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Abstract

Embedded systems used in safety-critical domains have to uphold strict safety and security re-

quirements. At the same time, their complexity has been strongly increasing across application

domains. To manage this rise in complexity, manufacturers have shifted towards model-driven

development methodologies. While successful in managing the complexity in the development of

large, interconnected systems, analysis and verification techniques for model-driven development

methods and languages still have to reach a similar level of maturity as those for text-based

imperative programming languages traditionally used in the development of safety-critical em-

bedded systems. In this thesis, we present an information flow analysis method for discrete

embedded control system models, which has the potential to identify possible violations of

both safety requirements and security policies by analyzing where and under which conditions

information travels through a model. The main challenges such an information flow analysis

faces are to (1) consider the specific semantics of the modeling languages, which heavily rely on

concurrency and a complex notion of timing, and (2) relate the strongly different semantics of

signal-flow-oriented and state-machine-based components, which comprise embedded control

system models.

Our major contribution is twofold: First, we provide an information flow analysis for the

signal-flow-oriented components of an embedded control system model. The main idea of

this analysis is that we only extract that information from an existing model which is required

to analyze information flow in respect to both its timing and functionality. To this end, our

technique captures timed path conditions, i.e., the precise control, data and timing conditions

under which information flow is enabled as well as when and how these conditions are triggered.

Second, we relate the inherently different semantics of the signal-flow-oriented and the state-

machine-based components. To this end, we first translate the state-machine-based controller

into a formally verifiable representation and, second, combine this representation with condition

observer automata which we generate from the timed path conditions extracted in the first step of

our method. This enables us to use the well-established technique of model checking to identify

precisely the behavior that leads to the execution of information flow paths under analysis.

To show the practical applicability of our approach, we have implemented it as a fully

automatic and modular framework for MATLAB Simulink/Stateflow and Modelica, two widely

used languages from the domain of embedded control systems, and applied our information flow

analysis to two industrial case studies. In these case studies, we are able to verify integrity by

checking that no information flow is possible from a non-critical to a critical component.
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Zusammenfassung

Im sicherheitskritischen Bereich unterliegen eingebettete Systeme strengen Anforderungen an

Ausfall- sowie Datensicherheit. Zugleich ist die Systemkomplexität in den vergangenen Jahren

in allen Anwendungsbereichen stark gestiegen. Um diesem Anstieg zu begegnen, nutzen Her-

steller modellgetriebene Entwicklungsansätze. Während Ansätze dieser Art bereits erfolgreich

dazu genutzt werden, komplexe, miteinander verbundene Systeme zu entwickeln, haben Ansätze

zur Analyse und Verifikation dieser Systeme noch nicht den Stand erreicht, den ähnliche Methoden

für imperative Programmiersprachen aufweisen. In dieser Arbeit stellen wir eine Informations-

flussanalyse für diskrete eingebettete Kontrollsystemmodelle vor, die es ermöglicht, Verletzungen

von Ausfall- sowie Datensicherheitsanforderungen zu erkennen. Unsere Analyse verfolgt, wie und

unter welchen Bedingungen Informationen durch ein Modell fließen. Die Herausforderungen in

der Entwicklung einer solchen Analyse liegen in (1) der Berücksichtigung der spezifischen Seman-

tik der Modellierungssprachen, welche auf komplexen zeitlichen Abhängigkeiten und Parallelität

basieren, und (2) der Verbindung der stark heterogenen Semantiken der signalflussorientierten

und jener auf Zustandsautomaten basierenden Komponenten, aus denen Kontrollsystemmodelle

aufgebaut sind.

Die vorliegende Arbeit leistet in diesem Gebiet zwei Beiträge. Zum einen eine Informati-

onsflussanalyse für die signalflussorientierten Komponenten eines Kontrollsystemmodells. Diese

Analyse basiert auf der Idee, nur diejenigen Informationen eines Modells zu extrahieren, die für

die Analyse des Informationsflusses hinsichtlich des Zeitverhaltens und der Funktionalität des

Modells relevant sind. Um dies zu ermöglichen, erfasst unser Ansatz timed path conditions, das

heißt, diejenigen Bedingungen, die präzise das Kontroll-, Zeit-, und Datenverhalten abbilden,

unter denen Informationsfluss stattfindet. Zum anderen schafft unsere Arbeit eine Verbindung

zwischen den stark heterogenen Semantiken der signalflussorientierten und den auf Zustands-

automaten basierenden Komponenten. Unser Ansatz ermöglicht dies durch eine Übersetzung

der Automaten in eine formal verifizierbare Darstellung, und die Kombination dieser Darstellung

mit condition observer automata, welche wir aus den im ersten Schritt extrahierten timed path

conditions generieren. Diese Verbindung der Semantiken ermöglicht uns, eine wohlfundierte

Technik wie model checking zu nutzen, um genau das Verhalten des Zustandsautomaten zu

identifizieren, welches zur Ausführung eines Informationsflusspfades führt.

Um die Anwendbarkeit unseres Ansatzes unter Beweis zu stellen, präsentieren wir außerdem

eine vollautomatische und modular aufgebaute Implementierung für MATLAB Simulink/Stateflow

und Modelica, zwei im Bereich sicherheitskritischer eingebetteter Software weit verbreitete Spra-

chen. Mithilfe dieser Implementierung konnten wir unseren Ansatz zur Informationsflussanalyse

auf zwei Fallstudien aus dem industriellen Bereich anwenden. In beiden Fallstudien waren wir

in der Lage, die Integrität kritischer Berechnungen sicherzustellen, indem wir Informationsfluss

zwischen nicht-kritischen und sicherheitskritischen Komponenten ausschließen konnten.
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1 Introduction

Embedded systems are shifting from unconnected to increasingly interconnected func-

tionality. The connection of these cyber-physical systems to the internet and to each

other poses severe threats to confidentiality, integrity and availability. In 2015, this was

prominently demonstrated by software security researchers Miller and Valasek as they

remotely exploited a vulnerability in the internet-connected entertainment system of a

Jeep Cherokee, gaining control over vital functions such as acceleration, brakes and steer-

ing [Miller and Valasek 2015]. The attack was made possible by a combination of two

factors: (1) the existence of the on-board Controller Area Network (CAN) bus [ISO 1993]

which connects most major components in the car in order for them to receive commands

and exchange information, and (2) a range of common vulnerabilities in the internet–

connected entertainment system of the car [Koscher et al. 2010b; Checkoway et al. 2011;

Mazloom et al. 2016; Choi and Jin 2019].

For safety-critical systems, correct operation at all times is of the utmost importance.

To protect cars from attacks, i.e., to protect the safety-critical components from remote

interference, every component in itself needs to adhere to strict security standards.

Furthermore, as all modules are able to communicate with each other freely, thus, there

is a risk of security violations as well as component failures traveling through the system

without constraint. To overcome this problem, the state-of-the-art safety standard defined

by the International Organization for Standardization (ISO) recommends partitioning of

the software [ISO 2009]. The aim of this method is to safely break down the system into

smaller parts in order for them to be analyzable individually without having to consider

the complete system. The most basic partitioning method is to completely refrain from

utilizing interconnected systems. If components are not able to communicate with

each other, security violations and safety failures never travel between them. Modern
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embedded systems, however, rely heavily on interconnections. Thus, more advanced

analysis methods for connected systems are required, which are able to safely identify

the flow of information between components in heavily interconnected systems.

Especially in the automotive domain, the complexity of embedded software systems

has increased dramatically in the past. While in 2007, the binary code of the software in an

upper-class vehicle amounted to approximately 65 MB, recent generations contain more

than 1GB of binary code [Pretschner et al. 2007; Braun et al. 2014]. Developers have

therefore shifted towards MDD [Hailpern and Tarr 2006; Navet and Simonot-Lion 2009],

which enables system design on a high level of abstraction and early simulation. Addi-

tionally, it allows for the automated generation of implementation-specific software, a

highly error-prone process when performed manually. While model-driven development

enables a better understanding of complex systems, further technique are needed to

prove adherence to safety and security standards [ISO 2009]. However, due to the

strongly differing semantics of models and code, classic analysis techniques are not

applicable to MDD [Tanković et al. 2012]. It is therefore imperative to develop novel

analysis approaches that are able to perform, e.g., information flow analysis or security

policy compliance checks directly on the models that are used as the main development

artifacts.

The challenges we face when developing novel static analysis techniques for model-

based development can be summarized as follows: (1) The semantics of the most

widely-used modeling languages for discrete embedded controllers are based on the

concept of signal-flow graphs (SFGs), which are a common abstraction used to model

physical systems as well as their controllers. They naturally express data-intensive com-

putations with local evaluation of data, as commonly found in control systems [Bonchi et

al. 2017a]. This signal-flow semantics [Misra 2004] introduces characteristics not present

in the semantics of traditional imperative programming languages which are utilized in

the domain of safety-critical software. One of the strongest differences is the utilization

of time-dependent, stateful modeling elements, extending the execution semantics of

the model by a complex notion of timing. Additionally, due to the signal-flow nature

of the models, they inherently utilize concurrency, further increasing the complexity

of analyses of their execution behavior. (2) Modeling languages allow the developer

to utilize development patterns with strongly differing semantics in the same model.

To combine, e.g., data manipulation on signals with complex control flow mechanics,

industrially used modeling languages, such as MATLAB Simulink/Stateflow and Modelica,

2



Chapter 1. Introduction

allow for the integration of state machines into signal-flow models. Thus, new analysis

techniques that support the simultaneous extraction of information from both modeling

styles are highly desirable.

The aim of this thesis is to establish a framework for the automated extraction

and analysis of information flow in discrete embedded control system models. In the

following, we list the criteria our approach should fulfill:

1. Signal-Flow Semantics: The proposed methodolody must be able to cope with

the characteristics specific to discrete embedded control system models, i.e., with

complex timing behavior as well as the concurrency inherent to these models.

2. Combined Analysis: The proposed approach has to be able to extract information

flow from models that combine signal-flow and state-machine-based components.

3. Language Support: We require our methodology to be applicable to industrially

used languages for the model-based design of discrete embedded control systems.

Additionally, our approach should cover a broad range of modeling elements

frequently used in the design of such systems and should facilitate easy extension

of the set of supported elements.

4. Automation: To be integrated into existing quality assurance processes for MDD,

the proposed methodology should be applicable fully automatically. This means

that the analysis must not require annotations or user input.

5. Applicability: Finally, we require our methodology to have acceptable analysis

effort. This should be demonstrated by applying our novel analysis technique to

industrial case studies from the automotive domain.

To meet these criteria, we propose a novel methodology that provides a method to

identify and analyze information flow relations in discrete embedded control system

models containing complex control flow and timing behavior. To demonstrate the

industrial applicability of our approach, we have fully implemented our methodology

for two of the most widely-used modeling languages for the development of embedded

controller software: MATLAB Simulink/Stateflow by The MathWorks and Modelica by

the Modelica Association [Schroeder et al. 2015; Sutherland et al. 2016]. Both languages

implement a graphical development front-end to develop models employing signal-flow

semantics. As our approach targets the timing behavior of signal-flow-based semantics,

3



we are confident that it can be applied to further simulation languages with similar

semantics. To facilitate the extensibility of our approach, we have implemented it as a

modular framework.

The main contributions of this thesis are:

1. We have developed an information flow analysis approach for MATLAB Simulink

models. Our method adapts the concept of path conditions to the domain of

model-based development, using MATLAB Simulink as a modeling language widely-

used in the development of discrete embedded system controllers. Our extension,

which we call timed path conditions (TPCs), is able to express the data as well

as the time-dependent execution behavior of information flow paths through a

signal-flow-oriented model. To identify non-interference between model elements,

we use timed path conditions to formulate a constraint satisfaction problem and

solve it using a constraint solver. If no solution can be found, we have shown

non-interference for the model elements under analysis.

2. As industrial embedded system models most often contain complex control logic,

our technique supports the analysis of information flow in combined MATLAB

Simulink/Stateflow models consisting of signal-flow-oriented components mod-

eled in Simulink and state-machine-based controllers implemented using Stateflow.

To enable a combined analysis, we make use of an existing technique to translate

one of the most common modeling languages for embedded controllers, Stateflow,

into formally well-defined UPPAAL timed automata. Using this translation, we merge

the two strongly differing execution semantics of embedded system controllers

developed in MATLAB Simulink/Stateflow and are able to identify non-interference

on paths through such combined models.

3. To demonstrate the applicability of our method to other modeling languages that

are based on signal-flow graphs, we have developed an information flow analysis

for discrete embedded control systems developed using Modelica.

4. We have developed a fully automatic framework to analyze the information

flow in discrete embedded systems. Using this framework, we show that the

extraction of timed path conditions from the signal-flow-oriented model components

as well as the translation of the state-machine-based components to UPPAAL timed

automata can be performed fully automatically.
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5. The experimental results that we have obtained using our methodology show that

the extraction and analysis of information flow from synthetic as well as industrial

case studies from the automotive domain can be performed with acceptable

effort.

We have published our work as follows: In Mikulcak et al. [2017], we have introduced

the concept of timed path conditions and have shown how they can be utilized to identify

information flow in a MATLAB Simulink model. In Mikulcak et al. [2016], we have

extended our information flow analysis of MATLAB Simulink models to additionally

support the extraction of flow data in the face of complex control behavior modeled in

Stateflow. In Mikulcak et al. [2018], we have introduced a fully automatic solution based

on a translation to UPPAAL timed automata that does not pose any restrictions on the

controller implementation. Further, in this work we have presented experimental results

from an industrial case study provided by our partners from the automotive industry to

demonstrate the practical applicability of our approach. Finally, in [Mikulcak et al. 2019],

we have published a detailed explanation of our method and its components.

This thesis is structured as follows: In Chapter 2, we introduce a number of concepts

that are necessary for the understanding of this thesis. In Chapter 3, we provide a

discussion of related work. Chapter 4 presents an overview of our system to identify

information flow in discretely-timed embedded control system models and discusses

requirements that models have to fulfill in order to be analyzable by our system. Chapter 5

and 6 explain the details of our system. In Chapter 5, we present our concept of

timed path conditions and provide a detailed description of our technique to infer non-

interference between arbitrary model elements using constraint solving. Chapter 6

presents our technique to extract information flow from models containing both signal-

flow-oriented and state-machine-based components. In Chapter 7, we provide details

on the implementation of our approach as a fully automatic and extensible framework,

present case studies from the automotive domain and discuss experimental results.

Chapter 8 closes this thesis with a conclusion and a discussion of future work.
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2 Background

In this chapter, we provide preliminaries that are the foundation of this thesis. First, we

give a brief introduction to the domain of model-driven development. Subsequently, we

present signal-flow-based modeling languages, namely MATLAB Simulink/Stateflow and

Modelica, after which we introduce the concept of information flow analysis. We close

with an introduction to constraint satisfaction problems and their solvers as well as to

system verification using model checking.

2.1 Model-Driven Development of Embedded Software

Models provide abstractions by forming a representation of the essential components and

functionalities of a system. Consequently, models are less complex and they are easier to

grasp, maintain, and debug, not only by the model developers, but also by specialists

from other domains involved in the development process, e.g., electrical or mechanical

engineers. The three major levels of abstraction commonly utilized in model-driven

development are:

Computation-Independent Model (CIM) The CIM defines what the system is expected

to do while hiding all information-technology-related specifications, such as the

algorithmic implementation [Truyen 2006].

Platform-Independent Model (PIM) The PIM captures the detailed functionality of the

system, defines algorithmic details as well as timing behavior.

Platform-Specific Model (PSM) The PSM contains enough details about the functional-

ity of the system as well as about the target platform to produce an implementation

that can be deployed.
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As part of the MDD approach standard defined in Kleppe et al. [2003], a PIM,

combined with a platform model, contains sufficient information about the functionality

of a system to enable the automatic generation of a PSM, i.e., enabling the automated

generation of non-essential implementation-specific details.

In this thesis, we focus on model-centric approaches, as this style is the one most

adopted in industrial software development processes for safety-critical systems [Albers

et al. 2006; Frevert et al. 2006]. Model-centric techniquees describe a development style in

which the development is solely focused on models. Models form the main development

artifact and need to contain sufficient detail to, given a platform model, enable the

automatic generation of a system implementation. This technique eliminates the need

to feed back source code changes into the model, but introduces the necessity to utilize

modeling languages expressive enough to capture all required details of the functionality

as well as the timing of the system. However, as a wide range of modeling languages

supports the design of systems on various levels of abstraction, the model focus can be

maintained.

2.1.1 Model-Driven Development in Software Development Guidelines

Due to the advantages of model-driven development and automatic generation of code

from abstract models, the utilization of MDD techniques is recommended as state of

the art by international standards for the design of safety-critical electronic systems.

While IEC [2010] as an overarching standard for general safety-related electronic sys-

tems defines generic requirements for structuring and testing of software systems, ISO

[2009] as the standard for automotive systems requires developers to utilize MDD-based

methods to manage the complexity of the developed software and to increase maintain-

ability [Bell 2006; ISO 2009; IEC 2010].

Software Safety Risk Classification Schemes

To define a common basis for comparison, IEC [2010] defines Safety Integrity Levels (SILs)

that help developers in determining the necessary measures that need to be taken to

ensure the correct operation of software systems. According to the dangers arising from

a possible failure of a component, one of four SILs is assigned, ranging from the lowest

level SIL 1 to the highest SIL 4. The higher the SIL assigned to a component, the more

rigorous the testing and verification process needs to be in the development phase until

a tolerable level of failure probability is reached [Bell 2006; IEC 2010]. ISO [2009]
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builds on this concept by introducing Automotive Safety Integrity Levels (ASILs), ranging

from the lowest ASIL A to the highest ASIL D for safety-critical components with the

lowest to the highest automotive hazard. Additionally, a level Quality Management (QM)

is introduced, which defines a base level for quality management that is necessary to be

administered. In contrast to SILs, ASILs are not defined quantitatively, but qualitatively,

i.e., a component level is determined via:

Risk= Expected severity in case of failure× Probability of failure, or

ASIL= Severity× Exposure×Controllability

For every level and every step in the development process, ISO [ibid.] defines mecha-

nisms required to be applied to mitigate the respective risk of failure of each component

and the severity in case of such a failure. The highest levels, ASIL C and D, for example,

require the use of unambiguous graphical representations of the software as well as the

utilization of formal analysis techniques to gather information about data and control

flow through the software. In addition to the assignment of an ASIL to each individual

component, a connection between multiple components, i.e., the possibility for informa-

tion flow between them, infers the requirement to develop and maintain all components

on the level of the component with the highest ASIL. Only if a safe partitioning between

components can be shown, ISO [ibid.] allows this requirement to be relaxed.

2.2 Signal-Flow-Oriented Modeling Languages

The largest number of embedded systems and internet-connected cyber physical systems

are reactive systems [Berry 1989; Sander 2003]. Contrary to interactive systems, such as

browsers or word processors, these reactive systems continuously react to their environ-

ment at the speed of the environment. In addition to the aspect of reactivity, embedded

systems, such as, e.g., automotive control systems, are required to continuously perform

computations on numerous incoming signals concurrently. In the design of safety-critical

embedded systems, the signal-flow-oriented programming paradigm [Misra 2004; Kuo

and Golnaraghi 2009], which naturally combines both aspects, has become the main

development style. In the following, we first give a short introduction to the basic concept

of signal-flow graphs. Subsequently, we present two modeling languages based on signal-

flow-oriented semantics, MATLAB Simulink/Stateflow and Modelica, which we use as
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b1 a1

a2

S11

S12

Figure 2.1: Signal-flow graph for Equation (2.1)

example languages in this thesis to present our information flow analysis method. Both

languages are widely used in the domain of safety-critical systems and offer graph-based,

signal-flow-oriented modeling of software systems.

2.2.1 Signal-Flow Graphs

SFGs are graphical representations of signal processing algorithms that display the

relationship between variables in sets of linear algebraic equations and consist of nodes

interconnected by directed branches [Mason 1953; Abrahams 1965]. The nodes represent

variables or parameters of the differential equations, the branches act as coefficients

connecting the variables. Figure 2.1 shows an example of an SFG that implements the

equation

b1 = S11a1 + S12a2 (2.1)

The corresponding SFG is comprised of three nodes (b1, a1, a2) and two branches.

The arrows on the two branches are directed from the causes a1 and a2 towards the ef-

fect b1, modified by the coefficients S11 and S12. As is shown there, the operations

performed at nodes and branches are implicit: a multiplication with the corresponding

coefficients on the branches, and a summing operation on a unification of multiple

branches at a node.

2.2.2 Syntax of Signal-Flow-Oriented Modeling Languages

Signal-flow-oriented modeling languages employ blocks which are connected using signals.

Additionally, each block and signal is assigned a set of parameters. When relating a signal-

flow-oriented program to traditional text-based programming languages, the signals

connecting blocks are variables. The values of these variables are determined by the
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blocks they are connected to, which represent functions defined over a continuum, i.e.,

the output value of a block is not only dependent on its current inputs but also on an

internal state [Lee and Neuendorffer 2005].

A signal-flow-oriented model is defined, analogously to Boström and Morel [2007],

Boström et al. [2007], and Zander-Nowicka [2009], as a tuple

M = (B, root, subh, P, rlt, sig, subi, subo, C),where :

B represents the set of blocks in the system. Depending on the functionality of a block,

they are part of one of the following categories: Bs for subsystem blocks, Bi for

inports to a subsystem, Bo for subsystem outports, merge blocks Bm, blocks that con-

tain an internal state Bmem, and basic, or direct feed-through, blocks Bb. Additionally,

every subsystem is either virtual, Bvs or non-virtual, Bns, such that Bs = Bvs ∪ Bns.

Virtual blocks, such as inports to a subsystem or subsystems themselves, do not

influence the simulation behavior of a signal-flow-oriented model, while non-

virtual blocks do. Virtual blocks are purely used to structure the model and do not

influence the behavioral semantics;

root ∈ Bvs represents the root subsystem;

subh : B→ Bs defines a function representing the subsystem hierarchy of the system. For

every block b ∈ B, it returns the subsystem block bs ∈ Bs that it is structured into;

P is the set of ports that input, P i ⊆ P, and output, Po ⊆ P, data to and from blocks, P i ∪
Po = P;

rlt : P i → Po is the function that maps every port to its corresponding block;

sig : Po→ P i is a relation that maps every outgoing port to the in-going port it is con-

nected to via a signal line;

subi : Bs→ P → ρ(P i) is a partial function that maps the virtual inports of a subsystem

to the non-virtual block driving it;

subo : Bs→ P → ρ(P i) describes a partial function that maps the virtual outports of a

subsystem to the non-virtual block that it drives;

C is the set of simulation parameters of the model.
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(a) Subsystem example (b) Example subsystem content

Figure 2.2: Simulink example model.

2.2.3 MATLAB Simulink/Stateflow

MATLAB by The MathWorks [The MathWorks 2017b] is a multi-purpose numerical com-

puting environment. In addition to this core functionality, MATLAB offers functionalities in

the areas of, among others, data analysis and visualization, signal and image processing,

financial modeling, or computational biology.

Simulink

Simulink is an add-on to MATLAB that enables multi-domain modeling and simulation of

reactive control systems, offering an interactive graphical development environment for

the model-based development of dynamic control systems. Simulink employs the syntax

presented in Section 2.2.2.

Note that on the relations and functions defined in Section 2.2.2, there are several

restrictions in order for a model to be considered a valid Simulink model. These restrict,

e.g., the subsystem hierarchy and the signal connections over subsystem boundaries. In

this thesis, we restrict our analysis to only support valid Simulink models, i.e., models that

can be drawn using the graphical development environment and subsequently simulated.

Invalid models that can be drawn but not simulated contain, e.g., unconnected signal

lines.

Consider the example shown in Figure 2.2. The blocks are defined by

B
∧
= {source, gain_system, si , gain, so, sink}.

The set of subsystems is given as

Bvs ∧= {gain_system, root}, and Bns =̂ ∅.

with the hierarchy definition

subh
∧
= {(gain, gain_system), (gain_system, root), (source, root), . . . } .
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When displaying Simulink diagrams, port names are usually omitted. Here, they are

given as

P =
¦

po
source, pi

sink, pi
gain_system, po

gain_system, . . .
©

.

The function describing which port is part of which block is given as:

blk
∧
=
¦
(po

source, source), (pi
gain, gain), (po

gain, gain), (pi
gain_system, gain_subsystem), . . .

©
.

The connections between the ports is defined as

sig
∧
=
¦
(pi

gain_system, po
source), (p

i
gain, po

si
), . . .
©

.

The relations describing how ports in inports and outports correspond to ports of subsys-

tems are given by subi and subo. The inport of the subsystem is related to the outport of

the in-block:

subi
∧
=
¦�

gain_subsystem, po
si

, {pi
gain_system}
�

, . . .
©

.

The definition of the outputs of the subsystem is similar:

subo
∧
=
¦�

gain_subsystem, po
gain_system, {pi

so
}
�

, . . .
©

.

Signal Flow. Signal flow in Simulink is modeled using signals, or signal lines, con-

necting blocks. Signals carry the current value on the outports of blocks to inports of

other blocks. Signals in Simulink are able to carry more than a single primitive value.

According to the design of the model, signals carry either scalars, vectors, matrices, or

even hierarchies of values. The precise type is not set statically, but is inferred by the

underlying simulator at run-time according to the blocks driving the signals.

Signal flow through hierarchical Simulink subsystems is modeled using dedicated vir-

tual blocks. While these blocks of types InPort and OutPort do not modify the signals

connected to them, they serve as connectors in the model which connect levels in the

model hierarchy to each other. Signals leaving a subsystem are connected to OutPorts,

which consequently do not have out-going ports. For each OutPort block, an out-going

port is added to the subsystem, which in turn is connected via an InPort to the sur-

rounding model environment. Figure 2.2b shows one InPort and OutPort, respectively,

connecting the subsystem to its parent hierarchy level.
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(a) Example model containing a
Switch block to route signals (b) Example model containing a set of conditionally executed subsystems

implementing an if-then-else structure

(c) Control flow modeling using Switch-Case subsystems

Figure 2.3: Examples of control flow modeling in Simulink

Control Flow. Control flow in Simulink is modeled using two different concepts. The

first is the utilization of routing blocks BR, such as Switch and MultiPortSwitch,

which route one signal from a set of signals connected to the in-going ports of the routing

block to a single out-going signal, depending on the current value of the signal con-

nected to an in-going control port. Figure 2.3a shows an example model consisting of

a Switch block that connects si1 or si2 to its out-going signal so if sc > 0 or sc ≤ 0, respec-

tively. The second concept to model control flow is conditionally executed If-Action
and Switch-Case subsystems. Control flow utilizing If type subsystems consists of at

least two If-Action subsystems connected to a control block, as shown in the example

in Figure 2.3b. As is shown there, according to conditions encoded in the control block,

the execution of exactly one connected If-Action subsystem is triggered. A model

utilizing the Switch-Case subsystems is modeled similarly, with the control block imple-

menting a switch semantics based on a single in-going signal and triggering the execution

of corresponding connected subsystems. Due to the underlying signal-flow semantics,

the simulator has to calculate a value for every block and output at every simulation step.
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In case of If-Action subsystems not triggered during the current simulation step, their

output is reset to 0. In case of Figure 2.3b, if the subsystem if_action is triggered, the

value of outport out_2 is equal to 0.

Simulation MATLAB Simulink Models. Simulation of a Simulink model is per-

formed using solvers, which approximate the output of each block according to its

semantics. Solvers for time-discrete as well as time-continuous interpretations of the

block diagram exist. While the former compute the output for each simulation step

based only on the current state of each block, the latter utilize numerical techniques to

compute the state of each block based on multiple states and their derivatives. Further,

solvers can be classified by the type of step size used in their calculation of the simulation

state: Variable-step solvers aim at automatically finding a simulation step size for each

block in the model to achieve a level of precision set by the model developer. Fixed-step

solvers omit this step at the expense of precision while increasing performance. The

former class of solvers is commonly used for hybrid or purely time-continuous systems

that form differential equations, while the latter is used for time-discrete models forming

difference equations. For the development of embedded control software, i.e., when

code is generated from the developed models, solvers with a fixed time step size are

used [Conrad 2004; The MathWorks 2017e]. In this thesis, our focus is the analysis of

such discretely-timed models.

Stateflow

Stateflow [The MathWorks 2017d] is an extension to the MATLAB Simulink framework

that enables the modeling of decision logic using a semantics based on Statecharts,

originally introduced by Harel [1987]. Stateflow automata are hierarchical state machines

composed of states labeled with actions and transitions labeled with guards as well as

actions. Stateflow state machines are commonly used to model discrete control logic and

modal behavior of a system.

The syntax of a Stateflow automaton SF given by Tiwari [2002] is described by a

tuple SF = (D, E, S, T, f ), where:

D = DI ∪ DO ∪ DL is a finite set of typed variables partitioned into input variables DI ,

output variables DO and local variables DL;

E = EI ∪ EO ∪ EL is a finite set of events partitioned into input events EI , output events EO

and local events EL;
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S is a finite set of states, in which each state contains three set of actions: entry,

exit, and during. An action can either be a variable assignment, as in imperative

programming languages, or the broadcast of an event;

T is a finite set of transitions, each given as a tuple (src, dst, e, c, ca, ta), in which

src ∈ S is the source state, dst ∈ S is the destination state, e ∈ E ∪ {ε} is an

event, c ∈ WFF(D) is a condition given as a well-formed formula in predicate

logic over the variables D, and ca, ta are sets of transition and condition actions

that are triggered when the transition is taken or a condition is evaluated to true,

respectively;

h : S→ �{and, or} × 2S
�

is a mapping from the states to the Cartesian product of {and, or}
with the power set of S, which describes the hierarchy of the Stateflow chart.

It satisfies the following properties: (1) there exists a unique root state sroot ,

i.e., sroot /∈ ∪i descendants(si), where descendants(si) is the second component

of h(si), (2) every non-root state s has exactly one ancestor state, that is, if

s ∈ descendants(s1) and s ∈ descendants(s2), then s1 = s2, and (3) the function h

contains no cycles, i.e., the relation< on S defined by s1 < s2 iff s1 ∈ descendants(s2)

is a strict partial order. If h(s) = (and, {s1, s2}), then the state s is an AND-state

consisting of two substates s1 and s2. If h(s) = (or, {s1, s2}), then s is an OR-state

with substates s1 and s2.

Simulation of Stateflow Automata. During simulation of a Stateflow automaton,

the configuration describing the current state of the automaton C ∈ 2S ×D is a tuple

consisting of the set of active states and a valuation of all variables in D, denoted by D.

If a non-leaf OR-state is active, then exactly one of its descendant substates is active, and

if a non-leaf AND-state is active, then every descendant substate is active. The set of

all configurations that satisfy these conditions, denoted by C , is called the set of valid

configurations. The Stateflow semantics is given by a function |SF |=C ×DI × EI →C .

This function maps a configuration, a valuation of the input variables, and an input event

to a new configuration.

This semantics is only provided informally by the Stateflow specification [The Math-

Works 2017d]. An input event e triggers the execution of the initial state. A state executes

by performing its corresponding entry actions and firing all of its transitions that can be

fired. If none of its transitions can be fired, the state triggers executions of its descendant

states: either one or all, depending on the state being an OR-state or an AND-state. A
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Figure 2.4: Example of a Stateflow automaton

transition t = (src, dst, e, c, ca, ta) can be fired if (1) event e is present, (2) condition c

is evaluated to true, and (3) state src is currently active. If a transition executes, it

preempts execution of state src, executes its corresponding condition actions ca, enters

state dst, and executes its transition actions ta. Whenever an assignment action x := expr

is executed, the variable expr ∈ D will be assigned the value x . An event broadcast can be

considered similar to a function call in imperative programming languages, as it triggers

execution of the states and transitions accepting the event.

Consider the example given in Figure 2.4. The automaton shown there utilizes two

states Off and On. The initial state, Off, is set using the default transition from the mark.

When the automaton is initialized, the value of the output variable round_count is set

to 0. Shown in square brackets on the out-going transition is its transition guard, that only

allows activation of the next state if its corresponding condition is fulfilled. To progress

to state On from Off the condition step < 1 has to be fulfilled. Furthermore, this

condition is only evaluated 10 s after state Off has been activated, i.e., after the temporal

logic condition is fulfilled. Upon entering state On, its entry action is executed, setting

the value of the internal variable pulse to 1. Upon exiting the state, its exit action is

executed, setting pulse to 0. As its out-going transition is not marked by a condition,

the state will always be left one simulation step after it has been entered. When taking

this transition, its transition action is executed and the output variable round_count
incremented by 1.

2.2.4 Modelica

Modelica is a modeling language that is used for the specification of mathematical models

of complex systems whose behavior evolves as a function of time [Fritzson 2004]. First

introduced in Fritzson and Engelson [1998], Modelica implements non-causal modeling
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Figure 2.5: Graphical model representation

of signal-flow graphs, similar to that of MATLAB Simulink, i.e., based on equations instead

of assignment statements. This enables reusability of components in multiple situations.

In addition to this concept, Modelica is an object-oriented language with a generic class

concept and implements generics (similar to templates in C++) and subtyping to further

increase reusability of components [Modelica Association 2017]. Finally, it supports the

modeling and simulation of physical systems with components from multiple domains.

A set of libraries for each domain as well as a connecting layer that, e.g., resolves signal

units, allows modeling of systems which share, e.g., mechanical, hydraulic, or electrical

components. The syntax of Modelica is, analogous to MATLAB Simulink, defined as

presented in Section 2.2.2.

1 model SimpleExample
2 Modelica.Blocks.Math.Gain Gain(k = -1)
3 annotation(Placement(/* omitted */));
4 Modelica.Blocks.Continuous.Integrator Integrator(y_start = 1)
5 annotation(Placement(/* omitted */)));
6 Modelica.Blocks.Interfaces.RealOutput out
7 annotation(Placement(/* omitted */)));
8 equation
9 connect(out, Integrator.y) annotation(

10 Line(/* omitted */)));
11 connect(Gain.u, Integrator.y) annotation(
12 Line(/* omitted */)));
13 connect(Gain.y, Integrator.u) annotation(
14 Line(/* omitted */)));
15 annotation(
16 uses(Modelica(version = "3.2.2")));
17 end SimpleExample;

Listing 2.1: Textual representation of the Modelica example model with layouting information
omitted
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Figure 2.6: StateGraph example

An example of a Modelica model can be seen in Figure 2.5. Shown there is, analogous

to functionality available in MATLAB/Simulink, a Gain block multiplying its incoming

signal by −1, and an Integrator block, summing the values of its incoming signals

from the start of the simulation. The internal state of the Integrator at the start of the

simulation, i.e., the initial value necessary to solve the underlying difference equation,

is set to 1. Listing 2.1 shows the textual representation of the system that is created

automatically when designing the system. Shown there are the blocks comprising the

system and the connections between them defining the functionality.

Due to the focus on component reusability and structural modeling, Modelica has

found widespread adoption in the domain of high-level architectural design of safety-

critical embedded systems [Tiller et al. 2003; Brückmann et al. 2009; Chrisofakis et

al. 2011; Sutherland et al. 2016].

State-Machine-Based Modeling in Modelica

Modeling of state machines in Modelica is possible via the StateGraph library [Donath et

al. 2008; The Modelica Association 2019b]. The blocks in this library offer the possibility

to model finite state machines based on Steps and Transitions, i.e., states and edges,

respectively. An example is shown in Figure 2.6. As can be seen there, steps represent

to the possible states of a StateGraph model [Otter et al. 2005]. If a step is active, a

Boolean variable corresponding to the step is true. Initially, all steps are deactivated,

and the initialStep object is activated. This initial step is characterized by a double

box. The state of the model is changed using transitions. When a step is activated, its

outgoing transition is initially deactivated, and only activates once its transition condition

is evaluated to true.

In addition to these basic modeling possibilities, controllers in StateGraph support

parallel execution of transition, i.e., multiple states can be active at the same time.
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2.3 Information Flow Analysis

The protection of confidentiality of information inside a software system as well as

the protection from modification by unauthorized sources is a long-standing and in-

creasingly important problem in the area of general computing as well as of embedded,

and, in particular cyber-physical systems. Techniques that assert whether a system

complies with a set of security properties are grouped under the term information flow

control (IFC) [Hammer 2009].

When analyzing the security of a software system, the following main dimensions

commonly referred to as the CIA triad [Saltzer and Schroeder 1975; Cherdantseva and

Hilton 2013], can be identified:

Confidentiality states that every party in a system is only able to read data according

to its specified security level, i.e., that only authorized recipients are able to read

data marked as confidential.

Integrity ensures that critical computations cannot be manipulated from the outside or

that data has not been altered during transmission from source to target.

Availability guarantees that information or resources are available to authorized users

when required, i.e., according to a specified extent and timing.

As first noted in Biba [1977], integrity can be considered a dual to confidentiality and

both can be enforced by controlling information flow through a program. As explained

above, confidentiality prohibits the flow of information to inappropriate sources while

integrity requires that information is prevented to flow from inappropriate sources. To

identify violations of either property, the flow of information through software systems

has to be analyzed.

2.3.1 Types of Information Flow

Within a software system, different kinds of information flow can be observed: explicit

and implicit flows. The former describes flows of information through variables that are

explicitly stated in the source code of the software under analysis, i.e., information is

explicitly leaked to a publicly observable variable. An example, shown in Listing 2.2,

uses two variables, h and l of differing security levels HIGH and LOW, respectively. As is

shown there, the value of the private variable h is assigned to the publicly observable,

lower-security variable l, a violation of confidentiality.
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1 var l, h;
2 l := h;

Listing 2.2: An explicit information flow from variable h to variable l

The second type of information flow, implicit flow, can manifest in a number of ways:

Control flow With knowledge of the program source code and structure, an observer is

able to deduce the values of private variables by observing the control flow of a

program. An example for a flow of this kind is shown in Listing 2.3. There, the

value of the private variable h is never directly assigned to a publicly observable

variable but an observation of the public value of l allows deduction of h [Denning

and Denning 1977].

Timing Similarly, by using knowledge of the program structure, this implicit flow allows

the deduction of the values of private variables by analyzing the execution time of

the software for different sets of input values. As the example in Listing 2.4 shows,

the execution time allows an observer to draw conclusions about the value of h,

albeit not being directly assigned to a publicly observable variable [Kocher 1996].

Power By measuring the power consumption of the system executing the software

under analysis, e.g., a cryptographic algorithm, an observer can deduce private

information, such as keys utilized in the computation [Kocher et al. 1999; Singh

et al. 2017].

1 h := h mod 2;
2 l := 0;
3 if h == 1 then
4 l := 1;

Listing 2.3: Implicit information flow through the control structure of a program

Which type of information flow is a concern to the developer depends on what attack-

ers are able to observe. For example, smart cards or Near Field Communication (NFC)

devices draw power from the potentially untrusted device they are inserted into or come

into contact with, which makes it necessary to mask the power-based information flow

in such systems.
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1 var l, h;
2 if h == 1 then
3 // execute time-consuming function f()
4 f();
5 l := 0;

Listing 2.4: Implicit information flow through program timing

To be able to analyze information flow through a program, a variety of methods

and approaches has been developed since the inception of the field in Lampson [1973].

These IFC approaches aim to make it possible to follow implicit as well as explicit flows of

information through software and are additionally used to control the flow of information.

Early works in the field, such as Fenton [1973] or Bell and LaPadula [1973], developed

mandatory access control. In this approach, variables in a program are assigned security

levels, and during the course of the execution of the program, an additional software layer

calculates the dissemination of the data. In addition to its computational and storage

overhead, this method has proven to be too restrictive for use in general code as no

sharing of information between security levels is allowed. A further flaw of these purely

run-time enforcement mechanisms lies in its inability to identify implicit information

flow,.

2.3.2 The Lattice Model of Secure Information Flow

In software systems, data is commonly classified into security levels L = {l1, . . . , ln}.
To express security policies, i.e., rules describing between which levels information is

permitted to flow and has to be prevented, respectively, the following relations can be

defined [Hammer 2009]:

⇝: L × L is the transitive, reflexive and antisymmetric interference relation. x ⇝ y ex-

presses that information from class x is only permitted to flow into class y .

⇝̸: L2 \⇝ is the complement noninterference relation. x⇝̸y denotes that information

flow from class x to class y must be prevented in the system.

In an early approach to define a mathematical framework to formulate requirements

for secure information flow between sets of security levels, Denning [1976] identified lat-

tices to naturally express relations between security levels. If these levels are arranged

in a lattice, the relation⇝ is equivalent to ≤. If a direct comparison between security
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Top Secret (2)

Secret (1)

Confidential (0)

(a) A linear priority lattice

z

x y

⊥
(b) A lattice with incomparable elements

Figure 2.7: Examples of lattice representations of security models

levels is not possible, a complete latticeL = {L,≤,⊥,⊤,⊔,⊓} can be defined. Figure 2.7

shows examples of both situations. In Figure 2.7a, an example of a linear priority lattice,

the three security levels Confidential (0), Secret (1) and Top Secret (2) are ordered in a

linear fashion and a direct comparison between every level is possible, i.e., 0≤ 1≤ 2.

Figure 2.7b shows the more complex example of a security classification, in which a direct

comparison between levels is not possible in every case, i.e., neither x ≤ y nor y ≤ x . In

this case, the supremum operator ⊔ defines the resulting security level when two pieces

of information from incomparable levels are combined. As the example in Figure 2.7a

shows, when information from level x and y are joined, the resulting level must be z.

2.3.3 Information Flow Control

An early method to track explicit as well as implicit flows on the source code level has

been introduced in Bergeretti and Carré [1985]. In this work, the authors describe

an IFA technique based on data flow equations, which are heavily utilized in the program

optimization steps of compilers [Nielson et al. 1999].

e

A B

T F

(a) if e then A else B

e

A

T F

(b) if e then A

e

A

T F

(c) while e do A

Figure 2.8: Control-flow graphs of program statements [Bergeretti and Carré 1985]
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These information flow equations are constructed with special consideration of

the three main program flow elements, shown in Figure 2.8. For each structure, the

authors present equations to calculate three properties of information flow. For a vari-

able v ∈ V and the expression e ∈ E in the statement S, the first property vλS e states

that the v may be used in the evaluation of e in S. The example in Listing 2.5 contains

two expressions, y > 0 and y + z. The value of y may be used in the evaluation of

both expressions, while the value of z may be used be used in the expression y + z only.

A more complex example for this property is shown in Listing 2.6. There, the value

of x may be used in the evaluation of the final expression 2 * y as depending on the

value of x , an assignment to y will have been made in the previous statement y := 1

and this value will be used in the expression. This implicit flow of information between

variables x and z therefore becomes visible.

1 if y > 0 then
2 x := y + z;

Listing 2.5: A simple example of the λ property

1 if x > 0 then
2 y := 1;
3 z := 2 * y;

Listing 2.6: A more complex example of the λ property

The second property eµS v signifies that a value of the expression e in S may be used

in obtaining the value of v on exit from S. An example is shown in Listing 2.7. Both

the expressions w > 0 and y + z may be used in obtaining the value of the variable x

on exit from the presented statement. In case of a successful evaluation of the first

expression, the value of x on exit from S is the sum of y and z, otherwise it will retain

its original value. In either case, both expressions may be used.

1 if w > 0 then
2 x := y + z;

Listing 2.7: A simple µ property example
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Finally, the third property vρS v′ describes a relation between two variables on entry

and on exit of the statement S. The value of v may be used in obtaining the result of an

expression e in S, which in turn may be used in obtaining the value of v′ on exit from S.

It can be expressed as ρS = λSµS and therefore forms the necessary connection to put

two variables in a single program construct S into an information flow relation to each

other. The authors further extend the concept to the connection of multiple program

statements to be able to calculate the information flow between arbitrary variables in

the source code.

As is shown in these examples, this form of static information flow analysis is able to

detect explicit as well as implicit flows of information in a given program. In comparison

to dynamic IFA approaches, such as Suh et al. [2004], which are only able to track the

flow of information over a single execution of a program, static methods identify flows

over all executions and paths.

2.3.4 Non-Interference

If data inside a program is to be kept confidential, its developer might create a security

policy stating that the computation of this secret data is not affected by publicly observable

inputs or outputs of the program. This allows secret data to be calculated and modified

inside the program as long as visible outputs do not reveal any information about this

data. Such a policy is called a non-interference policy, first introduced in Goguen and

Meseguer [1982]. A usual method to show that a non-interference policy holds is to

demonstrate that an observer of the public variables cannot distinguish between two

executions of the program that only differ in their confidential inputs [Goguen and

Meseguer 1984; Sabelfeld and Myers 2003], i.e., no information flow from the secret

inputs to the publicly observable outputs is allowed. In this manner, information flow

control techniques can be used to prove non-interference [Hammer and Snelting 2009].

2.3.5 Path Conditions

As explained in Section 2.3.3, a static information flow analysis is able to detect both

implicit as well as explicit flows through a program due to its analysis of all paths through

said program. Therefore, these analysis techniques are inherently safe with regard to

their ability to detect information flow. However, to remain computable, such analyses

only provide approximate answers [Nielson et al. 1999], i.e., they present an over-

approximation of the actual solution. To increase the precision of a static information
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1 a[i + 3] = high;
2 if (i > 10)
3 low = a[2 * j - 42];

Listing 2.8: Example utilization of path conditions in information flow analysis

flow analysis, King [1976] introduced path conditions that describe necessary conditions

for paths to be executed. In Hammer et al. [2006, 2008], path conditions are used to

capture all paths where information might flow from a source to a target.

Consider the example given in Listing 2.8. As is shown there, an element of the

array a serves as storage for the value of high, in this example a variable of a high

security level. Inside the if scope, the variable of low security, low, is assigned a value of

the array. Given the policy that no high security information is to be leaked into a lower

security domain, a static analysis, as presented in Section 2.3.3, detects a policy violation

in the two assignments as information is able to flow through the array. However, when

analyzing the condition of the if clause, it becomes apparent that information flow

through the array only occurs for certain ranges of the variables i and j. It is therefore

possible to express path conditions for the flow of information between Line 1 and Line 3

of the given example. Only if i > 10, the assignment to the low security variable occurs

and a policy violation occurs. The following describes the path condition of information

flow between Line 1 and Line 3 of Listing 2.8:

PC(1→3) = ∃ i, j
�
(i > 10)∧ (i + 3= 2 j − 42)

�

= true

1 a[i + 3] = high;
2 if ((i > 10) && (j < 5))
3 low = a[2 * j - 42];

Listing 2.9: More complex example utilization of path conditions in information flow analysis
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A slightly more complex example is shown in Listing 2.9. There, the information flow

condition is extended to include the variable j and the path condition is expressed in the

following:

PC(1→3) = ∃ i, j
�
(i > 10)∧ ( j < 5)∧ (i + 3= 2 j − 42)

�

= false

As opposed to Listing 2.8, this extended path condition allows a safe conclusion about

the existence of information flow between the high and low security variables. In fact,

as there is no assignment of values to i and j such that the additional conditions are

fulfilled. Information flow is therefore impossible.

2.4 Constraint Logic Programming

In the following, we give a brief introduction to the concept of Constraint Logic Program-

ming (CLP). In this thesis, we utilize CLP to identify solutions to sets of path conditions

extracted from the signal-flow-oriented components of control system models under

analysis.

CLP was introduced in Jaffar and Lassez [1987] and extends logic programming to

include the concept of constraints. In general, CLP can be seen as a technique to solve

CSPs, which are defined as a triple P = (V, D, C) consisting of [Frühwirth et al. 1992;

Niederliński 2011]:

• a finite set of variables V = {v1, . . . , vn};

• a set of domains D = {D1, . . . , Dn} with {v1 : D1, . . . , vn : Dn};

• a set of constraints C j(Vj), j ∈ {1, . . . , m}with each constraint establishing a relation

of a subset of variables Vj = {v j1 , . . . , v jk} ⊆ V to each other and to solutions from

a subset of Dj1 × · · · × Djk .

A solution to a CSP is given by any assignment of domain values to variables that sat-

isfies all constraints. It may be non-unique or unique; Additionally, CSPs may contain

an objective function which, as an additional part of the solution, is to be minimized or

maximized. In this case, they are referred to as Constraint Optimization Problems (COPs)

and their solutions as optimum solutions. If the domains D are restricted to finite do-

mains, the problem is called a finite constraint satisfaction problem (FCSP) [Mackworth
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Figure 2.9: Map of the seven states and territories of Australia [Marriott et al. 1998]

and Freuder 1993]. As in this case the set of variables as well as each domains is finite,

the respective solution as a subset of D = {D1, . . . , Dn} is finite as well. In Haralick and

Shapiro [1979], the authors have shown the finite constraint satisfaction problem to

be NP-complete.

An example of a constraint satisfaction problem is introduced in Figure 2.9. In this

problem, each of the seven Australian states and territories are to be assigned one of three

colors such that no adjacent areas share a color. The formulation of this task as a CSP can

be seen in Listing 2.10, expressed using the MiniZinc [Marriott et al. 1998; Marriott

and Stuckey 2013] constraint solving language, which has been chosen here due to its

readability and concision. Before declaring the variables in the example, the number

of colors is defined, as is shown in Line 1. Each variable, representing the individual

areas, is declared to lie in the domain {x ∈ Z | x ≥ 1 ∧ x ≤ nc}. The subsequent section

of the code, beginning in Line 5, shows the constraints imposed on the solution. The

value of each pair of adjacent areas is constrained to be non-equal, thereby forcing the

solver to find an assignment of values to the variables that does not violate any of the

presented constraints. Line 15 instructs the solver to find such a solution satisfying the

set of constraints expressed in the code, and finally, Line 19 outputs the solution by

printing the values of each variable.

To find a solution to this CSP, in this example, we utilized the Gecode [Schulte

et al. 2010] constraint solving toolkit. The identified solution is shown in Listing 2.11.
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1 int: nc = 3;
2 var 1..nc: wa; var 1..nc: nt; var 1..nc: sa; var 1..nc: q;
3 var 1..nc: nsw; var 1..nc: v; var 1..nc: t;
4

5 constraint wa != nt;
6 constraint wa != sa;
7 constraint nt != sa;
8 constraint nt != q;
9 constraint sa != q;

10 constraint sa != nsw;
11 constraint sa != v;
12 constraint nsw != q;
13 constraint nsw != v;
14

15 solve satisfy;
16

17 output ["wa=", show(wa), "\t nt=", show(nt), "\t sa=", show(sa), "\n",
18 "q=", show(q), "\t nsw=", show(nsw), "\t v=", show(v), "\n",
19 "t=", show(t), "\n"];

Listing 2.10: The coloring of Australian states and territories, expressed as a MiniZinc model

1 wa=2 nt=3 sa=1
2 q=2 nsw=3 v=2
3 t=1

Listing 2.11: The solution to the Australia CSP problem as output by the Gecode solver.

2.5 Model Checking

In the following, we briefly present model checking as a technique to formally verify

properties on systems. Specifically, we discuss the UPPAAL timed automata verifica-

tion framework, which we use a tool to verify properties on the control-flow-oriented

components of the control systems we aim to analyze.

To verify the correct functionality of a software system, i.e., that the system adheres to

its specifications under all circumstances, it can be verified formally. Formal verification

methods, such as model checking cover all possible executions of the system under

analysis. Model checking is an automated technique for verifying concurrent systems

with a finite number of states. Independently developed in Clarke and Emerson [1981]

and Queille and Sifakis [1982], temporal logic model checking allows for the modeling of

software systems and circuit designs as state-transition systems and of requirements as
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C∪

c <= maxtime
req?
c = 0

c >= mintime

val = f(t)

ack!

Figure 2.10: UPPAAL example

propositional temporal logic formulae. On these formal specifications, a search technique

determines whether the formulae, i.e., the requirements hold. In other words, the

transition system is checked to see whether it is a model of the formal specification [Clarke

and Grumberg 1999].

2.5.1 UPPAAL Timed Automata

One technique to formally model systems is given by TA, first introduced in Alur and

Dill [1994]. Timed automata are a timed extension of finite state automata that include

a notion of time by introducing clock variables, which are used in clock constraints to

model time-dependent behavior. To model concurrent systems, timed automata can be

combined into networks, that communicate over and synchronize on channels.

To enable the automatic verification of systems of timed automata, UPPAAL [Behrmann

et al. 2004; Bengtsson and Yi 2004] implements the timed automaton semantics and

enables the graphical as well as text-based modeling, simulation, animation and verifica-

tion of networks of timed automata. Additionally, UPPAAL extends the semantics of timed

automata by bounded integer variables as well as binary channels, enabling a one-to-one

synchronization, and broadcast channels, enabling a one-to-many communication and

synchronization.

A small example UPPAAL timed automaton is shown in Figure 2.10. The symbol⃝◦
denotes the initial location of the automaton. The label req? denotes that the transition

is enabled as soon as the process receives on channel req, analogously, the label ack!
denotes that whenever the transition is taken, the process emits on channel ack. The

label c = 0 denotes that on taking this transition, the clock c is reset to 0. Shown in

green are two conditions on the clock c: the location invariant c <= maxtime and

the transition condition c >= mintime. The semantics of the former states that the

location must be left before clock c becomes greater than the constant maxtime. For the

latter, the transition is not enabled before clock c is greater than or equal to mintime.
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Additionally, the symbol⃝∪ depicts an urgent location and the symbol⃝C a committed

location. Urgent and committed locations are used to model locations where no time

may pass, i.e., no clock variables are increased.

The UPPAAL model checker enables fully-automatic verification of (unnested) Compu-

tation Tree Logic (CTL) formulae on a given network of timed automata as input queries,

i.e., descriptions specifying conditions and properties on paths and their branches through-

out the automaton under analysis.

2.6 Summary

In this chapter, we have presented the preliminaries that form the foundation of this

thesis. We have started with a brief overview over MDD to provide an understanding

of the realm this thesis is placed in. Subsequently, we have introduced the concept of

signal-flow-oriented modeling languages as well as two example languages that have

found widespread adoption in the domain of safety-critical systems. Further, we have

presented the ideas behind information flow analysis as well as techniques to control

information flow in software systems. We have closed with a brief overview of Constraint

Logic Programming and model checking, specifically property checking using the UPPAAL

verification framework.

In the next chapter, we discuss prior research work related to our approach.
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3 Related Work

In the design of discrete embedded control system models, modeling languages based on

the signal-flow-oriented programming paradigm are widely used. In this chapter, we first

give an overview of information flow analyses for sequential, text-based programming

languages in Section 3.1. In Section 3.2, we provide a similar overview for synchronous

systems, which, due to their inherent timing and concurrency, possess semantics similar

to those discrete embedded control system models.

In Sections 3.3 and 3.4, we discuss a number of verification and information flow

analysis methodologies for control system models consisting of signal-flow-oriented and

state-machine-based components. Finally, in Section 3.5, we present similar methodolo-

gies for the state-machine-based components of heterogeneous control system models.

Our discussion of related work closes with a summary in Section 3.6.

3.1 Information Flow Analyses of Sequential Programs

As we have presented in Chapter 2, the protection of confidentiality of information

inside a software system is a long-standing problem [Graham 1967; Lampson 1969]. For

traditional text-based sequential programs, a wide range of information flow analyses

have been developed, which are able to cope with the syntactical possibilities present

in those language [Sabelfeld and Myers 2003; Hedin and Sabelfeld 2012]. Especially

in the field of highly expressive object-oriented programming languages, represented

by, e.g., C++ or Java, information flow is hidden by complex features such as object

hierarchies, procedures, exceptions, or threads. In Hammer and Snelting [2009] and

Hammer [2009], the authors present an exhaustive method to analyze the information

flow through Java programs. Their method is based on the extraction of the program

dependence graph (PDG) from the bytecode of a given Java program, on which they

subsequently calculate the path conditions necessary for execution of a code fragment
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under analysis. Based on this extracted PDG, they define a system of flow equations for

various language features, e.g., exceptions and procedure calls. Using this system, they

are able to precisely calculate the flow of information in Java programs. Similar analyses

have been developed for languages such as C [Barany and Signoles 2017], Python [Chen

et al. 2014], Assembly languages [De Francesco and Martini 2007], and JavaScript [Hedin

et al. 2014]. However, as these methodologies target the inherently different semantics

of sequential programming languages, which lack notions of timing and concurrency,

they are not applicable to the domain of control system models. This holds especially

true when considering the difference in abstraction between the presented languages and

control system models. Consequently, the presented techniques to analyze information

flow in sequential programming languages are unable to be applied to the problem stated

in this thesis.

3.2 Information Flow Analyses of Synchronous Systems

Synchronous systems utilize a notion of non-relative timing and concurrency similar

to that of signal-flow-oriented modeling languages. Such systems represent hardware

circuits, synchronized by a global clock signal, and are usually developed using hardware

description languages such as Very High Speed Integrated Circuit Hardware Description

Language (VHDL). The register-transfer level (RTL), on which such systems are modeled,

is an abstract representation of time-dependent circuit elements, i.e., registers, and of

combinatorial elements, which perform logical operations on signals inside the system.

In Tolstrup et al. [2005], the authors have developed an information flow analysis for a

subset of VHDL. In VHDL, the functionality of a system is described by a set of concurrent

statements. To emulate the physical aspect of the RTL, i.e., the propagation of an electrical

current through the system, the concept of delta cycles is used, which describe simulation

cycles in which the simulation time does not advance. Tolstrup et al. [ibid.] presents an

adaption of the Reaching Definitions analysis originally from Nielson et al. [1999], which

tracks the flow of variables and present values of signals with special consideration to

the semantics of delta cycles. While this method is able to analyze information flow

through the concurrent semantics of VHDL, it does neither take into account the timing

of information passing through the system nor the precise control behavior responsible

for the execution of information paths.
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A similar methodology to analyze information flow in synchronous systems is pre-

sented in Köpf and Basin [2006]. There, the authors utilize a automata-based repre-

sentation of synchronous circuits on which they identify timing side channels. They

abstractly model the system behavior using Mealy automata synchronized by a global

clock signal. The execution time of calculations is expressed in numbers of clock cycles.

On an observer-based security model, they utilize model checking to analyze whether

all possible executions of the system with respect to a secret input are indistinguishable

to the observer. While this approach is able to identify timing side channels on small

synchronous systems and limited signal bit-widths, the analysis efforts increases dramati-

cally for larger models and signal bit-widths. Additionally, the observer model utilized

does not allow for a precise determination of the timing behavior of individual model

signals and cannot be applied automatically to given models.

To the best of our knowledge, no other methods to analyze information flow in syn-

chronous languages, such as VHDL, exist. While there exist similarities in the semantics

of synchronous languages and signal-flow-oriented modeling languages, these method-

ologies are not applicable to the problem stated in this thesis, as (1) they target a strongly

different abstraction level than that of embedded control system models, and (2) they

lack support for the analysis of the heterogeneity of combined signal-flow-oriented and

state-machine-based models.

3.3 Information Flow Analyses of Control System Models

In the following, we present approaches most closely related to this thesis, i.e., infor-

mation flow analysis methods based directly on the semantics of heterogeneous control

system models consisting of signal-flow-oriented and state-machine-based components.

In Whalen et al. [2010], the authors present a method to analyze information flow in

control system models implemented using MATLAB Simulink. Similar to the procedures

presented above, a given model is translated to Lustre to enable formal verification of

properties on the system. Based on a system of information flow equations, their method

tracks the flow of principal variables through the model, and defines an information

flow theorem on these flows. Subsequently, information flow properties, such as non-

interference, are formulated using this theorem, and the Prover model checker [Prover

Technologies AB 2019] is used to verify these properties. While the goals of their

methodology are closely aligned to those of this thesis, specifically the development of

an automated information flow analysis method for discrete signal-flow-oriented control
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system models, their method does not consider important characteristics of the semantics

of such modeling languages, namely the precise timing semantics and the heterogeneity of

models combining signal-flow-oriented and state-machine-based components. Although

time-dependent components are part of the case study presented in Whalen et al. [2010],

the information flow theorem does not consider the timing semantics inherent to these

components. What is more, the method is not able to analyze the influence of the

integrated Stateflow controller on its surrounding signal-flow-oriented components.

Finally, while the authors do not provide a discussion on the analysis performance of

their approach, its translation of the whole model to a formally verifiable representation

raises doubts about its applicability to control system models of industrially relevant size.

We present a more detailed discussion on this in Section 3.4.1.

Finally, we discuss two methodologies, which have transferred the concept of program

slicing [Weiser 1981] to the domain of control system models. While slicing cannot be

considered a complete information flow analysis, it can be regarded as a tool to identify

non-interference between components in a software system [Weiser 1982]. If a forward

slice from an arbitrary program statement A does not include statement B, informa-

tion flow from A to B is impossible and non-interference is guaranteed. In Reicherdt

and Glesner [2012], the authors present a technique to transfer the concept of slicing

to MATLAB Simulink. Their methodology bases the calculation of a slice on the control

flow graph (CFG) of a given Simulink model, which they calculate based on data and

control dependence relations they established as part of their work. To identify a slice

for a given Simulink model element, they calculate post-dominance relations on the con-

structed CFG. Their case studies from the automotive domain indicate that, on average,

the complexity of a model can be reduced by approximately 37 %. They subsequently

utilize this circumstance in their model-checking-based verification methodology for MAT-

LAB Simulink models [Reicherdt 2015]. A similar approach can be found in Gerlitz and

Kowalewski [2016]. Their slicing methodology for MATLAB Simulink models increases

the slicing precision by integrating an analysis of the virtual blocks used to implemented

signal buses found in the Simulink syntax. Using their method, they are able to decrease

the average model complexity by approximately 52 %. Both slicing-based approaches can

be used to identify non-interference between arbitrary model elements. However, they

present a coarse over-approximation of the precise behavior of the model as they neither

include the timing or the control flow behavior of models, nor consider the influence of

state-machine-based controllers on the signal-flow-oriented model components.
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3.4 Formal Analyses of Signal-Flow-Oriented Modeling
Languages

While the goals of the techniques presented in the previous section closely align with

those of this thesis, they do not meet the criteria we have set in Chapter 1. Thus, the

following presents a discussion of a wide range of formal analysis methodologies for

signal-flow-oriented modeling languages.

3.4.1 Approaches Based on Model Checking Intermediate Languages

Extensive work has been done in the area of translating subsets of control system mod-

els combining signal-flow-oriented and state-machine-based components into formal

languages with well-defined semantics.

A large research community has established itself around the translation of signal-

flow-oriented models into Lustre and the graphical modeling suites SCADE [Abdulla

et al. 2004] and SIGNAL [LeGuernic et al. 1991]. More specifically, due to its industrial

relevance, the translation of subsets of MATLAB Simulink has been the focus of numerous

approaches. Lustre [Halbwachs et al. 1991], a synchronous programming language based

on the data-flow programming paradigm, is widely used in the design of safety-critical

reactive systems, such as control systems in the aerospace domain. Similar to VHDL, a

system is designed using concurrent statements, such as assignments or arithmetical and

conditional operations, and structured using nodes. Each variable defines a possibly infi-

nite sequence of values, or flow, over a global clock-like signal. Assignments to a variable

can be performed at the same, previous, or subsequent position in the flow. Building

on these similarities between Lustre and signal-flow-oriented modeling languages, the

authors of Caspi et al. [2003] and Tripakis et al. [2005] present a set of block-wise trans-

lation rules from the Simulink Discrete library to Lustre, mapping Simulink blocks

to nodes and signals to flows. Building on this work, in Dajani-Brown et al. [2004],

the authors present a methodology to formally verify control system models developed

using MATLAB Simulink using the translation to Lustre and its graphical model design

counterpart SCADE. In SCADE, control systems are designed using a graphical interface

not unlike that of Simulink, which acts as a front-end for Lustre. On the example of a

small case study from the aerospace domain [Osder 1999], the authors utilize the SCADE

Design Verifier to perform model checking of the translated model and are able to confirm

the correct functionality of the Simulink model according to its requirements. In Joshi
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and Heimdahl [2005], the authors utilize the case study of a wheel brake system from

the automotive domain, implemented using Simulink. They manually extend the original

model with a fault model, such that each component can enter a failure mode in order

for the behavior of the surrounding components to be analyzed. Based on a manual

translation of this extended model to SCADE, the authors are able to utilize the SCADE

Design Verifier to formally verify properties embedded into the systems. A method

to translate Simulink models to SIGNAL, a synchronous programming language very

closely related to Lustre, has been presented in Messaoud [2014]. It is heavily influenced

by Caspi et al. [2003] and utilizes the same translation procedure.

A different approach has been taken by works such as Miller et al. [2005], Herber et al.

[2013], and Reicherdt [2015]. In Herber et al. [2013], the authors translate a discrete sub-

set of Simulink models into the input language for the satisfiability modulo theory (SMT)

solver UCLID [Bryant 2004]. In contrast to the model checker built into SCADE, SMT

solvers, such as UCLID, are able to leverage an, e.g., arithmetical, theory on the model

state to drastically decrease the size of the possibly infinite state space of the problem

under analysis. In Herber et al. [2013], the authors present (1) transformation rules to

translate a subset of Simulink to UCLID, and (2) a method to verify properties on the result-

ing model using bounded model checking and k-inductive invariant checking [De Moura

et al. 2003]. Their translation process automatically generates a number of verifica-

tion conditions, such as to detect variable overflow and division by zero, as well as the

concrete and symbolic models required for bounded model checking and k-inductive

invariant checking, respectively. Using their technique, they were able to utilize the bit

arithmetic theory built into UCLID to automatically detect an overflow due to a faulty

implementation of a case study from the automotive domain. In a similar approach [Re-

icherdt 2015], the author presents a translation of discrete time MATLAB Simulink models

to Boogie [Barnett et al. 2004], the input language for the SMT solver Z3 [De Moura and

Bjørner 2008]. In a number of case studies from the automotive industry, the system

developed by the author is able to automatically identify common run-time errors in the

model design using bounded model checking and k-inductive invariant checking.

In addition to works presented above, there are techniques to translate control

system models developed using MATLAB Simulink to the model checker NuSMV [Cimatti

et al. 1999, 2002], such as Miller et al. [2005] and Meenakshi et al. [2006]; to perform

verification based on contracts, such as presented in Boström [2011], Wiik and Boström
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[2014], and Liebrenz et al. [2018]; and to HybridCSP [Liu et al. 2013], an extension to

the process calculus of communicating sequential processes [Hoare 1985] to model the

semantics of hybrid automata, in Zou et al. [2015].

Research in the area of formal analysis and verification techniques for our second

example language, Modelica, is scarce. In Lundvall et al. [2004], the authors present

ideas on a translation of a subset of Modelica models to the input language for the hybrid

model checker HyTech [Henzinger et al. 1997]. However, a planned implementation

seems to have been abandoned and, thus, no evaluation was presented. To the best of our

knowledge, no further approaches to translate Modelica models into a formally verifiable

representation exist. Works such as Klenk et al. [2014] and Otter et al. [2015] present

methodologies to embed formal requirements into Modelica models. However, similar

to Lundvall et al. [2004], neither an implementation nor an evaluation was included in

their publications.

3.4.2 Approaches Built into Modeling Environments

A number of model analysis and verification techniques are integrated directly into MAT-

LAB Simulink by way of the Simulink Design Verifier (SLDV) [The MathWorks 2017c].

It is based on the model checker presented in Andersson et al. [2002] and offers the

possibility to automatically generate test cases and detect design errors, such as integer

overflows or division by zero. As it is integrated into Simulink and verification properties

are added as specialized blocks directly into the model, it can be utilized as part of a

model-based workflow without the need for intermediate representations or external

tools. Its scalability, however, is limited as it utilizes a model checking-based technique

to analyze the model as a whole. Works such as Leitner [2008], Reicherdt [2015], and

Nellen et al. [2018] have discussed the capabilities of the SLDV and discovered seman-

tic inconsistencies and worse performance compared to similar model-checking based

methods.

3.4.3 Summary

The common factor in all the methodologies mentioned above is their translation of the

signal-flow-oriented control system model to a formally verifiable representation as a

whole. This has a number of significant consequences: (1) The translation abstracts from

the original signal-flow-oriented semantics. Specifics of the original system are therefore

lost, such as the physical timing of models, and the timing of models can therefore not
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be precisely analyzed. (2) The translations pose strong restrictions on the design of the

source model and are therefore often not directly applicable to industrial case studies,

such as discovered by Walde and Luckner [2015]. And finally, (3) the verification effort

required increases exponentially with the model size. While the presented methods are

able to verify properties, e.g., the absence of overflows, on the model, their analyses reach

run-times of up to 12 h for models consisting of 264 blocks, such as in the case of Reicherdt

[2015]. Similarly, the authors of Joshi and Heimdahl [2005] conclude their work with a

remark on the highly doubtful scalability of their approach to translate MATLAB Simulink

models to Lustre.

Most importantly, however, it is not possible to directly apply the presented methods to

analyze time-dependent information flow in signal-flow-oriented control system models.

For methodologies such as Herber et al. [2013], Reicherdt [2015], and Liebrenz et al.

[2018], this is due to the absence of a timing model in the generated formal representation.

For other approaches, such as Joshi and Heimdahl [2005], Miller et al. [2005], and Zou

et al. [2015], the reason lies in the limited expressiveness of the verification properties.

While, e.g., CTL allows for the expression of properties in relation to each other along

paths in the model checking process, the operators, such as next, globally, and until,

do not relate to the physical simulation time of the original model.

3.5 Formal Analyses of State-Machine-Based Models

Although the development of a formal analysis technique for state-machine-based con-

trollers implemented using MATLAB Stateflow is not part of the main focus of this thesis,

we briefly introduce research works related to this task. Only few authors have addressed

the problem of formalizing the complete behavior of Stateflow automata. In Hamon

and Rushby [2004] and Hamon [2005], the authors have presented operational and

denotational semantics for a subset of Stateflow. While they succeed in representing

a wide range of the Stateflow functionality, they neither consider the timing nor the

connection of the automaton with surrounding Simulink models.

A similar approach has been taken by the authors of Chen et al. [2012]. In their

work, they present a translation of a subset of Stateflow modeling features to CSP# [Sun

et al. 2009], an input language to the model checker Process Analysis Toolkit (PAT) [Liu

et al. 2008]. Using their automatic translation and subsequent model checking, they have
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been able to identify modeling errors in case studies provided as part of Stateflow, which

include complex modeling features such as history junctions and transitions between

levels in the state hierarchy.

In Scaife et al. [2004], the authors present a methodology to convert a subset of

Stateflow constructs into Lustre. However, they pose strong restrictions on the use

of modeling features such as events, inter-level transitions and, more fundamentally,

temporal logic conditions.

Due to the similarities between Stateflow and Statecharts, we also briefly discuss

previous formalization efforts for such models, most notably Harel [1987]. However,

these similarities are merely superficial, as the underlying solver for Stateflow automata

works in a purely sequential fashion, and their semantic differences make an elevation of

the methodology presented in this work infeasible. In contrast, the authors of Jiang et al.

[2016] and Yang et al. [2016] present a method for an automatic translation of Stateflow

automata to UPPAAL timed automata, which captures both the functionality and the

precise timing of Stateflow and enables automatic verification via model checking. This

translation does not pose any restrictions on a given Stateflow model and accurately

captures its semantics. We utilize this in our method and provide a discussion in Chapter 6.

3.6 Summary

As we have discussed in this chapter, there exists a broad spectrum of research related

to the analysis of information flow through embedded control system models. Due to

their importance and widespread use, two languages from the domain of embedded

control system models, MATLAB Simulink/Stateflow and Modelica, have been the subject

of numerous research endeavors with the goal of developing analysis and verification

techniques on a formal basis. First, we have presented methods to analyze information

flow in traditional, text-based sequential programming languages in Section 3.1. While

these techniques have matured to be applicable for a wide range of domains and lan-

guages, they are unable to cope with the semantics of signal-flow-oriented modeling

languages, i.e., their timing and inherent concurrency. They are therefore unable to be

applied to these models.

In Section 3.2, we have discussed methods to analyze information flow in synchronous

programming languages, which bear a semantic resemblance to signal-flow-oriented

control system models. The methods presented, however, are not applicable to the
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domain of control system models as they do not consider the timing behavior of models.

In addition to that, they are too coarse-grained for a precise information flow analysis

due to their inability to analyze the control behavior of models.

With the techniques discussed in Section 3.3, we have presented the research

works whose goals are most closely aligned to this thesis. Most notable is the work

by Whalen et al. [2010], in which the authors present an information flow analysis for

signal-flow-oriented control system models. Using their method, they are able to track

information flow through signal-flow-oriented control system models. However, as their

solution is based on a translation of MATLAB Simulink models to the formally verifiable

synchronous language Lustre, the complexity of their model-checking-based methodology

makes its utilization impractical for industrially-sized models. In addition to that, their

information flow theorem neither captures the precise timing behavior of signals through

a model nor the behavior of embedded state-machine-based controllers. Consequently,

the presented approach is inapplicable to the problem statement of this thesis.

In Section 3.4, we have discussed a number of approaches based on the idea of

translating complete control system models to a formally verifiable representation with

the goal of subsequently performing model checking to verify properties on the translated

model. A unifying characteristic of these methodologies is their reliance on a translation

of the model as a whole to a formally verifiable representation. Due to the state explosion

problem, this casts doubts on their applicability to models of industrially relevant size.

Additionally, during the translation process, semantic characteristics of the source lan-

guage are lost, such as the timing behavior of the model. As we have shown in Chapter 1,

a precise information flow analysis has to take the precise timing of the source language

into account, which makes the methodologies presented in Section 3.4 inapplicable to

the problem stated by this thesis.

While it is not part of the main focus to develop a formalization and verification tech-

nique for state-machine-based model components, we have briefly discussed a number

of such methodologies to in Section 3.5. Specifically, we have discussed the methodology

presented by Jiang et al. [2016] and Yang et al. [2016], which we use in this thesis.

In the following chapter, we present an overview of our approach to analyze informa-

tion flow in time-discrete embedded control system models.
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4 Information Flow Analysis
Approach

As embedded systems are often employed in safety-critical domains, they have to up-

hold strict requirements in terms of both safety and security. To manage the strongly

increasing complexity of these safety-critical control systems in every application do-

main [Zurawski 2009; Bello et al. 2019], manufacturers have shifted towards model-

driven development techniques [Chalé et al. 2011], which focus on implementation

of functionality and various levels of abstraction from implementation details. While

these systems are successful in managing the complexity in the development of large,

interconnected systems [Hutchinson et al. 2014; Rodrigues da Silva 2015], analysis

and verification techniques for model-driven development systems and languages still

have to reach a similar level of maturity as those for text-based imperative programming

languages traditionally used in the development of safety-critical embedded systems.

One such technique, the analysis of information flow through these embedded control

system models, has the potential to identify possible violations of both safety requirements

and security policies by analyzing where and under which conditions information travels

through a program. When developing an information flow analysis technique for model-

driven development procedures, their specific semantics, which inherently differs from

those of imperative languages, must be considered front and center. This holds especially

true for the two most widely-used languages for model-driven development of safety-

critical embedded control systems: MATLAB Simulink/Stateflow and Modelica. Both

languages, based on the semantics of signal-flow graphs, heavily rely on concurrency and

a complex notion of timing. Additionally, they make use of inherently differing modeling

styles by incorporating signal-flow-based as well as state-machine-based components.

While the former are utilized to model the modification of incoming signal data, the

latter control the flow of data through the program according to rules based on the

same or separate incoming signals. Due to the possibility to include multiple program-
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ming paradigms in the same modeling language, these combined models have found

widespread adoption in the design of automotive and aerospace control systems [Wang

and Yuko 2010; Nellen et al. 2018].

This thesis presents a novel procedure enabling a sound information flow analysis of

embedded discrete control system models, which integrates the inherent timing behavior

of such models as well as the combined analysis of systems comprised of components of

fundamentally different modeling styles, i.e., signal-flow-oriented and state-machine-

based components.

Our information flow analysis methodology is based on the main idea to extract only

that information from an existing model which is required to analyze information flow

through the model in respect to both its timing and functionality. Only this information,

i.e., the conditions under which paths are executed as well as when and how these

conditions are triggered, is retained during the analysis. All aspects of a model that do

not influence the information flow between elements of interest are discarded to increase

analysis performance. Further, to enable the analysis of models combining signal-flow-

oriented as well as state-machine-based programming paradigms, our methodology is

based on the idea of first translating a state-machine-based controller into a formally

verifiable representation and, second, using the well-established technique of model

checking to observe the controller to identify precisely the behavior that leads to the

execution of information flow paths under analysis.

With this process, we are able to safely rule out the existence of information flow

on specific paths through a model, which enables us to reason about non-interference

between model parts and the compliance with security policies.

In this chapter we present an overview of our procedure to analyze information flow

in time-discrete embedded control system models. First, we present a model consisting

of both signal-flow-oriented and state-machine-based components as an introductory

example. Using this example, we demonstrate the model structure we base our process

on and terms we use in this thesis. Subsequently, we discuss assumptions that we require

models to fulfill in order to be analyzable by our methodology and present every step of

our system as well as the automated analysis framework we have developed.
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4.1 Motivating Example

To illustrate our approach and the structure of embedded control system models typically

developed using signal-flow-oriented model-driven development languages, we use a

shared communication infrastructure as a introductory example. Such systems, commonly

found in the design of automotive software [ISO 1993, 2015], combine complex timing

as well as control behavior. Figure 4.1 shows the corresponding model as a MATLAB

Simulink/Stateflow implementation. It uses a time-dependent Memory block as an

internal buffer and Switch blocks to route the incoming and outgoing data according

to their source and target, respectively. In this example, information of two different

security levels is fed into the shared buffer via the public input pip and confidential

input pic , respectively. According to the value of the signal sc, confidential or public

information is saved in the buffer and passed to the corresponding output. Although

confidential and public data entering the model share the same memory block as buffer,

the routing conditions implemented using the Compare-type blocks are intended to

ensure that confidential input data can never flow to the public output. To this end, the

operation mode set via the signal sc defines which input should be routed to the output

and to which output the content of the buffer element is routed to.

An obvious security requirement for this model states that information which entered

through the confidential input must never reach the public output. This has to be ensured

by the design of the controller. Consider the example situation shown in Figure 4.2a.

There, the value of the signal sc is shown in green and the values for the public input pip

and the confidential input pip are shown in red and blue, respectively. Whenever the

signal sc has the value 1, the buffer content is routed through the confidential output,

and to the public output, whenever sc has the value 2. For three simulation cycles, the

value 5 is fed into the buffer through the public input, after which the value 3 is fed

into the buffer through the confidential input. Figure 4.2b plots the operation mode set

by the signal sc and the behavior of the confidential output poc in green and the public

output pop in red. There, a violation of the security requirement becomes apparent. When

switching the operation mode from confidential to public, the current buffer contents,

i.e., confidential data, is leaked through the public output.
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(a) Combined Model

(b) The state-machine-based controller state_controller

Figure 4.1: Motivating example implemented as combined model

To identify such security violations caused by the complex control and timing behavior

of the model, an information flow analysis for signal-flow-oriented model components is

required, which takes into account both the precise data and timing behavior of data

flowing through the model. We present our system to identify information flow through

such signal-flow-oriented models in Section 4.4.1 and, in more detail, in Chapter 5.

Additionally, our running example shown in Figure 4.1 utilizes a state-machine-based

controller state_controller, implemented in Stateflow and shown in Figure 4.1b, to

control the operation mode, i.e., execution of the switches, by setting the signal sc . The

controller switches the operation mode depending on the value of the input fed through

the Boolean input port pi3 . If this input signal is set to true for a single simulation

cycle, the operation mode is switched. As the Stateflow controller is responsible for

the modification of the operation mode through the signal sc, an analysis of its state-

machine-based semantics in conjunction with the signal-flow-based model components is
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Figure 4.2: Signal output and timing in our motivating example

necessary to evaluate whether such a combined model suffers from the discussed security

policy violation. In Chapter 6, we revisit the example presented in Figure 4.1 and provide

a detailed discussion of our methodology to analyze information flow through combined

signal-flow-oriented and state-machine-based models.

Note that, as presented in Chapter 2, the discrete embedded control system models

our method analyzes, are not executed directly, but interpreted and simulated by a

simulation engine specific to the modeling language. For our motivating example, we

have haven chosen a fixed-step solver with a simulation step size of 1.

4.2 Model Structure

The control system model1 displayed in Figure 4.1 represents the general structure of

discrete embedded control system models that we base our method on. When analyzing

the information flow through such models, we consider the flow between arbitrary

model elements, such as, e.g., input and output blocks. These flows through the dynamic

signal-flow-oriented components, shown in green, are controlled by sets of routing blocks.

1Note that we use the term control system model to denote the complete model under analysis, consisting
of both signal-flow-oriented and state-machine-based components.
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(a) Simple control signal (b) Cyclical control signal

(c) Control signal driven by a controller (d) Algebraic loop

Figure 4.3: Control signal styles (control signal paths shown in blue)

Additionally, time-dependent model elements, such as Memory or UnitDelay blocks,

hold information along these data paths and release them according to their specifications

and properties set by the model developer.

The information flow through such models is controlled by control signals responsible

for the execution of the switches, shown in blue. These signals and their control signal

paths are shown in red. In discrete embedded control system models, these control signal

paths can be structured in three possible ways: (1) An embedded state-machine-based

controller2 emits the control signals, as shown in Figures 4.1 and 4.3c. (2) The con-

trol-flow elements are set without the use of any controller and are acyclical, as shown

in Figure 4.3a. (3) The control-flow elements are set without the use of any controller

but contain cyclical components, as shown in Figure 4.3b. (4) The output of a state–

machine-based controller is routed through a cyclical control signal. (5) Control-flow

structures are nested, i.e., control-flow elements contain routing blocks themselves.

2We use the term controller to denote the state-machine-based components of the control system models
we analyze.
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Additionally, the controller can receive input signals from the surrounding signal-

flow-based components.

4.3 Assumptions

To apply our system to analyze the flow of information, a given discrete embedded control

system model model has to fulfill the following assumptions:

Control Paths Our information flow analysis method supports unnested non-cyclical

and cyclical control paths, as well as control paths driven by state-machine-based

controllers. For non-cyclical control paths, we support only data modifications

using blocks implementing unary functions. For cyclical control paths, we support

paths with cyclic dependencies that can be solved using the Mathematica computer

algebra system (CAS) [Wolfram Research 2018].

Solver Semantics In the model, every block is set to use the same sample time and

a time-discrete, fixed-step solver is used. Additionally, the model does not contain

algebraic loops or loop subsystems.

Language Support As our procedure targets signal-flow-oriented modeling languages,

we demonstrate its applicability to two widely-used representatives from this lan-

guage family, MATLAB Simulink/Stateflow and Modelica. When targeting Modelica

models as the source language, we support the analysis of blocks from the discrete

controller library as well as the standard library [The Modelica Association 2019a].

When targeting MATLAB Simulink/Stateflow models, we support blocks from the Dis-

crete, Logic and Bit Operations, Math Operations, Ports & Subsystems, Signal Routing,

Sources and Sinks block sets [The MathWorks 2018a].

As we target safety-critical embedded software systems stemming from a model-

centric development style, which typically do not contain any continuous components,

our restriction to purely discretely-timed models is acceptable. The restriction to a

uniform sample time is chosen for simplicity of presentation and can be relaxed as future

work. We discuss this in Section 8.2. Finally, our requirement to prohibit algebraic loops

is acceptable as our focus on model-centric development methodologies prohibits the use

of such algebraic loops, as shown in Figure 4.3d, in the control system models. This is due

to the fact that such untimed loops, i.e., loops that do not contain any time-dependent

model elements and execute multiple iterations in a single simulation time step, cannot
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be used for code generation [The MathWorks 2017a]. To support the information flow

analysis through algebraic loops, a fixed-point analysis would be required to identify a

stable loop state for a given simulation time step.

As our scheme analyzes the control flow of discrete embedded control system models,

we do not impose any restrictions on the data paths, i.e., complex modeling elements

such as integrators and transfer functions, together with arbitrary feedback loops, may

be used on the data path.

On the control paths, i.e., when analyzing the precise conditions under which infor-

mation flow paths are executed, our system makes a number of fundamental assumptions.

From the control path variants presented in Figure 4.3, we fully support control paths

containing state-machine-based controllers and do not make any assumptions on the

design of such controllers. The case studies from the automotive domain, which we

present in Chapter 7, do not rely on complex control logic implemented using signal-flow-

oriented modeling but utilize only simple signal modifications on unnested control paths

and make heavy use of state-machine-based controllers to control the execution of paths

through the model. Our restriction to unary functions on unnested non-cyclical control

paths is therefore, while fundamental, acceptable. We discuss possible solutions to relax

this requirement in Section 8.2. Finally, in case of cyclical control paths, we only support

the resolution of those cyclic dependencies that the employed CAS, Mathematica, is able

to solve, such as linear difference equations [Wolfram Research 2008]. We consider a

precise examination of the limitations using more complex case studies as future work

and provide a more in-depth discussion in Section 8.2. As we, in case of cyclical control

signals, assume arbitrary inputs to the control path, a state-machine-based controller

driving a cyclical control signal is supported by our procedure.

All discrete embedded control-system models based on signal-flow-based semantics

that satisfy these assumptions can be safely analyzed using our methodology.

4.4 Information Flow Analysis of Discrete Embedded
Control System Models

An overview of our proposed method is shown in Figure 4.4. Shown on the left, we also

depict a more abstract view of the structure of embedded discrete control system models

which we take as a basis for our analysis.
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Figure 4.4: Proposed Solution

4.4.1 Information Flow Analysis of Signal-Flow-Oriented Models

To enable a fine-grained analysis of the flow of information through embedded control

system models, our system adapts the concept of path conditions to the semantics of

signal-flow-based models. These timed path conditions capture the conditions necessary

for paths to be executed as well as the precise timing of the control behavior along the

paths. The main idea behind this first major step of our procedure is that by only

capturing the information necessary to verify the absence of information flow, i.e.,

control flow conditions and timing information, the timed path conditions form an

ideal compromise between analysis precision and efficiency. At the same time, they do

not sacrifice soundness.

Our scheme first constructs timed path conditions from the dynamic signal-flow-

oriented components of a given control system model, i.e., between the components

shown in blue and green in our motivating example. The main challenge we face is

that all dependencies between a given pair of model elements in a given design must

be considered. Thereby, dependencies might be indirectly introduced via control flow,

or delayed (such as demonstrated by the Memory block in our motivating example),

which introduces dependencies between signals from different points in time. Our

process starts with a static over-approximation of all potential dependencies on a path

between a timed input signal and a timed output signal and collects all control flow

conditions. Then, for each path, we compute a set of constraints on all input signals by

performing a backward propagation of control flow conditions, which also takes timing
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dependencies into account. The result of this step of our analysis is a precise description

of the timed dependencies between input and output signals of the signal-flow-oriented

components of the control system, represented by timed path conditions that solely

depend on model-wide input variables.

The output of the first step of our method can be utilized to reason about information

flow relations between arbitrary model elements in the signal-flow-oriented components

of the system. If, for example, the timed path conditions between two blocks of interest

do not overlap, information flow between these blocks can safely be ruled out, i.e., we

are able to prove non-interference between them. In order to determine the relationship

between such model elements of interest, we formulate CSPs for each pair of elements.

We achieve this by gathering the timed path conditions guarding the execution of the

paths between the pair of elements and translating them into constraint sets. Finally,

we employ a constraint solver to identify whether a combination of model-wide input

variables exists such that the set of constraints for the particular path under analysis is

satisfiable. If not, then non-interference between the model elements under analysis is

proven in the face of complex timing as well as control behavior, i.e., information flow

on the path under analysis is impossible.

If the set of constraints for a path under analysis is satisfiable, then, given a purely

signal-flow-oriented model, information flow is possible. As we show in Chapter 5, the

leak of confidential data present in the design of the signal-flow-oriented components of

our motivating example is shown by the satisfiability of the CSP constructed from the

timed path conditions of the path between pic and pop .

4.4.2 Information Flow Analysis of Heterogeneous Models

The first step of our analysis of a given embedded control system model captures the

complete behavior of the signal-flow-based components of the model. For models, in

which the execution of paths is controlled by state-machine-based components, such

as commonly found in industrial applications, however, the result of the first step, i.e.,

the solution of the CSP constructed using the timed path conditions, forms an over-

approximation of the possible behavior of the model. This is demonstrated in our

motivating example, shown in Figure 4.1. There, the extracted timed path conditions

form an over-approximation, as the controller limits the possible sequences of the control

signal sc . Thus, the sequence of operation mode switches resulting in the security policy
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violation described in Section 4.1 may be spurious. Extending the analysis to include

the state-machine-based components controlling the execution of each information flow

path therefore has the possibility to yield more precise results.

We accomplish this by using a combined analysis of the state-machine-based controllers

and the extracted sets of timed path conditions. A central characteristics of our analysis

is a formal view on the execution behavior of the controllers as well as on the interaction

between the controllers and execution of the paths through the signal-flow-oriented

model components in terms of timing as well as data. To achieve this, we first translate the

controller into a timed automata representation in order to get access to the verification

capabilities of a timed model checker. Then, we generate condition observer automata

from the sets of timed path conditions, i.e., timed automata representations of the sets

of timed path conditions that we combine with the translated controller. The design of

the condition observer automata ensures that a defined state is reached if the translated

controller produces control signals that match the timed path conditions in data as well

as in timing.

In the final step, we automatically generate model checking properties for these

combined automata. In order to prove non-interference on a path under analysis for

a complete model, we utilize a timed model checker to verify whether it is possible to

reach the defined final state of the timed path condition observer automaton. If this

state is reachable, we have proven that the controller produces a sequence of control

signals that satisfies the timed path conditions. If, however, the corresponding property is

unsatisfiable, we have proven non-interference on the path under analysis. Our system to

combine model checking and timed path conditions therefore reduces the identification

of information flow through combined embedded control system models to a reachability

check on the controller automaton.

4.4.3 Automation of our Information Flow Analysis Approach

To reach a high degree of automation, we have implemented our procedure as a fully

automated analysis solution for time-discrete control system models. Starting from a

system model and source and sink of information flow to be analyzed, our implementation

automatically performs all steps described above and presents its results both machine-

readable as well as graphically directly in the model. This enables the integration of our

procedure in a model-based workflow.
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The current instantiation of our framework supports information flow analysis of em-

bedded control system models implemented using MATLAB Simulink/Stateflow or Model-

ica. As a timed model checker to verify properties on the state-machine-based components,

we utilize the UPPAAL tool environment [Bengtsson et al. 1996]. As our framework uti-

lizes a language-independent intermediate language, the integration of additional source

languages is possible via corresponding translation front-ends. Further, our method and

the developed framework allow for the utilization of timed path conditions as a starting

point for additional analyses, such as compositional verification or generation of efficient

test cases.

4.5 Summary

In summary, we present an analysis technique that is able to prove information flow

properties for embedded discrete control system models consisting of signal-flow-oriented

components and state-machine-based controllers. Our approach is highly efficient due to

the separate analysis of the different underlying semantics, and highly automated as our

framework enables the analysis of system models without user interaction.

In the following chapters, we present our process in greater detail. First, we introduce

our information flow analysis of the signal-flow-oriented components of embedded control

system models in Chapter 5. In Chapter 6, we present our process to identify information

flow in embedded control system models consisting of both signal-flow-oriented and

state-machine-based components.
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5 Information Flow Analysis of
Signal-Flow-Oriented Models

The goal of this thesis is to provide a methodology to analyze information flow through

discrete embedded control system models. To achieve this, our technique takes into

consideration the specific semantics of signal-flow-oriented model components as well

as their connection to state-machine-based controllers. We achieve this by (1) calcu-

lating an over-approximation of the time-dependent control flow conditions through

the signal-flow-oriented components, and (2) performing a satisfiability check of these

control flow conditions on a formally verifiable representation of the state-machine-based

components. In this chapter, we present the first step of our method, the analysis of

information flow through the signal-flow-oriented components of embedded control

system models.

5.1 Approach

In our approach to analyze the flow of information through signal-flow-oriented models,

we perform multiple analysis steps starting directly on the source models.

Intermediate Model Representation & Path Identification. The first step of our

analysis is a translation of the source model into an language-independent intermediate

representation called Java Intermediate Representation (JIR). This translation and repre-

sentation, originally developed in Reicherdt [2015] for Simulink models and extended

by us to support additional source languages, encapsulates all syntactical features of the

source models and allows for a detailed analysis of the structure and the behavior of the

source model. On this representation, we then identify all paths between a selected pair

of model elements.
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5.1. Approach

Identifying Timing Dependencies. Using the extracted set of paths as an input,

the next step of our methodology analyzes each path to identify whether information

flow along the path is conditional or unconditional. If, on any path, unconditional flow

is identified, information flow is possible and non-interference cannot be proven. In

this case, our analysis returns this information and terminates. If no path allowing

unconditional flow is detected, our analysis continues and returns a set of routing blocks

for each path between the selected model elements of interest.

Extracting Local Timed Path Conditions. Subsequently, our scheme identifies the

timing relation between the control flow elements in each set by analyzing whether

stateful model elements are present on the path. If so, it collects the identified control

flow elements into time slices, which concisely describe the timing relation between

elements on a single path in a discretely-timed model. Subsequently, we extract the

conditions for information flow for each control flow element on the path and collect

them into their corresponding time slice. The information extracted in this step relates all

local control flow conditions for each path, which, however, does not allow us to draw

a conclusion about the behavior of the path as local signals in the signal-flow-oriented

models we aim to analyze do not directly correspond to each other. In the next step, we

therefore aim to relate local control flow conditions to each other to be able to draw

conclusions about the global behavior of the path, i.e., whether non-interference can be

proven or information flow is possible.

Evaluation of Control Signals. In this step, we first perform a backwards path

calculation starting from the control signal input of each control flow element on the

paths under analysis and ending whenever a global input block is reached. Here, two

situations can occur: (1) The extracted subgraph is acyclic, i.e., does not contain any

feedback loops. In this situation, we perform a backward propagation of the control

signal modification from the routing block to the global input block in order to relate the

local control signal with a global input. (2) The subgraph describing the path contains a

cycle. In order to support this case, our methodology extracts the mathematical formula

describing the cycle and aims to find an analytical solution to the extracted difference

equation using a CAS. Using the determined solution, our approach can then relate the

global input signals on the path to the local control flow conditions on the path.
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Translating and Solving Path Conditions. Finally, to draw a conclusion whether

information between the pair of model elements is possible, we formulate a CSP from

the global control flow conditions of each path and solve it using a constraint solver.

If, for a path under analysis, the resulting CSP has a valid solution, information flow is

possible. Similarly, if a solution does not exist, non-interference is proven.

In the remainder of this chapter, we present each step in detail.

5.2 Intermediate Model Representation

The first step of our scheme translates the signal-flow-oriented components of the input

model into a language-independent intermediate representation on which we perform

our analyses. This intermediate format, which we adapt from Reicherdt [2015], is a

representation of the execution behavior of the source model that enables easier parsing

of the model structure.

To demonstrate the source language independence of our system, our contribution

in this first step is the development of an additional front-end to translate our second

example modeling language from the domain of signal-flow-oriented modeling, Mod-

elica, into the JIR. The result of this first preparatory step of our analysis is a model

representation that is semantically equivalent to the source model but allows for easier

extraction of structural and semantical features of the model. Additionally, this step

enables a unified analysis mechanism for multiple source languages.

5.3 Finding Paths of Interest

The next step of our analysis, of which an overview is shown in Figure 5.1, is the

identification of possible paths of information flow through the signal-flow-oriented

components of the model. A path, defined in Definition 5.1, describes a sequence of

blocks over which information may flow.
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Intermediate
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. . .
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Explicit Flow Paths
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φ i
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. . .
φ i

n

Implicit Flow Paths

Φ(bi→bo) = ∅

Figure 5.1: Finding paths of interest between bi and bo

Definition 5.1: Path

A path φ = 〈b0, . . . , bn〉 through a signal-flow-oriented model is defined as a

sequence of blocks between two model elements of interest b0 and bn, such that a

signal connection between bi and bi+1, with 0≤ i < n, exists.

A set of paths between the model elements b0 and bn is denoted by:

Φbo→bn
=
�
φ0, . . . ,φl

	
.

The input to this first step is a pair of model elements (bi , bo) | bi , bo ∈ B between

which information flow is to be analyzed. To analyze the information flow between

both elements, this first step identifies all paths between (bi , bo) present in the model

by traversing the model. Our path detection starts at the given model element bo and

implements a depth-first recursive search while marking already visited blocks and follows

explicit signal as well as control flow connections between model elements. Thus, it

detects explicit as well as implicit information flow types.

58



Chapter 5. Information Flow Analysis of Signal-Flow-Oriented Models

(a) Explicit flow from bin_1→ bout_1 (b) Implicit flow from bin_c→ bout_1

Figure 5.2: Information flow relations detected using our path detection algorithm

Examples for both situations can be seen in Figure 5.2. For an explicit flow, direct

signal connections between blocks are considered, such as an arbitrary block driving

an input of an Add block, shown in Figure 5.2a. Additionally, implicit flows through

control structures, such as seen in Figure 5.2b, are considered. There, our path detection

algorithm performs its depth-first search through the explicit data connections on the

input signals si
1 and si

2 as well as through the control signal sc .

We return the set we denote Φ(bi→bo), which contains all paths between bi to bo, and

our methodology continues with its next step using Φ(bi→bo) as an input.

Application to Motivating Example. Revisiting our motivating example presented

in Section 4.1, we apply this step of our technique to identify all paths between the

confidential input pic and the public output pop . The analysis yields a single path φ1

shown below:

Φ(pic→pop ) = {φ1}
φ1 = 〈pic , bmode_switch, bmemory, bpublic_out_switch, pop〉

5.4 Identifying Timing Dependencies

In this step of our methodology, illustrated in Figure 5.3, we introduce our analysis of

the precise timing behavior of each path of possible information flow between the model

elements of interest. This makes it possible to analyze the flow of information through a

model in the face of complex timing and control behavior.
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. . .
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. . . φ ts
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Figure 5.3: Identifying timing dependencies on the paths in Φbi→bo

Time-Dependent Model Behavior. Unlike traditional text-based imperative pro-

gramming languages, the semantics of signal-flow-oriented models contains time-dependent

elements. During simulation of a model, these elements contain an internal state which

depends on information from the both the current and previous simulation steps. In

discretely-timed models, which our method focuses on, these time-dependent model

elements hold information arriving at their inputs over the course of a fixed amount of

simulation steps before releasing it at their respective outputs. Figure 5.4 shows the four

block types used in our example languages MATLAB Simulink and Modelica to hold infor-

mation across simulation steps. Figures 5.4a and 5.4b show UnitDelay blocks utilized

in both languages, which hold information for a single simulation step in time-continuous

as well as time-discrete models. As we focus on time-discrete models utilized in the

domain of safety-critical software systems, the semantics of both UnitDelay blocks are

equal to those of the Memory block seen in Figure 5.4c. This block type can only be used

in time-discrete models and holds its input value for a single simulation step. Finally,

the Delay block shown in Figure 5.4d, utilized in MATLAB Simulink, holds its input value

for a configurable number of simulation steps. In the example, this value is set to 2. For

all presented block types, a parameter can be set which configures the initial value at the

output at the first simulation step.
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(a) Simulink UnitDelay block (b) Modelica UnitDelay block

(c) Simulink Memory block (d) Simulink Delay block

Figure 5.4: Time-dependent model elements Bmem in MATLAB Simulink and Modelica

To achieve an analysis that takes the time-dependent behavior of signal-flow-oriented

models into account, we utilize the set Φ(bi→bo) built in the previous step and identify

timing dependencies along each detected path in the set. Note that we do not express

the precise data dependencies between bi to bo, i.e., we do not perform an analysis on

the data behavior between both elements. Rather, through the identification of a path

between bi and bo, we have ensured a syntactical connection between both elements

and, in this step, assume a data dependency. We are, however, interested in the timing

relation between information leaving bi and arriving at bo. In our motivating example,

the timing behavior of information held in a time-dependent model element is responsible

for the leak of confidential information. The knowledge of the age of information at

every element through which it passes therefore has to be considered an integral part

of an information flow analysis for signal-flow-oriented models. To identify this timing

relation, we iterate over each block b on each path φ ∈ Φ(bi→bo) and analyze it regarding

time-dependent model elements and their parameters. While iterating over the path

and collecting the time-dependent model elements we encounter, we either (1) establish

an untimed dependency relation between bi and bo, if the path φn does not contain any

time-dependent model elements, or (2) establish a fixed-delay dependency relation, if

the path contains time-dependent model elements.

Untimed Relation. If no time-dependent model element is found on the path, there is

no delay between information leaving bi and arriving at bo, as no model element holds

the information along the path. We express this untimed dependency relation as shown

in Definition 5.2
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Definition 5.2: Untimed Dependency

An untimed dependency between two arbitrary model elements bi and bo is

denoted by

bo depφ0 bi .

This relation states that information leaving block bi potentially enters block bo in

the same simulation step and, additionally, that bi and bo are connected via the

path φ.

Fixed-Delay Relation. If we, while iterating over the path, detect any of the time-

dependent model elements, we analyze type and parameters of each block to express the

precise timing behavior of data passing through them. Using this information, we can

establish a fixed-delay relation between the first block of the path and an arbitrary block

along the path. We denote this relation as defined in Definition 5.3. There, t describes

an arbitrary simulation step and the value of k is determined by reading the type and

parameters of the time-dependent model elements between bi and bo.

Definition 5.3: Fixed-Delay Dependency

An fixed-delay dependency between two arbitrary model elements bi and bo is

denoted by

bo depφk bi .

This relation states that information leaving block bi in an arbitrary simulation

step t may enter block bo in simulation step t + k via the path φ.

Time Slices. Using this extracted information about the timing behavior of data along

the path, we divide the path in subpaths we denote as time slices. A time slice describes

the subpath on which the age of information on the path is the same with respect to the

simulation step, as defined in Definition 5.4.
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φ0
ts φ3

ts

Figure 5.5: Creation of time slices from an example path in MATLAB Simulink

Definition 5.4: Time Slice

A time slice φts
k is defined as a subpath of φ = 〈bin, . . . , bout〉, such that:

φts
k =〈b0, . . . , bn〉 with bi depφk bin | ∀bi ∈ φts

k

This defines a sequence of those blocks on the path φ, on which the fixed-delay

relation depφk with the first block on φ holds. Consequently:

b0 ∈ BI ∪ Bmem

�
b1, . . . , bn−1

	 ∈ Bb

bn ∈ Bb ∪ BO

Each time slice has a fixed time delay to the first block of the path under analysis,

i.e., for a given path we precisely know the age of information passing through blocks

along the path.

Figure 5.5 shows the example of a path with a single Delay block and a delay

parameter set to 3, from which we create the two time slices φts
0 and φts

3 .

After extracting the set of time slices of each path in Φ(bi→bo), the result of this step of

our scheme is a concise view on the timing dependencies between every block on every

path between with bi and every other arbitrary block on the path. Note that each block

can be part of multiple time slices as it can be part of multiple paths between bi and bo.

As an additional notation, we denote the factor describing the maximum time slice depth

over every path in a given model as dmax.

Finally, to express the values of signal variables at arbitrary simulation steps, we

define timed variables as shown in Definition 5.5.

63



5.5. Extracting Local Timed Path Conditions

Definition 5.5: Timed Variables

For every signal variable s in the model, we define a sequence of timed sig-

nals 〈s0, s1, . . . , sdmax
〉. For an arbitrary delay k, the variable sk describes the value

of the signal at simulation step k.

Application to Motivating Example. When iterating over the previously identified

path φ1, our algorithm detects a single time-dependent model element and therefore

establishes the following time slices and dependency:

pop depφ1
1 pic

φts
0 = 〈pic , bmode_switch〉
φts

1 = 〈bmemory, bpublic_output_switch, pop〉

The extracted fixed delay dependency illustrates that the information leaving through the

output pop has entered the system via the input pic precisely one simulation step prior.

5.5 Extracting Local Timed Path Conditions

After obtaining the precise timing information of every block on every path in Φ(bi→bo),

in this step of our approach, we extract the timed conditions under which the respective

path under analysis is executed. Figure 5.6 illustrates this step.

To gather the local control flow conditions necessary for execution of a path, i.e.,

under which conditions information flows along a specific path, we iterate over every

block on every path φ ∈ Φ(bi→bo) and analyze its type. Upon encountering any of the

routing blocks presented in Section 2.2.3, we extract its parameters for further analysis.

Each routing block evaluates a propositional logic formula set by the model designer,

comparing the value of a single control signal sc with a single value or range of values.
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Figure 5.6: Extracting local timed path conditions on the paths in Φbi→bo

For the routing blocks utilized in MATLAB Simulink models, the possible formulae

are:

Switch A Switch block routes one of two input signals si1 and si2 to its output signal so

depending on the evaluation of a propositional logic formula fSwitch(sc) that either

takes the form sc ̸= 0 or sc ▷◁ v, where ▷◁∈ {≥,>}, v∈Z. The routing follows the

definition fSwitch(sc)→ (so = si1)∧¬ fSwitch(sc)→ (so = si2).

MultiPortSwitch Similar to a multiplexer in hardware design, a MultiPortSwitch
routes one of a configurable number of input signals si1 , . . . , sin to a single output

signal so depending on the value of the control signal sc . The routing follows the

definition sc == n→ so = sin , i.e., whenever the control signal sc has the value n,

the nth input signal is routed to the output signal so.

Equally, for the routing blocks utilized in Modelica:

Switch In the Modelica model library, a Switch block has a semantics similar to that of

the block with the same name in MATLAB Simulink. The control signal sc , however,

is defined as a logical signal of Boolean, such that the routing follows the def-

inition sc == true→ (so = si1)∧ sc == false→ (so = si2). Note that the Modelica
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language library contains a block LogicalSwitch, which utilizes precisely the

same semantics as the Switch block, but can only be utilized to switch input

signals of type Boolean.

For every routing block that we encounter on the path under analysis, we extract its

respective routing definition and specific condition necessary for execution of the current

path. These conditions for information to flow over path φ through routing block b take

the form shown in Definition 5.6.

Definition 5.6: Path Condition

A path condition cφ(b) describes a necessary condition for information to flow

through routing block b along path φ.

In our notation, a path condition cφ(b) is an expression describing a logical com-

parison operation of a signal with a given constant.a

aNote that due to the semantics of the routing blocks, this comparison with a constant is sufficient.

Additionally, from the location of each routing block on the path, i.e., from the time

slice it is sorted into, we know the delay of the input signal reaching the routing block

compared to the first block of the path. Using the information extracted in the previous

step, we therefore precisely know when the current routing block has to switch in order

for information of a certain age to travel along the path we are analyzing. We capture

this information in what we have called timed path conditions. We build timed path

conditions by annotating the condition above with the time slice φk
ts the routing block b

is sorted into, which takes the form shown Definition 5.7.

Definition 5.7: Timed Path Condition

A timed path condition cφk (b) describes a necessary condition for information

leaving the first block on the pathφ at an arbitrary simulation step t to flow through

routing block b along path φ at simulation step t + k.

Finally, the set of all local timed path conditions controlling the execution of the

paths in Φ over all detected time slices takes the form shown in Definition 5.8.
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Definition 5.8: Timed Path Condition Set

A timed path condition set C
�
Φ
�

is defined by:

C
�
Φ
�
=
⋁︂
φ∈Φ

⋀︂
b∈BR

φ

cφd (b) ,
where BR

φ
describes the set of

routing blocks on path φ

This describes the conjunction of all timed path conditions on a single path, dis-

junctively combined over all paths in the set Φ.

Note that the timed path conditions extracted in this step are local, as they refer to

the behavior of the local control signal of each routing block. To be able to relate multiple

timed path conditions to each other, i.e., to be able to to draw conclusions about the

control behavior of a path as a whole, the next step in our technique analyzes each local

control signal. We achieve this by propagating local control signals backwards until a

global model input is reached. We discuss this next analysis step in the following section.

Application to Motivating Example. On iterating over the detected path φ1, our

algorithm identifies the blocks bmode_switch and bpublic_output_switch as routing blocks and

proceeds to extract their parameters and timing information corresponding to the time

slices they are placed into:

cφ1
0

�
bmode_switch

�
=
�
sc
0 == 1
�

cφ1
1

�
bpublic_output_switch

�
=
�
s

cp

1 > 0
�

5.6 Evaluation of Control Signals

To be able to draw conclusions about the control behavior of a path, we resolve the local

timed path conditions extracted in the previous step to global ones, i.e., timed path

conditions that do not depend on local control signals but on global input signals. In

this step, we evaluate the reachability of extracted sets of local timed path conditions by

extracting the precise modifications of control signals, i.e., of those signals controlling

the execution of the data paths extracted in the previous steps. This means that we need

to analyze how they are driven by the model input signals and how these input signals

are modified on their way to the routing blocks.
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Figure 5.7: Evaluation of control signals for the routing blocks on the paths in Φbi→bo

Specifically, for each path φ in Φ(bi→bo), we perform the following steps, illustrated

in Figure 5.7:

1. For each routing block b on φ, we use our path identification algorithm to identify

all paths between the global model inputs P i and the control signal input pc of b,

which we call control paths. Each control path can either be non-cyclical1 or cyclical.

2. For each identified control path we analyze the precise behavior of the data flowing

from the global model input to the routing block input.

(a) For non-cyclical paths, we achieve this by propagating the local path condition

backwards along the path until a global model input is reached while collecting

the functionality of each block along the path. The result is a global path

condition only dependent on global model inputs.

1On the identified non-cyclical control paths, we perform an additional optimization step to avoid the
redundant analysis of subpaths shared by multiple control paths.
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(a) Control path driving block bswitch_1 (b) Control path driving block bswitch_2

Figure 5.8: Identified control path examples

(b) For each cyclical control path, we collect the functionality of each block

along the control path in a similar fashion, yielding a difference equation.

Subsequently, we utilize a CAS to identify whether the local timed path

condition of the current routing block is satisfiable by the difference equation

generated from the control path.

3. In the final step, for each routing block b on φ, we collect the translated sets of

control paths to obtain a concise definition of the subset of the control system

model which controls the execution behavior of the current path φ.

In the following, we illustrate each described step.

5.6.1 Identifying Control Paths

As we have introduced above, when evaluating the satisfiability of sets of control signals

on paths under analysis, we elevate local to global path conditions. To analyze the

dependency of these local conditions on global model inputs, we identify and extract the

paths through the model connecting the control signal input of each routing block b ∈
Φ(bi→bo) to the global model inputs P i .

For each control signal input pc , we utilize our path identification algorithm presented

in Section 5.3 to identify all paths between pc and every global model input pI ∈ P I .

Figure 5.8 shows an example of the identified control paths (shown in blue) driving the

control signal inputs pc1
and pc2

of two Switch blocks.
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5.6.2 Backwards Propagation of Non-Cyclical Control Signals

To elevate the local path conditions to model-wide conditions for information flow,

we extract the data manipulations from the control paths to the routing blocks. To

accomplish this, we analyze each control signal path separately and iterate over each

non-cyclical path from the routing block control signal pc to its drivers while collecting

the functionality of each block.

For a single block b, we define its local functionality as shown in Definition 5.9.

Definition 5.9: Block Functionality

We denote the functionality of a block b as follows:

po,k = fb(pi,k−l)

There, pi and po are the input and output signal ports of block b, respectively.

l describes the delay in simulation steps the block imposes on information entering

through pi , i.e., information entering b at an arbitrary simulation step t is output

through po at simulation step t + l.

fb is an expression which describes an arithmetical or logical operation the block

applies to the input signal to calculate the value of the output signal, and is derived

from the block type and its parameters.

When considering a complete path φb1→bn
, the resulting function fφ is formed by the

composition of each output function along the path according to its structural connections,

which yields:

fφ := fbn
◦ fbn−1

◦ . . . ◦ fb1

For each block type, a specific set of parameters is extracted and its resulting func-

tionality is recorded. We currently support block types implementing unary relations,

i.e., blocks with a single input signal, such as blocks of type Bias, Gain, Abs, and

Compare. In the following, we present the translation of the functionality of each block

type presently supported by our information flow analysis algorithm.
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(a) Bias block in Simulink (b) Bias block representation in Modelica

Figure 5.9: Bias block type

Bias. The output of a Bias block, shown in Figure 5.9, is calculated by performing an

addition with a constant c ∈ R, which is configurable by the developer. The formula we

extract is therefore set as:

po,k = fBias(pi,k)

fBias(pi,k) = pi,k + c

(a) Gain block in Simulink (b) Gain block in Modelica

Figure 5.10: Gain block type

Gain. Similarly, the output of a Gain block, shown in Figure 5.10, is set by multi-

plication of the input signal with a constant g ∈ R. The formula we extract is set as:

po,k = fGain(pi,k)

fGain(pi,k) = pi,k · g

(a) Abs block in Simulink (b) Abs block in Modelica

Figure 5.11: Abs block type
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Abs. The output of a block of type Abs, shown in Figure 5.11, is set by calculating the

absolute value of the input signal, i.e.:

po,k = fAbs(pi,k)

fAbs(pi,k) = |pi,k|

(a) Const block in Simulink (b) Const block in Modelica

Figure 5.12: Const block type

Const. The output of a block of type Const, shown in Figure 5.12, is a constant value r.

po,k = r

(a) Compare block in Simulink (b) Compare block in Modelica

Figure 5.13: Compare block type

Compare. The functionality of a Compare-type block2, shown in Figure 5.13, is set by

defining a threshold c ∈ R and a comparison operator. Using both parameters, the output

is set by comparing the value of the input signal with the threshold using the operation

set by the developer. We extracted its functionality as:

po,k = fCompare(pi,k)

fCompare(pi,k) = pi,k ▷◁ c with ▷◁∈ {==,≤,≥,<,>}
2The functionality of a Compare type block is implemented in multiple specific block types in our

example languages. For example, the block types Compare To Constant and Compare To Zero imple-
ment the same behavior in MATLAB Simulink, while Modelica offers the the blocks GreaterThreshold,
LessThreshold, GreaterThanThreshold and LessEqualThreshold.
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(a) UnitDelay block in Simulink (b) Memory block in Simulink

(c) Delay block in Simulink (d) UnitDelay block in Modelica

Figure 5.14: Time-dependent block types

Time-Dependent Model Elements. When encountering time-dependent modeling

elements, as shown in Figure 5.14, on the control paths, we extract the parameters of

the respective block, i.e., the delay length l, as presented in Section 5.4 and update the

timing information of the function composition, such that:

po,k = fb(pi,k−l), with b ∈ Bmem

fb(pi,k) = pi,k−l

5.6.3 Analysis of Cyclical Control Paths

In time-discrete embedded control system models, cyclical paths describe a recurrence

relation [Bonchi et al. 2017b], i.e., a relation whose result at an arbitrary time depends

on current as well as prior inputs. For control paths implementing such a relation, as

demonstrated in Figure 4.3b, we perform an analysis based on the translation of the

control path functionality to a CAS. After extracting the functionality of the control

path, i.e., the precise equation the control path implements, we instruct the CAS to

identify a non-recursive solution to the relation, which forms a concise definition of

the behavior of the control path at arbitrary simulation steps. Note that, while a CAS

employs a range of techniques to find non-recursive solutions for arbitrary recurrence

relations [Wolfram 1999; Wolfram Research 2019b], it is not guaranteed that a solution,

even if existing, can be found.
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To extract the recurrence relation of a given control path, our method iterates back-

wards over the path while recording the functionality of each block. Until an input

block or a previously recorded model element is encountered, the translation recursively

collects the functionality of each block. For this translation process, we utilize the block

functionalities presented in the previous section and add a basic definition for 2-ary

arithmetical blocks:

po,k = f (pi1,k, pi2,k)

f (pi1,k, pi2,k) = pi1,k ▷◁ pi2,k with ▷◁∈ {+,−, ·}

After constructing this concise relation describing the behavior of the control signal

input of the routing block, we utilize Mathematica to identify a non-recursive solution

to the recurrence relation. To obtain this solution, we use RSolve [Wolfram 1999,

p. 96]. If the CAS is able to identify a solution, the result of this operation is a pure,

non-recursive function which enables us to calculate the value of the control signal at

arbitrary simulation steps. Note that, while the resulting function is non-recursive, it

generally is dependent on the sequence of model inputs driving the cyclical path.

Finally, to identify the possibility of information flow in the presence of cyclical control

paths, we utilize the Reduce functionality built into Mathematica [ibid., p. 86]. Given a

function, a domain limiting the independent variable, and a set of conditions, it returns

the range of function inputs in the given domain which fulfill the condition. Appendix C

presents details on this translation and solution process.

Figure 5.15: Example of a cyclical control path

To illustrate this, consider the example shown in Figure 5.15. There, a routing block

is driven by a cyclical control signal sc, shown in blue. This control signal contains the

stateful modeling element bmemory with an initial output value of 5, the Add block badd and
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the constant model input bconst_minus_1. The routing block switch routes the signal si0

to the output signal so1 whenever the control signal sc has a value greater than or equal

to 0. When, e.g., analyzing the possibility of information flow between pi2 and po1 , we

are interested in the precise condition for information flow, under data as well as timing

aspects.

For the path shown in Figure 5.15, we can extract the following functionalities:

pi,k(bmemory) = po,k(badd)

po,k(badd) = pi1,k(badd) + pi2,k(badd)

pi1,k(badd) = −1

pi2,k(badd) = po,k(bmemory)

po,k(bmemory) = pi,k−1(bmemory)

po,0(bmemory) = 5

pi,k−1(bmemory) = po,k−1(badd)

po,k(badd) = −1+ po,k−1(badd)

The non-recursive solution to this recurrence relation, obtained using RSolve, is:

po,k(badd) = 4− k

This states that the value of the control signal sc at an arbitrary simulation step k is 4− k,

i.e., a linear function depending only on the current simulation time step.

Subsequently, we call the Reduce function with the domain k > 0, as the simu-

lation time step is non-negative, the function po,k(badd) = 4 − k, and the timed path

condition po,k(badd)≤ 0, and receive the result:

po,k(badd)> 0== t rue ⇐⇒ 0≤ k < 4

This result states that the condition holds at the first four consecutive simulation time steps.

Therefore, information flow between pi2 and po1 is only possible after four simulation

time steps have passed.
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5.6.4 Composition of Global Timed Path Conditions

Using the functionalities of the non-cylical control paths extracted in Section 5.6.2, we

are able to raise the scope of the path conditions from routing-block-local to model-wide

by combining the local path conditions with the composed functions. Considering a

single local path condition on the control signal cφk (b) = p(sc) and the control path

functionality fφ , which describes the precise data and timing behavior of the signal sc

depending on only global input signals, we can form a global timed path condition as

defined in Definition 5.10.

Definition 5.10: Global Timed Path Condition

A global timed path condition gφk (b) describes a necessary condition for infor-

mation leaving the first block on the path φ at an arbitrary simulation step t to

flow through routing block b along path φ at simulation step t + k. Additionally,

the operation expressed by the global path condition is a comparison of a global

model input signal with an expression.

To form a global timed path condition gφk , we iteratively replace all occurrences of

non-global signals in cφk (b) = p(sc) with the control path functionality expressed in fφ ,

such that:

cφk (b) = p(sc)

sc = fφ(s
i)

= fbn ◦ fbn−1 ◦ . . . ◦ fb1(s
i)

sc = fbn
�
. . . fb1(s

i) . . .
�

⏞ ⏟⏟ ⏞

gφk (b) = p
�⏟ ⏞⏞ ⏟
fbn
�
. . . fb1(s

i) . . .
� �

Analogous to Definition 5.8, we define a global timed path conditions set as shown

in Definition 5.11. This set describes the global timed path conditions controlling the

execution of all paths in Φ. If the conjunction of the global timed path conditions on

any path described in G
�
Φ
�

is evaluated to true, information flow between the model

elements under analysis is possible. Correspondingly, non-interference is proven if our

approach is able to show that none of conjunctions of the global timed path conditions

is true.
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Definition 5.11: Timed Path Condition Set

A global timed path conditions set G
�
Φ
�

is defined by:

G
�
Φ
�
=
⋁︂
φ∈Φ

⋀︂
b∈BR

φ

gφd (b) ,
where BR

φ
describes the set of

routing blocks on path φ

This describes the conjunction of all global timed path conditions on a single path,

disjunctively combined over all paths in the set Φ.

Application to Motivating Example. Using the identified control signals sc and scp

of the Switch blocks bmode_switch and bpublic_output_switch, respectively, as starting points,

our algorithm detects the control path sets Φcmode_switch and Φcpublic_output_switch with a single

identified control path each:

φcmode_switch = 〈pi3 , sc1〉
φcpublic_output_switch = 〈pi3 , bcompare_public, scp〉

To raise the scope of the local path conditions, our algorithm extracts the following

functionalities for each block along the paths:

po,k(bcompare_public) = pi,k(bcompare_public) == 2

Subsequently, our algorithm uses the extracted functionalities to construct a global path

condition from each local path condition:

gφ1
0 (bmode_switch) =

�
sc
0 == 1
�

gφ1
1 (bpublic_output_switch) =

�
sc
1 == 2
�

Finally, the global path condition set for the execution of φ1 is constructed:

G(φ1) =
�
sc
0 == 1
�
∧
�
sc
1 == 2
�
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C
�
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� . . . C
�
φn

�
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Constraint
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Satisfiable?

Information Flow PossibleNon-Interference

YesNo

Figure 5.16: Translating and solving global path conditions

The global path condition set G(φ1) states, that information flows on path φ1 if the

control signal sc takes the value 1 at an arbitrary simulation step and the value 2 at the

subsequent step.

5.7 Translating and Solving Path Conditions

As a final step of our algorithm to analyze information flow in signal-flow-oriented

models, illustrated in Figure 5.16, we translate the global path conditions generated from

the non-cyclical control paths in the previous step to a constraint satisfaction problem

and utilize a constraint solver to achieve an automatic analysis of the satisfiability of the

conditions.

As part of our framework, we have implemented the translation of global path

conditions into the MiniZinc language [Marriott and Stuckey 2013; NICTA 2014], which

is supported by a wide range of constraint solving backends, such as JaCoP [Kuchcinski

and Szymanek 2013] and Gecode [Schulte et al. 2009, 2010]. In the following, we

present our translation of the global path conditions, i.e., of the local path conditions as

well as the extracted control paths, to the MiniZinc language.
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For every input signal in the definitions of the global path conditions extracted in the

previous step, we initially define a decision variable. To include the timing information

of every signal of interest that we include in the decision process and to differentiate

between the same signal in different time slices, we expand the respective decision

variable definition by a suffix describing the time slice it is placed into. In MiniZinc,

this takes the form shown in Listing 5.1. There, two decision variables for the same

control signal sc are defined. One for the signal sorted into time slice t, the other for the

signal sorted into time slice t + 3·ts.

1 var int: s_c_t;
2

3 var int: s_c_t_plus_3_ts;

Listing 5.1: Defining decision variables for control signals

Following the definition of the decision variables, we create a representation of the

global path conditions, specifically the precise signal modifications along the extracted

control paths by by unfolding the function composition of each global path condition.

For each function application po,k = fb(pi), this unfolding process performs the following

steps:

1. As we consider the timing behavior of control paths, we define a decision variable

for the current function input pi annotated with its timing information.

2. We extract the functionality fb and add the matching constraint connecting po

and pi with the functionality of fb.

This translation of the functionality fb of each block to MiniZinc constraints is

presented in the following.

Equality. To define an equality relation between two decision variables, we use

the == operator to define an equality constraint, such that:

p_o == p_i;

Bias. If an addition operation is encountered, we translate it into a equality constraint

and add the parameter b, such that:

p_o == p_i + b;
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1 function var int: compare(var int: in_1, var int: in_2) =
2 if in_1 ▷◁ in_2 then 1 else 0 endif;

Listing 5.2: Comparison function template

Gain. Similarly, when encountering a multiplication operation, we translate it into an

equality constraint and multiply the constant g, such that:

p_o == p_i * g;

Absolute Value. For the calculation of an absolute value, we make use of the abs
function built into MiniZinc, such that we create the following constraint:

p_o == abs(p_i);

Comparison. When encountering a comparison operation, we make use of the pos-

sibility to define functions in the MiniZinc language. For comparison operations, we

developed the function template shown in Listing 5.2, which we instantiate with the cor-

responding assignment for the comparison operation ▷◁∈ {==,≤,≥,<,>}. Subsequently,

we add a constraint and call the function using the threshold c such that:

p_o == compare(p_i, c);

After translating the outermost function, we proceed to translate the next global path

condition in the same manner and add them to the constraint solving problem we are

constructing. After translating each global path condition, we instruct the constraint

solver to identify a valid assignment to all decision variables given the specified constraints

using the solve satisfy statement in the MiniZinc declaration. Finally, we call

the constraint solver and two situations can occur: (1) The solver identifies a valid

assignment to the decision variables. This means that the path conditions extracted from

the routing blocks along the paths between the model elements of interest are satisfiable

and, consequently, information flow can occur. We therefore cannot rule out the possibility

of information flow and must conclude that the property of non-interference between the

model elements is violated. Additionally, our algorithm offers the possibility to perform

a path-wise analysis of the information flow between model elements to identify which

specific path permits information flow. (2) The solver is not able to identify a solution.
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1 % variables
2 var int: signal_out_input_3_t;
3 var int: signal_out_input_3_t_plus_1;
4

5 var int: signal_in_control_mode_switch_t;
6 var int: signal_in_control_public_output_switch_t_plus_1;
7

8 var int: signal_in_compare_public_t_plus_1;
9 var int: signal_out_compare_public_t_plus_1;

10

11 % functions
12 function var int: compare(var int: x, var int: y) =
13 if x == y then 1 else 0 endif;
14

15 % constraints
16 constraint signal_in_control_mode_switch_t == 1;
17 constraint signal_in_control_mode_switch_t == signal_out_input_3_t;
18 constraint not (signal_in_control_public_output_switch_t_plus_1 == 0);
19 constraint signal_in_control_public_output_switch_t_plus_1 ==

signal_out_compare_public_t_plus_1;˓→
20 constraint signal_out_compare_public_t_plus_1 ==

compare(signal_in_compare_public_t_plus_1, 2);˓→
21 constraint signal_out_input_3_t_plus_1 == signal_in_compare_public_t_plus_1;
22

23 solve satisfy;

Listing 5.3: Translated constraint satisfaction problem for path φ1 between blocks (pic , pop )
through our motivating example

In this case, the path conditions specifying the execution of the paths under analysis

cannot be satisfied and, consequently, the paths cannot be executed and non-interference

between the model elements of interest can be shown.

In Appendix A, we present a number of examples to show the operation of our

information flow analysis algorithm.

Application to Motivating Example. In the final step, our algorithm translates the

extracted set of global path conditions into a constraint satisfaction problem and solves

it using a constraint solver. When instructed to solve the constructed CSP shown in List-

ing 5.3, the constraint solver determines that a viable solution to the problem exists,

i.e., the problem is satisfiable. Our approach therefore concludes that non-interference

between the confidential data input and the public data output cannot be proven and

that information flow is possible.
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5.8 Summary

In this chapter, we have presented our methodology to analyze the information flow in

signal-flow-oriented software models in the presence of complex timing behavior.

In the following chapter, we present our technique to incorporate the analysis of signal-

flow-oriented models in which state-machine-based system controllers are present in the

control paths of the model. Due to the strongly heterogeneous semantics of the signal-

flow-oriented and state-machine-based components, a static analysis based on timed

path conditions is not able to capture the complete behavior of system controllers. To

enable an analysis of combined systems, we present a method based on a reachability

check of the timed path conditions on the formal representation of the system controller.
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6 Information Flow Analysis of
Heterogeneous Models

In this chapter, we present our technique to identify information flow in control system

models consisting of both signal-flow-oriented and state-machine-based components.

Specifically, we explain how we relate the strongly heterogeneous semantics of both

modeling styles in order to enable an information flow analysis of combined models.

6.1 Approach

The analysis of embedded control system models, in which the flow of information is

directed by a state-machine-based controller, poses a difficult challenge. Examples of

the utilization of such controllers in our example languages Simulink/Stateflow and

Modelica are shown in Figures 6.1a and 6.1b, respectively. The examples show typical

modeling situations in the design of safety-critical embedded control system models.

Especially Figure 6.1a, which displays a Stateflow controller embedded in a flight control

model from the avionics domain, stands representative for the widespread utilization of

state-machine-based controllers when modeling complex control systems in an industrial

context. There, the execution of the control path from the input blocks on the left

(a) Stateflow controller in an avionics case
study [Pussig et al. 2014] (b) Modelica StateGraph controller

Figure 6.1: State-machine-based controllers in our example languages
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Figure 6.2: Information flow analysis of combined models using model checking

to the output blocks on the right is controlled by a state-machine-based controller

embedded directly into the control system model. Even though our procedure based

on the translation of sets of timed path conditions and the corresponding control paths

to constraint satisfaction problems, which we have presented in Chapter 5, is able to

detect the possibility of information flow, it is unable to prove non-interference in our

motivating example shown in Section 4.1. While our approach based on timed path

conditions made it possible to extract only those conditions of a model which must hold

to enable the execution of specific paths under analysis, the presence of a state-machine-

based controller requires a more exhaustive analysis. To identify non-interference in

heterogeneous models, the timed path conditions together with the behavior of the

controller under all possible input situations have to be considered.

To enable the information flow analysis of models combining signal-flow-oriented

and state-machine-based components, we suggest the following approach, illustrated

in Figure 6.2 [Mikulcak et al. 2018, 2019]:
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Extract Timed Path Conditions. We use our method presented in Sections 5.3 to 5.5

to extract timed path conditions for all paths between a set of model elements of interest

from the signal-flow-oriented components of the model. Along these paths, we gather

the conditions for information flow as well as their timing and express them as sets of

timed path conditions C
�
φ
�
.

Translate Controller to Uppaal. To formalize the semantics of a state-machine-based

controller, we extend the method presented in Jiang et al. [2016] and Yang et al. [2016]

to translate embedded controller components to a system of UPPAAL timed automata.

Note that in our current implementation of our framework, we only support the trans-

lation and analysis of Stateflow state machines embedded into Simulink models. We

consider the adaptation of additional languages, such as the state-machine-based con-

troller implementation language StateGraph built into Modelica, as future work and

provide a more detailed discussion in Chapter 8.

Generate Condition Observer Automata. To make the representation of the con-

trol flow conditions extracted from the signal-flow-oriented components of the model

compatible with the semantics of the state-machine-based controllers embedded into

the models, we generate condition observer automata from the extracted timed path

conditions. This step of our methodology is based on the idea that timed path conditions

form an ordered sequence of conditions which have to be satisfied in their correct order

for information flow to be enabled. To this end, we generate one condition observer au-

tomaton from the timed path conditions of each path represented in C(φ1) . . . C(φn). As

we extract timed path conditions for all paths between model elements of interest and, on

these paths, extract all control flow conditions, we achieve a sound over-approximation of

the possible information flow through the signal-flow-oriented components of the model,

as shown in Chapter 5. At the same time, these conditions form an over-approximation

of the controller behavior in such heterogeneous models.

Verify Reachability Properties. We combine the generated condition observer au-

tomata with the translated controller and generate reachability properties for the UPPAAL

model checker. This enables us to effectively utilize model checking to analyze whether

the timed path conditions derived from the signal-flow-oriented components can be

satisfied by the embedded controller, i.e., if one or multiple of the timed path conditions

expressed in C
�
φ
�

can be satisfied by the translated controller model. If one or multi-
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ple timed path conditions can be satisfied, information flow over the corresponding path,

and therefore between the selected source and sink of information flow, is possible. If

they cannot be satisfied, on the other hand, then we have safely shown that information

flow over the paths under analysis is impossible as the path is never executed in the

combined model and that the property of non-interference holds.

In the following, we present each step in detail.

6.2 Relating the Timing Behavior of Signal-Flow-Oriented
and State-Machine-Based Components

To enable the analysis of the behavior of combined signal-flow-oriented and state-machine-

based model components, we explain how a state-machine-based controller is executed

and how its output signals are evaluated when embedded in a signal-flow-oriented model.

Figure 6.3 shows an example of a small Simulink model into which a Stateflow controller

is embedded. The controller, shown in Figure 6.3a and in more detail in Figure 6.3b,

is comprised of two states and sets the signal sc, alternating between the values −1

and 1. This signal is connected to the control input port pc of the Switch block bswitch.

Whenever sc > 0, the signal connected to the upper input port p1, i.e., the constant 1 is

routed through the block and to the Scope block, which visualizes the signal. Similarly,

whenever sc ≤ 0, the lower input port is routed through the block, i.e., the constant 2.

Figures 6.3c to 6.3d demonstrate the activation behavior of Stateflow automata

using two examples. There, output of bswitch is visualized over the simulation time

using two different solver configurations. In Figure 6.3c, the fixed-step solver is set

to a step size ts of 1 s over 10s, while in Figure 6.3d, the step size is set to 0.2 s. As

shown there, the output signal alternates between 1 and 2 with higher frequency, i.e.,

depending on the solver configuration, the Stateflow controller is evaluated at different

intervals even though its design did not change between simulation runs. As explained

in The MathWorks [2018b], a Stateflow controller is activated once at every simulation

step.

Applying this knowledge to our method, we can therefore define a known time interval

between possible changes in the output of a state-machine-based automaton. Under the

assumption of a uniform sample time throughout the model, this time interval is equal
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(a) Simulink model (b) Embedded Stateflow controller

(c) Output signal behavior at ts = 1 (d) Output signal behavior at ts = 0.2

Figure 6.3: Timing behavior of shared Simulink/Stateflow models

to the simulation step size ts. This makes it possible to relate the timing behavior of the

signal-flow-oriented model and the evaluation of an embedded controller automaton,

and enables our method to be applicable to models using arbitrary simulation step sizes.

6.3 Translating State-Machine-Based Controllers to Timed
Automata

To enable the verification of properties of an embedded controller, we translate state-

machine-based controllers embedded into discrete control system models into the formally

well-defined UPPAAL timed automata representation. This makes it possible to use

the UPPAAL model checker to verify timing as well as data properties on the controller

behavior. Together with a timed automaton representation of the timed path conditions

extracted by our analysis approach, this allows us to verify the absence of information flow

through the signal-flow-oriented components of combined models. Note that in Mikulcak

et al. [2016], we have published an approach to integrate the analysis of our example

language MATLAB Stateflow into our information flow analysis. In this version, we

have based the analysis of non-interference in heterogeneous models on a comparison

of extracted sets out timed output traces of the state-machine-based controller with

sets of timed path conditions. This version, however, offered only limited support for
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complex Stateflow features such as hierarchical states, time-dependent transition guards

and the modeling of parallel states. To mitigate this, our information flow analysis builds

upon a translation described in Jiang et al. [2016] and Yang et al. [2016], which poses no

restrictions on the Stateflow modeling features used. Using this translation, a Stateflow

automaton can be represented by a network of UPPAAL timed automata, which emulates

the behavior of the original automaton both under timing as well as data aspects [Jiang

et al. 2016].

In Appendix B, we provide details on this translation process of state-machine-based

controllers developed in Stateflow. In the following, we present our extensions to it, and

how we integrate it into our technique.

6.3.1 Generalization to Arbitrary Inputs

While the work presented in Jiang et al. [2016] and Yang et al. [2016] is able to emulate

the precise data and timing behavior of Stateflow automata using the UPPAAL syntax,

the authors do not consider the possibly non-deterministic environment the controller

might be embedded into. This means that the communication with the surrounding

signal-flow-based components, such as when reading input signals in state actions or

transition guards, is not part of the verification of the controller. This makes it impossible

to use the translation in its original form, as the controller model structure we use as

basis for this thesis assumes the presence of one or multiple input signals to the controller.

An example is shown in Figure 6.4. There, the global input signal si is used as an input

for the system controller and used in a transition guard. Whenever the value of si is

greater than 3, the controller activates state state_2 and, after a single simulation step,

returns to state_1. In the original translation, the verification never enters state_2
as the value of si is held as uninitialized.

To overcome this limitation, we extend the original translation to enable simulation

of the complete environment of the controller. To this end, we embed generic tester

automata [Robinson-Mallett et al. 2006]. We automatically generate these tester au-

tomata for a given controller by evaluating its input signals and their respective data

types. Two examples of generic tester automata are shown in Figure 6.5. Both consist

of a single state and two edges. On each edge, a signal is set non-deterministically by

using the select syntax built into UPPAAL [Behrmann et al. 2004]. In Figure 6.5a,
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(a) A system containing an input-dependent system controller

(b) Controller implementation using a transition guarded by an input signal

Figure 6.4: A system controller utilizing input signals

linit

a_select:bool
a = a_select

b_select:bool
b = b_select

(a) Setting Boolean signals

linit

a_select:int[0,100]
a = a_select

b_select:int[0,5]
b = b_select

(b) Setting Integer signals

Figure 6.5: Generic tester automata

two Boolean signals a and b are set to either true or false, while in Figure 6.5b, the

values of the two Integer signals are set to values from the range [0,100] and [0,5],

respectively.

This makes it possible to simulate every combination of both signals in every step

of the model checking process as the tester automaton runs concurrently to all other

automata. We analyze all input signals to the Stateflow controller as well as their data

types and ranges. Using this information, a tester automaton for the controller under

analysis is constructed to simulate arbitrary inputs to the controller, thereby acting as

the non-deterministic environment of the controller.
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In our approach, we use the concept of generic tester automata by introducing a single

automaton for each input signal to the controller. For the example shown in Figure 6.4,

our algorithm creates one automaton with a single state and a single self-loop. The edge

is annotated using the select syntax to non-deterministically choose a value from the

range of the variable, which is read from our JIR.

We assume that the translation provided by Jiang et al. [2016] and Yang et al.

[2016] is sound, as it provides a direct mapping of each Stateflow state and edge into a

semantically equivalent timed automata representation We extend the resulting system

with a generic tester automata that provide arbitrary input signals. This enables a sound

and comprehensive analysis of the behavior of the Stateflow controller, as we simulate

the complete arbitrary environments, i.e., all possible combinations of input signals to

the controller.

Our extended translation of Stateflow controllers to UPPAAL timed automata presented

in this section makes it possible to use the UPPAAL timed model checker to verify properties

on the controller behavior. Our main contribution in this section is the generalization

of the execution behavior of the translated network of timed automata to allow model

checking of the controller for arbitrary inputs.

In the following, we present our technique to combine the translated system controller

with the timed path conditions extracted in Chapter 5, which enables the analysis of the

information flow through combined models based on model checking.

6.4 Translating Timed Path Conditions to Timed Automata

In the following, we present our method to create compatibility between the translated

state-machine-based controller and the sets of global timed path conditions between

signal-flow-oriented model elements of interest, as explained in Chapter 5. To create a

fully automatic method to verify the absence of information flow in combined models, in

this step, we generate condition observer automata, based on a concept first presented

in Mokadem et al. [2010], for the information flow paths under analysis. Using this

concept, we are able to observe the behavior of the translated controller under both timing

and data aspects, which allows us to draw sound conclusions about the reachability of

sets of global timed path conditions over the simulation time of the model for arbitrary

simulation step sizes.
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Consider the global timed path conditions over a single path φ ∈ Φ:

G
�
φ
�
=
⋀︂

b∈BR
φ

gφk (b)

Each global timed path condition gφk (b) describes the condition that has to hold on the

routing block b in order for information flow to be possible along the path φ. From this

conjunction of conditions, our approach generates a single condition observer automaton.

This automaton observes the timing as well as the precise values of a given set of signals on

which the global timed path conditions are defined. For each path detected between the

source and sink of information flow under analysis, we generate one observer automaton

from the corresponding set of global timed path conditions. A complete execution of the

condition automaton, i.e., if its final location is reachable during the model checking

process, signifies that each condition could be satisfied and, consequently, information

flow on the corresponding path is possible.

Our generation algorithm uses this description of global timed path condition sets and

first creates an initial location as well as a single location for each timed path condition

for the current path. The final location, which our approach uses during the reachability

check, corresponds to the final timed path condition and is denoted by l f . Subsequently,

we generate all forward transitions between the created locations as well as their guards

corresponding to the global timed path conditions. As defined in Definition 5.10, a global

timed path condition encodes one or multiple comparison operations of a timed signal

with a constant, such as:

gφk (b) = p(sc
k)

= sc
k ▷◁ g with g ∈ Z,▷◁∈ {==,≤,≥,<,>}

Each forward transition is guarded by the condition of the timed path condition its

destination location corresponds to. In other words, with every timed path condition

that the controller satisfies during simulation time, the observer automaton enters its

next state.

The timing condition, i.e., the precise simulation time step in which the condition

is to be evaluated, is guarded depending on the simulation time representation of the

controller translation as described in Appendix B.3. When entering the location corre-

sponding the to first path condition, we record the current simulation time by reading the
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linit

l0

l1

p(0)
t_start = mTotalTime

p(1) &&
mtTotalTime == t_start + t(1) &&
mDrivenTime > 0

(a) Initial location UPPAAL template

ln−1

ln

ln+1

p(n) &&
mTotalTime == t_start + t(n) &&
mDrivenTime > 0

p(n+ 1) &&
mTotalTime == t_start + t(n+ 1) &&
mDrivenTime > 0

(b) Timed Path Conditions

Figure 6.6: Observer automata templates

variable mTotalTime into t_start and use it in subsequent transition guards to observe

the timing behavior of the output signal. For a given timed path condition gφk (b), a guard

of the form mTotalTime == t_start + k observes the correct timing condition of

output signal. There, k denotes the Stateflow simulation steps since activation of the

condition observer automaton, i.e., since the first timed path condition for the current

path was satisfied. The design of our timed path conditions as an ordered sequence

of conditions over the simulation time, together with this corresponding translation to

condition observer automata, ensures that evaluation of a set of timed path conditions can

be initiated at an arbitrary simulation step. Additionally, to ensure the minimum time in-

terval ts between operations of the output signal, we add the guard mDrivenTime > 0.

This encodes that at least one simulation step has passed at the current location. Note

that guards on UPPAAL edges do not enforce but merely enable progress [Bengtsson and

Yi 2004]. These forward transitions can therefore be taken whenever the timing and

control signal requirement to proceed to the next location, i.e., timed path condition, is

met. This ensures that output signal sequences with arbitrary prefixes and at arbitrary

initial simulation steps can be detected. For the same reason, UPPAAL does not require

the definition of backward edges or self-loops.

By checking initially whether the timed path condition that refers to the earliest time

slice may be fulfilled, and then subsequently checking whether all timed path conditions

referring to the subsequent time steps may be fulfilled, we ensure that we detect all

sequences of outputs of the Stateflow which might satisfy the set of global timed path

conditions.
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linit

l0

l1 = l f

sc == 1
t_start = mTotalTime

sc == 2 &&
mTotalTime == t_start + 1 &&
mDrivenTime > 0

Figure 6.7: Observer automaton for path φ1 of our motivating example

Figure 6.6 illustrates the result of our generation algorithm using UPPAAL timed

automata templates. There, dashed states denote placeholders for additional states that

our algorithm may add during the translation process, and the functions p(n) and t(n)

denote the condition p and delay t of the global path condition of the nth routing block

along the current path. The template for the initial location of an observer automaton is

shown in Figure 6.6a. As can be seen there, the transition leaving the initial location linit is

guarded by condition of the first global timed path condition and, when taken, initializes

the variable t_start with the current simulation time step. Shown in Figure 6.6b is

the template for subsequent global timed path conditions, demonstrating the timing and

value guard on the forward transitions.

Application to Motivating Example. Figure 6.7 shows the automaton created from

the global timed path condition set G(φ1) of our running example, which we have

presented in Section 4.1. There, we initially check whether the control signal sc equals 1.

If this condition is satisfied, progress is enabled, we record the current simulation step and

may check whether sc equals 2 in the next time slice, i.e., in the subsequent simulation

step. If this happens, we can reach the final location l f of our observer automaton, which

means that the timed path condition can be satisfied. The location l1, which corresponds

to the condition of the second Switch block on the path, is the final location of the

observer automaton. Our approach records it as the final location l f . If this final location

can be reached, the underlying Stateflow controller model can generate control signals

that enable information flow along φ1.
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6.5 Reachability Analysis

To analyze information flow in heterogeneous control system models, the previous steps of

our system have (1) extracted sets of timed path conditions from the signal-flow-oriented

model components and derived condition observer automata from this representation;

(2) translated the integrated state-machine-based controller to a UPPAAL timed automata

representation; and finally (3) generalized this timed automata representation for arbi-

trary inputs by extending it with generic tester automata.

In the final step of our methodology, we verify the reachability of the final locations

of the condition observer automata using model checking. As each observer automaton

encodes the conjunction of global timed path condition set executing a single path

between the model interest of interest, information flow is possible if any of the final

states is reachable. Similarly, if none of the final states is reachable, then information

flow between the model elements of interest is impossible and we have proven non-

interference in the combined heterogeneous control system model.

To enable verification of the reachability of the final locations of the observer automata,

we (1) add the generated automata to the system of UPPAAL automata that is generated

from the integrated Stateflow controller; (2) generate one verification query from each

recorded final location; and (3) start the verification process by calling the UPPAAL timed

model checker.

After combining the observer automata with the translated controller system, we

generate a query that is satisfied if the model checker identifies at least one path through

the computation tree that reaches the final location. As the UPPAAL model checker

uses CTL formulae, we achieve the generation of an appropriate query by using the exists

quantifier and the eventually operator [Clarke and Grumberg 1999]. In combination,

they assert that a given property must hold on some computation path in the future. For

a single final location l f , the query therefore takes the form:

EF(l f )

To model check non-interference between the model elements of interest, we generate a

disjunction of individual queries, such that:

EF(l f1)∨ · · · ∨ EF(l fn
), where l f1 , . . . , l fn are the final locations of the observer

automata for paths φ1 . . .φn
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If this generated query is satisfiable, i.e., if any of the final locations can be reached

on any computation path, information flow between the model elements of interest is

possible.

Application to Motivating Example. To analyze information flow in our motivating

example, we construct a query using the information about the final location found

in Figure 6.7. As we analyze the flow over a single path φ1, we generate a single observer

automaton with a single final location, such that the resulting query states:

E<> observer_phi_1_process.l_f

We perform the verification of this query on the translated controller system, condition

observer automaton, and tester automaton for the signal switch_mode, using the UPPAAL

timed model checker. The result shows that the query is unsatisfiable, i.e., that l f cannot

be reached. Using this information, we have proven that, due to the design of the

controller, shown in Figure 4.1b, information flow along the path φ1, i.e., between the

confidential data input and the public data output is impossible and that non-interference

is guaranteed. While the global timed path conditions extracted in Chapter 5 alone

are satisfiable by a constraint solver, they form an over-approximation of the possible

behavior of the path. Our information flow scheme based on model checking thus shows

that the sequence of control signals causing confidential data to be leaked is spurious.

When examining the automaton in Figure 4.1b, it becomes apparent that upon receiv-

ing the signal to switch the operation mode via the switch_mode signal, the controller

leaves the current operation mode and enters the state erase_public or erase_con-
fidential, depending on the current operation mode. In these states, the content

of the internal buffer are overwritten with 0 and both outputs emit the value 0. Thus,

the controller ensures that every mode switch is preceded by a deletion of the internal

buffer, thereby eliminating the possibility of a leak of confidential information. Using

our technique, we verify the correct functionality of this deletion behavior by proving

that the control signal sequence leading to a leak of information can never be emitted by

the controller.
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6.6 Summary

In this chapter we have presented our methodology to identify information flow in

combined models consisting of both signal-flow-oriented and state-machine-based com-

ponents. Our technique makes use of the translation of a given state-machine-based

controller into a formally verifiable timed automata representation, which we extend

by tester automata simulating all possible controller environments. In order to prove

non-interference between model elements of interest, our technique verifies that the

timed path conditions extracted in the previous chapter, which form the conditions the

controller outputs have to fulfill, cannot be generated by the controller. To achieve this,

we break down the verification of non-interference to a reachability check on condition

observer automata generated from sets of global timed path conditions.

In the next chapter, we present details on the implementation of our technique as

a fully automatic and extensible framework, present case studies from the automotive

domain, and discuss experimental results.
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To show the applicability of our approach, we have implemented it as a platform-

independent modular framework and evaluated it using case studies supplied by our

industrial partners from the automotive domain. In this chapter, we describe the main

components of the implementation of our technique as presented in Chapters 4 to 6, a

number of optimizations we developed to increase analysis performance, and introduce

our case studies and experimental results. We demonstrate the applicability of our ap-

proach in industrial contexts with two case studies from the automotive domain. Our

approach is applicable fully automatically and with analysis times of approximately 10 s

for our case studies, can be used in industrial applications as part of an automated

analysis workflow. Finally, we provide a discussion of the computational complexity of

the individual steps of our methodology and its implementation.

7.1 Implementation

In this section, we present details on the architecture of our technique as a modular

framework as well as its instantiation using MATLAB Simulink/Stateflow and Modelica as

example languages. Additionally, we present two optimizations we have developed to

lower the analysis effort for highly complex components of our technique, namely the

solution of the constraint satisfaction problems we construct and the reachability analysis

of final locations of our condition observer automata using timed model checking.

Our implementation is based on the analysis framework first presented in Reicherdt

[2015]. This framework, developed in Java, uses an object-oriented representation

of MATLAB Simulink/Stateflow models, the JIR, which allows us to access the structure

of Simulink models and properties of each model element directly from Java. The JIR

implements the syntax shown in Section 2.2.2. In this thesis, we have raised its scope and

extended it as a language-independent intermediate representation. To this end, we have
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developed a parser front-end for Modelica models, which similarly extracts the model

structure and properties of every model element and stores it into our JIR. During the

translation process, we perform a number of syntactical optimizations, such as unfolding

of signal branches into separate signal lines, flattening of bus and subsystem structure,

as well as inclusion of library and model references. This representation enables our

source-language-independent system to be applicable to signal-flow-oriented control

system models implemented using a wide range of modeling languages.

7.1.1 Components

The implementation of our procedure spans the components presented in the following:

Source Model Parser Front-Ends. We support the translation of two example lan-

guages from the embedded control system domain into our language-independent inter-

mediate representation. To translate models implemented in MATLAB Simulink/Stateflow,

we make use of a translation front-end originally developed in Reicherdt [2015], which

we have extended to support the translation of the compressed .slx model file format.

To enable the analysis of models implemented using Modelica, we have developed a

parser front-end for models in the .mo model file format. Both parsers translate their

respective source languages into the language-independent JIR.

Graphical Model Representation and Result Visualization. To access our im-

plementation and start the analysis process, we use a graphical model representation

developed in the Bachelor thesis of Danziger [2016]. This representation, built from

the JIR, displays the model and allows the selection of arbitrary model elements as source

and sink for an analysis of possible information flow. An example can be seen in Fig-

ure 7.1. There, our motivating example is displayed, with the model elements pi1 and po2

selected as source and sink for our information flow analysis, respectively. Additionally,

we annotate this graphical representation, as well as the source models directly, with the

results of our analysis.

Path Identification Engine. We have developed a path identification component

implementing a depth-first search algorithm, which we use to (1) detect syntactical

paths of possible information flow between the selected model elements of interest, and

(2) identify paths between routing blocks and model inputs, which form the control paths

used in our methodology.
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Figure 7.1: Accessing the information flow analysis via the graphical user interface

Constraint System Translation & Solver Back-Ends. To identify the satisfiability

of the global timed path conditions extracted in Section 5.6, we have implemented a

translation engine which emits a constraint satisfaction problem from the given global

timed path conditions. Our implementation supports the translation of the conditions to

the input languages of two constraint solvers: JaCoP and Gecode. While the former is

accessible as a Java library and integrated into our implementation, the latter is called

as an external binary, for which our implementation emits input files in the MiniZinc
constraint modeling language. Additionally, our automation queries the solvers to

evaluate the satisfiability of the constructed problems and presents this information as

part of our graphical user interface.

Controller Translation Back-End. We use the UPPAAL timed model checker as a

formally verifiable representation of the state-machine-based controllers embedded into

the control system models we analyze. The implemented controller translation back-end

makes use of the existing translation presented in Jiang et al. [2016] and Yang et al.

[2016], which we have integrated into our Java-based implementation. In addition

to this translation, we (1) operate directly on the generated timed automata and add

generic tester automata as required by the controller, and (2) add the condition observer

automata we generate from the sets of global timed path conditions. After constructing

this network of timed automata and generating the appropriate set of queries, we call

the UPPAAL timed model checker using its application programming interface (API) and

present the results in our graphical user interface.
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Figure 7.2: Optimizing control paths by merging identical subpaths

Currently, our framework consists of nine plug-ins for the Eclipse platform, which

together comprise about 15,000 lines of code.

7.1.2 Optimizations

In the following, we present two optimizations we have developed as part of our imple-

mentation. Both optimizations improve the run-time of our information flow analysis.

Identifying Shared Driving Blocks

As presented in Section 5.6, our method identifies control paths in a model, i.e., those paths

that control the execution of the routing blocks in the signal-flow-oriented components of

the models. Using our path identification engine, we collect these control paths between

global model inputs and the routing blocks in order to translate them into a CSP.

To minimize the size of the CSP constructed in this step of our method, we identify

overlapping control paths, i.e., blocks shared by subsets of the control paths. Effectively,

we identify the shortest subpath between common drivers and routing blocks. After

finding these control paths, we identify the shortest common subpath shared between all

control paths in order to identify common driving blocks of the routing block control

signals.

Consider the example shown in Figure 7.2. There, the control paths starting from the

control inputs of bswitch_2 and bswitch_3 lead to the subsystem bcontrol_subsystem and further

to the global input pi1 . As the subpath from the global input to bgain_1 is shared by both

control paths, both can be shortened to include only the Gain block. It is therefore

only necessary to include the subsystem into the CSP once, thereby reducing the size

of the CSP significantly. Our implementation automatically identifies such overlapping

control paths.

100



Chapter 7. Evaluation

Reducing the Verification Effort

As part of our controller translation back-end, we use an existing procedure to trans-

late MATLAB Stateflow controllers into formally verifiable UPPAAL timed automata. To

support the verification of the controller environment, we extend this translation by

generating and adding one generic tester automaton for each input to the controller.

However, as during the verification process, with every non-deterministic choice by the

tester automaton, a number of new computation paths have to be established,1 the effort

required for verification increases drastically. In the unoptimized controller translation,

the tester automaton generates these choices at every step during the model checking

process. However, due to the complex design of the translation from Stateflow to UPPAAL,

only a small number of transitions directly relate to transitions taken in the Stateflow

controller. We therefore have added a global Boolean variable tester_step_allowed,

seen in Figure 7.3b, which is introduced into the automata by our controller translation

back-end. In our optimized implementation of the translation process, this flag is raised

only when input values to the controller are allowed to change, i.e., with every (emulated)

simulation step. It is used by the guards of the edges of the generic tester automata and

consumed as soon as the edge is taken. Additionally, during this optimization stage, we

read information about the ranges of controller inputs from our JIR and encode them

into the tester automata, such as shown in Figure 7.3c.

As we show in Section 7.2, using these optimizations, we are able to greatly re-

duce the effort required to verify properties of the behavior of the translated Stateflow

controller [Selmke 2018].

In the following, we introduce our case studies and experimental results. First, we

present an industrial case study supplied by our industrial partners and how we used our

system to identify a safety and security policy violation in its implementation. Second,

we present a modified version of our case study, which we use to demonstrate the ability

of our system to identify information flow in the presence of cyclical control signals.

1Equal to the number of possible choices by the tester automaton.
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linit

a_select:bool
a = a_select

b_select:bool
b = b_select

(a) Unoptimized

linit

a_select:bool
tester_step_allowed == true
a = a_select
tester_step_allowed = false

b_select:bool
tester_step_allowed == true
b = b_select
tester_step_allowed = false

(b) Optimized

linit

a_select:int[0,10]
tester_step_allowed == true
a = a_select
tester_step_allowed = false

b_select:int[-5,13]
tester_step_allowed == true
b = b_select
tester_step_allowed = false

(c) Optimized tester using vari-
able ranges

Figure 7.3: Optimization of our generic tester automata

7.2 Case Study 1: Shared Automotive Communication
Infrastructure

To show the practical applicability of our procedure, we use an industrial case study

from the automotive domain. Its core is a communication infrastructure over which two

distance warners, supplied by our industrial partner Assystem GmbH [Assystem 2019],

and a non-critical odometer, supplied by Model Engineering Solutions GmbH [MES 2016],

send and receive data. Similar bus structures connecting safety-critical and non-critical

components over a shared infrastructure are the most common form of communication

between electronic control units (ECUs) in modern motor vehicles [Van Rensburg and

Ferreira 2003; Goswami et al. 2012; Antoniali et al. 2013]. However, the application of

information flow analyses, which are commonly used to analyze safety as well as security

properties on such systems, is a difficult challenge due to the complex control and timing

behavior of the bus structure and the individual components [Koscher et al. 2010a].

Our case study from the automotive domain, shown as a MATLAB Simulink/Stateflow

implementation in Figure 7.4, stands representative for the complexity of this problem.

The distance warners, situated at the front and at the back of the car, send their

analysis results, i.e., proximity alerts, to the receiving component, an automated braking

system. The odometer receives data from sensors on the axes of the car. The distance

warners together with the automated braking system perform inherently safety-critical

functions. This holds especially true when considering timing aspects, as dropped or

delayed warning signals either to the driver or an automated braking system while
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Figure 7.4: Shared automotive communication infrastructure

traveling at high speeds could cause serious accidents. The most important property

of the design from a safety and security perspective is that the design has to guarantee

that the braking system only receives messages from the distance warners, i.e., that

information flow from the non-critical odometer wheel sensor to the critical braking

system is prohibited and, consequently, integrity is ensured. An additional interesting

property is that no information flows from the distance warners to the odometer, as this

may indicate that proximity warnings are not properly received by the braking system.

The overall model consists of 905 blocks and multiple layers of subsystems, making

its size and complexity comparable to models with similar functionality used by our

industrial partners in the automotive domain. The main challenge for the analysis of

this case study is that the correct routing inherently depends on the timing of the control

flow.

The three sending components seen on the left in Figure 7.4 use the bus to send their

unique id to the receiving components on the right. Inside the channel, a system of

switches reacts to the input and output states currently set by the controller and routes

the data to and from the communication channel accordingly.

In the following, we present the analysis results for our first case study. These include

the timed path condition extracted from the signal-flow-oriented Simulink components of

the bus, the controller translation to UPPAAL, as well as analysis results and computation

times.
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Paths Under Analysis

As explained above, we aim at analyzing potentially critical information flow from the

odometer wheel tick sensor to the braking system as well as from both distance warners

to the odometer display. We denote the paths as follows:

φ1 =φwheel_sensor_out→distance_warner_front_data_in

φ2 =φwheel_sensor_out→distance_warner_back_data_in

φ3 =φdw_front_out→odometer_wheel_tick_in

φ4 =φdw_back_out→odometer_wheel_tick_in

In the next step of our algorithm, the paths are analyzed and sets of timed path conditions

are extracted.

Extracted Timed Path Conditions

The sets of global timed path conditions extracted for each path are shown in the

following:

gφ1
0 (binput_switch) =

�
sinput_state == 1
�

gφ1
5 (bdw_front_data_out_switch) =

�
soutput_state == 2

�

gφ2
0 (binput_switch) =

�
sinput_state == 1
�

gφ2
5 (bdw_front_data_out_switch) =

�
soutput_state == 3

�

gφ3
0 (binput_switch) =

�
sinput_state == 2
�

gφ3
5 (bodometer_out_switch) =

�
soutput_state == 1

�

gφ4
0 (binput_switch) =

�
sinput_state == 3
�

gφ4
5 (bodometer_out_switch) =

�
soutput_state == 1

�

In these sets, the timing depths on the communication channels in time slices is

denoted as a subscript of the condition g. For our case study, it is calculated as 5. At this

point in the analysis, due to their timing behavior, we cannot rule out the existence of
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linit

l0

l f

s_input_state == 1
t_start = mTotalTime

s_output_state == 3 &&
mTotalTime == t_start + 5 &&
mDrivenTime > 0

Figure 7.5: Condition observer automaton for information flow over path φ1

information flow on these paths using a constraint solver, as sinput_state and soutput_state

are distinct signals, both driven by the Stateflow controller responsible for operation

of the bus system. It is therefore necessary to continue the analysis, i.e., to generate

timed automata from each set of timed path conditions and verify whether these sets

of conditions are satisfiable on the condition observer automata combined with the

translated Stateflow controller.

Condition Observer Automata

For each path, our procedure collects the global timed path conditions and generates a

single UPPAAL condition observer automaton for each path. As explained in Section 6.4,

each automaton consists of an initial location as well as one location per entry in the

condition set, i.e., three locations. To illustrate this, Figure 7.5 shows the condition

observer automaton generated from the global timed path conditions G
�
φ1

�
extracted

from φ1.

Network of Uppaal Automata

In the next step, we translate the controllers of our case study into a network of UPPAAL

timed automata and perform the optimization steps described in Section 7.1.2. Fur-

ther, our methodology combines the translated Stateflow controller with the generated

observer automata by adding them to the UPPAAL system declaration. The Stateflow

controller of our case study consists of six states and nine transitions which implement

the first in, first out (FIFO)-like behavior of the shared bus. After translation, the corre-

sponding network of UPPAAL automata consists of 17 automata, ranging in size between
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Path
Time

EF(l f )
Non-

Interference
Extract G
�
φ
� Construct

Controller Model
Verification

φ1 379ms

830 ms

10.247s ✓ ×
φ2 327ms 10.559 s ✓ ×
φ3 354ms 5.971 s × ✓
φ4 302ms 5.788 s × ✓

Table 7.1: Evaluation results for our first case study

one and four locations with a large number of self-loops: (1) Ten automata emulate

the functionality and semantics of the Stateflow controller, (2) four generated observer

automata, corresponding to each path under analysis, observe the data and timing be-

havior of the two controller output signals, (3) three optimized generic tester automata

act as the non-deterministic environment. Due to the design of the case study, each

tester automaton non-deterministically generates a Boolean value to be input into the

controller signals dw_front_req_in, dw_back_req_in, and wheel_tick_req_in,

respectively.

Verification Results

In the final step, our technique generates a single verification goal for each set of

global timed path conditions G
�
φ
�
, which encodes the reachability of the final location

of the condition observer automaton, as presented in Section 6.5.

The results of the verification process as well as its run times are shown in Table 7.1.

As can be seen there, the first steps of our approach, the extraction of timed path

conditions from the combined models and evaluation of the corresponding control

signals as well as the subsequent generation of UPPAAL observer automata takes between

approximately 300 and 400 ms.2 The translation of the Stateflow controller, which only

has to be performed once per model as we store the translation result for each model

revision, takes 830 ms.

Finally, for the cases in which the observer automaton does not reach its final lo-

cation l f , namely on φ1 and φ2, the verification of the combined controllers takes

approximately 10s while in all other cases, the corresponding property is verified af-

ter 5 s. The respective similarities in verification times are due to the complex structure

2Tested on a 2.2 GHz Intel Core i7 with 16GB main memory, averaged over ten runs.
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Figure 7.6: Shared automotive bus system implementing sensor error compensation

of the translated Stateflow controller behavior emulation in comparison to the observer

automata. Note that using our optimization of the generic tester automata described

in Section 7.1.2, we were able to decrease the necessary verification times from multiple

hours to the significantly lower values seen in Table 7.1.

As our analysis shows, our technique successfully verified the absence of information

flow over the critical paths φ3 and φ4. For our case study, our technique showed that

there is information flow possible on the first two paths under analysis, i.e., data from

the non-critical odometer may enter the braking system, as shown in the two rightmost

column of Table 7.1. This is a severe violation of the property of integrity which potentially

leads to disastrous consequences. To overcome this, we have corrected and successfully

verified the controller implementation as presented in the following.

Correcting the Controller Implementation

As Table 7.1 shows, we were able to identify information flow on φ1 and φ2. A closer

analysis of the implementation of the controller identified a faulty timed transition guard,

which did not correspond to the time slice depth of the shared channel. After correcting

these guards, the analysis correctly shows the absence of information flow on both

paths with verification times of 5.381s and 5.293s and, with that, the validation of all

requirements under analysis.
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Figure 7.7: Counting controller component of our second case study

7.3 Case Study 2: Shared Communication Infrastructure
using Error Compensation

While the case study presented in the previous section demonstrated how our approach

is able to identify information flow in combined signal-flow-oriented and state-machine-

based models, the case study we present in the following illustrates the ability of our

methodology to rule out information flow in complex models in the presence of cyclical

control signals. To this end, we have developed an adapted version of the case study

presented in Section 7.2, shown in Figure 7.6.

This control system model implements a shared communication infrastructure, over

which four safety-critical distance warners communicate with a similarly safety-critical

braking system. To minimize the risk of the braking system reacting to faulty data

received from a single sensor, a mechanism inside the braking system calculates a moving

average of the data received by the distance warners, denoted dw_one to dw_four.

To this end, the bus controller switches the distance warner which reaches the braking

system with every new simulation step. The control logic acts as a counting system, which

is set to select the distance warners in a round-robin fashion. We have implemented this

behavior as a purely signal-flow-oriented model shown in Figure 7.7. There, the counter

is implemented as a cyclical control signal connected to the bus_router component.

This second case study consists of 895 blocks and a hierarchical complexity comparable

to our first case study.

Similar to our first case study, we use our methodology to analyze safety properties

of the bus infrastructure. However, unlike in our first case study, in which we used our

method to identify the absence of information flow, we analyze whether the data of each

distance warner is able to reach the braking system. The identification of non-interference

would therefore indicate a violation of the system requirements.
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In the following, we present the analysis results for our second case study. These

include the timed path conditions extracted from the signal-flow-oriented Simulink

components of the bus, the set of difference equations extracted from the cyclical control

signal, as well as analysis results and computation times.

When analyzing the information flow through our second case study, the first steps

are similar to the results shown in Section 7.2. We analyze four paths, connecting each

distance warner to the braking system. We denote these paths φ1 - φ4. The local timed

path conditions extracted from the bus_router components are shown below:

cφ1
0 (bbus_switch) =

�
sstate == 1
�

cφ1
0 (bbus_switch) =

�
sstate == 2
�

cφ3
0 (bbus_switch) =

�
sstate == 3
�

cφ4
0 (bbus_switch) =

�
sstate == 4
�

Note that due to the absence of time-dependent model elements on the bus, the

time slice depth of the communication channel is 0. Additionally, due to the presence of

cyclical model elements in the control signal path of our case study, the path conditions

extracted here are local.

After extracting these local timed path conditions, our procedure follows the con-

trol signal sstate, encounters the cyclical model structure embedded into the subsys-

tem bus_controller_counter, and extracts the difference equation that is modeled

inside it. The translated system and the extracted difference equations take the following

form:

po,k(badd) = 1+ po,k(bmemory)

po,k(bmemory) = 1+ pi,k−1(bmemory)

po,k−1(bmemory) = po,k(breset_switch)

po,k(breset_switch) =

¨
po,k(badd), if po,k(badd)≤ 3

1, otherwise

In the next step, our system uses the CAS Mathematica to find a non-recursive solution

to the difference equations and to subsequently identify whether each of the extracted

path conditions holds on the function output. The results and analysis times are shown
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Path
Time Non-

Interference
Extract C
�
φ
� Extract

Equation
Mathematica
Evaluation

φ1 271ms

692ms

169ms ×
φ2 248ms 104 ms ×
φ3 285ms 152 ms ×
φ4 252ms 159 ms ✓

Table 7.2: Evaluation results for our second case study

in Table 7.2. As can be seen there, information flow is possible over the paths φ1, φ2,

and φ3. For path φ4, our system identified a non-interference relation between the

fourth distance warner components and the braking system. This constitutes a violation

of the correct functionality of the system as described above, as data from the fourth

distance warner never reaches the braking system. When analyzing the control design,

it becomes apparent that the error lies in the implementation of the state controller

subsystem, which never routes data from the fourth distance warner through the switch

as it resets the control state output signal whenever it reaches 3.

7.4 Analysis Complexity

In this section, we assess the complexity of our algorithm and each of its individual steps.

Model Translation. In our technique, the model translation step takes place once for

each model, as the translation result is stored in a database. As every block and every

signal line in the model is visited once during the translation process, we obtain a linear

complexity. We obtain the overall complexity shown below. There, we denote |V | as the

number of blocks and |E| as the number of signal lines in the model.

O �|E|+ |V |�

Path Identification. Our technique implements a recursive depth-first search algo-

rithm to identify syntactical paths in a model, as shown in Section 5.3. During the search

process for a single path, every block and signal line is visited at most once, incurring a

complexity of:

O �|V |+ |E|�
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Extraction of Local Timed Path Conditions. The complexity of this step of our

process comprises two components. Our process (1) extracts all possible paths be-

tween source and sink of information flow under analysis, which incurs a complexity

of O �(|V |+ |E|)2�; and (2) iterates over each path to extract the local timed path con-

ditions. To achieve this, our method, in the worst case, has to visit each block and

signal in the model once, incuring a complexity of O �|V |+ |E|�. Overall, this step of our

methodology therefore possesses a worst-case complexity of:

O �(|V |+ |E|)3�

Extraction of Global Timed Path Conditions. After extraction of the set of lo-

cal timed path conditions, our approach elevates this set to global timed path conditions,

which only depend on global model inputs. In this step, our technique: (1) identifies all

possible paths between each control block and the global model inputs, which incurs a

complexity of: O �(|V |+ |E|)3�; and (2) composes the set of global timed path condition

from the control paths. This incurs one iteration over each extracted control path, which

possesses a worst-case complexity of O �|V |�. Overall, this step of our methodology

therefore possesses a worst-case complexity of:

O �(|V |+ |E|)3 · |V |�

Constraint Solving. In general, constraint solving is an NP-complete problem [Dech-

ter 2003]. However, as our methodology makes use of a specific sub-problem, i.e.,

the exploration of the satisfiability of a system of linear inequalities over the domain

of rational numbers, a solution can be found in polynomial time [Lenstra Jr. 1983;

Schrijver 1998; Matoušek 2007], such that:

O (|ν|c) , where |ν| denotes the number of decision variables in the system, i.e., the

number of signal lines on the control paths, and c ∈ N and c > 1
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Analysis of Cyclical Control Signals. In this step of our analysis, we use the com-

puter algebra system Mathematica to identify non-recursive solutions to difference

equations constructed from cyclical control paths. A basic algorithm used by the CAS

to identify non-recursive solutions to difference equations has a worst-case complexity

double exponential to the number of variables in the system [Basu 2006; Wolfram Re-

search 2019b]. We therefore have to conservatively assume an overall complexity of:

O (22p(c)
), with p(c) a polynomial function of c ∈ N and c > 1

Generation of Formal Controller Models & Observer Automata. Both opera-

tions, the translation of a state-machine-based controller into a formally verifiable rep-

resentation and the generation of observer automata from sets of global timed path

conditions, possess a complexity linear to the number of states in the controller and

conditions in the set, respectively. However, as both are bounded by the overall number

of blocks in the system, the complexity of both operations is:

O �2 · |V |�= O �|V |�

Controller Verification. In this step of our method, we use the UPPAAL model checker

to perform a reachability check for a given set of states in our observer automata.

Unfortunately, the verification of timed automata does not generally scale well and

the effort grows exponentially to the number of clocks used in the system [Bérard et

al. 2001]. However, as the translation of Stateflow controllers to UPPAAL automata

presented in Jiang et al. [2016] and Yang et al. [2016] does not utilize clocks, the

complexity is reduced to the problem of checking CTL properties on the system. As stated

in Clarke et al. [1986], Schnoebelen [2002], and Lomuscio and Raimondi [2006], the

complexity of this problem is P-complete for a given transition system. The size of this

transition system, however, grows exponentially in the number of locations and variables

used in the system.

Discussion. As we have shown in this section, while most components of our meth-

odology have linear or polynomial computational complexity over the size of the model

under analysis, individual components of our methodology, such as the formal verifica-
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tion of state-machine-based controllers or the solution of cyclical control signals, exceed

this. However, as these high-complexity components generally receive only very small

input sets, as presented in Appendix A as well as this chapter, our technique scales

comparatively well for the practical examples we have seen at our partners from the

automotive industry. There, the, e.g., control signal paths are comparatively short and

the state-machine-based controllers are typically of sizes similar to the size used in our

case studies. Consequently, the analysis times shown in Tables 7.1 and 7.2 demonstrate

the applicability of our methodology for practical examples.

7.5 Summary

In this chapter, we have described the architecture of our implementation and details

on its individual components, as well as optimizations we have developed to reduce

the analysis effort. Further, we have demonstrated the practical applicability of our

method using two case studies from the automotive domain. Our implemented platform-

independent analysis framework can be applied fully automatically to control system

models implemented in our two example languages, MATLAB Simulink/Stateflow and

Modelica. In addition to that, it offers a convenient graphical user interface to visualize

its analysis results.

Our first case study implements a shared communication infrastructure, over which

two safety-critical distance warners and a non-critical wheel tick sensor communicate

with an automated braking system and an odometer. The three sending components

share a communication medium structured as a bus, to which they request access. A

controller, implemented as a state-machine-based Stateflow automaton, grants access

and configures the bus to receive and send data from the appropriate sources to their

corresponding targets. We have used our technique to analyze whether (1) the integrity

of the safety-critical functionality of the braking system can be ensured by identifying

non-interference between the non-critical wheel tick sensor and the braking system, and

(2) ensured the correct routing of safety-critical distance warner messages to the braking

system by identifying non-interference between both distance warners and the odometer.

Our second case study implements an error-compensating implementation of a set of

four distance warners which use a bus infrastructure to send their distance data to a

braking system. The bus ensures that the distance data is provided to the braking system

in a round-robin fashion in order for the braking system to calculate a moving average

of the distance results of the distance warners. For this case study, we have used our
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approach to verify whether information from each individual distance warner is able to

reach the braking system, i.e., that the property of non-interference does not hold on the

paths connecting each distance warner to the braking system.

The average run-times for our case studies lie at around 1s for purely signal-flow-

oriented control system models and at between 5-10s for heterogeneous models con-

taining both signal-flow-oriented and state-machine-based components. Although the

worst-case time complexity of our procedure is double exponential, these analysis times

necessary to analyze information flow through our industrial-sized case studies from the

automotive industry demonstrate that our fully automatic implementation can be used

in industrial applications.
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8 Conclusion

In this chapter, we summarize the results of this thesis. We review the criteria we have

presented in the introduction and discuss whether our proposed process meets them.

Then, we give an outlook on future work.

8.1 Results

In this thesis, we have presented a novel technique that enables a sound information

flow analysis of discrete embedded control system models. Our technique considers the

timing behavior of such models as well as the concurrency inherent to their semantics.

In addition to that, it offers the analysis of control system models comprised of both

signal-flow-oriented and state-machine-based components, which combine fundamentally

different semantics and modeling styles.

The first step of our approach is the analysis of information flow through signal-flow-

oriented components of discrete embedded control system models. The main idea of

this first step is the extraction of only that information from a model that is required

to analyze information flow in respect to both timing and functionality. To this end,

our methodology captures the precise control, data and timing conditions under which

information flow is enabled as well as when and how these conditions are triggered.

Model aspects that do not influence the information flow between elements of interest

are discarded to increase analysis performance. We provide an algorithm to propagate

these conditions backwards through the model and thus enable the fully-automated

computation of timed path conditions, i.e., conditions under which information flow is

possible that solely depend on the model inputs.

The second step of our system enables the analysis of heterogeneous control sys-

tem models combining the strongly differing semantics of signal-flow-oriented and

state-machine-based models. To this end, we first translate a state-machine-based con-
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troller into a formally verifiable representation and, second, combine this representation

with condition observer automata which we generate from the timed path conditions

extracted in the first step of our scheme. This enables us to use the well-established

technique of model checking to identify precisely that behavior that leads to the execution

of information flow paths under analysis.

Using our method, we are able to safely rule out the existence of information flow be-

tween arbitrary components of a model. This enables us to reason about non-interference

between model elements of interest and the compliance with security as well as safety

properties.

Our methodology supports signal-flow-oriented modeling languages, the combined

analysis of signal-flow-oriented and state-machine-based modeling styles and various

modeling languages. It is applicable fully automatically and we have demonstrated its

practical applicability with results from two industrial case studies.

Signal-Flow Semantics. The integration of the specific semantic properties of signal-

flow-oriented modeling languages, i.e., the complex notion of timing and the inherent

concurrency, enables our methodology to soundly analyze information flow through

control system model components based on the signal-flow-oriented modeling paradigm.

To capture timed control flow dependencies, we have developed the concept of timed path

conditions, which express necessary conditions under which paths of possible information

flow are executed, as well as when, with respect to the simulation time, these conditions

must hold for information to flow. Subsequently, we translate the sets of timed path

conditions to a constraint satisfaction problem and use a constraint solver to identify

overlap between the conditions. If no overlap is detected, we have successfully identified

non-interference between the model elements under analysis.

Combined Analysis. To enable the analysis of models combining signal-flow-oriented

and state-machine-based semantics, we have developed a formal view on the execution

behavior of state-machine-based controllers integrated into signal-flow-oriented control

system models as well as on the interaction between components of both paradigms.

Using our translation of state-machine-based controllers into formally well-defined timed

automata representations and the generation of sets of observer automata from our timed

path conditions, we are able to effectively utilize model checking to analyze non-

interference in heterogeneous control system models.
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Language Support. We have provided an instantiation of our information flow analy-

sis method for discrete embedded control system models implemented using two example

languages widely used in the domain of embedded control systems: MATLAB Simulink/

Stateflow and Modelica.

Automation. We have provided an implementation of our methodology as a modular

framework, which enables us to fully automatically analyze information flow through a

comparatively large subset of discrete MATLAB Simulink/Stateflow and Modelica models.

Furthermore, our platform-independent implementation offers a convenient graphical

user interface, which provides access to a graphical view of the control system model,

and to define sink and source of information flow to be analyzed. To formally verify the

absence of information flow in combined models, we use the UPPAAL timed model checker.

To enable the automatic analysis of constraint satisfaction problems, our framework

implements solver back-ends using the Gecode and JaCoP constraint solvers.

Applicability. Using our implementation, we have automatically evaluated safety

and security policies in industrial case studies from the automotive domain. With

our approach, we were able to successfully identify violations of the requirement of

non-interference between safety-critical and non-critical components in our first case

study. Similarly, our methodology was able to detect an error in the implementation of

our second case study by detecting non-interference between a pair of communicating

components. The analyses were performed in approximately 10s and 1s for our first

and second case study, respectively. Note that the current instantiation of our method

limits the control path complexity to unary arithmetical blocks and to those cyclical

dependencies supported by our computer algebra system. Additionally, the algorithms

employed do not scale well in the worst case. However, our results show that our

procedure and its fully automatic implementation are applicable to industrial-sized

models from the domain of safety-critical embedded control systems.

As these results show, we have successfully met our criteria defined in Chapter 1.

8.2 Outlook

We have presented a method to analyze the information flow in discrete embedded control

system models and have implemented it for two widely-used example language from the

domain of safety-critical embedded systems, MATLAB Simulink/Stateflow and Modelica.
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Our approach and its implementation support the analysis of heterogeneous models

implemented using signal-flow-oriented as well as state-machine-based components and

can be applied fully automatically. We were able to show its practical applicability with

our experimental results. In particular, we have demonstrated the performance and

the capabilities of our technique to identify violations in safety and security policies.

However, there are still open questions that are worth investigating in further research.

Relaxing Assumptions. In Section 4.3, we have presented the assumptions our

method imposes on the models it is able to analyze, such as the limitation to a uniform

sample time throughout the model and to unary functions on unnested non-cyclical

control paths. An extension to relax the former limitation would make use of factorization

of component-specific sample times to support multi-rate models, i.e., models utilizing

elements with non-uniform sample times. As, in signal-flow-oriented languages, each

model element must use a sample time which is divisible by the simulation step size,

our definition of a fixed-delay dependency, shown in Definition 5.3, could be adapted to

hold a delay length not in absolute simulation time steps, but expressed as a coefficient

of the simulation step size. The latter limitation is twofold. We chose the limitation

to unary functions on unnested non-cyclical control paths, as shown in Figure 4.3a,

due to the absence of control paths containing model elements of higher complexity in

our case studies from the automotive domain. A relaxation of this limitation to unary

modeling elements, however, is possible by extending our generation of global timed

path conditions and the corresponding subsequent translation into constraint satisfaction

problems. An extension of Definition 5.9 to support an arbitrary number of block

input signals would be sufficient. Subsequently, it would be possible to extend our

implementation to support additional translation rules for additional model elements on

the control path. The model elements available for translation would, at this point, be

limited by the underlying constraint solver, such that complex elements, e.g., integrators

or division blocks, would not be possible to be translated into constraint operators directly.

An extension of our methodology to support control paths containing n-ary blocks and

non-uniform sample times would widen the range of control system models supported

by our methodology. A relaxation of the limitation to unnested control paths, on the

other hand, would require an analysis step to identify whether a stable fixed point in the

control path behavior exists.
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Additional Verification Back-Ends for State-Machine-Based Components. An

additional limitation of our approach and its implementation is that in its current in-

stantiation, it is restricted to the analysis of state-machine-based controllers developed

in MATLAB Stateflow. The extension to controllers developed using Modelica StateGraph

would require the development of a translation of such controllers to networks of UPPAAL

timed automata. Due to the, in comparison to MATLAB Stateflow, limited expressiveness

of Modelica StateGraph controllers, we expect this translation to be less complex than

the solution presented in Jiang et al. [2016] and Yang et al. [2016].

Precise Limitations of Cyclical Control Path Solution Technique. Furthermore,

an interesting direction to consider is the exploration of the precise limitations of our

process to analyze information flow through models containing cyclical control paths.

As we have presented in Section 5.6.3, we use the CAS Mathematica to (1) identify a

non-recursive solution to the difference equation we extract from the cyclical control

signal path components, and (2) analyze whether the identified non-recursive function, if

found, is able to satisfy the timed path condition at the control flow element in question.

As we cannot precisely determine which techniques Mathematica employs to obtain

solutions to the family of difference equations extracted from cyclical paths, as future

work, we could devise a range of case studies utilizing varying degrees of difference

equations and arithmetical model elements to better understand the capabilities of

the CAS employed by our process.

Model Repair Techniques. The utilization of our system as a basis for a number

of analysis and verification techniques for control system models is a highly promising

endeavor. One interesting direction, for example, is the development of methods to

automatically repair safety and security policy violations. To this end, we plan to use

our concept of timed path conditions as well as our backward propagation scheme for

control signal paths to identify those signal sequences which lead to an information leak.

Subsequently, it would be possible to develop an technique which proposes and, if possible,

automatically repairs these leaks based on the information extracted by our information

flow analysis. Consider the signal-flow-oriented components of our motivating example

presented in Figure 4.1. As the data stored in the buffer is delayed in relation to the state

signal, confidential information is potentially leaked through the public data output. An

automated technique would be able to, e.g., insert a time-dependent memory element

to delay the state signal on its path to the set of switches on the right. A similar repair
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technique could be imagined for the state-machine-based components of the control

system models our technique is able to analyze. Using the UPPAAL timed model checker,

it is possible to identify the precise conditions and sequence of states as well as input

signals leading to an arbitrary point in the model checking process. A repair technique

could use this information to modify the state-machine-based controller accordingly.

Model Partitioning. One promising utilization of our method is the partitioning of

control system models beyond the scope of syntactical features. In essence, our infor-

mation flow analysis method could be extended as a semantic slicing tool and, thus, as

a preparatory step for further analysis and verification systems, which decreases the

size and complexity of the source model by partitioning. The required analysis effort

of systems which rely on a verification of a control system model as a whole, such as

presented in Reicherdt [2015] and Liebrenz et al. [2018], increases dramatically with

increasing model size. To leverage the possibilities of our method, a possible extension

could be the identification of the precise conditions of coupling between parts of a control

system model. For a given model, such an analysis could identify conditions that must

hold on model components and signals as well as on input data in order for model parts

to be executed. To calculate such conditions, we could leverage our concept of timed

path conditions. A prerequisite to extend our technique to support partitioning of control

system models could be the development of a classification of data inside a model using

a security type system. Such systems, which are the basis of various information control

systems, could be extended by a notion of timing to be applicable to the domain of control

system models based on signal-flow-oriented semantics. Based on such a system, our

technique could automatically and semantically-aware classify model components into

safety and security levels. For example, a Memory element, as shown in our motivating

example in Figure 4.1, would be a member of a high as well as a low security level,

depending on the current state of the system. For analysis methods based on verification,

such a partitioning and classification technique could be highly beneficial as it has the

possibility to greatly reduce the verification effort.
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A Examples

A.1 Information Flow Analysis of Signal-Flow-Oriented
Models

In this section, we utilize a number of generic model examples to demonstrate the

functionality of our algorithm to analyze information flow in signal-flow-oriented software

models.

A.1.1 Example 1: Unconditional Flow

The example, shown in Figure A.1a as a Simulink implementation and in Figure A.1b

as the equivalent Modelica implementation, uses a model consisting of four inputs

and two outputs with arithmetic data manipulations connecting them. To demonstrate

our algorithm, we assume that the model developer is interested in the existence of

information flow between two pairs of inputs and outputs, namely (pi
1, po

1) and (pi
2, po

2).

Starting with the first pair of interest (pi
1, po

1), our algorithm performs the following steps:

Path Detection. After loading the model and translating it into our Java Intermediate

Representation, the first step is the detection of path between the blocks of interest. If

no paths can be found, information flow is impossible and all subsequent steps of our

algorithm are superfluous. Starting from the block pi
1, we perform a breadth-first search

for possible paths leading the block pO
1 and detect the path:

Φ(pi
1→po

1)
= {φ1}

φ1 = 〈pi
1, badd_1, bproduct_1, babs_1, po

1〉
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(a) Simulink implementation

(b) Modelica implementation

Figure A.1: Example 1: Unconditional flow

Identifying Timing Dependencies. In this step, our algorithm analyzes the set of

detected paths Φ(pi
1→po

1)
for time-dependent model elements splits the paths into time

slices whenever it detects a block type that holds information between simulation steps to

establish the precise timing dependency between the blocks along the path. On iterating

over path φ1, our algorithm detects that neither block is part of Bmem and therefore

establishes a single time slice spanning the whole path between the blocks of interest.

Note that here we denote a dependency between the output port of the first block in the

path and the input port of the last block on the path:

φts
0 = 〈pi

1, badd_1, bproduct_1, babs_1, po
1〉

Also, the matching untimed dependency between the first and last block on the path is

established:

po
1 depφ1

0 pi
1
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The results of this step show that as time-dependent model elements are present on

the path, information leaving the input block pI
1 enters the output block pO

1 in the same

simulation step t.

Extracting Local Timed Path Conditions. After identifying the required set of time

slices for the path under analysis, this step of our algorithm iterates over the path and

extracts the conditions for information flow along the path from identified routing blocks

and annotates them according to the time slice the respective routing blocks are placed

into. When iterating over φ1, our algorithm does not detect any blocks that control the

information flow along the path. Information flow is therefore always assumed to be

possible and the path condition controlling the information flow takes the form:

C
�
Φpi

1→po
1

�
= t rue

After completing this step, our algorithm concludes that non-interference between

the selected blocks cannot be proven as the information flow is unconditional. When

analyzing the second pair of blocks of interest (pI
2, pO

2 ), however, our algorithm is able to

prove non-interference between the blocks as it does not detect a path between them,

i.e., Φ(pI
2→pO

2 )
= ∅.

A.1.2 Example 2: Conditional Path Execution

Figure A.2: Example 2: Conditional path execution

The example shown in Figure A.2 shows a MATLAB Simulink model consisting of a

single routing block, three input blocks and a single output block. To demonstrate our

algorithm, we analyze the information flow between the blocks (pi2 , po1).
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Path Detection. Performing the path detection through the model, our algorithm

detects the single path:

Φ(pi2→po1 ) = {φ1}
φ1 = 〈pi2 , bswitch_1, po1〉

Identifying Timing Dependencies. Similar to the previous example, our algorithm

does not detect any time-dependent model elements along the path and therefore estab-

lishes the untimed dependency between the blocks of interest and single time slice φts

such that:

po1 depφ1
0 pi2

φts
0 = 〈pi2 , bswitch_1, po1〉

Extracting Local Timed Path Conditions. On iterating over the detected path φ1,

our algorithm identifies the block bswitch_1 as a routing blocks and proceeds to extract its

parameters and consequently, the local path condition for information flow over φ1. to

detect the correct comparison operation, our algorithm first analyzes the port through

which information flows into the routing block, which is port pi,2. Hence, the extracted

condition for information flow > must be negated as the functionality a Switch-type

block routes information from pi,1 to the outgoing port po if the condition evaluates

to true and to pi,2 if it the condition does not hold. After extracting the comparison

threshold 0, our algorithm therefore extracts the local path condition dependent on the

block control signal input pi,c and annotates it with the timing information the routing

block is sorted into:

cφ0 (bswitch_1) = ¬
�
sc,0 > 0
�

Evaluating Control Signals. In this step, our algorithm raises the scope of the iden-

tified routing control signals and path conditions from block-local to global. Using the

identified control signal sc as a starting point, we first use our path detection algorithm

to extract all paths from the port to any global model inputs. This results in the set of

control paths Φc with a single identified control path φc1:

Φc = {φc1}= 〈bcontrol_in, bbias_1, sc〉
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1 var int: signal_out_input_3_t;
2 var int: signal_out_bias_1_t;
3 var int: signal_in_control_switch_1_t;
4

5 constraint signal_out_bias_1_t == signal_out_input_3_t - 3;
6 constraint signal_control_switch_1_t == signal_out_bias_1_t;
7 constraint not (signal_control_switch_1_t > 0);
8

9 solve satisfy;

Listing A.1: Translated constraint satisfaction problem for path φ1 through example model 2

When raising the scope of the local path condition cbswitch_1
extracted in the previous

step, our algorithm iterates over φc,1 and identifies the signal manipulations along the

path, which extracts the following functionalities for each block on the control path,

annotated with the correct routing block timing information:

fbias_1 = pi − 3

po,k(bbias_1) = fbias_1(pi,k)

po,k(bbias_1) = pi,k − 3

This information yields the global path condition for information flow through the

control signal input of block bswitch_1:

gφ0 (bswitch_1) = ¬
�
(pic

0 − 3)> 0
�

and the global path condition for the execution of φ1, which states that the information

leaving the input block pi
c at an arbitrary simulation step t must be greater than 3 for

the switch to execute path φ1:

C (φ1) = ¬
�
(pic

0 − 3)> 0
�

Translating and Solving Path Conditions. In the final step, our algorithm trans-

lates the extracted set of global path conditions into a constraint satisfaction problem

and solves it using a constraint solver. During the translation process, our algorithm

unfolds each path condition and defines decision variables for each global model input

and required intermediate signal. The translated CSP is shown in Listing A.1.
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When unfolding C(φ1), our algorithm first defines a variable for the signal leaving

the innermost block pi,c
0 , called signal_out_input_3_t, which encodes the outgoing

direction of the signal, the block it originates from as well as the timing information. Sub-

sequently, for each arithmetic operation in the global path conditions, we define a match-

ing decision variable and add a constraint, such as the variable signal_out_bias_1_t
and the constraint shown in Line 5. Finally, when the outermost function in the global

path condition, i.e., the local path conditions, is reached, a variable for the switch con-

trol signal, here signal_in_control_switch_1_t is defined and the corresponding

constraint is output, shown in Line 7. Additionally, a constraint connecting the switch

control signal and the output of the final block on the path is added, as shown in Line 6.

Finally, we indicate the type of decision problem in Line 9 and instruct the solver to

identify a solution to the constructed satisfaction problem.

A.1.3 Example 3: Complex Path Execution through Multiple Switches

Figure A.3: Example model demonstrating the behavior of our algorithm in the presence of
multiple switches and time slices

The example shown in Figure A.3 shows a MATLAB Simulink more complex model

consisting of a set of routing blocks controlled by a single control signal. The control

signal is manipulated through a number of Compare type blocks and held in Memory
elements. To demonstrate our algorithm, we analyze the information flow between the

blocks (pi2 , po1).
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Path Detection. Performing the path detection through the model, our algorithm

detects the single path:

Φ(pI
2→pO

1 )
= {φ1}

φ1 = 〈pi2 , bswitch_1, bmem_1, bswitch_2, bmem_2, bswitch_3, po1〉

Identifying Timing Dependencies. When iterating over φ1, our algorithm detects

a number of time-dependent model elements and therefore establishes the following

time slices and dependency:

po1 depφ1
2 pi2

φts0 = 〈pi2 , bswitch_1〉
φts1 = 〈bmem_1, bswitch_2〉
φts2 = 〈bmem_2, bswitch_3, po1〉

The extracted fixed delay dependency illustrates that the information leaving through the

output po1 has entered the system via the input pi2 precisely two simulation steps prior.

Extracting Local Timed Path Conditions. On iterating over the detected path φ1,

our algorithm identifies the blocks bswitch_1, bswitch_2, and bswitch_3 as routing blocks and

proceeds to extract their parameters and timing information corresponding to the time

slices they are placed into:

cφ1
0

�
bswitch_1

�
=
�
sc1
0 > 0
�

cφ1
1

�
bswitch_2

�
= ¬�sc2

1 > 0
�

cφ1
2

�
bswitch_3

�
=
�
sc3
2 > 0
�

Evaluating Control Signals. Using the identified control signal inputs sc1 , sc1 and sc3

of the Switch blocks (bswitch_1), (bswitch_2) and (bswitch_3), respectively, as starting points,

our algorithm detects the control path sets Φc(bswitch_1), Φc(bswitch_2) and Φc(bswitch_3)
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with a single identified control path each:

φcswitch_1 = 〈pi3 , bcompare_1, sc1〉
φcswitch_2 = 〈pi3 , bmem_c_1, bcompare_2, sc2〉
φcswitch_3 = 〈pi3 , bmem_c_1, bmem_c_2, bcompare_3, sc3〉

To raise the scope of the local path conditions, our algorithm extracts the following

functionalities for each block along the paths:

po,k(bcompare_1) = pi,k(bcompare_1) == 3

po,k(bcompare_2) = pi,k(bcompare_2) == 5

po,k(bcompare_3) = pi,k(bcompare_3) == −1

po,k(bmem_c_1) = pi,k−1(bmem_c_1)

po,k(bmem_c_2) = pi,k−1(bmem_c_2)

Subsequently, our algorithm uses the extracted functionalities to construct a global

path condition from each local path condition:

gφ1
0 (bswitch_1) =

�
si3
0 == 3
�

gφ1
1 (bswitch_2) = ¬

�
si3
0 == 5
�

gφ1
2 (bswitch_3) =

�
si3
0 == −1
�

Finally, the global path condition for the execution of φ1 is constructed:

C (φ1) =
�
si3
0 == 3
�
∧¬
�
si3
0 == 5
�
∧
�
si3
0 == −1
�

Translating and Solving Path Conditions. In the final step, our algorithm trans-

lates the extracted set of global path conditions into a constraint satisfaction problem and

solves it using a constraint solver. When instructed to solve the constructed CSP shown

in Listing A.2, the constraint solver correctly recognizes the problem as unsatisfiable.

Our algorithm is therefore able to prove non-interference between the blocks (pi2 , po1)

as the path Φ(pi2→po1 ) can never be executed due to the time-dependent behavior of the

routing blocks in the model under analysis.
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1 %
2 var int: signal_out_input_3_t;
3 var int: signal_in_compare_1_t;
4 var int: signal_in_compare_2_t_plus_1;
5 var int: signal_in_compare_3_t_plus_2;
6 var int: signal_out_compare_1_t;
7 var int: signal_out_compare_2_t_plus_1;
8 var int: signal_out_compare_3_t_plus_2;
9 var int: signal_in_mem_c_1_t;

10 var int: signal_in_mem_c_2_t_plus_1;
11 var int: signal_out_mem_c_1_t_plus_1;
12 var int: signal_out_mem_c_2_t_plus_2;
13 var int: signal_in_control_switch_1_t;
14 var int: signal_in_control_switch_2_t_plus_1;
15 var int: signal_in_control_switch_3_t_plus_2;
16

17 %
18 function var int: compare(var int: x, var int: y) =
19 if x == y then 1 else 0 endif;
20

21 %
22 constraint signal_in_control_switch_1_t > 0;
23 constraint signal_in_control_switch_1_t == signal_out_compare_1_t;
24 constraint signal_out_compare_1_t == compare(signal_in_compare_1_t, 3);
25 constraint signal_in_compare_1_t == signal_out_input_3_t;
26

27 %
28 constraint not (signal_in_control_switch_2_t_plus_1 > 0);
29 constraint signal_in_control_switch_2_t_plus_1 == signal_out_compare_2_t_plus_1;
30 constraint signal_out_compare_2_t_plus_1 == compare(signal_in_compare_2_t_plus_1,

5);˓→
31 constraint signal_in_compare_2_t_plus_1 == signal_out_mem_c_1_t_plus_1;
32 constraint signal_out_mem_c_1_t_plus_1 == signal_in_mem_c_1_t;
33 constraint signal_in_mem_c_1_t == signal_out_input_3_t;
34

35 %
36 constraint signal_in_control_switch_3_t_plus_2 > 0;
37 constraint signal_in_control_switch_3_t_plus_2 == signal_out_compare_3_t_plus_2;
38 constraint signal_out_compare_3_t_plus_2 == compare(signal_in_compare_3_t_plus_2,

-1);˓→
39 constraint signal_in_compare_3_t_plus_2 == signal_out_mem_c_2_t_plus_2;
40 constraint signal_out_mem_c_2_t_plus_2 == signal_in_mem_c_2_t_plus_1;
41 constraint signal_out_mem_c_1_t_plus_1 == signal_in_mem_c_2_t_plus_1;
42

43 solve satisfy;

Listing A.2: Translated constraint satisfaction problem for path φ1 between blocks (pi2 , po1)
through our third example model
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B Stateflow Semantics

As discussed in Chapter 2, the semantics of state-machine-based controllers developed

using Stateflow are only defined informally in the manuals provided in The MathWorks

[2017d]. In this section, we present a formalization of the Stateflow semantics as

presented in Jiang et al. [2016] and Yang et al. [2016].

While similar in syntax, the execution semantics of Stateflow and UPPAAL timed

automata are inherently dissimilar. The key differences lie in the mode of execution

and the structure of both types of automata: (1) In Stateflow, transitions are driven by

events which are placed on an event stack in a deterministic sequential order, depending

on explicit and implicit event specifications and the layout of the automaton itself [The

MathWorks 2018b]. The same holds true for substates designed in a parallel fashion,

which are sequentialized during evaluation of the Stateflow automaton according to

either an explicit specification or, implicitly, to the geometry of the automaton [The Math-

Works 2019]. UPPAAL timed automata, on the other hand, employ a non-deterministic,

concurrent execution of networks of automata that synchronize via explicit messages over

channels. (2) Stateflow supports the design of hierarchical states, which are activated

and deactivated in a recursive fashion according to the validity of transitions entering

and leaving states and their substates. A similar mechanism does not exist in UPPAAL, as

during execution of a single timed automaton, there only exists a single active state.

In order to overcome this gap in the execution semantics, Jiang et al. [2016] and

Yang et al. [2016] introduce an array-based data structure, which holds the possible

events extracted from the Stateflow automaton, ordered according to the semantics of

the Stateflow automaton, thereby acting as the event stack found in Stateflow. A controller

automaton is responsible for pushing events onto this stack-like structure and, if valid,

popping them to activate the appropriate timed automata via channels.
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B.1 State Transformation

When encountering states during the transformation process, two situations can oc-

cur [Jiang et al. 2016]: (1) The state has no substates and no entry, during, or exit
state actions are utilized in its design, or (2) the state utilizes decomposition into sub-

states or state actions. In the first case, the translation simply creates a UPPAAL state and

maps it onto the Stateflow state it originates from. For the second case, a number of

timed automata are created, emulating the functionality of the Stateflow state and its

interaction with the Stateflow automaton:

1. A controller automaton, simulating the activation and deactivation of substates of

the current state,

2. an action automaton, emulating the functionality of state actions using three self-

loops corresponding to the state action type,

3. a condition automaton, evaluating conditions of transitions between substates of

the current state and storing the results of this evaluation in a data structure, and

finally,

4. a common automaton, executing transitions between substates according to the

results of the condition automaton.

B.2 Transition Transformation

After translation of the states in the originating Stateflow model, transitions are converted

to the UPPAAL language and integrated into the translated states presented above. As

described in Chapter 2, a transition can be annotated with four conditions and actions, of

which each is optional: (1) an event, that specifies the transition to execute whenever the

(2) conditional action is true; (3) a conditional action that is executed after the conditional

action is evaluated as true; and (4) a transitional action that executes when the transition

is taken and the target state is activated.

When encountering a Stateflow transition, these characteristics are embedded into

the automata created by the state translation logic, such that:

1. each event is transformed into a unique integer to be placed onto the event stack;
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2. each condition is translated to a guard at the corresponding transition in the UP-

PAAL condition automaton;

3. each conditional action is similarly translated to a condition action the correspond-

ing transition in the UPPAAL condition automaton; and

4. each transitional action is transformed to a transition action at the corresponding

transition of the common automaton of the state.

B.3 Simulation Time Representation

In UPPAAL, there is no direct equivalent to the global simulation time present in the Simulink

model. While it is possible to represent this concept using clocks acting as transition

guards, Jiang et al. [2016] and Yang et al. [2016] implement the passing of simulation

using two global integer variables. These variables, mDrivenTime and mTotalTime
represent the simulation time that has passed since entering a state and since starting the

simulation, respectively. The first variable, mDrivenTime is reset by a global controller

every time the simulation enters a new state is utilized to transition guards modeled using

temporal logic, as shown in Figure 2.4. The second variable, mTotalTime is updated

by the same global controller, i.e., incremented by 1, every time the event stack for the

current simulation step has been completely processed.

Based on these translation rules, we are confident that the translation of Stateflow

found embedded into combined signal-flow-based and state-machine-based controller

models to the UPPAAL timed automata language is sound, as it provides a direct mapping

of each Stateflow state and edge into a semantically equivalent timed automata repre-

sentation. Further, it explicitly models the execution semantics of Stateflow, including

the event queue, concurrent states and temporal logic conditions.
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C Translating Discrete Control System
Models to Mathematica

In this chapter, we present our translation of the signal-flow-oriented components of

discrete embedded control system models to the CAS Mathematica. As presented in Sec-

tion 5.6.3, we utilize this translation as part of our methodology to analyze information

flow through signal-flow-oriented model components, specifically to identify global timed

path conditions on cyclical control paths. The input to this translation process is a set of

blocks representing the cyclical control path modifying the control flow condition of a

single routing block under analysis.

As presented in Section 5.6.3, cyclical paths describe a recurrence relation [Bonchi

et al. 2017b], i.e., a relation whose result at an arbitrary time depends on current as well

as prior inputs. To identify non-recursive solutions to the recurrence relations described

by cyclical control paths, we perform the following steps:

1. To extract the recurrence relation of a given control path, our method iterates

backwards over the path while recording the functionality of each block until an

input block or a previously recorded model element is encountered.

2. From this extracted control path representation, we contruct a Mathematica-

compatible set of equations.

3. We utilize RSolve [Wolfram 1999, p. 96], a Mathematica functionality, to identify

a non-recursive solution to the recurrence relation. If the CAS is able to identify

a solution, the result of this operation is a pure, non-recursive function which

enables us to calculate the value of the control signal at arbitrary simulation steps.

4. To identify the possibility of information flow in the presence of cyclical control

paths, we utilize the Reduce functionality built into Mathematica [ibid., p. 86].

Given a function, in our case the output of the previous analysis step, a domain

limiting the independent variable, and a set of conditions, it returns the range of

function inputs in the given domain which fulfill the condition.
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C.1 Representation of Signal-Flow-Oriented Block Func-
tionalities in Mathematica

In the following we present our set of rules to translate Simulink blocks utilized in cyclical

control paths into their respective Mathematica description. As discussed in Sections 4.3

and 5.6.3, our approach supports the utilization of unary and 2-ary block functionalities.

2-ary Arithmetical Block Types. Arithmetical block types using two inputs signals,

such as the Add block type, are represented by the following functionality, as presented

in Section 5.6.3:

po,k = f (pi1,k, pi2,k)

f (pi1,k, pi2,k) = pi1,k ▷◁ pi2,k with ▷◁∈ {+,−, ·}

The corresponding representation in Mathematica is as follows:

o= i1 ▷◁ i2

Stateful Model Elements. Stateful model elements, such as Mem blocks, are repre-

sented as follows:

po,k = fb(pi,k−l), with b ∈ BMem

fb(pi,k) = pi,k−l

The representation of stateful modeling elements in Mathematica consists of two elements.

A definition of the initial value, read from the properties of the modeling element, and a

definition of the output signal depending on block state from a previous time slice, such

as:

mem[0] == 0

mem[k] == mem[k− l]
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Input Block Types. Additionally, our translation supports a number of blocks without

input signals, such as the Const block type or input blocks, such as:

po,k = r

Their Mathematica-compatible representation is as follows:

o= r

Based on these rules, our approach translates a given cyclical control path expressed

using our intermediate representation into a Mathematica-compatible form, which we

transmit to Mathematica. We achieve this connection between Mathematica and Java

using the J/Link toolkit [Wolfram Research 2019a], which offers a scripting interface to

Mathematica to be used directly from Java programs.

C.2 Identifying Non-Recursive Solutions to Cyclical
Control Signals

Based on the Mathematica-compatible representation of the cyclical control path extracted

and transmitted to Mathematica,in this step, we utilize Mathematica to identify a non-

recursive solution to the recurrence relation represented by the path. To obtain such a

pure-function solution to the recurrence relation, we use the RSolve functionality built

into Mathematica.

Revisiting the example presented in Section 5.6.3, the extracted recurrence relation

prepared for Mathematica takes the form shown below. Note that we apply the Simplify
functionality [Wolfram Research 2014] to the extracted recurrence relation to obtain its

minimal representation:

add[k] == add[k− 1]− 1
add[0] == 4
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Based on this representation, we call the RSolve functionality according to the syntax

described in Wolfram Research [2019a]. The first argument is the extracted equation

set, which includes set of boundary conditions, i.e., the initial condition of the Add block

used in our example. The second and third arguments describe the function for which a

non-recursive solution is to be obtained, and the independent variable, respectively. For

our example, the command takes the following form:

RSolve
��
a[k] == a[k− 1]− 1,a[0] == 4

	
,a[k],k
�

The output of this step is non-recursive representation of the functionality of the

cyclical control path. Note that it is not guaranteed that a solution, even if existing,

can be obtained automatically by Mathematica. We discuss an approach to identify the

precise limitations of this solution process in Section 8.2.

For our example model, Mathematica returns the following solution:

a[k]→ 4− k

The solution corresponds to the following pure function, which only depends on the

current simulation step k:

po,k(add) = 4− k

C.3 Calculating the Validity of Timed Path Conditions on
Cyclical Control Paths

The pure-function representation identified in the previous step describes the precise

value of the control signal at the control block at a given simulation step, possibly

depending on the value of a connected input signal. In this final step of our approach, we

combine this representation with the timed path condition corresponding to the control

block under analysis by using the Reduce functionality built into Mathematica.
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For the purpose of our approach, we use the Reduce functionality to identify those

domains on the independent control signal function variable on which the timed path

condition holds. We achieve this by calling the function as shown below:

Reduce
��

expr
	
, var, dom
�

The first argument expr combines the timed path condition corresponding to the current

control block and path under analysis and the pure-function expression we have identified

in the previous step. The second and third argument var define the independent variable

over which we aim to identify a solution as well as its domain.

For our example model, the function call takes the following form:

Reduce
��
4− k< 0 && k> 0

	
,k,k≥ 0 && Element

�
k,Integers
� �

There, the pure-function expression of the control signal po,k(badd) = 4− k is combined

with the timed path condition po,k(badd) < 0 and the limitation of the simulation step

value to the domain of natural numbers, k ∈ N including 0.

The output of this function call describes the set of simulation steps for which the timed

path condition on the control block under analysis holds. For our example model, the

output k > 4 describes that the path condition only holds after four simulation steps have

passed. Beginning with simulation step k ≥ 5, input si
2 is routed through the control

block indefinitely.

C.4 Summary

In this chapter we have presented an integral part of our approach to analyze informa-

tion flow through discrete embedded control systems models: the solution of cyclical

control paths. As we have shown in Section 4.2, cyclical control paths through signal-

flow-oriented components cannot be solved using static analysis techniques. To analyze

information flow through model components containing such control paths, we have

developed a translation and solution mechanism based on the computer algebra system

Mathematica. Using the symbolic equation solution capabilities built into Mathematica,

we obtain a non-cyclical, pure-function representation of the recurrence relation repre-
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sented by the cyclical control path and, using this representation, are able to calculate

the validity of the timed path condition of the path and control block under analysis. The

results of this step are used as part of our overall methodology as described in Chapter 4.
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