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Abstract (English Version)

The brain outperforms conventional computer architectures in aspects of energy
efficiency, robustness and adaptivity. These aspects are also important for emerg-
ing technologies. It is therefore worthwhile to investigate what biological pro-
cesses enable the brain to perform computations and how can they be imple-
mented in silicon. Taking inspiration from how the brain performs computations
requires a shift in computational paradigm compared to conventional computer
architectures. Indeed, the brain is composed of nervous cells, called neurons,
connected with synapses and forming self-organized networks. Neurons and
synapses are complex dynamical systems ruled by biochemical and electrical re-
actions. As a result, they can only base their computations on local information.
Additionally, neurons communicate with each other with short electrical pulses,
called spikes, which travel across synapses.

Computational neuroscientists attempt to model these computations with spik-
ing neural networks. When implemented on dedicated neuromorphic hardware,
spiking neural networks can perform fast, energy efficient computations like the
brain. Until recently, the advantages of this technology were limited due to the
lack of functional methods for programming spiking neural networks. Learning
is one paradigm for programming spiking neural networks, in which neurons
self-organize into functional networks.

As in the brain, learning in neuromorphic hardware is based on synaptic plastic-
ity. Synaptic plasticity rules characterize weight updates in terms of information
local to the synapse. Learning happens in a continuous and online fashion, while
sensory input is streamed to the network.

Conventional deep neural networks are commonly trained with gradient descent.
However, the constraints imposed by biological learning dynamics prevent the
use of conventional backpropagation to compute the gradients. For example, con-
tinuous updates hinder the synchronous alternation between forward and back-
ward phases. Additionally, memory limitations prevent the history of neural ac-
tivity to be stored as-is at the neuron, prohibiting backpropagation-through-time.
Novel solutions to these problems were proposed by computational neuroscien-
tists within the time-frame of this thesis.

In this thesis, spiking neural networks are developed to solve visuomotor neu-
rorobotics tasks. Indeed, biological neural networks evolved to control the body.
The field of robotics provides an artificial body to the artificial brain. On one side,
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this thesis contributes to the current endeavor in understanding the brain by pro-
viding difficult closed-loop benchmarks, similar to what the biological brain ex-
periences. On the other side, novel ways of solving traditional robotic problems
are introduced, based on brain-inspired paradigms. The research is conducted
in two steps. First, promising synaptic plasticity rules are identified and bench-
marked on real-world event-based vision benchmarks. Second, novel methods to
map visual representations to motor commands are presented.

Neuromorphic vision sensors mark an important step in shifting towards brain-
inspired paradigms. Unlike conventional cameras, these sensors emit address
events corresponding to local light intensity changes. The event-based paradigm
enables energy efficient and fast visual processing but requires new asynchronous
algorithms to be derived. Spiking neural networks constitute a subset of asyn-
chronous algorithms inspired by the brain and suited to neuromorphic hardware
technology. With a close collaboration with computational neuroscientists, suc-
cessful methods to learn spatio-temporal abstractions from address event repre-
sentation are reported. It is shown that top-down synaptic plasticity rules de-
rived to optimize an objective function outperform bottom-up rules solely based
on observations in the brain. With this insight in mind, a new synaptic plasticity
rule called Deep Continuous Local Learning is introduced, currently achieving
state-of-the-art accuracy on event-based vision benchmarks. This rule was jointly
derived, implemented and evaluated during a stay at the University of Califor-
nia, Irvine.

In the second part of this thesis, the visuomotor loop is closed by mapping the
learned visual representations to motor commands. Three approaches are dis-
cussed to obtain a visuomotor mapping: manual coupling, reward-coupling and
prediction error minimization. It is shown how these approaches implemented
as synaptic plasticity rules can be used to learn simple policies and movements.
This work paves the way towards the integration of brain-inspired computational
paradigms into the field of robotics. Indeed, it is suggested that advances in
neuromorphic technology and plasticity rules would enable the development of
learning robots operating at high speed and low power.
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Abstract (German Version)

Das Gehirn übertrifft herkömmliche Computerarchitekturen in Bezug auf Ener-
gieeffizienz, Robustheit und Anpassungsfähigkeit. Diese Aspekte sind auch für
neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologi-
schen Prozesse das Gehirn zu Berechnungen befähigen und wie sie in Silizium
umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Ge-
hirn Berechnungen durchführt, ist ein Paradigmenwechsel im Vergleich zu her-
kömmlichen Computerarchitekturen erforderlich. Tatsächlich besteht das Gehirn
aus Nervenzellen, Neuronen genannt, die über Synapsen miteinander verbun-
den sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind
komplexe dynamische Systeme, die durch biochemische und elektrische Reak-
tionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf
lokale Informationen stützen. Zusätzlich kommunizieren Neuronen untereinan-
der mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich über
Synapsen bewegen.

Computational Neuroscientists versuchen, diese Berechnungen mit spikenden
neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hard-
ware implementiert werden, können spikende neuronale Netze wie das Gehirn
schnelle, energieeffiziente Berechnungen durchführen. Bis vor kurzem waren die
Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden
zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein
Paradigma für die Programmierung von spikenden neuronalen Netzen, bei dem
sich Neuronen selbst zu funktionalen Netzen organisieren.

Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer
Plastizität. Synaptische Plastizitätsregeln charakterisieren Gewichtsaktualisierun-
gen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Ler-
nen geschieht also kontinuierlich und online, während sensorischer Input in das
Netzwerk gestreamt wird.

Herkömmliche tiefe neuronale Netze werden üblicherweise durch Gradienten-
abstieg trainiert. Die durch die biologische Lerndynamik auferlegten Einschrän-
kungen verhindern jedoch die Verwendung der konventionellen Backpropagati-
on zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Ak-
tualisierungen den synchronen Wechsel zwischen Vorwärts- und Rückwärtspha-
sen. Darüber hinaus verhindern Gedächtnisbeschränkungen, dass die Geschich-
te der neuronalen Aktivität im Neuron gespeichert wird, so dass Verfahren wie
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Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen für die-
se Probleme wurden von Computational Neuroscientists innerhalb des Zeitrah-
mens dieser Arbeit vorgeschlagen.

In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufga-
ben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich
biologische neuronale Netze ursprünglich zur Steuerung des Körpers. Die Robo-
tik stellt also den künstlichen Körper für das künstliche Gehirn zur Verfügung.
Auf der einen Seite trägt diese Arbeit zu den gegenwärtigen Bemühungen um
das Verständnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks
liefert, ähnlich dem, was dem biologischen Gehirn widerfährt. Auf der anderen
Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt,
die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in
zwei Schritten durchgeführt. Zunächst werden vielversprechende synaptische
Plastizitätsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus
der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung
visueller Repräsentationen auf motorische Befehle vorgestellt. Neuromorphe vi-
suelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirier-
ten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese
Sensoren Adressereignisse aus, die lokalen Änderungen der Lichtintensität ent-
sprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und
schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algo-
rithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen
Algorithmen dar, die vom Gehirn inspiriert und für neuromorphe Hardware-
technologie geeignet sind. In enger Zusammenarbeit mit Computational Neu-
roscientists werden erfolgreiche Methoden zum Erlernen räumlich-zeitlicher Ab-
straktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass
Top-Down-Regeln der synaptischen Plastizität, die zur Optimierung einer objek-
tiven Funktion abgeleitet wurden, die Bottom-Up-Regeln übertreffen, die allein
auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synap-
tische Plastizitätsregel namens "Deep Continuous Local Learningëingeführt, die
derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks
erreicht. Diese Regel wurde während eines Aufenthalts an der Universität von
Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert.

Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, in-
dem die gelernten visuellen Repräsentationen auf motorische Befehle abgebildet
werden. Drei Ansätze werden diskutiert, um ein visuomotorisches Mapping zu
erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vor-
hersagefehlers. Es wird gezeigt, wie diese Ansätze, welche als synaptische Pla-
stizitätsregeln implementiert sind, verwendet werden können, um einfache Stra-
tegien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration
von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird
sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und
bei den Plastizitätsregeln die Entwicklung von Hochleistungs-Lernrobotern mit
geringem Energieverbrauch ermöglicht.
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1. Introduction

This introductory chapter is written as a self-contained overview of the whole
thesis. It is intended for readers who are not familiar with the field of comput-
ing with spiking neurons and event-based vision. This thesis is motivated by
the potential of neuromorphic technologies for robotics, as well as the desire to
understand the brain better. This leads to the main research goals of the thesis:
how can Spiking Neural Networks (SNNs) learn spatio-temporal representations
from event streams, how can robots be controlled from these representations?
The approach to address these goals is presented in Chapter 4, together with
the developed tools for experimenting with simulated and real event-based data.
Subsequently, with close interaction with computational neuroscientists, state-
of-the-art synaptic learning rules are derived, integrated, and evaluated on event
streams (Chapter 5). In Chapter 6, it is shown how to map these representations
to motor commands, closing the visuomotor loop. An outlook on the broader
impacts and the future work in the field of Neurorobotics is provided in Chap-
ter 7.

1.1. Motivation

The nervous system has extensively been compared with an artificial computing
machine [284]. The center of the nervous system is the brain, where most nerve
cells, called neurons, are concentrated and connected with synapses. Similarly to
computers, the brain processes information, from afferent receptor neurons – the
input – to efferent neurons connected to muscles and glands – the output. While
individual neurons are understood in considerable detail, it is still unclear how
function emerges from large ensembles of neurons.

Unlike standard computer architectures, communication between neurons in the
brain is sparse, asynchronous, and unreliable. This communication is based on
rapid depolarization impulses, called spikes. Most neuroscientists believe that
all spikes are stereotypical, thus carrying no payload. Recent information theory
analyses reveal that precise spike times, in the order of milliseconds, carries a
substantial amount of information [246, 247]. Overall, spike-based communica-
tion makes biological brains energy-efficient, fast, fault-tolerant, and adaptable.
When implemented on dedicated neuromorphic hardware, spiking networks en-
joy some of the benefits of biological systems: energy-efficient, fast computations,
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1. Introduction

reduced communication bottleneck (data is transmitted in an event-based fash-
ion) [212]. As for a biological body, these advantages concern critical aspects in
robotics. Energy efficiency is desired for long-term use. Fast computations are
needed for real-time operation. High-throughput sensorimotor information is
highly redundant and jams computations. Sample efficiency is required to learn
in the real world. Despite these potential advantages, spiking network models
are overlooked by engineers.

Understanding the computational principles of the brain would allow us to repli-
cate its functions in silico to equip robots. This long-term endeavor spans over
multiple research fields, as witnessed by the flagship research projects world-
wide: the Human Brain Project in Europe, the BRAIN Initiative in the USA, the
China Brain Project and the Brain/MINDS Project in Japan. These ambitious re-
search projects accommodate the collaboration of scientists from various fields of
research. This thesis was conducted within the Human Brain Project and sub-
scribes to the following research workflow. Neuroscientists and biologists collect
data about the nervous system by performing experiments. Their insights are
converted into computational models by theoretical neuroscientists. The require-
ments of these models drive the development of dedicated brain simulation hard-
ware by neuromorphic engineers. This pipeline converges to the recent field of
neurorobotics, which provides an artificial embodiment to the artificial brain.

The goal of neurorobotics is twofold. On one side, neurorobotics aims to improve
the autonomy of robots using brain-inspired architectures. On the other side,
it aims to foster an understanding of the brain by replicating behavioral experi-
ments. Indeed, biological brains are connected to the world through a body. The
body is the only mean by which the brain interacts with the world by developing
sensory and motor skills. The main role of the brain is therefore to control the
body [289]. Additionally, the embodiment also plays a direct role in cognition, as
observed by psychological experiments on humans [233].

This thesis focuses on embodying computational brain models to solve neuro-
robotic visuomotor tasks. Visual ability is an important skill both in biology and
in robotics. The complexity of the mammalian eye highlights the evolutionary
advantages granted by an advanced vision system [162]. Vision provides a large
amount of important information about the world. This information requires
complicated processing systems – either nervous or electronic. On the biolog-
ical side, it was shown that at least some visual tasks such as stimuli catego-
rization and saccade generation were relying on precise spike-time information
[280, 279, 191, 83]. This contrasts with state-of-the-art deep learning networks
(later referred to as Analog Neural Networks (ANNs)) which process frames syn-
chronously with neurons which real-valued activities represent rates of spikes
[124, 243].

Recent neuromorphic vision sensors engaged a shift to spike-based computa-
tional paradigm [110, 20]. Inspired from biological retinas, neuromorphic vision
sensors emit events at precise time on local light intensity changes, unlike con-
ventional cameras which provide frames at constant time intervals. These sensors
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Figure 1.1.: Address Event Representation (AER) in neuromorphic vision sensor.
Address events are emitted for a pixel with respect to local light in-
tensity. Increase and decrease in intensity yield positive (top reds)
and negative (bottom blues) events respectively. In contrast, a normal
camera samples light intensity at discrete time intervals. This leads to
redundancies, especially when the light intensity does not change.

convey information in AER, which is better suited to robotics as only the relevant
data – what changed in the scene – is transmitted, see Figure 1.1.

The AER is a hardware protocol introduced by Lazzaro et al. in [166], inspired
by spike-based communication. Conceptually, it consists of emitting events at
precise time, containing the address of the receptor responsible for this event.
Data itself is encoded in the time at which the event was emitted. In the case
when the latency between the sensor and the host remains constant, individual
events do not require to contain timestamps. This protocol defines an energy-
efficient communication, enabling less redundant computations and high pro-
cessing speed. Additionally, AER provides a natural way to encode visual infor-
mation into spikes.

1.2. Problem Statement

The research goals of this thesis are the following:

Research question 1. Can the synaptic learning rules developed
in computational neuroscience learn spatio-temporal representations
from event-based data?

These goals are addressed in Chapter 5 and Chapter 6 respectively. The general
approach is introduced in Chapter 4.

3
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Research question 2. How can these visual representations map to
robot control?

1.3. Approach

The main role of the brain is to control the body by developing sensory and mo-
tor skills [289]. Processing in the brain is implemented with neural architectures
communicating asynchronously with stereotypical, instantaneous spikes. These
architectures are distributed, hierarchical, recurrent, and heterogeneous [182]. In
this thesis, it is shown how visuomotor tasks can be solved by combining neuro-
morphic technology with neural learning techniques.

Learning techniques in spiking neural networks are often referred to as synap-
tic learning. Unlike conventional backpropagation used in deep learning, these
rules take into account biological constraints such as locality of information and
neural dynamics. Respecting these constraints enables the development of effi-
cient neuromorphic hardware. These learning rules are often solely evaluated
on classification tasks and rarely guide experimentations in a neuroscience lab
or improve mainstream computing technology. Collaborations between theoreti-
cal neuroscientists and roboticists are required to evaluate such learning rules in
real-world tasks. They can learn representations and encodings from a dataset,
but can they handle motor control mechanisms and sensorimotor integration in
closed-loop like the brain does? What can we learn about the organization of
plasticity in the brain from theoretically guided principles? These questions are
addressed in this thesis by embodying synaptic learning rules onto robots to solve
visuomotor closed-loop tasks, see Figure 1.2.

Figure 1.2.: Diagram of a Neurorobotics closed-loop setup. The sensor data is
encoded into spike-trains and sent to input neurons of the SNN. The
spike-trains of the motor neurons are decoded to motor commands
for the robot.

4
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In a closed-loop setup, sensor data is encoded into spike-trains and sent to input
neurons of the SNN. The spike-trains of the motor neurons are decoded to motor
commands for the robot. As in a biological brain, learning is performed online
and locally within the network through synaptic plasticity. Neuromorphic hard-
ware such as SpiNNaker, IBM TrueNorth or Intel’s Loihi can be used to simulate
the SNN. Conceptually, encoding, decoding and SNN simulation are happening
simultaneously instead of sequentially. Therefore, the robot time needs to be syn-
chronized with SNN time, technically handled by neurorobotics tools [4, 285].

In this thesis, visual information is provided in the form of event streams, which
can be naturally encoded into spikes, see Figure 1.1. Indeed, previous work on
synaptic learning rules often focused on object recognition from a static image en-
coded with Poisson spike-trains. This encoding converts pixel intensities to rates
of spikes, as sampled from a Poisson distribution for a given time interval. By ne-
glecting the role of retinal adaptation, such encoding slows down processing and
poorly scales to a continuous stream of visual information. On the other hand,
event-based data can capture visual information even for very fast motions such
as microsaccadic eye movements.

1.4. Summary of the Contributions

The summary of the contributions of this thesis is listed here. Each contribution
is discussed thoroughly in its respective Chapter. Each Chapter corresponds to a
series of publications that are outlined in this Section. Specifically, Chapter 5 and
Chapter 6 address the two research goals of this thesis: learning spatio-temporal
representations from event-based data with synaptic plasticity rules, and control
robots from these representations. Addressing these goals required the develop-
ment of dedicated tools which are themselves contributions, discussed in Chap-
ter 4. Indeed, some of these tools, such as the Gazebo Dynamic Vision Sensor
(DVS) plugin, were already used by other researchers in their work [62, 148].

• Tools for Visuomotor Neurorobotics: We developed tools that enable sim-
ulated and real-world visuomotor experiments to be conducted with event-
based data. We additionally showcased these tools in demonstrators. In
[15], we introduced the Gazebo DVS plugin, which simulates event-based
vision in the closed-loop robotics simulator Gazebo. This simulator is demon-
strated in an end-to-end lane following experiment, with a Braitenberg ve-
hicle implemented with a SNN. It was also used in many of our subsequent
work [8, 11, 14, 4]. We released the code for the simulator to open-source1,
which was integrated into the Neurorobotics Platform (NRP) and used by
other researchers [62, 148]. In [16], the neuromorphic DVS head is intro-
duced to perform eye movements, built from Dynamixel servos and 3D
printed parts. Eye movements are relevant in the context of neuromorphic

1https://github.com/HBPNeurorobotics/gazebo_dvs_plugin
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1. Introduction

vision since they enable edge extraction from static scenes (microsaccades)
and attention shifts (saccades). This head is demonstrated in a stereo vision
setup in [16] and used to record a static object classification dataset in [6].
Further, a method to connect event-based data to SNNs is presented and
a simple attention mechanism improving accuracy and efficiency is intro-
duced. This mechanism is evaluated in [6].

• Learning Visual Representations from event-based data: Many synaptic
plasticity rules had already been proposed in the field of computational
neuroscience but little was known as to how these rules perform to learn
spatio-temporal representations from event-based data. Additionally, be-
ing a very active field of research, a strong collaboration with computa-
tional neuroscientists (mainly from TU Graz and the University of Califor-
nia, Irvine) was necessary to keep up to date with the latest rules. We show
that top-down synaptic plasticity rules derived to optimize an objective
function outperform bottom-up rules solely based on observations in the
brain. Evidence for this result is provided in Table 5.2, which reports the ac-
curacy of the evaluated methods on the DvsGesture dataset. First, we eval-
uated Liquid State Machine (LSM) in [14] and Spike-Timing-Dependent-
Plasticity (STDP) in [9] for prediction and classification from event-based
data respectively. The accuracy obtained with these rules was below state-
of-the-art machine learning techniques not relying on SNNs. Second, the
rules derived from machine learning – Event-Driven Contrastive Diver-
gence [211] (eCD) in [17] and Event-Driven Random Backpropagation [213]
(eRBP) in [6] – have been evaluated. These rules achieved an accuracy com-
parable to deep learning networks with the addition of convolutions or at-
tention mechanisms. We finished by deriving and evaluating our own rule,
Deep Continuous Local Learning [12] (DECOLLE), during my stay at Uni-
versity of California, Irvine in [12]. This rule achieves the best performance
ever reported on the DvsGesture dataset in supervised learning fashion.
The code implementing this rule was made open-source2.

• Visuomotor Coupling: Closing the visuomotor loop involves learning a
mapping from spatio-temporal representations to motor commands. We
evaluated three different approaches. First, we manually defined this cou-
pling in [6] by associating a predefined reaching and grasping trajectory to
every object class in the dataset. This method is commonly used in robotics
for its simplicity but is limited. We then evaluated the reward-learning rule
Synaptic Plasticity with Online Reinforcement learning [150] (SPORE) on
the lane following task in [8]. This rule could learn performing policy on-
line but is also limited in aspects of network size, learning time and accu-
racy. Lastly, we evaluated a prediction error minimization technique in [11]
relying on the predicting LSMs from [14]. In this work, a simulated robot
was able to reproduce movements visually similar to a demonstrated move-
ment.

2https://github.com/nmi-lab/dcll
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1.5. Outlook

Researchers made breakthroughs both in the field of deep learning and neuro-
morphic engineering over the course of this thesis. The field of deep reinforce-
ment learning, introducing how deep networks could be trained with backprop-
agation to solve reinforcement learning tasks, was initiated in 2015. This has led
to the emergence of generic artificial intelligence learning from experience, capa-
ble of beating humans in Atari [200, 47] and Go [267]. Similarly, in neuromorphic
engineering, both IBM and Intel – the two major chip manufacturing companies
– released their neuromorphic chips, Loihi [84] and TrueNorth [41] respectively.
Samsung also released a new neuromorphic vision sensor in [272]. The fact that
industry leaders invest in neuromorphic technology witnesses its potential.

Spiking neurons can be seen as conventional artificial neurons, but with temporal
dynamics and only communicating with 0s and 1s [214]. In that sense, the accu-
racy of SNNs is necessarily lower than that of ANNs which can communicate
with real-values. So why do large technology companies invest in neuromorphic
hardware? Because the constraint of spike-based communication enables hard-
ware optimizations allowing low energy consumption and fast operation. The
advantage of low energy consumption especially is critical, as it was shown that
training a single deep network on a Graphics Processing Unit (GPU) emits more
CO2 than an average car during its whole lifetime [277]. Research in learning
with SNNs in sensorimotor loop is therefore essential to retain technological ad-
vances in a fossil-fuel-free world with reduced energy availability.

1.6. Thesis Organization

This thesis is structured as follows. In Chapter 2, the important background in-
formation to understand neurons, synapses, and vision, from a biological and
a computational perspective is presented. Follows a review of the related work
in Chapter 3. This review is divided into a computational neuroscience part, on
state-of-the-art synaptic plasticity rules, and a robotics part, with state-of-the-art
algorithms for event-based vision. The next Chapters are then dedicated to the
work that was conducted within this thesis. Chapter 4 introduces the approach
and the tools developed to address the research goals, used throughout the the-
sis as well as by other researchers in the field. The first research goal, learning
spatio-temporal representations from event-based data is addressed in Chapter 5.
The second research goal, mapping visual representations to motor commands is
addressed in Chapter 6. Chapter 7 concludes the thesis. Three appendices are
provided documenting SNN simulators (Appendix A), preliminary results on an
adapted eRBP rule (Appendix B), and the blueprints of the neuromorphic DVS
head developed within the thesis (Appendix C).
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2. Background

The subject matter of this study is transdisciplinary. This thesis is intended for
readers with a computer science background. This Chapter is therefore dedi-
cated to providing the necessary background knowledge in biology, computa-
tional neuroscience, and neuromorphic engineering. The two Sections in this
chapter make a parallel between the brain as a computational organ (Section 2.1)
and artificial neural networks modeling these computations (Section 2.2). Since
this thesis focuses on visuomotor tasks, this parallelism is extended to biological
vision and neuromorphic vision sensors.

2.1. The Brain in Biology

Pioneer work that paved our modern understanding of the nervous system was
initiated more than 100 years ago [242, 93]. The brain is the main organ of the
nervous system, which performs computations leading to cognition. Nowadays,
the mechanics of these computations can be observed with an impressive level of
detail thanks to the progress in imaging techniques such as Electroencephalog-
raphy (EEG) and Magnetic Resonance Imaging (MRI). Neuroscientists were able
to draw large scale maps of different brain areas with respect to their functions.
At the small scale, neurons and their synaptic connections were identified as el-
ementary processing units. The link between these two scales – how individual
neurons organize into large functional circuits – is the focus of current research
[118].

2.1.1. Biological Neurons

The human brain has around 100 billion neurons. Neurons are cells in the ner-
vous system, the main information processing unit. Information is primarily
processed with chemical and electrical signals. A neuron is separated from its
surroundings by a cell membrane permeable to some types of ions (electrically
charged particles). The difference in ions between the interior and the exterior
of the cell leads to a polarization of the membrane, called membrane potential.
Specific ions, such as potassium (K+) and sodium (Na+) can cross the membrane
through specialized channels. The crossing of a channel is driven by two forces:
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2. Background

chemical force (following the concentration gradient) and electrical force (follow-
ing the voltage gradient). At rest, potassium and sodium ions cross the mem-
brane in both directions [152]. Potassium concentration is higher within the cell,
while sodium concentration is higher outside, leading to an equilibrium in mem-
brane potential between −30 mV to −90 mV.

Figure 2.1.: Schema of the soma of a biological neuron (length varies from 10 to
100 microns). Opening and closing of ion channels alter the mem-
brane potential locally.

The cell body of a biological neuron (called soma) is depicted in Figure 2.1. The
opening and closing of new ion channels alter the membrane potential. Partic-
ularly, neural membranes have ion-specific voltage-gated channels, which open
and close depending on the membrane potential. With a sodium voltage-gated
channel, once the membrane potential reaches the threshold to open the gate,
more sodium ions will flow through the neuron following the chemical and elec-
trical gradient. This will lead the membrane potential to increase even further.
Conversely, the presence of potassium voltage-gated channels which opens when
the membrane potential is high will allow potassium to flow out of the neuron,
leading the membrane potential to fall. These events – brief peaks in membrane
potential – are called action potentials, or spikes, and constitute the main mech-
anism neurons have to communicate with each other. An action potential has a
duration of few milliseconds and an amplitude of about 100 mV. It travels across
synapses to other neurons, affecting their membrane potential in turn.

The membrane potential is not the same on all the surface of a neuron. The
anatomy of a neuron consists of multiple dendrites, a soma and an axon. Ac-
tion potential at the soma (more precisely, at the axon hillock) will be conducted
through the axon to other neurons. On the other hand, action potentials at the
dendrites increase the somatic membrane potential in the soma, but may not be
sufficient to trigger a somatic action potential, due to the dissipation of the ions,
call electrotonic spread. In general, multiple simultaneous dendritic action po-
tentials are required to trigger a somatic action potential.
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While the extent of dendrites is limited to about 1 cm [100], axons can extend
above 1 m in the human body. They are insulated with Myielin sheath preventing
a traveling action potential to fade away, interleaved with voltage-gated sodium
channels to amplify it. Most connections between neurons are with neighbors,
while only a few connections are long-range.

2.1.2. Biological Synapses

Contact points between neurons are called synapses which are complex mem-
brane junctions. The human brain has around 100 trillion synapses so that a neu-
ron can be connected up to 10 000 other neurons. In most cases, the axon of the
pre-synaptic neuron is connected to a dendrite of the post-synaptic neuron, al-
though axon-to-soma and axon-to-axon connections also exist. Some synapses
are electrical and allow ions to flow directly from a neuron to another. However,
most synapses are chemical and transmit signals with molecules called neuro-
transmitters.

Figure 2.2.: Drawing of a biological synapse. The pre-synaptic neuron releases
neurotransmitters which open ion channels on the membrane of the
post-synaptic neuron.

A chemical synapse is depicted in Figure 2.2. A terminal-end of an axon contains
vesicles of neurotransmitters attached to the membrane with SNARE proteins. In
presence of a pre-synaptic action potential, voltage-gated calcium (Ca2+) chan-
nels open, letting calcium ions flow into the axon. Calcium binds to the SNARE
proteins, triggering the release of the neurotransmitters contained in the vesicles
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outside the cell, in the synaptic cleft (the gap between the pre- and post- synap-
tic neurons). The post-synaptic neuron has neurotransmitter-gated ion channels,
which only open in presence of some neurotransmitters. If these channels are
sodium channels, sodium will flow in and the membrane potential of the post-
synaptic neuron will increase, called excitatory Post-Synaptic Potential (PSP). On
the other hand, if the neurotransmitter-gated channels are potassium-specific,
then potassium will flow out and the membrane potential of the post-synaptic
neuron will decrease, called inhibitory PSP.

2.1.3. Synaptic Plasticity

The amount of neurotransmitters in the pre-synaptic neuron as well as the num-
ber of receptors in the post-synaptic neuron varies in time. These two quanti-
ties are often grouped together in the term synaptic strength or synaptic efficacy.
Changes in synaptic strength are referred to as synaptic plasticity or neuroplas-
ticity. Synaptic plasticity alters the amplitude of the PSP response.

An increase in synaptic strength lasting from minutes to hours is called Long
Term Potentiation (LTP). On the other hand, a decrease in synaptic strength is
called Long Term Depression (LTD). The mechanisms underlying synaptic plas-
ticity are still under active research. In 1949, Donald Hebb postulated in his book
that synaptic efficacy increases when a pre-synaptic neuron repeatedly takes part
in firing a post-synaptic neuron [129]. This is often summarized with the sentence
“fire together wire together”. However, while commonly used in literature, the
term “hebbian learning” is vague and captures two separate concepts [49]: local-
ity of information and functional expression. Importantly, synaptic plasticity can
only depend on local information, available in their vicinity. Any information
useful for learning – such as pain or reward signals – therefore need to be carried
through learning channels.

Around the year 1997, it was discovered experimentally in vitro that the precise
time of spikes plays a crucial role in synaptic plasticity [59, 186, 188, 171, 187].
This has led to the derivation of a variety of rules termed STDP to explain the
experimental results. However, further experiments – including in vivo – have
shown that the play between precise spike-time and synaptic plasticity was not
as simple as originally formulated in [104, 177]. It is now assumed that STDP is a
manifestation of an underlying learning framework yet to be discovered.

Neuromodulators are molecules in the brain which can also influence neural dy-
namics by altering neuronal and synaptic properties by targeting ion channels
[209]. The effect of neuromodulators can be nonlinear and span over multiple
timescales. While fascinating, it is not yet clear how neuromodulators should
be incorporated into synaptic learning rules. An interesting research direction
would be to investigate the role of neuromodulators in propagating local learn-
ing signals. However, this line of research is out of the scope of this thesis.

12



2.1. The Brain in Biology

Aside from synaptic weight changes, new synapses can form between neighbor-
ing neurons, and existing synapses can retract. This process is called structural
plasticity since it changes the topology of a network. Both synaptic plasticity and
structural plasticity are believed to be the main processes responsible for learn-
ing [92, 76]. It is also assumed that the genome plays an important role to sup-
port learning mechanisms [294, 195], itself shaped by evolution and experience
(through epigenetic modifications).

In summary, many forms of plasticity have been observed in the brain. However,
it is not clear how these rules are orchestrated for functional learning to emerge.
To progress in this field, it was suggested in [49, 264] that learning theory should
drive new biological experiments, rather than the other way around. This thesis
subscribes to this view by embodying learning rules on physical robot bodies to
solve visuomotor tasks.

2.1.4. Principles of Biological Vision

The sense of sight is an important evolutionary advantage for all animals living in
environments exposed to sunlight. Most animals forms have photoreceptors, and
complex eyes evolved independently several times since the Cambrian explosion
approximately 541 million years ago [164, 291, 218]. Eyes vary greatly across
species, from replication of simple photoreceptors (facet eyes in insects) to very
complex multi-pupils structure (as the mantis shrimp). This Section focuses on
the mammalian eye and the encoding of visual stimuli to electrical signals in the
nervous system through the retina, a process called transduction.

Retina

The eye is the organ responsible for acquiring, encoding, and transmitting impor-
tant information about the light reflected in the environment. The retina, located
on the back of the eye, contains the neural circuits dedicated to these tasks. The
first layer of neurons in the retina consists of photoreceptors (cones and rods)
that absorb light and transduce this signal into a change of membrane potential.
Light is an electro-magnetic wave with an amplitude and a frequency. The hu-
man eye has three types of cones absorbing light of three different frequencies,
interpreted as red, green, and blue. The cones are therefore responsible for our
colored vision. There is only one type of rods, responsible for night vision, mo-
tion detection, and peripheral vision. The human retina has about 120 million
rods and 6 million cones. Most cones are located in the center of the retina, called
the fovea, while most rods reside outside of the fovea. The fovea represents 1% of
the retina and only covers 5◦ in the center of the visual field, hence the necessity
of eye movements [198].

The structure of the human retina is depicted in Figure 2.3a. The photo-receptor
cells are connected to the bipolar and horizontal cells, which themselves connect
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(a) Human eye (b) Fixational eye movements

Figure 2.3.: Human eye, the structure of the retina and eye movements. Fixational
eye movements move the sensed light across photoreceptors.

to the amacrine cells and the ganglion cells. The signals from the ganglion cells
travel outside of the retina through the optic nerve. There are about 1.5 million
ganglion cells in a human retina [210]. These neural circuits form a pre-processing
pipeline, from raw points (photoreceptors are equivalent to pixels) to higher-level
visual attributes such as simple shapes, edges, and motions.

Neuroscientists distinguish at least 17 different types of ganglion cells which
combine into separate parallel processing pathways. Two important pathways
are the parvocellular pathway and the magnocellular pathway. The parvocellu-
lar pathway consists of specialized cells with high spatial resolution, perceiving
details and colors, but a low temporal resolution. On the other hand, the magno-
cellular pathway consists of specialized cells with low spatial resolution, and no
color perception, but a high temporal resolution. It was suggested in [179] that
these pathways project to different layers of the visual cortex. The parvocellular
pathway would be responsible for processing color, form and blob, and the mag-
nocellular pathway for motion and depth. However, new observations such as
the discovery of the koniocellular pathway disproved this hypothesis [268, 210].
It now appears that the different pathways project and combine in complex pat-
terns in the visual cortex, no single pathway having the monopoly for a particular
visual property.

Eye Movements

As noted in [163], nearly all animals with good vision – humans included – have
a repertoire of eye movements. The goal of this Section is to provide an overview
of the role of eye movement in visual perception, outlining applications of this
knowledge to artificial, event-based vision systems. Movements of the eyes are
generally the same in both eyes [198].

The first types of eye movements evolved to stabilize light on the photoreceptors
(vestibulo-ocular reflex and the optokinetic response). These are common to most
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animals with eyes.

Human eyes explore the visual scene with rapid movements called saccades.
During a saccade, both eyes jump simultaneously with peak velocity around
900 ◦ s−1. Our eyes perform up to 3 saccades per second interleaved with fixations.
The duration of a fixation varies depending on whether our attention is caught. It
is believed that this exploration strategy evolved to prevent blur from rotational
photo-receptor motion (1), ease the detection of movement (2) and disambiguate
the flow-field to estimate depth from translational motions (3) (enumeration from
[163]).

During fixation, the eyes are still in motion. Fixational eye movements refer to
the movements of the eyes while we fix our gaze on an object. They are be-
lieved to play a major role in our visual perception. Presumably, a central role
of fixational eye movements is to prevent visual fading. Visual fading describes
the phenomenon of stationary objects fading from perception under perfect reti-
nal stabilization and has been demonstrated in various laboratory experiments.
Fixational eye movements generate neural activity at the level of retinal photore-
ceptors, by moving receptive fields over otherwise stationary stimuli [192]. Thus
it is possible that the goal of oculomotor fixational mechanisms is not retinal sta-
bilization, but controlled image motion optimal for visual processing.

Three kinds of fixational eye movements can be distinguished, as depicted in
Figure 2.3b:

Tremor Wave-like motion of the eyes with low amplitude (in the order of
the diameter of a cone) and a frequency around 90 Hz. Tremors
may be sufficient to maintain retinal activity in the early visual
system.

Drifts Occur simultaneously with tremor and describe slow motions of
the eye, across a dozen of photoreceptors.

Microsaccades Small, fast, jerk-like eye movements during voluntary fixation
which carry the retinal image across a range of several dozen to
several hundred photoreceptors, and are usually about 25 ms in
duration [192]. The amplitude of microsaccade is usually about
0.5◦ and there is a clear preference for horizontal and vertical di-
rections [249].

Regarding the role of microsaccades, it has been argued that these jerk-like move-
ments might contribute to perception by generating visual transients, which are
important for the transmission of edge information in the human visual system
[109]. See [249] for a more recent survey on the role of microsaccades.

Lastly, the eyes can also perform slower, smooth eye movements. Humans can
track a moving target with smooth pursuit. This complex mechanism involves
predicting the object’s motion.
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2.2. Modeling The Brain with Neural Networks

In the last years, neuroscientists acquired a broad knowledge about the electro-
chemical reactions happening in neurons and synapses. Nowadays, it is possible
to simulate a neuron at a high level of accuracy, accounting for its geometry, its
ion concentration, and its channels. However, this level of detail is impractical
when the goal of the simulation is to accomplish function. Indeed, there’s a clear
trade-off between biological accuracy and required computational resources to
simulate a neuron model. A better approach to achieve function with neural sim-
ulations is therefore to identify which characteristics of a neuron are important
for its dynamics and how can they be simplified. This simplification requires to
hypothesize which biological processes are functionally relevant and which ones
are biological artifacts. This work is carried out by theoretical neuroscientists,
also called “modelers”. A neuron model often consists of a set of parameter-
ized dynamical equations describing the evolution of a multi-dimensional state
in time with respect to its input.

2.2.1. Neuron Models

The first computational neuron model was developed in 1943 by McCulloch and
Pitts [196]. Their model consists of a weighted sum of the inputs followed by a
Heaviside function, leading the output to be either 0 or 1 (“all-or-nothing”). This
simple model leads to the more general framework of analog neurons currently
used in deep learning. Like the McCulloch and Pitts neuron, an analog neuron
consists of a linear sum followed by a non-linear activation function. The activa-
tion function can be chosen freely and output real numbers. In general, the acti-
vation function is nonlinear (so that an ANN can compute nonlinear functions)
and differentiable (to allow gradient descent for learning). Despite the simplic-
ity of the analog neuron model, it was proven that ANNs can approximate any
function to an arbitrary level of accuracy (universal approximator) [135]. Mathe-
matically, an analog neuron is formalized with the equation:

yi = φ

∑
j∈pre

wij × yj

 , (2.1)

with φ the activation function, pre the indices of the pre-synaptic neurons, yj their
activations and wij their associated weights. An analog neuron is depicted in
Figure 2.4a.

Which biological processes described in Section 2.1.1 do analog neurons model?
For the McCulloch and Pitts neuron with the Heaviside activation function, the
binary output of the neuron can be seen as the presence of an action potential in
the axon hillock (a spike) since only these are transmitted to other neurons. The
threshold at which the neuron changes its output from 0 to 1 is an abstraction for
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the geometry of the membrane and its ion channels. Similarly, the real-valued
output of an analog neuron is regarded as a rate of spikes.

It is important to note that a feedforward ANN does not take temporal dynamics
into account. Indeed, a feedforward ANN is a function that maps a vector space
to another, without a state. To solve this problem, recurrent connections can be
added to the ANN to form a recurrent ANN. In this case, the computation of
a recurrent hidden layer activity relies on its activity in the previous time-step,
as well as the current previous layer activity. Such connections can be seen as
providing a context for the computations, as in the networks discussed by Elman
in [96], later referred to as Elman networks. It was proven that a recurrent ANN
can implement any program with a finite number of units (Turing completeness)
[266].

Despite the loose modeling of biological neurons, it seems that ANNs share sim-
ilarities with biological neural networks [94, 290]. Additionally, at the functional
level, they can solve a wide variety of tasks at super-human level [267, 200].

(a) Analog neuron (b) Spiking neuron

Figure 2.4.: Analog and spiking neuron models. Unlike spiking neurons, analog
neurons do not take temporal dynamics into account. Analog neu-
rons have real-valued activations resulting from a non-linear differen-
tiable function φ applied to the sum of their weighted input. Spiking
neurons have a membrane potential u evolving with respect to time t
and depending on weighted incoming spikes.

On the other side of the spectrum, neuroscientists derive neuron models to under-
stand their dynamics rather than solving computational problems. Some years
after the McCulloch and Pitts neuron, Hodgkin and Huxley proposed their neu-
ron model in 1952 [134]. The Hodgkin-Huxley neuron models the dynamics of
the membrane potential in the giant axon of a neuron in the squid. This dy-
namics therefore does not apply to all cells, but gives insights into modeling of
biological neurons. It accounts for the permeability of the cell (activation of the
gated ion-channels) and the balance of sodium (Na), potassium (K) and unspe-
cific leakage-ions (L), see Section 2.1.1. Specifically, the Hodgkin-Huxley model
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2. Background

is described with the following equations [134, 118]:

τm
du

dt
= −

∑
k

Ik + Isyn(t),∑
k

Ik = gNam
3h(u− ENa) + gKn

4(u− EK) + gL(u− EL),

dx

dt
= − 1

τx(u)
(x− x0(u)) for x ∈ {m,n, h}.

(2.2)

The membrane potential u(t) depends on the internal ion currents Ik and the
synaptic input current Isyn. The other three state variables m,n and h describe
the permeability of the membrane – the current activation of voltage-gated ion-
channels. The sodium-channels are controlled by m and h while the potassium-
channels are controlled by n. The other variables are constants representing the
ion-specific potential at equilibrium (ENa, EK and EL, also called reversal poten-
tial), the ion-specific conductance (gNa, gK and gL) and the membrane conduc-
tance τm.

The Hodgkin-Huxley neuron closely models biological processes with high ac-
curacy compared to analog neurons. Importantly, with this model, neurons have
multi-dimensional states evolving in time, as described by the differential equa-
tions in Equation (2.2). This complexity comes at the cost that it takes more re-
sources to simulate, and harder to derive functional networks. All these consid-
erations are reminiscent of spiking neuron models considered in this thesis.

Remarkably, the Hodgkin-Huxley neuron model generates action potentials of
similar shape, amplitude and duration as the ones observed in the brain. How-
ever, most computational neuroscientists nowadays assume that the particular
shape of an action potential is functionally irrelevant. In other words, action po-
tential (or spikes) can be approximated with instantaneous events carrying no
additional information but the precise time at which they occur. Neuron models
relying on this hypothesis to simplify the neural dynamics are called phenomeno-
logical models. They do not provide a precise description of the electro-chemical
reactions in the neural substrate but describe the behavior of a neuron in terms
of input (currents) and output (spikes). These simplified models focus on the key
properties of biological neurons, such as event-based communication and local-
ity. They are employed by computational neuroscientists to reduce the compu-
tational cost of their simulation, while still allowing to generalize computational
theories of the brain. Such models can also be obtained by reductions of more de-
tailed models, such as the Izhikevich model introduced in [142] which simplifies
the Hodgkin-Huxley neuron model to Integrate-and-Fire (IF) dynamics.

The IF neuron model is the most popular phenomenological neuron model, intro-
duced as early as 1907 by Lapicque [165, 38]. As the Hodgkin-Huxley neuron, the
IF neuron also hold a state variable reflecting the membrane potential u, but the
dynamics of action potentials is neglected. Instead, spikes are generated in a ad
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2.2. Modeling The Brain with Neural Networks

hoc fashion when the membrane potential crosses a threshold. This usually fol-
lows a reset of the membrane potential as well as a refractory period (a duration
during which the neuron can not spike). As the Hodgkin-Huxley neuron, the IF
neuron models the dynamics of the membrane potential as a capacitor [72]:

τm
du

dt
= −Ileak(t) + Isyn(t),

Ileak(t) = u(t)− urest,
(2.3)

with u the membrane potential, urest the resting membrane potential at equi-
librium and Isyn(t) a current describing the effect of synaptic input (incoming
spikes). With this formulation, the current Ileak leaks exponentially.

Conventionally, spikes are emitted when the membrane potential u reaches a
threshold θthresh. This is called a hard threshold: s = Θ(u−θthresh), with Θ the Heav-
iside function1. Alternatively, spikes can also be emitted stochastically: P (s =
1|u) = σ(u), with σ the sigmoid function. After a spike, the membrane potential
resets for a certain refractory time, typically chosen around 5 ms.

The generic differential equation of a IF neuron can be rewritten using filters (tem-
poral convolutions). In this case, we have:

u(t) = η ∗ s(t) + ε ∗ Isyn + urest, (2.4)

where s(t) is the spike-train of the neuron and ∗ denotes a temporal convolu-
tion. The kernel η reflects the reset and refractoriness after a spike, while ε(t) =
exp(−1/τm)× exp(−t/τm) models the shape of PSPs. The spike-train of a neuron
can be formulated as s(t) =

∑
f∈spikes δ(t − tf ), with δ the Dirac function2 and tf

the times at which the neuron spiked. This formulation is the basis of the Spike
Response Model (SRM) [117, 118]. The dynamics of the different terms of a SRM
are depicted in Figure 2.5.

Spiking neuron models such as Hodgkin-Huxley and IF are referred to as point-
neuron models, as depicted in Figure 2.4b. Conversely, multi-compartment mod-
els account for the geometry of the neuron by computing the membrane potential
of dendrites separately. The increased biological plausibility comes at the cost of
more computations, although in this case, researchers found functional benefits
of modeling dendrites [255, 123]. conversely, mean-field models consist of mod-
eling the activity of a population of neurons. These models are therefore less
detailed than point-neuron models. In this thesis, we only relied on point-neuron
models of the IF type. These are the most widely used by researchers and sup-
ported by neuromorphic hardware.

1Also called unit step function: f(x) = 0 if x < 0, otherwise 1
2Mathematical entity only meaningful when integrated: δ(x) = 0 for x 6= 0 and

∫
δ(x)dx = 1

19



2. Background

2.2.2. Synapse Models

In ANNs, synapses – connections between neurons – are abstracted as weights.
A weight is a one-dimensional real-valued variable often denoted as w. The set
of all weights in the ANN are the parameters to train, although training is imple-
mented in an ad hoc fashion with backpropagation. This weight is an abstraction
for the amount of neurotransmitters in the pre-synaptic neuron and the num-
ber of receptors in the post-synaptic neuron. Indeed, these quantities have been
observed to vary with respect to neural activity and are considered crucial for
learning, see Section 2.1.3.

In SNNs, synapses model the synaptic current contribution Ijsyn of a neuron j after
a spike. The synaptic input Isyn is the sum of the pre-synaptic current contribu-
tions. The simplest type of synapse multiplies the spike-train with a synaptic
weight:

Isyn(t) =
∑
j∈pre

Ijsyn =
∑
j∈pre

wjsj(t), (2.5)

with wj the synaptic weight and sj∈pre the pre-synaptic spike-trains. In this case,
a given spike leads to an instantaneous current injection of amplitude wj in the
membrane potential. The PSPs will then fade exponentially with the τm time
constant of the neuron. Another common type of synapse provide α-shaped PSPs
(see Figure 2.5):

τsyn
dIsyn

dt
(t) = −Isyn(t) +

∑
j∈pre

wjsj(t). (2.6)

This introduces another time constant, τsyn, which can also be adjusted for every
synapse. Other synapse types, such as conductance synapse, can also model Isyn

as a function of the membrane potential u. In general, inhibitory synapses are
simply modeled with negative weights.

Moreover, synapses in SNNs have a few more common properties compared to
their analog counterparts. Synapses can connect to specific receptor types, having
different effects on the post-synaptic neuron. They can also delay the transmis-
sion of a spike, accounting for the length of the axon and the length of the den-
drite. On top of biological plausibility, these delays also have functional advan-
tages to perform temporal computations such as optical flow and stereo-vision
with event-based data [44, 126].

Additionally, synapse models can also consist of multi-dimensional states evolv-
ing in time [161]. This state can be used functionally to prevent forgetting [298] or
store information for learning [296, 55]. Since the chemical reactions in biological
synapses are rather complex (see Section 2.1.2), such a state is biologically plau-
sible. However, maintaining a synaptic state in simulation is computationally
expensive since the number of synapses grows quadratically with the number of
neurons.
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Figure 2.5.: Example dynamics of the individual terms of a SRM neuron i with
pre-synaptic neurons j. The PSPs are α-shaped, see Equation (2.6).
The threshold θthresh = 0.5 is depicted with dashed lines.

2.2.3. Synaptic Learning Rules

Synaptic learning rules model synaptic plasticity by formalizing synaptic weight
changes. These rules can be evaluated by their biological relevance and their
ability to solve a particular task, typically minimization of a loss function. As
discussed in [49], synapses in the brain can only access local information. The
most generic formalization of a synaptic learning rule is therefore:

∆wij = f(local variables). (2.7)

The concept of locality of information is also crucial for neuromorphic hardware.
Indeed, while computer memory significantly improved in the last years in terms
of storage and density, the latency to fetch information has largely remained
the same. Nowadays, this latency is much higher than the processing speed of
standard Central Processing Unit (CPU). This problem is referred to as the von
Neumann bottleneck. Neuromorphic hardware address this bottleneck by dis-
tributing computations to different physical locations (digital chips or analog cir-
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cuits). The information required for updating the neural and synaptic dynamics
is stored in small and local memory, physically close to the computational pro-
cess that needs it. Neuromorphic hardware can therefore achieve a remarkable
processing speed and energy efficiency.

Which information is considered local? This is ultimately determined by the bi-
ological system, but realistic assumptions have to be made by the modeler. It is
reasonable to assume that pre-synaptic neuron activity (yj), post-synaptic neu-
ron activity (yi) and the synaptic weight itself are local properties. The original
hebbian rule, as well as Oja’s rule [223] can be formalized with no further infor-
mation:

Simple Hebbian ∆wij ∝ yiyj,

Oja [223] ∆wij ∝ yiyj − y2
iwij,

where ∝ denotes proportionality, to account for the learning rate. Oja’s rule is a
modification of the simple Hebbian rule which regulates weight growth and was
shown to compute the principal component of the input [223].

Importantly, if an information is considered local but does not originate from
the synapse itself, then this information has to be physically transported to the
synapse. This is the concept of learning channels introduced in Baldi et al. [49].
Usually, a learning channel is used to convey an error signal, providing informa-
tion about the current performance at the task:

Perceptron [251] ∆wij ∝ (T − yi)yj,
Backpropagation [254] ∆wij ∝ Biyj,

with T a supervised target and Bi the post-synaptic backpropagated error. The
problem of assigning responsibility to a neuron in the current task performance in
the form of an error signal is referred to as the credit assignment problem. Solving
this problem is a major challenge when deriving new learning rules, particularly
when considering multi-layer networks. Additionally, the credit assignment is
not only spatial but also temporal since SNNs have temporal dynamics: a spike
leaves a lasting trace in the network state.

The formalization of the learning rules so far introduced was based on ANNs,
but can be adapted to SNNs with small adjustments. SNNs distinguish them-
selves with spike-based communication and continuous time dynamics. This
way, pre-synaptic yj and post-synaptic yi activity refer to the spikes. Synaptic
plasticity rules computing weight updates with respect to precise spike-times of
pre-synaptic and post-synaptic neurons are denoted with STDP. These rules were
developed after the discovery that precise spike-time plays a crucial role in synap-
tic plasticity [116, 188]. Usually, STDP rules are formalized as follows [125]:

∆wij ∝ f(w)× e
−|∆t|
τ , (2.8)

with ∆t = yi − yj the time difference between a post-synaptic and pre-synaptic
spike pair, τ a time constant (usually around 20ms) and f a function. Setting
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f(w) = k > 0 leads to the spiking version of the Simple hebbian learning rule, see
Figure 2.6a. A slightly different formulation allows asymmetric weight updates
by distinguishing the cases when ∆t > 0 (pre- before post-synaptic spike) and
∆t 6 0 (post- before pre-synaptic spike):

∆w ∝

f−(w)× e
−|∆t|
τ if ∆t 6 0

f+(w)× e
−|∆t|
τ if ∆t > 0

. (2.9)

In general, causal firing (pre before post) increases synaptic efficacy, and acausal
firing decreases synaptic efficacy [188], see Figure 2.6b. The learning rules relying
on this framework are by nature unsupervised and spike-driven. As for ANNs,
more advanced learning rules which solve the credit assignment require more
information to be considered local.
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Figure 2.6.: Models of STDP observed in [129, 59, 188] and described by Equa-
tions (2.8) and (2.9) with τ = 20ms.

Since learning rules are derived to minimize errors, they are often solely evalu-
ated on pattern classification tasks. The focus of this thesis is to evaluate them in
a visuomotor context.

2.2.4. Neuromorphic Vision

The effort to build in silico the first stages of retinal processing started in 1988
with Mead and Mahowald [197]. This effort, still pursued today by many re-
searchers, has led to the development of neuromorphic vision sensors – or silicon
retinas. These sensors offer a new paradigm in the field of vision: event-based
processing. Conventional cameras sense complete frames at regular time inter-
vals. Conversely, neuromorphic vision sensors emit events upon local light in-
tensity changes. In its simplest form, an event consists of a location (pixel coordi-
nate), a timestamp of when the change occurred and a polarization flag denoting
whether light intensity increased or decreased.
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The first neuromorphic vision sensor to become available on the market was the
DVS presented in 2008 by Lichtsteiner et al. [173]. Unlike traditional cameras,
every pixel is integrated into a dedicated circuit consisting of a photoreceptor cir-
cuit, a differencing circuit and a comparator circuit. The photoreceptor circuit
converts input current from the photodiode into a voltage logarithmically. It has
individual pixel gains allowing a high dynamic range and responds quickly to
illumination changes. The differencing circuit amplifies these changes and the
comparator circuit emits ON and OFF events when the changes cross a thresh-
old.

Nowadays a few research institutes and companies now build such sensors [173,
239, 272], although development is still in an early stage. Compared to conven-
tional cameras, silicon retinas have multiple advantages:

Temporal resolution Events are sensed and transmitted in the order of 10 µs. In
contrast, the temporal resolution of standard cameras is in
the order of 10 ms.

Dynamic range Since pixels are independent, the range of sensed light in-
tensity is 140 dB (compared to 60 dB for standard cameras).

Energy efficient The stream of events is very sparse compared to frames,
leading to low power consumption. The same is true for bi-
ological brains and on neuromorphic hardware in general.

Low redundancy Only new information – what changed in the scene – is
provided. Thus, online event-based algorithms have fewer
data to process than their frame-based counterparts.

All these advantages are meaningful for the field of robotics.

The concept of frames (or images) does not exist in event-based representation.
Since the field of computer vision mainly focused on processing frames, most vi-
sion algorithms can not be used directly to process events. Additionally, a stream
of events recorded by an event-based sensor necessarily has a temporal compo-
nent. Therefore, any event-based algorithm needs to account for time.

The current silicon retina prototypes also have disadvantages. At the time of
writing, the spatial resolution does not exceed 640×480 pixels, achieved by Sam-
sung in [272]. The prototype used throughout this thesis, the DVS, has a spatial
resolution of 128×128 pixels [173]. Most of these sensors do not sense color and
only provide information about light intensity (gray-scale). Additionally, aside
from ATIS [239] and DAVIS [67], these sensors do not provide an absolute mea-
surement of the light intensity at all, just relative changes.
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3. Related Work in Neuroscience
and Event-Based Vision

The field neurorobotics is young and overlaps with computational neuroscience,
neuromorphic technology and robotics. This thesis is about processing event
streams with SNNs. The methods that this thesis relies on were mostly inspired
by the field of computational neuroscience. Therefore, a review of the state-of-
the-art synaptic learning rules is given. Subsequently, a review of the state-of-
the-art methods to process event streams, with and without SNNs is provided.
Finally, an overview of the neurorobotics visuomotor tasks in literature were
event-based vision was used to control robots is given.

3.1. Synaptic Learning Rules

At the time of writing this dissertation, there is still no consensus in the neuro-
science community on how the brain learns and what computations it performs.
Instead, new synaptic learning rules are regularly derived with various degree
of biological plausibility and functionality. These rules are usually evaluated on
pattern classification tasks. In this Section, an overview of the state-of-the-art
synaptic learning rules that inspired this thesis is given.

3.1.1. Learning Representations with STDP

We introduced STDP in Section 2.2.3, see Equations (2.8) and (2.9). This descrip-
tion yields an unsupervised learning rule where the weight change only depends
on pre- and post-synaptic spike times. While the relevance and simplicity of this
rule are discussed, it remains a highly influential synaptic learning rule [187]. A
recent review on training SNNs with STDP is available in [236].

It has been successfully demonstrated that STDP is capable of learning visual
representation from images in SNNs [154, 58, 139, 88], and can be implemented
in hardware [262]. Most of these work encode images with Poisson spike-trains
fed to the SNN, as depicted in Figure 3.1a. This encoding consists of having one
input neuron per pixel which is set to spike at a given frequency depending on its
brightness according to a Poisson distribution. An image is presented to the SNN
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for a specified duration, usually around 300 ms, with a pause between images for
the SNN to return to its resting dynamics.

(a) Rate-coding (b) Rank-order coding

Figure 3.1.: Encoding analog values to spikes

Accuracy above 90% is reached for the MNIST dataset in [154, 58, 139] using a
supervised learning signal. Indeed, despite that the STDP rule is by nature un-
supervised, a training signal forcing the desired post-synaptic neurons to spikes
will increase the synaptic weights from the spiking pre-synaptic neurons. This
technique was used in Tieck et al. [21] to learn grasping motions with a 5-finger
robotic hand. A major drawback of this approach is that it supports only a single
learning layer since such supervision signals are usually not known for the in-
termediate layers. Therefore, the presented approaches are limited to one or two
hidden layers.

In [88], an unsupervised STDP rule is coupled with a winner-take-all circuit to
achieve better performance on MNIST than the previous work. The architecture
consists of two recurrent layers, one excitatory and one inhibitory. The input neu-
rons are connected to all excitatory neurons. Every excitatory neuron is connected
to a corresponding inhibitory neuron which will inhibit all other excitatory neu-
rons in the previous layer. By letting the network process images with STDP, the
initial random preferences of the excitatory neurons for particular features are
increased through competition imposed by the inhibitory layer. Classification is
achieved by associating a label for every excitatory neuron with respect to the
digit to which they are the most tuned (obtained by counting the spikes during
a presentation of all digits). The method reaches a final accuracy of 95% on the
MNIST dataset in an unsupervised fashion with STDP.

STDP in Convolutional Architectures

A series of work focused on training convolutional multi-layered SNNs to learn
robust visual representations with STDP in an unsupervised fashion [193, 153,
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194]. The latest work formalizes STDP as follows [154]:

∆w =

{
a−w(1− w) if ∆t 6 0

a+w(1− w) if ∆t > 0
. (3.1)

This formulation of STDP imposes soft bounds on the weights between 0 and 1
and does not depend on the precise value of ∆t. In this work, the images were en-
coded with a latency code (bright pixels spike first) instead of a rate code (bright
pixels spike more) used in most other works. This type of encoding is denoted
as rank-order coding, depicted in Figure 3.1b. This representation allows the net-
work to classify very fast since no integration time is needed to count spikes,
consistent with biology [279, 178, 138]. Additionally, the activity of the network
is very sparse with only around 1000 spikes per image, and features are learned
from a few samples. The spikes emitted by the network are fed to a Support Vec-
tor Machine (SVM) which reaches 98.4% accuracy on MNIST and 82.8% accuracy
on the ETH-80 dataset which only contains 410 samples per class for 8 classes. On
the same dataset, a convolutional ANN of the same structure reaches 81.9% with
supervised backpropagation, demonstrating the ability of the approach to learn
from a few samples.

Other works focused on learning generative models with variants of STDP. In
[230], a method based on an auto-encoder is presented. The learning rule moves
the synaptic weights of the SNN to reproduce the input. With the addition of a
supervised dense layer, the network accuracy reaches 99.08% on MNIST.

Voltage-based STDP

Biological experiments have shown that synaptic plasticity in the brain did not
only depend on precise spike-times but also other factors such as frequency and
cooperativity [270]. This has led modelers to augment the original STDP rule
with new local information to explain the observations obtained in biological ex-
periments. Such development has led to the Clopath rule proposed by Clopath
et al. in [78, 79]. This influential rule augments STDP with a parameter modeling
the post-synaptic membrane potential. Following the notation of this thesis, a
simplification of the rule can be expressed as:

dw(t)

dt
∝ s̄j(t)[ū

+
i (t)− θ−]+[ui(t)− θ+]+︸ ︷︷ ︸

LTP

− sj[ū−i (t)− θ−]+︸ ︷︷ ︸
LTD

, (3.2)

with ui(t) the post-synaptic membrane potential, ·̄ denoting low pass filtering
and [·]+ a linear rectification. It was shown that this rule could fit a variety of
biological synaptic plasticity experiments, highlighting the importance of mod-
eling the post-synaptic potential in the plasticity rule. Interestingly, a number of
recent top-down synaptic plasticity rules – presented in Section 3.1.4 – rely on the
post-synaptic membrane potential to compute the synaptic gradients.
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Reinforcement Learning with STDP

So far, unsupervised and supervised learning rules based on STDP have been
presented. By integrating a modulatory reward term in the STDP equations, a
reinforcement learning rule can be derived.

Only a small number of work is related to reinforcement learning with spiking
neural networks while addressing the previous points. Groundwork of reinforce-
ment learning with spiking networks was presented in [143, 102, 169, 105]. In
these papers, a mathematical formalization of how dopamine modulated STDP
(DA-STDP) solves the distal reward problem with eligibility traces is introduced.
Specifically, the brain needs a form of memory to reinforce previously chosen ac-
tions since the reward is received only after a rewarding action is performed. This
problem is solved with the introduction of eligibility traces, which assign credit
to recently active synapses. This concept has been observed in the brain [106, 229]
and is used throughout this thesis. Fewer works evaluated DA-STDP in an em-
bodiment for reward maximization – a recent survey encompassing this topic is
available in [63].

3.1.2. Probabilistic Inference through Neural Sampling

Biological experiments have demonstrated that neurons and synapses in the brain
have a stochastic behavior, yielding a high trial-to-trial variability [250]. This ob-
servation has led computational neuroscientists to study the computations per-
formed by SNNs using probability theory. In particular, a series of work using
STDP to learn probabilistic models are based on the neural sampling framework
introduced in Buesing et al. [69]. This framework enables SNNs to estimate prob-
ability distributions through sampling. Many tasks can be formulated in the con-
text of estimating probability distributions, which intrinsically model the uncer-
tainty about the environment. For example, classification tasks can be reduced to
the problem of estimating the probability that the sensory input was caused by a
given item.

The authors show how neural dynamics implement Markov chain Monte Carlo
(MCMC) sampling. Sampling is accomplished by constructing a Markov chain
that has the desired distribution as its equilibrium. A Markov chain consists of a
series of states M = (Z1, . . . , Zt), where the transition from one state to another is
given by a stochastic transition operator T (Zt|Zt−1). Under reasonable assump-
tions, and after finitely many steps, it can be shown that the probability of being
in a given state p(Zt = Z) does not depend on the initial state Z1: the probability
distribution over the state has reached the equilibrium.

In a SNN with continuous dynamics, the state of the network Z(t) consists of the
state of its neurons: Z(t) = (z1(t), . . . , zn(t)). The state of a neuron k is a random
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variable with a binary state:

zk(t) =

{
1 if neuron k fired recently
0 otherwise

. (3.3)

An additional time constant is introduced to determine the duration for which a
neuron remains active after a spike. Usually, this time constant is set to the re-
fractory period of the neuron. This framework imposes constraints on the neural
dynamics. In particular, the membrane potential has to respect the neural com-
putability condition:

uk(t) = log
p(zk(t) = 1|Z\k(t))
p(zk(t) = 0|Z\k(t))

, (3.4)

with Z\k(t) denoting the state of the rest of the network, aside from neuron k.
It is shown that linear neural dynamics correspond to Boltzmann distributions.
Additionally, this framework requires the neurons to have a probabilistic spike
function of the form P (s = 1|u) = σ(u). This framework enables probabilistic
inference by clamping spike-trains to a set of neurons and observing the activity
of the remaining ones.

Bayesian Computations with STDP

In [216], Nessler et al. show how a variation of the STDP rule implements a
stochastic version of the Expectation-Maximization algorithm in winner-take-all
circuits, enabling Bayesian computations. The architecture of a winner-take-all
circuit consists of two feedforward layers (input and output) of excitatory neu-
rons. Neurons in the output layer mutually inhibit each other, a pattern referred
to as lateral inhibition, yielding competition. Output spikes of the winner-take-
all circuit are interpreted as the Expectation step and the induced synaptic weight
change as the Maximization step. Only the synaptic weights between the input
and the output layers are trained, using the following variant of the original STDP
rule:

∆w =

{
e−w − 1 if the pre-synaptic neuron fired recently
−1 otherwise

. (3.5)

This rule leads the synaptic weight to converge to the log probability of a recent
pre-synaptic spike, assuming a post-synaptic spike. After learning, the synaptic
weights associated with a post-synaptic neuron describe a generative model for
the input. In this sense, the post-synaptic neuron fires when the synaptic input
resembles its generative model. The inference is performed by clamping spike-
trains on the input neurons and computing the output spikes. In Bayesian terms,
every input spike encodes an evidence for an observed variable, and every out-
put spike is a sample from the posterior distribution. The authors successfully
demonstrate the learning rule on multiple unsupervised tasks including hand-
written digit recognition.
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Event-Driven Contrastive Divergence (eCD)

A synaptic learning rule extending the neural sampling framework and approx-
imating the Contrastive Divergence algorithm is introduced in [211], called eCD.
This rule is used to train spiking Restricted Boltzmann Machine (RBM) in an un-
supervised fashion. The rule is formulated as a modulatory hebbian STDP as
follows:

∆w ∝ g(t)× e
−|∆t|
τ (3.6)

with g(t) a global modulatory signal with value −1 (unlearning), 0 (not learn-
ing) or 1 (learning). The modulatory signal imposes a temporal structure on the
training regime, as distinct phases are required in the presentation of a given sam-
ple. Specifically, four sequential phases are described during the presentation of
a sample:

1. Burn-in phase: g(t) = 0 and the input is clamped on the input neurons;

2. Positive Hebbian phase (LTP): g(t) = 1, learning the input distribution;

3. Burn-out phase: g(t) = 0;

4. Negative Hebbian phase (LTD): g(t) = −1, unlearning the model distribu-
tion.

In this case, the network architecture is necessarily based on the RBM structure:
two-layers network with bidirectional symmetric weights. Also, the spiking neu-
rons require to be in high conductance state as derived in [235] to sample from
the Boltzmann distribution. This is achieved by exposing IF neurons with ex-
ternal high-frequency noise. In this high conductance state, the neuron shows
stochastic firing of sigmoidal shape, determined by the input current and the
noise frequency. As with analog RBM, trained networks can be stacked on each
other to form a deep belief network. This method achieves 91.9% accuracy on
MNIST in an unsupervised fashion, against 92.6% with an identical ANN trained
with standard Contrastive Divergence.

This rule is improved in [215] by introducing stochasticity in the synapses, im-
plementing a synaptic sampling method. The authors model synapses with a
probability (≈ 50%) of dropping spikes from a pre-synaptic to a post-synaptic
neuron. It is shown that this simple addition significantly improves learning by
decreasing overfitting.

Synaptic Plasticity with Online Reinforcement learning (SPORE)

Synaptic Plasticity with Online Reinforcement learning [150] (SPORE) is an in-
stantiation of the synaptic sampling scheme introduced in [150, 149]. This frame-
work improves on the neural sampling framework of Buesing et al. [69] by addi-
tionally introducing stochasticity in the synaptic dynamics. Unlike conventional
reinforcement learning objective, SPORE does not converge to a local maximum
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policy but instead continuously samples different solutions from a target distri-
bution. The target distribution sampled by SPORE is defined as the expected fu-
ture discounted reward coupled with a prior term imposing sparsity constraints
on the network parameters.

Generally, the prior term is modeled as a Gaussian centered around 0: N (0, 1
cp

) .
The target distribution therefore peaks at biologically plausible parameter vectors
θ that likely yield high reward. Additionally, a temperature parameter T allows
to make the distribution flatter (high exploration) or more peaked (high exploita-
tion). Let’s r(t) denote the received reward at time t and yi the pre-synaptic spike
train of synapse i filtered with a PSP kernel. A SPORE synapse i requires three
dynamic variables to perform its local update:

(eligibility trace)
dei(t)

dt
= − 1

τe
ei(t) + wi(t) yi(t) (zposti(t)− ρposti(t))

(reward gradient)
dgi(t)

dt
= − 1

τg
gi(t) + r(t) ei(t)

(synaptic parameter) dθi(t) = β

(
cp(µ− θi(t)) + cg gi(t)

)
dt +

√
2TθβWi

where zposti(t) is a sum of Dirac delta functions placed at the firing times of the
post-synaptic neuron and ρposti(t) is the instantaneous firing rate of the post-
synaptic neuron at time t. The synaptic weight wi is given by the projection:

wi(t) =

{
w0 exp(θi(t)− θ0) if θi(t) > 0

0 otherwise
, (3.7)

with scaling and offset parameters w0 and θ0, respectively.

In [150], SPORE is evaluated on a binary classification task. The network receives
a reward when it makes the correct guess. After 3 h of learning, the network
policy reaches about 82% of the maximal reward. It was shown in [293] that
SPORE was able to learn 2D trajectories with a terminal reward. In this setup, the
SNN controls a 2D agent initially located in the center of a simulated water-maze.
The goal of the agent is to reach a given location in the maze (a platform) upon
receiving a go-cue. After 20 h of learning, the network reaches about 80% of the
maximal reward with annealing.

3.1.3. Recurrent Networks

So far, the presented approaches were either feedforward or constrained recur-
rent networks, such as RBMs [211] or winner-take-all circuits [88, 216]. Only a
few approaches were derived to train generic recurrent SNNs.
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Liquid State Machines (LSMs)

Liquid State Machines (LSMs) were the first and simplest recurrent architecture
for learning with SNNs, presented in [184]. A LSM consists of three distinct parts:
an input layer, a liquid, and readouts, as depicted in Figure 3.2. Neurons in the
input layer connect randomly to neurons in the liquid. The liquid contains recur-
rent connections providing a fading memory property. The recurrent connections
are classically not trained and seen as a random spatio-temporal kernel projecting
the input to a high-dimensional space. The liquid state is defined by the activity
of some neurons in the liquid. This liquid state is linearly mapped to the readout
neurons. Only this linear mapping is learned, usually in supervised fashion with
least-square regression [181]. This paradigm is referred to as reservoir comput-
ing. A similar approach was presented simultaneously and independently for
ANNs called echo state networks [146].

Figure 3.2.: Liquid state machine, also known as reservoir. Recurrently connected
pool of neurons with a readout layer.

The core concepts behind reservoir computing are ingeniously demonstrated in
[99]. In this work, the authors demonstrate how a linear classifier can solve the
Exclusive Or (XOR) problem by projecting input to a high-dimensional space.
Specifically, the input consists of two motors that can hit a bucket filled with
water. In this case, the liquid is physical water. The liquid state is captured with a
camera overseeing the surface of the water. It is shown that a perceptron can learn
the XOR problem between the two motors by projecting learning a projection
from the high-dimensional camera pixels. This work demonstrates that the water
performed a non-linear projection of the input. Indeed, it is well-known that XOR
can not be solved solely with a linear projection. Subsequently, LSMs have been
used in applications ranging from decoding actual brain activity [217] to control
robots [281, 71, 240, 23]. In general, however, tuning hyper-parameters to obtain
a well-behaved liquid for the sensory input is not trivial.

In a similar fashion, LSMs have also been used to predict future input in [183].
In this case, the movements of an object are simulated on an 8x8 sensor array.
The liquid consists of a SNN built with empirical data from microcircuits in the
somatosensory cortex of a rat. The liquid states were sampled every 5 ms. Differ-
ent readouts are trained to predict whether the object is a ball or a bar, where the
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object will exit the frame and the future activity of the sensors 50 ms in the future.
This work demonstrates how the liquid state abstracts a lot of information that
can be recovered with linear readouts. This work was extended in [70] with real
camera images pre-processed and down-sampled to an 8x6 sensor array.

More recently, it was shown that a set of echo state networks could be trained to
learn spatio-temporal patterns from event-based data in [159]. Each echo state
network predicts a single motion over a 17x17 sensor array. This is achieved with
a winner-take-all circuit ensuring that the networks do not learn redundant pre-
dictions. The predictions are provided for one time-step in the future. It is shown
that this architecture is capable of learning sparse spatio-temporal patterns.

Lastly, it was also shown in Tieck et al. [23] that a LSM could be used in combina-
tion with reinforcement learning methods for a closed-loop robot control target
reaching task. In this setup, the LSM is used as a state transformation of the in-
put, which is fed to a reinforcement learning algorithm called Proximal policy
optimization [259]. The readouts of the LSM are trained together with the rein-
forcement learning method.

Simple Recurrent Neural Networks

Recurrent ANNs consist of classical ANNs with recurrent connections leading to
memory. Generic recurrent ANNs can be trained with Backpropagation-Through-
Time (BPTT), which consists of unrolling the temporal computations into spatial
computations and applying backpropagation. In other words, the activity of a
recurrent hidden layer at a given time-step t is represented as a node in the com-
putational graph. This node receives input from the previous layer at time t, and
from the hidden node at time t − 1. It provides the input to the hidden node at
time t + 1. This requires to store the activity of the recurrent hidden layer for all
times in the sequence.

Simple recurrent ANNs consist of ANNs with limited recurrent connections. El-
man networks [96] are a subset of recurrent neural networks with one bipartite
hidden layer. The hidden layer is split between hidden neurons connected to the
input and output, and context neurons only connected to the hidden neurons.
Elman networks are trained with a learning rule applied at each time-step.

Long Short-Term Memory (LSTM)

The recurrent connections of a recurrent ANN can also be redefined to explicitly
layout meaningful temporal computations. The Long Short-Term Memory [132]
(LSTM) is a new building block aside from neurons, introduced in Hochreiter et
al. [132]. An Long Short-Term Memory [132] (LSTM) unit consists of a cell, an
input gate, an output gate, a forget gate, and a cell state. The cell is the persistent
state of the unit. The three gates control this state depending on the instantaneous
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input. This normalized propagation of the activation from a time-step to another
addresses the problem of keeping or resetting the memory. It was shown in [133]
that LSTM could solve non-trivial algorithmic problems.

The concept of LSTM was only very recently adapted to SNNs in Bellec et al.
[54]. In later work, an alternative approach to Backpropagation-Through-Time
(BPTT) more suited to SNNs was proposed in [55]. This rule, called Eligibility
Propagation [55] (e-prop), is of the same family as the DECOLLE rule presented
in Section 5.5, but additionally handles recurrent networks of adaptive-threshold
neurons.

3.1.4. Spiking Backpropagation

Almost all successful deep learning applications rely on the backpropagation al-
gorithm [254] for learning with gradient descent. The first equivalent derivation
for SNNs was introduced in Bohte et al. [64]. However, the original formulation
of the backpropagation rule is biologically implausible [50] and not suitable for
SNNs. The main arguments against the biological plausibility of backpropaga-
tion are listed in Bengio et al. [57]:

1. The feedback phase consists of only linear computations (while in biological
neurons, linear and non-linear computations are interleaved);

2. The feedback phase requires knowledge of the forward activation functions;

3. The feedback phase requires knowledge of the forward weights;

4. Computations are not based on spikes;

5. The forward and feedback phases alternate synchronously;

6. It is not clear where the supervised targets come from.

To these points, we can add the following:

7. It is not clear how to solve the temporal credit assignment locally.

This last point refers to the fact that spiking neurons have temporal dynamics,
leading network output to depend on previous neural activity. Therefore, com-
puting the gradient implicitly requires information about previous network ac-
tivities, a non-local operation in time.

In the same work, they propose modifications to the backpropagation rule ad-
dressing points (1) to (6). Indeed, more recent work has shown that backpropaga-
tion (as well as BPTT) can be implemented in a biologically plausible manner for
SNNs [213, 296, 55], including our own work [12]. All these rules address the pre-
vious points in a similar fashion, including the extra point (7). Point (2) is solved
by realizing that the precise knowledge of the forward activation is not necessary
and can be approximated, a method called pseudo-derivative or surrogate gra-
dient, see Neftci et al. [214]. This is crucial since the activation function of a IF
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neuron is the Heaviside function which is not differentiable (another solution is to
use a soft threshold [137]). Point (3) is addressed with random feedback weights,
a method introduced by Lillicrap et al. and Nøkland et al. [174, 219]. Point (5)
is solved by storing the information needed for learning at the synapse directly,
allowing spike-driven weight updates. Different approaches were proposed for
point (6), currently under very active research. Point (7) is addressed with Real-
Time Recurrent Learning (RTRL), a technique introduced in 1989 in Williams et
al. [287] and recently adapted to SNNs in Zenke et al. [296]. The remaining
points are solved intrinsically. A full derivation of our learning rule DECOLLE is
provided in Section 5.5.1 which formally shows how these techniques are used in
practice.

In most of the recent spiking backpropagation derivations for IF neurons, the
resulting synaptic learning rules have the form:

∆wij ∝ F (yj, ui, Ei), (3.8)

with ui the membrane potential of the post-synaptic neuron and Ei an error sig-
nal. The symbol ∝ refers to a proportionality relation – the multiplicative con-
stant is the learning rate which can be chosen freely. These types of rules are
called voltage-based since they assume that synapses have access to the voltage
of the post-synaptic neuron. Commonly, these three terms would be multiplied
together, in which case we refer to these rules as three-factor, consistent with bi-
ology [237, 261].

These recent developments have led the community to reconsider whether back-
propagation could be used in the brain and how. This hypothesis is supported
in the latest work from Lillicrap et al. [176], published in Nature Neuroscience in
April 2020. In the next sections, state-of-the-art alternatives to backpropagation
for SNNs are discussed.

Event-Driven Random Backpropagation (eRBP)

In Neftci et al. [213], the authors demonstrated Event-Driven Random Backprop-
agation [213] (eRBP) which is a form of approximate gradient backpropagation
in SNNs that translates into a three factor rule reminiscent of an error-modulated
Hebb rule. For analog networks with a mean square error loss, the backpropaga-
tion rule is described as follows for a weight from neuron j to neuron i:

∆wij(t) ∝ yj × φ′
∑
j′∈pre

wij′(t)yj′(t)

× Ei(t) (3.9)

with yj the output of neuron j, pre the set of pre-synaptic neurons, φ the activation
function of neuron i and Ei(t) the error for neuron i. This rule is interpreted for
spiking neurons with yj the spiking output (0 or 1) of neuron j and φ the spike
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function mapping the membrane potential to spikes, which is the unit-step func-
tion Θ [213]. The weighted sum of input spikes

∑
j′∈pre wij′(t)yj′(t) is interpreted

as the membrane potential Ii of neuron i. This leads to a voltage-based rule, as the
weight update depends on the membrane potential of the post-synaptic neuron,
similar to the Clopath rule presented in Equation (3.2). This rule is a three-factor
rule with yj the pre-synaptic term, Ii =

∑
j′∈pre wij′(t)yj′(t) the post-synaptic term

and Ei(t) an error term. However, the computation of the error term Ei(t) is non-
local and involves backpropagating errors from the output layer back to the input
layer. This backpropagation requires knowledge of the forward weights, causing
a weight transport problem.

In the last years, it became apparent that the computations of Ei(t) could be re-
laxed, solving the weight transport problem [174, 219, 144]. Specifically, it was
noted in Lillicrap et al. [174] that the feedback weights to backpropagate the er-
rors can be decoupled from the forward weights propagating the activations. It
was additionally shown that the network could adapt to fixed random feedback
weights, a method called (). Subsequently, it was shown in Nøkland et al. [219]
that the feedback weights could be directly connected from the network’s out-
put to all hidden neurons, bypassing the previous hidden layers. This technique,
appropriately called (), computes the error term as follows:

Ei(t) =
∑
k∈out

ek(t)gik, (3.10)

with ek the prediction error for output neuron k, out the set of output neurons and
gik a fixed random feedback weight. This rule was adapted to SNNs for the first
time in [213], named eRBP, requiringO(nneurons) extra synapses implementing the
random feedback. In other words, the neurons in eRBP calculate their error from
the spikes of the error neurons, which are connected back to all neurons in the
network, see Figure 3.3. These synapses have random fixed weights, and the
error is integrated in a dedicated compartment of the neuron.

Figure 3.3.: eRBP IF neuron. The credit of this neuron is stored in a dedicated
error compartment. It evolves with respect to error spikes generated
at the output layer of the network.

Additionally, the non-differentiability of Θ induced by the hard-threshold of spik-
ing neurons for emitting spikes was solved with surrogate gradients [214], see
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Figure 3.4.: Common approximations to the unit-step function to compute the
gradient of the spike by the membrane potential.

Figure 3.4. Specifically, an approximate derivative of Θ was used – in this case a
boxcar function, equal to 1 between bmin and bmax and 0 otherwise. Therefore, this
rule can be efficiently implemented in a SNN with weight updates triggered by
pre-synaptic spikes yj as:

∆wij(t) ∝

{∑
k∈out ek(t)gik if bmin < Ii(t) < bmax

0 otherwise
, (3.11)

Since eRBP only uses two comparisons and one addition for each pre-synaptic
spike to perform the weight update, it allows a real-time, energy-efficient and
online learning implementation running on neuromorphic hardware. Note that
the temporal dynamics of the IF neuron – PSPs and refractory period – are not
taken into account in Equation (3.11).

SuperSpike

SuperSpike – derived in Zenke et al. [296] – improves over eRBP by mathemati-
cally deriving backpropagation from the equations of the IF neuron. The authors
show that the errors of every synapse can be integrated online as part of the neu-
ral dynamics. This method, called RTRL, was originally introduced in 1989 for re-
current ANN [287]. It enables the differentiation of temporal dynamics by storing
states (interpreted as eligibility trace) instead of a history of previous activities.
Temporal correlations of different duration can therefore be learned with constant
memory requirements. This contrasts with BPTT, where space complexity scales
with respect to the duration of the temporal sequence.

Using the SRM formulation in Equation (2.4), the authors calculate the eligibility
trace as pre-synaptic spikes convolved with the post-synaptic kernel ε. Relying
on the van Rossum distance as a loss function, SuperSpike can train multi-layer
networks to learn a target spike-train. However, this setup requires one eligi-
bility trace per synapse, leading SuperSpike to scale temporally and spatially as
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O(N2), where N is the number of neurons. While the complex biochemical pro-
cesses at the synapse could account for the quadratic scaling, it prevents an effi-
cient implementation in digital hardware. In Section 5.5, we introduce DECOLLE
which improves over SuperSpike by requiring only one eligibility trace per neu-
ron. Additionally, this eligibility trace is integrated into the forward dynamics
computations, leading the spatial complexity of DECOLLE to be constant (O(1)),
see Algorithm 3. Another improvement over SuperSpike is proposed with e-prop
derived in Bellec et al. [55], which computes the gradient of adaptive threshold
neurons, providing a long-lasting memory to the SNN.

3.2. Neuromorphic Vision Applied to Robotics

The field of computer vision and its application to robotics is tailored to frame-
based representation provided by conventional cameras. On the other hand,
event-based vision sensors rely on AER, see Section 2.2.4. The divergence be-
tween frame-based data and event-based data entails that traditional computer
vision algorithms can not be used to directly process events. Neuromorphic en-
gineers have three possibilities to resolve this problem:

• Convert event-based data to frames by integrating events, enabling tradi-
tional computer vision algorithms and ANNs to be used. This integration
prevents low latency computations.

• Derive new asynchronous algorithms to process events directly and indi-
vidually, allowing low latency computations.

• Process events with SNNs, a subgroup of asynchronous algorithms, biolog-
ically inspired and potentially running on dedicated neuromorphic hard-
ware.

In some sense, even the conversion approach still relies on an event-based algo-
rithm to integrate events into frames. Ingenious integration methods have been
derived to minimize the loss of consequent temporal information. A frame-based
algorithm is then fed the current integration frame at given intervals. On the
other hand, asynchronous event-based algorithms do not explicitly create frames
but process events directly. Such approaches still need a form of memory of
the previous events, which can be stored as an asynchronously updating frame.
SNNs can be considered as a subgroup of asynchronous algorithms but deserve
their own section (Section 3.2.3) in the scope of this thesis. A recent survey on
event-based vision proposing a similar – although not identical – categorization
is provided in [111]. We depict these categories of algorithms in Figure 3.5.

AER can reduce the amount of data to process compared to conventional video
frames. This is an important advantage for embedded applications and robotics.
Learning visual representations from event streams is a field of growing im-
portance as can be witnessed by the increasing number of event-based datasets
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(a) Event-by-event algorithms (b) Frame-based algorithms

Figure 3.5.: Event-by-event and frame-based methods for processing event-based
data. Frame-based methods integrate events over time intervals, in-
ducing latency.

[292, 263, 43, 172, 136, 226, 299, 269]. These datasets contain labeled event streams
of either scenes involving motion (such as DvsGesture [43]) or static images per-
ceived by a moving sensor (such as N-Caltech101 [226]).

3.2.1. Conversion from address events to frames

The simplest method to convert events to a frame consists of aggregating them
during a determined time interval. This integration can be seen as a histogram
since the number of events is quantized per pixel for a given time interval. Usu-
ally, such integration leads to a two-channel frame – one channel for each polarity.
A frame-based algorithm is then run on every frame, thus at a constant frequency
defined by the integration time interval. This simple approach has some obvious
drawbacks. Mainly, there is a trade-off in the selection of the integration time in-
terval. Longer intervals contain more temporal information per frame since more
distant events are integrated. Conversely, longer intervals also destroy more tem-
poral information, since individual event timestamps are not considered. Espe-
cially, the same movement performed at different speeds will yield drastically
different frames.

Many simple but effective alternatives have been derived to resolve some of these
drawbacks. In [180], frames are created by integrating a fixed number of events
instead of integrating events for a fixed amount of time. This technique has the
advantage to provide similar frames for the same movements performed at dif-
ferent speeds. The frames are then provided to a convolutional ANN for gesture
classification. With this integration method, the network automatically runs at a
higher frequency when there is more motion in the scene, from 1 to 1000 Hz.

More complex approaches often rely on computing Surface of Active Events, as
introduced in [39]. The Surface of Active Events is a spatio-temporal structure
storing the last event timestamp for every pixel. Usually, two such surfaces are
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needed – one per event polarity. In this space, moving edges will appear as planes
with slope dependent of their velocity, and noisy events will appear isolated. This
technique was used in [204] to estimate the “life-time” of every event with respect
to their velocity on the image plane. Sampling a frame at a given time consists of
reporting all events alive at this time.

Recently, a generic framework was presented in [115] which can be used to char-
acterize multiple event-integration methods. The method consists of filtering the
events with a kernel (similar to the computation of the membrane potential, see
Section 2.2.1) for a given measurement. The filtered event stream is then sampled
on a regular grid, to obtain a spatio-temporal tensor (called Event Spike Ten-
sor). For example, considering event timestamp as the measurement leads to the
Surface of Active Events. Multiple measurements can then be stacked together.
An advantage of this method is that all the steps are differentiable, allowing an
ANN to learn at the event level by updating the filters. This method achieves
state-of-the-art classification on N-Cars [269] and N-Caltech101 [226] using the
pre-trained ResNet-34 architecture [128], as well as state-of-the-art optical flow
estimation on the MVSEC dataset [299]. One drawback of the approach is that it
requires events to be aggregated, preventing low latency computations as could
be provided by a SNN.

In [245], a recurrent ANN is proposed to convert event streams to reconstructed
gray-scale video frames. It is shown that the network can learn from simulated
data as obtained by the ESIM simulator [244]. This technique allows classic com-
puter vision methods to be used on event-based data.

In [114], an optimization method is proposed to find point trajectories on the
image plane by warping events. The optimal warping aligning events in spatio-
temporal space is obtained by minimizing the spread in the warped image. The
parameter of this warping can later be used to perform various computations,
such as estimating the optical flow, the depth, or the ego-motion of the sensor.
This framework is extended in [112] by providing a thorough evaluation of the
different loss functions that can be used to perform the alignment.

3.2.2. Asynchronous event-by-event processing

In this Section, we briefly report some of the problems and methods from the
literature processing address events asynchronously. Most of these approaches
are based on probabilistic filters since filters integrate information and operate
asynchronously by design [111]. Since these methods work without integrating
events, they can run with lower latency and are therefore preferred for high-speed
control loops [86, 82].

The problem of tracking corners in an event stream with event-by-event methods
is tackled in [203, 283, 77]. Corners do not suffer from the aperture problem and
are therefore a feature of choice to leverage event-based algorithms. In [203],
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corner detection is performed with few computations, allowing millions of events
to be processed per second on a CPU. The method consists of finding cliffs in the
Surface of Active Events, a characteristic trace of corners. Cliffs are detected if
arcs of surrounding pixels can be formed so that pixels on these arcs are higher
(more recent) than all others.

Tracking corners can be used to build and update a map of the environment,
crucial for the localization problem. Estimating the pose of the sensor from an
event stream using event-by-event methods was undertaken in [286] for planar
motions and [205, 207, 113] for 6-DOF (more approaches were proposed to solve
this problem by integrating events into frames). Generally, the observed events
are matched to entities (edges or corners) in a known map, and the pose trans-
formation is updated. In [205], a continuous-time formulation is proposed by
modeling the pose with cubic splines. This allows the pose to be interpolated
mathematically with respect to discrete control points estimated by the method.
Additionally, it is demonstrated that the absolute scale can be jointly estimated
using an inertial measurement unit (IMU).

Recognizing objects from event streams is proposed in [160]. In [160, 269], the
concept of time surfaces is introduced. Time surfaces describe the recent history
in the spatial neighborhood of an event. Patterns are then learned from the time
surfaces in a supervised fashion with feature hierarchy in [160] and histograms in
[269]. Time surfaces are equivalent to the membrane potential of input neurons
as defined in Section 2.2.1. Indeed, synaptic dynamics also exponentially filter
their input events and play the role of time surfaces. However, SNNs can have a
hierarchy of layers allowing the sharing of representations, which is not the case
when learning time surface prototypes.

Since event-by-event methods can process event-based data with lower latency
than frame conversion approaches, they were already used in fast control loops.
In [86], an asynchronous algorithm is presented to control a small robot goal-
keeper with 3 ms reaction time at a 4% CPU load. The method relies on track-
ing clusters of events. In [82], two DVSs are used to balance a pencil upright.
The method consists of evaluating the inclination of the pencil with filters us-
ing the Hough transform. In [120], a similar event-based Hough transform is
proposed, combined with an optical flow method, for tracking a sphere with a
moving DVS.

3.2.3. Neuromorphic Vision from Spikes

SNNs are a natural fit to process event-based data since events can be easily con-
verted to spikes. In this sense, SNNs belong to the category of asynchronous
event-by-event processing algorithms. SNNs have only been applied to a lim-
ited set of problems compared to other event-by-event algorithms discussed in
Section 3.2.2. The particularity of SNNs are:
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• computations are distributed across neurons;

• computations are ruled by dynamical equations;

• communication is based on instantaneous, stereotypical spikes.

Additionally, neural networks can represent any functions or algorithms by al-
tering their parameters, making them predisposed to learning. The NRP together
with the DVS Gazebo plugin developed in Kaiser et al. [15] and described in
Section 4.2.2 ease prototyping of visuomotor neurorobotics experiments.

In this Section, we discuss how SNNs were used in literature to process events.
Three distinct categories of approach can be identified:

• Hand-tuned networks: SNN with static weights (non-learning) engineered to
solve a particular task;

• Converted networks: conventional ANNs that were trained with backpropa-
gation synchronously and subsequently converted to SNN;

• Plastic networks: SNNs which learn from spikes with synaptic plasticity
rules.

The last category is the most ambitious since it requires the derivation of novel
biologically plausible learning rules. This field is beyond the scope of neuro-
morphic engineering and robotics alone and is mainly studied in computational
neuroscience. In this Section, we will only describe the synaptic learning rules
that were applied to the field of event-based vision. A broader overview in the
field of biological learning rules is given in Section 3.1.

Hand-tuned Spiking Neural Networks

Some basic features of the visual cortex are believed to be hard-wired from evolu-
tion rather than learned from interactions with the environment. This assumption
is verified in insects that rely on pre-wired microcircuits to compute optical flow
[185]. Similarly, many hand-tuned networks were derived to solve specific tasks
such as stereo vision [44, 238, 90, 227] and optical flow [252, 225] since SNNs are
computationally powerful but difficult to train. In both case, event-based sensors
provide a clear advantage over conventional frame-based approaches: precise
time of events is used as an additional constraint for matching. For stereo vision,
a recent survey of such approaches is available in Steffen et al. [20].

SNNs solving the stereo vision problem have been proposed in [44, 238, 227, 90]
and are based on Poggio and Marr’s cooperative algorithm for stereo matching,
which was published in 1982 [189]. They consist of a three-dimensional spiking
network where output neurons describe one unique point in the observed 3D-
space. In other words, an output neuron emits a spike when the location in 3D-
space becomes occupied or unoccupied.

42



3.2. Neuromorphic Vision Applied to Robotics

The stereo-matching process is described in [190]. It is also referred to as the cor-
respondence problem. First, a point of interest is selected in one image. Second,
the same point is identified in the other image. Third, the disparity between the
two points is measured, yielding the distance of the object. In practice, matching
a point from one frame to another is a difficult problem. This problem is simpli-
fied by considering the following physical constraints. Uniqueness constraint (C1):
for every given point seen by one area of one eye, at a specific time, there can be
at most one corresponding match in the other. Continuity constraint (C2): physi-
cal matter is cohesive and generally has a smooth surface. Compatibility constraint
(C3): the interest point should look similar in both images. These constraints were
translated into a SNN performing disparity computations from event-based data
in [90] by relying on micro-ensembles.

Hand-tuned SNNs were also proposed to approximate other functions. Particu-
larly, the Neural Engineering Framework (NEF) provide a simple method to ap-
proximate any function with a two-layer SNN of IF neurons. The method consists
of encoding multi-dimensional analog values in populations of neurons and com-
puting the optimal decoder approximating the function. The resulting networks
can then be combined to form complex cognitive architectures such as Spaun in
[274]. Similarly, a SNN approximating the Fast Fourier Transform was proposed
in [148] to detect cylinders on a snake robot from event-based data in simulation.
This method relies on the NRP and the DVS Gazebo plugin developed in Kaiser
et al. [15] and presented in Section 4.2.2.

Similarly, hand-tuned SNNs are also commonly used by neuroscientists to build
models of brain regions to approximate a biological function. In [65], a SNN mod-
eling the early regions of the visual cortex is proposed for a segmentation task
with crowding and uncrowding. This work is extended in Bornet et al. [3] with
a bottom-up attention mechanism transmitting segmentation signals. An em-
bodied evaluation in the NRP on the iCub robot shows that the model performs
comparably to humans in behavioral experiments. Recently, in [48], a hand-tuned
SNN controller modeling the regions of the human brain involved in eye move-
ments was presented This controller is demonstrated in a stereo tracking task
where a robotic head equipped with two cameras centers a moving laser dot in
the fovea of both eyes.

Converted Spiking Neural Networks

The other method to go around training a SNN from spikes consists of converting
a conventional ANN. Following this approach, training can rely on traditional
deep learning methods and backpropagation. Compared to the original ANN,
the SNN resulting from the conversion has lower accuracy, but higher energy ef-
ficiency with dedicated neuromorphic hardware. This workflow is the core con-
cept behind IBM TrueNorth [41], which is energy efficient but does not support
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on-chip learning. The goal then becomes to make the conversion without un-
acceptable performance loss. This involves tailoring the training process of the
ANN to ease the conversion.

Some common challenges when converting an ANN to a SNN involves dealing
with negative values. ANNs might use the sigmoid or the tanh activation func-
tions, which produce negative values. Negative outputs could be implemented
by inhibitory neurons, but inhibited neurons do not spikes thus do not commu-
nicate their value to subsequent layers. In practice, this problem is solved by
relying on positive activation functions, such as Rectified Linear Unit (ReLU),
which these days are the most commonly used activation function anyway.

In [73], a convolutional ANN with ReLU activation is tailored by adding an abso-
lute value function to the pre-processing step. Furthermore, all biases are set
to zero at all times during training since biases are hard to translate to spik-
ing neurons. The Max Pooling operation is substituted with Average Pooling,
which is easier to implement in a SNN. The conversion results in a small loss
of performance. Similar approaches have been used for event-based vision in
[234, 221, 89, 98, 253].

Spiking Neural Networks with Synaptic Plasticity

State-of-the-art synaptic learning rules are discussed in Section 3.1. Some of the
presented methods were successfully applied for learning visual representations
from images, relying on rate-based or latency-based encodings. Which methods
were successfully applied to learn vision from event-based data?

In [60], a variation of STDP is used to learn features from simulated and real
event-based data. All synapses are depressed on a post-synaptic spike, except the
ones that recently sent a pre-synaptic spike. The authors show that neurons tune
themselves to specific chunks of the motion observed by the event-based sensor
in an unsupervised manner. This tuning only happens with a proper balance of
lateral inhibition – allowing neurons to learn different parts of the motion – and
refractory period – preventing a neuron to learn multiple chunks. The method is
evaluated in a multi-layer network, with two different strategies: global learning
(all layers learn together) or layer-by-layer. By optimizing the hyper-parameters
with a genetic algorithm, it is shown that the method successfully learns to detect
cars on specific lanes with high accuracy.

In [151], a new method for learning spatio-temporal features with SNNs is in-
troduced. The method consists of evolving the network by adding neurons and
synapses to capture new features, jointly with a variation of STDP. It is demon-
strated that the method can learn to classify two types of motions – “crash” and
“no crash” – from event-based data in an unsupervised fashion.
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A spiking backpropagation method called SLAYER is introduced in [265] and
trained on event-based dataset in a supervised fashion. The method shows state-
of-the-art classification accuracy, 93.64% on DvsGesture with an 8-layers architec-
ture. However, this method learns offline and scales spatially as O(NT ), where
T is the number of time-steps. The method to be introduced in Section 5.4 and
Section 5.5 achieves equivalent or better results, learns online and does not scale
with the number of time-steps.

In [276], a set of reflexes for obstacle avoidance was implemented in a SNN using
the NEF for a mobile neuromorphic robot, the pushbot. These reflexes include
going back when too close to an obstacle, turn left or right at a medium distance
from an obstacle, go forward if there is no obstacle. The distance with obsta-
cles is estimated with a laser pointer mounted on the pushbot, visible from an
embedded DVS also mounted on the pushbot [81]. The SNN receives as input
the position of the laser pointer in the event stream, computed with classical al-
gorithms. Complex behaviors are learned offline by gathering the sensorimotor
data when the pushbot performed desired actions and training a new behavior
from this data in a supervised fashion. The pushbot learns to turn either left or
right in a T-maze depending on the presence of a visual clue, here a mirror.

The simulated lane following experiment that we describe in Section 4.3.1 was
improved in [62]. The authors evaluate DA-STDP (referred to as R-STDP for
reward-modulated STDP) in a similar lane following environment. Their ap-
proach outperforms the hard-coded Braitenberg vehicle presented in Section 4.3.1.
The two motor neurons controlling the steering receive different (mirrored) re-
ward signals whether the vehicle is on the left or the right of the lane. This way,
the reward provides information on what motor command should be taken, sim-
ilar to a supervised learning setup. The method is improved in [61] with a Q-
learning strategy and in [122] with a deep convolutional architecture for feature
extraction.

3.3. Summary and Conclusion

In this Chapter, it has been shown that neuromorphic vision sensors with AER
open the door to a new family of asynchronous algorithms. These asynchronous
algorithms either collect events into frames or process events directly and indi-
vidually. The former achieves higher accuracy in general, whereas the latter en-
ables very low latency, important for high-speed robotics. The field of robotics
is increasingly adopting the event-based paradigm for various tasks such as lo-
calization, mapping, object avoidance, optical flow, depth perception, and action
recognition. SNNs constitute a subset of asynchronous algorithms but are under-
represented to process event-based data in robotics.

Simultaneously, the field of computational neuroscience regularly develops ad-
vanced synaptic learning rules relying on spike-based communication. Initially,
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the modeled learning rules were solely accounting for some types of plasticity
observed in in vivo, such as STDP and Hebbian. These type of learning rules
are capable of training shallow networks to solve specific tasks with appropriate
tuning, but can not explain on their own the complexity of biological learning.
Enabled by recent findings in deep learning, new synaptic learning rules were
derived inspired by the success of backpropagation for ANNs. Strikingly, these
rules provide a framework orchestrating plausible types of plasticity as modu-
lated by an error signal. Additionally, these learning rules are capable of training
deep SNNs to achieve high accuracy in a sample-efficient manner.

The link between computational neuroscience, event-based computations and
robotics is still in its early stage. Only a few synaptic learning rules have been
evaluated on event-based data and integrated into a robotics closed-loop setup.
Indeed, there is a performance gap between approaches based on SNNs and other
approaches based on algorithmic or ANNs. However, the latest developments in
computational neuroscience as well as the brain itself are good indicators that
this gap can be closed.
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4. Basic Approach to Visuomotor
Neurorobotics

Neuromorphic vision sensors convey visual information differently than conven-
tional cameras, as discussed in Section 2.2.4. Silicon retinas emit address events
upon local light intensity change at the precise time of the change. Time itself rep-
resents information in event-based representations. Likewise, SNNs process in-
formation in an asynchronous and distributed manner, where precise spike-time
matters. These computational paradigms contrast with conventional algorithms
and computer vision methods.

In this Chapter, the approach to address the research goals introduced in Sec-
tion 1.2 is presented. Subsequently, requirements are identified, leading to the
development of tools and datasets. Further, these tools are used in two proof-
of-concept experiments. These experiments rely on engineered SNNs exhibiting
functional behavior by processing address events. More advanced self-organizing
approaches are benchmarked using the same tools in the next chapters (Chap-
ters 5 and 6). The material covered in this Chapter was originally published by
the author in [15, 16, 6].

4.1. Our Approach and its Requirements

Throughout this thesis, experiments will be performed by modeling the brain
with a SNN, the body with a robot, and the eyes with DVSs, as depicted in Fig-
ure 4.1. The research questions are addressed respectively by evaluating promis-
ing synaptic learning rules on event-based data and closing the loop with visuo-
motor mappings. In this Section, the approach to benchmark synaptic learning
rules and visuomotor mappings is outlined and discussed. These benchmarks
require novel tools to be developed to facilitate evaluation with the help of simu-
lations and experiments within the real world, as presented in Section 4.2.

4.1.1. Addressing the Research Goals

In the following, the two fundamental research questions of this thesis as intro-
duced in Section 1.2 are to be discussed:
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(a) Schema of biological visuomotor setup
(b) Structure of the artificial visuomotor

setup

Figure 4.1.: Modeling biological visuomotor experiments.

1. Can synaptic learning rules developed in computational neuroscience learn
spatio-temporal representations from event-based data?

2. How can these visual representations map to robot control?

We propose to address the first goal by evaluating the recent synaptic learning
rules on event-based data. Two questions follow from this proposition: how are
the synaptic learning rules selected, and how are they evaluated? The synaptic
learning rules to be evaluated are selected based on their performance in the field
of computational neuroscience, estimated by a continuous review of the state-
of-the-art. With a strong collaboration with computational neuroscientists of TU
Graz and University of California, Irvine, novel rules were evaluated on event-
based data after their initial introduction in the field. This allowed staying up-to-
date with the most recent rules – especially the ones based on backpropagation –
which were introduced in computational neuroscience during the studies for this
thesis.

The accuracies of the learning rules were evaluated on event-based datasets, as
presented in Section 4.2.1. This allows a direct comparison with other methods
introduced within the neuromorphic community, not necessarily based on SNNs.
Since the introduction of MNIST in 1998 by [167], datasets have become an essen-
tial tool to compare different approaches in computer vision research and devel-
opment. Object and motion recognition are classical tasks to evaluate the perfor-
mance of a learning rule. In the case of event-based data, both object and motion
recognition are performed on sensor-driven event streams. Therefore, the same
SNN can be applied to both tasks. This contrasts with conventional computer vi-
sion, where object recognition is performed on a single frame and motion recog-
nition on a sequence of frames. The results of this evaluation are summarized in
Table 5.2 on the DvsGesture dataset which served as the primary benchmark of
this thesis, see Section 4.2.1.

Addressing the second proposed research goal is more subtle. Evaluating a sen-
sorimotor mapping requires a closed-loop control structure. Closed-loop experi-
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ments have the particularity that selected actions influence the upcoming sensory
input stream, unlike visual representation learning which can be evaluated on
datasets. Additionally, such closed-loop control setups have to be simulated to
be reproducible and compared with other approaches. In the field of deep learn-
ing, this requirement resulted in the development of a variety of simulators espe-
cially to evaluate closed-loop policies, such as OpenAI Gym [68] and DeepMind
lab [52], both released in 2016. This thesis relies on the Neurorobotics Platform
(NRP), which is especially designed and shaped for SNNs and which builds on
the robotic framework Robot Operating System (ROS). For the experiments with
visual event streams, a simulator for the DVS was developed, which integrates
in Gazebo and the NRP, as presented in Section 4.2. The NRP was also used as a
tool for teaching students about robotic embodiments in Tieck et al. [22].

Furthermore, it is of high interest to investigate how eye movements can be com-
bined with neuromorphic vision sensors. As discussed in Section 2.1.4, eye move-
ments are an important characteristic of biological vision. While neuromorphic
vision sensors are not perfect replicates of biological retinas, they exhibit a simi-
lar fading property: no information is transmitted when light remains constant.
Therefore, we rely on a repertoire of eye movements inspired by biological vi-
sion, including microsaccades to perceive static scenes. This requires an active
neuromorphic robotic head that can control its eye movements. For this purpose,
a new eye-head configuration has been designed and assembled.

Consequently, it was necessary to connect the event streams provided by the neu-
romorphic vision sensors to SNNs. All approaches presented in this thesis rely
on the IF neuron model (see Equation (2.3)) since most of the proposed synap-
tic learning rules are derived from it. The connection from address events to IF
neurons is discussed in the following Section.

Requirements of the Approach

To summarize the requirements of the proposed approach which yields to the
development of the tools presented in Section 4.2; the following specifications
have to be considered in the neuromorphic tool set:

• Use of an event-based dataset to evaluate synaptic learning rules;

• Integration of a closed-loop DVS simulator to evaluate visuomotor policies;

• Use of an active neuromorphic head with a capability to move the eyes to
imitate macro- and micro-saccadic eye movements.
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4.1.2. From Address Events to Spikes

The spike representation used in SNNs and the AER used in neuromorphic sen-
sors are very similar. This allows a seamless connection between the silicon retina
and the artificial SNN-based brain.

The main difference between AER and spikes is that all spikes are stereotypical,
unlike events which carry a boolean value denoting an increase or decrease in
light intensity (ON-OFF). For a particular scene, the polarity of an event depends
on the brightness of the moving edge relative to the background. At first glance,
the polarity information can therefore seem to be negligible. Indeed, in many
early studies, this information was not propagated to the network to reduce the
number of neurons. In this case, either ON and OFF events are blended [16], or a
single polarity is fed to the network while the other is dropped.

In many cases, event polarity does contain important information. For some
dataset such as DvsGesture (see Section 4.2.1), event polarity carries information
about direction of motion (see Figure 4.5). It is therefore useful and beneficial to
convey this information to the network. The simplest method to propagate the
event polarity to the network is to double the number of input neurons, similar
to a two-channel image. ON-events are propagated to one channel while OFF-
events are propagated to the other.

Covert Visual Attention

In some of the presented methods, the addresses of input events have been trans-
lated depending on a moving attention window. A similar phenomenon is wit-
nessed in biology for frontal eye field neurons, referred to as visual receptive field
remapping [300, 271]. The attention window has a fixed size and its center is cal-
culated as the median event of the last nattention events, see Figure 4.2. Thanks
to the sparseness of event-based data, this computation is efficient and can be
performed online. This method belongs to the category of covert attention mech-
anism, signifying an attention shift which was not marked by eye movements.

This mechanism re-addresses the events relative to the center of the motion. The
same motion performed at two different locations in the sensor space will there-
fore lead to the same input neuron activity. In other words, this mechanism pro-
vides translation invariance at a very low computational cost. Conventionally,
convolutional networks are used to achieve translation invariance by process-
ing the whole frame with the same weight-sharing kernels. Convolutional layers
therefore require many neurons and many computations. In contrast, the pro-
posed method does not require additional neurons and has a low computational
cost. It is shown how this simple biologically motivated covert attention mecha-
nism boosts the performance of a dense network in Section 5.4.
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Figure 4.2.: Visualization of the attention window. Aggregation of 1000 events
for a sample of the DvsGesture dataset. Yellow pixels symbolize ON-
events, blue pixels are OFF-events. The red square represents the at-
tention window of size 64 × 64, calculated as the median of the last
1000 events.

4.2. Tools for Visuomotor Neurorobotics

In the previous Section, the proposed approach to process event streams with
SNN was outlined, and its requirements were identified. In this Section, the tools
that address these requirements are discussed. These tools were mainly devel-
oped within this thesis and have been made available in open-source, such as
the DVS simulator, which was already reused by other researchers in Bing et al.
[62] and Jiang et al. [148]. Concerning the datasets, we relied both on popular
open-source datasets such as DvsGesture to compare our methods against state-
of-the-art, and recorded a new dataset, suited to robotics tasks.

4.2.1. Event-Based Datasets

Datasets are important to evaluate and compare the performance of learning
methods in a reproducible manner. Constituting datasets of images was an im-
portant contribution to the field of computer vision. Likewise, in recent years,
many event-based datasets recorded with neuromorphic vision sensors have been
proposed1 Among the event-based datasets for classification, some consist of con-
verted image datasets as in Orchard et al. [226] for MNIST, while others consist

1see https://github.com/uzh-rpg/event-based_vision_resources for a curated
list
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of new motion recordings as in Amir et al. [43] for DvsGesture. Generally, im-
ages are converted by relying either on microsaccadic eye movements or on a
flashing display. With the event-based paradigm, both types of datasets – con-
verted images or motion – can be classified with the same method since even the
converted images have a temporal aspect (despite not bringing much informa-
tion, see [141]). In other words, both object recognition and motion recognition
methods operate on the same input: event streams.

Microsaccadic Datasets

To evaluate some of the learning methods proposed in this thesis, the open mi-
crosaccade dataset N-Caltech101 (converted from Caltech101) recorded in Or-
chard et al. [226] was applied. The same work also recorded N-MNIST, a con-
version of the MNIST digit dataset, on which we evaluated DECOLLE in [12]. A
sample from this dataset is depicted in Figure 4.3. The full N-Caltech101 dataset
consists of 101 object classes and a total of 8709 event stream samples. For our
early experiments with STDP, we relied on a subset of N-Caltech101 consisting
of few samples from three classes: airplanes, motorbikes, faces (see Section 5.2).

We additionally recorded a microsaccadic dataset of different graspable objects
with the developed neuromorphic head (Section 4.2.3). This dataset consists of
less than 100 samples for four classes: ball, bottle, pen and background. It was
used in the reaching and grasping experiments evaluated in Section 6.1. Some
samples from this dataset are depicted in Figure 4.4.

(a) Caltech101 (b) N-Caltech101

Figure 4.3.: Samples from Caltech101 and N-Caltech101 (events are integrated
over a 100ms time window) dataset. These datasets are used in Sec-
tion 5.2. Copyright c©2018, IEEE [9].
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ball bottle pen background

Figure 4.4.: Samples of the ball-bottle-pen-background microsaccade dataset.
Events were aggregated into frames and cropped to 32x32 pixels. Yel-
low denotes ON-events and purple denotes OFF-events.

Motion Recognition Datasets

DvsGesture is an action recognition dataset recorded by IBM using a DVS [43,
173]. It consists of 29 subjects performing 11 diverse actions in three different il-
lumination conditions, see Figure 4.5. The duration of the actions varies consider-
ably across motions, see Table 4.1 and Figure 4.6. Single motions may be about 1 s
or up to a duration of 18 s. We heavily relied on this dataset to evaluate and com-
pare the learning rules proposed in this thesis. Especially, comparisons have been
elaborated for: the spiking HMAX architecture trained with STDP as well as its
associated LSTM in Section 5.2, a dense feedforward network trained with eRBP
in Section 5.4 and a convolutional feedforward network trained with DECOLLE
in Section 5.5. An adapted version of eRBP is evaluated on this dataset a second
time in Appendix B. The results of all these rules on the DvsGesture dataset are
succinctly summarized in Table 5.2.

For HMAX and DECOLLE, samples were obtained from the dataset by extract-
ing time intervals of 100 ms and 500 ms respectively. For eRBP, a sample consists
of a full motion regardless of its duration. These differences emerge from the
capabilities of the SNN simulators that were used to simulate the networks, see
Appendix A for more explanations about simulating SNNs.
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(a) Arm movement circling
clockwise

(b) Arm movement circling an-
ticlockwise

Figure 4.5.: Each image shows the aggregated event stream over 20ms. The left
image is created from a sample of label 4, the right one from a label
5 sample. Yellow pixels symbolize ON-events, blue pixels are OFF-
events. The difference in motion direction is visible in the event po-
larity. Adapted from [6].

Label #Training #Test Description

1 97 24 Clapping
2 98 24 Right hand waving
3 98 24 Left hand waving
4 98 24 Right arm circling clockwise
5 98 24 Right arm circling anticlockwise
6 98 24 Left arm circling clockwise
7 99 24 Left arm circling anticlockwise
8 196 48 Arms rolling
9 98 24 Air drum

10 98 24 Air guitar
11 98 24 Other gestures

Table 4.1.: Labels of all the different classes in the DvsGesture dataset and their
description. The amount of samples of label 8 is doubled since arms
rolling were recorded and labeled with 8 for both rotation directions.
Source: [6].
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Figure 4.6.: Statistics on sample duration for each label in the DvsGesture dataset.
The red horizontal lines represent the median sample duration. Each
box indicates the interquartile range (IQR = Q3−Q1) per label, which
is the range between the first Q1 and the third quartile Q3. Whisker
pairs show the range of all sample durations within Q1 − 1.5 × IQR
and Q3 + 1.5× IQR. Outliers are represented by small circles. Source:
[6].

4.2.2. Closed-loop DVS Simulator

Simulating sensor data is a convenient computational technique to support ef-
ficient algorithm development. It reduces the need for real experiments, allows
parallel simulations, and provides ground truth relevant for evaluation and learn-
ing. In a closed-loop robotics scenario, such sensor simulation should be able to
consider and react to changes in the environment. This constraint is particularly
relevant for the DVS which only reacts to local light changes.

We proposed, implemented and open-sourced2 a DVS simulator in Kaiser et al.
[15]. This simulator is integrated as a Gazebo plugin, allowing closed-loop simu-
lations with other ROS components and robots. It relies on the same ROS message
type as the ROS DVS driver developed in [206]3, enabling a seamless transition
between simulated and real DVS data.

The purpose of our simulator is not to model a DVS with a high degree of accu-
racy, but instead to allow prototyping event-based closed-loop algorithms. Other
DVS simulators have been developed since 2016, notably in [208, 244]. These sim-
ulators can reproduce a DVS signal with a high degree of accuracy, but are not
integrated in off-the-shelf robotic simulators such as Gazebo, and do not support
closed-loop interactions.

2https://github.com/HBPNeurorobotics/gazebo_dvs_plugin
3https://github.com/uzh-rpg/rpg_dvs_ros
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Both the high-accuracy simulators and the implemented Gazebo DVS plugin rely
on a frame differentiation technique. In this case, a DVS is simulated by sub-
tracting new camera frames with an internal one storing the last light intensity
in memory. After the subtraction, a threshold is applied to only retain pixels
that have a significant difference in light intensity, positive or negative. Differ-
entiated pixels that have a value higher than a threshold θ are reported as ON-
events, while differentiated pixels with a value lower than −θ are reported as
OFF-events. After a differentiation, all generated pixel events are reported with
the time-stamp of the current frame, see Figure 4.8. The internal stored light in-
tensity is updated for the pixels that emitted events.

The threshold value θ is equivalent to the DVS bias, or to the slow light adaptation
parameter in biology [282]. By varying the threshold value with respect to the
global background luminosity, light adaptation can be obtained.

As seen in Figure 4.8, the DVS simulation is less noisy than the real DVS but
has a much lower temporal resolution. A drawback of this simple approach is
the inability to distinguish which address event should be emitted first when
many pixels are reported within the same differentiation step. Indeed, events
are emitted by batches when a new frame is received (Figure 4.8b). Even if this
drawback makes a poor DVS simulation, it is argued that a robust SNN should
be able to cooperate with such inputs. Certainly, the human visual system can
still perceive fluid motion when presented discrete frames with a sufficient frame
rate.

This type of encoding conveys motion information and differs considerably from
previous image encoding methods used in literature, which converts pixel values
to Poisson spike rates [88]. It also differs from rank-order coding as it can work
continuously without synchronization, see Figure 3.1. In biology, it was noted
that motion is processed separately from color and shape, and is strongly coupled
with the pre-motor areas of the cortex [157]. It is therefore a relevant encoding for
robotic control tasks.
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(a) Camera image (b) Aggregated DVS events

Figure 4.7.: Simulated camera image and DVS events in the lane following exper-
iment. Red pixels are ON-events, blue pixels are OFF-events. Copy-
right c©2016, IEEE [15].
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Figure 4.8.: Generated address events of a real DVS and a simulated DVS from
webcam images. Both cameras are observing the same stimuli of a
ball entering the field of view. The 2 dimensional image structure
is flattened to a 1 dimensional pixel index. ON-events are drawn in
red, OFF-events are drawn in blue. (a) With the real DVS, the events
have continuous time-stamps. (b) With the simulated DVS, the events
are batched in time-steps when a new frame is received. Copyright
c©2016, IEEE [15].

4.2.3. Neuromorphic Head for Oculomotor Control

As discussed in Section 4.2.2, the proposed DVS simulation does not simulate a
real DVS accurately. In this Section, an active visual robotic head with two real
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DVSs in stereo configuration mimicking saccadic eye movements is presented.
The blueprints of the 3D printed parts for building this head are provided in
Appendix C.

The DVS only detects local changes in light intensity, conveying motion infor-
mation. Therefore, a stationary scene with no dynamic changes and no moving
objects can not be detected by the DVS. For typical robotics applications, sens-
ing of static scenes is also important. To solve this issue, we equipped the pair
of DVSs with pan-tilt axis driven by electric motors in analogy to human eyes,
see Figure 4.9a. The obtained motion is similar to oculomotor eye movements,
necessary for basic scene perception by humans. This robot head can perform
microsaccadic eye movements, depicted in Figure 4.9b, inspired by the fixational
eye movements described in Section 2.1.4. Actively moving vision sensors allows
also to refocus the center of attention with saccadic eye movements. This can be
used in conjunction with the covert attention model introduced in Section 4.1.2
remapping the receptive fields without moving the eyes.

The head is built with custom 3D printed parts, one Dynamixel MX-64AT servo-
motor to tilt both DVSs simultaneously and two additional MX-28AT servomo-
tors to pan each DVS independently. The center of all rotations is approximately
the optical center of each DVS. This robotic head can be mounted on HoLLiE
[130], a humanoid robot developed at FZI.

(a) Neuromorphic head with two DVSs (b) Microsaccadic eye movements

Figure 4.9.: (a): The developed robotic head, reproducing eye movements with
two DVSs. (b): Microsaccadic motion of the DVS performed by the
robotic head. Source: [6].

4.3. Simulated and Real Experiments

In this Section, two early experiments connecting event-based data with SNNs
are presented – one in simulation, one in the real world. These early experiments
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rely on the tools presented previously, the Gazebo DVS plugin and the neuromor-
phic robotic head.

Specifically, an end-to-end lane following network is introduced in Section 4.3.1,
and a stereo vision network in Section 4.3.2. The lane following experiment is
useful to understand the dynamics of a closed-loop neurorobotic visuomotor
task and consequent requirements for learning. The neuromorphic stereo vision
experiment shows how event-based processing and SNN can ingeniously solve
building blocks of robotics. Both experiments do not learn – instead, they show
what SNN can achieve with hand-tuned weights. Learning these weights is the
focus of Chapter 5.

Throughout this thesis, these basic experiments will be extended with advanced
synaptic learning rules. The simulated lane following experiment is used to em-
body SPORE in Section 6.2. The neuromorphic robotic head is used to record a
visual grasping affordance dataset, presented in Section 4.2.1 and evaluated with
eRBP in Section 5.4.

4.3.1. Simulated Visuomotor Lane Following Experiment

The material covered in this Section has been originally published in Kaiser et al.
[15]. In this Section, the first proof-of-concept closed-loop experiment combining
all the components on which this thesis builds is presented. This experiment con-
sists of a visuomotor lane following task, where a simulated autonomous vehicle
has to drive and follow a track. The vehicle is controlled by a SNN agent that
receives address events from the simulated DVS and outputs on time steering
commands.

The experiment is neither too easy – as a random network is unable to follow
the lane, neither too hard – since the task can be solved with simple networks.
the difficulty of the task can be controlled by evaluating on different circuits, as-
sessing the generality of an agent. Circuits are designed using the world builder
provided by Zofka et al. in [301]. The world builder provides predefined tiles
containing straight road segments, curves with different radius and several inter-
section types. With this method, new circuit layouts can be designed and mod-
ified easily to get more variation in training data. Each street segment template
features two lanes, one in each direction with equal lane width, separated by a
dashed center line. The simulated roads are flat and without any external visual
disturbances.

Additionally, metrics can easily be defined to evaluate the performance of the
agent or to provide learning signals (see Section 6.2). For the circuits, lanelet
maps are generated as ground truth. Lanelets are a representation of the drivable
environment defined by the left and right boundaries of a lane segment [56]. They
can be used to calculate distances between the ego vehicle and the center of a lane,
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4. Basic Approach to Visuomotor Neurorobotics

as well as the offset between vehicle heading and lane orientation. Following this
strategy, it is possible to obtain a metric for the quality of the vehicle pose.

The framework for the visuomotor lane following experiment is shown in Fig-
ure 4.10. ROS is used as communication middle-ware between the different mod-
ules. Gazebo is the physics simulator and represents the environment, including
the vehicle. The DVS simulation provides visual input to the network in form of
address events, see Section 4.2.2. Address events from the DVS are converted to
spikes in spike generator neurons, see Figure 4.11b. There are 12 spike generator
neurons organized in two rows and six columns, covering the whole DVS pixel
array with equally sized, non-overlapping receptive fields. These neurons emit a
spike whenever an address event (ON or OFF) is emitted by the DVS within their
receptive field.

The SNN has two layers (direct input to output mapping) and implements a
Braitenberg-vehicle [278], see Figure 4.11a. The architecture of the SNN is de-
picted in Figure 4.11b. It processes the events and communicates asynchronously
with spikes. Spikes of the two output neurons are decoded to motor commands
with an agonist-antagonist muscle model. Specifically, steering commands are
decoded from output spikes as a ratio between spike rate of the left and right
motor neuron:

r = k × aL − aR
aL + aR

, (4.1)

with aL and aR the spiking rate of left and right motor neurons. The constant k
defines the range of the steering angle commands.

The SNN is depicted in Figure 4.11, together with a taxonomy of simple Braiten-
berg vehicles. The behavior of a Braitenberg vehicle depends on the wiring of the
network. Excitatory connections increase wheel speed whereas inhibitory con-
nections decrease it. The sensor and motor neurons of the lane following network
implements an aggressive Braitenberg. Spike generators propagate the spikes
with respect to the address events to the sensor neurons. The connection pattern
between spike generators and sensor neurons represents an hard-coded simple
lane detector with weights ( 25 20 0 0 20 25

70 5 0 0 20 70 ).

The proof-of-concept SNN depicted in Figure 4.11 allows to follow the lane in
closed-loop for simple circuits, see Figure 4.12. Unlike conventional methods, all
processing happens asynchronously in the spike-domain and are characterized
by the temporal dynamics of the neurons and synapses, see Figure 4.13. How-
ever, the Braitenberg network does not solve the task perfectly: intersections are
not handled, the vehicle wiggles within the lane and higher speeds are unstable
(Figure 4.12). For slow and medium speed, the car follows the lane but wiggles.
It completes the lap approximately at the same time both with medium and fast
maximum speed. In the latter, the car drives off the road a few times and activates
the brakes more often.

Other visual disturbances such as pedestrians, other vehicles, or buildings would
also disturb the hard-coded 16 neurons network. More complex visuomotor tasks
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Figure 4.10.: Framework for the visuomotor lane following experiment. ROS is
used as a communication middle-ware between the different mod-
ules. Gazebo enhanced with the DVS plugin emits address events
and simulate the physics. The SNN processes the events and output
spikes are converted to motor commands. Copyright c©2016, IEEE
[15].

Coward ExplorerLoverAggressive
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Output neuron
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Excitatory connection
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(a) Different Braitenberg-vehicles

Spike generator
Sensor neuron

Excitatory connection

Motor neuron
Static connection

Steering wheel angle
Velocity

Transition Coefficient

(b) SNN for lane following

Figure 4.11.: (a): Simple Braitenberg-vehicles with two light-sensitive sensor neu-
rons and two motor neurons controlling the wheels. (b): The feed-
forward SNN controlling the vehicle end-to-end. Spike generators
cover the DVS pixel array. Motor neurons are used to decode steer-
ing angle and velocity. Copyright c©2016, IEEE [15].

require more complex, self-organizing networks. The objective of this thesis is to
research on the synaptic learning rules capable of training such networks to solve
similar visuomotor tasks.

61



4. Basic Approach to Visuomotor Neurorobotics

Figure 4.12.: Evaluation of the Braitenberg network on the lane following task.
Left: positions of the car on a road at three different speeds. The car
manages to stay on the right lane of the road for all configurations
except at high speed. Right: metrics to evaluate the performance of
the car during one lap. The dotted lines represent the boundary of
the right lane. Copyright c©2016, IEEE [15].
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Figure 4.13.: spike-trains of the lane-following Braitenberg network during a
800 ms time period. The vehicle drives on the strong curvature of the
circuit without intersection at medium speed (12km/h). The neuron
1 and 6 (in red) are responsible for the bottom corners of the image
and are assigned strong weights. Copyright c©2016, IEEE [15].
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4.3.2. Microsaccades for neuromorphic stereo vision

The material covered in this Section was originally published by the author in
Kaiser et al. [16]. In this Section, the neuromorphic DVS head is demonstrated in
a stereo vision setup. Specifically, it is shown how the method can be used to per-
ceive depth from motionless static scenes through microsaccadic eye movements
with a SNN computing disparities.

The structure of our SNN computing disparity from stereo event-based vision
sensors is based on Osswald et al. [227] and Dikov et al. [90]. The network con-
sists of a three-dimensional grid of disparity-sensitive neurons (see Figure 4.14a).
Address events from the two DVSs lying on to the same epipolar plane are fed to
the corresponding epipolar layer in the network (see Figure 4.14b). Each of the
disparity-sensitive neurons describes one unique point in the observed 3D-space,
relative to the common fixation point of the cameras [228].

For each disparity neuron, a micro-ensemble ensures hetero-lateral matching (see
Figure 4.14c). The micro-ensembles are connected to each other with respect to
the constraints mentioned in [16]. If the timing of the events projected by the reti-
nal pixels into the neural ensemble is temporally congruent, the signal reaches
the disparity-sensitive neuron. However, if the temporal offset of the incoming
signals between the left and right pixels is too large, the blockers prevent the
activation of the disparity-sensitive neuron. The C3 constraint (compatibility con-
straint) could be implemented by separating ON and OFF events in two separate
pathways. As this would double the number of neurons, the C3 constraint is
often ignored so that ON and OFF events can match each other. The number
of micro-ensembles can be reduced by bounding the minimum and maximum
detectable disparities.

This network has been evaluated observing natural scenes with the neuromor-
phic DVS head performing horizontal and vertical microsaccades. The DVS head
is positioned on a table with two objects (a ball and a thermos bottle) and both
DVSs observe in parallel mode, see Figure 4.15. The network supports the com-
putation of the disparity of the different objects in the scene with a horizontal mi-
crosaccade including the garage door in the background, see Figure 4.16. Note the
peaks around disparity 7 which correspond to the vertical garage door, around
20 to the thermos bottle, and around 29 to the ball. Because most contrast lines
in the scene are vertical, the tilting microsaccade does not trigger many events,
leading to few disparity detections. Additionally, extracting disparity of hori-
zontal edges is harder for the network, because many events will share the same
epipolar layer.

The stereo network is a proof-of-concept showing how conventional robotics
building blocks can be solved with SNNs. These techniques can take advan-
tage of an additional constraint for matching: time. However, the asynchronous
spike-based communication as described by the neural dynamics is complicated
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(a) Disparity SNN (b) Epipolar layer (c) Micro-ensemble

Figure 4.14.: Structure of the stereo network for detecting all possible positive dis-
parities (schemas inspired by [90]). Triangular red edges denote ex-
citatory synapses, rounded green edges denote inhibitory synapses.
(a): Three-dimensional structure of the stereo network. (b): Organi-
zation of micro-ensembles within an epipolar layer. For clarity, only
the outgoing connections of a single micro-ensemble are drawn. (c):
Schematic representation of a neural micro-ensemble. The two blue
neurons on the left and bottom of the micro-ensemble are the block-
ers, while the red neuron in the middle is the disparity-sensitive col-
lector neuron. Source: [16].

to regulate with hand-tuned parameters. This concern is addressed in the coming
Section with synaptic learning rules.
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Figure 4.15.: Evaluation of the stereo-network on a static scene perceived with mi-
crosaccades. Overview of the setup and rendering of the computed
disparities during panning and tilting. Source: [16].

(a) Disparity histogram during paning (b) Disparity histogram during tilting

Figure 4.16.: Histogram of the computed disparities during panning and tilting.
Source: [16].

4.4. Summary and Conclusion

In this Section the basic approach that is taken to address the research questions
of this thesis has been discussed and presented. The IF was selected as the base
neuron model and presented methods to connect address events to SNN. Espe-
cially, it was shown that separating ON and OFF events is important since they
carry information about the direction of motion. In addition, a covert attention
mechanism providing translation invariance has been introduced, which will be
evaluated in Section 5.4.

Describing the approach allows us to identify the requirements, leading to the
development of tools that will be used throughout this thesis. Importantly, the
Gazebo DVS plugin supports the design of simulated experiments, and the neu-
romorphic head to perform real-world experiments. These two tools were demon-
strated in proof-of-concept experiments.
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In Chapter 4, we showcased how hand-tuned SNNs were capable of solving vi-
suomotor tasks. Manually selecting the network parameters is a tedious process
and is only viable for small, highly structured networks. A more scalable ap-
proach is to learn these parameters from the data, through self-organization. De-
riving a learning rule for the self-organization of large SNNs of arbitrary architec-
tures is an important goal of computational neuroscience. For ANNs, such a rule
has arguably been found: gradient descent using backpropagation. However,
the classic formulation of backpropagation violates biological constraints which
prevents its implementation in SNNs, see Section 3.1.4. This has led the compu-
tational neuroscientists to formulate other rules capable of learning from spikes.
In the last three years, it became apparent that a different formulation of back-
propagation – relaxing a precise gradient computation – could be implemented
by SNNs and the brain [174, 219, 144]. Since then, a variety of new learning rules
approximating backpropagation in SNNs emerged [213, 296, 55], including ours
[12] (see Neftci et al. [214] for a review). In this Chapter, it is outlined how the
rules proposed by computational neuroscientists during the course of this thesis
have been adapted to support alternative backpropagation mechanisms for event
stream benchmarks. As we will see, backpropagation rules achieve much higher
accuracy on event stream benchmarks.

5.1. Liquid State Machines

The material covered in this Section was originally published by the author in
Kaiser et al. [14]. It has been shown by Thorpe et al. in [280, 191] that many tasks
in the visual cortex including perceptual categorization could be solved by solely
relying on feedforward network architectures, see Section 1.1. However, the vi-
sual cortex has a majority of feedback connections, leading to a highly recurrent
structure [182]. Especially relevant for event streams, these recurrent structures
could provide a mechanism to build and maintain a scene representation from
purely transient information. Indeed, as address events signal changes, a mem-
ory is required to aggregate these changes and retain the current state of the scene.
Recurrent architectures could play this role but only a few methods to train re-
current SNNs were presented in the computational neuroscience community, see
Section 3.1.3. Liquid State Machines (LSMs) are SNNs with recurrently and ran-
domly connected neurons, referred to as the liquid, which receives an input data
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stream. Learning in LSMs consists of computing the linear mapping from the
state neurons in the liquid (the liquid state) to an arbitrary target signal.

5.1.1. Method

In this Section, a LSM is trained to predict address events in a similar fashion than
Maass et al. [183] and Burgsteiner et al. [70] predicted images, see Figure 5.1. By
using an event-based sensor, the challenge of predicting frames is circumvented
by only predicting changes in pixel intensity. Moreover, compared to previous
works, the input dimensionality that the liquid operates is scaled by two orders
of magnitude. This method implicitly leads to learning spatio-temporal features
as was demonstrated in Lagorce et al. [159] for echo state networks.

The contribution of this work, originally presented in Kaiser et al. [14] are:

• The proposed metric based on centroid computation to evaluate the perfor-
mance of the prediction by taking spatial structure into account;

• The proposed technique to scale the LSM to different input dimensionality
by conserving a constant number of connections between input and liquid.

Filtering address events with an exponential filter to generate a target signal was
already introduced in [159].

For simplicity, the mathematical notations introduced in Kaiser et al. [14] are
reused, where vectors are denoted with bold lowercase letters and matrices with
bold uppercase letters. The event stream is fed in recurrently connected spiking
neurons, called the liquid. A subset of nrec excitatory liquid neurons are con-
nected to each readout neuron in the output layer, which has the same dimension-
ality as the input. The activity relayed by these connections is called the liquid
state, and is denoted as xxx(t) ∈ Rnrec for a given time t. Only these connections are
trained. They are parameterized with the weights WWW = [w1w1w1, . . . ,wpwpwp] ∈ Rnrec × p,
with p the number of readout neurons. The training consists of a simple super-
vised linear regression from the liquid states to the target signals, defined as:

argminWWW (XXX ·WWW −BBB), (5.1)

with

XXX =

 xxx(t1) xxx(t2) . . . xxx(tnsamples)

ᵀ

∈ Rnsamples × nrec (5.2)

the accumulated sampled activities, and

BBB =

 bbb(t1) bbb(t2) . . . bbb(tnsamples)

ᵀ

∈ Rnsamples × p (5.3)
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the sampled target signals for all p readout neurons. The target signals are ob-
tained by applying an exponential filter on the input event stream time-shifted
by ∆pred:

bbb(t) =

 exp

(
−t+ ∆pred − tspikei

τ

)  , (5.4)

where tspikei ∈ ]−∞, t] denotes the last spike time of input neuron i, and τ a global
fading term. At a given time-step t, the visual prediction ppp(t) is:

ppp(t) = xxx(t)ᵀ ·WWW. (5.5)

As noted in Kaiser et al. [14], only a single training motion is sufficient to provide
predictions for similar motions when the scene is not crowded by many mov-
ing objects. A visualization of how target signals are computed is provided in
Figure 5.2.

Figure 5.1.: Predicting address events from a DVS using a liquid state machine.
Events from the DVS are converted to spikes and directly fed to the
excitatory pool of neurons in the liquid. A layer of readout neurons
of the same dimensionality as the input is connected to nrec excita-
tory neurons of the liquid. Those connections are trained at time t
with the target image sampled at time t+ ∆pred. In the test phase, un-
seen events are streamed to the liquid and the activity of the readout
neurons encodes the predicted future input. The input image is just
shown for visualization purposes, only address events are streamed
to the liquid. Source: [14].
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Figure 5.2.: Visualization of the training of readout neuron i. To generate a target
signal, the input spike-train is convolved with an exponential filter
(denoted fi). The target signals are obtained by shifting the convolved
signal by ∆pred, see Equation (5.4). During training, the readout neu-
ron i learns a mapping between the liquid state x(t) to bi(t) for all
times t. Source: [14].

5.1.2. Experimental Setup

A LSM predicting future visual input from event-based data provided by a DVS
has been implemented and evaluated. The evaluation was performed both in
simulation and with a real DVS, with a prediction time ∆pred set to 200 ms. The
three scenarios are visualized in Figure 5.3.

(a) The first scenario (b) The second scenario (c) The third scenario

Figure 5.3.: The three scenarios against which the method is validated. (a) A
32x32 simulated DVS observes a ball jumping from left to right and
from right to left of the pixel array. (b) A real DVS (128x128) observes
a ball rolling down a structure. This image depicts the point of view
of the DVS. (c) A real DVS (128x128) observes a person juggling with
three balls. This image depicts the point of view of the DVS. Source:
[14].
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The liquid consists of 1250 randomly connected leaky integrate-and-fire neu-
rons, 80% of which are excitatory and 20% inhibitory. There are 102400 random
synapses from the DVS input layer to the liquid. The number of connections be-
tween the input and the liquid remains constant across the different experiments
despite the change in input dimensionality from scenario 1 (32x32) to scenarios
2 and 3 (128x128), see Figure 5.3. 500 excitatory liquid neurons are connected
all-to-all to perfect linear readout neurons in a feedforward fashion. The read-
out weights are trained with a regularized linear regression to predict the future
address events convolved, see Equations (5.1) to (5.5).

Each scenario starts by presenting the emitted address events for a time ttrain to
the liquid and recording the liquid states. Then the readout weights are trained
with the procedure described in 5.1.1. Finally, the LSM is presented yet unseen
address events for a time ttest. The sampling time interval of the liquid is set to
∆sample = 10ms. Predictions are generated by reading from the readout neurons
at the same sample rate 1/∆sample used for training.

The performance of the method is evaluated with respect to the predictions gen-
erated by the LSM. Two metrics to evaluate the predictions are defined. The first
metric is general and consists of computing the normalized error for all predic-
tions:

e1(W ) =
1

ntestsamples · p
· ||XXX test ·WWW −BBB|| (5.6)

with XXX test the accumulated liquid states during the test period, and ntestsamples the
number of samples in the test set and p the number of pixels, used for normaliza-
tion. The residual error is the one implicitly minimized when solving the linear
regression in Equation (5.1).

A drawback of this error is that it does not take the spatial structure of the sen-
sor array into account. Indeed, if the LSM wrongly predicts an activated pixel,
the loss should consider the target activity of surrounding pixels. A second met-
rics which takes into account this spatial structure is introduced: centroid activa-
tion.

The second metric is the distance between the centroid of the predicted activity
and the centroid of the target activity. This metric is intended for scenes with only
a single object in motion – it is therefore calculated only for the first two scenarios.
The centroid of an image is defined as the average position of the activation:

c(I) =

[
rc
cc

]
=

1∑
r,c

I(r, c)
·


∑
r,c

I(r, c) · r∑
r,c

I(r, c) · c

 , (5.7)

with I an input image. This is similar to the centroid computation introduced in
Section 4.1.2 to guide an attention mechanism. The second error metric is calcu-
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lated as:

e2(W ) =
1

ntestsamples

·
∑

t ∈ ttest
||c
(
predicted

)
− c
(
target

)
||

=
1

ntestsamples

·
∑

t ∈ ttest
||c
(
x(t) ·W

)
− c
(
b(t)

)
||

, (5.8)

with ttest the sampled times during test, and b(t) the target signals for all read-
outs at time t. Here, it is assumed that both the prediction x(t) ·W and the target
signals b(t) are reshaped to images of size rows × columns before the computa-
tion of the centroid.

5.1.3. Results

For each scenario, a representative prediction from the LSM is shown (see Fig-
ures 5.4a, 5.6a and 5.8). Input and Target denotes the encoded input spike-train at
a given time t and t + ∆pred. Predicted is the output from the LSM at time t and
Error refers to the residual error (Equation 5.6), which is the difference between
Predicted and Target. Both error metrics (Equation 5.6, solid blue line and Equa-
tion 5.8, dashed red line) are presented with varying amount of training data and
increasing prediction times ∆pred in Figures 5.5, 5.7 and 5.9.

First scenario: simulated projectile trajectories

There are 10 ball trajectories in the training set, altogether lasting 27.6 s. In 5
samples, the ball goes from left to right, and in 5 others, from right to left.

A single test sample consisting of the ball going from left to right is evaluated
within a time interval of 1.9 s. The LSM never saw this particular sample. Since
the LSM was trained with both left-to-right and right-to-left samples, it needs to
rely on its memory to identify the motion.

The LSM correctly predicts future motion on the right side of the image, see Fig-
ure 5.4a. It therefore accurately identified that the motion was from the left-to-
right kind and not of the right-to-left kind, equally represented in the training
set. This identification can only be based on memory since both left-to-right and
right-to-left motions cover the same pixels.

The predicted centroids are close to the target centroids, see Figure 5.4b. How-
ever, the ambient noise of the LSM drives the centroids towards the average mo-
tion seen during training. Competition across readouts could help reduce this
noise.

Both error metrics decrease with respect to the amount of training data used, as
seen in Figure 5.5a. The first two samples are entirely consumed after 20% ratio,
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(a) Activity on the 32x32 sensor array
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Figure 5.4.: (a) Selected test samples from the first scenario at prediction time
∆pred = 200ms The ball starts descending after reaching its highest
point, the liquid predicts the fall. (b) Targets (black) and predicted
centroids (blue) for the first scenario across the whole test motion.
Source: [14].
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Figure 5.5.: Residual error and positional error obtained in the first scenario: sim-
ulated ball jumping left and right. (a) Error with respect to the amount
of training data used with ∆pred = 200ms. (b) Error with respect to
prediction time ∆pred. Source: [14].

corresponding to the first drop in error. Similarly, the two error metrics increase
with respect to the amount of time predicted in the future, see Figure 5.5b. Initial
decrease of centroid error until ∆pred = 150ms is due to the difficulty of providing
good predictions at the beginning of the motion when only a few events have
been received.

Second scenario: rolling ball on structure

The training set consists of the ball rolling two and a half times down the struc-
ture. When the ball arrives at the end of the structure, it is manually replaced on
top of it. The total duration of the training set is 15 s. The test set consists of the
ball rolling down the structure a single time lasting 6.8 s.
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Figure 5.6.: (a) Selected test samples from the from scenario at prediction time
∆pred = 200ms The ball is rolling on the structure, the liquid predicts
its path. (b) Target and predicted centroids for the second scenario
across the whole test motion. Source: [14].
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Figure 5.7.: Residual error and positional error obtained in the second scenario:
ball rolling on a structure. (a) Error with respect to the amount of
training data used with ∆pred = 200ms. (b) Error with respect to pre-
diction time ∆pred. Source: [14].

The sample in Figure 5.6a show that the same liquid used for the 32x32 simulated
DVS can also perform prediction over the whole 128x128 sensor array using the
real DVS.

The error metrics have the same shape as in the first scenario, the same obser-
vations can be drawn, see Figures 5.5 and 5.7. It can be noted that the residual
error is smaller with the real 128x128 DVS than with the simulated 32x32 DVS.
This is because the residual error is normalized by the number of readouts (see
Equation (5.6)), and that the activation is sparser for the second scenario than the
first one.

Third scenario: juggling three balls

The training set consists of a person juggling with three balls for 29.7 s. The test
set consists of the same person juggling for another 5.5 s.
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Figure 5.8.: Activity of the LSM during presentation of a juggling motion with
prediction time ∆pred = 200 ms projected on the 128x128 sensor array.
In the liquid output, the position of the hands of the juggler and the
two balls present in the target image can be recognized. Source: [14].
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Figure 5.9.: Residual error obtained in the third scenario: juggling with three
balls. The positional error is not relevant in this case: since the juggler
himself does not move across the image, the centroid of activation is
static. (a) Error with respect to the amount of training data used with
∆pred = 200ms. (b) Error with respect to prediction time ∆pred. Source:
[14].

Since there is more than a single moving object in the third scenario, the activation
is more chaotic. The juggler and the balls’ silhouettes can still be recognized in
the liquid’s predictions, see Figure 5.8. However, these predictions are probably
not sufficiently precise to be used in an actual robotic application. Increasing
learning data might not help, as suggested by the error not decreasing anymore
in Figure 5.9a. Since multiple objects are in motion, the centroid error metric is not
calculated, as it is only suited to a single object in motion. This problem should
be solved with a more advanced learning rule which also trains the recurrent
weights, such as the recently derived e-prop rule.
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5. Learning Visual Representations

5.1.4. Summary and Conclusion

The LSM can reasonably predict future visual input from address events when
a single object is in motion. By evaluating the approach on various scenarios of
increasing complexity, it has been shown that the method was able to learn differ-
ent motions on the full scale 128x128 pixel arrays of the DVS, without any knowl-
edge about its environment or physical laws. On the other hand, the presented
method can not tackle complex scenes with multiple moving objects. Overall, the
performance of the method remains below ANNs predicting images trained with
backpropagation.

The most interesting aspect of the LSM resides in its genericity and the simple
learning procedure. However, the simple learning procedure also admits draw-
backs. A LSM has many hyper-parameters, important for regulating the dynam-
ics of the SNN, which are complicated to tune. Besides, only the readout weights
are trained, which is not sufficient for learning a hierarchy of visual representa-
tions as in the visual cortex. Lastly, training relies on a supervised off-line linear
regression which requires data to be collected and labeled beforehand. To solve
these problems, the synaptic learning rules presented next will be evaluated in
multi-layered SNNs, with online weight updates.

5.2. Two-Factor Spike-Timing-Dependent-Plasticity

The material covered in this Section was originally published by the author in
Kaiser et al. [9]. In this Section, the subject of learning with a synaptic plasticity
rule is addressed, in contrast to the linear regression introduced in the previous
Section with LSMs. Since the original STDP rule formulated in Bi et al. [59] and
Markram et al. [188] does not include an error term (see Section 2.2.3), a synapse
in a hidden layer can not receive information about the current performance on
the task. Therefore, most experiments are conducted with STDP learning a single
layer. To leverage this approach, the learning STDP layer can be stacked on top
of another non-learning layer providing higher-level, predefined features.

The HMAX architecture introduced in Riesenhuber et al. [248] is the most com-
monly used approach to perform such experiments. It is based on a convolu-
tional architecture, which has become in the last years the most popular meth-
ods to learn from images. The convolutional architecture takes advantage of the
structure of the data to reduce the number of learned parameters and provide
translation invariance. Indeed, when dealing with images, it is reasonable to as-
sume that all the areas of the image should be processed in the same manner.
Convolutional networks rely on learnable spatial filters that convolve the whole
image. This operation can be seen as an ANN with shared weights representing
the convolutional kernels.
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5.2. Two-Factor Spike-Timing-Dependent-Plasticity

The convolutional structure can be implemented with SNNs the same way it is
implemented in analog networks, see Section 3.1.1. However, weight sharing
needs to be adapted since synapses in SNNs are dynamical systems (see Sec-
tion 2.2.1). Most often, the weights of a given kernel are harmonized at regular
time intervals throughout the whole network. A biological phenomenon that
could support this process is not known in the brain, which may be a hint to the
non-plausibility of convolutional learning structures. It is suggested that such
structures could be replaced by attentional ones in Section 4.1.2.

The contribution of this Section is to evaluate STDP in a HMAX architecture with
the same implementation for images in Peric et al. [18] and for event-based data
in Kaiser et al. [9]. Additionally, local layer classifiers in Kaiser et al. [9] allow
us to monitor the quality of the features throughout the network. In Section 5.5,
similar local layer classifiers are used to provide local loss functions to train the
weights.

5.2.1. Method

Visual representations to be learned from address events are discussed in the fol-
lowing Section with the HMAX architecture and the original STDP rule, in a sim-
ilar fashion than Masquelier et al. [194] and Peric et al. [18] for images. The
architecture is depicted in Figure 5.10. The neurons in the S1 layer convolve the
input spikes and are responsive to four edge orientations. Max pooling from
S1 to C1 reduces dimensionality and contributes to translation invariance. Neu-
rons in the S2 layer learn patterns out of preceding feature maps belonging to
all orientations through STDP. A weight sharing mechanism ensures translation
invariance across learned S2 features. Each S2 prototype has one max-pooling
C2 neuron. Therefore, the firing of a C2 neuron indicates the occurrence of one
specific combined-edges feature.

The same setup is evaluated on images encoded as Poisson spike-trains in Peric
et al. [18] and on event streams in Kaiser et al. [9]. This allows a fair comparison
of the performance between frame representation and AER. Additionally, it will
be shown how to train classifiers for the different layers of the network in Kaiser
et al. [9]. This allows us to evaluate the quality of the visual representations at
different stages of the processing pipeline.

5.2.2. Experimental Setup

For the unsupervised STDP framework presented in Section 5.2, its potential to
learn visual representations from images with a HMAX architecture has been
demonstrated in Masquelier et al. [194] and Peric et al. [18]. Is a similar archi-
tecture capable of learning representations from event-based data? This study
allows a direct comparison between the performance of a SNN trained on image
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5. Learning Visual Representations

Figure 5.10.: Overview of the HMAX-based architecture presented in Peric et al.
[18] and Kaiser et al. [9] and inspired by Masquelier et al. [194]. This
architecture was adapted to event streams provided by a DVS (pic-
ture from iniVation AG). The S1 edge detector layer on their own
combined with microsaccades achieve competitive feature extrac-
tion. copyright c©2018, IEEE [9].

data encoded with Poisson spike-trains and on event-based data. Additionally,
three classifiers – Histogram, linear SVM, and LSM – are attached to every layer
the HMAX architecture, see Figure 5.11. This allowed us to assess the quality of
the representations learned in the layer hierarchy, a method similar to Alain et
al. [42] or Kaiser et al. [12] for learning. Additionally, this provides a figure for
the classification accuracy of these classifiers on the raw event stream, allowing
comparison across the methods introduced in the following Sections.

The same HMAX architecture as described in Masquelier et al. [194] and Peric et
al. [18] is used. Specifically, the first layer of simple cells consists of hard-coded
edge features, while the second one learns with the STDP framework defined in
Equation (2.9), and repeated here for convenience:

∆w ∝

f−(w)× e
−|∆t|
τ if ∆t 6 0

f+(w)× e
−|∆t|
τ if ∆t > 0

. (5.9)

with ∆t = yi − yj the time difference between a post-synaptic and pre-synaptic
spike pair, τ a time constant (usually around 20ms). The complete HMAX archi-
tecture is depicted in Figure 5.10. The hyper-parameters of this architecture were
optimized with the black-box optimization method Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) against F1 score.

The main difference between the presented approach and the previous work is
the encoding of the input. Instead of encoding visual information with Poisson
spike-trains as Peric et al. [18] or variations of rank-order coding as Kheradpisheh
et al. [153, 154], visual input consists of an event stream. In this case, one con-
tinuous stream is fed to the network without arbitrary delimitations between the
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5.2. Two-Factor Spike-Timing-Dependent-Plasticity

samples contained in the stream. This makes unsupervised learning even harder
since the network does not know the beginning and end of an object presenta-
tion. Along with the event stream, a continuous label signal is used for training
the classifiers to evaluate the features learned by the network.

This approach has been evaluated with the help of two datasets: N-Caltech101, a
microsaccadic dataset, and DvsGesture, a motion dataset (see Section 4.2.1). Only
three classes of N-Caltech101 are considered: faces, airplanes and motorcycles.
This allows a direct comparison with the previous approaches in Masquelier et
al. [194] Peric et al. [18] and Kheradpisheh et al. [153, 154], which evaluate on the
same classes using the Caltech101 dataset.

Three different classifiers are used for each layer: histogram, linear SVM and
LSM. All classifiers are trained to map corresponding layer activations to target
labels in a supervised fashion, see Figure 5.11. This allows us to estimate the
quality of the learned features at different stages of the processing pipeline.

For both the histogram and SVM, classification happens on a per-block basis.
A block consists of the spikes emitted during the presentation of a given class,
integrated in time to form a vector. In this case, the order of the spikes in the
block does not influence the classifiers.

For the LSM, the corresponding spikes are streamed directly to the liquid. In
this case, the order of the spikes during the presentation of a label influences
the classification. The LSM is trained with the same procedure as described in
Section 5.1.1, to predict a one-hot encoding classification vector.

Figure 5.11.: Evaluation of learned features in an HMAX architecture by classify-
ing spike-trains. Three classifiers are trained: histogram, linear SVM,
and LSM. In the histogram and SVM case, time blocks are sliced from
the event stream and aggregated into feature vectors. These time
blocks are delimited with changes of labels, similar to classical sam-
ples. Conversely, the LSM is fed with the spikes directly. copyright
c©2018, IEEE [9].

79



5. Learning Visual Representations

5.2.3. Results

The experiments show that the edge extraction layers of the HMAX architecture
provide a good representation of the event streams on the microsaccade dataset.
Indeed, an F1 score of 98% is achieved by the SVM classifier attached to the S1+C1
layer with only 100 training samples per class, see Figure 5.12. The same SVM
only achieves a F1 score of 89% when trained on raw events instead of extracted
edges. This score outperforms the previously reported F1 score of 97% by Peric
et al. [18] on Caltech101 encoded with Poisson spike-trains obtained with 350
training samples per class.

Interestingly, the F1 score for the SVM drops to 81% after the learning STDP layer.
A similar performance drop between edge features and learned features is ob-
served for all three classifiers, for both datasets. This denotes that the learning
STDP layer fails to build qualitative visual representations from the extracted
edges in the event stream. Indeed, in this case, the features learned with STDP
seem to explode over the course of learning for both datasets, see Figures 5.13
and 5.15. This contrasts with other work relying on different encodings. Replac-
ing the classic STDP formulation (Equation (5.9)) with the self-regulating formu-
lation introduced by Kheradpisheh et al. [154] (see Equation (3.1)) could alleviate
this issue.

For the motion recognition dataset, the classification of raw events has been con-
sistently more accurate than the classification of extracted edge features, see Fig-
ure 5.14. This denotes that static edge features do not support the efficient build-
ing of visual representations for scenes containing natural human motions. This
experiment also provides the accuracy of the LSM (42.78%) and the histogram
method (45.83%) on the raw DvsGesture dataset. In contrast, the full HMAX ar-
chitecture with STDP and SVM classifier only achieves 37.50% accuracy. These ac-
curacies are compared with the rules presented in the next Sections in Table 5.2.

5.2.4. Conclusion

The performed experiments suggest that the original STDP formulation (Equa-
tion (5.9)) does not enable learning of features from event-based data in an un-
supervised manner. These results are contradictory with previous experiments
on images using the same framework in Peric et al. [18]. This denotes a differ-
ence in nature between Poisson spike-trains and event-based data. With Poisson
spike-trains, a high-contrast pixel is guaranteed to spike at high-rate, each spike
triggering the STDP update rule. However, high-contrast pixels do not spike at a
high rate with event-based encoding, triggering fewer STDP updates. This lack
of redundancy leads to instability in learning. This problem could be solved with
the STDP formulation introduced in Kheradpisheh et al. [154], which implements
soft bounds on the weights thus preventing weight explosion. In the next Section,
more structured synaptic learning rules will be introduced.
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Figure 5.12.: Results of HMAX trained with STDP on N-Caltech101. F1 score re-
sults for a random subset of the N-Caltech101 dataset with three
classes. The best F1 score of 98% is achieved with edge features and
SVM classifier. copyright c©2018, IEEE [9].
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(a) 5 learning samples (b) 83 learning samples

(c) 165 learning samples (d) 250 learning samples

Figure 5.13.: Features learned with STDP on N-Caltech101. The 20 kernels of the
S2 neurons are projected back to the input layer after the presen-
tation of a given number of learning samples of the N-Caltech101
dataset. copyright c©2018, IEEE [9].
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Figure 5.14.: Results of HMAX trained with STDP on DvsGesture. F1 score results
on a subset of the DvsGesture dataset with 11 classes, five train users
and three test users. The best F1 score of 45.83% is achieved with the
raw event stream and a histogram classifier. LSM achieves 42.78%
on the raw event stream. copyright c©2018, IEEE [9].

(a) 1 second of learning (b) 5 seconds of learning

(c) 15 seconds of learning (d) 41 seconds of learning

Figure 5.15.: Features learned with STDP on DvsGesture. The 20 kernels of the
S2 neurons are projected back to the input layer after a given time of
learning on the event stream user01_lab. copyright c©2018, IEEE [9].
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5.3. Event-Driven Contrastive Divergence

The material covered in this Section was originally published by the author in
Kaiser et al. [17]. In the previous Section, it has been shown that learning vi-
sual representation from AER in an HMAX architecture with the standard STDP
formulation failed. A hypothesis for this failure is that event-based data, unlike
images, is not suitable for this rule, leading to weight explosion and instability.
In this Section, another synaptic learning rule is proposed: Event-Driven Con-
trastive Divergence [211] (eCD), see Section 3.1.2.

Similarly to STDP, eCD is unsupervised, and relies on spike-times to compute
weight updates. This learning rule approximates the Contrastive Divergence rule
to train spiking RBM. A RBM is a two-layers network with bidirectional symmet-
ric weights. One aspect of this contribution is to bring the convolutional structure
to the spiking RBM in Kaiser et al. [17].

5.3.1. Method

In this Section, it is shown that visual representations can be learned from address
events with the eCD synaptic learning rule, in a similar fashion than Neftci et al.
[211] for images.

The rule is formulated as a hebbian learning rule (see Figure 2.6a), with a global
modulatory signal g indicating the current phase:

∆w ∝ g(t)× |f+(w)| × e
−|∆t|
τ . (5.10)

Five phases are described in this implementation (against four in the original
formulation in Neftci et al. [211], see Section 3.1.1) – determined by the value of
g(t) – for a given sample. The different phases are depicted in Figure 5.16. The
input is clamped on the visible layer only during the first phase (burn-in).

One of the contribution of this work is to bring the convolutional structure to the
spiking RBM. Convolutional RBMs were already proposed for analog networks
in [87, 168, 220]. In our spiking implementation, max pooling layers are replaced
with lateral inhibition to enforce sparseness. Specifically, two types of lateral
inhibition are introduced: between all neurons within the same feature map, and
between all neurons having the same location across different feature maps, see
Figure 5.17b. The former increases sparsity in a feature map by reducing the
probability of a neighbor neuron to fire when another already fired, similar to
probabilistic max pooling. The latter enforces learning of discriminative features
by reducing the correlation between different kernels, see Figure 5.17b. Let wi

′j′k′

ijk

be the weight between two hidden-layer neurons xijk and xi′j′k′ at position i, j
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Figure 5.16.: The five phases of eCD for a training step. The input stream is only
clamped to the visible units during the burn-in phase. In the second
phase, the data is learned by triggering weight increase on spike cor-
relation (LTP). Learning is then deactivated in the burn-out phase.
In the fourth phase, the model is unlearned by triggering weight de-
crease on spike correlation (LTD). Unlike Neftci et al. [211], a fifth
phase is added to flush the network. A training step is simulated for
Tstep = 168ms, the learning phases last 8%, the burn phases 36% and
the flush phase 12%. Source: [17].

and i′, j′ at feature map k and k′ respectively in the following equation:

wi
′j′k′

ijk =


β1, for |i− i′| < bd , |j − j′| < bd and k 6= k′

β2, for |i− i′| < bs , |j − j′| < bs and k = k′

0, otherwise
, (5.11)

where bd and bs are the neighborhood size in different feature maps and within
the same feature map respectively, and β1, β2 ≤ 0 are inhibitory weights. On
top of the required synchronization eCD requires for bidirectional weights, the
convolutions induce another required synchronization within filters.

(a) feature maps (b) lateral inhibition (c) deep belief network

Figure 5.17.: Schema of the architectures for the proposed Spiking Convolutional
Deep Belief Network (SCDBN). (a) The hidden layer of a SCRBM
is organized in feature maps convolving the input. (b) The feature
maps have inhibitory connections from one to another to encourage
feature discrimination, and across the local neighborhood for spar-
sity. (c) A SCDBN consisting of two stacked SCRBMs, connected
with a feedforward layer, see Kaiser et al. [17]. Source: [17].
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5.3.2. Experimental Setup

eCD has been evaluated in a 2-layers RBM architecture, referred to as SCDBN.
The first layer is convolutional with ten filters of size 10 × 10 and performs the
feature extraction. The second layer is fully connected and performs the associa-
tion between the extracted features and the correct labels. The complete architec-
ture is depicted in Figure 5.18.

This network has been evaluated on two event-based datasets: the open Poker-
DVS in Serrano et al.[263] and an early version of the self-recorded ball bottle
and pen dataset, later referred to as Ball-Can-Pen dataset, see Section 4.2.1. The
Ball-Can-Pen dataset was recorded with a DVS looking at images flashing on a
screen (unlike the next version recorded with microsaccades). In this case, the
dataset consists of only three classes, without a background class. There are 90
samples for each of the three classes, each sample of dimension 16 × 16 pixels
lasting 100ms.

To underline the benefits of the proposed convolutional architecture, The per-
formance is compared against a similar architecture but without any convolu-
tions, with ten fully connected hidden units for extracting features. This non-
convolutional architecture is similar to the one used in Neftci et al. [211], with an
additional layer.

Figure 5.18.: The SCDBN consists of 16 × 16 visible neurons, 10 feature maps of
size 10 × 10 and 10 association neurons. Source: [17].

5.3.3. Results

The number of parameters and the classification accuracy and runtime per sam-
ple can be seen in Table 5.1 and in Figure 5.19. Since the classification is obtained
without external SVM, and features are not hard-coded as in the first layer of
the HMAX architecture, the accuracy is only influenced by the synaptic learn-
ing rule for a given architecture. Unlike the pure STDP experiment presented in
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Section 5.2, eCD manages to learn representations from event-based data in an
unsupervised fashion without exploding weights.

The accuracy is higher than the pure STDP experiment (Section 5.2.3). With fewer
learning parameters, the convolutional architecture has a higher classification
performance. Moreover, the model reaches 90% accuracy on Poker-DVS, com-
parable to state-of-the-art methods learning offline.

Accuracy #Parameters 1st layer Runtime

Ball-Can-Pen 0.82 2560 4.8 s
Ball-Can-Pen convolution 1.0 1000 6.2 s
Poker-DVS convolution 0.90 1000 6.2 s

Poker-DVS Spiking CNN [263] 0.91 600 (offline) -
Poker-DVS H-First [263] 0.975 0 (hard-coded) -

Table 5.1.: Classification accuracy of the SCDBN on Poker-DVS and Ball-Can-Pen
dataset. Due to the small amount of training samples, testing is per-
formed on the training set. Despite fewer parameters for the convo-
lutional architecture, runtime per sample is longer due to the shared
synapses having their own dynamics. Source: [17].

Figure 5.19.: Evaluation of the SCDBN on the Ball-Can-Pen dataset. Classification
accuracy on the Ball-Can-Pen dataset of our method against a similar
network without convolutions, as presented in Neftci et al. [211].
Source: [17].
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5.3.4. Conclusion

It has been shown that eCD was capable of learning representations from event
streams. However, this rule has many constraints, which makes its implementa-
tion complicated, especially in neuromorphic hardware. Mainly, this rule relies
on synchronization at different levels, while SNNs communicate asynchronously.
Synchronicity is necessary for the different learning phases implemented by the
global factor g(t). The duration of these phases is an important meta-parameter.
This means that input can not be streamed continuously to the network, but in-
stead samples need to be clearly delimited in time. This is not practical for event-
based processing, which defines a continuous stream by design.

Additionally, the bidirectional weights between forward and backward connec-
tions are biologically not plausible and also require synchronization. This prob-
lem is referred to as the weight transport problem, and is also relevant in other
learning rules such as backpropagation. Lastly, deep networks are trained in a
greedy fashion, where a first RBM is trained, then a second, and so on. This type
of training is not suitable for online learning.

5.4. Event-Driven Random Backpropagation

Some of the material covered in this Section was originally published by the au-
thor in Kaiser et al. [6]. In the previous Section, eCD – an interpretation of Con-
trastive Divergence for SNNs – has been evaluated. While this rule was capable
of learning representations from event-based data, it had many cumbersome con-
straints with respect to weight sharing and synchronicity, seriously hindering the
advantages of SNNs.

In this Section, Event-Driven Random Backpropagation [213] (eRBP) – an inter-
pretation of the random backpropagation introduced in Lillicrap et al. [174] and
Nøkland [219] for SNNs – is discussed. This rule is a three-factor voltage-based
learning rule and requires an error term. This error term prescribes a super-
vised learning rule, unlike STDP and eCD which were unsupervised. However,
advances in deep learning suggest that supervised learning rules such as back-
propagation can also solve unsupervised [101, 75] and reinforcement learning
[259, 200] tasks. These paradigms are achieved with a definition of the loss func-
tion with respect to a reward or to the state of the network itself.

The contribution of this Section shows that spatio-temporal representations can
be learned from real visual event-based sensor data with eRBP in SNNs. Ad-
ditionally, it is shown that the covert attention mechanism introduced in Sec-
tion 4.1.2 further improves the performance by providing translation invariance
at low computational cost, without convolutions. Indeed, convolutions require a
weight sharing mechanism that is neither biologically plausible nor easy to im-
plement in neuromorphic hardware. Lastly, this rule has been integrated into a
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real-world closed-loop robotic grasping setup involving a robotic head, arm and
a five-finger hand, as shown in Section 6.1.

5.4.1. Method

The original formulation of eRBP from Neftci et al. [213] that has been reported
in Section 3.1.4 is used. The learning rule can be generally expressed as:

∆wij(t) ∝
∑
k∈out

ek(t)gik × box(ui(t))× sj(t), (5.12)

with sj the pre-synaptic spike-trains, box the boxcar function1 with bounds bmin

and bmax, ek the prediction error for output neuron k and gik a fixed random
feedback weight. The term out refers to the set of output neurons. This generic
formulation is used in Appendix B to provide a comparison between eRBP and
DECOLLE and derive an updated version of eRBP.

Since sj(t) is either 0 or 1 at a given time t, the learning rule can be triggered on
pre-synaptic spikes instead of continuously applied. This yields the simplified
weight update equation from Equation (3.11):

∆wij(t) ∝

{∑
k∈out ek(t)gik if bmin < ui(t) < bmax

0 otherwise
. (5.13)

The term
∑

k∈out ek(t)gik is the credit of neuron i, computed as a random combina-
tion of the network errors, a method referred to as direct feedback alignment. To
avoid the transmission of analog data for learning, the errors ek(t) can be encoded
as spikes. In this case, dedicated error neurons spike at a rate proportional to the
value of the error. These error neurons are connected to all hidden neurons with
the random feedback weights gik. In every hidden neuron, the credict is subse-
quently integrated and stored in a dedicated compartment, see Section 3.1.4. This
technique is used for the evaluation in this Section. In other words, both process-
ing data and learning from data is exclusively based on spikes, no continuous
values are communicated from a neuron to another.

5.4.2. Experimental Setup

The eRBP rule has been evaluated on the full DvsGesture dataset. Unlike the
evaluation of STDP with HMAX, the architecture consisted of two hidden layers
of 200 neurons densely connected in a feedforward manner. The network is de-
picted in Figure 5.22a. All the connections are trained with eRBP. Additionally,
the ON- and OFF-events obtained from the DVS are separated into two distinct
input channels, as described in Section 4.1.2. All synapses are stochastic, with

1box(x) = 1 if bmin < x < bmax, 0 otherwise
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a 35% chance of dropping each spike, making the network activity sparser and
learning more robust. This method is comparable to dropout and has been re-
ported to improve learning accuracy [212]. The voltage gates for learning are set
to bmin = −0.6 and bmax = 0.6. The presented experiments used on the open-source
implementation of eRBP2 based on the neural simulator Auryn [297]. The code
used to obtain the results presented in this Section has been open-sourced3. The
evaluation was performed with and without the attention mechanism described
in Section 4.1.2. The number of events to calculate the position of the attention
window was set to nattention = 1000, see Figure 4.2. The same architecture and
method is later used to learn discrete visual reaching and grasping affordances in
Section 6.1.

5.4.3. Results

The evaluation on the DvsGesture dataset shows that eRBP efficiently learns to
classify motions from raw event streams with the attention mechanism. The ac-
curacy of 92.7% is achieved after only 60 epochs, corresponding to approximately
127h of training data, see Figure 5.20. This accuracy is comparable to state-of-the-
art deep networks (IBM EEDN [43], 94.49%) and other synaptic learning rules
taking temporal dynamics into account (DCLL [12], 94.19%), both relying on con-
volutions. Without the attention mechanism, the accuracy of the network drops
to 86.1%. The dimension of the event stream is 64×64 in both cases. These results
confirm that our simple covert attention mechanism provides translation invari-
ance without convolutions, at a low computational cost. The drop of accuracy in
the early stages of learning in the attention window case is due to the stochastic
synapses, which have a 35% chance of dropping spikes. The rescaling approach
is resilient to this stochasticity since all events in the original stream are squeezed
into macro-pixels, leading to redundant events.

Additionally, unambiguous samples are classified in under 0.1 s, with increasing
confidence over time, see Figure 5.21. The rhythm of the “left hand waving”
motion is visible in the input spike-train. The neurons in the hidden layers spike
close to their maximum frequency, as limited by the refractory period.

Since DvsGesture is a classification task, not accounting for neural temporal dy-
namics in the learning rule (Equation (3.11)) does not impact the performance
considerably. Indeed, the target output signal as encoded by label neurons is
constant across a training sample for durations of several seconds. We expect this
omission to decrease performance significantly for a temporal regression task –
such as learning a time sequence – where the temporal dynamics of the target
signal is relevant.

2https://gitlab.com/eneftci/erbp_auryn
3https://github.com/HBPNeurorobotics/auryn
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5.4. Event-Driven Random Backpropagation
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Figure 5.20.: Classification accuracy for the DvsGesture task during learning with
eRBP. Source: [6].

Figure 5.21.: spike-trains for a test sample of class “left hand waving” from Dvs-
Gesture dataset. The network manages to correctly classify the sam-
ple in less than 0.1 s, with increasing confidence over time. Source:
[6].
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5.4.4. Conclusion

It has been shown that eRBP is capable of learning representations from event
streams resulting from both dynamic scenes and fixational eye movements. Ad-
ditionally, the simplicity of this rule (two comparisons and one addition) makes
it a good candidate for neuromorphic hardware implementation.

However, while efficient on classification tasks, eRBP is not capable of learning
time sequences since the weight update described in Equation (3.9) does not take
the temporal dynamics of the IF neuron into account (PSPs and refractory period).
This omission was discussed in the following publications of Zenke et al. [296]
and Bellec et al. [55], as well as in our own work in Kaiser et al. [12] which is
derived and evaluated in the next Section. Subsequently, an updated version of
eRBP taking into account the PSP dynamics was derived in Appendix B.

5.5. Deep Continuous Local Learning

The material covered in this Section was originally published by the author in
Kaiser et al. [12]. Like eRBP, DECOLLE is another gradient descent method for
multi-layers SNNs. Unlike eRBP, the temporal dynamics of the spiking neurons
are taken into account. This can be accomplished with the addition of eligibility
traces matching the time constant of the PSPs. This technique was originally
proposed for SNNs by Zenke et al. [296] with SuperSpike.

The difference between SuperSpike and DECOLLE resides in the formulation of
the loss function maximized by the network. In SuperSpike, the loss function is
the Van Rossum distance, formulated for an output neuron i as:

L(T ) =
1

2

∫ T

−∞
[α ∗ si(t)− α ∗ ŝi(t)]2 dt, (5.14)

with ∗ denoting a temporal convolution and α a smooth kernel, si and ŝi the
output and target spike-trains of output neuron i respectively.

This allows SuperSpike to learn specific patterns of precise spike-times. How-
ever, as will be seen in the DECOLLE derivation, this loss function implies that
eligibility traces are specific to the synapse. The amount of additional memory
required to implement the SuperSpike learning rule is therefore proportional to
the number of synapses. On the other hand, the loss function with DECOLLE is
a sum of layer-specific loss functions defined against an analog value. This al-
lows the eligibility traces to be stored in the neurons, leading DECOLLE to scale
in space with respect to the number of neurons. This difference is depicted in
Figure 5.22b.

The main contribution of this Section is the derivation of DECOLLE, a new synap-
tic learning rule which outperforms state-of-the-art rules on event-based dataset
with fewer iterations.
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(a) eRBP learning architecture (b) DECOLLE learning architecture

Figure 5.22.: Learning architectures for eRBP and DECOLLE. In eRBP, errors
are calculated from network-level output and network-level targets.
Error-related computations are spike-based. In DECOLLE, errors
are calculated from layer-level output and layer-level targets. Error-
related computations are analog. Source: [6, 12].

5.5.1. Method

In the following the derivation of DECOLLE is provided and explained. Let’s
consider the SRM formulation of a post-synaptic IF neuron i as described in Equa-
tion (2.4):

ui(t) =
∑
j∈pre

wij(ε ∗ sj(t)) + η ∗ si(t),

si(t) = Θ(ui(t)),

(5.15)

where ui is the membrane potential, si the spike-train of neuron i, wij the synaptic
weight and Θ the unit-step function. The temporal convolution kernels ε and η
reflect PSP and refractory period dynamics, respectively.

We can use the chain rule to express the gradient of a loss function L with respect
to the weight wij :

∂L

∂wij
=
∂L

∂si
× ∂si
∂ui
× ∂ui
∂wij

. (5.16)

References to time are omitted by an abuse of notation. In the following, the
calculation of these terms is provided.

Calculation of
∂ui

∂wij

: The refractory kernel η is difficult to account for because of

its temporal dependence on previous activity. As a simplification, it is therefore
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traditionally ignored in the derivation. This omission only has a weak impact on
the performance, as long as the loss function incorporate a regularization term
enforcing low spiking rates.

∂ui
∂wij

=
∂

∂wij

∑
j∈pre

wij(ε ∗ sj) + η ∗ si

=
∂

∂wij

∑
j∈pre

wij(ε ∗ sj) +
∂

∂wij
η ∗ si

= ε ∗ sj +
∂

∂wij
η ∗ si

≈ ε ∗ sj.

(5.17)

We therefore have to compute and store the convolved pre-synaptic spikes for
learning. This is done online with eligibility traces – a dynamical state maintained
in time. Since this term only depends on the pre-synaptic activity and not on the
post-synaptic activity, it can be stored in pre-synaptic neurons and reuse by other
synapses.

Calculation of
∂si

∂ui

: This term is problematic since the unit-step function Θ is

not differentiable. The solution is to approximate it with a surrogate derivative
(also called pseudo-derivative) [214], see Section 3.1.4. Here Θ is replaced with
a sigmoid function σ for gradient computation, as if the neuron had a stochastic
spiking behavior:

∂si
∂ui

=
∂

∂ui
Θ(ui)

≈ σ′(ui).
(5.18)

This term relates to the post-synaptic voltage.

Calculation of
∂L

∂si
: This term represents the error and depends on the choice

of the loss function L. In DECOLLE, we calculate pseudo-outputs yk with linear
fixed-weights readouts mapping the post-synaptic spikes: yk =

∑
i∈post gkisi. As-

suming a mean square error loss, we can write: L = 1
2

∑
k∈rdout(ŷk − yk)2, with ŷk

the pseudo-targets for the pseudo-outputs. The terms post and rdout refer to the
set of post-synaptic and readout neurons respectively. In this case, the calculation
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of the error signal term is:

∂L

∂si
=

∂

∂si

1

2

∑
k∈rdout

(ŷk − yk)2

=
1

2

∑
k∈rdout

∂

∂si
(ŷk − yk)2

=
∑
k∈rdout

(ŷk − yk)
∂

∂si
(ŷk − yk)

= −
∑
k∈rdout

(ŷk − yk)
∂

∂si
yk

= −
∑
k∈rdout

(ŷk − yk)
∂

∂si

∑
i∈post

gkisi

=
∑
k∈rdout

(yk − ŷk)︸ ︷︷ ︸
ek

gki.

(5.19)

This equation implies that the weights gki used for the forward computations
have to be known by the feedback process used for learning. This constraint is
not biologically plausible, it is referred to as the weight transport problem. Using
fixed random weights instead does not decrease the performance significantly.
This technique referred to as direct feedback alignment was originally introduced
by Nøkland et al. [219].

Final Expression: The rule in Equation (5.16) is therefore a multiplication of three
terms related to pre-synaptic activity, post-synaptic voltage and an error term. It
is a three-factor voltage-based rule, as discussed in Section 3.1.4. Injecting the
calculated terms back into the learning equation Equation (5.16) results in:

∂L

∂wij
=
∑
k∈rdout

ekgki × σ′(ui)× ε ∗ sj. (5.20)

This equation is valid for a mean square error loss assuming si are the spikes of
the output layer. With DECOLLE, we train multi-layer networks by computing
pseudo-outputs with linear readouts for all layers, see Figure 5.22b. Gradient
descent is therefore achieved with the following weight update equation, which
stands for all synapses:

∆wlij(t) ∝
∑

k∈rdoutl

elk(t)g
l
ki × σ′(uli(t))× ε ∗ sl−1

j (t), (5.21)

with superscript l denoting the neural layer to which the variable belongs. The
three terms of Equation (5.21) required to compute the gradients are computed
as part of the neural dynamics (propagated forward), enabling weight updates to
be performed online. This method, named RTRL, enables learning of temporal
sequences of different duration with constant memory, because the information
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to compute the gradient is integrated and stored in a neural state. This contrasts
with BPTT which stores the history of all previous neural activity.

To compute the weight updates online, ε ∗ sj has to be maintained dynamically.
Since this term only depends on the pre-synaptic neuron, this variable can be
stored as an eligibility trace in the neurons. In SuperSpike [296] and SLAYER
[265], the loss function is a Van Rossum distance, which introduces an additional
temporal convolution α over the spike-trains, see Equation (5.14). This additional
temporal convolution prevents the eligibility traces to be shared across neurons.
Therefore, these rules scale spatially with respect to the number of synapses. In
Kaiser et al. [12], it is shown how the neural dynamics of DECOLLE can be ex-
pressed with respect to the eligibility traces, leading the spatial complexity of
DECOLLE to be constant.

Similar to a LSM, the readouts of every layer can be seen as decoders of the spik-
ing activity to analog signals. Unlike a LSM, the decoder weights are fixed, and
the rule consists of learning the encoding weights to decrease the loss with re-
spect to the local error. This rule was inspired by the realization that layer-wise
errors can be synthesized by an external module [202, 144]. In this case, the loss
function is the sum of the layer-wise loss functions, i.e.:

L =
N∑
n=1

Ln(yn, ŷn), (5.22)

where ŷn is the pseudo-target for layer n, plus a regularizer on neural activity and
membrane potential. For classification tasks, the pseudo-targets for all layers are
simply the labels of the samples. In other words, each layer in the network will
try to maximize its own local classification score using the representation from
the layer below.

5.5.2. Experimental Setup

DECOLLE has been implemented with the PyTorch deep learning framework
and has been made open-source4. This implementation allows us to rely on out-
of-the-box automatic differentiation tools, optimization methods, convolutional
architectures, GPU simulations and mini-batch iterations. The IF neuron dynam-
ics in Equation (5.15) are therefore implemented in discrete time – one forward
pass corresponds to 1 ms of biological time. This implementation expresses SNNs
as binary recurrent networks, as noted in Neftci et al. [214]. The recurrence rep-
resents the dynamics of a IF neuron, which carries its leaking membrane poten-
tial and refractory period from a state to another. Within the PyTorch framework,
synaptic delays have not been implemented – spikes are transmitted directly from
a layer to another as they happen.

4https://github.com/nmi-lab/decolle-public
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(a) Input rescaling to 32x32
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(b) Attention window 32x32

Figure 5.23.: Classification accuracy for the DvsGesture task during learning with
DECOLLE. Shadings indicate standard deviation across the 7 runs.
Source: [7, 12].

The evaluation of DECOLLE has been done on the DvsGesture dataset. The net-
work receives as input event streams of dimension 32 × 32, binned in frames of
1 ms. The experiment is repeated both with input rescaling and with the attention
mechanism presented in Section 4.1.2, which was implemented and released as
part of the torchneuromorphic library 5. For DvsGesture, the network is trained
with 500 ms sequences and tested on 1800 ms sequences. The predicted class is
calculated by counting spikes at the output after an initial “burn-in period” of
50 ms. The network consists of three convolutional layers slightly adapted from
the architecture in Springenberg et al. [273] with 7x7 kernels. The experiment is
run 7 times with different random seeds to evaluate the standard deviations, both
with and without the attention mechanism.

5.5.3. Results

The achieved performance of 95.60% with rescaling and 96.37% with the attention
mechanism is better than other known related SNN implementations that rely
on gradient descent for training (Figure 5.23). DECOLLE reached the reported
accuracy after a significantly smaller number of iterations compared to the IBM
EEDN case reported in Amir et al. [43], see Table 5.2. Furthermore, the proposed
network achieved these results on the basis of a less complex and smaller network
compared to the results reported in other related work.

5.5.4. Conclusion

A new synaptic plasticity rule called DECOLLE has been introduced, providing
online gradient descent to SNNs. This rule extends eRBP with the introduction

5https://github.com/nmi-lab/torchneuromorphic
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5. Learning Visual Representations

of eligibility traces, solving the temporal credit assignment problem. It also im-
proves over SuperSpike, as its spatial complexity is linear instead of quadratic.

Out of all the approaches evaluated in this thesis, DECOLLE is the one that pro-
vided the best accuracy on event stream benchmarks. Compared to eRBP, this
rule can also learn temporal regression, as demonstrated in an additional exper-
iment in Kaiser et al. [12]. This rule is also the first one considered in this thesis
which has been implemented with a generic computational framework – PyTorch
– instead of a dedicated neural simulator. Such frameworks considerably sim-
plify the prototyping of synaptic learning rules and have now been applied and
extended by the computational neuroscience community. Additionally, the con-
cept of local errors (pseudo-targets) that we introduced in this learning rule is an
actual research topic in neuroscience. Such learning signals are assumed to exist
in the brain, but which information they encode and how they are orchestrated is
a topic of actual research.

5.6. Summary and Conclusion

Summarizing, state-of-the-art synaptic plasticity rules have been derived, inte-
grated and evaluated to efficiently learn spatio-temporal visual representations
from event-based data. This Chapter started with simple rules that were derived
in a bottom-up strategy – from observations in the brain – such as STDP. It con-
tinued with top-down rules that have been derived from gradient descent and
predicting modulatory synaptic plasticity. It could be shown with a set of stan-
dard experiments, that there is a large accuracy gap between bottom-up rules
such as STDP and top-down rules derived from backpropagation. This is best
demonstrated with the obtained accuracy on the DvsGesture dataset, reported in
Table 5.2. The derivation of the Continuous Random Backpropagation [7] (cRBP)
rule is provided in Appendix B – the evaluation procedure (network architecture,
optimizer, regularization, learning rate) is identical to that of DECOLLE.

Similarly, spiking backpropagation closes the accuracy gap between ANNs and
SNNs for spatio-temporal pattern recognition tasks. The benefit of SNNs in terms
of power efficiency and low latency computations are considerably retained in
comparison to existing related approaches. This underlines the current trend
of computational neuroscientists moving from SNNs to generic computational
frameworks such as PyTorch. This effectiveness also questions whether back-
propagation is used in the brain and how, as suggested recently in Lillicrap et al.
[176].
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Model Accuracy #Iterations
DECOLLE (conv) 95.60± 0.56% Online .16M
DECOLLE (conv+attention) 96.37± 0.51% Online .16M
cRBP (conv) 92.48± 0.89% Online .16M
cRBP (conv+attention) 95.34± 0.78% Online .16M
cRBP (2L dense) 77.93± 2.09% Online .16M
cRBP (2L dense+attention) 90.80± 1.16% Online .16M
eRBP (64× 64 dense) 86.1% Online .11M
eRBP (64× 64 dense+attention) 92.7% Online .11M
Histogram 45.83% Offline (Closed-form)
LSM 42.78% Offline (Closed-form)
HMAX-STDP-SVM 37.50% Online < .001M
SLAYER (conv) [265] 93.64± 0.49 % Offline .27M
IBM EEDN (conv) [43] 91.77%(94.59%) Offline 64M

Table 5.2.: Accuracy of the rules on the DvsGesture dataset. The number of itera-
tions refers to the number of training samples that were fed to the net-
work. Top-down gradient descent rules outperform bottom-up rules.
EEDN increases its accuracy with output filtering.
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6. Closing The Loop: Visuomotor
Coupling

In the previous Chapter, plasticity rules to learn high-level representations from
event-based data with SNNs have been introduced and discussed. In this Chap-
ter, the loop is closed by defining SNN-based visuomotor coupling methods. Vi-
suomotor coupling can be seen as a functional mapping of learned high-level
visual representations to motor commands. Three methods are discussed in the
following Chapter to derive such SNN-based mapping: manually, using a re-
ward, and using predictions.

6.1. Manual Visuomotor Coupling

The material to be presented in this Section was partly already published by the
author in Kaiser et al. [6]. In the initially introduced lane following experiment
(Section 4.3.1), the weights from the input neurons to the motor neurons were
manually composed to implement the desired behavior. A similar SNN-based
approach to control a robot from learned visual representations is introduced in
this Section. First, it is shown how visual representations relevant to reaching and
grasping can be learned in a supervised manner with eRBP. Second, a predefined
robot grasping trajectory in joint space is manually associated with every learned
grasp object class. This method can only be applied when the visual representa-
tion space is low-dimensional and temporal dynamics are simple. Nonetheless,
the simplicity of this approach makes it suitable and proposing in robotics.

6.1.1. Method

A SNN is trained in a supervised manner with eRBP to classify four object classes
from event-based data: ball, bottle, pen and background. The visual event stream
is emitted by a DVS mounted on a neuromorphic head (described in Section 4.3.2)
performing microsaccades. In this case, the SNN maps from the event-based data
of dimension nrow×ncol× 2 to the four output neurons, corresponding to the four
output classes, at all time. For each class, a predefined reaching and grasping
motion to be taught by the user is associated. This mapping can be seen as a
SNN-based visuomotor coupling between high-level learned visual representa-
tions and high-level motor trajectories. This definition allows to train the object
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classification network just with the objects and without the robotic arm, as mo-
tor control is not learned. At test time, the detected class triggers the respective
reaching and grasping motion. This method is depicted in Figure 6.2.

The main advantage of defining the visuomotor coupling by hand is that the data
can be recorded and the SNN can be trained without the robot. This advantage
is very practical since the learning process necessarily explores sub-optimal con-
figurations of the SNN. If the SNN was directly controlling the robot, evaluating
the sub-optimal configurations in the real-world would be unsafe for the robot as
well as its user. However, manually defining the visuomotor coupling has severe
disadvantages. Mainly, such coupling is only feasible and may only be useful for
low-dimensional representations with simple temporal dynamics. For instance,
accounting for the action’s impact on the environment and estimating the next
sensor readings is non-trivial. It is also cumbersome to define such coupling for a
SNN trained differently than with supervised learning, as the emerged represen-
tations can be arbitrary.

6.1.2. Experimental Setup

For a demonstration of a visuomotor coupling designed manually, a real robot se-
quence of reaching and grasping experiments has been performed. A SNN was
trained with eRBP to categorize four static objects perceived with an event-based
vision sensor performing microsaccades: ball, bottle, pen and background, see
Figure 6.2. During training, objects of particular classes are placed on a table at
a specific position. The robotic head performs microsaccadic eye movements to
extract visual information from static objects, similar to the N-Caltech101 dataset,
see Section 4.2.1. The event streams are recorded together with the correspond-
ing object affordances. To each object class, a predefined reaching and grasping
motion has been assigned. During testing, microsaccades are performed and the
detected object affordances trigger the adequate predefined reaching and grasp-
ing motions of a Schunk LWA4P arm equipped with a five-finger Schunk SVH
gripper.

The same type of microsaccadic eye movements was used for training and testing.
The particular type of microsaccadic movement was not an important parameter
in the experiment. Indeed, the SNN was capable of correctly classifying the ob-
jects before termination of the movement, as will be seen in the next Section. In
this experiment, the microsaccadic motion consisted of an isosceles triangle in
joint space, see Figure 6.1. The motion has three phases. A negative tilt of α and
negative pan of α/2, followed by a tilt of α and negative pan of α/2, followed by
a final pan of α moving the DVS back to its initial position. The angle α = 1.833◦

is much larger than in humans, to compensate for the size of the DVS pixels, see
Section 2.1.4. Each motion is effectuated in 0.2 s.

The input stream is cropped to the dimension 32× 32 pixels and is fixed to match
the position of the objects on the table, see Figure 6.3. This demonstrator was
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Figure 6.1.: Microsaccadic motion of the DVS performed by the robotic head.
Source: [6].

implemented with the ROS Framework [241] and the ROS-DVS driver introduced
in [207].

Figure 6.2.: Real-world robotic setup embodying the synaptic learning rule eRBP
[213]. The DVS is mounted on a robotic head performing microsac-
cadic eye movements. The SNN is trained with eRBP (Section 5.4)
to classify four types of affordances: ball-grasp, bottle-grasp, pen-
grasp or do nothing. Reaching and grasping trajectories executed by
a Schunk LWA4P arm equipped with a five-finger Schunk SVH grip-
per are manually assigned to the corresponding four classes. Source:
[6].
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ball bottle pen background

Figure 6.3.: Example samples and learned weights for the grasp-type recognition
experiment. Top row: camera image of the objects. Middle row: inte-
gration of the address events during 15ms after microsaccade onset.
Bottom row: projection of the synaptic weights of the 4-layers net-
work for each label neuron onto the input after training. Green de-
notes excitation (positive influence) and pink denotes inhibition (neg-
ative influence). Source: [6].

6.1.3. Results

The learning performance of eRBP has already been demonstrated in Section 5.4
on the DvsGesture Dataset. It has been shown that eRBP is also capable to learn
from few samples and static scenes perceived through microsaccades.

The learning accuracy of the four object affordances has been evaluated after 30
epochs on 20 samples per class. The spike-trains and the classification results can
be seen in Figure 6.4. The network is confident when classifying balls and pens
but less confident between bottles and background. This is because the transpar-
ent bottles are visually similar to the background, see Figure 6.3. This uncertainty
can be reduced with more samples and more training iterations. Correct classi-
fication is obtained by counting the spikes of the output neurons for a period
of about 100 ms after microsaccade onset, long before the termination of the mi-
crosaccadic motion.

Despite the small number of training samples, the network is also capable of
moderate generalization to other objects of the same shape. This was demon-
strated by using different balls for training and testing. Since the DVS does not
sense color, the network can only rely on shape information for its prediction,
which is desired for affordances. Additionally, slightly moving the objects does
not disrupt the classification as much as modifying the background. This is due
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to the background being learned as an additional class for the “do nothing” af-
fordance.

The detected affordances trigger the corresponding taught reaching and grasp-
ing motions. A complementary video1 shows the dataset collection and the per-
formed trajectories. Since the objects are always placed at the same location on
the table, the reaching and grasping motions do not fail. Incidentally, this method
can not be applied to random object locations on the table.

6.1.4. Conclusion

The simplest method to control a robot from learned visual representations con-
sists of manually defining what the robot should do when a particular class is rec-
ognized. An important advantage of this method is that the robot is not required
to be in the loop during training. This method is suitable for low-dimensional
representation spaces, simple temporal dynamics and simple tasks. For instance,
the method introduced in this Section allows the grasping of objects located at a
precise location on the table. Significant modifications would be required to en-
able the grasping of objects anywhere on the table. This could be achieved using
a higher-lever control interface, such as the motion primitives introduced in Tieck
et al. [24], demonstrated on a target reaching task in [25, 26].

Finally, this method also prevails open-loop control over closed-loop control since
accounting for the action’s impact on the environment and estimating the next
sensor readings is non-trivial. These limitations are discussed in the next Section
with reward-based learning.

1https://neurorobotics-files.net/index.php/s/sBQzWFrBPoH9Dx7
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Network activity for “ball” Network activity for “bottle”

Network activity for “pen” Network activity for “background”

Figure 6.4.: spike-trains and classification results for four test samples of the
grasp-type dataset. The network manages to correctly classify the
four test samples. The ball and the pen are easily classified despite the
small amount of training data. However, the transparent bottle gen-
erates few events, yielding to more uncertainty in the classification
with the background. The three phases of the microsaccadic motion
are visible in the input spike-trains (first row of each plot). However,
the activity of the hidden layers does not drop instantaneously even
when the input is sparse, indicating a form of short-term memory
induced by the neural dynamics. The neurons in the hidden layers
spike close to their maximum frequency, as limited by the refractory
period. Source: [6].
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6.2. Learning Visuomotor Coupling with a Reward

The material covered in this Section was originally published by the author in
[8]. Reinforcement learning has become the standard framework for learning
visuomotor couplings. The goal of reinforcement learning is to learn a policy
that maximizes the expected reward. The reward function is generally defined
by the user with respect to the state of the environment or the action of the robot.
The manual involvement to provide a well-behaved reward function guiding the
robot to a performing policy is referred to as reward shaping [155].

Few synaptic learning rules have been proposed for reinforcement learning tasks,
see Section 3.1.1. Some approaches, such as Synaptic Plasticity with Online Re-
inforcement learning [150] (SPORE), are inherently derived for reinforcement
learning tasks. In conventional deep learning, most approaches rely on super-
vised gradient backpropagation, with a loss function formulated with respect to
the reward. With the recent development of spiking backpropagation rules (Sec-
tions 5.4 and 5.5), these approaches could also be ported to SNNs. In this Section,
the synaptic sampling rule SPORE discussed in Section 3.1.2 is evaluated with
the help of two visuomotor scenarios. The main contribution of this Section is the
elaboration of a dedicated closed-loop framework allowing reward-based learn-
ing rules such as SPORE to be evaluated in a robotic visuomotor context.

6.2.1. Method

Usually, synaptic learning rules are solely evaluated on open-loop pattern classi-
fication tasks. To evaluate SPORE in a closed-loop visuomotor task with event-
based data, a framework was implemented by connecting many open-source
components together. This framework evaluating the performance of biologically
plausible plasticity models in closed-loop robotics environments. This frame-
work has been applied to evaluate the synaptic sampling rule SPORE, as depicted
in Figure 6.5.

This framework has been implemented for evaluating spiking network learning
rules grounded in real-world embodiment experiments. Visual sensory input is
sensed, encoded as spikes, processed by the network, and output spikes are con-
verted into motor commands. The motor commands are executed by the agent,
which interacts with the environment. This modification of the environment is
continuously observed and sensed by the agent. Additionally, a continuous re-
ward signal is emitted from the environment. SPORE tries to maximize this re-
ward signal online by steering the ongoing synaptic plasticity processes of the
network towards configurations which are expected to yield more overall reward.
Unlike classical reinforcement learning setups, the spiking network is treated as a
dynamical system continuously interacting with the environment. This allows to
report learning progress with respect to biological time, unlike classical reinforce-
ment learning which reports learning progress in number of iterations. Similarly,
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events

output spikes

reward

DVS 
plugin

input spikes

action

dopamine
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Adapters

Figure 6.5.: Closed-loop framework to evaluate SPORE. Left: our asynchronous
framework based on the open-source software components NEST
neural simulator, SPORE, MUSIC, ROS, ROS-MUSIC tool-chain,
Gazebo and DVS plugin. Right: Encoding visual information to
spikes for the lane following experiment, see Section 4.3.1 for more
information. Address events (red and blue pixels on the rendered im-
age) are down-scaled and fed to visual neurons as spikes. Source: [8].

new episodes are not delimited by resetting the environment. Instead, the agent
learns continuously and without interruption, which significantly complicates
the learning process.

This framework is configured by many open-source software components: The
neural simulation relies on NEST, introduced in Gewaltig et al. [119], combined
with the open-source implementation of SPORE by Kappel et al. [150]2. The
robotic simulation is performed by Gazebo [156] and ROS [241], and visual per-
ception has been implemented with the help of the open-source DVS plugin for
Gazebo, see Section 4.2.2. The robotic simulator and the neural network run in
different processes. MUSIC, introduced by Djurfeldt et al. [91] and Ekeberg et
al. [95], is used to communicate and transform the spikes and the ROS-MUSIC
tool-chain by Weidel et al. [285] is used to bridge between the two communica-
tion frameworks. The latter also synchronizes ROS time with neural simulator
time. This work contributed to the Gazebo DVS plugin by integrating it to ROS-
MUSIC, and to the SPORE module by integrating it with MUSIC. These contri-
butions enable the of design new ROS-MUSIC experiments using event-based
vision to evaluate SPORE or other biologically-plausible learning rules.

6.2.2. Experimental Setup

In this Section the evaluation of SPORE is presented on the lane following task
introduced in Section 4.3.1. Steering commands are decoded from output spikes

2https://github.com/IGITUGraz/spore-nest-module
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as a ratio between the following linear decoders:

aL =

N/2∑
i=1

ai,

aR =
N∑

i=N/2

ai,

r =
aL − aR
aL + aR

.

(6.1)

With N the number of decoder neurons, aL and aR the relative coefficients for
steering left and right respectively and r the computed steering ratio. The first
N/2 neurons pull the steering on the left side, while the remaining N/2 neurons
steer to the right side. With N = 8, there are 4 left motor neurons and 4 right
motor neurons. The steering command is obtained by discretizing the ratio r into
five possible commands: hard left (-30◦), left (-15◦), straight (0◦), right (15◦) and
hard right (30◦). The decision boundaries between these steering angles are r =
{−10,−2.5, 2.5, 10} respectively. This discretization is similar than the one used
in Wolf et al. [288]. It resulted with better performance than directly applying r
(multiplied with a scaling constant k) as a continuous-space steering command,
see Section 4.3.1.

The reward signal transmitted to the vehicle is equivalent to the performance
metrics used in Section 4.3.1 to evaluate the policy. The reward depends on two
terms – the angular error βerr and the distance error derr. The angular error βerr

is the absolute value of the angle between the right lane and the vehicle. The
distance error derr is the distance between the vehicle and the center of the right
lane. The reward r(t) is computed with:

r(t) = e−0.03 β2
err × e−70 d2

err . (6.2)

The constants are chosen so that the score is halved every 0.1m distance error or
5◦angular error. Note that this reward function is comprised between [0, 1] and
is less informative than the error used in Bing et al. [62]. In this case, the same
reward is transmitted to all synapses, and a particular reward value does not
indicate whether the vehicle is on the left or the right of the lane. The decay of
the learning rate is λ = 8.5× 10−5.

A reset of the position and orientation of the agent is initiated only in the case
when it goes off-track in the lane following task. Finite-time episodes are not
enforced and neither the agent nor SPORE are notified of the reset.

6.2.3. Results

The achieved results show that SPORE is capable of learning policies online for
moderately difficult embodied tasks within some simulated hours. In the exper-
iments, regulation of the learning rate β played an important role in retaining
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Figure 6.6.: Results of SPORE with and without annealing the learning rate β on
the lane following task. Left: performance averaged over 6 trials.
Right: Development of the synaptic weights over the course of learn-
ing with annealing. Source: [8].

policy improvements. Specifically, when the learning rate β remained constant
over the course of learning, the policy did not improve compared to random,
see Figure 6.6. In this case, the vehicle remains about 10 s on the right lane until
triggering a reset. On the other hand, exponentially decaying the learning rate
β over time enables the policy to retain improvements. After 3 h of learning, β
decreased to 40% of its initial value and the policy starts to improve. After 5 h
of learning, β approaches 20% of its initial value and the performance improve-
ments are retained. Indeed, while the weights are not frozen, the amplitude of
subsequent synaptic updates are drastically reduced. In this case, the policy is
significantly better than random and the vehicle remains on the right lane about
60 s on average.

6.2.4. Conclusion

SPORE represents one of the few synaptic learning rules that have been proposed
for reinforcement learning tasks. It has been shown that SPORE is capable of
learning shallow feedforward policies online for moderately difficult embodied
tasks within some simulated hours. On a functional scale, deep reinforcement
learning methods still outperform biologically plausible learning rules such as
SPORE. This performance gap should be addressed in future work by taking in-
spiration from deep learning. Indeed, synaptic learning rules based on backprop-
agation could be reformulated in a reinforcement learning context, as discussed
in previous Chapters.

6.3. Learning Visuomotor Coupling with Prediction
Error

The material covered in this Section was originally published by the author in
Kaiser et al. [11]. In the previous Section, a reward-learning plasticity rule has
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been evaluated on a visuomotor task. This is the standard approach applied to
learn policies. This Section presents a different approach by learning a visuomo-
tor coupling from visual prediction.

In [107], Karl Friston introduced the free-energy principle, a unified brain theory
accounting for perception and behavior. The theory is based on the observation
that biological systems must avoid surprises to ensure that state representation
stays within the physiological realm. Avoiding surprise is achieved by minimiz-
ing free-energy, which is a function of sensory input and the recognition density.
The recognition density is an approximate probability distribution of the causes
of the sensory input, as encoded by the agent’s internal state. In order to decrease
free energy, an agent has two possibilities: change its sensory input by acting
on the world, and change its recognition density by updating its internal model.
These two possibilities point to action and perception modules respectively. In
other words, the free-energy principle implies that an agent selects the actions
that minimize the prediction error of its internal representation of the world.

6.3.1. Method

Inspired by the free-energy principle, a method is proposed for learning the re-
production of observed movements from a visual prediction model. Specifically,
a LSM is trained to provide short-term visual prediction from event streams as
described in Section 5.1. This LSM is trained with a limited set of movements it
can predict, with the procedure outlined in Kaiser et al. [14] and reported in Sec-
tion 5.1. In the second phase, an adequate action is searched by minimizing the
prediction error with the help of an optimization process. Note, this technique
only reflects one side of the free-energy principle: selection of actions that mini-
mize prediction errors. The other side consists of adapting the predictions to new
sensory input, which is out of the scope of this thesis.

The method is depicted in Figure 6.7. The action consists of a vector of goal joint
positions. The robot always starts from the same initial position. The robot per-
forms a movement by controlling its joints from the initial positions to the goal
positions. No trajectory planner nor a robot configuration space transformation
is used. By training the prediction model with a first-person view of arm move-
ments, the robot learns motions visually similar to the demonstrated one.

First, a visual predictive model is learned from a demonstration with a LSM, see
Figure 5.1. A single demonstration is sufficient, but it should be provided in first-
person view. Second, the robot tries different movements iteratively in an attempt
to minimize the prediction error. The prediction eror is computed at every time
with the negative Pearson correlation:

ρ(t) = − cov(ppp(t), bbb(t))√
var(ppp(t))var(bbb(t))

, (6.3)
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with ppp(t) and bbb(t) the predicted and perceived visual stream respectively, see Sec-
tion 5.1.1. cov and var denote the covariance and variance. The prediction error
of a time sequence is the averaged correlation error:

e = tanh

 1

ntestsamples

·
∑

t ∈ ttest
arctanh (ρ(t))

 . (6.4)

The correlation coefficients are tansformed with Fisher-z before summation, then
transformed back. The choice for the negative Pearson correlation for the opti-
mization process instead of a mean square error is motivated in Kaiser et al. [11].
Mainly, a mean square error is more sensitive in the case when few events are
generated by the movements. In this case, the prediction as well as the perceived
event stream consists of few events leading to a small mean square error. This
is demonstrated in Kaiser et al. [11] with an additional experiment. The nega-
tive Pearson correlation is less sensitive to this problem. The optimization of the
movement to minimize the prediction error is performed with CMA-ES, intro-
duced in Hansen et al. [127].

Figure 6.7.: Schema of the method to learn movements by imitation from event-
based visual prediction. Copyright c©2018, IEEE [11].

6.3.2. Experimental Setup

In the following, the ability of the proposed network to learn movements from
visual prediction errors is evaluated with the help of the NRP. In the first phase,
a visual prediction model is learned with a LSM as presented in Section 5.1. In a
second phase, adequate control commands for the robot that minimize the visual
prediction error are searched. This describes an imitation learning setup, which
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allows the robot to learn and to execute a movement visually similar to what it
previously perceived.

Two experiments are performed. In the first experiment, a simulated iCub robot
learns to move its arm as demonstrated by a human teacher recorded with a real
DVS, see Figure 6.8. The human demonstrator has a real DVS positioned on his
front side. The movement consists of positioning the two arms closer together.

(a) (b) (c)

Figure 6.8.: Visualization of the demonstration for the first experiment. The im-
ages are rendered by aggregating DVS address events at the begin-
ning (a), during (b) and at the end (c) of the demonstration. Copyright
c©2018, IEEE [11].

In the second experiment, a simulated robot (Schunk arm LWA 4P) learns to
move with respect to a visual cue (a flashing ball) present during demonstra-
tion, see Figure 6.9. The demonstration consists of moving the arm left when a
ball is flashing on the left and moving right when a ball is flashing on the right.
The arm returns to a straight upright position when the ball does not flash. The
experiments have been implemented in the NRP using the Virtual Coach. The
Virtual Coach is a software library enabling experiments to be started, paused,
stopped and configured programmatically, allowing to model such optimization
processes.

Learning the movement from the trained predictive LSM consists of the following
steps. A robot is initialized with similar initial joint positions as in the demonstra-
tion. The initial solution µ of CMA-ES is set to the initial joint positions, and the
initial variance σ to 0.5 radians per joint. Therefore, the first movements gener-
ated by the optimization process will be small. For each iteration, 15 offspring
are generated for the iCub and 10 for the Schunk arm LWA 4P. More offspring for
the iCub are recommended since the movement consists of 12 joints, and only 3
for the Schunk arm. An offspring is a vector of goal joint positions. For each off-
spring, a movement is executed, going from the initial joint positions to the goal
joint positions. During the execution, the perceived event stream is recorded. The
recorded event stream is fed to the LSM to obtain a prediction. This prediction is
compared with the recorded event stream with the negative Pearson correlation.
The resulting prediction error is assigned to the fitness value for this offspring.
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(a) (b) (c)

(d)

Figure 6.9.: Visualization of the demonstration for the second experiment. First
row: third-person view of the demonstrated motion at 0 s (a), 2 s (b)
and 6 s (c). (d): Input spike-train of the demonstration. Copyright
c©2018, IEEE [11].

At the end of the execution, the robot goes back to its initial joint positions until
another offspring is generated. The learning process is terminated after a given
number of iterations.

6.3.3. Results

For the first experiment, the simulated iCub manages to learn a similar move-
ment to the one demonstrated by the human, see Figure 6.10c and Figure 6.8.
The optimization process with CMA-ES provides a steady decrease in error with
respect to the learning iterations (Figure 6.11). Despite that the joints of the two
arms are treated independently in the optimization process, the learned move-
ment is symmetric as shown in the demonstration, see Figure 6.8. This has been
also shown in the learned joint goal positions, which are similar for left and right
arm, except for the elbow and the shoulder roll, see Figure 6.11.

Additionally, since the demonstration was provided by a human with a real DVS,
it shows that the visual prediction model learned with the real DVS can also be
used for the simulated DVS, despite the inaccurate simulation discussed in Sec-
tion 4.2.2.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10.: Learned movement for the first experiment. First row: third-person
view (visualization purpose only, not used for training). second row:
aggregated DVS address events. Images rendered at the beginning
(a,d), during (b,e) and at the end (c,f) of the learned motion. Copy-
right c©2018, IEEE [11].

The second experiment shows that multiple movements can be learned from a
single demonstration depending on the visual cues. This experiment is repeated
two times: the first time, the ball flashes on the left during the execution of each
offspring, the second time it flashes on the right.

The optimization process recovers similar movements to the demonstration de-
pending on the visual cue, see Figure 6.9. This shows that the LSM managed to
associate the visual cue with the arm movement performed at the same time dur-
ing the demonstration, see Figure 6.9. Conversely, if the arm moves to one side,
the LSM predicts the ball flashing on this side: the proposed method does not dis-
tinguish what it can control from what it can not. The visual cue therefore needs
to be sufficiently strong to prevent exploratory movements from predicting other
cues. In this case, the flashing ball is a strong visual cue for an event-based sensor
since both flash-in and flash-out generate events. In both runs, the error metric
decreases, meaning that the robot has learned the movement with confidence, see
Figure 6.13.
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Figure 6.11.: Learning process for the first experiment. Means and standard de-
viations of goal joint positions for the six joints of the left and right
arms (top), and decrease of the negative Pearson correlation (bot-
tom). Copyright c©2018, IEEE [11].

6.3.4. Conclusion

The free-energy principle is based on the assumption that the goal of the brain is
to minimize its surprise by adapting its model of the world and taking predictable
actions. This framework was decoupled, with a focus on action generation from
a prediction model. Specifically, the ability of a robot to learn a movement by
minimizing its visual prediction error was investigated. Despite the simplicity of
the presented method, the preliminary results suggest that a robot can learn new
movements from visual demonstrations in less than 1000 trials.

As reinforcement learning, the free-energy principle is a proposing approach for
future research to learn policies. The proposed method could be enhanced with
different representations for motions, such as motion primitives introduced in
Tieck et al. [24], allowing more complex movements to be performed. In addition,
an agent learning online would require the perceptive part of the free-energy
principle to be integrated. To be more specific, the predictive model (here the
LSM) should learn online from experience instead of an initial demonstration.
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Figure 6.12.: Learned movements for the second experiment. The movements
learned by the arm depend on the visual cue and are visually simi-
lar to the demonstrated ones. The input spike-trains of the learned
movements are similar to the two distinct portions of the demonstra-
tion, see Figure 6.9. Copyright c©2018, IEEE [11].
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Figure 6.13.: Learning process for the second experiment in case of a right vi-
sual cue. Means and standard deviations of goal joint positions for
shoulder, elbow and hand joints (left), and decrease of the negative
Pearson correlation (right). Ground truth is shown in dashed lines.
Copyright c©2018, IEEE [11].
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6.4. Summary and Conclusion

In this Chapter, it has been shown how to close the visuomotor loop with the
visual representations learned from event-based data. Three methods were in-
troduced: manual coupling and reward coupling, which are common in robotics
and machine learning, and the proposing prediction error coupling.

Manual coupling is the simplest and most restricted technique since it consists
of manually assigning motor commands to the learned visual representations.
With this technique, it is possible to trigger predefined reaching and grasping
motions in a real robot setup corresponding to classified visual affordances. On
the other hand, reward-maximization can learn such motor mappings and was
discussed and implemented with the synaptic plasticity rule SPORE. SPORE was
able to learn performing policies in shallow networks for moderately difficult
tasks. Lastly, prediction error minimization can learn such mapping by assuming
that actions are selected to minimize surprise. Following this approach, it was
possible to show how to teach robots new movements from visual demonstra-
tions.

Unlike supervised learning tasks, the performance gap between SNNs and ANNs
is still large for motor learning tasks. The aspect of learning motor policies with
SNNs should therefore be investigated further. Following deep reinforcement
learning, a promising direction of research would be to apply spiking backprop-
agation rules such as DECOLLE to reward-maximization problems.

6.4.1. Synaptic Gradients for Learning Policies

In Chapter 5, it was concluded that top-down synaptic plasticity rules derived
from theoretical considerations outperform bottom-up rules derived solely from
biological observations. Such rules implement efficient approximations of back-
propagation (and BPTT), adapted to continuous neural dynamics, enabling on-
line weight updates. While originally considered as a supervised learning method,
backpropagation was adapted to reinforcement learning problems in Mnih et al.
[200], initiating the field of deep reinforcement learning. In this Section, the adap-
tation of top-down synaptic learning rules (such as DECOLLE) to deep reinforce-
ment learning tasks is briefly discussed, along with the related challenges.

Reinforcement Learning Objective

Reinforcement learning tasks are formalized as (partially observable) Markov
decision processes (S,A, T,R), with S the state space, A the action space, T :
S × A × S → R the transition probabilities from one state to another upon an
action, and R : S × A → R a reward function. The objective of reinforcement
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learning is to parameterize a policy πθ : S → A maximizing the expected return
of a trajectory τ :

pθ(τ) = pθ(s1, a1, ..., sT , aT ) = p(s1)
T∏
t=1

πθ(at|st)T (st+1|st, at)

θ? = argmaxθ Eτvpθ(τ)

[∑
t

γtR(st, at)

]
,

(6.5)

with θ? denoting the optimal parameters, Eτvpθ(τ) the expectation over the trajec-
tories τ distributed by pθ and 0 < γ ≤ 1 a discount factor.

There are two family of approaches to formulate gradients in order to solve this
optimization problem: actor-critic and Q-learning. Actor-critic approaches learn
two functions simultaneously: the policy πθ and a critic Vθ′ : S → R, associating
a value (expected return) to every state. Q-learning approaches learn a single
function Q : S × A → R, associating a value (expected return) to every state-
action pairs. The optimal policy π? is then formulated with respect to the optimal
state-action value function Q? as π?(s) = argmaxaQ

?(s, a).

New algorithms in both families are regularly derived [259, 199, 175, 258, 200], a
thorough description is beyond the scope of this thesis. These algorithms differ
from one another in the formulation of the gradients and in the collection and
usage of the sensorimotor data. From a theoretical standpoint, DECOLLE can
be used in-place of backpropagation in the aforementioned deep reinforcement
learning methods. In practice, some challenges related to the nature of synaptic
gradient computation need to be overcome.

Reinforcement Learning with Spikes

The first challenge is a mismatch between the continuous dynamics of SNNs and
the standard, discrete formulation of Markov decision processes. In practice,
SNNs are simulated at around 1000 Hz (resolution of 1 ms). On the other hand,
standard reinforcement learning tasks such as Atari games from OpenAI Gym
[68] are simulated at around 20 Hz. Therefore, the input provided by the envi-
ronment needs to be encoded into spikes, and the SNN simulated for multiple
time-steps. Similarly, the action needs to be computed by decoding the output
spikes over multiple time-steps.

This process complicates the definition of a state st, the next state st+1 and the
action a. This definition is, however, crucial for learning since most deep rein-
forcement learning methods require a memory of experienced trajectories (either
in form of short-term rollouts for on-policy methods or a long-term replay buffer
for off-policy methods). This memory is usually implemented as a traditional
data structure, aside from the network. While similarities have been drawn with
the sharp-wave ripple events in the hippocampus [46], a functional implementa-
tion of such memory with SNNs would be difficult.
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Online Learning

As presented in Section 5.5, DECOLLE is capable of learning online, in the sense
that weights can be updated as part of the neural dynamics, while the sensory
input is streamed into the SNN. This contrasts with standard deep reinforce-
ment learning methods that perform batch updates at the end of episodes. It
was shown in Section 5.5 that this online learning strategy can achieve high per-
formance on supervised learning tasks. In a supervised learning setup, the loss
function is defined against ground truth targets which are fixed. In reinforcement
learning, however, the estimation of the objective function depends on past expe-
riences and the network parameters. Constantly changing parameters introduce
variance in this estimation, hindering the learning of a performing policy. This
observation was also noted in Mnih et al. [200], which introduced the concept of
target networks – a copy of the learning network used to estimate the objective,
but updating at a slower pace. The importance of a slow learning process is also
discussed in [66].

Real-World Experiments

Neuromorphic hardware enables the realization of autonomous learning robots
with embedded computing running on battery. However, the approaches pre-
sented in the field of deep reinforcement learning are complicated to apply in the
real world.

One method consists of modeling the real-world environment in simulation so
that an agent can be trained with virtual data. With sufficient randomization, the
learned policy also generalizes to the real-world. This method was successfully
applied to learn in-hand object manipulation [45].

Another method consists of learning directly on real-world robots. Because of
the large number of required trials for a performing policy to be learned, the
environment has to be automated to mitigate human supervision. Specifically,
external off-board sensors are required to evaluate the reward. In addition, the
environment needs to be resettable in a random initial state at the end of a trial.
A successful instance was presented in [295], in which a robot learns to throw
arbitrary objects in defined bins. The environment resets automatically with a
motor lifting the plate in the throwing area to slide the objects back next to the
robot. In [170], multiple identical robots are used to collect data in parallel to
learn the grasping of arbitrary objects from images. In both cases, the reward is
delivered by external cameras. On the other hand, neuromorphic learning robots
would benefit from an approach that can be used without instrumentalization of
the environment (without externally computed rewards and without reset). The
field of intrinsic motivation, which enables the learning of policies with rewards
generated by the robot’s sensors, addresses this topic [256].
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Local Losses

The DECOLLE rule relies on local loss functions at the hidden layers to learn in-
termediate representations. In a supervised learning setup, it was shown that a
mean square error loss as the one used at the network output enabled the learn-
ing of performing visual representations. In a reinforcement learning setup, it is
not clear how the local losses should be formulated to enable the learning of in-
termediate representations useful to the policy. It was shown in Jaderberg et al.
[145] that auxiliary tasks – such as learning to predict future rewards or learning
what action can modify the observation in a certain way – could yield useful in-
termediate representations. Other interesting approaches to learn policies with-
out a reward are presented in [103, 80, 74, 158]. These approaches are referred
to as curiosity or intrinsic motivation. Whether applying these loss functions
locally in DECOLLE would yield the learning of useful intermediate representa-
tions should be investigated.
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7. Conclusion and Outlook

This Chapter marks the end of this thesis. A summary of the approach and the
contributions presented in the previous Chapters is provided. This thesis is then
closed with a concluding statement, followed by a note on the lessons learned by
the author.

7.1. Summary of the Approach

The two research goals of this thesis were to learn spatio-temporal representa-
tions from event-based data with synaptic plasticity rules, and control robots
from these representations. These two goals were addressed separately, after
familiarization with the field of computing with SNNs. First, synaptic plastic-
ity rules derived in computational neuroscience were selected and evaluated on
event-based classification benchmarks. This enabled the identification of the most
functional rules, capable of training multi-layer SNNs, based on gradient descent.
A novel rule of this form was proposed – DECOLLE – which currently outper-
forms other rules on the DvsGesture benchmark, and is suitable for neuromor-
phic hardware implementation. Second, three methods were investigated to cou-
ple visual representations to motor commands with SNNs. These methods were
based on different assumptions about the task. The manual mapping required
the user knowledge of what action should the robot perform for a given net-
work output. The reward mapping required a reward function to be shaped. The
prediction error minimization required a predictive model, here trained from a
user demonstration. Concerning visuomotor coupling, the results obtained with
SNN methods are below state-of-the-art ANNs trained with deep reinforcement
learning. In the future, this gap could be closed with the application of gradient
descent methods for SNNs to reinforcement learning.

7.2. Summary of the Contributions

Addressing the research goals in this thesis has led to contributions and to the
development of novel tools to ease the prototyping of closed-loop experiments
relying on event-based data and SNNs.
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• Tools for Visuomotor Neurorobotics: The ability to test visuomotor ex-
periments in simulation increases research productivity. To this end, the
Gazebo DVS plugin – a closed-loop event-based simulator – was developed
as part of this thesis. This plugin was made open-source, integrated in the
NRP, and was already used by other researchers. A simulated lane follow-
ing experiment relying on this plugin was designed and used to evaluate
the reward-learning rule SPORE in Section 6.2. Similarly, a neuromorphic
DVS head performing eye movements enabling the design of real-world
experiments involving oculomotor control was introduced. This head was
showcased in a stereo-setup and for recording a dataset of objects perceived
with microsaccadic eye movements. This dataset was used to detect visual
grasping affordances with eRBP in Section 6.1. It was also discussed how to
connect event-based data to a SNN and introduced a novel attention mech-
anism evaluated in Section 5.4.

• Learning Visual Representations from event-based data: Relying on the
tools developed within this thesis, the ability to learn spatio-temporal rep-
resentations from AER with synaptic plasticity rules was investigated. One
complexity of this task was to keep up with the newly proposed rules within
the course of this thesis, requiring a close collaboration with computational
neuroscientists. Initially, two bottom-up rules – STDP and LSM – were eval-
uated, and obtained unsatisfactory results compared to standard machine
learning approaches. Subsequently, the top-down rules eCD and eRBP were
evaluated, derived from contrastive divergence and random backpropa-
gation. These rules matched ANN accuracy and retained the advantages
associated to SNN, see Table 5.2 for summarized results. This Chapter
closed with DECOLLE, derived during a stay at the University of Califor-
nia, Irvine. This rule obtained state-of-the-art results on the DvsGesture and
N-MNIST benchmarks. Based on this derivation, a new version of eRBP
was proposed, with similar performance to DECOLLE.

• Visuomotor Coupling: Closing the visuomotor loop involves a mapping
from visual representations to motor commands. Three different methods
to close the visuomotor loop were introduced: manual coupling, reward
learning and prediction error minimization. Manual coupling is simple but
limited and was demonstrated in a reaching and grasping experiment. Re-
ward learning and prediction error minimization consist of learning this
mapping. The reward-learning rule SPORE was evaluated in the lane fol-
lowing experiment. A method for visual imitation learning based on pre-
diction error minimization computed from a LSM trained on event-based
data was presented. These two methods provide initial results that should
be improved to catch up with standard machine learning approaches.
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7.3. Concluding Statements

The brain outperforms computer architectures in aspects of energy efficiency, ro-
bustness and adaptivity. The computational paradigms of the brain are vastly
different from modern computer architectures. Biological neural networks base
their computations on local information and communicate asynchronously with
spikes. Understanding how these paradigms can be implemented in hardware
would enable the design of autonomous learning robots operating at high speed
for a fraction of the energy budget of current solutions.

Neuromorphic vision sensors mark an important step in shifting towards brain-
inspired paradigms. The AER enables energy efficient and fast visual processing
but requires new asynchronous algorithms to be derived. SNNs constitute a sub-
set of asynchronous algorithms inspired by the brain and suited to neuromorphic
hardware.

Learning in the brain is believed to be based on synaptic plasticity. Unlike con-
ventional machine learning methods, weight updates are characterized in terms
of information local to the synapse. Synaptic learning enables an efficient neu-
romorphic hardware implementation, asynchronous updates and online learn-
ing.

In this thesis, computational neuroscience was linked with robotics by exploring
synaptic plasticity rules for learning spatio-temporal representations from event-
based data. A top-down derivation of gradient descent for spiking neurons was
provided, leading to plausible synaptic plasticity rules. It was shown that such
rules were orders of magnitude more functional than bottom-up rules formalized
from observed synaptic behaviors in vitro.

We additionally presented how representations could be mapped to motor com-
mands, closing the visuomotor loop. While a few functional reward-learning
synaptic plasticity rules have been proposed, there is a large performance gap
with deep reinforcement learning. As with deep learning, this gap could be
addressed by formalizing spiking backpropagation as a reward-maximization
rule.

Advances in neuromorphic technology and computational neuroscience are im-
portant to reduce the power consumption of machine learning. Globally, electric
energy is mostly generated from fossil fuels (in 2017, 58.97% from coal and oil
alone [40]), which are limited and emit greenhouse gases. At the same time, the
amount of energy required to train deep ANNs is considerable [277]. The in-
creasing amount of computations in deep learning [224] might lead to represent
a significant portion of global energy consumption. It is therefore important to
research on methods to reduce the number of computations and the amount of
energy per computation. It was proposed in [260] that the financial cost (related
to the energy cost) of developing, training, and running neural networks should
be reported alongside their accuracy.
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7.4. Lessons Learned

A major complication encountered during the elaboration of this thesis was the
rapidly changing tools and methods in both machine learning and computational
neuroscience. The field of learning with SNNs considerably changed between
2015 when this thesis started and today in early 2020. The release of generic deep
learning frameworks such as Tensorflow in 2015 and PyTorch in 2016 significantly
simplified the prototyping of learning methods. However, these tools were not
meant for SNNs simulations and it took some years to realize their potential, see
Appendix A. The first experiments presented in this thesis were developed with
PyNN-NEST, which – at the time of writing – was not ideal for prototyping func-
tional synaptic plasticity rules. Such changes in software tools also complicated
the reuse of software prototypes from a contribution to another. From the theo-
retical side, many contributions important to this thesis were published while the
work was being conducted. Especially, feedback alignment (Lillicrap et al. [174])
and direct feedback alignment (Nøkland et al. [219]) published both in 2016 and
the SNN adaptation in Neftci et al. [213] published in 2017 marked the introduc-
tion of biologically plausible gradient descent rules for SNNs. Before such rules,
the performance of SNNs on learning benchmarks was not competitive against
backpropagation with ANNs.

An important lesson learned during this thesis has been to evaluate prototypes
first on simple tasks. Learning online in closed-loop control is difficult because
the observations received by the network will depend on the network output.
When possible it is therefore much simpler to first validate the learning rule in
a reproducible supervised manner, by training on a dataset. Similarly, keeping
code tidy and open-sourcing it enhances collaborations in research. Many open-
source prototypes were released throughout this thesis, although it has not al-
ways been possible when the code relied on proprietary components.
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A. Simulating Spiking Neural
Networks

Processing in SNNs happens in a distributed and asynchronous manner. All
neurons and synapses in the SNN have their own dynamics, requiring frequent,
simultaneous updates. The asynchronous and sparse communication of spikes
requires these dynamics to be synchronized across neurons. From these partic-
ularities emerged a variety of techniques and hardware to simulate SNNs, very
different from one another. In this Section, the main options for simulating SNNs
are outlined.

A.1. Dedicated Neural Simulators

There are many open-source software for simulating SNNs using standard com-
puter architectures. In general, these simulators implement different types of
neurons and synapses that can be instantiated and wired into networks at setup
time. The network can then be simulated for a given duration. Some neurons
can spike spontaneously to account for the sensory input (by specifying spike-
times, injecting currents or with a Poisson spike-train of a given rate). The activ-
ity (spikes or membrane potential) of other neurons can be recorded to serve as
the SNN output.

Within this category, some simulators focus on reproducing biology accurately
(NEST [119] and NEURON [131]). Other simulators focus on learning with spikes
(Brian [121], Auryn [297]) and interactivity (Nengo [53]). The PyNN library en-
ables to use many of these simulators with the same python code, by providing
a common frontend and implementing the interface to multiple backends. With
these frameworks, the user describes in code the structure of the SNN, see Algo-
rithm 1. In this case, learning has to be implemented with custom neuron and
synapse types.

Since they are implemented on digital hardware, these simulators have to up-
date the neural dynamics at discrete time intervals. Generally, the differential
equations are approximated with variations of the Euler method. Formally, a
differential equation describing the evolution of the membrane potential, of the
form:

τ
du

dt
(t) = −u(t) + urest + Isyn(t), (A.1)
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ALGORITHM 1
Pseudo-code to setup and simulate a network with PyNN

1: input_neurons← create_neurons(n=10, type=Poisson(rate=10))
2: hidden_neurons← create_neurons(n=200)
3: output_neurons← create_neurons(n=10)
4: synapse(input_neurons, hidden_neurons, weights=W1)
5: synapse(hidden_neurons, output_neurons, weights=W2)
6: run_network(T)

can be numerically approximated in a computer with the Euler method:

u(t+ ∆t) = u(t) + ∆t ×
du

dt
(t)

u(t+ ∆t) = u(t) + ∆t ×
1

τ
× (−u(t) + urest + Isyn(t))

u(t+ ∆t) = u(t)×
(

1− ∆t

τ

)
︸ ︷︷ ︸

α

+
∆t

τ
× urest +

∆t

τ
× Isyn(t),

(A.2)

with α ∆t the simulation time-step, usually 1 ms or below.

All the mentioned simulators can run on classical CPUs, with multi-threading.
Additionally, NEST can run on super-computer clusters and Nengo can run on
GPU. When simulated on a CPU, only spike events are transmitted from a neuron
to another. However, all neurons need to be updated sequentially. A standard
optimization is therefore to simulate n time-steps at once, with n×∆t <= mindelay

and mindelay denoting the smallest synaptic delay of the SNN in seconds. In this
case, spikes are generally computed and transmitted to other neurons at intervals
of mindelay seconds.

A.2. Generic Machine Learning Frameworks

Two popular generic machine learning frameworks were recently released: Ten-
sorflow in 2016 by Google [37] and PyTorch in 2017 by Facebook [231]. Unlike
previous deep learning frameworks such as Caffe [147], Tensorflow and PyTorch
support many operations and are not limited to ANNs. Instead of instantiating
neurons and synapses of specific types and connecting them into networks (as
with dedicated neural simulators), the user describes the mathematical opera-
tions on the data (tensors) directly, see Algorithm 2. This enables a direct access
to the operations performed and to the simulation loop.

Computational neuroscientists are now increasingly relying on such frameworks
to experiment SNNs [214, 55, 12]. Indeed, the equations of the IF neuron can
be easily implemented within these frameworks, see Algorithm 3. Since opera-
tions are defined on tensors for an efficient vectorization, the absence of spikes
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ALGORITHM 2
Pseudo-code to setup and simulate a network with PyTorch

1: input_spikes← Tensor(shape=(T, 10))
2: hidden_potentials← Tensor(shape=(200))
3: output_potentials← Tensor(shape=(200))
4: for t← 1...T do
5: hidden_potentials← hidden_potentials ×α + W1 · input_spikes
6: hidden_spikes← hidden_potentials > threshold
7: output_potentials← output_potentials ×α + W2 · hidden_spikes
8: output_spikes← output_potentials > threshold
9: end for

is also communicated. In other words, a layer of 1000 IF neurons will output
a 1000-dimensional vector on every simulation time-step, with some 1s repre-
senting spikes but mostly 0s representing the absence of spikes. While some-
what counter-intuitive, such implementation has many advantages for computa-
tional neuroscientists researching on learning rules. First, both Tensorflow and
PyTorch support automatic differentiation. Therefore, any variable in the com-
putation graph can be optimized by gradient descent with respect to an arbitrary
loss function. Second, large networks can be simulated on GPU, and learning
can take advantage of a batch dimension (the same network is simulated multi-
ple times at once). Third, since these frameworks are used by machine learning
researchers, they offer many powerful features, such as advanced optimization
schemes, native support for convolutions, normalization and dropout. They also
ease collaborations across these fields of research and profit from an active com-
munity.

A.3. Dedicated Neuromorphic Hardware

Until now, only software frameworks to simulate SNNs on conventional com-
puters were discussed. However, conventional computer architectures do not
accommodate the regime of SNNs particularly well. Since neurons and synapses
only have access to local information, and that the communication between neu-
rons is sparse, dedicated hardware can distribute neurons on different cores with
their own local memory. In some cases, this allows a significant reduction of
power consumption as well as an increased processing speed. Such hardware
designed specifically for the simulation of SNNs are referred to as neuromorphic
hardware. They generally offer a high-level programming interface to describe
the architecture of the SNN based on PyNN or similar, see Algorithm 1.

The most common type of neuromorphic hardware is digital, such as SpiNNaker
[108] and Intel Loihi [84], see Figure A.1. As with dedicated neural simulators,
the user provides a description of the network by specifying neuron types and
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A. Simulating Spiking Neural Networks

synaptic connections. This type of hardware can guarantee that the SNN runs in
real-time. With the addition of live spike injection and retrieval, they are a good
match for robotics applications.

(a) SpiNNaker. Source: [108] (b) Kapoho Bay, Loihi. Source: [140]

Figure A.1.: Example digital neuromorphic hardware.

Neuromorphic engineers also developed analog hardware, such as BrainScaleS
[257] and DYNAP [201], see Figure A.2. In this case, the neurons are physically
implemented with electrical circuits, and the neural properties directly mirrored
by physical properties. The advantages of such hardware are extreme power
efficiency (DYNAP neurons are implemented with transistors on sub-threshold
regime) and extreme processing speed (BrainScaleS simulate SNNs 10000 times
faster than biological time). However, these advantages are traded-off with noise
and non-reproducibility since electrical signals are subject to variations in the
surrounding environment (such as room temperature).

(a) BrainScaleS. Source: [222] (b) DYNAP-SE. Source: [51]

Figure A.2.: Example analog neuromorphic hardware.
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B. Continuous Version of eRBP

In this Chapter, the main differences between eRBP and DECOLLE are discussed.
A new version of eRBP is derived, named Continuous Random Backpropagation
[7] (cRBP), which accounts for temporal dynamics as DECOLLE. Importantly,
this new version is implemented using PyTorch, allowing a fair comparison with
DECOLLE, with an identical neuron model, training regime, network architec-
ture, and optimizer. Some of the material covered in this Section was originally
published by the author in Kaiser et al. [7].

B.1. Differences Between eRBP and DECOLLE

For convenience, the generic eRBP equation defined in Equation (5.12) is reported
below:

∆wij(t) ∝
∑
k∈out

ek(t)gik × box(ui(t))× sj(t), (B.1)

with sj the pre-synaptic spike-trains, box the boxcar function, ek the prediction
error for output neuron k and gik a fixed random feedback weight. Similarly, the
DECOLLE rule defined in Equation (5.21) is formulated as follows:

∆wlij(t) ∝
∑

k∈rdoutl

elk(t)g
l
ki × σ′(uli(t))× ε ∗ sl−1

j (t). (B.2)

with superscript l denoting the neural layer to which the variable belongs.

The following differences between the two rules can be noted:

1. Unlike eRBP, DECOLLE filters the pre-synaptic spikes with ε to account for
PSP dynamics;

2. The chosen surrogate functions for eRBP and DECOLLE are different (box-
car and derivative of sigmoid);

3. DECOLLE errors are locally computed at the layer with the local readouts
rdoutl, while eRBP errors are the network errors computed from the network
output out.

The first two differences result from different approximation techniques in the
derivation, while the third point is the core difference between the two rules.
DECOLLE and eRBP assign credits of hidden neurons differently for a given er-
ror. This is the core difference depicted in Figure 5.22.
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B.2. Continuous Random Backpropagation

Unlike eRBP, DECOLLE takes the PSP dynamics into account in the weight up-
date equation. This behavior can be adapted to eRBP by reformulating the equa-
tion:

∆wij(t) ∝
∑
k∈out

ek(t)gki × σ′(ui(t))× ε ∗ sj(t). (B.3)

In this case, the weights are continuously updated along with the neural dy-
namics, unlike the original eRBP formulation which triggered weight updates
on pre-synaptic spikes, see Section 5.4. For a better comparison, the boxcar func-
tion is also replaced by the derivative of the sigmoid. The only remaining dif-
ference with DECOLLE is captured in the ek errors, which are obtained locally
for DECOLLE (with local readouts rdoutl – specific to the layer l), and at the net-
work level for cRBP (with network output out). From these equations, an effi-
cient implementation of both cRBP and DECOLLE can be leveraged using ma-
chine learning frameworks and automatic differentiation (see Appendix A.2). A
pseudo-code of this implementation is provided in Algorithm 3.

In Algorithm 3, floss denotes the loss function, r the learning rate, GRAD an op-
eration to compute the gradient with automatic differentiation and DETACH an
operation that prevents the flow of gradients by setting them to zero. The instruc-
tions of the form DETACH(A−B)+B enable the forward computations to return
A while the derivative will be computed with respect to B. In line 11, it is used in
the forward dynamics to implement the surrogate gradient.

The implemented neural dynamics to advance the state of the neural simulation
are expressed in matrix formulation and described in [12]. It is ensured that gradi-
ents are not propagated backward from a layer to another through the whole net-
work with the DETACH operation on line 9, enabling RTRL instead of BPTT. The
described dynamics is shared between the cRBP and DECOLLE implementations.
Both cRBP and DECOLLE compute pseudo-outputs Y l with a random combina-
tion Gl of the spikes Sl for every l layer. In the case of DECOLLE, pseudo-targets
Ŷ l are assumed for every hidden layer l. The gradients of the local weights W are
calculated with respect to the loss function between the pseudo-targets and the
pseudo-outputs. In the case of cRBP, the loss function is only applied to calculate
the network loss at the output, see line 21. The pseudo-output of the hidden lay-
ers are subsequently multiplied with the network loss on line 24. In effect, this
provides an implementation of direct feedback alignment. In practice, the weight
updates are nested in the forward dynamics computations – it is here split for
clarity.
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ALGORITHM 3
Pseudo-code for cRBP and DECOLLE

1: Initialization
2: P l, Ql, U l, Sl, Rl, Y l ← [0...0] for l ∈ [1, ...L]
3: S0 ← input spikes
4: Ŷ l ← pseudo-targets for layer l
5: for t = 1...T do
6: Advance State
7: for l = 1...L do
8: P l = αP l + (1− α)Ql

9: Ql = βQl + (1− β)DETACH(Sl−1)
10: U l = W l · P l −Rl

11: Sl = DETACH(Θ(U l)− σ(U l)) + σ(U l)
12: Rl = γRl + (1− γ)DETACH(Sl)
13: Y l = Gl · Sl
14: end for
15: Weight Update DECOLLE
16: for l = 1...L do
17: Ll = floss(Y

l, Ŷ l)
18: W l = W l + r ×GRAD(Ll,W l)
19: end for
20: Weight Update cRBP
21: LL = floss(Y

L, Ŷ L)
22: WL = WL + r ×GRAD(LL,WL)
23: for l = 1...(L− 1) do
24: Ll = Y l ·DETACH(LL)
25: W l = W l + r ×GRAD(Ll,W l)
26: end for
27: end for

B.3. Performance Comparison

The same experimental setup to evaluate DECOLLE is used, see Section 5.5. Un-
like the Auryn implementation of eRBP presented in Section 5.4, the input dimen-
sion is set to 32x32 instead of 64x64. Additionally, synaptic and axonal delays are
not simulated – spikes are transmitted from a layer to another within the same
time-step. The errors are computed and communicated as analog values to the
neurons for the synaptic updates. Both the 2-layers dense architecture introduced
in Section 5.4 and the 3-layer convolutional architecture introduced in Section 5.5
are benchmarked. The results are presented for cRBP on the DvsGesture dataset
in Figure B.1, and included in Table 5.2.

The accuracy of the cRBP rule with the 2-layer dense architecture on a 32x32 in-
put is slightly lower than the accuracy of eRBP on a 64x64 input. This accu-
racy increases significantly when replacing the input rescaling with the attention
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(a) Input rescaling to 32x32
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(b) Attention window 32x32

Figure B.1.: Classification accuracy for the DvsGesture task during learning with
cRBP. Shadings indicate standard deviation across the 7 runs. Source:
[7].

mechanism: from 77.93% to 90.80%. Similarly, the accuracy of the cRBP rule with
the convolutional architecture is slightly lower than the accuracy of DECOLLE.
This accuracy moderately increases when replacing the input rescaling with the
attention mechanism: from 92.48% to 95.34%.
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C. DVS Head Blueprints
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Figure C.1.: Blueprints of the 3D printed robotic stereo-DVS head.

137





Acronyms

AER Address Event Representation. Denote the hardware protocol to commu-
nicate data in event-based hardware, introduced in Lazzaro et al. [166].
Events are emitted at precise time, each event contains the address of a re-
ceptor and some payload. vii, 3, 38, 45, 50, 77, 84, 124, 125, 143, 145

ANN Neural networks where neurons communicate synchronously and with con-
tinuous values (as opposed to SNNs). At time of writing, this type of net-
work is by far the most commonly used in the field of deep learning In
literature, the acronym ANN ambiguously refers to either Analog Neural
Network or Artificial Neural Network, but always denotes the same con-
cept. Since SNNs are also artificial, the term Analog Neural Network is
preferred.. vii, 2, 7, 16, 17, 20, 22, 23, 27, 30, 32, 33, 37–40, 42–44, 46, 67, 76,
98, 118, 123–126, 130

BPTT Backpropagation-Through-Time. vii, 33, 34, 37, 96, 118, 134

CMA-ES Covariance Matrix Adaptation Evolution Strategy [127]. Black-box op-
timization method based on Evolution Strategy. At each iteration, offspring
are generated by sampling a multivariate Gaussian distribution. A weighted
combination of the best offspring survive an iteration, and covariance ma-
trices are ingeniously updated . vii, 78, 112–114

CPU Central Processing Unit. vii, 21, 41, 130

cRBP Continuous Random Backpropagation [7]. vii, 98, 99, 133–136, 146

DECOLLE Deep Continuous Local Learning [12]. vii, xi, 6, 34, 35, 38, 52, 53, 89,
92–99, 118–121, 123, 124, 133–136, 146

DVS Dynamic Vision Sensor. Biologically inspired vision sensor which emit ad-
dress events upon local light intensity changes. vii, x, xi, 5, 7, 24, 41–43, 45,
47, 49, 51, 53, 55–61, 63, 65, 69–71, 74, 76, 78, 86, 89, 101–104, 108, 113, 114,
124, 137, 145, 146

e-prop Eligibility Propagation [55]. vii, 34, 38, 75

eCD Event-Driven Contrastive Divergence [211]. vii, 6, 30, 84–88, 124, 146

eRBP Event-Driven Random Backpropagation [213]. vii, xi, 6, 7, 35–37, 53, 59,
88–93, 97–99, 101–104, 124, 133–136, 145, 146
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Acronyms

FFT Fast Fourier Transform. vii

GPU Graphics Processing Unit. vii, 7, 96, 130, 131

IF Integrate-and-Fire. Family of phenomenological spiking neuron models. In-
coming spikes alter the membrane potential, and the neuron spikes (fires)
when its membrane potential reaches a threshold value. The membrane po-
tential leaks in the absence of spikes to a resting potential. vii, 18, 19, 30,
34–37, 43, 49, 65, 92, 93, 96, 130, 131, 140, 145

LSM Liquid State Machine. Pool of neurons recurrently connected exhibiting a
fading memory property, such as the waves in a bucket of water. vii, x, 6,
32, 33, 67–73, 75, 76, 78–80, 83, 96, 99, 111–113, 115, 116, 124, 145, 146

LSTM Long Short-Term Memory [132]. vii, 33, 34, 53

LTD Long Term Depression. Instantiation of a STDP rule where correlations in
spike times trigger weight decrease. vii, 12, 27, 30, 85

LTP Long Term Potentiation. Instantiation of a STDP rule where correlations in
spike times trigger weight increase. vii, 12, 27, 30, 85

NEF Neural Engineering Framework [275]. Framework allowing to approximate
functions with two-layer SNNs of IF neurons implemented with the Nengo
simulator. The SNNs can be combined together to form complex cognitive
architectures. vii, 43, 45

NRP Neurorobotics Platform [4]. Open-source1 simulation environment to de-
sign and evaluate experiments with robots controlled with SNNs. vii, 5, 42,
43, 49, 112, 113, 124

PSP Post-Synaptic Potential. Conversion at the synapse of an instantaneous
spike into a voltage contribution to the membrane potential of a neuron.
vii, 12, 19–21, 31, 37, 92, 93, 133, 134

RBM Restricted Boltzmann Machine. vii, 30, 31, 84, 86, 88

ReLU Rectified Linear Unit. vii, 44

ROS Robot Operating System. vii, 49, 55, 60, 61, 103, 108

RTRL Real-Time Recurrent Learning [287]. vii, 35, 37, 95, 134

SCDBN Spiking Convolutional Deep Belief Network. vii, 85–87, 146, 147

1https://bitbucket.org/hbpneurorobotics/neurorobotics-platform

140

https://bitbucket.org/hbpneurorobotics/neurorobotics-platform


Acronyms

SNN Spiking Neural Network. Artificial neural network where neurons commu-
nicate asynchronously with spikes. Both neurons and synapses are stateful,
their dynamics are described with respect to time. vii, xi, 1, 4–7, 20, 22,
25–28, 31, 32, 34–38, 40–51, 53, 56, 58–61, 63–65, 67, 76, 77, 88, 92, 96–98,
101–103, 107, 118–120, 123–126, 129–132, 139, 140, 144

SPORE Synaptic Plasticity with Online Reinforcement learning [150]. vii, 6, 30,
31, 59, 107–110, 118, 124, 146

SRM Spike Response Model. vii, 19, 21, 37, 93, 145

STDP Spike-Timing-Dependent-Plasticity Learning rule where weight update
depends on precise pre-synaptic and post-synaptic spike times. vii, ix, 6,
12, 22, 23, 25–30, 44–46, 52, 53, 76–78, 80–84, 86–89, 98, 99, 124, 140, 145, 146

SVM Support Vector Machine. vii, 27, 78–80, 86, 99
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Glossary

credit assignment Denotes the formulation and computation of the credit of a
given neuron or synapse in the current task performance . vii, 22, 23, 34, 98

direct feedback alignment Variation of feedback alignment. The random feed-
back weights are connected from the network output to the hidden neurons
directly, bypassing previous hidden layers. Introduced in [219] . vii, 36, 89,
95, 126, 134

eligibility trace Trace in a neuron or a synapse of its previous activity, also re-
ferred to as synaptic tag. vii, 37, 38, 92, 94, 96, 98

event-based Sensor, data, algorithm or computation relying on AER. For exam-
ple, conventional sensors provide readings of all receptors at regular fre-
quency. Instead, event-based sensors emit individual events upon change
in readings from a particular receptor. vii, 1–3, 5–7, 14, 20, 23–25, 33, 38–52,
55, 58, 59, 63, 68, 70, 77, 78, 80, 84, 86–88, 92, 98, 101, 102, 107, 108, 112, 115,
118, 123–125, 139, 145, 146

feedback alignment The realization that a network can adapt through learning
to fixed random feedback weights, decoupled from the forward weights,
thus solving the weight transport problem. Introduced in [174] . vii, 36,
126, 143

HMAX Hierarchical models for object recognition based on alternating layers of
simple cells detecting features and complex cells pooling the dominant fea-
tures with the MAX operation, first introduced in [248]. vii, 53, 76–81, 83,
84, 86, 89, 99, 146

mean square error Common loss function used in machine learning. It is ex-
pressed as L = 1

2
(ŷ − y)2, with y the network output and ŷ the targets . vii,

35, 94, 95, 112, 121

NEST Spiking Neural Network Simulator presented in [119], with python bind-
ings introduced in [97] . vii, 126, 144
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Glossary

Poisson spike-train spike-train in which the spikes for a given neuron are emit-
ted at a given rate independently of one another, as drawn from a Poisson
Distribution. vii, 5, 25, 77, 78, 80, 129

PyNN Python library offering a common wrapper over common SNNs simula-
tors (backends) such as NEST, SpiNNaker and others, introduced in [85] .
vii, 126, 129–131

PyTorch Generic deep learning framework presented in [232]. vii, 96, 98, 130,
131, 133

spike-train Spikes emitted by a neuron over a time period. vii, 4, 5, 20, 29, 37,
62, 70, 72, 79, 89–93, 96, 104, 106, 114, 117, 144–146

weight transport problem This problem denotes the dependence on the forward
weights in the computation of the weight update when training a neural
network. This dependence is biologically implausible and impractical for a
spiking network implementation . vii, 36, 88, 95, 143

winner-take-all circuit Two-layers network in which every input pattern is matched
to a single, competing output. vii, 26, 29, 31, 33
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