Skip to main content
Log in

Dermatological Toxicities of Bruton’s Tyrosine Kinase Inhibitors

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The development of Bruton’s tyrosine kinase (BTK) inhibitors represents a major breakthrough in the treatment of chronic lymphocytic leukemia and other B cell malignancies. The first-generation inhibitor ibrutinib works by covalent irreversible binding to BTK, a non-receptor tyrosine kinase of the TEC (transient erythroblastopenia of childhood) family that plays a critical role in the B-cell receptor signaling pathway. It also induces an ‘off-target’ inhibition of a range of other kinases including (but not limited to) epidermal growth factor receptor (EGFR), SRC, and other kinases of the TEC family (interleukin-2-inducible T-cell kinase [ITK], Tec, BMX). Dermatological toxicities are among the most common toxicities of ibrutinib, but remain of mild to moderate intensity in most cases and are readily manageable. Their incidence is highest during the first year of treatment and declines over time. In addition, it has been postulated that ibrutinib-related dermatologic adverse events are mediated by the direct binding to both BTK and other ‘off-target’ kinases. Bruising, ecchymoses, and petechiae represent the most characteristic dermatologic adverse events. Nail and hair changes are also common, as skin infections (opportunistic infections including herpes simplex and herpes zoster virus reactivations, and Staphylococcus aureus superinfection), folliculitis, and other types of rashes. Panniculitis, aphthous-like ulcerations with stomatitis, neutrophilic dermatosis, peripheral edema, and skin cracking can also occur. Next-generation BTK inhibitors, acalabrutinib and zanubrutinib, have been designed to optimize BTK inhibition and minimize off-target inhibition of alternative kinases (Tec, ITK, EGFR, SRC-family kinases). These drugs have been recently FDA-approved for relapsed or refractory mantle cell lymphoma. Although the overall incidence of their toxicities is expected to be more limited, acalubrutinib and zanubrutinib are associated with a range of dermatologic toxic effects that appear to be similar to those previously described with ibrutinib, including bruising and ecchymoses, panniculitis, human herpesvirus infections, cellulitis, and skin rash. In particular, both drugs induce skin bleeding events in more than 30% of patients treated. However, the available dermatological data are still rather limited and will have to be consolidated prospectively. This review article analyses the wide spectrum of dermatological toxicities that can be encountered with first- and second-generation BTK inhibitors. Finally, recommendations for appropriate treatment as well as a synthesis algorithm for management are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Paydas S. Management of adverse effects/toxicity of ibrutinib. Crit Rev Oncol Hematol. 2019;136:56–63.

    PubMed  Google Scholar 

  2. Davids MS, Brown JR. Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol. 2014;10(6):957–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stephens DM, Byrd JC. How I manage ibrutinib intolerance and complications in patients with chronic lymphocytic leukemia. Blood. 2019;133(12):1298–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shatzel JJ, Olson SR, Tao DL, McCarty OJT, Danilov AV, DeLoughery TG. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost. 2017;15(5):835–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Coutre SE, Byrd JC, Hillmen P, Barrientos JC, Barr PM, Devereux S, et al. Long-term safety of single-agent ibrutinib in patients with chronic lymphocytic leukemia in 3 pivotal studies. Blood Adv. 2019;3(12):1799–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.

    CAS  PubMed  Google Scholar 

  9. Gribben JG, Bosch F, Cymbalista F, Geisler CH, Ghia P, Hillmen P, et al. Optimising outcomes for patients with chronic lymphocytic leukaemia on ibrutinib therapy: european recommendations for clinical practice. Br J Haematol. 2018;180(5):666–79.

    PubMed  Google Scholar 

  10. Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241–50.

    CAS  PubMed  Google Scholar 

  11. Khan Y, O’Brien S. Acalabrutinib and its use in treatment of chronic lymphocytic leukemia. Future Oncol. 2019;15(6):579–89.

    CAS  PubMed  Google Scholar 

  12. Morabito F, Recchia AG, Vigna E, Botta C, Skafi M, Abu-Rayyan M, et al. An in-depth evaluation of acalabrutinib for the treatment of mantle-cell lymphoma. Expert Opin Pharmacother. 2020;21(1):29–38.

    CAS  PubMed  Google Scholar 

  13. Tam CS, Opat S, Zhu J, Cull G, Gottlieb D, Li J, et al. Pooled analysis of safety data from monotherapy studies of the bruton tyrosine kinase (BTK) inhibitor, zanubrutinib (BGB-3111) in B-cell malignancies. HemaSphere. 2019;3(S1):526. https://doi.org/10.1097/01.HS9.0000562920.26603.5b.

    Article  Google Scholar 

  14. Tam CS, Trotman J, Opat S, Burger JA, Cull O, Gottlieb D, et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019;134(11):851–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Syed YY. Zanubrutinib: first approval. Drugs. 2020;80(1):91–7.

    CAS  PubMed  Google Scholar 

  16. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15(1):48–58.

    PubMed  Google Scholar 

  18. Wang ML, Blum KA, Martin P, Goy A, Auer R, Khal BS, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Farooqui MZ, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.

    CAS  PubMed  Google Scholar 

  20. Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.

    PubMed  PubMed Central  Google Scholar 

  21. Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.

    CAS  PubMed  Google Scholar 

  22. Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659–67.

    CAS  PubMed  Google Scholar 

  23. Awan FT, Schuh A, Brown JR, Furman RR, Pagel JM, Hillmen P, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019;3(9):1553–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Owen RG, McCarthy H, Rule S, Dsa S, Thomas SK, Tournilhac O, et al. Acalabrutinib monotherapy in patients with Waldenström macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020;7(2):e112–21.

    PubMed  Google Scholar 

  25. Mock J, Kunk PR, Palkimas S, Sen JM, Devitt M, Horton B, et al. Risk of Major Bleeding with Ibrutinib. Clin Lymph Myeloma Leuk. 2018;18(11):755–61.

    Google Scholar 

  26. De Weerdt I, Koopmans SM, Kater AP, van Gelder M. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica. 2017;102(10):1629–39.

    PubMed  PubMed Central  Google Scholar 

  27. Brown JR. How I treat CLL patients with ibrutinib. Blood. 2018;131(4):379–86.

    CAS  PubMed  Google Scholar 

  28. Levade M, David E, Garcia C, Laurent PA, Cardot S, Michallet AS, et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood. 2014;124(26):3991–5.

    CAS  PubMed  Google Scholar 

  29. Parra CE, Newsom E, Lee EH, Allan JN, Minkis K. Association of ibrutinib treatment with bleeding complications in cutaneous surgery. JAMA Dermatol. 2017;153(10):1069–70.

    PubMed  Google Scholar 

  30. Kaya G, Kaya A, Sorg O, Saurat JH. Dermatoporosis, a prevalent skin condition affecting the elderly: current situation and potential treatments. Clin Dermatol. 2019;37(4):346–50.

    PubMed  Google Scholar 

  31. Ransohoff JD, Kwong BY. Cutaneous adverse events of targeted therapies for hematolymphoid malignancies. Clin Lymph Myeloma Leuk. 2017;17(12):834–51.

    Google Scholar 

  32. Singer S, Tan SY, Dewan AK, Davids M, Lascasce AS, Treon SP, et al. Cutaneous eruptions from ibrutinib resembling EGFR inhibitor-induced dermatologic adverse events (published online ahead of print, 2019 Dec 20). J Am Acad Dermatol. 2019;S0190-9622(19)33308-0.

  33. Iberri DJ, Kwong BY, Stevens LA, Coutre SE, Kim J, Sabile JM, et al. Ibrutinib-associated rash: a single-centre experience of clinicopathological features and management. Br J Haematol. 2018;180(1):164–6.

    PubMed  Google Scholar 

  34. Jensen AB, Stausbøl-Grøn B, Riber-Hansen R, d’Amore F. Ibrutinib-associated skin toxicity: a case of maculopapular rash in a 79-year old Caucasian male patient with relapsed Waldenström’s macroglobulinemia and review of the literature. Dermatol Rep. 2017;9(1):6976.

    Google Scholar 

  35. Mannis G, Wu D, Dea T, Mauro T, Hsu G. Ibrutinib rash in a patient with 17p del chronic lymphocytic leukemia. Am J Hematol. 2015;90(2):179.

    PubMed  Google Scholar 

  36. Ollech A, Stemmer SM, Merims S, Lotem M, Popovtzer A, Hendler D, et al. Widespread morbilliform rash due to sorafenib or vemurafenib treatment for advanced cancer; experience of a tertiary dermato-oncology clinic. Int J Dermatol. 2016;55(4):473–8.

    CAS  PubMed  Google Scholar 

  37. Shaikh H, Khattab A, Faisal MS, Chilkulwar A, Albrethsen M, Sadashiv S, et al. Case series of unique adverse events related to the use of ibrutinib in patients with B-cell malignancies-A single institution experience and a review of literature. J Oncol Pharm Pract. 2019;25(5):1265–70.

    CAS  PubMed  Google Scholar 

  38. Ghasoub R, Albattah A, Elazzazy S, Alokka R, Nemir A, Alhijji I, et al. Ibrutinib-associated sever skin toxicity: a case of multiple inflamed skin lesions and cellulitis in a 68-year-old male patient with relapsed chronic lymphocytic leukemia—case report and literature review. J Oncol Pharm Pract. 2020;26(2):487–91.

    CAS  PubMed  Google Scholar 

  39. Sibaud V, Tournier E, Roché H, Del Giudice P, Delord JP, Hubiche T. Late epidermal growth factor receptor inhibitor-related papulopustular rash: a distinct clinical entity. Clin Exp Dermatol. 2016;41(1):34–7.

    CAS  PubMed  Google Scholar 

  40. Braden RL, Anadkat MJ. EGFR inhibitor-induced skin reactions: differentiating acneiform rash from superimposed bacterial infections. Support Care Cancer. 2016;24(9):3943–50.

    PubMed  Google Scholar 

  41. Bitar C, Sadeghian A, Sullivan L, Murina A. Ibrutinib-associated pityriasis rosea-like rash. JAAD Case Rep. 2017;4(1):55–7.

    PubMed  PubMed Central  Google Scholar 

  42. Dousa KM, Babiker A, Van Aartsen D, Shah N, Bonomo RA, Johnson JL, et al. Ibrutinib therapy and mycobacterium chelonae skin and soft tissue infection. Open Forum Infect Dis. 2018;5(7):ofy168.

    PubMed  PubMed Central  Google Scholar 

  43. Ghez D, Calleja A, Protin C, Baron M, Ledoux MP, Damoy G, et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood. 2018;131(17):1955–9.

    CAS  PubMed  Google Scholar 

  44. Cougoul P, Tournier E, Delavigne K, Rauzy OB, Ysebaert L, Sibaud V. Acquired epidermodysplasia verruciformis, a new opportunistic infection related to bendamustine. Ann Hematol. 2015;94(6):1071–3.

    CAS  PubMed  Google Scholar 

  45. Saluzzo S, Layer F, Stingl G, Stary G. Staphylococcal scalded skin syndrome caused by a rare variant of exfoliative-toxin-A + S. aureus in an adult immunocompromised woman. Acta Derm Venereol. 2018;98(1):138–9.

    PubMed  Google Scholar 

  46. Stein MK, Karri S, Reynolds J, Owsley J, Wise A, Martin MG, et al. Cutaneous mucormycosis following a bullous pemphigoid flare in a chronic lymphocytic leukemia patient on ibrutinib. World J Oncol. 2018;9(2):62–5.

    PubMed  PubMed Central  Google Scholar 

  47. Fabbro SK, Smith SM, Dubovsky JA, Gru AA, Jones JA. Panniculitis in patients undergoing treatment with the Bruton tyrosine kinase inhibitor ibrutinib for lymphoid leukemias. JAMA Oncol. 2015;1(5):684–6.

    PubMed  Google Scholar 

  48. Stewart J, Bayers S, Vandergriff T. Self-limiting ibrutinib-induced neutrophilic panniculitis. Am J Dermatopathol. 2018;40(2):e28–9.

    PubMed  Google Scholar 

  49. Hammel JA, Roth GM, Ferguson N, Fairley JA. Lower extremity ecchymotic nodules in a patient being treated with ibrutinib for chronic lymphocytic leukemia. JAAD Case Rep. 2017;3(3):178–9.

    PubMed  PubMed Central  Google Scholar 

  50. Bitar C, Farooqui MZ, Valdez J, Saba NS, Soto S, Bray A, et al. Hair and nail changes during long-term therapy with ibrutinib for chronic lymphocytic leukemia. JAMA Dermatol. 2016;152(6):698–701.

    PubMed  PubMed Central  Google Scholar 

  51. Heldt Manica LA, Cohen PR. Ibrutinib-associated nail plate abnormalities: case reports and review. Drug Saf Case Rep. 2017;4(1):15.

    PubMed  PubMed Central  Google Scholar 

  52. Yorulmaz A, Yalcin B. Paronychia and periungual granulation as a novel side effect of ibrutinib: a case report. Skin Appendage Disord. 2020;6(1):32–6.

    PubMed  Google Scholar 

  53. Robert C, Sibaud V, Mateus C, Verschoore M, Charles C, Baron M, et al. Nail toxicities induced by systemic anticancer treatments. Lancet Oncol. 2015;16(4):e181.

    CAS  PubMed  Google Scholar 

  54. Sibaud V, Casassa E, D’Andrea M. Are topical beta-blockers really effective “in real life” for targeted therapy-induced paronychia. Support Care Cancer. 2019;27(7):2341–3.

    PubMed  Google Scholar 

  55. Vigarios E, Beylot-Barry M, Jegou MH, Oberic L, Ysebaert L, Sibaud V. Dose-limiting stomatitis associated with ibrutinib therapy: a case series. Br J Haematol. 2019;185(4):784–8.

    PubMed  Google Scholar 

  56. Vigarios E, Epstein JB, Sibaud V. Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors. Support Care Cancer. 2017;25(5):1713–39.

    Google Scholar 

  57. El Halabi L, Cherif-Rebai K, Michot JM, Ghez D. Ibrutinib-Induced Neutrophilic Dermatosis. Am J Dermatopathol. 2018;40(3):198–200.

    PubMed  Google Scholar 

  58. Giovanni B, Ibatici A, Sola S, Brunasso AMG, Massone C. Ibrutinib and pyoderma gangrenosum in a patient with B-cell chronic lymphocytic leukemia. Am J Dermatopathol. 2019. https://doi.org/10.1097/dad.0000000000001391(Epub ahead of print).

    Article  Google Scholar 

  59. Mulvey JJ, Nuovo GJ, Magro CM. Cutaneous, purpuric painful nodules upon addition of ibrutinib to RCVP therapy in a CLL patient: a distinctive reaction pattern reflecting iatrogenic Th2 to Th1 milieu reversal. Am J Dermatopathol. 2016;38(7):492–8.

    PubMed  Google Scholar 

  60. Brewer JD, Habermann TM, Shanafelt TD. Lymphoma-associated skin cancer: incidence, natural history, and clinical management. Int J Dermatol. 2014;53(3):267–74.

    PubMed  Google Scholar 

  61. Sollena P, Mannino M, Laurenti L, De Simone C, Peris K. Ibrutinib-associated palmo-plantar fissures in a patient with Chronic Lymphocytic Leukaemia: a novel cutaneous adverse event. J Eur Acad Dermatol Venereol. 2019;33(9):e342–4.

    CAS  PubMed  Google Scholar 

  62. Grandi V, Maglie R, Antiga E, Vannucchi M, Delfino C, Lastrucci I, et al. Eosinophilic dermatosis of hematologic malignancy: a retrospective cohort of 37 patients from an Italian center. J Am Acad Dermatol. 2019;81(1):246–9.

    PubMed  Google Scholar 

  63. Witzig TE, Inwards D. Acalabrutinib for mantle cell lymphoma. Blood. 2019;133(24):2570–4.

    CAS  PubMed  Google Scholar 

  64. Series J, Garcia C, Levade M, Viaud J, Sié P, Ysebaert L, et al. Differences and similarities in the effects of ibrutinib and acalabrutinib on platelet functions. Haematologica. 2019;104(11):2292–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dobie G, Kuriri FA, Omar MMA, Alanazi F, Gazwani AM, Tang CPS, et al. Ibrutinib, but not zanubrutinib, induces platelet receptor shedding of GPIb-IX-V complex and integrin αIIbβ3 in mice and humans. Blood Adv. 2019;3(24):4298–311.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Emilie Tournier and Prof. Laurence Lamant (Pathology Department, Cancer University Institute) for providing and analyzing histopathology figures.

Author information

Authors and Affiliations

Authors

Contributions

VS participated in designing the manuscript, in generating/gathering the data, wrote the majority of the paper and has approved the final version of the manuscript; MBB/CP/EV/CR participated in generating/gathering the data and have approved the final version of the manuscript; LY participated in designing the manuscript, in generating/gathering the data, participated in writing the manuscript and has approved the final version of the manuscript.

Corresponding author

Correspondence to Vincent Sibaud.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Author VS has received fees and speaker honorarium from Novartis, Bristol Myers Squibb, Bayer, Incyte, Pierre Fabre, and Sanofi; Author MBB has received fees and speaker honorarium from Janssen; Authors CP and EV declare that they have no conflicts of interest that might be relevant to the contents of this manuscript; Author CR has received research grants from Abbvie, Amgen, Novartis, Celgene, Jazz Pharmaceuticals, Agios, Chugai, Sunesis, MaatPharma, Astellas, Roche and Daiichi-Sankyo; is a member of committees for Abbvie, Sunesis, Janssen, Jazz, Novartis, Celgene, Astellas, Daiichi-Sankyo, Macrogenics, Roche, and Pfizer; Author LY has received fees and speaker honorarium from Abbvie, Astra-Zeneca, Gilead, Janssen, and Roche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibaud, V., Beylot-Barry, M., Protin, C. et al. Dermatological Toxicities of Bruton’s Tyrosine Kinase Inhibitors. Am J Clin Dermatol 21, 799–812 (2020). https://doi.org/10.1007/s40257-020-00535-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00535-x

Navigation