Skip to main content

Advertisement

Log in

A novel technique for laser-assisted revascularization: an in vitro pilot study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The common limitation of surgical revascularization procedures for severe tissue ischemia due to cardiovascular diseases is the need to interrupt blood flow during the intervention. We aim to introduce a new technique that allows a sutureless, non-occlusive revascularization. A 3-step technique was developed using rabbit’s aorta to simulate a side-to-side anastomosis model. It enables the creation of a bypass circuit for revascularization. The first step was the soldering of 2 vessels in a side-to-side fashion based on the laser-assisted vascular anastomosis (LAVA) principle using a diode laser emitting irradiation at 810 nm with an albumin-based solder patch between them, followed by the creation of a channel within the patch using either a holmium-doped yttrium aluminum garnet laser (Ho:YAG) at λ = 2100 nm or a xenon-chloride excimer laser (XeCl) at λ = 308 nm. Thereby, a bypass circuit was created, thus allowing a non-ischemic revascularization. The system was deemed functional when a flow was observed across the anastomosis. The highest average tensile strength recorded after side-to-side LAVA using a diode laser power of 3.2 W for 60 s was 2278.6 ± 800 mN (n = 20). The Ho:YAG laser created the channels with less tension on the anastomosis than the excimer laser. Histological analysis showed limited thermal damage and good patch-tissue adaptation. The preliminary results of this feasibility study outline the foundations for an entirely sutureless laser-assisted revascularization procedure. The next studies will evaluate the rheological parameters across the bypass circuit to optimize the post-anastomotic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mendis S, Davis S, Norrving B (2015) Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 46(5):e121–e122. https://doi.org/10.1161/STROKEAHA.115.008097

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, DK MG, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2015) Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322. https://doi.org/10.1161/CIR.0000000000000152

    Article  PubMed  Google Scholar 

  3. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Group TIW (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45(Suppl S):S5–S67. https://doi.org/10.1016/j.jvs.2006.12.037

    Article  PubMed  Google Scholar 

  4. Donaghy RMP, Yasargil MG (1967) Experimental small vascular surgery in the dog including patching and grafting of cerebral vessels and the formation of functional extra-intracranial shunts. Microvasc Surg:87–126

  5. Carrel A (1910) VIII. On the experimental surgery of the thoracic aorta and heart. Ann Surg 52(1):83–95

    Article  CAS  Google Scholar 

  6. ter Berg JW, Dippel DW, Habbema JD, Westermann CJ, Tulleken CA, Willemse J (1993) Unruptured intracranial arteriovenous malformations with hereditary haemorrhagic telangiectasia. Neurosurgical treatment or not? Acta Neurochir 121(1-2):34–42

    Article  Google Scholar 

  7. Kopchok GE, White RA, Tabbara M, Saadatmanesh V, Peng SK (1990) Holmium:YAG laser ablation of vascular tissue. Lasers Surg Med 10(5):405–413

    Article  CAS  Google Scholar 

  8. Puca A, Esposito G, Albanese A, Maira G, Rossi F, Pini R (2009) Minimally occlusive laser vascular anastomosis (MOLVA): experimental study. Acta Neurochir 151(4):363–368; discussion 368. https://doi.org/10.1007/s00701-009-0219-3

    Article  PubMed  Google Scholar 

  9. Mbaidjol Z, Kiermeir D, Schonfeld A, Arnoldi J, Frenz M, Constantinescu MA (2017) Endoluminal laser-assisted vascular anastomosis-an in vivo study in a pig model. Lasers Med Sci 32(6):1343–1348. https://doi.org/10.1007/s10103-017-2250-6

    Article  PubMed  Google Scholar 

  10. McKenzie AL (1986) A three-zone model of soft-tissue damage by a CO2 laser. Phys Med Biol 31(9):967–983. https://doi.org/10.1088/0031-9155/31/9/003

    Article  CAS  PubMed  Google Scholar 

  11. Gelli R, Pini R, Toncelli F, Chiarugi C, Reali UM (1997) Vessel-wall recovery after diode laser-assisted microvascular anastomosis: clinical and histologic analysis on long-term follow-up. J Reconstr Microsurg 13(3):199–205. https://doi.org/10.1055/s-2007-1006405

    Article  CAS  PubMed  Google Scholar 

  12. Schonfeld A, Kabra ZM, Constantinescu M, Bosshardt D, Stoffel MH, Peters K, Frenz M (2017) Binding of indocyanine green in polycaprolactone fibers using blend electrospinning for in vivo laser-assisted vascular anastomosis. Lasers Surg Med 49(10):928–939. https://doi.org/10.1002/lsm.22701

    Article  PubMed  Google Scholar 

  13. Mulisch M, Welsch U (2015) (eds.). Romeis Mikroskopische Technik. 19th ed. Berlin, Heidelberg: Springer Spektrum

  14. Jahren SE, Heinisch PP, Wirz J, Winkler BM, Carrel T, Obrist D (2015) Hemodynamic performance of Edwards Intuity valve in a compliant aortic root model. Conf Proc IEEE Eng Med Biol Soc 2015:3315–8. https://doi.org/10.1109/EMBC.2015.7319101

  15. Devanathan V, Hagedorn I, Kohler D, Pexa K, Cherpokova D, Kraft P, Singh M, Rosenberger P, Stoll G, Birnbaumer L, Piekorz RP, Beer-Hammer S, Nieswandt B, Nurnberg B (2015) Platelet Gi protein Galphai2 is an essential mediator of thrombo-inflammatory organ damage in mice. Proc Natl Acad Sci U S A 112(20):6491–6496. https://doi.org/10.1073/pnas.1505887112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parrish JA, Anderson RR, Harrist T, Paul B, Murphy GF (1983) Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol 80(1 Suppl):75s–80s. https://doi.org/10.1038/jid.1983.19

    Article  CAS  PubMed  Google Scholar 

  17. Abela GS, Normann S, Cohen D, Feldman RL, Geiser EA, Conti CR (1982) Effects of carbon dioxide, Nd-YAG, and argon laser radiation on coronary atheromatous plaques. Am J Cardiol 50(6):1199–1205

    Article  CAS  Google Scholar 

  18. Choy DS, Stertzer S, Rotterdam HZ, Sharrock N, Kaminow IP (1982) Transluminal laser catheter angioplasty. Am J Cardiol 50(6):1206–1208

    Article  CAS  Google Scholar 

  19. Song MH, Tokuda Y, Ito T (2007) Revival of the side-to-side approach for distal coronary anastomosis. J Cardiothorac Surg 2:2. https://doi.org/10.1186/1749-8090-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kraft F, Schmidt C, Van Aken H, Zarbock A (2015) Inflammatory response and extracorporeal circulation. Best Pract Res Clin Anaesthesiol 29(2):113–123. https://doi.org/10.1016/j.bpa.2015.03.001

    Article  PubMed  Google Scholar 

  21. Haase KK, Baumbach A, Wehrmann M, Duda S, Cerullo G, Ruckle B, Steiger E, Karsch KR (1991) Potential use of holmium lasers for angioplasty: evaluation of a new solid-state laser for ablation of atherosclerotic plaque. Lasers Surg Med 11(3):232–237

    Article  CAS  Google Scholar 

  22. van Leeuwen TG, van der Veen MJ, Verdaasdonk RM, Borst C (1991) Noncontact tissue ablation by holmium: YSGG laser pulses in blood. Lasers Surg Med 11(1):26–34

    Article  Google Scholar 

  23. Tulleken CA, Verdaasdonk RM, Mansvelt Beck HJ (1997) Nonocclusive excimer laser-assisted end-to-side anastomosis. Ann Thorac Surg 63(6 Suppl):S138–S142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Annemarie Schönfeld for her help with this project.

Funding

This study was supported by a grant of the Swiss National Science Foundation (project number 108447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zacharia Mbaidjol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbaidjol, Z., Stoffel, M.H., Frenz, M. et al. A novel technique for laser-assisted revascularization: an in vitro pilot study. Lasers Med Sci 36, 855–862 (2021). https://doi.org/10.1007/s10103-020-03128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03128-6

Keywords

Navigation