Skip to main content

Advertisement

Log in

Distribution and community structure of araneocoenoses (Araneae) along an altitudinal gradient on Kozuf Mountain (North Macedonia)

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of this paper is to perform a biocoenological analysis of spiders and to follow their distribution along an altitudinal gradient on Kozuf Mountain. The research area extends from the foothill to the highest parts of the mountain (89–2080 m a.s.l.), covering 17 localities, characterized by a broad spectrum of habitats. The material was collected monthly, in the period of June–November 2016, with the use of pitfall traps. A bimodal increase in species richness was recorded as a consequence of more favourable conditions at an intermediate altitude in mountain ecosystems. The lowest abundance (0.77 ind. trap−1) was noted in the arid locality at the lowest altitude (89 m a.s.l.), while the highest values were registered in open habitats above 1500 m a.s.l. This is a result of the higher abundance of epigeic invertebrates in open areas in comparison to forests. The araneofauna can be divided into six araneocoenoses: an araneocoenosis inhabiting arid localities, a mygalomorph/Mediterranean araneocoenosis, a montane beech forest araneocoenosis, an araneocoenosis inhabiting damp localities, an araneocoenosis inhabiting open high-altitude localities and an araneocoenosis inhabiting high altitude forest habitats. A low degree of similarity between the araneocoenoses was detected due to the heterogeneity of habitats and altitudes. Both altitude and habitat type had strong effects on community structure and distribution with the latter having a stronger impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Addinsoft Inc (2014) XLSTAT for windows, version 2014. Addinsoft Inc, Long Island City

    Google Scholar 

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56:485–488. https://doi.org/10.2307/1934981

    Article  Google Scholar 

  • Betina SI, Harrat A, Petit D (2017) Analysis grasshopper diversity and associated factors involved in grasshopper diversity in arid Aurès mountains (Batna, Algeria). J Entomol Zool Stud 5(5):339–348

    Google Scholar 

  • Blagoev G (2002) Check list of Macedonian spiders (Araneae). Acta Zool Bulg 54:9–34

    Google Scholar 

  • Bosmans R (2009) Revision of the genus Zodarion Walckenaer, 1833, part III. South East Europe and Turkey (Araneidae: Zodariidae). Contrib Nat Hist 12:211–295

    Google Scholar 

  • Bosnians R, Maelfait JP, De Kimpe A (1986) Analysis of the spider communities in an altitudinal gradient in the French and Spanish Pyrénées. Bull Br Arachnol Soc 7(3):69–76

    Google Scholar 

  • Bowden J, Buddle CM (2010) Spider assemblages across elevational and latitudinal gradients in the Yukon territory, Canada. Arctic 63(3):261–272. https://doi.org/10.14430/arctic1490

    Article  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographical range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623. https://doi.org/10.1146/annurev.ecolsys.27.1.597

    Article  Google Scholar 

  • Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Annu Rev Ecol Syst 15:25–64. https://doi.org/10.1146/annurev.es.15.110184.000325

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6(6):e21710. https://doi.org/10.1371/journal.pone.0021710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzaki M, Lymberakis P, Markakis G, Mylonas M (2005) The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species richness, activity and altitudinal range. J Biogeogr 32:813–831. https://doi.org/10.1111/j.1365-2699.2004.01189.x

    Article  Google Scholar 

  • Chaudhary C, Saeedi H, Costello MJ (2016) Bimodality of latitudinal gradients in marine species richness. Trends Ecol Evol 31(9):670–676. https://doi.org/10.1016/j.tree.2016.06.001

    Article  PubMed  Google Scholar 

  • Colwell RK, Less DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76. https://doi.org/10.1016/S0169-5347(99)01767-X

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Rangel TF (2010) A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under quaternary glacial cycles. Philos Trans R Soc B Biol Sci 365:3695–3707. https://doi.org/10.1098/rstb.2010.0293

    Article  Google Scholar 

  • Ćurčić BPM, Deltshev C, Blagoev GA, Tomić V, Ćurčić SB, Makarov SE, Mitić BM, Stojkoska EA, Stanković SV (2004) On some leaf-litter and cave-dwelling spiders (Araneae: Arachnida) from the republic of Macedonia. Arch Biol Sci 56(3–4):23–24. https://doi.org/10.2298/ABS0404001C

    Article  Google Scholar 

  • Cvetkovska-Gjorgjievska A (2015) Ecology and distribution of invertebrate fauna on Belasica Mountain with a special focus on carabids (Coleoptera: Carabidae). Dissertation, Saints Cyril and Methodius University

  • Decae AE (2012) Geography-related sub-generic diversity within the Mediterranean trapdoor spider genus Nemesia (Araneae, Mygalomorphae, Nemesiidae). Arachnol Mitt 43:24–28. https://doi.org/10.5431/aramit4304

    Article  Google Scholar 

  • Deltshev C (2003) A critical review of the spider species (Araneae) described by P. Drensky in the period 1915-1942 from the Balkans. Ber Naturwiss-med Ver Innsb 90:135–150

    Google Scholar 

  • Deltshev C (2007) A zoogeographical review of the spiders (Araneae) of the Balkan Peninsula. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan Biodiversity. Kluwer Academic Publishers, Dordrecht, pp 193–200. https://doi.org/10.1007/978-1-4020-2854-0_11

    Chapter  Google Scholar 

  • Deltshev C (2008) Faunistic diversity and zoogeography of cave-dwelling spiders on the Balkan Peninsula. In: Makarov SE, Dimitrijević RN (eds) Advances in arachnology and developmental biology: papers dedicated to prof. Dr. Božidar Ćurčić. Institute of Zoology, Belgrade, pp 327–348

    Google Scholar 

  • Deltshev C, Bosmans R, De Spiegelaere W, Provoost L (2006) Zelotes balcanicus sp. n., a new and widespread species from the Balkan Peninsula (Araneae, Gnaphosidae). A new Zelotes speces. Rev Suisse Zool 113:711–716. https://doi.org/10.5962/bhl.part.80369

    Article  Google Scholar 

  • Deltshev C, Komnenov M, Blagoev G, Georgiev T, Lazarov S, Stojkoska E, Naumova M (2013) Faunistic diversity of spiders (Araneae) in Galichitsa Mountain (FYR Macedonia). Biodivers Data J 1:1–70. https://doi.org/10.3897/BDJ.1.e977

    Article  Google Scholar 

  • Filipovski G, Rizovski R, Ristevski P (1996) Characteristics of climate-vegetation-soil zones (regions) of republic of Macedonia. Macedonian Academy of Sciences and Arts, Skopje

    Google Scholar 

  • Fisher C, Azarkina G (2005) A contribution to the knowledge of the jumping spiders (Salticidae: Araneae) of the republic of Macedonia. Acta Zool Bulg 57(3):299–304

    Google Scholar 

  • Fleishman E, Austin GT, Weiss AD (1998) An empirical test of Rapoport's rule: elevational gradients in montane butterfly communities. Ecology 79:2482–2493. https://doi.org/10.2307/176837

    Article  Google Scholar 

  • Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, McCain CM, Bowie RCK, Moritz C, Baines BS, Schneider JC, VanDerWal J, Rahbek C, Kozak KH, Sanders NJ (2014) The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37:711–719. https://doi.org/10.1111/ecog.00578

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Heimer S, Nentwig W (1991) Spinnen Mitteleuropas: Ein Bestimmungsbuch. Verlag Paul Parey, Berlin

  • Huang P-S, Lin H-C, Lin C-P, Tso J-M (2014) The effect of thinning on ground spider diversity and microenvironmental factors of a subtropical spruce plantation forest in East Asia. Eur J For Res 133(5):919–930. https://doi.org/10.1007/s10342-014-0808-4

    Article  Google Scholar 

  • Jantscher E (2001) Diagnostic characters of Xysticus cristatus, X. audax and X. macedonicus (Araneae: Thomisidae). Bull Br Arachnol Soc 12(1):17–25

    Google Scholar 

  • Janzen DH (1973) Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day and insularity. Ecology 54:687–708. https://doi.org/10.2307/1935359

    Article  Google Scholar 

  • Janzen DH, Ataroff M, Farinas M, Reyers S, Rincon N, Soler A, Soriano P, Vera M (1976) Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8:193–203. https://doi.org/10.2307/2989685

    Article  Google Scholar 

  • Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551. https://doi.org/10.1126/science.1072779

    Article  CAS  PubMed  Google Scholar 

  • Komnenov M (2002) Contribution to the study of spiders (Araneae) on Šar Planina Mountain, north-West Macedonia. Bull Biol Stud Res Soc 2:103–110

    Google Scholar 

  • Komnenov M (2003) Contribution to the study of spiders (Araneae) on Jakupica Mountain, Macedonia. Bull Biol Stud Res Soc 3:45–49

    Google Scholar 

  • Komnenov M (2006) New data on jumping spiders in the Republic of Macedonia with a complete checklist (Araneae: Salticidae). Acta Zool Bulg Suppl 1:301–314

  • Komnenov M (2013) Spider fauna of the Osogovo Mt. range, northeastern Macedonia. In: Pavićević D, Perreau M (eds) Fauna Balkana vol 2. University of Novi Sad, Novi Sad, pp 1–267

    Google Scholar 

  • Komnenov M (2017) New data on spider fauna (Araneae) of Shar Mountain, North-Western Macedonia. In: Proceedings of the 5th congress of the ecologists of Macedonia, with international participation (Ohrid, 19–22 October 2016). Special issues Macedonian ecological society 13:44–61

  • Komnenov M, Pavićević D (2008) First record of the spider Segestria florentina (Rossi, 1790) (Araneae, Segestriidae) from Serbia. Prot Nat 58(1–2):169–173

    Google Scholar 

  • Lawton JH, MacGarvin M, Heads PA (1987) Effects of altitude on the abundance and species richness of insect herbivores on bracken. J Anim Ecol 56:147–160. https://doi.org/10.2307/4805

    Article  Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 2(84):137–152. https://doi.org/10.2307/2261350

    Article  Google Scholar 

  • Malambres-Olarte J, Vink CJ, Ross JG, Cruickshank RH, Paterson AM (2013) The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv Divers 6:124–134. https://doi.org/10.1111/j.1752-4598.2012.00195.x

    Article  Google Scholar 

  • Matevski D, Cvetkovska-Gjorjievska A, Prelić D, Hristovski S, Naumova M, Deltshev C (2020) Efficacy of trapping techniques (pitfall, ramp and arboreal traps) for capturing spiders. Biologia. https://doi.org/10.2478/s11756-020-00475-1

  • Mishra C, Bhatnagar YV, Suryawanshi KR (2016) Species richness and size distribution of large herbivores in the Himalayas. In: Ahrestani FS, Sankaran M (eds) the ecology of large herbivores in south and Southeast Asia. Springer Nature, New York, pp 225:89–97. https://doi.org/10.1007/978-94-017-7570-0_3

  • Mupepele A, Müller T, Dittrich M, Floren A (2014) Are temperate canopy spiders tree-species specific? PLoS One 9(2):e86571. https://doi.org/10.1371/journal.pone.0086571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namagail T, Rawat GS, Mishra C, Van Wieren SE, Prins HT (2012) Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalaya. J Plant Res 125:93–101. https://doi.org/10.1007/s10265-011-0430-1

    Article  Google Scholar 

  • Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2018) Spiders of Europe. https://www.araneae.unibe.ch, accessed 02 august 2018. 10.24436/1

  • Nogués-Bravo DM, Araújo B, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220. https://doi.org/10.1038/nature06812

    Article  CAS  PubMed  Google Scholar 

  • Oger P (2018) Les araignées de Belgique et de France. https://arachno.piwigo.com/. Accessed 28 February 2018

  • Petkovski S (2009) National Catalogue (check list) of species. Ref. UNDP contract: biodiversity and protected areas consultant (national) within the project 00058373 “Strenghtenening the ecological, institutional and financial sustainability of Macedonia’s National Protected Areas System”

  • R Core Development Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rapoport E (1975) Areografía: estrategias geográficas de las especies. Fondo de Cultura Económica, México

    Google Scholar 

  • Richardson BA, Richardson MJ, Soto-adames FN (2005) Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. J Anim Ecol 74(5):926–936. https://doi.org/10.1111/j.1365-2656.2005.00990.x

    Article  Google Scholar 

  • Romdal TS, Colwell RK, Rahbek C (2005) The influence of band sum area, domain extent, and range sizes on the latitudinal mid-domain effect. Ecology 86:235–244. https://doi.org/10.1890/04-0096

    Article  Google Scholar 

  • Rubio GD, Corronca JA, Damborsky MP (2008) Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the humid Chaco ecoregion, Northeast Argentina. Commun Ecosyst Ecol 37(2):419–430. https://doi.org/10.1093/ee/37.2.419

    Article  Google Scholar 

  • Rypstra AL, Carter PE, Balfour RA, Marshall SD (1999) Architectural features of agricultural habitats and their impact on the spider inhabitants. J Arachnol 27:371–377

    Google Scholar 

  • Samu F, Lengyel G, Szita É, Bidló A, Ódor P (2014) The effect of forest stand characteristics on spider diversity and species composition in deciduous-coniferous mixed forests. J Arachnol 42(2):135–141. https://doi.org/10.1636/CP13-75.1

    Article  Google Scholar 

  • Sanders HL (1968) Marine Benthic Diversity: A Comparative Study. Am Nat 102(925):243–282. https://doi.org/10.1086/282541

  • Sivinski J, Piñero J, Aluja M (2000) The distribution of parasitoids (hymenoptera) of Anastrepha fruit flies (Diptera: Tephritidae) along an altitudinal gradient in Veracruz, Mexico. Biol Control 3(18):258–269. https://doi.org/10.1006/bcon.2000.0836

    Article  Google Scholar 

  • Statsoft Inc (2013) STATISTICA for Windows, version 12.0. Statsoft Inc, Tulsa

    Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256. https://doi.org/10.1086/284913

    Article  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911. https://doi.org/10.1086/285447

    Article  CAS  PubMed  Google Scholar 

  • Štokmane M, Spuņģis V (2016) The influence of vegetation structure on spider species richness, diversity and community organization in the Apšuciems calcareous fen, Latvia. Anim Biodivers Conserv 39(2):221–236. https://doi.org/10.32800/abc.2016.39.0221

    Article  Google Scholar 

  • USAID Macedonia (2001) Biodiversity assessment for Macedonia. Chemonics International Inc, Washington, D. C

    Google Scholar 

  • Weber HE, Moravec J, Theurillat JP (2000) International code of phytosociological nomenclature. J Veg Sci 11(5):739–768. https://doi.org/10.2307/3236580

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470. https://doi.org/10.1046/j.1365-2699.2001.00563.x

    Article  Google Scholar 

  • Wu Y, Colwell RK, Han N, Zhang R, Wang W, Quan Q, Zhang C, Song G, Qu Y, Lei F (2014) Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Glob Ecol Biogeogr 23:1167–1176. https://doi.org/10.1111/geb.12197

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the many people involved with sampling and sorting of the material (in particular R. Karakalasev, K. Kostadinova, A. Manchevska, M. Matevski, E. Sehratlikj, A. Tasevski).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Matevski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Spider species and their abundance (ind. trap−1) along an altitudinal gradient on Kozuf Mountain. Abbreviations of vegetation associations/vegetation type are used to denote different localities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matevski, D., Cvetkovska-Gjorgjievska, A., Prelić, D. et al. Distribution and community structure of araneocoenoses (Araneae) along an altitudinal gradient on Kozuf Mountain (North Macedonia). Biologia 75, 1963–1976 (2020). https://doi.org/10.2478/s11756-020-00474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00474-2

Keywords

Navigation