Skip to main content

Advertisement

Log in

Brazilian cuisine: comparison of environmental, economic and nutritional performance of two typical Brazilian dishes

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Brazilian cuisine is influenced by the diversity of geographical conditions, production of local ingredients and the multicultural character of foreign and native folks. In view of this context, we analyze sustainability issues in relation to the preparation of rice with jerky (“Arroz carreteiro”), and rice with chicken (“Galinhada”). This study is divided into two stages: environmental and economic analysis of food production process by life cycle analysis and nutritional assessment in comparison with the recommendations of the Worker’s Feeding Program (PAT) issued by the Ministry of Labor and Employment. In environmental terms, while a portion of Arroz carreteiro emits 2.08 kg of CO2eq, a portion of Galinhada emits 1.34 kg CO2eq. Regarding acidification potential, the value found for Arroz carreteiro was 0.028 kg SO2eq and for Galinhada was 0.011 kg SO2eq. Regarding eutrophication potential, the value for Galinhada was 0.005 kg PO4eq and for Arroz carreteiro was 0.014 kg PO4eq. In economic terms, Galinhada has a lower cost than Arroz carreteiro. Regarding the nutritional aspect, both preparations presented values close to those recommended by the PAT. However, both preparations exceeded the protein needs and Galinhada exceeded sodium needs. The content of fibers was low, reaching only around 20% of the PAT. The results of the dishes analyzed are consistent with the values found in similar environmental studies with regard to CO2eq emissions, and they provide good amounts of nutrients as required for a main meal. However, they need to be balanced with other preparations to reach the values recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Google Earth, 2019

Fig. 2

Source: Adapted from Schmidt Rivera et al. (2014)

Fig. 3

Similar content being viewed by others

Notes

  1. Screening LCA is considered a shorter form of the full LCA. It is the first step before conducting a LCA in accordance with the standards of ISO (European Commission—Joint Research Center—Institute for Environment and Sustainability 2010).

  2. Eutrophication is characterized by excessive plant and algal growth due to the increased availability of one or more limiting growth factors needed for photosynthesis (Schindler 2006).

  3. Acidification is a consequence of acids being emitted to the atmosphere and subsequently deposited in surface soils and waters (La Rosa 2016).

References

  • ABIEC, A. B. das I. E. de C. (2019). Perfil da Pecuária no Brasil, Relatório anual 2019. Retrieved December 28, 2019, from https://www.abiec.com.br/controle/uploads/arquivos/sumario2019portugues.pdf.

  • ABPA, A. B. de P. A. (2019). Relatório Anual 2019. Retrieved December 28, 2019, from https://cleandrodias.com.br/wp-content/uploads/2019/05/RELATO%C3%ACRIO-ANUAL-ABPA-2019.pdf.

  • Akutsu, R. C. C. A., Botelho, R. B. A., Camargo, E. B., Oliveira, K. E. S., & Araújo, W. M. C. (2005). A ficha técnica de preparação como instrumento de qualidade na produção de refeições. Revista de Nutrição, 18(2), 277–279.

    Google Scholar 

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper.

  • Baldwin, C., Wilberforce, N., & Kapur, A. (2011). Restaurant and food service life cycle assessment and development of a sustainability standard. The International Journal of Life Cycle Assessment, 16(1), 40–49.

    Google Scholar 

  • Beer, T., Grant, T., & Campbell, P. K. (2007). The greenhouse and air quality emissions of biodiesel blends in Australia. Clayton South: Commonwealth Scientific and Industrial Research Organisation.

    Google Scholar 

  • Bezerra, I. N., & Sichieri, R. (2010). Características e gastos com alimentação fora do domicílio. Revista de Saúde pública, 44(2), 221–229.

    Google Scholar 

  • Biswas, D., Szocs, C., & Inman, J. J. (2016). Making choices for a sequence of healthy and unhealthy options. In M. Obal, N. Krey, & C. Bushardt (Eds.), Let’s get engaged! Crossing the threshold of marketing’s engagement era. Developments in marketing science: Proceedings of the academy of marketing science. Cham: Springer.

    Google Scholar 

  • Brasil. (2006). Programa de alimentação do trabalhador—PAT. Retrieved March 13, 2020, from https://189.28.128.100/nutricao/docs/legislacao/portaria66_25_08_06.pdf.

  • Brasil. (2014). Dietary guidelines for the Brazilian population. Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica, 2 edn.Brasília: Ministério da Saúde.

  • Brasil. (2020). Programa de alimentação do trabalhador-PAT. Retrieved March 13, 2020, from https://trabalho.gov.br/pat.

  • Burlingame, B., & Dernini, S. (Eds.). (2012). Sustainable diets and biodiversity: Directions and solutions for policy, research and action. Rome: Food and Agriculture Organization, © FAO.

    Google Scholar 

  • Calderón, L. A., Iglesias, L., Laca, A., Herrero, M., & Díaz, M. (2010). The utility of life cycle assessment in the ready meal food industry. Resources, Conservation and Recycling, 54(12), 1196–1207.

    Google Scholar 

  • Chaves, L. G., Mendes, P. N. R., De Brito, R. R., & Botelho, R. B. A. (2009). O programa nacional de alimentação escolar como promotor de hábitos alimentares regionais. Revista de Nutrição, 22(6), 857–866.

    Google Scholar 

  • Coltro, L., Marton, L. F. M., Pilecco, F. P., Pilecco, A. C., & Mattei, L. F. (2017). Environmental profile of rice production in Southern Brazil: A comparison between irrigated and subsurface drip irrigated cropping systems. Journal of Cleaner Production, 153, 491–505.

    CAS  Google Scholar 

  • Davis, J., & Sonesson, U. (2008). Life cycle assessment of integrated food chains—A Swedish case study of two chicken meals. International Journal of Life Cycle Assessment, 13(7), 574–584.

    Google Scholar 

  • Davis, J., Sonesson, U., Baumgartner, D. U., & Nemecek, T. (2010). Environmental impact of four meals with different protein sources: Case studies in Spain and Sweden. Food Research International, 43(7), 1874–1884.

    Google Scholar 

  • Donato, D. R. (2009). Restaurante por quilo: uma área a ser abordada. São Paulo.

  • Duffy, E., Godwin, C. M., & Cardinale, D. J. (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261–264.

    CAS  Google Scholar 

  • European Commission—Joint Research Centre—Institute For Environment and Sustainability. (2010). International reference life cycle data system (ILCD) handbook—General guide for life cycle assessment—Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg: Publications Office of the European Union.

  • FAO. (2014). The water-energy-food nexus a new approach in support of food security and sustainable agriculture. Retrieved December 24, 2019, from https://www.fao.org/3/a-bl496e.pdf.

  • FAO. (2017). O Futuro da Alimentação e da Agricultura -Tendências e Desafios. Roma: FAO.

  • FAO. (2019). The states of food security and nutrition in the world. Retrieved December 24, 2019, from https://www.fao.org/state-of-food-security-nutrition/en/.

  • FAO; IFAD; WFP. (2015). The State of Food Insecurity in the World: Meeting the 2015 international hunger targets: Taking stock of uneven progress. FAO, IFAD and WFP. Retrieved from https://www.fao.org/3/a4ef2d16-70a7-460a-a9ac-2a65a533269a/i4646e.pdf.

  • Filimonau, V., & Krivcova, M. (2017). Restaurant menu design and more responsible consumer food choice: An exploratory study of managerial perceptions. Journal of Cleaner Production, 143, 516–527.

    Google Scholar 

  • Ghisellini, P., Setti, M., & Ulgiati, S. (2016). Energy and land use in worldwide agriculture: an application of life cycle energy and cluster analysis. Environment, Development and Sustainability, 18, 799–837. https://doi.org/10.1007/s10668-015-9678-2.

    Article  Google Scholar 

  • Gottschall, C. S., Canellas, L. C., Marques, P. R., & Bittencourt, H. R. (2009). Relações entre idade, peso, ganho médio diário e tempo médio de permanência de novilhos de corte confinados para abate aos 15 ou 27 meses de idade. Semina: Ciências Agrárias, 30(3), 717–726.

    Google Scholar 

  • Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J., et al. (2001). Global change in forests: Responses of species, communities, and biomes. BioScience, 51, 765–779.

    Google Scholar 

  • Headey, D. D., & Alderman, H. H. (2019). The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. The Journal of Nutrition, 149(11), 2020–2033. https://doi.org/10.1093/jn/nxz158.

    Article  Google Scholar 

  • Heller, M. C., Keoleian, G. A., & Willett, W. C. (2013). Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: A critical review. Environmental Science and Technology, 47(22), 12632–12647.

    CAS  Google Scholar 

  • Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent? Trends in Ecology Evolution, 15, 56–61.

    CAS  Google Scholar 

  • Hunkeler, D., Lichtenvort, K., & Rebitzer, G. (2008) (eds.). Environmental life cycle costing. SETAC, Pensacola, FL (US) in collaboration with CRC Press, Boca Raton, FL, USA.

  • IBGE, I. B. de G. e E. (2010) (ed.). Pesquisa de orçamentos familiares, 2008–2009. Rio de Janeiro: IBGE.

  • INCRA—Instituto Nacional de Colonização e Reforma Agrária. (2017). Incra nos Estados—Informações gerais sobre os assentamentos da Reforma Agrária. Retrieved November 21, 2019, from https://painel.incra.gov.br/sistemas/index.php.

  • ISO 1440. (2006). ISO 1440 Environmental management-life cycle assessment-principles and framework. London: British Standards Institution.

  • Jones, A. D., Hoey, L., Blesh, J., Miller, L., Green, A., & Shapiro, L. F. (2016). A systematic review of the measurement of sustainable diets. Advances in Nutrition, 7(4), 641–664.

    Google Scholar 

  • Jungbluth, N., Keller, R., König, A., & Doublet, G. (2014). One Two We—Life cycle management in canteens together with suppliers, customers and guests. In Proceedings of the 9th international conference on life cycle assessment in the agri-food sector.

  • Kiefer, N. M. (2002). Economics and the origin of the restaurant. Cornell Hotel and Restaurant Administration Quarterly. Food & Beverage, 43, 58–64.

    Google Scholar 

  • La Rosa, A. D. (2016). Life cycle assessment of biopolymers. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. https://doi.org/10.1016/B978-0-08-100214-8.00004-X.

    Article  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.

    CAS  Google Scholar 

  • Machado-Rodrigues, A. M., Gama, A., Mourão, I., Nogueira, H., Rosado-Marques, V., & Padez, C. (2018). Eating away from home: A risk factor for overweight in children. European Journal of Clinical Nutrition. https://doi.org/10.1038/s41430-018-0165-3.

    Article  Google Scholar 

  • Maillot, M., Vieux, F., Amiot, M. J., & Darmon, N. (2010). Individual diet modeling translates nutrient recommendations into realistic and individual-specific food choices. The American Journal of Clinical Nutrition, 91, 421–430.

    CAS  Google Scholar 

  • Monteiro, C. A., Cannon, G., Lawrence, M., Costa Louzada, M. L., & Pereira Machado, P. (2019). Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome, FAO. Retrieved December 24, 2019, https://www.fao.org/3/ca5644en/ca5644en.pdf.

  • Monteiro, C. A., Cannon, G., Moubarac, J.-C., Levy, R. B., Louzada, M. L. C., & Jaime, P. C. (2017). The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21(01), 5–17. https://doi.org/10.1017/s1368980017000234.

    Article  Google Scholar 

  • Muñoz, I., i Canals, L. M., & Fernández-Alba, A. R. (2010). Life cycle assessment of the average Spanish diet including human excretion. International Journal of Life Cycle Assessment, 15(8), 794–805.

    Google Scholar 

  • Myung, E., McClaren, A., & Li, L. (2012). Environmentally related research in scholarly hospitality journals: Current status and future opportunities. International Journal of Hospitality Management, 31, 1264–1275.

    Google Scholar 

  • NEPA—UNICAMP. Tabela Brasileira de Composição de Alimentos—TACO. (2011). Campinas: NEPA-UNICAMP (pp. 1–161). Retrieved February 20, 2016, from https://www.unicamp.br/nepa/taco/tabela.php?ativo=tabela.

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    CAS  Google Scholar 

  • Pulkkinen, H., Roininen, T., Katajajuuri, J., & Maija Järvinen, M. (2014). Development of Climate Choice Lunch concept for restaurants based on carbon footprinting. In Proceedings of the 9th international conference on life cycle assessment in the agri-food sector. Rita Schenck and Douglas Huizenga, Editors American Center for Life Cycle Assessment. LCA FOOD.

  • Relvas, G. R. B., dos Buccini, G. S., & Venancio, S. I. (2018). Ultra-processed food consumption among infants in primary health care in a city of the metropolitan region of Sao Paulo, Brazil. Jornal de Pediatria. https://doi.org/10.1016/j.jped.2018.05.004.

    Article  Google Scholar 

  • Ribal, J., Fenollosa, L., Segovia, P. G., Clemente, G., Escobar, N., & Sanjuán, N. (2014). Designing healthy, climate friendly and affordable school lunches. In Proceedings of the 9th international conference on life cycle assessment in the agri-food sector. Rita Schenck and Douglas Huizenga, Editors American Center for Life Cycle Assessment. LCA FOOD.

  • Ribeiro, A. M. C. L., & Naas, I. A. (2005). Evaluating two systems of poultry production: Conventional and free-range. Brazilian Journal of Poultry Science, 7(4), 2015–2220.

    Google Scholar 

  • Rivera, X. C. S., & Azapagic, A. (2016). Life cycle costs and environmental impacts of production and consumption of ready and home-made meals. Journal of Cleaner Production, 112, 214–228.

    Google Scholar 

  • Rossetti, E. K., Barros, M. S., Tódero, M., Junior, S. D., & Camargo, M. E. (2008). Sistema just in time: Conceitos imprescindíveis. Revista Qualit@s, 7(2), 1–6.

    Google Scholar 

  • Saarinen, M., Kurppa, S., Virtanen, Y., Usva, K., Mäkelä, J., & Nissinen, A. (2012). Life cycle assessment approach to the impact of home-made, ready-to-eat and school lunches on climate and eutrophication. Journal of Cleaner Production, 28, 177–186.

    Google Scholar 

  • Saath, K. C. O., & Fachinello, A. L. (2018). Crescimento da demanda mundial de alimentos e restrições do fator terra no Brasil. Revista de Economia e Sociologia Rural, 56(2), 195–212.

    Google Scholar 

  • Samavatean, N., Rafiee, S., & Mobli, H. (2011). An analysis of energy use and estimation of a mechanization index of garlic production in Iran. Journal of Agricultural Science. https://doi.org/10.5539/jas.v3n2p198.

  • Saronga, N. J., Mosha, I. H., Kessy, A. T., et al. (2016). “I eat two meals per day” impact of climate variability on eating habits among households in Rufiji district, Tanzania: A qualitative study. Agriculture & Food Security, 5, 14. https://doi.org/10.1186/s40066-016-0064-6.

    Article  Google Scholar 

  • Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51, 356–363.

    Google Scholar 

  • Schlindwein, M. M., Monteiro, A. B., & da Costa, J. S. (2016). efeitos de variáveis socioeconômicas sobre o consumo alimentar na região centro-oeste do Brasil. Revista Brasileira de Gestão e Desenvolvimento Regional, 12(1), 1–6.

    Google Scholar 

  • Schmidt Rivera, X. C., Espinoza, O. N., & Azapagic, A. (2014). Life cycle environmental impacts of convenience food: Comparison of ready and home-made meals. Journal of Cleaner Production, 73, 294–309.

    CAS  Google Scholar 

  • Scott, C. (2018). Sustainably sourced junk food? Big Food and the Challenge of Sustainable Diets Global Environmental Politics, 18(2), 93–113. https://doi.org/10.1162/glep_a_0045893-113.

    Article  Google Scholar 

  • Silva, T., Lamounier, M. A. T., & de Carvalho, T. N. (2015). Food service-O Mercado da Alimentação Fora do Lar. Revista Pensar Gastronomia, 1(2), 1–6.

    Google Scholar 

  • Singh, P., Gundimeda, H., & Stucki, M. (2014). Environmental footprint of cooking fuels: A life cycle assessment of ten fuel sources used in Indian households. The International Journal of Life Cycle Assessment, 19, 1036–1048. https://doi.org/10.1007/s11367-014-0699-0.

    Article  CAS  Google Scholar 

  • Sociedade Brasileira de Cardiologia—SBC. (2007). IV Diretriz Brasileira sobre dislipidemia e prevenção de aterosclerose (p. 88). Arquivos Brasileiros de Cardiologia, Rio de Janeiro.

  • Stylianou, K. S., Heller, M. C., Fulgoni, V. L., Alexi, S., Ernstoff, A. S., Keoleia, G. A., et al. (2016). A life cycle assessment framework combining nutritional and environmental health impacts of diet: A case study on milk. The International Journal of Life Cycle Assessment, 21, 734–746.

    CAS  Google Scholar 

  • Swarr, T. E., Hunkeler, D., Klöpffer, W., Pesonen, H. L., Ciroth, A., Brent, A. C., et al. (2011). Environmental life-cycle costing: A code of practice. International Journal of Life Cycle Assessment, 16(5), 389–391.

    Google Scholar 

  • Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., et al. (2019a). The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. The Lancet, 393(10173), 791–846.

    Google Scholar 

  • Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., et al. (2019b). The global syndemic of obesity, undernutrition, and climate change: The lancet commission report. Lancet, 393, 791–846. https://doi.org/10.1016/S0140-6736(18)32822-8.

    Article  Google Scholar 

  • Travis, J. M. (2003). Climate change and habitat destruction: A deadly anthropogenic cocktail. Proceedings of the Royal Society B Biological Sciences, 270, 467–473.

    CAS  Google Scholar 

  • UNEP- United Nations Environment Programme. (2010). Assessing the environmental impacts of consumption and production: Priority products and materials. Retrieved March 18, 2016, from https://www.unep.fr/shared/publications/pdf/DTIx1262xPA-PriorityProductsAndMaterials_Report.pdf.

  • United Nations. (2017). World population prospects. Retrieved May 20, 2018, from https://esa.un.org/unpd/wpp/publications/files/wpp2017_keyfindings.pdf.

  • USDA (United StatesDepartmentofagriculture). (2018). Grain and feed update. Retrieved December 24, 2019, from https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Update_Brasilia_Brazil_10-4-2018.pdf.

  • Vermeulen, S., Campbell, B., & Ingram, J. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222.

    Google Scholar 

  • Virtanen, Y., Kurppa, S., Saarinen, M., Katajajuuri, J. M., Usva, K., Mäenpää, I., et al. (2011). Carbon footprint of food—Approaches from national input–output statistics and a LCA of a food portion. Journal of Cleaner Production, 19(16), 1849–1856.

    Google Scholar 

  • Webb, F. J., Khubchandani, J., Doldren, M., Balls-Berry, J., Blanchard, S., Hannah, L., et al. (2014). African-American womens’ eating habits and intention to change: A pilot study. Journal of Racial and Ethnic Health Disparities, 3(1), 199–206.

    Google Scholar 

  • World Health Organization—WHO. (2001). Mental Health: new understanding, new hope (pp. 1–169). Retrieved February 7, 2016, from https://www.who.int/whr/2001/en/whr01_en.pdf/.

  • World Health Organization—WHO. (2003). Solários—Riscos e Orientações (pp. 1–19). Retrieved February 15, 2016, from https://www.who.int/uv/publications/Sunbeds_Portuguese_version.pdf/.

  • Wunderlich, S., Gatto, K., & Smoller, M. (2018). Consumer knowledge about food production systems and their purchasing behavior. Environment, Development and Sustainability, 20, 2871. https://doi.org/10.1007/s10668-017-0021-y.

    Article  Google Scholar 

  • Zaneti, T. B. (2016). A Cozinha Gaúcha: um resgate dos sabores e saberes da Gastronomia do Rio Grande do Sul. Ágora., 18(1), 28–42.

    Google Scholar 

  • Zufia, J., & Arana, L. (2008). Life cycle assessment to eco-design food products: Industrial cooked dish case study. Journal of Cleaner Production, 16(17), 1915–1921.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clandio Favarini Ruviaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, M.L., do Carmo Martinelli, G., Farinha, M.J.U.S. et al. Brazilian cuisine: comparison of environmental, economic and nutritional performance of two typical Brazilian dishes. Environ Dev Sustain 23, 3097–3113 (2021). https://doi.org/10.1007/s10668-020-00707-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00707-z

Keywords

Navigation