common ground truth and predictions of the
neural network for single images from the test set of 24 real images. Error bars indicate standard
uncertainties. Figure from Kretz et al. (2020).
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compared to the current practice in automatic image quality assessment, as outlined in the
EUREF guideline. Our trained neural network is able to correctly predict the contrast-detail
curve from images of the CDMAM phantom after application of random down-sampling. The
accuracy of our method was - for single images - as high as the accuracy of the current practice
with 16 images. Therefore, our method can significantly reduce the workload for quality control
measurements in mammography.

A high down-sampling rate as utilized in our approach tremendously reduces the information
that is present in the image. It was shown that by omitting 99% of the original image, a CNN
can still be trained successfully to correctly estimate a contrast-detail curve. Neither a human
observer, nor the methods that actually perform a detection task of single lesions in the image
are able to work with such a highly down-sampled set of images.

The contrast-detail curve visualizes the thickness for each diameters where the signature of
the corresponding lesion cannot be localized with prescribed probability. This means, that the
image is divided into cells where the prescribed accuracy is reached and cells where this is
not the case. Due to the regular structure of the CDMAM phantom the separation boundary
between detectable and non-detectable lesions should be a line or a curve. The relative position
of this boundary to the phantom would then be re-cast into the contrast-detail curve. Different
image quality levels that lead to different contrast-detail curves would alter the position of the
boundary curve in the image. This way, the results indicate, that contrast-detail curves can
be estimated in a simpler way by regressing a boundary to an image, rather than detecting
individual lesions in the image. Ideally, the trained network should be able to understand this
relation.

The EUREF guideline procedure as well as simple mathematical observers and even our
introduced segmentation observer require error-prone pre- or post-processing to estimate
image quality in terms of contrast-detail curves. First, the image needs to be segmented into
individual cells. Then, the positions of the lesions need to be known exactly and localized
precisely. The CNN, on the other hand, was applied directly to the down-sampled raw data
and learned to pre-process the images by itself, by accounting for mis-alignments or margins in
the image. No further, error-prone pre- or post-processing of the data has to be done. Solely
a random down-sampling was carried out to reduce the dimension of the input images. The
variability of contrast-detail curves obtained by our method from single images matched those
variations obtained by the EUREF guideline procedure using 16 images. This shows, that
we can derive contrast-detail curves with fewer images than the current guideline procedure.
That the trained neural network is able to estimate the contrast-detail curve with highly
down-sampled images further demonstrates, that the high resolution CDMAM phantom images
contain redundant information. Thus, one could think about designing a simpler phantom to
assess image quality from recorded images.

From the three developed methods, the DLO is the only one that allows one to determine
contrast-detail curves without further, error-prone pre- or post-processing. The parametric
approach, discussed in section 3.3.2, was found to reduce the workload for quality assurance
measurements because only 5 images are needed to determine contrast-detail curves with
the same accuracy as the EUREF guideline procedure using 16 images. The DLO can even
reduce the number of images that are required even further. As visualized in Figure 4.11,
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the DLO is able to predict contrast-detail curves from single images as accurate as the
guideline procedure using 16 images. In addition no further pre-processing or knowledge of
the lesion positions is required. On the other hand, our parametric approach allows us to
directly estimate an uncertainty of the prediction, which is not possible with our DLO, so far.
The semantic segmentation observer determines an overall quality score of the segmentation
performance, which could be used as a measure for image quality as well. The promising result
of our segmentation approach indicates its potential usefulness for conformity assessment in
mammography quality assurance if the question is whether a device produces sufficient image
quality or not. However, the computation of these scores requires an existing ground truth
mask that has to be constructed for real images.

Summing up, our DLO provides a proof of principle that deep learning can be successfully
applied for mammography image quality assessment. To implement this approach in a clinical
environment, the network should be rigorously trained and evaluated on a large set of real
images from different vendors and for many imaging conditions. This is beyond the scope of this
work but seems to be a worthwhile endeavor considering the good performance demonstrated
in this work.

The limitations observed were that the deep learning observer (DLO) was majorly trained
on simulated data and has to be rigorously tested on real data, before it can be applied in
clinical practice. The trained DLO predicts the contrast-detail curve from data not used for
training, such as data from a unknown device, accurate, but with a high variation. This
uncertainty can be reduced by including similar images in the training data and retraining
the model. Retraining the model on different training data will slightly effect its prediction
behavior. However, this might challenge the use of the DLO for constancy tests that measures
the performance of specific devices over time.

4.4 Summary

In this chapter two different methods are presented to tackle Objective 4 of this thesis. Both of
them follow different strategies. First, deep learning is used to segment the image into different
classes. By doing so, the network can learn to differentiate between lesion pixels and other
pixels. After smoothing the image with a Gaussian kernel, this works with sufficient success.
However, the result obtained in this way cannot be translated into an assessment of image
quality in a direct way. First of all, if image quality is assessed in terms of contrast-detail
curves, the application of post-processing is required. Scores for each single cell have to be
computed to identify those cells, where the trained network cannot detect the lesion pixels
with sufficient accuracy. Besides, the computation of semantic segmentation scores requires
the knowledge of a ground truth mask. It follows that the uncertainty associated with the
production of the CDMAM phantom directly influences the accuracy of the result.

To circumvent this, an approach was presented where the images of the CDMAM
phantom were down-sampled and directly mapped to the corresponding contrast-detail curves.
Incremental learning was applied to fine-tune a regression CNN and to extend the training
data to better generalize the net. The trained network was found to estimate the image
quality, based on single images only, as accurate as the reference method, the EUREF guideline
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procedure. Further, no cumbersome pre-processing is needed and the translation into the
contrast-detail curve can be done without further knowledge of the phantom. As a result, the
network does not perform a detection of the individual lesions, but separates the phantom
image into a region where lesions can be detected and a region where lesions cannot be detected.
Therefore, the high resolution images of the CDMAM phantom contain a lot of redundant
information. Therefore, a sparse sampling approach as the random down-sampling that was
used here can be used without losing too much information.

The presented approach was mainly trained and extensively tested on simulated images
of the CDMAM phantom. Real images were included in the training set. For testing on real
images a subset of the real images that were not taken for training was used. However, they
were recorded with the same acquisition parameters on the same device as the real training
images. Yet, the success of training a neural network to estimate the contrast-detail curve
directly from single images is a proof of principle that using neural nets is advantageous for
the task of image quality assessment in mammography. To apply this procedure in a clinical
environment, a huge database of real images from different vendors and recorded with many
different acquisition parameters would be required. Our results suggest that this would be a
worth-wile endeavor which, however, is outside the scope of this work.

Despite the great success of the prediction of contrast-detail curves with deep learning,
the results presented in this chapter provide point estimates for the values of interest. The
variability of predictions was assessed by predicting a set of images and calculating for the
mean and the variance. This gives a first rough estimate for the underlying uncertainty,
while it would be a great advantage if the contrast-detail curve could be predicted along
with an estimation of the associated uncertainty. This will be discussed in the next chapter.
Without uncertainty estimation, conformity assessment cannot be carried out and meaningful
comparisons of different results are not possible.
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5
Explainability and Uncertainty of the

Deep Learning Observer

Machine learning is a powerful tool, which in combination with high performance hardware
allows one to develop algorithms that learn to solve specific tasks given large data sets.
However, in critical applications or when human interaction is required it is often essential
to understand why specific predictions are made and how trustworthy the model predictions
are. Understanding model predictions requires an opening of their black-box nature, which
can be done with interpretability techniques, such as explainability. Explainability methods
aim to provide an explanation why the model ended up with the specific result. On the other
hand, assessing the model confidence can be achieved by an analysis of the model uncertainty.
The model confidence then expresses how trustworthy the predictions are, which is essential
for conformity assessment. Therefore, this chapter is dedicated to these two important fields:
explainability and uncertainty. In particular our contribution is to estimate the uncertainty and
to analyze the explainability of the developed deep learning observer introduced in chapter 4.

Nowadays, machine learning applications perform as good as humans or better, in very
different domains like object detection, speech recognition, cancer classification and many more.
In many fields, artificial expert systems can be designed that work optimal in one specific
task. The power of humans, on the other hand, is their ability to generalize their knowledge to
various tasks instead of only one. So far, an optimal universal artificial intelligence, generalizing
as good as the human brain, is not existing. However, if humans take a decision they are more
or less incapable of objectively quantifying the underlying uncertainty. The confidence into a
human decision is mainly judged based on their experience and their instinct. Mathematical
models, on the other hand, allow an objective calculation or at least approximation of the
underlying uncertainty of the decisions.

Machine learning models, in particular deep learning models, are often developed as black-
box models. Given an input, they yield an output, without stating what particularly caused the
model to end up with this result. This makes it challenging to understand model predictions
and to identify their learning strategy. Lately, increasing interest initiated research focusing on
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interpretability of machine learning models. In addition, assessing a model’s uncertainty allows
one to determine how trustworthy its results are. Making decisions that can be interpreted
along with quantifying the uncertainty of the decision is the key for the humans to understand
and trust in machine learning applications. Knowing why the model predicts an output for a
given input can be further used to resolve the learning strategy and to demonstrate successful
training. This enables one to discover novel learning strategies to optimally solve certain tasks
from a trained model.

5.1 Interpretability and Explainability

Artificial intelligence is more and more transforming from fiction to reality. The availability
of data and computational power allows one to train algorithms to act as expert systems in
many fields and applications (Amodei et al., 2016; He et al., 2016; Collobert and Weston,
2008). However, several questions arise on how artificial intelligence should interact with
the human. Should artificial intelligence be designed and applied as stand-alone method or
should all decisions be carried out with a human-in-the-loop, especially for safety critical
applications? This further initiates ethical discussions regarding the concept of responsibility:
who is responsible for a machine decision failure? For human-in-the-loop procedures, which by
definition integrates human interaction, it is necessary to make interpretable predictions and
assess how much the humans can rely on them.

To sum up, there is a vast demand for transparent machine learning models, which initiated
the development of concepts to specify the interpretability of machine learning. A strict
mathematical definition for interpretability does not exist. It can be described as the degree to
which a human can understand the cause of a decision (Miller, 2019). The black box nature of
machine learning models is replaced with a trail of transparent decisions, allowing a human
user to understand how predictions and decisions are made (Samek, 2019).

The literature divides interpretability into a generalized description of how a model yields a
decision and explainability (Molnar, 2019). Explainability aims to give a plausible explanation
for one specific input and the corresponding model prediction (Samek et al., 2020). In this
way, an explanation is the answer to a why-question: why did the model predict this given
this input (Molnar, 2019)?

Interpretability opens the black box nature of machine learning models by allowing one
to inspect the model and its predictions. Its techniques were successfully used to gain new
insights into complex chemical processes (Schütt et al., 2017). The same can also be used
to learn from machines. Interpretability and explainability are growing fields of research in
machine learning. In this work, we focus on explainability. Several state-of-the-art methods
will be reviewed briefly, which aim at explaining model predictions. The findings of this
section are applied to the deep learning observer (DLO), that was introduced in chapter 4,
to understand its behavior. There, a CNN was trained on a large set of simulated CDMAM
phantom images as well as on a number of real images to estimate a contrast-detail curve.
Images were sub-sampled before they were fed into the neural net. The DLO was found to
accurately predict the contrast-detail curve even for images whose ground truth contrast-detail
curve lies out of the range of curves used for training. In this section, it is investigated why
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our proposed DLO yields a corresponding contrast-detail curve for a certain input image. In
particular, our aim is to identify whether there are pixels in the input image that influence the
estimated contrast-detail curves significantly more than others.

5.1.1 Related Work

As previously described, several methods exist to open the black box machine learning model
in order to understand the network’s behavior. They can be roughly divided into two different
approaches: explanation of the internal information of a trained network and explanation of
the processing of an external input (Gilpin et al., 2018). An internal explanation aims to
demonstrate the representation of the task in the trained net. For example, if a neural network
was trained to classify images of dogs and cats into the corresponding class, the internal
explanation aims to illustrate what the network "thinks" is characteristic for the class cat or
dog. On the other hand, the external explanation would visualize why the network classifies a
given input as cat or dog. Both approaches differ fundamentally and the interested reader
is referred to the dedicated literature for further information (e.g. Montavon et al. (2018);
Samek (2019); Lapuschkin et al. (2019); Bojarski et al. (2017); Taylor (2006)). Explainability
can be interpreted as sensitivity analysis that identifies salient features (Saltelli et al., 2000;
Baehrens et al., 2010). These salient features can be traced back to the input space and thus
giving insight about the image features that are most relevant for the predicted output. In the
literature, the sensitivity analysis for deep learning is carried out using different approaches.
A salience map for the input image can be obtained by omitting parts of the image (occlusion
sensitivity (Zeiler and Fergus, 2014)) and record the effect on the output. A further approach
estimates the gradients with respect to the input, for determining salient features in the image
(gradient sensitivity (Simonyan et al., 2013; Baehrens et al., 2010)). Lately, another approach,
known as layerwise relevance propagation (LRP) (Bach et al., 2015), was developed that
determines a relevance score for each feature and defines a set of rules to propagate these
features back to the input. In the following section, the three approaches occlusion sensitivity,
gradient sensitivity and LRP will be discussed in detail.

5.1.1.1 Occlusion Sensitivity

The basic idea of occlusion sensitivity is to record the influence of different parts of the image
on the output of the model (Zeiler and Fergus, 2014). To do so, some parts of the image
are modified (set to 0) and the resulting image is fed into the model. The deviation of the
output of the modified picture and the output of the full image is then taken as the salience of
the modified region on the output. Occluding different regions of the image and combining
the determined saliences into a single map results in a so-called heatmap that visualizes how
important individual regions are for the determination of the input. The size of the occluded
regions is not predetermined so that even the influence of single pixels on the predicted output
can be determined.

Occlusion sensitivity was successfully used to localize abnormalities in chest computer
tomography images after classifying an image as abnormal (Islam et al., 2017).
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5.1.1.2 Gradient Sensitivity

Occlusion sensitivity omits parts of the image to determine their influence on the output. In
contrast, Simonyan et al. (2013); Baehrens et al. (2010) suggest a gradient method to explain
neural network decisions by calculating the derivative of the class output with respect to the
input. This approach derives either an internal or an external explanation, i.e the characteristic
image that maximizes the corresponding class score or the regions of the input image that are
most relevant for the output, respectively.

Given a class c and a scoring for this class Sc(X) for an input X0 they aim to rank the
elements of X according to their relevance. With the assumption that the scoring function
can be approximated by its first order Taylor expansion

Sc(X) ≈ Sc(X0) + ∂Sc(X)
∂X

⃓⃓⃓⃓T
X0

× (X −X0)

the change of the scoring function can be expressed in terms of the gradient of the scoring
function with respect to the input at the point X0. Note, that X can either denote any feature
within the network or the input image. The corresponding gradients can be determined using
standard back-propagation. For a gray-scale image with dimensions m× n the corresponding
saliency map M∈ Rm×n can be determined as

Mij =

⃓⃓⃓⃓
⃓⃓
(︄
∂Sc(X)
∂X

⃓⃓⃓⃓T
X0

)︄
h(i,j)

⃓⃓⃓⃓
⃓⃓

where h(i, j) is a mapping from images pixels i and j to the corresponding index of the gradient
vector.

5.1.1.3 Layerwise Relevance Propagation

Another way of determining the influence of each pixel on the output is to use pixel-wise
decomposition. Following this general idea, the layerwise relevance propagation (LRP) was
developed by Bach et al. (2015) and evaluated originally for classification problems. Again,
it is assumed that a classifier learns a real-valued mapping from the input image space to
the output Sc : Rn×m ↦→ R1, where the index c denotes one particular class. In this scenario
Sc(x) > 0 denotes the confidence of the classifier that the input image x belongs to class c.
The network decision Sc(x) for the input x can then be decomposed as

Sc(x) ≈
∑︂
i,j

Rh(i,j),

where Rh(i,j) denotes the relevance of each pixel xij given by the mapping h(i, j) that maps the
matrix component of the image with the vector index of the relevance scores. Rh(i,j) < 0 can
be interpreted as the evidence against the presence of a structure, while Rh(i,j) > 0 indicates a
high relevance of the image region for the classification output.

More precisely, Bach et al. (2015) define the LRP as a layer-wise decomposition of any
hierarchical architecture. The output of each layer l is interpreted as a feature map that
can be represented as a feature vector. The LRP then determines a relevance R(l) for the
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corresponding feature vector in layer l and by doing so propagates the relevance scores back to
the input. The basic assumption is that the sum of all relevances in each layer is conserved
through the architecture:

Sc(x) = · · · =
∑︂

k

R
(l+1)
k =

∑︂
k

R
(l)
k = · · · =

∑︂
i,j

R
(1)
h(i,j) ,

where R(1)
h(i,j) denotes the relevance vector of the pixels in the input image.

This way, the class score is back-propagated through the architecture to compute a relevance
score for the input. This result can then be translated into a heatmap that visualizes which
parts of the image contribute most for particular class score Sc(x) of an input image x.

Once the propagation rule is defined, a set of rules is necessary of how to compute the
relevance vector of a corresponding feature vector. Assuming a fully connected layer, the
output of neuron k in layer l can be obtained as (cf. chapter 2)

αl
k = σ

∑︂
j

wl
jkα

l−1
j + bl

k

 ,

where αl−1
j denotes the output of neuron j of the previous layer l − 1 and wl

jk and bl
k denote

the weights and bias corresponding to the neuron k, respectively. For this case, one now wants
to find out the contribution Rl−1

j of the neuron j for the relevance scores Rl
k in layer l. One

possible rule that has shown good performance in practice is the so called αβ-rule (Bach et al.,
2015):

Rl−1
j =

∑︂
k

α αl−1
j

(︂
wl

jk

)︂+

∑︁
j α

l−1
j

(︂
wl

jk

)︂+ − β
αl−1

j

(︂
wl

jk

)︂−

∑︁
j α

l−1
j

(︂
wl

jk

)︂−

Rl
k ,

where ()+ and ()− denote the positive and negative weights respectively and α and β are
hyper-parameters with the constraint α− β = 1 and β ≥ 0 (Bach et al., 2015).

The relevance Rl−1
j is computed by weighting all relevances Rl

k with the weight wl
jk between

neuron j in layer l − 1 and neuron k in layer l relative to the sum of all weights.
Proper LRP propagation rules have been defined for convolution layers, pooling layers

and activation functions (Bach et al., 2015) and shown great success to determine robust
explanations. Exemplary applications comprise the explanation of classification results for
classic image classification (e.g. Bach et al. (2015); Samek et al. (2016); Lapuschkin et al.
(2019)), in medical imaging (Sturm et al., 2016), text classification (Arras et al., 2017) and many
more. Current research extends LRP to other layers, such as batch-normalization (Montavon
et al., 2018; Samek, 2019; Binder et al., 2016).

5.1.2 Proposed Approach

It was shown that salient regions in the input image can be extracted for a classification
with different approaches. The LRP calculates a relevance score for each feature and back-
propagates them through the model to the input space. This method requires the definition of
propagation rules for the different layer types of a neural network that are available for many
common layer types including convolutional, pooling and fully connected layers. However, they
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have not fully defined proper propagation rules for other layers, such as batch-normalization.
As mentioned in chapter 2, local re-normalization layers are recommended to re-normalize the
features of each layer in the inner network structure.

The gradient method, on the other hand, requires the computation of the gradients with
respect to the input features. In other words, the Jacobian of the network parameters needs to
be determined. This can be done using the standard back-propagation algorithm explained in
chapter 2. However, computing every parameter gradient with respect to the input becomes
computational challenging for neural networks with a high number of parameters. If the image
dimension is significantly smaller than the number of learnable parameters of the network,
it can be more efficient to change individual pixels and compute the forward pass with the
perturbed images. Changing each pixel of our down-sampled images of size 250× 250 pixels
requires the network evaluation of 62, 500 images, which was found to be faster than deriving
the gradients of all ≈ 63 million parameters with respect to the input image. Therefore,
occlusion sensitivity as well as a novel proposed approach are favorable in this particular
scenario.

Instead of calculating the true gradients, their approximation with a difference quotient is
used to determine sensitivity maps. Similar to occlusion sensitivity, this novel approach only
requires to change the intensity of individual Pixels and to report the corresponding change
on the contrast-detail curve. Different from occlusion sensitivity the relative change of the
pixel value is considered in our approach.

In contrast to classification problems, the determination of a contrast-detail curve is a
regression of twelve points ψ(x, θ) : Rn×m ↦→ Rk with k = 12. Rather than being interested in
the relative change of one class score, the goal is to determine the contribution to the output as
a whole. For small changes of single pixels in the input the true gradient can be approximated
as

∂ψ(x, θ)
∂xij

≈
1
k

∑︁k
i=1

(︂
ψ(i)(x+ h, θ)− ψ(i)(x, θ)

)︂2

∥h∥
,

where x ∈ Rn×m denotes the multidimensional input, xij denotes the pixel with indices ij and
h ∈ Rn×m is a matrix that contains one small change hij at indices ij and zero otherwise.
The salience map can then be determined in full resolution of the input image by changing
each single pixel individually and combining the approximate gradients on the corresponding
position in the salience matrix.

5.1.3 Results

In chapter 4, the DLO was introduced as a tool to estimate contrast-detail curves from single
images of the CDMAM phantom, without error-prone pre- or post-processing. Evaluating
the accuracy in terms of the root-mean-squared error and the generalization performance for
images, whose ground truth contrast-detail curves lie outside all ground truth samples that
were used to train the neural network, demonstrates its usability for the assessment of image
quality in mammography. However, the model remained a black box. Here, it is explored
how the black box nature can be opened to understand why this observer predicts a certain
contrast-detail curve for a specific input image. The input image is part of the real test data
set and shown in Figure 5.1.
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Figure 5.1: Real image of a CDMAM phantom on a logarithmic scale after sub-sampling. The
white area marks the margin, where the pixel intensity is much higher than in the actual phantom
region.

The image consists of a region that shows the actual phantom and one that shows the margin.
This margin appears naturally when the detector size is larger than the actual phantom size.
As a consequence, the x-rays in the margin region reach the detector without attenuation and
hence, the pixel intensities are much higher here.

Different explainability methods were applied to this input image. The DLO consist
of around 63 million network parameters (cf. chapter 4), which made it computationally
inefficient to utilize the gradient sensitivity. The LRP is a promising tool that produces robust
explanations in image classification problems. However, the DLO utilizes batch-normalization
layers in the convolutional blocks, as shown in Table 4.7. These batch-normalization layers
pose difficulties to the LRP. In private communication with the developers1, LRP was applied
ignoring the batch-normalization layers as a first approach. This results in more or less uniform
heatmaps, as shown in Figure 5.3a. Batch-normalization performs a local re-scaling of features.
Ignoring these re-normalizations seems to introduce an averaging with the consequence that
all relevances become equal. In addition a LRP propagation rule for batch-normalization
layers developed by Binder et al. (2016) was used. However, also in this case the LRP did not
produce the expected result.

On the other hand, the batch-normalization layers were an essential part of the DLO,
ensuring a stable convergence. Removing the batch-normalization layers from the original
architecture in Table 4.7 and retraining on the training data caused a significant drop of the
accuracy. It follows that the trained network estimates contrast-detail curves that are not
useful, as shown in Figure 5.2.
Figure 5.2a shows an example of the contrast-detail curve estimation of the full DLO together

with the corresponding ground truth. As it can be seen, the prediction follows the ground
truth closely. Figure 5.2b shows the predicted contrast-detail curve after removing the batch-
normalization layers from the original architecture and retraining the resulting network on the
training data. Applying the LRP to this network, on the other hand, produced heatmaps that

1G. Montavon, Technical University Berlin
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(a) (b)

Figure 5.2: Ground truth contrast-detail curves (red) and estimated contrast-detail curves (blue)
obtained by (a) the full DLO and (b) the DLO after removing the batch-normalization layers.

were no longer uniform, as visualized in Figure 5.3b. The yellow regions indicate pixels that
were highly relevant for the prediction of the neural net. As it can be seen, the LRP sensitivity
now highlights the actual area of the phantom, especially the top part of the phantom. So,
removing the batch-normalizations resulted in better explanations obtained by the LRP, but
the resulting model is not suitable to accurately predict contrast-detail curves.

Neither occlusion sensitivity, nor our proposed approach depend on the architecture of the
network and hence, can be used for the original architecture of the DLO. Both methods are
applied by perturbing the input image and recording the change in the output. Occlusion
sensitivity perturbs an image by zeroing individual pixels or image regions. The sensitivity is
then computed as the absolute deviation of the resulting prediction compared to the prediction
of the original image. The amount of pixel change is not considered in this approach. Applying
the occlusion sensitivity for an input test image (cf. Figure 5.1) results in the heatmap shown
in Figure 5.3c. The occlusion sensitivity actually highlights the pixels in the margin area,
which should not be the case, since the margin area does not contain relevant information for
the image quality.

Our proposed explanation approach, on the other hand, perturbs an image by only slightly
changing its intensity. Furthermore, for each perturbed pixel, the absolute deviation of the
corresponding prediction to the original prediction is normalized to the degree of perturbation.
Figure 5.3d shows the resulting sensitivity image for the real test image from Figure 5.1. The
yellow regions, which indicate pixels of high relevance are concentrated in the region of the
phantom, especially in the center of the phantom. The white areas in the input image that
correspond to the margin are not relevant to the determination of contrast-detail curves.

This indicates, that the trained DLO successfully learned to ignore the margin of the image
and estimates the contrast-detail curves based on the actual phantom image. Furthermore,
Figure 5.3d gives the impression that not all pixels in the phantom are of the same relevance
for the determination of the contrast-detail curve. Especially a horizontal band in the middle
of the phantom image and a spot in the right side of the phantom image were responsible for
the determination of contrast-detail curves. This horizontal band frames the diameter and
thickness combinations of the gold discs in the CDMAM phantom and hence those cells, that
actually represent the information that is given in the contrast-detail curve of this particular
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(a) (b)

(c) (d)

Figure 5.3: Typical normalized sensitivity maps for the input image from Figure 5.1 determined
with (a) LRP with batch-normalization in the architecture, (b) LRP after removing all batch-
normalization layers from the DLO, (c) occlusion sensitivity and (d) our proposed approach. Yellow
regions mark pixels with higher relevance for the neural network’s prediction.

image.

5.1.4 Discussion

In chapter 4 our DLO was trained to estimate contrast-detail curves from single images
of the CDMAM phantom. The results show that this approach determines contrast-detail
curves estimated from single images of comparable accuracy as those obtained by the current
recommended software in the EUREF guideline using 16 images. Classical automatic procedures
require error prone pre-processing of the raw images. The DLO, on the other hand, utilized
solely random sub-sampling of the images before a contrast-detail curve is estimated.

Several explanation methods were employed to understand how the observer can predict
accurate contrast-detail curves, even when only 1% of the original image is used (cf.
section 4.3.1.1). Explanation methods are used to derive heatmaps that highlight regions in
the image which contributed most to the prediction of the neural net. The LRP approach,
that demonstrated its applicability in many fields (e.g. Samek et al. (2016); Sturm et al.
(2016); Arras et al. (2017)), failed to determine meaningful heatmaps in our case since the
architecture of our neural network contained batch-normalization layers, which pose difficulties
to the application of LRP. Neither ignoring the batch-normalization layers nor applying a
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propagation rule suggested by Binder et al. (2016) produced meaningful heatmaps for our DLO.
The batch-normalization layers are essential for the performance of our deep leaning observer.
Removing them from the architecture and re-training the resulting net on the training data
caused a significant drop of the accuracy. Applying the LRP to the architecture without
batch-normalization layers results in sensitivity maps that actually highlight the phantom
region and hence, produces reasonable results.

Occlusion sensitivity and the proposed approach are independent of the network architecture.
Sensitivity maps are obtained by perturbing an input image, applying the network and
comparing the resulting prediction with the baseline prediction. As described in chapter 4,
an image normalization is carried out that ultimately shifts all pixel intensities. Images are
normalized by subtracting the pixel intensity of the background to the phantom region. As a
consequence, a pixel intensity of zero is linked to the background of the phantom. Occlusion
sensitivity perturbs an image by zeroing individual pixels or regions (Zeiler and Fergus, 2014).
This means, that if a pixel in the margin are is zeroed, it then appears with the same intensity
as the background in the phantom region. This affects the prediction of the neural net.
Furthermore, the pixels in the margin area have much higher intensities. So, if they are set to
zero, their intensity changes a lot more than pixels that belong to the phantom. This change
is not considered in the sensitivity maps. As a result, the occlusion sensitivity maps actually
highlight the margin area.

Our proposed approach aims to approximate the gradients of the output with respect to
the input pixels through the difference quotient. In contrast to gradient sensitivity (Simonyan
et al., 2013), we determine a sensitivity map without computing the gradients for every network
parameter. Each pixel intensity is only slightly perturbed. The resulting sensitivity maps
further consider the relative intensity change of each pixel. In contrast to standard occlusion
sensitivity analysis, margin pixels are not altered so much that their pixel intensity suddenly
appears to be the same as the background in the phantom region. The resulting heatmaps
demonstrate that the trained DLO determines contrast-detail curves based on those pixels that
belong to the actual phantom. Pixels in the margin area which contain no relevant information
for the determination of the contrast-detail curve are ignored successfully. These margin areas
were included in the images to yield a more robust and generalized data set as described in
section 4.3.1.2. They appear naturally in real images when the detector area is larger than the
phantom area. To be more representative, our simulated images were therefore augmented
with margin areas of different sizes, including margins that are beyond the clinical practice.
For all test images (simulated and real), our sensitivity maps show no influence of the margin
pixels for the predicted contrast-detail curves. This indicates, the network successfully learned
that the relevant information is contained solely in the pixels of the actual phantom.

Furthermore, our results show a horizontal band in our sensitivity maps that represents
the part of the image that highly influences the resulting contrast-detail curve. This horizontal
band is located in the middle of the CDMAM phantom. Exactly this area includes those
gold discs that define the corresponding contrast-detail curve. Especially the small diameters
(right part of the image) are of greater importance. It appears that the deviation of the
predicted contrast-detail curve is bigger for smaller diameters and thus, their contribution to
the root-mean-squared error is higher than those of the bigger diameters. Therefore, a change
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in the region of the small diameters results in higher deviations of the estimated contrast-detail
curve, leading to higher relevance scores in our computed sensitivity map. A higher variability
of the contrast-detail curves for smaller diameters is confirmed by Mackenzie et al. (2017).

The resulting sensitivity maps further confirm the interpretation of contrast-detail curve
estimation in the context of mammography image quality assessment as mentioned in the
discussion of chapter 4. The contrast-detail curve itself visualizes the boundary where an
employed observer does not reach the required accuracy to detect the gold disc in the
corresponding CDMAM cell. In other words, it separates the CDMAM phantom into cells
where the observer succeeds in the location task and cells where it does not reach the required
accuracy. Due to the regular structure of the CDMAM phantom, the separation between these
cells is expected to be a line or a low order curve. Different image qualities would then result
in a vertical shift of this separation boundary. Assigning such a separation boundary to an
image is a totally different task than to locally check whether lesions can be detected with
prescribed accuracy. Especially for the assignment of a separation boundary, the CDMAM
phantom contains a lot of redundant information This might explain why the DLO can still
accurately assess the contrast-detail curve even though the image was highly down-sampled.

The explanation results that were shown in this chapter emphasize this interpretation
of contrast-detail curve determination by visualizing the horizontal band as the region that
includes exactly this separation boundary. This is important to understand the neural network’s
behavior and it further confirms that a sparse sampling of the full image does not only save
computational power but can be very helpful for successfully training the neural network
and focusing on the regression of such boundaries. This way, our DLO "understood" that for
the derivation of contrast-detail curves it does not have to carry out a localization task for
individual lesions but can solve the task with the same accuracy by regressing a separation
boundary to the image that is then re-cast into a contrast-detail curve.
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5.2 Uncertainty

An explanation helps to understand particular predictions of a neural network, but does not
allow us to assess how reliable the model predictions are. The uncertainty of a prediction is a
crucial parameter to measure such a model reliability that once determined, quantifies how
trustworthy the model decision is. An estimation of the associated uncertainty is especially
important to make reliable decisions for conformity assessment (Pendrill, 2014; Loftus and
Giudice, 2014). Approving mammography devices for screening purpose requires to check
whether they produce sufficient image quality. Indeed, this can be seen as a conformity
assessment. Therefore, this section is dedicated to the assessment of the measurement
uncertainty for our developed DLO.

Broadly, deep learning is assumed to yield accurate predictions. However, quantifying the
uncertainty of a model output is highly desired especially in safety critical applications (Kendall
and Gal, 2017). Two notorious examples demonstrate the fatality of ignoring uncertainties of
the prediction and assuming neural network predictions as accurate. In 2015, the Google photo
app classified two African Americans as gorillas, raising a discussion about racial discrimination
in machine learning (Guynn, 2015). In May 2016, the autopilot of a Tesla model S falsely
classified the trailer of a truck as bright sky, resulting in a deadly crash (NHTSA, 2017).
If those algorithms would have considered uncertainties of the prediction along with their
predictions, the systems may have been able to yield better decisions.

Bayesian deep learning (cf. section 2.2.3) lends itself to model predictions along with
associated uncertainties (Neal, 1993). In Bayesian deep learning, which was already proposed
in the early 1990’s (e.g. (MacKay, 1992)), the parameters of the neural network are modeled
as random variables. In the forward propagation of an input, each network parameter is
sampled from a posterior distribution. As mentioned in section 2.2.3, in many scenarios the
true posterior for the model parameters cannot be computed and needs to be approximated.
However, once a solid approximation is found, Bayesian inference can be used to model
predictions along with their uncertainty.

But what exactly are uncertainties? In model-based decisions, system uncertainty occurs
naturally because of imperfect or incomplete data, as well as because of stochastic fluctuations
in the data (Walker et al., 2003). Depending on their properties, uncertainties are commonly
split into reducible (epistemic) and irreducible (aleatoric) uncertainties (Der Kiureghian and
Ditlevsen, 2009). Aleatoric uncertainties capture noise that is inherent in the data (Hüllermeier
and Waegeman, 2019). They can originate from measurement imprecision of sensors or
motion noise. Therefore, aleatoric noise cannot be reduced by including more data. Epistemic
uncertainty, on the other hand, describes reducible noise that originates from a lack of
knowledge, such as imperfect choice of a model class or insufficient amount of data (Hüllermeier
and Waegeman, 2019). Accordingly, the epistemic uncertainty can be reduced by adding more
information about the correct class of model and by adding more training data.
Errors can be further divided into homoscedastic and heteroscedastic errors. Homoscedasticity
describes the scenario where every input sample contains a constant variance, whereas, in
heteroscedasticity the error depends on the input, different inputs occur with different variance.
Figure 5.4 demonstrates these two different types of errors for a simple linear function. The

92



5.2 Uncertainty

(a) (b)

Figure 5.4: Example to demonstrate the different types of errors for a linear function. In the
homoscedastic case (a) the data samples are distributed around the mean with constant variance,
while in the heteroscedatic case (b) the variance increases for increasing values x.

homoscedastic case in Figure 5.4a shows a constant variance for all values x, whereas the
variance in the heteroscedastic case, depicted in Figure 5.4b, increases with increasing values
of x.

In a typical setting, it is assumed that the data consists of combinations of inputs and
corresponding labels D = {(x1, y1) , ..., (xN , yN )}. Furthermore, there is an underlying function
f that maps every training input xi to the corresponding output yi:

yi = f (xi) + ϵi , (5.1)

where ϵi ∼ N
(︁
0, σ2

i

)︁
describes the observation noise with variance σ2

i .
Deep learning now tries to learn a model ψ (x, θ) to closely approximate the data generating

function f(x) from the training data (cf. equation (5.1)). However, if the model class is chosen
imperfectly, even the best trained model ψ(opt) (x, θ) is not exact. The difference between the
best model and the actual function f(x) is often referred to as model error (Hüllermeier and
Waegeman, 2019). Furthermore, because of insufficient data, the model that is actually learned
is not the optimal model. An approximation error remains. Figure 5.5 demonstrates these
uncertainties for an ensemble example.
There remains a model error between the best model ψ(opt) (x, θ) and the actual function
f(x). Often, an improved model can be estimated as the mean of several individual
models (Hüllermeier and Waegeman, 2019).

Another way to categorize errors are bias and variance. A bias occurs from wrong
assumptions made about the model, or from systematic errors in its parameters caused, e.g., by
the algorithm used for training. The variance, on the other hand, reflects the uncertainty in the
estimated model due to the propagation of random errors in the training data to the estimated
model parameters. The bias error usually decreases with increasing model complexity, while
at the same time the variance increases. This is also known as bias-variance dilemma (Geman
et al., 1992).

Commonly, models are designed that aim to approximate f(xi) and to estimate the
variance σ2

i of the observation noise ϵi in equation (5.1) simultaneously (Kendall and Gal,
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Figure 5.5: Schematic for the demonstration of approximation and model error for an ensemble
approach. A model is supposed to approximate a data generating function f(x). Even for the
best model, an error remains. In addition, it cannot be perfectly approximated, thus, inducing
the approximation error. The model error can be reduced by more information, whereas, the
approximation error can be reduced by more training data.

2017). Therefore, the model output combines a predictive mean and a predictive variance

ψ (xi, θ) =
(︄
µ̂i

ŝi

)︄
, (5.2)

where µ̂i approximates f(x) and ŝi = log(σ̂2
i ) is the logarithm of the predictive variance.

Note that since for the estimated variance σ̂2
i > 0 has to be true, one commonly models the

logarithmic variance ŝi with the neural network (Gal, 2016).
The prediction is then given as

ŷi = µ̂i .

In the probabilistic interpretation, a proper learning objective is given as

LMC (θ) = 1
M

M∑︂
m=1
− log (p (yi | xi, θ)) + 1

N
KL [qw(θ)∥p(θ)] ,

where M denotes the size of a mini-batch, as demonstrated in equation 2.8 in section 2.2.3.
Assuming a Gaussian likelihood, the negative log-likelihood for the neural network is given as:

− log (p (yi | xiθ)) = 1
2 log (2π) + 1

2 ŝi + 1
2e

−ŝi (yi − µi)2 . (5.3)

This procedure, introduced by Kendall and Gal (2017) determines the predictive variance ŝi as
loss attenuation. Along with an expression of the Kullback-Leibler divergence in the training
objective, it enables one to train inference models that approximate the posterior distribution
of the model parameters and hence, completely depict the model uncertainty.

Mammography image quality assessment is done by regressing a contrast-detail curve that
depicts the threshold gold thickness for 12 gold disc diameters of the CDMAM phantom, such
that an employed observer can detect the lesion with prescribed accuracy. The estimated
contrast-detail curve is compared with a limit curve. If the estimated curve is below the limit
curve, the device is approved to produce images of sufficient quality. For such a conformity
assessment, the estimation of measurement uncertainty is crucial (Pendrill, 2014). The following
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section provides a short overview of existing methods to estimate the uncertainties of the
prediction for deep learning models.

5.2.1 Related Work

A robust estimate of the uncertainty of the prediction combines the uncertainty that is inherent
in the data with the uncertainty of the estimation of the model parameters. One way to
achieve uncertainties of the prediction is by applying Bayesian neural networks. As mentioned
in the fundamentals section 2.2.3, the goal of Bayesian deep learning is to determine the
posterior distributions of the model parameters to determine uncertainties of predictions. As
discussed there, a direct calculation of the true posterior distribution is intractable in most
applications, leading to the application of approximation methods. Several methods have been
proposed in the literature, including Laplace approximations (MacKay, 1992) and Hamiltonian
methods (Springenberg et al., 2016). In practice, however, Bayesian neural networks are
harder to train, and the quality of the uncertainty of the prediction depends critically on the
choice of prior distributions for the parameters as well as on approximation errors (Rasmussen
and Quinonero-Candela, 2005). Solutions that modify existing models slightly and still
enable a robust determination of uncertainties of the prediction are highly desired in practice.
Recent developments show that dropout has an interpretation as sampling from the predictive
distribution of a model and hence, as an approximate inference method (Gal and Ghahramani,
2016). Dropout was originally introduced to prevent overfitting by randomly dropping units
from the neural network in the training procedure (Hinton et al., 2012; Srivastava et al., 2014).
In its simplest form, dropout samples a mask z drawn from a Bernoulli distribution and
multiplies this mask to the hidden activations. If p denotes the probability that a weight is
dropped, then the corresponding Bernoulli distribution produces 0 with probability p and 1
with probability 1− p. A sample from the Bernoulli distribution has an expectation value of
1− p. Therefore the dropout mask is re-scaled by 1/(1− p).

Using dropout further in the prediction phase can be interpreted as individual samples
from an approximate variational posterior predictive distribution and hence, can be taken
to determine the uncertainties of the prediction (Gal and Ghahramani, 2016). The author
of this study further demonstrates that, as a consequence, for dropout distributions the
Kullback-Leibler divergence in the Bayesian deep learning objective can then be approximated
as:

1
N
KL [qΦ (θ) ∥p (θ)] = 1

N

L∑︂
l=1

KL [qRl
(Wl) ∥p (Wl)] (5.4)

KL [qRl
(Wl) ∥p (Wl)] ∝

δ2

2 ∥R∥
2 −KH(p) , (5.5)

where R denotes the product of weight matrix W and dropout mask z, L denotes the number
of Layers, K is the dimension of the layer, δ denotes a typical length-scale and H(p) is the
entropy of the random variable given as

H(p) = −p log p− (1− p) log(1− p) .
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The Kullback-Leibler divergence acts as a regularization and combines standard L2 regular-
ization (Krogh and Hertz, 1992) and dropout regularization (Gal and Ghahramani, 2016).
The interpretation of dropout as variational inference is not limited to Bernoulli dropout but
generalizes to other forms of dropout masks.

It was found that using Bernoulli dropout slows down the training procedure (Wang and
Manning, 2013). They introduced a Gaussian approximation that uses the benefits of dropout
training without the need of sampling, which in return accelerates the training process. This
way, Gaussian dropout is modeled as multiplicative Gaussian noise and the mask is directly
sampled from a normal distribution

z ∼ N
(︂
1, p

1−p

)︂
,

with mean 1 and variance p
1−p .

Similarly, concrete dropout was introduced as a possible relaxation of discrete Bernoulli
dropout (Gal et al., 2017). The dropout mask is generated as

z ∼ sigmoid
(︃1
t

(log p− log (1− p) + log u− log (1− u))
)︃
,

where u ∼ Unif (0, 1) denotes a sample from a uniform distribution and t denotes a
temperature (Gal et al., 2017). As a further advance, the dropout probability p is no longer
set as a hyperparameter but adapted in the training procedure.

For Monte Carlo Variational Inference, the problem of high variances occurs that leads to
poor convergence. The local re-parameterization trick (Kingma et al., 2015) addresses this
issue. Furthermore, Kingma et al. (2015) discuss that their findings can be interpreted as
variational dropout as generalization of Gaussian dropout. Their approach also determines an
optimal learning rate adaptively as a parameter that is tuned via back-propagation during
the training procedure. In contrast, they show that for their particular choice of posterior the
negative Kullback-Leibler divergence in the Bayesian deep learning objective can be expressed
as

−KL [qΦ (θ) ∥p (θ)] ≈ constant+ 0.5 log (α) + c1α+ c2α
2 + c3α

3 ,

where α = p
1−p denotes the noise and c1, c2 and c3 are parameters given in (Kingma et al.,

2015).
As an alternative, ensemble methods can be used as an approximation of the predictive

posterior distribution (Harris, 1989). Bagging predictors to produce a combined prediction is
not only shown to achieve robust and improved results (Breiman, 1996), but can also be used to
quantify the uncertainty of model parameters (Fushiki et al., 2005). The idea is to train several
models of the same type on different bootstrap samples of the whole training data (Breiman,
1996). However, deep learning is usually very data intensive. Training the neural network only
on a bootstrap sample can therefore lead to reduced accuracy (Lakshminarayanan et al., 2017).
In a recent study, Lakshminarayanan et al. (2017) replaced the bootstrapping of training data
by including adversarial samples in the training set. Each ensemble that has a different subset
of training images is augmented using adversarial examples.
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Furthermore, Wu et al. (2018) report an approach that utilizes deterministic Variational
Inference to derive robust uncertainties of the prediction.

5.2.2 Proposed Approach

Our contribution in this area is first of all to apply several of the described uncertainty
methods for regression tasks on images. Potential procedures are primarily applied to a toy
example, to choose a subset of optimal procedures among all the potential methods. A detailed
description of the toy data is given in Appendix A.3. Every image is labeled with a curve that
summarizes the local SNR information of various lesions in the image. This curve is similar to
the contrast-detail curve and shall be estimated by a neural network. Utilizing a benchmark
metric that is described in the next section, enables us to decide which methods work best on
the toy data. These selected methods will then be applied to mammography image quality
assessment.

The DLO with its architecture described in chapter 4 was incrementally trained to produce
accurate contrast-detail curves. This, together with the large number of parameters, makes the
DLO inefficient for testing several methods that require training from scratch. Therefore, we
propose to replace the architecture of the original DLO with a ResNet architecture (He et al.,
2016). The ResNet50 architecture is a very deep convolutional neural network. It consist of
more than 40 convolutional blocks and only one fully-connected layer to map the features to
the output. Such a ResNet50 architecture was taken and modified. The last fully-connected
layer was replaced by two parallel fully-connected layers. The first of these layers was taken
to compute µ̂i. The other layer yields σ̂i. In cases where dropout was used, a corresponding
dropout layer was included before the fully-connected layers.

Ensemble methods as well as dropout methods result in one estimate of µ̂i and σ̂i per
ensemble or dropout sample, respectively. Following Kendall and Gal (2017), the averages

µ̃i = 1
J

J∑︂
i=1

µ̂i,

σ̃2
i = 1

J

J∑︂
i=1

σ̂2
i + 1

J

J∑︂
i=1

µ̂2
i −

(︄
1
J

J∑︂
i=1

µ̂i

)︄2

,

can be taken, where µ̃i is the final predictive mean and σ̃i is the uncertainty of the prediction.

5.2.2.1 Benchmark metric

In this section, a criterion is suggested that allows us to quantitatively compare different
probabilistic models. Our criterion combines the accuracy of the regression with a measure of
the quality of uncertainty. A robust and frequently used measure for accuracy of a regression
problem is the mean percentage error (MPE) (Bowerman et al., 2005; De Myttenaere et al.,
2016; Kim and Kim, 2016). The MPE is defined as:

MPEi = 100%
P

∑︂
p

⃓⃓⃓
y

(p)
i − µ̃

(p)
i

⃓⃓⃓
⃓⃓⃓
y

(p)
i

⃓⃓⃓
+ ζ

,
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where yi denotes the multivariate ground truth for input xi, µi denotes the corresponding
predicted mean of the neural network ψ, and ζ denotes a numerical stabilizer. The MPE
quantifies the deviation of the prediction and the corresponding ground truth.

A fair benchmark should consider the regression accuracy along with the predicted
uncertainty. The uncertainty of the prediction σ̃i for each input is given as the standard
deviation of the different output samples. In general, lower estimates of uncertainty are
preferred over high uncertainties. However, the actual value of the ground truth should fall
into the range of the predicted value and its (extended) uncertainty. The neural networks
output multivariate curves. The accuracy was expressed univariately in terms of the MPE. In
the following, a framework is proposed that computes a univariate measure of the goodness
of the model uncertainty. More information of the quality of the determined uncertainties is
conserved studying the point-wise coverage probabilities (Berger, 2013) for each point of the
estimated contrast-detail curve. The coverage probability is estimated by the proportion of
samples where the interval estimates around the prediction contains the ground truth.

However, a univariate measure is still helpful to roughly compare different methods. Hence,
a measure is derived that expresses the quality of the uncertainty prediction. First, for a
multivariate output the number of outliers (yi ̸∈ [µi − k · σi, µi + k · σi]) is counted as

OUTi = 1
P

∑︂
p

H


⃓⃓⃓
y

(p)
i − µ̃

(p)
i

⃓⃓⃓
k · σ̃i(p)

− 1

 ,

where σ̃i is the model uncertainty, H denotes the Heavyside function and k is the factor for
the expanded measurement uncertainty with k = 1.96 for the 95% interval under the normality
assumption. This part counts how often the ground truth value lies out of the prediction
plus or minus the expanded standard deviation. It varies between 0 if all ground truth values
lie within these intervals and 1 if the predicted range does not cover the actual value at all.
Moreover, a best model is the one with minimum uncertainty such that (almost) all ground
truth values can be explained via the predicted intervals. Hence, the size of σ itself should be
considered in our combined uncertainty measure. For a fair combination, this contribution
should also vary between 0 and 1 such that both contributions remain comparable. For a
series of measurements, the probability of the uncertainty of a single measurement to fall in
the interval [p, q] can be expressed via the error function (Glaisher, 1871). Therefore, we take
the error function to ensure that the contribution of the size of σ̃ is in [0, 1]. Specifically, we
suggest

SIGi = 1
P

∑︂
p

erf

a · k · σ̃(p)
i⃓⃓⃓

y
(p)
i

⃓⃓⃓
+ ζ

 ,

where erf() stands for the error function to ensure that the output varies between 0 and 1 and
a denotes a scaling constant that can be chosen such that the convergence towards 1 is faster
or slower. A value of a = 4 was chosen such that for σi/

⃓⃓⃓
µ

(k)
i

⃓⃓⃓
= 0.5 the output was close to 1.

The final measures are averaged for different samples i of the same ground truth

MPE = MEDIAN (MPEi) , SIG = MEDIAN (SIGi) , OUT = MEDIAN (OUTi) .

98



5.2 Uncertainty

The final uncertainty quality metric is then determined by a weighted sum of SIG and OUT:

UNC = w · SIG + (1− w) ·OUT .

where w decides the ratio of importance for the size of the uncertainties against the number of
outliers.

5.2.3 Results

First, the modified ResNet50 architecture was trained on the toy data explained in
Appendix A.3. For testing, two independent data sets were created. The performance of the
introduced methods for uncertainty assessment was measured with our proposed benchmark
metric. The result of the benchmark test is shown in Figure 5.6.
Our benchmark with the toy data set revealed that the ensemble method, Bernoulli dropout,

and concrete dropout performed best.
Therefore, these methods were applied for the actual task of contrast-detail determination

for mammography. The training data, explained in chapter 4, was taken to train the modified
ResNet50 architecture. First, six models were trained as an ensemble. To do so, incremental
learning was used by pre-training the neural net on the simulated images without any margins
and then fine-tune six models on the whole data set. For the simulated test images, the
performance of the network is shown in Figure 5.7a. Figure 5.7a shows the estimated contrast-
detail curve for a single image along with the uncertainty of the prediction.
The contrast-detail curves are approximated very accurately by the neural network. Each

of the two test sets contains 200 images. Figure 5.7b visualizes the coverage probability for
the two contrast-detail curves for the 200 images. Especially the higher contrast-detail curve
that is linked to the lower image quality is explained very well with the estimated uncertainty.
Accordingly, Figure 5.8 shows the estimated contrast-detail curve along with uncertainties and
coverage probabilities for the independent simulated test data set.
As it can be seen, the independent simulated test data can also be approximated accurately.

Figure 5.6: Results of the benchmark test on the toy data set. The y-axis shows the mean
percentage error MPE and the x-axis displays the proposed uncertainty quality metric UNC.
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(a) (b)

Figure 5.7: (a) Estimated contrast-detail curve and (b) coverage probabilities for the simulated
test data. Error bars show 95% intervals.

(a) (b)

Figure 5.8: (a) Estimated contrast-detail curve and (b) coverage probabilities for the independent
simulated test data. Error bars show 95% intervals.

However, the estimated uncertainties for the independent test data are much higher. In
chapter 4, the variability of the EUREF guideline procedure using 16 images of the real test
data was compared with the variability of the DLO for single images. Figure 5.9 shows the
variability of the EUREF guideline procedure (red) and the uncertainty of the prediction of
the trained ResNet50 for a single image.
Especially for the larger diameters, the uncertainties of the prediction are estimated higher

than the variability of the EUREF guideline procedure. For the smallest diameter, the
estimated uncertainty is in the same range. Table 5.1 lists the calculated predictive variances
for the different test sets. The variances are normalized to the ground truth and averaged
over the values for one image. The displayed values present the median value for the different
images of each set.
It can be seen that the predictive variance for the independent test set is significantly higher

than those for all other test sets.

5.2.4 Discussion

Knowing the uncertainty is essential for a reliable conformity assessment (Pendrill, 2014).
Hence, it also should be considered for mammography image quality assessment, where
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Figure 5.9: (red) Variability of the EUREF guideline procedure with 16 images (cf. chapter 4)
and (blue) estimated contrast-detail curve plus uncertainty of the DLO from a single image. Error
bars show 95% intervals.

Table 5.1: Uncertainties of the prediction normalized to the corresponding ground truth and
averaged over the twelve points for each sample of the corresponding data set. The presented
scores are the median of all values for all images in the corresponding set.

Set σ̃/y

Simulated test set 1 0.1175
Simulated test set 2 0.0930
Simulated test set 3 0.0748
Simulated test set 4 0.0649
Independent simulated test set 0.1875
Real test set 0.0713

estimated contrast-detail curves are compared with a limit curve. Mackenzie et al. (2017)
used uncertainties to demonstrate that the determination of contrast-detail curves obtained
by the EUREF guideline procedure with 16 images is not accurate enough. They found that
especially for the small diameters the variability of the determined threshold gold thickness is
too high for a reasonable comparison to a limit value.

Our DLO, introduced in chapter 4, determines contrast-detail curves from single images
as accurate as those obtained by the EUREF guideline procedure using 16 images. Recently,
several methods have been developed, that assess the uncertainty of the prediction of
deep learning models. These methods usually predict an observation noise along with an
approximation uncertainty. Observation noise is inherent in the training data and and can
be learnt as loss attenuation in the training procedure (Kendall and Gal, 2017). Besides,
for an imperfect class of models, the data generating function cannot be modeled exactly.
Furthermore, finite training samples cause an approximation uncertainty (Hüllermeier and
Waegeman, 2019).

Most of the methods that aim to assess the uncertainty of the prediction require many
additional training steps. The DLO architecture comprises more than 63 million parameters.
Only by incorporating an incremental learning procedure, it was possible to predict contrast-
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detail curves accurately. However, the many parameters and the complex training procedure
impede the application of uncertainty methods. Therefore, the original architecture of the DLO
was replaced by a ResNet50 architecture (He et al., 2016). A ResNet50 comprises 11 million
parameters. Less parameters reduce the risk of overfitting and speed up the training time.
The accuracy of the ResNet50 is comparable to that of the original DLO, if the mean-squared
error is taken as the loss function. However, when considering a predictive variance, which is
learned by modifying the loss function, the accuracy drops slightly.

The network was learned using a log-likelihood loss function. Treating the observation noise
as loss attenuation allows it to be estimated directly in the training procedure, as introduced
by Kendall and Gal (2017).

Promising methods to assess the uncertainty of the prediction comprise ensemble methods
and dropout. Ensemble methods and dropout can be interpreted as sampling from the posterior
predictive distribution in probabilistic deep learning (Lakshminarayanan et al., 2017; Gal and
Ghahramani, 2016). A sample of the predictive mean and predictive variance can be obtained
by model averaging. Our results demonstrate that these methods which prove their benefit
in simple regression tasks and image classification tasks are also applicable for the complex
regression of a contrast-detail curve for image quality assessment in mammography.

Based on a simple toy example, a developed benchmark test showed that the ensemble
method, Bernoulli dropout, and concrete dropout produce the best estimates of uncertainty,
such that the ground truth values are covered by the 95% interval. Applying these procedures
further on the simulated mammography images to estimate contrast-detail curves revealed
that dropout methods are less suitable than ensemble methods in this context. They tend
to overestimate the observation noise and the predictions are not very accurate. Ensemble
methods, on the other hand, produce robust estimates of contrast-detail curves and compute
uncertainties that cover the ground truth. As a result, an ensemble of 6 individual models
estimates a contrast-detail curve accompanied with an uncertainty for a single image.

Our results show that the estimated uncertainties for a single image are similar to the
variability of repeated applications of the EUREF guideline procedure using 16 images,
especially for the smallest diameter. Table 5.1 further demonstrates that the predictive
variance is much higher for the independent data set. This can be explained since the
independent test set is outside of the distribution of the contrast-detail curves within the
training set. The elevated uncertainty for this case correctly identifies this test set as "out of
distribution" (cf. Kendall and Gal (2017); Gal (2016)).

So far, the dropout methods were not suitable for our mammography image quality data
set. Including any kind of dropout layer into the ResNet50 architecture caused the training
accuracy to decrease significantly. We conjecture that this occurs because dropout is applied
before the output layer, which gives the model no chance to learn compensating the noise
introduced by dropout. Therefore, the noise in the estimates of the final layer is higher, leading
to worse results than those obtained by the ensemble approach (cf. Hinton et al. (2012)).
However, the ensemble method produced very reasonable estimates of the uncertainty of the
predictions.

The determination of the uncertainty of the predicted contrast-detail curves obtained by
our DLO shows reasonable results, while there are still several limitations in the approach
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applied. The underlying statistical model, and hence the employed loss function, do not
account for errors in the input x. This can lead to biased estimates in regression tasks Fuller
(2009), and such a bias has not been considered in our uncertainty estimation. Furthermore,
our final benchmark metric weights the average size of the uncertainty intervals with the total
number of outliers. The choice of these weight factors influences the produced results, which
means that a model that is optimal for one choice of weight factors is not necessarily the
optimal method, when choosing different weight factors.

5.3 Summary

This chapter was dedicated to the explanation of deep learning and the estimation of uncertainty
of the prediction. Explanations are important to understand a neural network’s behavior.
Robust estimates of the uncertainty of the prediction reflect their reliability. Hence, they allow
a human to decide how much to trust the predictions of a neural network.

A difference quotient method was used to determine sensitivity heatmaps that highlight
which pixels of an image dominantly contribute to the estimated contrast-detail curve. This
procedure does not require the computation of gradients. Therefore, it is also applicable in
situations where the user has no access to the neural network parameters directly but can only
collect the output for a given input. Our results show that the DLO estimates a contrast-detail
curve based mainly on a horizontal band in the CDMAM phantom image. Carrying out the
explanation analysis allowed us to understand that the trained network separates the image
into detectable and non-detectable discs. This is a different task than performing the local
detections of the lesions in the individual cells. The different learning strategy of the DLO
further revealed that the random down-sampling is beneficial for this regression task.

Furthermore, several methods for determining the uncertainties of predictions of deep
learning were tested on a toy data set. Ensemble method, Bernoulli dropout and concrete
dropout worked best on this data. However, for the mammography image quality data
dropout methods did not perform well. The ensemble method, on the other hand, produces
robust estimates of the uncertainty of the prediction. This way, accurate estimates of the
contrast-detail curve can be made from single images, along with a robust estimation of the
uncertainty.
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Conclusion and Outlook

The goal of this thesis was the development of automatic procedures in the context of
mammography image quality assessment. Current state-of-the-art methods comprise expert
pre-processing with the application of model observers to a estimate contrast-detail curve which
visualizes the ability of a device to depict small structures. So far, these methods require the
recording of multiple images, expert pre-processing and exact knowledge of the lesion positions
in the image. Three alternative methods are developed and discussed in this thesis which
improve the current method and reduce the workload for quality assurance measurements.
Specifically, four objectives were defined in the beginning of this work that are addresses
subsequently.

In chapter 3, the first two objectives are discussed. The first objective of this thesis is driven
by the utility that simulation tools give for method development and assessment. Specifically,
our first contribution is the implementation of a virtual mammography that follows state-of-
the-art methods for mammography image simulation. This tool allows us to simulate realistic
mammography images, optimized for simulations of the CDMAM phantom. It is shown, that
with our virtual mammography realistic mammography images of the CDMAM phantom can be
simulated even though image degradation is modeled purely phenomenologically. Furthermore,
the simulated images were used to assess the performance of methods for contrast-detail
determination. Our second contribution is the development of an alternative method to
determine the contrast-detail curve from images of the CDMAM phantom. The approach is
based on a recently developed parametric observer. Specifically, a routine is developed that
applies the modified parametric observer on single cells of the CDMAM phantom to determine
a contrast-detail curve. This way, the contrast-detail curve is determined based on the AUC as
an established figure of merit in task-based image quality assessment. Furthermore, a Bayesian
approach is proposed to determine contrast-detail curves accompanied with an uncertainty for
each point, which is not possible with the current practice. The novel approach improves the
current practice by reducing the amount of pictures that are required to determine accurate
contrast-detail curves. However, expert pre-processing is still required. An advantage of
our method is that estimates of the uncertainty of the prediction can be made. These are
necessary to take meaningful decisions in cases where the resulting contrast-detail curve is
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close to the prescribed limit curve. For future perspective, an end-to-end implementation has
to be provided that combines the pre-segmentation of the images with the application of our
proposed approach. Furthermore, the contrast-detail curves determined by our approach have
to be calibrated carefully, which can be done by choosing the free factor γ. This calibration
should ensure that the results obtained by our automatic procedures correlate well with those
obtained by a human observer. To this end, the novel approach was extensively tested for
simulated images, where it demonstrated its potential benefit. Before it can be applied in
clinical practice it has to be thoroughly tested on real images, especially on images of devices
from different manufacturers.

Expert pre-processing of images for contrast-detail estimation can be seen as feature
extraction in classical machine learning. Deep learning is able to learn meaningful features
directly from the data. Chapter 4 presents our third contribution, which is that it was explored
whether it is possible to utilize deep learning to estimate image quality directly from the
image without further pre-processing. Specifically, two different methods are developed that
follow different strategies. First, semantic segmentation was utilized to train a semantic
segmentation observer (SSO) that classifies each pixel of the image as lesion, background or
grid pixel. Classical semantic segmentation metrics were found to correlate well with image
quality, but require the knowledge of a ground truth mask. Such a mask is easily available for
simulations, whereas it is expensive to determine for real images. In addition, a deep learning
observer (DLO) is developed that estimates contrast-detail curves directly from images of
the CDMAM phantom, without cumbersome pre-processing. The developed DLO is able to
accurately estimate contrast-detail curves from a single image that is strongly down-sampled.
Summarizing, deep learning can improve image quality assessment since it avoids error-prone
pre-processing. The DLO estimates contrast-detail curves from a single image with comparable
accuracy as the current state-of-the-art method which requires 16 images. Future work could
modify the semantic segmentation observer that demonstrated its potential benefits, such
that it can be utilized to determine contrast-detail curves. In addition, this procedure can
potentially be adapted to serve as pre-processing for methods such as those developed in
chapter 3. Image quality assurance in mammography determines the contrast-detail curve
and classifies a corresponding device as approved if the curve falls below a certain threshold
curve. Simplified, this can be viewed as a binary classification. With a data set that contains
images that emulate the two classes sufficient and insufficient image quality, one could check
whether the SSO can distinguish between these two classes. Besides that, one could think
of designing a binary classifier, that classifies an image as sufficient or insufficient image
quality, respectively. This classifier might be easier to learn since this classification task is
a simpler task than the regression of the contrast-detail curve. However, the contrast-detail
curve provides more information about the imaging performance, such as which details can be
accurately perceived in the image. Furthermore, the concept of determining the image quality
by semantic segmentation of a technical phantom could serve as a benchmark for different
computer-aided diagnostics algorithms that utilize semantic segmentation to detect lesions
in real mammograms. The structure of these phantoms is well known, therefore a ground
truth mask can be determined, which can be used, to quantify the performance of different
algorithms in this case. The DLO, on the other hand, can be applied directly to images to
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determine a contrast-detail curve. Before it can be applied in clinical practice, it has to be
tested on a large set of real clinical images from devices of different manufactures. Furthermore,
the method would benefit from retraining the model on such an extended data set. For real
world application a procedure hast to be defined when the DLO should be retrained on new
data and how this retraining effects constancy testing.

Deep learning has proven to be beneficial in many tasks and applications. Also in this work,
it is shown that mammography image quality assessment may benefit from the employment of
deep learning. Error-prone pre-processing is no longer required and our proposed deep learning
observer does not depend on the exact knowledge of the positions of the lesions in the phantom.
Despite the accurate estimation of contrast-detail curves, it was not clear how the DLO was
able to work with highly down-sampled images. In our forth and last objective that is discussed
in chapter 5, we investigate the reliability and explainability of our deep learning approach
for image quality assessment in mammography. Specifically, we contribute by explaining the
predictions made by our trained DLO and by estimating the uncertainty that is accompanied
with the determined contrast-detail curve. The application of robust explanation methods
revealed that the DLO successfully learned to ignore irrelevant margin areas. Contrast-detail
curves are solely determined by the image pixels that actually belong to the phantom. To be
more specific, a small horizontal band in the center of the phantom was found to dominantly
influence the resulting contrast-detail curves. In conclusion, the proposed deep learning
observer learned to split the image into a region where discs can be accurately detected and
regions where this is not the case. This information was then recast into contrast-detail curves.
Besides an explanation of the network predictions, the estimation of an uncertainty of the
prediction is required to take a reliable decision in conformity assessment. For deep learning,
this uncertainty can be estimated with different methods. In a simplified example, ensemble
methods and concrete dropout were found to produce optimal estimates of the uncertainty of
the prediction in terms of coverage probabilities and a proposed uni-variate benchmark metric.
In the context of mammography image quality assessment, only ensemble methods produced
suitable results. Summing up, with a slight modification of the model architecture, neural
networks can estimate an uncertainty of a prediction, without significant loss of accuracy.
Especially ensemble methods were found to produce robust estimations of uncertainties of
the predictions of our trained DLO. The results presented in this chapter give insights of the
learning strategy and quantify the uncertainty accompanied with the prediction. Looking
ahead, the explanation analysis revealed that the DLO learned to map the contrast-detail
curve to highly down-sampled single images of the CDMAM phantom. This shows that the
CDMAM phantom contains redundant information which is not required for the determination
of contrast-detail curves with our DLO. Therefore, the DLO can potentially infer meaningful
image quality from simpler phantoms than the CDMAM phantom. Furthermore, it could
potentially be possible to determine contrast-detail curves directly from real patient images
for online image quality assessment. In order to develop such an application, a large data set
of different patient images from various devices along with the corresponding contrast-detail
curve from each device would be needed. Also, the initial findings regarding the estimation of
uncertainty have to be analyzed further. Especially, the different types of uncertainties have
to be treated more carefully. The aleatoric uncertainty that is present in the data suggests to
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use an errors-in-variables model. To do so, a modified learning objective has to be defined.
Uncertainty quantification for image regression is relevant also in other contexts and our
proposed benchmark could be further developed to provide means for validating uncertainty
estimations in such cases. Ideally, this should be supported by benchmark test sets and
software that automatically assesses uncertainty estimation procedures in terms of their results
for these test sets.

In general, our proposed methods for image quality assessment in mammography are
thoroughly tested and evaluated on simulated images. Before they can be applied in clinical
practice our methods should be tested on large sets of real images. In addition, it could
be worthwhile exploring whether our methods allow us to further reduce the radiation dose
that is required for accurate detection of details in the images of technical phantoms. The
contributions in this thesis focus on mammography as imaging modality. Our results show that
image quality assessment in mammography benefits from the proposed methods. In addition
to mammography, image quality is a critical parameter also for other imaging modalities such
as tomosynthesis, computer tomography, sonography, and magnetic resonance imaging. It
would be intriguing to investigate if these methods can be further adapted such that they can
also be successfully applied for other imaging modalities.
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A
Supplemental results

A.1 Calibrating the Parametric Model Observer

In chapter 3 an alternative determination of contrast-detail curves was proposed. A method is
suggested that utilizes a parametric observer to locally calculate the AUC for every cell of
the CDMAM phantom. For the calculation of the AUC, the proposed approach allows one to
choose a free parameter γ, see equation (3.2). Figure A.1 visualizes how the choice of γ affects
the resulting mean contrast-detail curve.

The choice of γ scales the argument of equation (3.2). As a consequence, the resulting logistic
curves (cf. Figure 3.6a) are shifted either to the right or to the left. This, in turn, leads to
the change of the resulting contrast-detail curve indicated in Figure A.1a. However, changing
the value of γ only shifts the entire contrast-detail curve with respect to the threshold gold
thickness. Figure A.1b shows the normalized contrast-detail curve. This normalization was
done by dividing the contrast-detail curves by their corresponding threshold gold thickness

(a) (b)

Figure A.1: (a) Variation of the obtained contrast-detail with our proposed approach, depending
on the choice of the free factor γ. (b) Contrast-detail curves normalized to the corresponding
threshold gold thickness for a diameter d = 0.25 mm. Figure from Kretz et al. (2019).
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at d = 0.25 mm. Different values of γ do not affect the shape of the resulting contrast-detail
curves. A value of γ = 0.625 was chosen such that the magnitude of the obtained contrast-detail
curves matches that of the EUREF guideline procedure.

The free parameter γ can be used to calibrate the results of our proposed approach. For
our setting, its value is selected to minimize the difference between the contrast-detail curves
obtained by the EUREF guideline procedure and the outcome of our method. Furthermore,
it is encouraging that the proposed approach and the current practice both yield curves of
similar shape. In equation (3.2) it is shown that with the definition of f(d) the AUC depends
on the diameter d but is independent of the total number of pixels in the lesion region. In
this way, the same value of γ can be taken without changing the AUC when taking another
pixel pitch into account. The diameter of the gold discs is constant, while the number of
pixels of the signature evoked by this disc depends on the resolution of the detector. However,
different types of detectors typically vary in their noise characteristics. Especially if the noise
correlation changes significantly, the choice of γ needs to be adapted.

A.2 Bayesian Estimation

In chapter 3 a method was introduced that utilizes a recently developed parametric model
observer to determine contrast-detail curves for mammography image quality assessment. In
addition, a Bayesian procedure allows one to determine the posterior function p(t | AUC = τ, d)
by reporting the recording p(AUC = τ | t, d) for every cell of the CDMAM phantom with
thickness t and diameter d. The parameter τ denotes the critical value of AUC that is used to
mark the limit for successful detection. Since there are only few discrete thicknesses for every
diameter, the posterior of the contrast-detail curve is represented very sparsely. Therefore,
a Gamma distribution (3.3) was fitted to the reported values as an approximate posterior
distribution function for one point of the contrast-detail curve.
Figure A.2 shows three typical examples of the approximated posterior distribution for three
different diameters in the contrast-detail curve determination. For diameters d = 0.2 mm

(Figure A.2b) and d = 0.4 mm (Figure A.2c), the Gamma distribution can be fitted accurately
because the peak is covered by the available thickness values. For a diameter of d = 0.1 mm
(Figure A.2a), on the other hand, the fit is very uncertain, since there are no values that define
the peak shape.
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(a)

(b)

(c)

Figure A.2: Fitting a Gamma distribution as an approximate posterior distribution for three
points of the contrast-detail curve. For each diameter (a)-(c), a Gamma function is fitted to the
points.
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A.3 Uncertainty for Deep Learning

A toy data set was created to test different methods to assess an uncertainty of the prediction
obtained by a neural network. The toy data consists of images, each labeled with a
corresponding curve. The 250 × 250 Pixel images have zero background. Nine square
lesions of varying size with intensity one are embedded in this background. In a next step,
Gaussian white noise with standard deviation σ is added to the image. The corresponding
labels summarize local information of each lesion. Figure A.3 shows a typical input image of
the toydata set.

The individual points of the label curve are calculated as

yi = 1
σi ·
√
npixel

,

where σi is the strength of the noise in the image and npixel is the number of pixels of the
corresponding square lesion. This way, the label curve comprises nine points that vary because
of the number of pixels of the corresponding lesions.

Eight different values of σi, with 200 images each, were combined to a training set. For
testing, two independent values of σi were used to simulate 100 images for each noise strength.
Table A.1 lists the parameters that were used in the different toy data sets.

The training data was used to train the different ensemble or dropout neural networks,
respectively. After successful training, the neural networks were applied on independent test
data. The suggested benchmark metric (see chapter 5) was calculated for each trained net for
both of the test data sets individually. The numbers presented in Figure 5.6 show the mean
benchmark score for both test sets for the different methods. As explained there, Bernoulli

Figure A.3: Typical input image of the toydata set. Nine square lesions with intensity one are
embedded in zero background. White noise was then added to the image.
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Table A.1: Parameters used to create the eight toy data sets for training and two independent
sets for testing of the neural network.

Set Number σ Nimages

Train

1 0.010 200
2 0.021 200
3 0.045 200
4 0.097 200
5 0.206 200
6 0.439 200
7 0.936 200
8 1.995 200

Test 1 0.018 100
2 0.150 100

dropout (p = 0.4), concrete dropout and ensemble learning achieved accurate approximations
in terms of the mean percentage error (MPE) with reasonable estimations of the uncertainty
of the prediction.
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