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ABSTRACT

Matrix factorization is at the heart of many machine learning algorithms, for example, for
dimensionality reduction (e.g. kernel PCA) or recommender systems relying on collaborative
filtering. Understanding a singular value decomposition (SVD) of a matrix as a neural
network optimization problem enables us to decompose large matrices efficiently while dealing
naturally with missing values in the given matrix. But most importantly, it allows us to learn
the connection between data points’ feature vectors and the matrix containing information
about their pairwise relations. In this thesis, we introduce a novel neural network architecture
termed Similarity Encoder (SimEc), which is designed to simultaneously factorize a given
target matrix while also learning the mapping to project the data points’ feature vectors
into a similarity preserving embedding space. This makes it possible to, for example, easily
compute out-of-sample solutions for new data points. Additionally, we demonstrate that
SimEcs can preserve non-metric similarities and even predict multiple pairwise relations
between data points at once. As the first part of the SimEc architecture, mapping from the
original (high dimensional) feature space to the (low dimensional) embedding, can be realized
by any kind of (deep) neural network, SimEcs can be used in a variety of application areas.
As we will demonstrate, SimEcs can serve as a reliable baseline model in pairwise relation
prediction tasks such as link prediction or for recommender systems. The pairwise relations
and similarities predicted by a SimEc model can also be explained using layer-wise relevance
propagation (LRP). Furthermore, SimEcs can be used to pre-train a neural network used in a
supervised learning task, which, for example, improves the prediction of molecular properties
when only few labeled training samples are available. Finally, a variant of SimEc, called
Context Encoder (ConEc), provides an intuitive interpretation of the training procedure of
the CBOW word2vec natural language model trained with negative sampling and makes it
possible to learn more expressive embeddings for words with multiple meanings as well as
to compute embeddings for out-of-vocabulary words.
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ZUSAMMENFASSUNG

Die Matrixfaktorisierung ist das Herzstück vieler maschineller Lernalgorithmen, beispiels-
weise der Dimensionalitätsreduktion (z.B. Kernel-PCA) oder Empfehlungssystemen, die auf
kollaborativem Filtern beruhen. Das Verständnis einer Singulärwertzerlegung (SVD) einer
Matrix als ein neuronales Netzwerkoptimierungsproblem ermöglicht es uns, große Matrizen
effizient zu zerlegen und dabei problemlos mit fehlenden Werten in der gegebenen Matrix
umzugehen. Aber vor allem erlaubt es uns, eine Verbindung zwischen den Merkmalsvektoren
der Datenpunkte und der Matrix, die Informationen über ihre paarweisen Beziehungen
enthält, zu lernen. In dieser Arbeit stellen wir eine neuartige neuronale Netzwerkarchitektur
vor, Similarity Encoder (SimEc), welche gleichzeitig eine gegebene Zielmatrix faktorisiert,
und das Mapping zur Projektion der Merkmalsvektoren der Datenpunkte in einen ähnlich-
keitserhaltenden Einbettungsraum lernt. So können beispielsweise Out-of-Sample-Lösungen
für neue Datenpunkte einfach berechnet werden. Außerdem demonstrieren wir, dass SimEcs
nicht-metrische Ähnlichkeiten beibehalten und sogar mehrere paarweise Beziehungen zwi-
schen Datenpunkten gleichzeitig vorhersagen kann. Da der erste Teil der SimEc-Architektur,
welcher die Abbildung vom ursprünglichen (hochdimensionalen) Merkmalsraum zur (nie-
derdimensionalen) Einbettung darstellt, durch beliebige (tiefe) neuronale Netze realisiert
werden kann, können SimEcs in einer Vielzahl von Anwendungsbereichen eingesetzt werden.
Wie wir zeigen, können SimEcs als zuverlässiges Basismodell für die Vorhersage paarweiser
Beziehungen, wie z.B. Link Prediction oder für Empfehlungssysteme, dienen. Die paarweisen
Beziehungen und Ähnlichkeiten, die von einem SimEc-Modell vorhergesagt werden, können
auch unter Verwendung von Layer-wise Relevance Propagation (LRP) erklärt werden. Dar-
über hinaus können SimEcs dazu verwendet werden, um ein neuronales Netzwerk, welches
in einer überwachten Lernaufgabe verwendet werden soll, vorzutrainieren, was zum Bei-
spiel die Vorhersage von molekularen Eigenschaften verbessert, wenn nur wenig annotierte
Trainingsbeispiele verfügbar sind. Darüber hinaus bietet eine Variante von SimEc, genannt
Context Encoder (ConEc), eine intuitive Interpretation des Trainingsablaufs des mit negati-
vem Sampling trainierten CBOW word2vec-Sprachmodells und ermöglicht es, expressivere
Einbettungen für Wörter mit mehreren Bedeutungen zu lernen sowie Einbettungen für
Wörter außerhalb des Vokabulars zu berechnen.
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PREFACE

0.1 Main contributions
This thesis introduces Similarity Encoder (SimEc), a neural network architecture that
learns similarity preserving embeddings for data points by simultaneously factorizing a
matrix containing pairwise relations between the data points while learning a mapping from
the original (high dimensional) feature space to the (low dimensional) embedding space.

Compared to previous approaches, especially SVD-based methods, the SimEc model has
several advantages:

∙ SimEcs can efficiently factorize large matrices and easily handle matrices with missing
values. Computing an exact SVD is computationally prohibitively expensive for large
matrices and impossible for matrices containing missing values. This would require
the use of iterative methods [96] and special weighted error functions [88]. By
understanding matrix factorization as a neural network optimization problem [40, 41],
SimEcs naturally solve these issues.

∙ SimEcs can compute out-of-sample solutions for arbitrary pairwise relations. Spectral
methods, such as kernel PCA, need the similarities between new test points and the
original training examples to compute the embeddings for the new points. However,
obtaining these pairwise relations for new data points is not always possible, especially
when the pairwise relations represent human ratings. Alternatively, the embeddings
for new test points, given the factorization of a matrix, could be created by training
an additional regression model to learn the mapping from the original feature space to
the embedding space. However, this would decrease the embedding quality compared
to learning the factorization and mapping simultaneously [33], as it is being done by
SimEcs.

∙ SimEcs can learn similarity preserving embeddings for non-metric similarities. Eigen-
vectors associated with strong negative eigenvalues of a similarity matrix can reveal
interesting features in the data [106]. However, spectral methods like kernel PCA only
include the embedding directions corresponding to the largest positive eigenvalues.
SimEcs, on the other hand, preserve the information associated with the eigenvalues
with the largest absolute values, and are therefore able to capture the features present
in the negative part of the spectrum.

∙ SimEcs can predict and learn a mapping for multiple pairwise relations at the same
time. Unlike SimEcs, traditional embedding methods are designed to only preserve a
single pairwise relation.
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∙ SimEc predictions and similarities can be explained. Techniques such as layer-wise
relevance propagation (LRP), commonly used to explain predictions of neural network
models, can also be applied to SimEcs. By revealing which input features contributed
most to a certain pairwise relation prediction, LRP can transform the SimEc output
into insights.

As the first part of the SimEc network (mapping from the inputs to the low dimensional
embedding) can be chosen freely to fit the task at hand, SimEcs can adapt to any application
area. In this thesis, I demonstrate the utility of SimEcs for a wide variety of use cases:

∙ SimEcs can be used to reduce the dimensionality of any kind of input data, producing
embeddings comparable to those created, e.g., by kPCA or Isomap.

∙ SimEcs can serve as a reliable baseline model for pairwise relation prediction tasks
such as link prediction or recommender systems.

∙ SimEcs can be used to pre-train neural networks used in supervised tasks, which can
improve their performance if there is little labeled training data available for the
prediction task. For example, a SimEc setup can be used to pre-train a convolutional
neural network (CNN) for an image classification task, or a SchNet model [176, 177,
178] to improve the prediction of molecular properties.

∙ In the area of natural language processing (NLP), a variant of SimEc, called Context
Encoder (ConEc), extends the CBOW word2vec model trained with negative sampling
[129, 130], and provides an intuitive interpretation of its training procedure. ConEcs
improve word2vec word embeddings by creating more expressive embeddings for
words with multiple meanings and making it possible to compute out-of-vocabulary
embeddings.

I implemented the Similarity Encoder model in Python using the keras [36] and PyTorch
[148] libraries, which enable efficient training on GPUs. The model as well as many usage
examples, including the experiments reported in this thesis, are provided online at:

https://github.com/cod3licious/simec

Code for the Context Encoder model and experiments can be found here:

https://github.com/cod3licious/conec
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0.2 Related publications
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0.3 Structure of this thesis
In Chapter 1, I give a motivation for learning similarity preserving embeddings and
predicting pairwise relations with SimEcs, as well as discuss related work. While SVD-based
methods yield an optimal factorization of a matrix, they are unable to create embeddings
for new test points if their similarity to the original samples can not be computed. Metric
learning approaches, on the other hand, find a mapping from the feature space to an
embedding space where a target relation between the data points is preserved, but they are
designed to learn from very sparse training data. SimEcs combine both ideas and can be
trained efficiently to learn a mapping to factorize a dense matrix.

In Chapter 2, I explain how matrices can be factorized with neural networks and
extend these models to arrive at the SimEc architecture, as presented in [Hor18].
Furthermore, I discuss why SimEcs can learn non-metric similarities as well as how to
predict multiple pairwise relations at once.

In Chapter 3, I provide examples of how SimEcs learn similarity preserving embed-
dings, explain the role of different hyperparameters, and show that SimEcs can easily handle
noisy input data or missing target values. With the right network architecture and target
similarity matrix, SimEcs can easily learn the same solution as “global” methods, such as
PCA, as well as “local” methods, such as Isomap, and are capable of creating embeddings
for new test points based on arbitrary target similarities. Sections 3.2, 3.3, 3.5, and 3.6 are
based on [Hor18].

In Chapter 4, I show how SimEcs can be used to predict pairwise relations in practical
tasks like link prediction or for recommender systems. While SimEcs do not outperform
state-of-the-art models specifically designed for these tasks, they can act as a reliable
baseline approach. SimEcs show particular promise for content based recommendations,
where they are able to transform the original feature vectors in such a way that the embed-
dings capture user ratings based similarities, which can be helpful to solve the cold start
problem, i.e., to create recommendations for items that did not receive any user ratings so far.

In Chapter 5, I give examples for how SimEc predictions can be explained using
layer-wise relevance propagation (LRP). This, for example, sheds light on why a certain
movie is recommended for a particular user.

In Chapter 6, I demonstrate how SimEcs can be used to pre-train different neural
network architectures used in supervised learning tasks to improve the performance in an
image classification task as well as for the prediction of chemical properties.

In Chapter 7, I explain how a variant of SimEc, called Context Encoder (ConEc),
implements the same training procedure as the CBOW word2vec model trained with
negative sampling. These insights are then used to generate more expressive word
embeddings, especially for out-of-vocabulary words and words with multiple meanings,
which leads to an improved performance in a named entity recognition task. This chapter is
adapted from [Hor17].

Chapter 8 concludes this thesis with a summary of the results.
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1
INTRODUCTION

Pairwise relations, such as similarities, between data points play an important role in many
areas of machine learning (ML) [27, 74, 81, 174]. Most commonly used dimensionality
reduction methods like t-SNE [119], kernel PCA (kPCA) [173], Isomap [189], and locally
linear embedding (LLE) [165] create low dimensional representations of data points by
preserving their pairwise similarities, distances, or local neighborhoods in the low dimensional
embedding space, e.g., to create informative visualizations of a dataset [83]. Similarity
preserving embeddings of data points can also serve as useful feature representations for
other (supervised) ML tasks. For example, by computing the eigendecomposition of a kernel
(i.e. similarity) matrix, kPCA projects the data into a feature space where data points
can become linearly separable and noise in the data can be reduced [128, 135, 172]. In
natural language processing (NLP) settings, the popular word2vec model [129, 130] learns
an embedding for each word in the vocabulary by relying on the principle that similar words
appear in similar contexts [73, 82, 113]. Using word embeddings as features can improve
the performance in many NLP tasks such as named entity recognition or text classification
[42, 107, 196]. The prediction of pairwise relations themselves is at the heart of important
real world ML applications such as the prediction of whether or not a drug could interact
with a certain protein [66] or for recommender systems, where the task is to predict the
rating a user would give to a certain item [96, 171] or to identify similar items that could be
promoted alongside an item of interest [15]. Another active research area is concerned with
the analysis of graphs, such as social networks, where the pairwise relations between nodes
are of key importance [4, 71].

Pairwise relations between data points can be represented as a rectangular matrix
𝑅 ∈ R𝑚×𝑛, which could, for example, contain the ratings of 𝑚 items by 𝑛 users. In the
following, we will primarily focus on pairwise similarities between 𝑚 data points, stored in a
square symmetric matrix 𝑆 ∈ R𝑚×𝑚, but also provide examples and discuss how our results
generalize to arbitrary pairwise relations 𝑅.

In this thesis, we introduce our novel neural network (NN) architecture called Similarity
Encoder (SimEc), which learns (low dimensional) similarity preserving embeddings of data
points. To be more precise, a SimEc learns a function 𝑓 ′(x𝑖) = y𝑖 to map a (high dimensional)
feature vector x𝑖 ∈ R𝐷 to an embedding vector y𝑖 ∈ R𝑑 such that the scalar product of two
embedding vectors approximates some given similarity measure, i.e., ⟨y𝑖, y𝑗⟩ ≈ 𝑆𝑖𝑗 (or in
matrix notation: 𝑌 𝑌 ⊤ ≈ 𝑆). To accomplish this, the full SimEc architecture consists of an
arbitrary neural network 𝑓 ′, which maps the input matrix 𝑋 ∈ R𝑚×𝐷 to the corresponding
embeddings 𝑌 ∈ R𝑚×𝑑, and an additional linear last layer 𝑊𝑙 ∈ R𝑑×𝑚, which is multiplied
with 𝑌 to compute the output of the SimEc, 𝑆̂ ∈ R𝑚×𝑚. Taken together, a SimEc network
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computes

𝑓(𝑋) = 𝑓 ′(𝑋)𝑊𝑙 = 𝑌 𝑊𝑙 = 𝑆̂

and is trained with the objective

min ‖𝑆 − 𝑓 ′(𝑋)𝑊𝑙‖2
𝐹 + 𝜆‖𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙‖2
𝐹 ,

where 𝜆 is a hyperparameter. By minimizing both ‖𝑆 − 𝑓 ′(𝑋)𝑊𝑙‖2
𝐹 and ‖𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙‖2
𝐹 ,

it is ensured that the factorization of 𝑆 as 𝑓 ′(𝑋)𝑊𝑙 is symmetric and therefore that
𝑓 ′(𝑋)𝑓 ′(𝑋)⊤ = 𝑌 𝑌 ⊤ ≈ 𝑆.1

A SimEc therefore learns embeddings that factorize some similarity matrix 𝑆, similar to
the embeddings computed by kPCA via an eigendecomposition of a kernel matrix. However,
to compute the embeddings for new test points (i.e. out-of-sample (OOS) solutions) with
kPCA, first the kernel map, i.e., the similarities to the training examples for these new data
points, needs to be computed. This, however, is not possible if the given target similarities
were not computed directly from the feature vectors, i.e., if they were obtained by human
similarity ratings or some other unknown process. A SimEc, on the other hand, provides
the linear or non-linear mapping function 𝑓 ′, with which new data points can be mapped
into the similarity preserving embedding space directly (Fig. 1.1). Furthermore, SimEcs can
deal with missing values in the similarity matrix 𝑆, can embed data points based on metric
or non-metric similarities, and can be used to predict multiple pairwise similarities or other
relations between data points at once.

kPCAX

k(xi,xj)
<latexit sha1_base64="whdXxzTKIxdcMCEgOAZG0u7Sxfk=">AAACBXicbVDLSsNAFL2pr1pfUZe6CBahgpREBF0W3bisYB/QhjCZTtqxk0mYmYgldOPGX3HjQhG3/oM7/8ZJm0VtPTBw5px7ufceP2ZUKtv+MQpLyyura8X10sbm1vaOubvXlFEiMGngiEWi7SNJGOWkoahipB0LgkKfkZY/vM781gMRkkb8To1i4oaoz2lAMVJa8szDYaUbIjXwg/Rx7NHTmc/9iWeW7ao9gbVInJyUIUfdM7+7vQgnIeEKMyRlx7Fj5aZIKIoZGZe6iSQxwkPUJx1NOQqJdNPJFWPrWCs9K4iEflxZE3W2I0WhlKPQ15XZknLey8T/vE6igks3pTxOFOF4OihImKUiK4vE6lFBsGIjTRAWVO9q4QESCCsdXEmH4MyfvEiaZ1XHrjq35+XaVR5HEQ7gCCrgwAXU4Abq0AAMT/ACb/BuPBuvxofxOS0tGHnPPvyB8fULwAaYuA==</latexit><latexit sha1_base64="whdXxzTKIxdcMCEgOAZG0u7Sxfk=">AAACBXicbVDLSsNAFL2pr1pfUZe6CBahgpREBF0W3bisYB/QhjCZTtqxk0mYmYgldOPGX3HjQhG3/oM7/8ZJm0VtPTBw5px7ufceP2ZUKtv+MQpLyyura8X10sbm1vaOubvXlFEiMGngiEWi7SNJGOWkoahipB0LgkKfkZY/vM781gMRkkb8To1i4oaoz2lAMVJa8szDYaUbIjXwg/Rx7NHTmc/9iWeW7ao9gbVInJyUIUfdM7+7vQgnIeEKMyRlx7Fj5aZIKIoZGZe6iSQxwkPUJx1NOQqJdNPJFWPrWCs9K4iEflxZE3W2I0WhlKPQ15XZknLey8T/vE6igks3pTxOFOF4OihImKUiK4vE6lFBsGIjTRAWVO9q4QESCCsdXEmH4MyfvEiaZ1XHrjq35+XaVR5HEQ7gCCrgwAXU4Abq0AAMT/ACb/BuPBuvxofxOS0tGHnPPvyB8fULwAaYuA==</latexit><latexit sha1_base64="whdXxzTKIxdcMCEgOAZG0u7Sxfk=">AAACBXicbVDLSsNAFL2pr1pfUZe6CBahgpREBF0W3bisYB/QhjCZTtqxk0mYmYgldOPGX3HjQhG3/oM7/8ZJm0VtPTBw5px7ufceP2ZUKtv+MQpLyyura8X10sbm1vaOubvXlFEiMGngiEWi7SNJGOWkoahipB0LgkKfkZY/vM781gMRkkb8To1i4oaoz2lAMVJa8szDYaUbIjXwg/Rx7NHTmc/9iWeW7ao9gbVInJyUIUfdM7+7vQgnIeEKMyRlx7Fj5aZIKIoZGZe6iSQxwkPUJx1NOQqJdNPJFWPrWCs9K4iEflxZE3W2I0WhlKPQ15XZknLey8T/vE6igks3pTxOFOF4OihImKUiK4vE6lFBsGIjTRAWVO9q4QESCCsdXEmH4MyfvEiaZ1XHrjq35+XaVR5HEQ7gCCrgwAXU4Abq0AAMT/ACb/BuPBuvxofxOS0tGHnPPvyB8fULwAaYuA==</latexit><latexit sha1_base64="whdXxzTKIxdcMCEgOAZG0u7Sxfk=">AAACBXicbVDLSsNAFL2pr1pfUZe6CBahgpREBF0W3bisYB/QhjCZTtqxk0mYmYgldOPGX3HjQhG3/oM7/8ZJm0VtPTBw5px7ufceP2ZUKtv+MQpLyyura8X10sbm1vaOubvXlFEiMGngiEWi7SNJGOWkoahipB0LgkKfkZY/vM781gMRkkb8To1i4oaoz2lAMVJa8szDYaUbIjXwg/Rx7NHTmc/9iWeW7ao9gbVInJyUIUfdM7+7vQgnIeEKMyRlx7Fj5aZIKIoZGZe6iSQxwkPUJx1NOQqJdNPJFWPrWCs9K4iEflxZE3W2I0WhlKPQ15XZknLey8T/vE6igks3pTxOFOF4OihImKUiK4vE6lFBsGIjTRAWVO9q4QESCCsdXEmH4MyfvEiaZ1XHrjq35+XaVR5HEQ7gCCrgwAXU4Abq0AAMT/ACb/BuPBuvxofxOS0tGHnPPvyB8fULwAaYuA==</latexit> S
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Figure 1.1: Kernel PCA and SimEc both aim to project the data points into an embedding
space where the target similarities can be approximated by the scalar product of the
embedding vectors, but kernel PCA needs to compute a kernel map, i.e., the similarities to
the training data points, to be able to embed new test samples.

In the remainder of this chapter, we present a motivating example to illustrate the
shortcomings of spectral (i.e. SVD-based) embedding methods alleviated by SimEcs and
discuss other related work. The SimEc architecture is then described in more detail in
Chapter 2, including ways to train the model efficiently on large datasets and how to predict
arbitrary pairwise relations 𝑅 ∈ R𝑚×𝑛. In Chapter 3, we demonstrate that SimEcs can
compute comparable similarity preserving embeddings as spectral methods (e.g. kPCA),
while additionally being able to learn a mapping into the embedding space for target
similarities of unknown origin or containing missing values, as well as to predict non-metric
similarities and multiple similarities at once. In Chapter 4, we explore the possibilities of
using SimEcs for practical pairwise relation prediction tasks such as link prediction and
recommender systems. In Chapter 5, we explain the pairwise relation predictions made by

1For greater clarity, these equations are written in matrix notation, while of course, like other NNs,
SimEcs are trained efficiently using a mini-batch stochastic gradient descent based optimization procedure.
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SimEcs using layer-wise relevance propagation. In Chapter 6, we demonstrate how SimEcs
can be used to pre-train different neural network architectures and thereby improve their
generalization performance in supervised learning tasks. In Chapter 7, we show how a variant
of SimEc, called Context Encoder (ConEc), extends the word2vec language model to learn
better word embeddings for words with multiple meanings as well as to create embeddings
for out-of-vocabulary words. Chapter 8 then concludes this thesis with a summary of the
results.

1.1 Motivation: The flowerpot experiment
The following simple example illustrates the benefits of SimEcs compared to existing spectral
dimensionality reduction methods such as kPCA. In the “flowerpot experiment”, Gati and
Tversky [61] showed 30 subjects images of 16 flowerpots with plants differing in their size and
leaf shapes and asked them to rate their similarities, resulting in a 16 × 16 similarity matrix
(Fig. 1.2). For our experiments, we randomly selected two of the flowerpots (5 & 15) as test
examples and pretend that they have not been rated, i.e., the corresponding two rows and
columns were deleted from the similarity matrix. Additionally, we created a five-dimensional
feature vector for each of the 16 flowerpots, where the first feature represents the stem size
of the plant, the second feature the leaf shape, and the three other features are just random
noise.2

human similarity
judgements
(30 subjects)

create feature vectors with noise dimensions

test samples

Figure 1.2: Flowerpot experiment [61].

Given the noisy feature vectors and the 14 × 14 similarity matrix, the task is now to find
lower dimensional representations for all 16 data points, such that in the lower dimensional
space two flowerpots are represented close to each other if the humans had judged them as
similar.

One possibility to get such lower dimensional embeddings would be to perform an
eigendecomposition of the human similarity matrix (Fig. 1.3). In the resulting embedding
space, the training points are aligned with respect to stem length and leaf shape of the
plants, which corresponds to the human similarity judgments. However, as the similarity
ratings for the two new test samples are not available, low dimensional representations for
those new points can not be created.3

2If the subjects were originally given noisy images to compare, they would most likely ignore the noise
and still base their similarity judgments only on the meaningful features.

3At least not without learning an additional regression model to get a mapping from the input features to
the embedding space.
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kPCA

training

kPCA

test

no test embedding!

Figure 1.3: Flowerpot embeddings obtained for the training samples by decomposing the
given matrix with human similarity ratings.
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kPCA

training

hxi, xji

kPCA

test

hxi, xji

Figure 1.4: Flowerpot embeddings obtained using linear kernel PCA.
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Another possibility would be to use the feature vectors that were created for each data
point to compute a (in this example linear) kernel matrix and then compute the kPCA
embeddings from this matrix (Fig. 1.4). However, since the feature vectors are noisy, the
computed kernel matrix does not resemble the human ratings from the original similarity
matrix and in the resulting embedding the data points are arranged randomly. Since the
kernel map (i.e. the similarities to the training data points) can be computed using the
feature vectors associated with the test points, it is possible to project the new data points
into the embedding space as well. However, just as the embedded training points, the test
points’ embeddings fail to preserve the given human target similarities.

5

15

SimEc

training

1            2            3            4           6            7            8            9           10         11          12         13         14          16          

SimEc

test

Figure 1.5: Flowerpot embeddings obtained using a linear SimEc.

Similarity Encoders, on the other hand, can easily handle the task posed in the flowerpot
experiment (Fig. 1.5). During training, the SimEc network gets as input the feature vectors
of the training points and as targets the human similarity matrix. It then learns to associate
the relevant input feature dimensions with the target similarities and is able to create
meaningful embeddings for the training samples. After training, the feature vectors of new
test points are used as input to the trained SimEc network and it then projects them into
the lower dimensional space as well. In this way, a SimEc is able to create low dimensional
embeddings for all data points that preserve the given, arbitrary target similarities.

1.2 Related work

In this section, we discuss several other approaches to learning similarity preserving em-
beddings and predicting pairwise relations. Further related work specific to individual
application areas is additionally summarized in the respective chapters on these topics.
SimEcs are conceptually related to metric learning models, while implementing a matrix
factorization (MF) objective. Both approaches, as well as other hybrid methods, are dis-
cussed in detail below, while Table 1.1 gives an overview of the respective learning problems
related to SimEcs.

Matrix Factorization (MF) + Regression The optimal (in a least squares sense) low
dimensional embeddings to factorize a matrix 𝑅 or 𝑆 can be found by computing a singular
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Table 1.1: High-level summary of related work.

Approach Learns... by...

MF & Reg. a) 𝑌 𝑌 ⊤ ≈ 𝑆 Eigendecomposition
b) 𝑓(𝑋) ≈ 𝑌 min ‖𝑌 − 𝑓(𝑋)‖2

𝐹

Metric L. 𝑓(x𝑖, x𝑗) ≈ 𝑆𝑖𝑗 or min
∑︀

(𝑆𝑖𝑗 − 𝑓(x𝑖, x𝑗))2

𝑓(x𝑖, x+
𝑖 ) > 𝑓(x𝑖, x−

𝑖 ) min
∑︀

max{0, 1 − 𝑓(x𝑖, x+
𝑖 ) + 𝑓(x𝑖, x−

𝑖 )}

Hybrid 𝑓(𝑋) = 𝑌 min ‖𝑆 − 𝑌 𝑌 ⊤‖2
𝐹

SimEc 𝑓(𝑋) = 𝑓 ′(𝑋)𝑊𝑙 ≈ 𝑆 min ‖𝑆 − 𝑓 ′(𝑋)𝑊𝑙‖2
𝐹 + 𝜆‖𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙‖2
𝐹

⇒ 𝑓 ′(𝑋) = 𝑌 : 𝑌 𝑌 ⊤ ≈ 𝑆

value decomposition (SVD) or eigendecomposition of the matrix and using the 𝑑 largest
eigenvalues and corresponding eigenvectors to compute a low rank approximation of the
matrix. However, performing an SVD is computationally very expensive for large matrices,
and in these cases requires the use of approximate iterative methods [96]. Furthermore,
an exact decomposition can not be computed for matrices that contain missing values, in
which case weighted error functions need to be employed [88]. Back in 1982, a simple neural
network (NN) was conceived to compute a PCA [144] and in 1992, NNs were proposed as a
method to efficiently compute the SVD [40] or eigendecomposition [41] of a matrix while
naturally dealing with missing values in the target matrix. As discussed in more detail in
Section 2.1, SimEcs are an extension of these NN architectures and retain their benefits.
While the factorization of a matrix may provide suitable embedding vectors for the given
training points, as illustrated with the flowerpot experiment, embedding new test points
can be tricky. If the kernel map for the test points can be computed, OOS solutions are
readily available [25]. For some support vector kernel functions [135, 174, 198], it is even
possible to use a manually devised, kernel-specific random mapping from the original input
to the kernel feature space to create similarity preserving embeddings for large datasets
very efficiently [153]. By interpreting this mapping as a neural network, it can be further
fine-tuned to the dataset at hand [5]. However, if instead target similarities of unknown
origin are provided, e.g., based on human similarity judgments, it becomes necessary to train
an additional regression model to learn the mapping from the original input feature space
to the embeddings computed by the spectral method in order to compute OOS solutions
[121, 188]. This not only requires an additional computational effort, but the best similarity
preserving embeddings that can be realized as a transformation of the original feature vectors
might not necessarily correspond to the embeddings found by the spectral method, thereby
losing some information in the mapping step, resulting in unnecessarily poor similarity
approximations [33].4 SimEcs, on the other hand, learn the mapping function to create
OOS solutions and the factorization of the similarity matrix together and therefore do not
have these problems.

4For example, eigenvalue 𝑑 of 𝑆 might only be slightly larger than eigenvalue 𝑑 + 1, however, the 𝑑th
eigenvector might contain information that is not present in the original feature vectors, while the information
encoded in eigenvector 𝑑 + 1 can be preserved by a transformation of the feature vectors. By learning
the mapping and factorization together, it is possible to create a 𝑑-dimensional embedding that instead
retains the information from the 𝑑 + 1 eigenvalue and -vector, thereby resulting in an only slightly worse
approximation of 𝑆 compared to the spectral method, while not losing any accuracy in the mapping step.
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Metric Learning Metric or similarity learning methods aim to learn a function 𝑓(x𝑖, x𝑗)
that approximates a given similarity or other pairwise relation between the two inputs x𝑖

and x𝑗 [20, 102, 206]. The main distinction between different metric learning approaches
can be drawn based on how the training data is provided, which is also directly related to
the objective function optimized by the models. In a regression setting, training samples
are provided as triplets (x𝑖, x𝑗 , 𝑆𝑖𝑗), where 𝑆𝑖𝑗 corresponds to the target value that should
be predicted for the input pair (x𝑖, x𝑗). Instead of a similarity between two data points of
the same type, this setup can also be used to predict a numerical pairwise relation between
two different kinds of inputs, e.g., the star rating for a movie by a specific user. If exact
numerical values can not be provided, the learning problem can instead be formulated in
terms of a classification problem: here the training samples come as pairs of positive (x𝑖, x+

𝑖 )
and negative (x𝑖, x−

𝑖 ) examples, and 𝑓(x𝑖, x𝑗) should predict larger values for the positive
than the negative pairs [46, 57, 87, 143]. This setup is again common in recommender
systems, where often only implicit feedback is available (e.g. a song a user has listened to
compared to songs he did not listen to). Closely related to the classification setup is the
triplet learning or ranking approach [11, 34, 175, 199], where similarity data is collected
by asking “Is A more similar to B or to C?”, resulting in the triplets (x𝑖, x+

𝑖 , x−
𝑖 ), where

again the predictions for (x𝑖, x+
𝑖 ) should be larger than for (x𝑖, x−

𝑖 ). This kind of similarity
data is generally easier to collect from human subjects, who often have difficulties assigning
consistent numerical similarity scores to different pairs of samples. What all three metric
learning setups have in common is that the training data is usually very sparse, i.e., instead
of a dense similarity matrix, a training set typically only contains the pairwise relations for
comparatively few pairs of points. This often lies in the nature of the problem, e.g., if user
data is collected.
Most early metric learning models were comparatively simple, e.g., a bilinear function in the
form of 𝑓(x𝑖, x𝑗) = x𝑖𝑊x⊤

𝑗 [34, 69, 202] or its kernelized version [124, 127]. Nowadays, the
task is often solved using neural networks [143, 199], either in the form of a siamese network
(i.e. two networks with shared parameters) to predict the similarity between two inputs of
the same type [30, 70], or two different networks to account for structural differences in the
input features (e.g. users and items) [205]. The pairwise relation can either be predicted
directly by concatenating input vectors or fusing the two networks at some layer [76], or
by using the networks to project both inputs into the same embedding space, where, for
example, the predicted relation can then be computed as the cosine similarity between
the two embedding vectors [90, 207]. Computing the similarity with a simple dot product
speeds up the computation for larger sets of points since a NN only needs to be applied
once to each input to map it to the corresponding similarity preserving embedding (like a
preprocessing step) instead of predicting the pairwise relations with the network(s) directly
from all pairs of inputs.
With a fast training procedure for target pairwise relation matrices where the number of
non-zero elements is much smaller than 𝑚 · 𝑛 and the benefit of learning multiple mapping
functions simultaneously for projecting different kinds of feature vectors into the same
embedding space, these neural network based metric learning approaches are very useful for
many applications scenarios. SimEcs, on the other hand, are designed to efficiently factorize
dense matrices (while being able to handle missing values in the target matrix) and, while
they rely on only a single neural network to map input features into a similarity preserving
embedding space, we will discuss in the next chapter how they can be trained to predict
multiple pairwise relations at once based on the same embedding.
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Hybrid approaches The hybrid approaches discussed in the following are the models
most closely related to SimEcs. Similar to the NN metric learning models, they consist of
one or two neural networks that map some input features into an embedding space where
the dot product or cosine similarity predicts the target relation, but they are trained to
approximate (patches of) a dense pairwise relation or similarity matrix instead of sparse
samples. While we only elaborate on work about single neural network models learning
similarity preserving embeddings, in accordance with the SimEc architecture, two networks
can be trained accordingly.
A single neural network is trained to map the points into a similarity preserving embedding
space by computing the embeddings for a batch of training samples and then comparing the
pairwise similarities (or distances) of these embedded points against the target similarities to
compute the error used in the backpropagation procedure to tune the network’s parameters.
With this approach, extensions for t-SNE [118] and other classic manifold learning methods
[31, 117] were developed, which enable the computation of OOS solutions. A particularly
interesting realization of this approach are deep kernelized auto-encoders [93], which train an
auto-encoder network with an additional objective to not only minimize the reconstruction
error of the data points themselves, but also the mismatch between the dot product of a
batch of embedding vectors and the corresponding block from a kernel matrix. The decoder
part of the auto-encoder network thereby also provides a mapping from the embedding
space back to the original feature space, which can be used to compute the pre-image of an
embedding vector [128]. By directly minimizing ‖𝑆 − 𝑌 𝑌 ⊤‖, these methods successfully
learn similarity preserving embeddings that factorize the given target matrix. However,
because they always operate on batches of points, these methods scale quadratically and
efficient training is highly dependent on the choice of the batch size, requiring either lots of
memory or many combinations of randomly chosen samples to cover all pairwise similarities.
In an effort to improve on this, e.g., the method of auxiliary coordinates [33] can be used to
train a NN in an alternating fashion, in one step optimizing the mapping from the input
to the embedding space, in the other step improving the similarity approximation of the
embedding itself [52, 216]. As we will see in Section 2.2, while the weight matrix of the last
layer of the SimEc architecture could be interpreted as a set of auxiliary coordinates as well,
training a SimEc network does not require alternating steps in the optimization procedure
and the training time still scales linearly with the number of training samples.
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2
THE SIMILARITY ENCODER MODEL

In this chapter, we first describe how neural networks (NNs) can realize the computation
of an SVD of a rectangular matrix 𝑅 ∈ R𝑚×𝑛 [40] and the eigendecomposition of a square
symmetric matrix 𝑆 ∈ R𝑚×𝑚 [41]. Then we detail how these models can be extended to
arrive at the Similarity Encoder (SimEc) neural network architecture [86].

2.1 Matrix factorization with neural networks
With singular value decomposition (SVD), a matrix 𝑅 ∈ R𝑚×𝑛 can be decomposed as

𝑅 = 𝑈Σ𝑉 ⊤,

where 𝑈 ∈ R𝑚×𝑚 and 𝑉 ∈ R𝑛×𝑛 contain the eigenvectors of 𝑅𝑅⊤ and 𝑅⊤𝑅 respectively,
while the corresponding eigenvalues are stored in Σ ∈ R𝑚×𝑛. By using only the 𝑑 largest
eigenvalues and corresponding eigenvectors, a low rank approximation of 𝑅 can be obtained,
i.e., 𝑅 ≈ 𝑈[:,:𝑑]Σ[:𝑑,:𝑑]𝑉

⊤
[:𝑑,:].

By setting 𝑊1 = 𝑈[:,:𝑑]
√︀

Σ[:𝑑,:𝑑] and 𝑊2 =
√︀

Σ[:𝑑,:𝑑]𝑉
⊤

[:𝑑,:], the low rank approximation of
𝑅 can be rewritten as

𝑅 ≈ 𝑊1𝑊2 = 𝐼𝑚𝑊1𝑊2,

where 𝐼𝑚 ∈ R𝑚×𝑚 is the identity matrix.
A simple feed forward neural network 𝑓(x𝑖) can now be constructed with two layers

defined by the weight matrices 𝑊1 ∈ R𝑚×𝑑 and 𝑊2 ∈ R𝑑×𝑛 and without any non-linear
activation functions. Given some input vector x𝑖 ∈ R𝑚, the first layer computes

𝑓 ′(x𝑖) = x𝑖𝑊1 = y𝑖,

where we call y𝑖 ∈ R𝑑 the embedding of the 𝑖th data point x𝑖, with 𝑖 ∈ {1, ..., 𝑚}. With
both layers, the network computes

𝑓(x𝑖) = 𝑓 ′(x𝑖)𝑊2 = (x𝑖𝑊1)𝑊2 = y𝑖𝑊2 = r̂𝑖, (2.1)

the 𝑛-dimensional vector r̂𝑖. Expressed in matrix notation, given an input matrix 𝑋 ∈ R𝑚×𝑚

the network first computes an embedding matrix 𝑌 ∈ R𝑚×𝑑 and from it the output
𝑅̂ ∈ R𝑚×𝑛:

𝑓(𝑋) = 𝑓 ′(𝑋)𝑊2 = (𝑋𝑊1)𝑊2 = 𝑌 𝑊2 = 𝑅̂.
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If the network is trained (with backpropagation using a mini-batch stochastic gradient
descent optimization procedure) to minimize the mean squared error of its output to a
target matrix 𝑅, i.e.

min ‖𝑅 − 𝑓(𝑋)‖2
𝐹 = min ‖𝑅 − 𝑋𝑊1𝑊2‖2

𝐹 ,

while using as input to the network the identity matrix, i.e., 𝑋 = 𝐼𝑚, then once the weights
of the network have converged to a local optimum, 𝑊1𝑊2 is a low rank approximation of
the matrix 𝑅 ∈ R𝑚×𝑛 [40].

When computing an SVD of a matrix, the eigenvectors stored in the matrices 𝑈 and
𝑉 are orthogonal (i.e. 𝑉 ⊤𝑉 = 𝐼𝑛), which can be added as a further constraint to the cost
function:

min ‖𝑅 − 𝐼𝑚𝑊1𝑊2‖2
𝐹 + 𝜆

⃦⃦⃦
𝐼𝑑 ∘ 𝑊2𝑊 ⊤

2 − 𝑊2𝑊 ⊤
2

⃦⃦⃦2

𝐹
,

where 𝜆 is a hyperparameter to control the strength of this regularization.1
Should 𝑅 contain missing values, then the error used in the backpropagation procedure

to tune the network’s parameters is only computed with respect to the available entries
of the matrix. In this case especially, it can be advantageous to additionally use other
regularization techniques such as adding ℓ2 regularization terms to the cost function.

As the decomposition of a square symmetric matrix 𝑆 ∈ R𝑚×𝑚 into its eigenvalues and
-vectors is a special case of an SVD (where 𝑉 = 𝑈), the same NN can be used, only with an
additional constraint to learn a symmetric factorization, i.e., to encourage 𝐼𝑚𝑊1 = 𝑌 = 𝑊 ⊤

2 .
This can be achieved with the cost function

min ‖𝑆 − 𝐼𝑚𝑊1𝑊2‖2
𝐹 + 𝜆

⃦⃦⃦
𝑆 − 𝑊 ⊤

2 𝑊2

⃦⃦⃦2

𝐹
,

where, after convergence, 𝑌 𝑊2 ≈ 𝑊 ⊤
2 𝑊2 ≈ 𝑌 𝑌 ⊤ ≈ 𝑆. This results in an embedding

𝑌 ∈ R𝑚×𝑑 similar to the eigenvector based embedding found by kernel PCA.

2.2 Similarity Encoders

Now that the factorization of a matrix 𝑅 or 𝑆 is expressed in terms of optimizing a neural
network, this setup can be further extended to yield our SimEc architecture. In particular,
the first linear layer of the neural network, 𝑓 ′(x𝑖) = x𝑖𝑊1 = y𝑖, can be replaced by any kind
of (deep) neural network to map arbitrary feature vectors x𝑖 ∈ R𝐷 ∀𝑖 ∈ {1, ..., 𝑚} into the
low dimensional embedding space (Fig. 2.1). Equation (2.1) then becomes

𝑓(x𝑖) = 𝑓 ′(x𝑖)𝑊𝑙 = y𝑖𝑊𝑙 = r̂𝑖,

where again y𝑖 ∈ R𝑑 is the embedding of the 𝑖th data point x𝑖 and 𝑊𝑙 ∈ R𝑑×𝑛 is the weight
matrix of the last (linear) layer of the full network 𝑓(x𝑖), while 𝑓 ′(x𝑖) could, for example,
be a convolutional neural network (CNN) mapping images into the embedding space. This
Similarity Encoder network is again trained to minimize ‖𝑅 − 𝑓(𝑋)‖2

𝐹 , thereby learning
the factorization 𝑅 ≈ 𝑓 ′(𝑋)𝑊𝑙 = 𝑌 𝑊𝑙.

1While this will encourage orthogonal rows in 𝑊2, since the rows do not need to have unit length, the
values on the diagonal of 𝑊2𝑊 ⊤

2 should not be penalized. This kind of regularization is usually only necessary
if 𝑑 is chosen to be greater than the number of significant eigenvalues. Please note that the rows of 𝑊2 are
not necessarily ordered by the magnitude of the corresponding eigenvalues.
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yi 2 Rd

ri 2 Rn
<latexit sha1_base64="9gJlXKJBel8VZeTJRJNJa1J1k+g=">AAACBXicbVBNS8NAEJ3Ur1q/qh5FWCyCp5KIoN6KXjxWMbbQxLLZbtqlm03Y3Qgl5OTFv+LFg4pX/4M3/42btgdtfTDweG+GmXlBwpnStv1tlRYWl5ZXyquVtfWNza3q9s6dilNJqEtiHst2gBXlTFBXM81pO5EURwGnrWB4WfitByoVi8WtHiXUj3BfsJARrI3Ure57EdaDIMxk3mXIYwJNhCC7ye+NX7Pr9hhonjhTUoMpmt3ql9eLSRpRoQnHSnUcO9F+hqVmhNO84qWKJpgMcZ92DBU4osrPxm/k6NAoPRTG0pTQaKz+nshwpNQoCkxncaOa9QrxP6+T6vDMz5hIUk0FmSwKU450jIpMUI9JSjQfGYKJZOZWRAZYYqJNchUTgjP78jxxj+vndfv6pNa4mKZRhj04gCNw4BQacAVNcIHAIzzDK7xZT9aL9W59TFpL1nRmF/7A+vwB4mSY8w==</latexit><latexit sha1_base64="9gJlXKJBel8VZeTJRJNJa1J1k+g=">AAACBXicbVBNS8NAEJ3Ur1q/qh5FWCyCp5KIoN6KXjxWMbbQxLLZbtqlm03Y3Qgl5OTFv+LFg4pX/4M3/42btgdtfTDweG+GmXlBwpnStv1tlRYWl5ZXyquVtfWNza3q9s6dilNJqEtiHst2gBXlTFBXM81pO5EURwGnrWB4WfitByoVi8WtHiXUj3BfsJARrI3Ure57EdaDIMxk3mXIYwJNhCC7ye+NX7Pr9hhonjhTUoMpmt3ql9eLSRpRoQnHSnUcO9F+hqVmhNO84qWKJpgMcZ92DBU4osrPxm/k6NAoPRTG0pTQaKz+nshwpNQoCkxncaOa9QrxP6+T6vDMz5hIUk0FmSwKU450jIpMUI9JSjQfGYKJZOZWRAZYYqJNchUTgjP78jxxj+vndfv6pNa4mKZRhj04gCNw4BQacAVNcIHAIzzDK7xZT9aL9W59TFpL1nRmF/7A+vwB4mSY8w==</latexit><latexit sha1_base64="9gJlXKJBel8VZeTJRJNJa1J1k+g=">AAACBXicbVBNS8NAEJ3Ur1q/qh5FWCyCp5KIoN6KXjxWMbbQxLLZbtqlm03Y3Qgl5OTFv+LFg4pX/4M3/42btgdtfTDweG+GmXlBwpnStv1tlRYWl5ZXyquVtfWNza3q9s6dilNJqEtiHst2gBXlTFBXM81pO5EURwGnrWB4WfitByoVi8WtHiXUj3BfsJARrI3Ure57EdaDIMxk3mXIYwJNhCC7ye+NX7Pr9hhonjhTUoMpmt3ql9eLSRpRoQnHSnUcO9F+hqVmhNO84qWKJpgMcZ92DBU4osrPxm/k6NAoPRTG0pTQaKz+nshwpNQoCkxncaOa9QrxP6+T6vDMz5hIUk0FmSwKU450jIpMUI9JSjQfGYKJZOZWRAZYYqJNchUTgjP78jxxj+vndfv6pNa4mKZRhj04gCNw4BQacAVNcIHAIzzDK7xZT9aL9W59TFpL1nRmF/7A+vwB4mSY8w==</latexit>

r̂i 2 Rn
<latexit sha1_base64="kW3Dvp+L4LuUzxv1udVzZdZOyQk=">AAACCnicbVA9T8MwFHwpX6V8FRhZrFZITFWCkICtgoWxIEIrNaFyXKe16jiR7SBVUXYW/goLAyBWfgEb/wan7QAtJ1k63d2T37sg4Uxp2/62SkvLK6tr5fXKxubW9k51d+9Oxakk1CUxj2UnwIpyJqirmea0k0iKo4DTdjC6LPz2A5WKxeJWjxPqR3ggWMgI1kbqVWtehPUwCDNviDWSeY8hjwk0VYPsJr83obrdsCdAi8SZkTrM0OpVv7x+TNKICk04Vqrr2In2Myw1I5zmFS9VNMFkhAe0a6jAEVV+NrklR4dG6aMwluYJjSbq74kMR0qNo8Akix3VvFeI/3ndVIdnfsZEkmoqyPSjMOVIx6goBvWZpETzsSGYSGZ2RWSIJSba1FcxJTjzJy8S97hx3rCvT+rNi1kbZTiAGhyBA6fQhCtogQsEHuEZXuHNerJerHfrYxotWbOZffgD6/MHb/ma3g==</latexit><latexit sha1_base64="kW3Dvp+L4LuUzxv1udVzZdZOyQk=">AAACCnicbVA9T8MwFHwpX6V8FRhZrFZITFWCkICtgoWxIEIrNaFyXKe16jiR7SBVUXYW/goLAyBWfgEb/wan7QAtJ1k63d2T37sg4Uxp2/62SkvLK6tr5fXKxubW9k51d+9Oxakk1CUxj2UnwIpyJqirmea0k0iKo4DTdjC6LPz2A5WKxeJWjxPqR3ggWMgI1kbqVWtehPUwCDNviDWSeY8hjwk0VYPsJr83obrdsCdAi8SZkTrM0OpVv7x+TNKICk04Vqrr2In2Myw1I5zmFS9VNMFkhAe0a6jAEVV+NrklR4dG6aMwluYJjSbq74kMR0qNo8Akix3VvFeI/3ndVIdnfsZEkmoqyPSjMOVIx6goBvWZpETzsSGYSGZ2RWSIJSba1FcxJTjzJy8S97hx3rCvT+rNi1kbZTiAGhyBA6fQhCtogQsEHuEZXuHNerJerHfrYxotWbOZffgD6/MHb/ma3g==</latexit><latexit sha1_base64="kW3Dvp+L4LuUzxv1udVzZdZOyQk=">AAACCnicbVA9T8MwFHwpX6V8FRhZrFZITFWCkICtgoWxIEIrNaFyXKe16jiR7SBVUXYW/goLAyBWfgEb/wan7QAtJ1k63d2T37sg4Uxp2/62SkvLK6tr5fXKxubW9k51d+9Oxakk1CUxj2UnwIpyJqirmea0k0iKo4DTdjC6LPz2A5WKxeJWjxPqR3ggWMgI1kbqVWtehPUwCDNviDWSeY8hjwk0VYPsJr83obrdsCdAi8SZkTrM0OpVv7x+TNKICk04Vqrr2In2Myw1I5zmFS9VNMFkhAe0a6jAEVV+NrklR4dG6aMwluYJjSbq74kMR0qNo8Akix3VvFeI/3ndVIdnfsZEkmoqyPSjMOVIx6goBvWZpETzsSGYSGZ2RWSIJSba1FcxJTjzJy8S97hx3rCvT+rNi1kbZTiAGhyBA6fQhCtogQsEHuEZXuHNerJerHfrYxotWbOZffgD6/MHb/ma3g==</latexit>

Wl 2 Rd⇥n
<latexit sha1_base64="g6DrYooGf4Zrp+vvGCvEkCTgwds=">AAACCHicbVBNS8NAEN34WetX1aOXxSJ4KqkI6q3oxWMVYwtNDJvNpl262YTdiVBCrl78K148qHj1J3jz37hpe9DWBwOP92aYmRekgmuw7W9rYXFpeWW1slZd39jc2q7t7N7pJFOUOTQRieoGRDPBJXOAg2DdVDESB4J1guFl6XcemNI8kbcwSpkXk77kEacEjOTXcMfPRYFdLrEbExgEQX5T3OehCzxmGsvCr9Xthj0GnifNKamjKdp+7csNE5rFTAIVROte007By4kCTgUrqm6mWUrokPRZz1BJzB4vH39S4EOjhDhKlCkJeKz+nshJrPUoDkxnea2e9UrxP6+XQXTm5VymGTBJJ4uiTGBIcBkLDrliFMTIEEIVN7diOiCKUDDhVU0IzdmX54lz3Dhv2Ncn9dbFNI0K2kcH6Ag10SlqoSvURg6i6BE9o1f0Zj1ZL9a79TFpXbCmM3voD6zPHxGgmiU=</latexit><latexit sha1_base64="g6DrYooGf4Zrp+vvGCvEkCTgwds=">AAACCHicbVBNS8NAEN34WetX1aOXxSJ4KqkI6q3oxWMVYwtNDJvNpl262YTdiVBCrl78K148qHj1J3jz37hpe9DWBwOP92aYmRekgmuw7W9rYXFpeWW1slZd39jc2q7t7N7pJFOUOTQRieoGRDPBJXOAg2DdVDESB4J1guFl6XcemNI8kbcwSpkXk77kEacEjOTXcMfPRYFdLrEbExgEQX5T3OehCzxmGsvCr9Xthj0GnifNKamjKdp+7csNE5rFTAIVROte007By4kCTgUrqm6mWUrokPRZz1BJzB4vH39S4EOjhDhKlCkJeKz+nshJrPUoDkxnea2e9UrxP6+XQXTm5VymGTBJJ4uiTGBIcBkLDrliFMTIEEIVN7diOiCKUDDhVU0IzdmX54lz3Dhv2Ncn9dbFNI0K2kcH6Ag10SlqoSvURg6i6BE9o1f0Zj1ZL9a79TFpXbCmM3voD6zPHxGgmiU=</latexit><latexit sha1_base64="g6DrYooGf4Zrp+vvGCvEkCTgwds=">AAACCHicbVBNS8NAEN34WetX1aOXxSJ4KqkI6q3oxWMVYwtNDJvNpl262YTdiVBCrl78K148qHj1J3jz37hpe9DWBwOP92aYmRekgmuw7W9rYXFpeWW1slZd39jc2q7t7N7pJFOUOTQRieoGRDPBJXOAg2DdVDESB4J1guFl6XcemNI8kbcwSpkXk77kEacEjOTXcMfPRYFdLrEbExgEQX5T3OehCzxmGsvCr9Xthj0GnifNKamjKdp+7csNE5rFTAIVROte007By4kCTgUrqm6mWUrokPRZz1BJzB4vH39S4EOjhDhKlCkJeKz+nshJrPUoDkxnea2e9UrxP6+XQXTm5VymGTBJJ4uiTGBIcBkLDrliFMTIEEIVN7diOiCKUDDhVU0IzdmX54lz3Dhv2Ncn9dbFNI0K2kcH6Ag10SlqoSvURg6i6BE9o1f0Zj1ZL9a79TFpXbCmM3voD6zPHxGgmiU=</latexit>

f 0(xi) = yi
<latexit sha1_base64="C48J2WRG7mRvTFTxVbJ6mQHFt4E=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCxi3ZREBN0IRTcuK9gHtCFMppN26OTBzEQsoUs3/oobF4q49RPc+TdO2gjaemDg3HPuZe49XsyZVJb1ZRQWFpeWV4qrpbX1jc0tc3unKaNEENogEY9E28OSchbShmKK03YsKA48Tlve8CrzW3dUSBaFt2oUUyfA/ZD5jGClJdfc948q3QCrgeen92OXHaML9FOPdO2aZatqTYDmiZ2TMuSou+ZntxeRJKChIhxL2bGtWDkpFooRTselbiJpjMkQ92lH0xAHVDrp5JAxOtRKD/mR0C9UaKL+nkhxIOUo8HRntqOc9TLxP6+TKP/cSVkYJ4qGZPqRn3CkIpSlgnpMUKL4SBNMBNO7IjLAAhOlsyvpEOzZk+dJ86RqW1X75rRcu8zjKMIeHEAFbDiDGlxDHRpA4AGe4AVejUfj2Xgz3qetBSOf2YU/MD6+Ae8EmUk=</latexit><latexit sha1_base64="C48J2WRG7mRvTFTxVbJ6mQHFt4E=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCxi3ZREBN0IRTcuK9gHtCFMppN26OTBzEQsoUs3/oobF4q49RPc+TdO2gjaemDg3HPuZe49XsyZVJb1ZRQWFpeWV4qrpbX1jc0tc3unKaNEENogEY9E28OSchbShmKK03YsKA48Tlve8CrzW3dUSBaFt2oUUyfA/ZD5jGClJdfc948q3QCrgeen92OXHaML9FOPdO2aZatqTYDmiZ2TMuSou+ZntxeRJKChIhxL2bGtWDkpFooRTselbiJpjMkQ92lH0xAHVDrp5JAxOtRKD/mR0C9UaKL+nkhxIOUo8HRntqOc9TLxP6+TKP/cSVkYJ4qGZPqRn3CkIpSlgnpMUKL4SBNMBNO7IjLAAhOlsyvpEOzZk+dJ86RqW1X75rRcu8zjKMIeHEAFbDiDGlxDHRpA4AGe4AVejUfj2Xgz3qetBSOf2YU/MD6+Ae8EmUk=</latexit><latexit sha1_base64="C48J2WRG7mRvTFTxVbJ6mQHFt4E=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCxi3ZREBN0IRTcuK9gHtCFMppN26OTBzEQsoUs3/oobF4q49RPc+TdO2gjaemDg3HPuZe49XsyZVJb1ZRQWFpeWV4qrpbX1jc0tc3unKaNEENogEY9E28OSchbShmKK03YsKA48Tlve8CrzW3dUSBaFt2oUUyfA/ZD5jGClJdfc948q3QCrgeen92OXHaML9FOPdO2aZatqTYDmiZ2TMuSou+ZntxeRJKChIhxL2bGtWDkpFooRTselbiJpjMkQ92lH0xAHVDrp5JAxOtRKD/mR0C9UaKL+nkhxIOUo8HRntqOc9TLxP6+TKP/cSVkYJ4qGZPqRn3CkIpSlgnpMUKL4SBNMBNO7IjLAAhOlsyvpEOzZk+dJ86RqW1X75rRcu8zjKMIeHEAFbDiDGlxDHRpA4AGe4AVejUfj2Xgz3qetBSOf2YU/MD6+Ae8EmUk=</latexit><latexit sha1_base64="C48J2WRG7mRvTFTxVbJ6mQHFt4E=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCxi3ZREBN0IRTcuK9gHtCFMppN26OTBzEQsoUs3/oobF4q49RPc+TdO2gjaemDg3HPuZe49XsyZVJb1ZRQWFpeWV4qrpbX1jc0tc3unKaNEENogEY9E28OSchbShmKK03YsKA48Tlve8CrzW3dUSBaFt2oUUyfA/ZD5jGClJdfc948q3QCrgeen92OXHaML9FOPdO2aZatqTYDmiZ2TMuSou+ZntxeRJKChIhxL2bGtWDkpFooRTselbiJpjMkQ92lH0xAHVDrp5JAxOtRKD/mR0C9UaKL+nkhxIOUo8HRntqOc9TLxP6+TKP/cSVkYJ4qGZPqRn3CkIpSlgnpMUKL4SBNMBNO7IjLAAhOlsyvpEOzZk+dJ86RqW1X75rRcu8zjKMIeHEAFbDiDGlxDHRpA4AGe4AVejUfj2Xgz3qetBSOf2YU/MD6+Ae8EmUk=</latexit>

f(xi) = r̂i
<latexit sha1_base64="mJ75bzV43FNwSL9v4rblW1c5xlk=">AAACDHicbVDLSsNAFL2pr1pfVZduBotQNyURQTdC0Y3LCvYBTSiT6aQdOpmEmYlYQj/Ajb/ixoUibv0Ad/6NkzaCth4YOHPOvdx7jx9zprRtf1mFpeWV1bXiemljc2t7p7y711JRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P7rK/PYdlYpF4laPY+qFeCBYwAjWRuqVK0HVDbEe+kF6P+mxY3SBfv7uEGskjWiq7Jo9BVokTk4qkKPRK3+6/YgkIRWacKxU17Fj7aVYakY4nZTcRNEYkxEe0K6hAodUeen0mAk6MkofBZE0T2g0VX93pDhUahz6pjJbVM17mfif1010cO6lTMSJpoLMBgUJRzpCWTKozyQlmo8NwUQysysiQywx0Sa/kgnBmT95kbROao5dc25OK/XLPI4iHMAhVMGBM6jDNTSgCQQe4Ale4NV6tJ6tN+t9Vlqw8p59+APr4xsQX5r8</latexit><latexit sha1_base64="mJ75bzV43FNwSL9v4rblW1c5xlk=">AAACDHicbVDLSsNAFL2pr1pfVZduBotQNyURQTdC0Y3LCvYBTSiT6aQdOpmEmYlYQj/Ajb/ixoUibv0Ad/6NkzaCth4YOHPOvdx7jx9zprRtf1mFpeWV1bXiemljc2t7p7y711JRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P7rK/PYdlYpF4laPY+qFeCBYwAjWRuqVK0HVDbEe+kF6P+mxY3SBfv7uEGskjWiq7Jo9BVokTk4qkKPRK3+6/YgkIRWacKxU17Fj7aVYakY4nZTcRNEYkxEe0K6hAodUeen0mAk6MkofBZE0T2g0VX93pDhUahz6pjJbVM17mfif1010cO6lTMSJpoLMBgUJRzpCWTKozyQlmo8NwUQysysiQywx0Sa/kgnBmT95kbROao5dc25OK/XLPI4iHMAhVMGBM6jDNTSgCQQe4Ale4NV6tJ6tN+t9Vlqw8p59+APr4xsQX5r8</latexit><latexit sha1_base64="mJ75bzV43FNwSL9v4rblW1c5xlk=">AAACDHicbVDLSsNAFL2pr1pfVZduBotQNyURQTdC0Y3LCvYBTSiT6aQdOpmEmYlYQj/Ajb/ixoUibv0Ad/6NkzaCth4YOHPOvdx7jx9zprRtf1mFpeWV1bXiemljc2t7p7y711JRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P7rK/PYdlYpF4laPY+qFeCBYwAjWRuqVK0HVDbEe+kF6P+mxY3SBfv7uEGskjWiq7Jo9BVokTk4qkKPRK3+6/YgkIRWacKxU17Fj7aVYakY4nZTcRNEYkxEe0K6hAodUeen0mAk6MkofBZE0T2g0VX93pDhUahz6pjJbVM17mfif1010cO6lTMSJpoLMBgUJRzpCWTKozyQlmo8NwUQysysiQywx0Sa/kgnBmT95kbROao5dc25OK/XLPI4iHMAhVMGBM6jDNTSgCQQe4Ale4NV6tJ6tN+t9Vlqw8p59+APr4xsQX5r8</latexit><latexit sha1_base64="mJ75bzV43FNwSL9v4rblW1c5xlk=">AAACDHicbVDLSsNAFL2pr1pfVZduBotQNyURQTdC0Y3LCvYBTSiT6aQdOpmEmYlYQj/Ajb/ixoUibv0Ad/6NkzaCth4YOHPOvdx7jx9zprRtf1mFpeWV1bXiemljc2t7p7y711JRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P7rK/PYdlYpF4laPY+qFeCBYwAjWRuqVK0HVDbEe+kF6P+mxY3SBfv7uEGskjWiq7Jo9BVokTk4qkKPRK3+6/YgkIRWacKxU17Fj7aVYakY4nZTcRNEYkxEe0K6hAodUeen0mAk6MkofBZE0T2g0VX93pDhUahz6pjJbVM17mfif1010cO6lTMSJpoLMBgUJRzpCWTKozyQlmo8NwUQysysiQywx0Sa/kgnBmT95kbROao5dc25OK/XLPI4iHMAhVMGBM6jDNTSgCQQe4Ale4NV6tJ6tN+t9Vlqw8p59+APr4xsQX5r8</latexit>

Figure 2.1: Similarity Encoder (SimEc) architecture. A (deep) neural network, 𝑓 ′(x𝑖), is
used to map an original feature vector x𝑖 ∈ R𝐷 to its embedding y𝑖 ∈ R𝑑. This embedding
is then multiplied by another weight matrix 𝑊𝑙 ∈ R𝑑×𝑛, which corresponds to the last layer
of the full SimEc network 𝑓(x𝑖), to compute r̂𝑖 ∈ R𝑛, i.e., the approximation of one row
of the target matrix 𝑅 ∈ R𝑚×𝑛. After the SimEc is trained to minimize ‖𝑅 − 𝑓(𝑋)‖2

𝐹

given the full feature matrix 𝑋 ∈ R𝑚×𝐷, it then computes a rank 𝑑 approximation of 𝑅 as
𝑓(𝑋) = 𝑓 ′(𝑋)𝑊𝑙 = 𝑌 𝑊𝑙.

If the output of the SimEc should always be in a specific range, e.g., if the target matrix
𝑅 contains star ratings from 1 to 5,2 it may be beneficial to add an additional non-linearity
after computing 𝑓 ′(x𝑖)𝑊𝑙 to ensure the predicted values are within this range. However,
there should never be any non-linearity at the last layer of 𝑓 ′(x𝑖) as the embedding values
y𝑖 should be able to assume unconstrained values.

Regularization terms can again be added to the cost function as discussed before.
However, it should be noted that the constraint to encourage a symmetric factorization of a
similarity matrix 𝑆, i.e., the regularization term

⃦⃦
𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙

⃦⃦2
𝐹

, can significantly increase
the computational complexity of the optimization procedure, as computing 𝑊 ⊤

𝑙 𝑊𝑙 scales
with 𝑚2. However, in practice it is often enough to only train with a subsample of 𝑆 using
𝑛 ≪ 𝑚 targets, i.e., optimizing

min
⃦⃦
𝑆[:,:𝑛] − 𝑓 ′(𝑋)𝑊𝑙

⃦⃦2
𝐹

+ 𝜆
⃦⃦⃦
𝑆[:𝑛,:𝑛] − 𝑊 ⊤

𝑙 𝑊𝑙

⃦⃦⃦2

𝐹
,

with 𝑊𝑙 ∈ R𝑑×𝑛 and 𝑓(𝑋) = 𝑆̂ ∈ R𝑚×𝑛, which greatly reduces the overall complexity and
memory requirements of the training procedure. Even though the number of targets in the
output is reduced, all 𝑚 training examples can still be used as input during training.

2In practice, the training of a SimEc usually converges fastest when the target matrix is first max-
normalized (values between 0 and 1) or standardized (mean 0 & standard deviation 1).
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When using only a small number of targets 𝑛, 𝑆[:𝑛,:𝑛] can also be decomposed into
its eigenvalues and -vectors to compute the optimal weight matrix 𝑊𝑙 (i.e., such that
𝑊 ⊤

𝑙 𝑊𝑙 ≈ 𝑆[:𝑛,:𝑛]). By initializing the SimEc’s last layer with these values, the network often
converges faster during training.

Instead of limiting the number of targets, it might also be worth considering whether
it is necessary to enforce a symmetric factorization of 𝑆 (as 𝑌 𝑊𝑙 ≈ 𝑊 ⊤

𝑙 𝑊𝑙 ≈ 𝑌 𝑌 ⊤) at all.
If the SimEc only needs to predict the similarities between a new sample and the existing
samples or even just between the existing samples themselves, e.g., to fill missing values in
𝑆, then the regularization term can in practice be ignored. The similarities between a new
sample x𝑗 and the training samples can then be computed as

𝑓(x𝑗) = 𝑓 ′(x𝑗)𝑊𝑙 = y𝑗𝑊𝑙 = ŝ𝑗 ∈ R𝑚,

instead of 𝑓 ′(x𝑗)𝑓 ′(𝑋)⊤ = y𝑗𝑌 ⊤.
A similar choice should be made when factorizing a rectangular matrix 𝑅. By default a

SimEc only learns the mapping from one input feature space to the embedding space and
then predicts the values of 𝑅 by multiplying this embedding with 𝑊𝑙. This is sufficient in
many cases. For example, for an established social network site, thousands of pieces of new
content are uploaded every second and at the same time older content becomes irrelevant,
while the user base remains fairly constant. In such a scenario it might be sufficient to
simply predict which users might be interested in a new piece of content, which can be
done by using the full SimEc network to predict 𝑓(x𝑖) = r̂𝑖 for some content feature vector
x𝑖 ∈ R𝐷. Nevertheless, it is also possible to train a second SimEc network to additionally
project the set of 𝑛 users into the same embedding space as some 𝑚 items, thereby making
it possible to predict ratings for both new items and new users as the scalar product of
their embedding vectors. For this, a SimEc network 𝑓1 is first trained on one set of feature
vectors 𝑋1 ∈ R𝑚×𝐷 to approximate 𝑅 (or a subset of it). After the training is complete,
these feature vectors are projected into the embedding space to yield 𝑓 ′

1(𝑋1) = 𝑌1 ∈ R𝑚×𝑑.
Then, a second SimEc 𝑓2 can be trained using the second set of feature vectors 𝑋2 ∈ R𝑛×𝑃

to approximate 𝑅⊤ (or again a subset of it), only that in this case the weights of the last
layer are kept fixed as 𝑊𝑙 = 𝑌 ⊤

1 . Both SimEcs together then provide mapping functions
for two different kinds of input feature vectors into the same embedding space such that
𝑓 ′

1(𝑋1)𝑓 ′
2(𝑋2)⊤ = 𝑌1𝑌 ⊤

2 ≈ 𝑅.

Preserving non-metric similarities Non-metric similarities are characterized by an
eigenvalue spectrum with significant negative eigenvalues. Spectral embedding methods, such
as kPCA, require positive semi-definite similarity matrices to compute the low dimensional
embedding of the data and would in this case discard the information associated with the
negative eigenvalues. However, Laub et al. [106] have shown that this negative part of the
eigenvalue spectrum can reveal interesting features in the data and therefore should not be
ignored.

A non-metric similarity matrix 𝑆 is equal to the difference between two similarity matrices
𝑆1 and 𝑆2, where 𝑆1 has the same 𝑝 positive eigenvalues as 𝑆, while the non-zero eigenvalues
of 𝑆2 correspond to the 𝑞 negative eigenvalues of 𝑆. Correspondingly, a factorization of 𝑆
into 𝑌 𝑌 ⊤ would need to capture the relation between 𝑆1 and 𝑆2, i.e.,

𝑆 = 𝑆1 − 𝑆2 ⇔ 𝑌 𝑌 ⊤ = 𝑌𝑝𝑌 ⊤
𝑝 − 𝑌𝑞𝑌 ⊤

𝑞 .

However, the only way to get this negative part of the product 𝑌 𝑌 ⊤ would be for the values
of 𝑌𝑞 to be imaginary, which is generally not desirable for such embeddings.

28



The Similarity Encoder Model

With SimEcs it is nevertheless possible to approximate a non-metric similarity matrix 𝑆.
Since during training 𝑆 is approximated as 𝑓 ′(𝑋)𝑊𝑙 = 𝑌 𝑊𝑙 and not 𝑌 𝑌 ⊤, some dimensions
of 𝑌 and 𝑊𝑙 can have opposite signs, which makes it possible to not only approximate 𝑆1 but
also (−𝑆2). In this case the regularization term

⃦⃦
𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙

⃦⃦2
𝐹

would be counterproductive.3

Predicting multiple pairwise relations at once SimEcs can also be trained explicitly
to preserve the information provided by multiple similarity matrices 𝑆1, ..., 𝑆𝑘. The easiest
way to do this is to simply compute the average of these similarity matrices and then
train a SimEc as before on this averaged 𝑆. Please note that because SimEcs preserve the
information associated with the 𝑑 largest eigenvalues, the embedding only captures all 𝑘
similarities if the largest eigenvalues of the 𝑘 similarity matrices are equal. Therefore, before
computing their average, the similarity matrices should first be normalized by dividing them
each by their respective largest eigenvalue.

If the focus is not on the similarity preserving embedding itself, but rather it is important
to accurately predict multiple similarities or other pairwise relations at the same time,
then the SimEc network can be extended to have multiple last layers, i.e., by choosing
𝑊𝑙 ∈ R𝑑×𝑛×𝑘 a SimEc can compute

𝑓(𝑋) = 𝑓 ′(𝑋)𝑊𝑙 = 𝑌 𝑊𝑙 = 𝑅̂ ∈ R𝑚×𝑛×𝑘.

Similarly, in addition to a last layer 𝑊𝑙, the SimEc network can also be extended by a
mirrored version of 𝑓 ′(x𝑖), thereby adding a decoder part to the network, which can be
used to compute the pre-image of an embedding like in the deep kernelized auto-encoder
networks [93].

3It should be noted that a 𝑑-dimensional SimEc embedding generally captures the information associated
with the 𝑑 eigenvalues with the largest absolute values; should the magnitude of the largest negative eigenvalue
be smaller than the first 𝑑 positive values, then this information will still be ignored.
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3
LEARNING SIMILARITY PRESERVING EMBEDDINGS

In this chapter, we give various examples how Similarity Encoders (SimEcs) learn similarity
preserving embeddings. First, we show how SimEcs can create the same embeddings as
spectral methods such as PCA and Isomap, simply by adapting the architecture of the
embedding network and choosing an appropriate target similarity matrix (Sec. 3.1). Then
we demonstrate that SimEcs can learn a mapping from an original input feature space into a
similarity preserving embedding space even if the target similarities were not computed from
the original feature vectors (Sec. 3.2). Additionally, we discuss the influence of regularization
and the number of targets on the embedding quality (Sec. 3.3), as well as show that SimEcs
can learn a faithful embedding from noisy input data (Sec. 3.4) and when the target similarity
matrix contains over 90% missing values (Sec. 3.5). Finally, we demonstrate that SimEcs
can predict non-metric similarities and multiple similarities at once (Sec. 3.6).

Comparison of the SimEc performance to related work As SimEcs simultaneously
factorize a similarity matrix and learn a mapping into the similarity preserving embedding
space, we compare a SimEc’s solution to the results found by a combination of the eigen-
decomposition of 𝑆, to get optimal similarity preserving embeddings, and an additional
regression model, trained to learn the mapping from the original feature space to the
embedding space. As the embeddings produced by the regression model will at most be
as good as the original embeddings created by decomposing 𝑆 [33], in most experiments
we only report the optimal performance achieved by the eigendecomposition as a reference.
Unless stated otherwise, the target similarity matrices used in the experiments were centered
(as it is being done for kernel PCA as well [135]) and, if necessary, normalized to be in the
range [−1, 1]. The code to replicate the experiments, including specific hyperparameter
choices and other settings, can be found online.1

3.1 Data points in global and local contexts

Manifold learning algorithms aim to discover a low dimensional manifold that contains all
data points in some original high dimensional feature space. The concept of low dimensional
manifolds in high dimensional spaces is best illustrated by two popular manifold learning
datasets, the “S-curve” and the “cut sphere” (Fig. 3.1). In both datasets, the original data
is three-dimensional, however, all data points lie on a two-dimensional manifold, in these

1https://github.com/cod3licious/simec
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Figure 3.1: Manifold learning datasets “S-curve” and “cut sphere”: the data points lie on a
two-dimensional manifold in the original three-dimensional space.

cases bend to the shape of an S or wrapped around a sphere that is open on one side and
with the poles cut off.

Manifold learning algorithms, such as locally linear embedding (LLE) [165] or Isomap
[189], try to find the manifold in which the data points are embedded and project the
data to a lower dimensional space where this manifold is unfolded. This is achieved by
constructing a similarity matrix for the data points based on their nearest neighbors, e.g.,
in the case of Isomap by computing the geodesic distances between the points. Then, just
like with kernel PCA (kPCA), the lower dimensional embedding is found by computing an
eigendecomposition of this similarity matrix. Indeed, Isomap can nicely unroll the manifolds
in the two datasets (Figs. 3.2 and 3.3 top right).2

Figure 3.2: Two-dimensional embeddings of the “S-curve” dataset with spectral methods
PCA and Isomap as well as corresponding SimEc setups with zero or one hidden layers (hl).

2The S-curve dataset was sampled with 3000 data points and the cut sphere dataset with 5000 points.
The Isomap solution was computed using the scikit-learn implementation [150] by considering ten nearest
neighbors when computing the geodesic distance.
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Figure 3.3: Two-dimensional embeddings of the “cut sphere” dataset with spectral methods
PCA and Isomap as well as corresponding SimEc setups with zero or two hidden layers (hl).

Discovering the low dimensional manifold on which the data points lie can be very
useful in some applications, while in other scenarios it is more important to instead unveil
the global structure of a dataset, e.g., show that in the “S-curve” dataset, the points are
arranged in the shape of an S, and the “cut sphere” in 3D is actually round. This can be
achieved with methods such as PCA [149], or kPCA [173] with a similarity matrix that
captures this kind of global information, like a linear kernel or an RBF kernel with a large
bandwidth (Figs. 3.2 and 3.3 top left).

Different embeddings can be computed from the same high dimensional data by con-
structing and decomposing similarity matrices that capture either the global structure of
the dataset or the data points’ local contexts. The same variety of embeddings can also be
created with a SimEc network, simply by using one of these different similarity matrices as
targets and adapting the architecture of the first part of the network.

Using the original three-dimensional coordinates of the data points as input to the
SimEc network, a mapping to a two-dimensional embedding space can be learned by using
either a linear kernel as a target similarity matrix, to create an embedding similar to the
one obtained by PCA (and equivalently linear kPCA), or a similarity matrix based on the
geodesic distances, to mimic the solution found by Isomap (Figs. 3.2 and 3.3 bottom). As
PCA is a linear method, its solution can be recreated by a linear SimEc, i.e., where the first
part of the network, 𝑓 ′(x𝑖), contains no non-linear hidden layers (hl). Isomap, on the other
hand, is a non-linear method, so to learn a mapping that unfolds the data manifold in a
similar way, the SimEc network also needs to include one (“S-curve”) or two (“cut sphere”)
additional non-linear hidden layers.

3.2 Similarities from labels

To demonstrate that SimEcs can learn the connection between data points’ feature vectors
and an unrelated target similarity matrix 𝑆, we compute pairwise similarities between data
points based on their class labels. For this we use a subset of the MNIST dataset [111],
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which contains 28 × 28 pixel images depicting handwritten digits. We randomly subsampled
10k images from all classes, of which 80% are assigned to the training set and the remaining
20% to the test set. The input feature vectors contain the 784 pixel values of each image,
which were normalized by their maximum value and centered to have zero mean. The target
similarity matrix computed from the class labels is 1 for a pair of images depicting the same
digit and 0 elsewhere.

With increasing embedding dimensionality 𝑑, the mean squared error (MSE) between
the target similarity matrix 𝑆 and its approximation 𝑆̂, computed as the dot product of the
embedding vectors, 𝑌 𝑌 ⊤, is expected to decrease. The eigendecomposition of 𝑆 provides
the optimal similarity preserving embeddings. However, as for new test samples the class
based similarities are not available, OOS solutions can not be created as there is no mapping
from the original input feature space to the embedding space.

Figure 3.4: Mean squared errors between the class label based target similarity matrix 𝑆
and its approximation 𝑆̂, computed as the dot product of the embedding vectors, 𝑌 𝑌 ⊤,
with increasing embedding dimensionality 𝑑.

As shown in Fig. 3.4, the embeddings produced by a linear SimEc, where 𝑓 ′(x𝑖) consists
of only a single linear layer mapping the input vectors into the embedding space, are
comparable to those of a linear ridge regression model that learned the connection between
the feature vectors and the embeddings produced by the eigendecomposition of 𝑆. By using
a SimEc with a deeper NN 𝑓 ′(x𝑖), with several non-linear hidden layers to map the feature
vectors into the embedding space, the error of the approximation gets very close to that of
the eigendecomposition.

3.3 A closer look at hyperparameters

Next, we investigate the influence of hyperparameter choices on the SimEc solution. For
this, like in the previous section, a subset of the MNIST dataset is used, and a SimEc with
one additional hidden layer is trained to create ten-dimensional embeddings to approximate
an RBF kernel matrix. Corresponding embeddings created with kernel PCA serve as a
reference.

First, we analyze the influence of the regularization term 𝜆
⃦⃦
𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙

⃦⃦2
𝐹

(Fig. 3.5 left
panel). While the output of the SimEc network, 𝑌 𝑊𝑙, always faithfully approximates the
target similarities, the dot product of the embedding vectors, 𝑌 𝑌 ⊤, only achieves similar
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Figure 3.5: Left: Importance of the regularization term 𝜆
⃦⃦
𝑆 − 𝑊 ⊤

𝑙 𝑊𝑙

⃦⃦2
𝐹

to ensure not only
the output of the SimEc network, 𝑌 𝑊𝑙, approximates the target similarity matrix, but also
the dot product of the embedding vectors, 𝑌 𝑌 ⊤. With 𝑌 𝑊𝑙 it is only possible to predict
the similarities between new samples and those used for training the network, while with
𝑌 𝑌 ⊤ the similarities between new test samples can be computed as well. Right: Even if
only a fraction of the available targets is used for training, the mean squared error between
𝑌 𝑌 ⊤ and 𝑆 is close to the optimal error achieved by kernel PCA.

accuracies when a symmetric factorization of 𝑆 is enforced.
As discussed in the previous chapter, this regularization term dramatically increases the

computational complexity and memory requirements of the training procedure, as it scales
quadratically with the output dimensionality. However, often only a fraction of the targets
is required for 𝑌 𝑌 ⊤ to approximate 𝑆 reasonably well (Fig. 3.5 right panel). Therefore, the
computational cost of training a SimEc can be easily limited by choosing an appropriate
number of output targets.

3.4 Dealing with noisy input data
As we have already demonstrated by using similarities based on class labels as targets
(Sec. 3.2), SimEcs can easily learn the mapping from an original high dimensional feature
space to a similarity preserving embedding space, even if the given target similarities were
not computed (directly) from the original feature vectors. This ability is important also
when dealing with noisy input data.

For the following experiments, we used 5000 randomly selected images from all classes
of the MNIST dataset. The original 784-dimensional input vectors were mean-centered and
used to compute a linear kernel matrix, which serves as the target similarity matrix in the
task. Two cases of noisy input data are considered: In the first case, the noise is added to
the original feature vectors, where the standard deviation (std) of the noise is varied relative
to the standard deviation of the original data. This corresponds to a setting where a set of
sensors measures relevant but noisy data. In the second case, the original data is left as is,
but additional dimensions are added to the feature vectors that contain noise with the same
standard deviation as the original features. This corresponds to a “big data” scenario, where
lots of sensors collect high quality data, but only a fraction of the sensors measures data
that is actually relevant for the task at hand. Additionally, in both cases two types noise
are considered, either random white noise or correlated noise drawn from a multivariate
normal distribution with zero mean and a random positive semi-definite covariance matrix.

If a target similarity matrix and input feature vectors are provided separately and it is
unclear how (or if) one was computed from the other, it is advisable to first compute an
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eigendecomposition of the target similarity matrix to get optimal embeddings and then train
a regression model to learn a mapping from the original feature vectors to the embedding
space to compute the embeddings for new test samples. Alternatively, of course, instead
a SimEc could be used to both factorize the target matrix and get the mapping into the
embedding space at the same time. On the other hand, if the target similarity matrix was
computed from the original input data using a known kernel function, then kernel PCA
can be used not only to get optimal embeddings, but also to map new data points into the
embedding space by computing their kernel map (i.e. similarity to the training samples).

It was previously demonstrated that kernel PCA can easily deal with moderate amounts
of (random) noise [128, 135, 172]. However, computing an embedding with kPCA from
extremely noisy data, especially in the case of correlated noise, leads to large mean squared
errors between the original linear kernel matrix computed from the noise free data and the
approximation computed as the dot product of the kPCA embeddings. This problem is not
encountered though when training a SimEc with both the noisy input data and the separate
noise-free linear kernel target matrix (Figs. 3.6 and 3.7; note the absolute MSE values on the
𝑦-axis). This shows that, due to the ability to learn the connection between input vectors
and arbitrary target similarities, SimEcs can easily deal with extremely noisy input data.

Figure 3.6: Random (left) or correlated noise (right) with varying std added to the input
data and corresponding MSEs of ten-dimensional kPCA and SimEc embeddings.

Figure 3.7: Additional input dimensions containing random (left) or correlated noise (right)
and corresponding MSEs of ten-dimensional kPCA and SimEc embeddings.
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3.5 Dealing with missing target similarities

As pairwise data can be expensive to collect or be systematically unavailable (e.g. in movie
ratings), target matrices will often contain many missing values. An exact eigendecomposition
of a matrix with missing values can not be computed, and instead these entries in the
matrix need to be filled, e.g., by the mean of the given targets. However, this results in
an almost linear increase in the mean squared error between the full target matrix (in this
case an RBF kernel matrix) and the approximation computed as 𝑌 𝑌 ⊤ (Fig. 3.8). With
the embeddings created with a SimEc, on the other hand, the target similarities can be
faithfully approximated even if the target matrix contains over 90% missing values. For this,
the error in the backpropagation procedure, when training the SimEc network, is computed
by only considering the existing entries in the target matrix.

Figure 3.8: Influence of missing values in the target similarity matrix. Kernel PCA computed
on the full matrix serves as the optimal reference error, while the green curve depicts the
error resulting from the eigendecomposition of the matrix where the missing values were
filled by the mean of the matrix.

3.6 Predicting non-metric similarities and more

In the following experiments, we demonstrate that SimEcs can predict non-metric similarities
and multiple similarities at once. For these experiments, we randomly subsampled 5k images
from the MNIST dataset depicting zeros and sevens and we refer to this as the “MNIST
0/7” dataset. The target similarity matrix 𝑆 was computed using the Simpson similarity
coefficient on binarized feature vectors:

𝑆𝑖𝑗 = #{pixels that are black in both 𝑖 and 𝑗}
min{#{black pixels in 𝑖}, #{black pixels in 𝑗}}

.

As previously shown by Laub et al. [106], the eigenvalue spectrum of this similarity ma-
trix contains significant negative eigenvalues and embeddings based on the corresponding
eigenvectors reveal interesting features. While the embedding based on the largest (positive)
eigenvalues (i.e. kPCA solution) separates the data points by class (Fig. 3.9 top left), an
embedding based on the most negative eigenvalues sorts the images by stroke weight (Fig. 3.9
top right). SimEcs are able to create embeddings based on such non-metric similarities as
well (Fig. 3.9 bottom). Yet, while the embedding, 𝑌 , learned by a SimEc (with one hidden
layer) captures the features associated with the negative eigenvalues, the embedding vectors’
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Figure 3.9: Embedding of the MNIST 0/7 dataset based on the largest (top left) and
most negative (top right) eigenvalues of the Simpson similarity matrix, as well as a SimEc
embedding of dimensionality 𝑑 = 2 based on the normalized sum of the similarity matrices
associated with the largest and most negative eigenvalues4(bottom).

dot product, 𝑌 𝑌 ⊤, would not optimally approximate 𝑆, as for this the dimensions associated
with the negative eigenvalues would have to be imaginary. However, by computing 𝑆̂ = 𝑌 𝑊𝑙

the non-metric similarities can be predicted quite well (Fig. 3.10), with errors closer to those
of the embeddings based on both positive and negative eigenvalues instead of those of the
embeddings based only on the largest positive eigenvalues (i.e. a regular kPCA embedding).

As discussed in the previous chapter, a non-metric similarity matrix can be decomposed
as 𝑆 = 𝑆1−𝑆2, where 𝑆1 and 𝑆2 can be computed as the dot product of the embeddings based
on positive and negative eigenvalues respectively. Besides preserving features corresponding
to both parts of the eigenvalue spectrum, SimEcs can also be used to directly predict these
two similarity matrices simultaneously. This can either be accomplished by computing
a new similarity matrix as 𝑆1 + 𝑆2, or by stacking the two matrices, thereby creating a
tensor ∈ R𝑚×𝑚×2. To preserve the information present in both similarity matrices to an
equal extent, 𝑆1 and 𝑆2 first have to be normalized by their respective largest eigenvalue, as
SimEcs generally learn embeddings based on the overall largest eigenvalues.

Unsurprisingly, the mean squared error between either 𝑆1 or 𝑆2 and 𝑆̂ computed with a
SimEc trained to approximate 𝑆1 + 𝑆2 is worse than that of a SimEc trained specifically to
approximate either 𝑆1 or 𝑆2 alone (Fig. 3.11). The dot product of the embedding vectors
𝑌 𝑌 ⊤ of a SimEc trained to approximate the tensor containing the stacked matrices 𝑆1
and 𝑆2 also results in errors comparable to those of the 𝑆1 + 𝑆2 SimEc, because a single
embedding contains the information about both similarity matrices here as well. However,

4A similar plot can be created by training a SimEc with 𝑑 ≈ 10 on the non-metric similarity matrix
𝑆 (𝑑 > 2 because the largest negative eigenvalue is smaller than several of the larger positive EVs), then
rotating the resulting SimEc embeddings with PCA and selecting those two components that correspond to
the largest positive and largest negative EV.
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Figure 3.10: Mean squared errors of the non-metric similarity matrix 𝑆 and the dot product
of the embeddings based on the largest positive eigenvalues, the embeddings based on the
largest absolute eigenvalues (where dimensions associated with negative eigenvalues were
cast as imaginary numbers), and the prediction of 𝑆 with a SimEc as 𝑌 𝑊𝑙.

Figure 3.11: Mean squared errors when approximating either 𝑆1 (left) or 𝑆2 (right). The
eigendecomposition of the respective matrix yields the optimal similarity preserving embed-
ding. Depicted in green are the errors achieved with a SimEc trained to approximate either
𝑆1 or 𝑆2 alone; shown in cyan are the errors achieved with a SimEc trained to approximate
the tensor containing the stacked matrices 𝑆1 and 𝑆2; while the purple curves show the
errors achieved with a SimEc trained to approximate the matrix 𝑆1 + 𝑆2. Continuous lines
depict the prediction of 𝑆 as 𝑌 𝑊𝑙, while dashed lines correspond to the approximation as
𝑌 𝑌 ⊤.

the prediction of the individual similarity matrices in the tensor as 𝑌 𝑊𝑙 yields errors as low
as the prediction of the SimEc trained to approximate only one of the matrices, because the
last dimension of the tensor 𝑊𝑙 contains information specific to either one of the similarity
matrices.
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4
PREDICTING PAIRWISE RELATIONS IN PRACTICE

In this chapter, we illustrate how a Similarity Encoder (SimEc) can be used to predict
pairwise relations in practical applications such as link prediction and recommender systems.

The relation between a pair of entities can either be binary (e.g. item 𝑖 was bought by
user 𝑗) or quantitative (e.g. item 𝑖 received a four out of five stars rating by user 𝑗). The
known relations between entities are stored in a matrix 𝑅 ∈ R𝑚×𝑛, which is typically very
very sparse, and the task is to fill in the missing values (e.g. to predict whether user 𝑗 might
be interested in item 𝑖).

Applications that involve the prediction of pairwise relations between entities can be
very diverse and include tasks such as link prediction (“Was Barack Obama born in the
USA?”) [29, 47, 141, 181, 195, 209], recommender systems (“Would this user likely buy
that toaster?”) [18, 43, 62, 90, 96, 158, 203, 205], or drug-target interaction prediction
(“Could drug A interact with protein B?”) [35, 56, 66, 137, 208, 210, 219]. Needless to say,
there exists a huge body of research in each of these fields, with very specialized models
specifically designed to solve each task, fine tuned for a certain dataset, and tweaked to get
even the last 0.05% in performance improvement – because if one shows someone the right
toaster at the right time, money can be made. With SimEcs, we can not – and do not aim
to – compete with these models. However, what we do want to show in this chapter is that
a plain vanilla SimEc can serve as a good baseline model across different pairwise relation
prediction tasks.

Before discussing the tasks of link prediction and recommender systems in more detail,
let us first differentiate further between different pairwise relation prediction scenarios. As
already mentioned, tasks like product recommendation essentially consist of predicting
missing entries in a large matrix 𝑅 containing pairwise relations, e.g., the user ratings for
some items. However, besides the sparse matrix containing the pairwise relations, generally
one can also construct some feature vectors for the entities (i.e. items and users), for example,
based on textual descriptions. These can come in especially handy when predictions need to
be made, e.g., for new items that did not receive any user ratings so far (cold start problem)
[62, 203, 204].

Three pairwise relation prediction task types with increasing difficulty can be distin-
guished (on the example of product recommendation):

T1: Predict missing ratings for existing items and users.
T2a and T2b: Predict ratings for new items and existing users (a) or new users and

existing items (b).
T3: Predict ratings for new items and new users.
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For tasks T2a/b and T3, feature vectors describing items and/or users are required, which
might not always be available (e.g. due to privacy concerns).

4.1 Link prediction
Link prediction is a very straightforward pairwise relation prediction task from category T1:
Given two entities 𝑒𝑖 and 𝑒𝑗 , predict whether the relation 𝑟𝑘 holds between them, i.e., if
the triplet (𝑒𝑖, 𝑟𝑘, 𝑒𝑗) should be assigned the label ‘true’ or ‘false’. For example, (Obama,
born_in, USA) = true and (Paris, capital_of, Germany) = false. Instead of learning
a prediction model for a single pairwise relation, however, link prediction tasks typically
require the prediction of several tens or even hundreds of relations between a set of entities.
Furthermore, for some of the relation types, only a handful of positive examples might be
included in a dataset, which makes it essential to treat this as a multi-task learning problem
in order to acquire as much information as possible about individual entities across all their
relations.

Datasets For our experiments, we used two datasets in two variations each: The FB15k
dataset [29] is a subset of Freebase, which is a large database with facts about the real world.
The dataset contains 14,951 entities and 1,345 relations. The FB15k-237 dataset [193] is a
subset of FB15k, where all the inverse relations contained in the validation and test sets of
FB15k were removed, as these lead to overly optimistic performance measures. FB15k-237
contains slightly fewer entities than FB15k and only 237 relations.
The WN18 dataset [29] is a subset of WordNet, which contains lexical relations between
words. The WN18RR dataset [47] is again a subset of WN18 with the inverse relations
removed. Both datasets contain 40,943 entities and 18, respective 11, relations.

Related work Popular link prediction models [29, 47, 141, 181, 195, 209] typically learn
embedding vectors for the set of entities across all relations as well as some weights specific to
each relation. Most often, this involves the factorization of a tensor containing the relations
of the training triplets. For a more detailed comparison of different link prediction models
we refer the interested reader to [14], from which we also reproduced the results achieved
with some of the state-of-the-art models on the datasets mentioned above as a comparison
to the performance reached with SimEcs.

SimEc approach For the link prediction task, a SimEc is trained with one-hot encoded
entity vectors x𝑖 ∈ R𝑚 for all 𝑚 entities as input and a binary matrix 𝑅 ∈ R𝑚×𝑚, containing
the known positive relations between the entities, as the target. The SimEc architecture
consists of three layers: the first (linear) layer maps the 𝑚-dimensional input vector to
a 𝑑-dimensional entity embedding (with 𝑑 = 100), the second (linear) layer consists of a
𝑑 × 𝑑 weight matrix, and the last layer maps the 𝑑-dimensional embedding back to an
𝑚-dimensional output vector, which is then compared to the corresponding row from the
target matrix 𝑅. Since the targets are binary, a sigmoid activation function is applied to the
output of the SimEc network and the backpropagation error is computed using the binary
cross-entropy loss function.
As many of the relations in the examined datasets only contain very few examples, it is
important to use the data available on all relations to train the network in order to learn
meaningful entity embeddings. Therefore, first a target matrix containing all relations is
compiled and the SimEc network is trained for several hundred epochs to predict all relations
between the entities at once. Afterwards, the target matrix for a single relation is used
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to fine-tune the weights of the SimEc network for the prediction of this specific relation
between the entities. Here, to avoid overfitting on the few available training examples, the
validation set is used for early stopping, i.e., as soon as the results on the validation set stop
improving, the training procedure is terminated and the model is evaluated on the test set.

At test time, for one relation 𝑟𝑘 and some embedding 𝑒𝑖, the pairwise relation scores
for all (𝑚 − 1) other entities are predicted and the entities are sorted according to these
scores in descending order (while ignoring those entities with a known relation to 𝑒𝑖). Then
the rank of the target entity 𝑒𝑗 in the sorted list is determined. Based on these ranks,
the performance measures are computed: the mean rank (MR), the mean reciprocal rank
(MRR), and the fraction of hits when considering only the first ten, three, or only the first
element in the list (H@10, H@3, H@1).

Results The link prediction results on all four datasets are reported in Tables 4.1 and 4.2,
where the performance of the other models is taken from [14], based on the original results
reported in the respective paper of each model. As expected, SimEcs do not outperform
the state-of-the-art models, which were specifically designed for the task of link prediction.
Nevertheless, the performances are comparable and a SimEc even achieves better results
than some of the older models on the FB15k-237 dataset.

Table 4.1: Link prediction results on the WN18 and WN18RR datasets. Results of other
models taken from [14].

WN18 WN18RR

MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

DistMult [209] 902 .822 .936 .914 .728 5110 .430 .490 .440 .390
ComplEx [195] − .941 .947 .936 .936 5261 .440 .510 .460 .410
ConvE [47] 374 .943 .956 .946 .935 4187 .430 .520 .440 .400

SimEc 528 .709 .928 .827 .572 6076 .279 .409 .344 .196

Table 4.2: Link prediction results on the FB15k and FB15k-237 datasets. Results of other
models taken from [14].

FB15k FB15k-237

MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

DistMult [209] 97 .654 .824 .733 .546 254 .241 .419 .263 .155
ComplEx [195] − .692 .840 .759 .599 339 .247 .428 .275 .158
ConvE [47] 51 .657 .831 .723 .558 244 .325 .501 .356 .237

SimEc 269 .478 .724 .568 .345 458 .281 .441 .309 .201

4.2 Recommender systems
Recommender systems are about better understanding user behavior and similarities between
items. We first examine the task of predicting the rating a user might give to a certain item
(where items for which a high rating was predicted would be advertised to this user). Then
we turn to content based recommendations, where similar items should be identified based
on their content descriptions alone (as opposed to similar patterns in user ratings), which
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enables the promotion of related items alongside an item a user is interested in, even if these
items did not receive any user ratings so far (cold start problem).

Dataset For our experiments, we used the 10m movielens dataset1 [72], which contains
ten million star ratings for over 10,000 movies by almost 70,000 users – which means about
690 million ratings are missing. In addition to these pairwise relations, we downloaded for
every movie (if available) the corresponding information from The Movie Database using
their API2. This includes the movies’ genres, director, keywords, and other information.
From this additional data, a binary feature vector is constructed for every movie. There is
no additional data available about the users.
For the rating prediction task, train/test splits are created depending on the task scenario
(T1/T2a) by either randomly subsampling the 10m pairwise ratings directly (70% train, 30%
test) or randomly selecting 30% of the movies for the test set and subsequently removing all
their ratings from the training set.

Rating prediction

The rating for a specific item 𝑖 by a user 𝑗 can be decomposed into the sum of the overall
average of the ratings, 𝜇, the average of the ratings of this item, 𝜇𝑖, as some items might
be generally of higher or lower quality than others, the average of the ratings this user has
previously given, 𝜇𝑗 , as some users are more critical than others, and then a residual 𝜖 [96]:

𝑅𝑖𝑗 = 𝜇 + 𝜇𝑖 + 𝜇𝑗 + 𝜖.

A lot of information is already captured by these averages and it is therefore useful to
compute a residuals matrix as

𝑅′
𝑖𝑗 = 𝑅𝑖𝑗 − (𝜇 + 𝜇𝑖 + 𝜇𝑗)

and use only the entries of this residuals matrix to train a subsequent model, which can
then pick up on the remaining patterns in the pairwise relations. For a given user and item,
such a model will then predict the residual and the final rating is computed by adding the
respective averages to this [18, 88, 96, 171].

As there are feature vectors available for the movies, but not the users, only the task
scenarios T1 (prediction of missing ratings for existing movies and users) and T2a (prediction
of ratings for new movies and existing users) are examined in the following experiments.
Nevertheless, for completeness, we quickly discuss some baseline methods and SimEc setups
that can be used to solve all three tasks.

Baseline methods Several simple approaches can be used to predict the rating (or
residual of the rating) of an item by a user:

Predict average: This is the simplest possible baseline: ignore the residuals and just
predict a rating 𝑅𝑖𝑗 as 𝜇 + 𝜇𝑖 + 𝜇𝑗 (or for new items and users as the overall average
𝜇) [96, 131, 184]. This solves T1, T2a/b, T3.

Predict average + SVD of the residuals matrix: By factorizing the residuals rating
matrix using (iterative, weighted) singular value decomposition (SVD), one can com-
pute a low rank approximation of the residuals matrix and use these approximate
values as predictions for the missing values [88, 96, 171]. This can only be used to
solve T1.

1https://grouplens.org/datasets/movielens/10m/
2https://api.themoviedb.org/
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Predict average + SVD & Regression: Given some feature vectors for items or users
and the low rank approximation of the residuals matrix computed with SVD, the
mapping from the items’ (or users’) feature vectors to their low dimensional embeddings
can be learned by a regression model. By computing the scalar product of the
embedding vectors, the residuals can be approximated as before. This is an extension
of the SVD approach to additionally solve either T2a or T2b, or T3 if models are
learned for both sides of the factorization.

Regression/Classification model: This approach is different from the so-called latent
factor models discussed above. Here, a regression or classification model (depending
on the form of the pairwise data, i.e., continuous ratings or binary interactions) is
trained by using as input the feature vectors for an item and a user and as the target
their relation (see Sec. 1.2 for further details on such metric learning models). One
possible realization of such a model could involve two neural networks to map the
individual feature vectors into a common lower dimensional embedding space, where
the relation between two instances can be computed as the cosine similarity of their
embedding vectors [35, 43, 90, 205]. This approach can be used to solve all tasks T1,
T2a/b, T3, provided the corresponding feature vectors are available.

SimEc approach Different SimEc setups can improve upon the SVD & Regression setup
discussed above:

SimEc with identity matrix 𝐼 as input: By training a SimEc to factorize the residuals
matrix using the identity matrix 𝐼 as input, the solution obtained with an SVD can
be recreated. Correspondingly, this only solves T1.

SimEc with feature vectors 𝑋 as input: By using either item or user feature vectors
𝑋 as input to the network when learning the factorization of the residuals matrix, the
connection between the items’/users’ features and their pairwise relations is learned,
which allows for a rating prediction for new items/users, i.e., this additionally solves
T2a or T2b.

Train a second SimEc with feature vectors and fixed last layer weights: After
training, e.g., a SimEc with item feature vectors as input to learn the factorization of
the residuals matrix, this SimEc can be used to compute the item embeddings 𝑌 .
Then a second SimEc can be constructed, which uses the user feature vectors as
input to factorize the transpose of the residuals matrix. However, in this case, the
weights of the last layer of the SimEc are fixed by setting them to the transpose of the
embedding matrix 𝑌 computed for the items. After this second SimEc is trained,
both SimEcs can be used to compute item and user embeddings respectively and
then the rating can be predicted by computing the scalar product of both embedding
vectors. This way, the ratings for new items and users can be predicted given their
feature vectors, i.e., this approach can be used to solve all tasks T1, T2a/b, T3.

If the rating matrix contains explicit ratings (i.e. numerical ratings or likes and dislikes),
all available entries can be used to train the above models. If, on the other hand, the
pairwise relations in the matrix only represent implicit feedback (e.g. the user listens to
music by certain artists, which indicates he likes them, but it is unclear whether he does
not listen to other artists because he is unaware of them, or because he does not like them)
[159], then the given entries in the matrix can be used as positive examples and additionally
a random sample of the missing entries can be used as negative examples [205].
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Results For both tasks T1 and T2a, the missing ratings are either predicted as the
respective average ratings, or by additionally considering the predicted residuals computed
with an SVD or SimEc. Table 4.3 lists the root mean squared errors (RMSE) achieved with
the different methods on both tasks. As an SVD computes the optimal approximation of
the residuals matrix (in a least squares sense), it is unsurprising that this yields the best
results for task T1. However, when using the feature vectors as input to predict the ratings
for new movies (task T2a), the best results are achieved with a SimEc.
It is important to note here, that the regression model used to learn the mapping to the SVD
embeddings is a ridge regression model, where the value of the regularization parameter
was determined in a cross-validation. Similarly, the SimEc architecture did not contain
any non-linear hidden layers, which means both models were linear and had therefore, in
principle, the same capabilities of arriving at equally good solutions. However, the fact that
a SimEc outperformed the SVD & Regression combination again demonstrates, that it is
better to learn the factorization and mapping to the embedding space simultaneously [33],
even if the embeddings obtained by SVD alone might yield a better approximation of the
target matrix.

Table 4.3: Overview of the movie rating prediction results (as RMSEs). The best result in
each task scenario is in bold.

average + SVD + SimEc (𝐼) + SVD & regression + SimEc (𝑋)

T1 0.88614 0.85891 0.87660 0.88014 0.86796
T2a 0.97610 - - 0.97332 0.96897

Outlook: Interpretation of predicted ratings In addition to accurately predicting a
user’s rating for a certain item and therefore generating valuable recommendations, it might
also be interesting to understand why a user might like a certain item. For this, layer-wise
relevance propagation (LRP) [6, 8, 9, 10, 13, 95, 104, 132, 134] can be used to identify the
features of an item that most contributed to a positive or negative predicted rating. LRP
decomposes the predicted rating and propagates it back through the neural network to show
the contributions of each feature at the input layer. This way, the predictions made by
SimEc models can be made more transparent. We will demonstrate this in the next chapter.

Content based recommendations

For content based recommendations, items are compared only based on their descriptions
or other features to identify similar items (Fig. 4.1). This can be useful for recommending
similar items alongside an item that a user is interested in or to generate recommendations
for new items that did not receive any user ratings yet (cold start problem) [62, 96]. However,
identifying two items similar in content, e.g., by computing the cosine similarity of some
given feature vectors, does not automatically mean that a user interested in one of these
items is also interested in the other. Instead, it is important to find a similarity measure for
the items that aligns with the similarity patterns observed in the user ratings [15, 48, 123,
205].

The user ratings based similarity between items can be computed as the cosine similarity
between the items’ residual ratings vectors. Indeed, the cosine similarity between the movies’
feature vectors does not align well with what users rated similarly, i.e., movies that are
similar with respect to their feature vectors are not necessarily liked by the same users
(Fig. 4.2 left panel). However, by using a SimEc (with one additional non-linear hidden layer)
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Figure 4.1: Content based product recommendation before and after embedding the item
feature vectors into a similarity preserving embedding space. Each dot represents an item
and the arrows to the items indicate the user preferences. The task is to recommend a new
item (red dot) to those users that might be interested in this item, knowing only the item’s
description.

Figure 4.2: Correlations between the similarities based on user ratings (x-axis) and simple
content based movie similarities (left) and similarities after projecting the original feature
vectors into a similarity preserving embedding space with a SimEc (right). These results
are based on a subset of 2k movies that received at least 1000 user ratings.

to learn a mapping from the movies’ original feature vectors into an embedding space where
the user ratings based similarities are preserved, the scalar product of these embedding
vectors results in a similarity prediction that is aligned fairly well with the users’ perception
of similar items (Fig. 4.2 right panel). Therefore, by first projecting an item’s feature vector
into the SimEc embedding space and then computing the dot product with all other items’
embedding vectors, the most similar items can be identified and recommended alongside the
item of interest – even if this item never received any user ratings itself.
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5
EXPLAINING SIMEC PREDICTIONS

In this chapter, we revisit some of the previous experiments and examine one new dataset
to demonstrate how the pairwise relation predictions of a Similarity Encoder (SimEc) can
be explained using a technique called layer-wise relevance propagation (LRP) [8, 9, 10, 13,
95, 104, 105, 132, 134].

5.1 Deconstructing predictions and similarity scores

Explanations of a machine learning model’s predictions are often given in a visual form, e.g.,
as saliency or heat maps. However, when “visualization” and “similarity” is mentioned in
the same sentence in the machine learning literature, the research usually focuses on the
identification of similar items and their placement close to each other in a two-dimensional
plot such as created with t-SNE or self-organizing maps [19, 126]. However, what we are
interested in is the visualization of why two items are similar, i.e., which of their features
contributes the most to their high or low similarity score.

Background & related work To the best of our knowledge, the interpretation and
explanation of similarities has previously only been studied with respect to images using
techniques specifically tailored to CNNs [185], where the images are passed through the CNN
until after the last pooling layer to create an embedding for each image and the similarity is
then computed and explained w.r.t. the cosine similarity of these embeddings. However,
the CNN itself is trained on a classification task, not on a specific similarity measure that
is supposed to be explained. Furthermore, this approach is specifically tailored to CNN
architectures with average or max pooling layers, while a SimEc makes no assumptions
about the embedding network and LRP can be applied to a variety of network architectures.

LRP aims to make predictions of machine learning models more transparent by showing
how much each of the input dimensions of a sample contributed (positively or negatively)
to the prediction. For example, in a linear model the prediction for a sample is computed
as the scalar product of the input feature vector x𝑖 ∈ R𝐷 and the model’s weight vector
w ∈ R𝐷, while possibly adding an intercept term 𝑏 and applying a non-linearity 𝜎 to get
the probability prediction score for a certain class:

𝑦𝑖 = 𝜎 (𝑏 + ⟨x𝑖, w⟩) = 𝜎

(︃
𝑏 +

𝐷∑︁
𝑘=1

𝑥𝑖𝑘 · 𝑤𝑘

)︃
.
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Here, the contribution of a single input dimension 𝑘 to the model’s final prediction is
proportional to 𝑥𝑖𝑘 · 𝑤𝑘. These contributions can then be plotted as a heat map over the
input space, which allows humans to grasp the model’s reasoning at a glance (Fig. 5.1).

Email classified as SPAM:

Email classified as HAM:

Figure 5.1: Spam e-mail classification with words highlighted depending on whether they
contributed positively (green) or negatively (red) to the prediction of the class ‘spam’ (top)
or ‘ham’ (bottom). Words such as “free”, “guaranteed”, and “please” are indicative of spam
e-mails; furthermore, in regular e-mails people generally express their own opinions (“I”),
while spam e-mails directly address the reader (“you”) [84, 85].

With layer-wise relevance propagation, this principle of decomposing the prediction
score into individual contributions can be applied to deep neural networks: First, the final
output at the last layer of a NN is broken down w.r.t. the incoming connections. Then these
contributions are propagated backwards through the subsequent layers all the way to the
input layer, where the contributions of the individual features can then be identified [8, 9,
10, 13, 95, 104, 105, 132, 134].

Explaining similarity scores Similar to the predictions of a linear classifier, traditional
similarity measures [160] can be decomposed as well. For example, a linear kernel (or the
cosine similarity, if the individual feature vectors are normalized to have unit length) is
just the scalar product of two feature vectors. Therefore, to determine which features from
both data points contributed most to their (dis-)similarity, one can simply use the values
obtained when multiplying the individual feature dimensions together before summing them
up. Other similarity coefficients (e.g. the Rogot-Goldberg score introduced in Sec. 6.2
Eq. 6.1) are computed by counting how many features two data points have in common and
in how many attributes they differ. Usually, the focus is on the features both samples share
(i.e. the numerator in the formula) and the similarity coefficients differ in how they weight
this number by the remaining features (denominator). For the explanation of the score,
instead of counting how many attributes the two data points have in common (represented
as 𝑎 in Eq. 6.1), these features can be represented as a binary vector, with a 1 at the feature
dimensions that both samples share. Normalizing this vector by the respective denominator
then yields the individual contribution of each feature to the final similarity score.
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Applying LRP to SimEc

SimEc predictions When using the full SimEc network, e.g., to predict pairwise relations,
LRP can be applied like to an ordinary classification network, using instead of the class as
the target the output dimension corresponding to the pairwise relation of interest (e.g. for
recommender systems the rating prediction for a specific user).
As a special case, if the SimEc network is linear, e.g., when the rating for a movie 𝑖 by a
user 𝑗 is predicted as

𝑟𝑖𝑗 = x𝑖𝑊1𝑊2[:,𝑗] with x𝑖 ∈ R𝐷, 𝑊1 ∈ R𝐷×𝑑, 𝑊2 ∈ R𝑑×𝑛,

then the contributions of the individual input features can also be obtained by instead using
a square matrix 𝑋𝑖 ∈ R𝐷×𝐷 as input, which has the values of x𝑖 on the diagonal, resulting
in a vector r ∈ R𝐷 where each dimension contains the contribution of the respective input
feature.

SimEc similarities When predicting similarities between two data points as the scalar
product of their SimEc embeddings, LRP has to be applied twice. For this, first the two
original input feature vectors are propagated through the first part of the SimEc network to
get their respective embedding vectors and a new last layer is added to the SimEc consisting
of these two embeddings. Then, LRP is applied for each of the data points by using the
data point’s feature vector as input to the adapted SimEc network and the embedding of
the respective other data point as the LRP target.
Again, a special case constitutes a SimEc with a linear first part, i.e., when the embedding
for a point 𝑖 is computed as y𝑖 = x𝑖𝑊1. This results in the similarity between two points 𝑖
and 𝑗 being computed as

y𝑖y⊤
𝑗 = x𝑖𝑊1(x𝑗𝑊1)⊤ = x𝑖𝑊1𝑊 ⊤

1 x⊤
𝑗 with x ∈ R𝐷, y ∈ R𝑑, 𝑊1 ∈ R𝐷×𝑑.

With this reformulation, the scalar product of the embedding vectors becomes

𝑑∑︁
𝑘=1

𝑦𝑖𝑘 · 𝑦𝑗𝑘 =
𝐷∑︁

𝑘=1
(x𝑖𝑊1𝑊 ⊤

1 )𝑘 · 𝑥𝑗𝑘,

where again the individual contribution of each feature to the similarity between the two
data points is stated in the sum.

5.2 Explaining SimEc predictions in practice

In this section, the flowerpot experiment from the introduction as well as the prediction
of movie ratings from the previous chapter are examined more closely, including anecdotal
evidence explaining individual SimEc predictions. Additionally, a new dataset with images
depicting a variety of shoes associated with different attributes is analyzed to show how
the similarity explanations for the same images change depending on the target similarity
learned by the SimEc.

Flowerpot experiment As a first illustrative example, we return to the flowerpot ex-
periment from the introduction (Sec. 1.1). Here, the task was to find similarity preserving
embeddings for 16 flowerpots given their feature vectors (with the stem size, leaf shape, and
three random noise features) as well as a 14 × 14 similarity matrix generated from human
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ratings. When computing the linear kernel on the original feature vectors, the three noise
dimensions contribute over-proportionally to the similarity scores, resulting in a poor kPCA
embedding (Fig. 1.4). A linear SimEc, on the other hand, correctly learns to compute the
(dis-)similarity between two flowerpots based on their stem size and leaf shape (Fig. 5.2).

-0.06 -0.32 0.04

Figure 5.2: Explanations of the SimEc (dis-)similarities between flowerpots based on the
contributions of the individual input features. Top: Selected plants and corresponding
SimEc similarity scores. Bottom: Contributions of individual features of each of the three
plants to the final similarity score.

Movie rating predictions Some movies can appeal to their audiences for different
reasons. For example, the horror-comedy Shaun of the Dead from 2004 might appeal both
to horror/zombie movie fans as well as a broader, comedy-loving audience. To examine this
effect in terms of the movie features that were decisive in the prediction of a high rating, we
selected two users, both of which had rated more than 1000 movies and gave Shaun of the
Dead a 5 star rating with a residual rating larger than 1. To get a better understanding of
the taste of these two users, their top 10 above average rated movies as well as the genres of
their top 100 rated movies are shown in Fig. 5.3. Since here the focus is not so much on
getting correct out-of-sample predictions (although it only makes sense to explain predictions
if they are believed to be correct), but rather to examine the contributions of individual
features to the final prediction, the SimEc network for this task is trained using all available
data from all users with more than 900 ratings (which results in 1063 SimEc targets), i.e.,
including all ratings for the two selected users. Besides this, the SimEc architecture and
training are the same as in Sec. 4.2, i.e., a linear SimEc is trained with the movie feature
vectors (consisting of one-hot encoded genres, keywords, and directors) as inputs to predict
the residual ratings. After training, the SimEc predicts an above average residual rating
for both users – but the movie features that contributed most to these predictions are very
different for these users (Fig. 5.4). While for one of the users the genre Horror and the
keyword zombie were amongst the most influential attributes, for the other user, Horror
contributed negatively to the prediction. However, it should be noted that the keyword
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Genre distributions for the userʼs top 100 above average movies

Figure 5.3: User profiles for the two selected exemplary users: top 10 movies with the
highest residual ratings as well as genres of the top 100 movies (numbers do not add up to
100% as some movies are assigned multiple genres).

Figure 5.4: Explanations of the SimEc rating predictions in terms of movie features for both
users.

survival horror contributed positively for both users, even though it is expected that a user
who is not fond of horror movies in general would also not appreciate survival horror movies
very much. This is likely an effect due to overfitting, as these keywords are rather specific
(e.g. surrey, indicating the London suburb Surrey, UK, where the movie takes place). The
results (both the prediction accuracy as well as the meaningfulness of the contributions
of the individual features) might be greatly improved if more expressive and generalizable
feature vectors were available for the movies.

Similarities of shoes The Zappos50k dataset [212, 213] contains about 50k 136 × 136
pixel color images of different types of shoes. The shoes are all oriented the same way in the
images and for each shoe there is meta-data available, including the type of shoe, the brand,
the heel height, as well as the closure mechanism (e.g. laces or zipper; can be more than
one). We only included shoes for which the heel height as well as the closure mechanism
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was given, which resulted in about 30k images. Based on these attributes, two different
similarities between the shoes were computed: the first is based on the absolute difference of
the heel heights (normalized to be between 0 and 1) and the second is the Simpson similarity
of closure mechanisms of each shoe, i.e., number of closures in common divided by minimum
number of closures listed for either of the shoes. The SimEc network used for the analysis
was constructed from a small convolutional neural network (CNN) with four convolutional
layers with ReLU activations and two max pooling layers mapping to a 512-dimensional
embedding, which then mapped to 1000 output units with a linear layer to predict the
target similarities for the input images. The SimEc was trained for two epochs on all images
for both of the target similarity functions. The LRP analysis of the network was performed
using the iNNvestigate Python library [6], which takes a keras model as input and generates
an analysis model that reveals the contributions at the input layer for a certain prediction.

We analyzed both the SimEc predictions as well as the similarity between the SimEc
embeddings: For the first scenario, three of the 1000 targets were chosen and for each input
image we asked “why is this shoe similar to the target shoe (w.r.t. the chosen similarity
function)?” (Figs. 5.5 and 5.6). For the second scenario, pairs of images were used to answer
the question “why are these two shoes similar to each other?” (Fig. 5.7). For this, different
images were used as input to the CNN to create the respective embeddings, which were then
used to replace some of the columns of the SimEc’s last layer’s weight matrix. With this
adapted weight matrix, LRP was applied to the model as before, however, since now each of
the input images also has its respective target entry, the similarity between two images can
be analyzed on both of the images. While the similarity explanations for a SimEc trained
on the heel height similarity focus mostly on the lower or back part of the shoes, especially
striking for the high heel shoes (Figs. 5.5 and 5.7), the explanations for the closure similarity
instead highlight the upper parts of the shoes, e.g., the ankle strap or laces (Fig. 5.6).

Figure 5.5: Explanations of the SimEc predictions for three target shoes (first column) and
four input images with the target similarity function based on the shoes’ heel heights.
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Figure 5.6: Explanations of the SimEc predictions for three target shoes (first column) and
four input images with the target similarity function based on the shoes’ closure mechanisms.
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Figure 5.7: Explanations of the heel-height-similarities of pairs of images, predicted as the
scalar products of their SimEc embeddings (mirrored at the diagonal, i.e., imagine the
transpose of the matrix to match up the image pairs).
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6
SIMILARITY PRE-TRAINING FOR SUPERVISED TASKS

In this chapter, we demonstrate how, with the right target similarities, a Similarity Encoder
(SimEc) setup can be used to pre-train the weights of an arbitrary neural network (NN)
architecture to improve this network’s performance in a supervised learning task.

Background & related work

For a NN model to achieve a good performance in a supervised learning task, such as image
classification, it needs to be trained on a large dataset, typically containing several tens
or even hundreds of thousands of labeled examples. This is especially relevant for “deep”
NN models, such as multi-layer convolutional neural networks (CNN) [110] used, e.g., for
computer vision tasks, which generally comprise several million parameters. If a large labeled
dataset is not available for a particular task, e.g., in few shot learning scenarios [59], it can
be beneficial to pre-train the network on the labeled data from a similar task [3, 50, 53, 146,
179] or on a larger collection of unlabeled examples that might be easier to come by [23,
109, 145, 154, 201]. This way, the NN can already pick up on basic statistics and patterns
in the data, before it is then fine-tuned on the data available for the task of interest.

The idea of learning something on one task (the source task) and then utilizing this
knowledge to obtain a better accuracy on a different task (the target task) is also called
transfer learning [22, 58]. Transfer learning is highly related to other practices [147, 197]
such as multi-task learning (trying to perform well on multiple learning tasks at once) [168]
or domain adaptation (correcting for shifts in the data distribution, e.g., caused by changes
in the data collection pipeline) [60, 98, 120, 186, 187]. For the purposes of this investigation,
we are only interested in transfer learning in the form of initializing the weights of one NN
with those from another network trained on a related task (Fig. 6.1).

In the past, when there were fewer large labeled datasets available than today, NN models
were often pre-trained on an unsupervised task, i.e., with unlabeled examples. This can, for
example, be accomplished with an auto-encoder (AE) network [80, 190], which consists of
an encoder part, which maps the original input data to a low dimensional embedding, and a
decoder part, which maps the embedding to an output of the same dimensionality as the
input data. Such an AE network is trained to minimize the mean squared error (MSE) of
the output and the input data, i.e., an AE learns to compresses the input in the encoder
part of the network, and then reconstructs the original input from the embedding in the
decoder part. The pre-training of a NN model with an AE can either be done layer by
layer, or by simply training the whole AE network and then discarding the decoder part
and replacing it with a new layer that maps from the embedding to the target outputs for
the supervised task [24, 79].
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Figure 6.1: Transfer learning with pre-trained weights. The weights of the neural network
for the task of interest (target task) are initialized by copying some of the weights from a
network with a similar architecture that was trained on a related task (source task).

Nowadays, not only large labeled datasets, such as ImageNet [169] for image classification,
but also NN models already trained on these datasets are publicly available [100]. Therefore,
when faced with a supervised task with little training data, it has become common practice
to use one of these pre-trained models, optionally freeze its weights,1 and replace the last
layer, which maps to the output, with a new layer that is appropriate for the current task
(e.g. makes predictions for different classes). This network is then fine-tuned on the data
available for the task of interest. Especially for image classification tasks, pre-training on
supervised tasks has been proven vastly more successful than on unsupervised tasks [23, 109,
179], presumably because labels are required for a NN model to learn the distinction between
relevant pixels displaying, e.g., faces or objects, and irrelevant pixels in the background.

Exactly why or under which circumstances initializing a NN with pre-trained weights
leads to a better performance on a supervised learning task is still debated in current
literature. NNs are known to be universal function approximators [45], easily capable of
memorizing random labels and inputs [7, 215]. Nevertheless, the vastly over-parametrized
NNs used today in practice generalize remarkably well to new data points [1, 17, 37, 68, 116,
170]. This is mainly assumed to be due to the properties of the (small batch) stochastic
gradient descent (SGD) optimization procedure, which acts as an implicit bias and results
in low norm weights [49, 94, 138, 139, 151, 183, 200]. However, while the local minimum
found by SGD corresponds to a solution that generalizes comparatively well, SGD is still
heavily influenced by the weight initialization and usually finds a minimum very close to
the initialization point [112, 136, 218]. Therefore, introducing a bias towards a specific local
minimum by initializing a network’s weights via pre-training can still be beneficial. The

1Freezing weights of a pre-trained network means this part of the network acts as a fixed feature extraction
module. However, doing this is generally not recommended as possible co-adaptation effects between the
copied and non-copied layers of the source network can result in a suboptimal performance on the target
task [211, 217].
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minimum that is found after pre-training generally does not result in a better accuracy on
the training data, but a lower generalization error on the test set, i.e., pre-training can be
treated as a form of implicit regularization [53], similar to data augmentation [67, 78]. The
generalization boost yielded by a favorable initialization of the weights can often even be
observed when the network is later fine-tuned on a rather large dataset [53, 211].

Crucial to an improved performance via pre-training is the similarity between the source
and target tasks [2, 217], i.e., they should rely on similar input features (photographs and
medical scans might already be too different) [103, 157] as well as solve a related problem
(e.g. image classification tasks with different classes, not an image classification and an image
segmentation task) [12, 21, 140, 214]. If the source and target tasks are too different, transfer
learning may not yield an improved performance [75, 97, 152] or can even result in “negative
transfer” [163] when the initialization of the network’s weights from the pre-training is very
far from a local minimum such that, especially with little training data, the network can
not recover from this initialization and does not converge to a good solution. Depending on
the similarity of the source and target tasks, the capacity of the network further influences
the possibility or severity of negative transfer, i.e., especially small networks will not benefit
from being pre-trained on an unrelated source task [32, 53], just like their performance
might be impaired by other forms of regularization.

To get a better feeling for the circumstances under which pre-training may be helpful, our
first experiment (Sec. 6.1) examines the relation between task similarity, network capacity,
and training set size to highlight the contributions of these factors to the generalization
boost achieved with transfer learning on an image classification task. W.r.t. task similarity,
learning similarities with a SimEc network should be a perfect source task: the same features
are used as inputs and in the extreme case, the target similarities learned by the SimEc
can be calculated directly from the prediction targets of the target task, i.e., a model can
be pre-trained on a semantically identical yet structurally different task. After the SimEc
network is trained on the source task, its last layer, mapping from the embedding to the
approximated similarities, is replaced according to the requirements of the target task. We
demonstrate the effectiveness of such a similarity-based pre-training empirically in an image
classification task (Sec. 6.1) and for the regression problem of predicting chemical properties
of molecules (Sec. 6.2).

6.1 Pre-training for image classification

The first set of transfer learning experiments are conducted on an image classification task.
In the first experiment, we examine under which conditions transfer learning, in the form
of initializing a neural network with pre-trained weights, is successful in general. Then we
explore to what extent pre-training with similarities can improve the performance on such a
supervised learning task.

The image classification dataset employed for both experiments is the CIFAR10 dataset
[99] (Fig. 6.2 top), which consists of altogether 60k 32 × 32 pixel RGB images, distributed
equally amongst ten classes of objects and animals. All images were mean-centered and
normalized to have a standard deviation of 1. We used the standard train/test split (50k/10k
images respectively) and for each task randomly selected 5k images from the training set as
a validation set for early stopping.
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Does pre-training help in general?

Whether pre-training will improve the performance on the following supervised learning task
is determined by a variety of circumstances. In this experiment, we examine the connection
between the performance gain through pre-training and the size of the training set for the
target task, the model capacity (in the form of a varying number of units in the first hidden
layer of the network), and the relatedness of the source and target tasks (Fig. 6.2).

The whole dataset is split into two tasks A and B, where A contains all images belonging
to the first five classes, while B contains the images of the remaining five classes. Note that
this leads to a balanced split with an equal number of animal and object classes in both
tasks. In this experiment, task B is the target task for which we are interested in the test
performance. We examine three different pre-training scenarios with source tasks more (B;
A & B) or less (A) related to the target task (B). In each case, the network is trained for 25
epochs using 20k training samples of the respective source task. After pre-training, in three
runs with different random seeds, the network weights are fine-tuned for another 25 epochs
on 25-20,000 randomly selected training examples from the target task B before the test
accuracy is computed. After each epoch during pre-training as well as fine-tuning of the
network, the validation set is used to compute the validation accuracy to determine the best
model. The neural network model used for the task is a simple feed-forward network with
two hidden layers, where the number of units in the first hidden layer is varied to examine
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Figure 6.2: Overview of the experimental setup for the general transfer learning experiment.
The ten classes of the CIFAR10 dataset [99] are divided amongst tasks A and B, where B
constitutes the target task and pre-training is performed either on the target task itself, a
random selection of 20k images from tasks A and B, or on task A. A simple feed-forward
neural network (FFNN) is used for the task, where in the pre-training cases the weights
between the input and first hidden layer, as well as the first and second hidden layers are
copied from the network trained on the respective source task, while the weights from the
second hidden layer to the output layer are always randomly initialized. The network is
then trained/fine-tuned using a varying number of training samples from the target task B
before computing the accuracy on the test set.
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the effect of different model capacities on the transfer learning performance.
The accuracies on the test set of task B for the different pre-training scenarios are shown

in Fig. 6.3. As expected, the generalization boost achieved by pre-training the network
is strongest for larger network architectures, which would generally require more training
samples, as well as for very similar source tasks (B or A & B). Pre-training on a somewhat
unrelated task (A), on the other hand, is only helpful if the network has a large enough
capacity (here 211 and 213 units in the first hidden layer), as here the network needs to
additionally represent some features not directly related to the target task [53]. While
the largest performance improvements can be observed for smaller training set sizes, the
generalization boost from most pre-training setups is still present when the fine-tuning
happened on the whole training set, even though the networks were always trained until
convergence. Together, these results show that pre-training can result in a substantial
performance gain for a supervised learning task independent of the training set size if the
source task is “sufficiently related” to the target task, where the required task similarity is
determined by the network’s capacity.
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Figure 6.3: Results for the general transfer learning experiment. The accuracies on the test
set for the four transfer learning conditions (no pre-training, pre-training on the target task
(B) itself, pre-training on a source task that is related to the target task (A & B), and
pre-training on a somewhat unrelated source task (A)) are shown for networks of different
complexities (128-8192 units in the first hidden layer) and using a varying number of training
samples to fine-tune the network on the target task. The fine-tuning/training on the target
task was done using three different random seeds; the bold lines show the mean test accuracy
while the shaded areas display the standard deviation.

Pre-training with similarities

As demonstrated in the previous experiment, transfer learning in the form of initializing
a neural network with pre-trained weights can lead to an improved performance on a
supervised learning task if the source and target tasks are related enough. The aim of this
experiment is now to demonstrate that learning similarities with a SimEc architecture can
be a suitable source task.

The target task in this experiment (Fig. 6.4) is to learn all ten classes of the full
CIFAR10 dataset. The neural network architecture used for this task is a small convolutional
neural network (CNN), where all but the weights mapping from the last hidden layer to
the output are initialized with pre-trained weights. For the pre-training, we compare
a SimEc architecture with different target similarities (unsupervised and supervised) to
two auto-encoder setups (unsupervised) as well as a pre-training on the target task itself
(supervised). The pre-training is always performed for 50 epochs using the full dataset. The
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Figure 6.4: Overview of the experimental setup for the SimEc transfer learning example.
The neural network used to solve the target task is a small convolutional neural network
(CNN) consisting of two convolutional layers followed by max pooling operations, two fully
connected layers, and the output layer to predict the ten classes of the full CIFAR10 dataset.
All weights except those mapping from the last hidden layer to the output are initialized with
the pre-trained weights from different source tasks. The fine-tuning on the target task is then
performed using a varying number of training samples. Besides a pre-training on the target
task itself (“CLF labels” in Fig. 6.5), several unsupervised and semi-supervised pre-training
scenarios are explored with auto-encoder and SimEc architectures. For the auto-encoder
pre-training, two architectures are tested, the first one is a regular auto-encoder, where
the full CNN is mirrored after last hidden layer to map back to the original input. The
second architecture, which we call a linear auto-encoder, consist of only a single linear layer
after the last hidden layer of the CNN to reconstruct the input. This linear auto-encoder
has approximately the same number of parameters as the SimEc architecture, which also
consists of only a single additional linear layer after the CNN to map to the 3000 target
similarities. For the SimEc setup, different target similarities are tested: in the unsupervised
learning case, the linear kernel, computed using only the raw images, is used, while in the
(semi-)supervised setups the target similarities consist of a weighted average between the
linear kernel and the class-based similarity, which is 1 for two images of the same class and
0 otherwise.

fine-tuning/training on the target task is performed for 50 epochs as well, using 5k training
examples as a validation set to determine the best model used for testing.

The test accuracy achieved with different pre-training setups on the CIFAR10 dataset
is shown in Fig. 6.5. As expected, pre-training on the target task itself (“CLF labels”)
yields the biggest performance gain for smaller training sets, as the CNN was able to learn
very helpful representations during the pre-training. The unsupervised pre-training with
both auto-encoder (AE) architectures as well as a SimEc with the linear kernel as the
target similarity does not improve the performance on the target task. This is most likely
due to the relatively small network, which seems to lack the capacity to represent both
features useful for the reconstruction of the samples as well as for the classification task [53].
Interestingly, the performance of the linear auto-encoder is much worse than that of the
unsupervised SimEc pre-training, which performs at the level of the regular auto-encoder,
even though the linear AE and SimEc architecture have approximately the same number of
parameters. When trained with a (semi-)supervised target similarity, a SimEc pre-training
improves the performance on the target task and can even yield a better performance for
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larger training sets than a pre-training on the target task itself. This means that even if one
has a large training set available for a target task, it can still be beneficial to pre-train the
network on class-label-based similarities to achieve an additional generalization boost [211],
thereby establishing the benefit of a SimEc pre-training.

Figure 6.5: Results on the image classification task (CIFAR10) with different pre-training
setups. The fine-tuning/training on the target task with a varying number of training
samples was done using three different random seeds; the bold lines show the mean test
accuracy while the shaded areas display the standard deviation.

The success of a SimEc pre-training hinges on the availability of a target similarity matrix
that relates to the following supervised learning task. While other unsupervised similarity
functions, e.g., the Wasserstein/Earth Mover’s Distance between the color-histograms of
the images [166], might be more auspicious for this image classification task than the linear
kernel, these are still not flexible enough to truly capture semantic similarity in images.
This is why we had created the artificial target similarity function computed as a weighted
average between the linear kernel and the class-based similarities. As we will see in the next
section, for other tasks, better unsupervised similarity functions are readily available and
positively influence the impact of the SimEc pre-training.

6.2 Pre-training for the prediction of chemical properties
In this section, we demonstrate how a SimEc pre-training can improve the prediction of
chemical properties of molecules. Unlike the image classification problem discussed in the
previous section, this is a regression task. While transfer learning for the prediction of
chemical properties was previously explored by pre-training on a larger, but lower quality
dataset for the same task [180], we are interested in how transferable parameters are across
different tasks, especially when the network was pre-trained on an unsupervised learning
task, i.e., one that did not require the computation of costly labels for each molecule.

Predicting properties of molecules, such as their energy level, can, for example, help with
the development of new materials [65]. While there exist exact methods to calculate these
properties [44], these are computationally very expensive and take a long time, which is
why machine learning models are increasingly employed to predict these properties instead
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[16, 26, 51, 63, 142]. While a neural network might take several hours or days to train,
computing predictions for new molecules is very fast.

A state-of-the-art model for the prediction of molecular properties is the SchNet neural
network architecture [176, 177, 178]. One of the difficulties of this prediction task is that it
is non-trivial to construct an informative input feature vector for a molecule, as all molecules
consist of different numbers and types of atoms. The raw data available for each molecule
includes the atoms it consists of and their three-dimensional coordinates, from which, e.g.,
the bonds between different atoms in the molecule can be derived. Instead of explicitly
constructing feature vectors from these atom coordinates that could then be used as input
to a prediction model [55, 91, 133], SchNet uses these raw atom coordinates directly to
learn an informative representation for each molecule, from which its properties can then be
predicted (Fig. 6.6). SchNet does this by learning an embedding for each kind of atom and
then using the coordinates of the atoms in a molecule to iteratively compute interactions
between the different atom embeddings. This yields a set of unique atom embeddings for
each molecule. These are then used as input to a feed-forward neural network (FFNN),
which is applied to each of the atom embeddings to compute the atom specific contribution
to the target property. Depending on the type of property (extensive or intensive)2 the
individual atom contributions are then summed up or averaged to yield the final prediction.
We use the SchNet implementation provided in the schnetpack Python library for our
experiments.3
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Figure 6.6: Molecular property prediction with SchNet.

The following experiments are performed on the QM9 dataset [155, 167], which consists
of over 130k molecules made up of up to nine heavy atoms. For each molecule, in addition
to its atoms and their coordinates, the dataset includes several chemical properties that
were computed for it. Exemplary, we show the results for one extensive (energy U0) and two
intensive (HOMO and LUMO) properties, however, as many of these properties are related
(Fig. 6.7), results for other properties should be similar. For most of the experiments, only
the number of molecules used for training the models are reported; unless stated otherwise,
the validation set used for early stopping (usually after around 700-900 epochs) consists
of 10k molecules, while all remaining samples of the 130k molecule dataset were used for
testing.

2The characterization of a chemical property as extensive or intensive is made based on how the property
changes with the size of the system: extensive properties, such as the mass, are additive for subsystems and
therefore dependent on the size of a molecule, while intensive properties, e.g. the density, are not dependent
on the system’s size.

3https://github.com/atomistic-machine-learning/schnetpack
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Figure 6.7: QM9: Overview of different molecular properties and how they are related.
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In the following sections, we first establish a baseline for the effectiveness of pre-training
in the molecular property prediction task by pre-training SchNet on the target property,
as well as related properties as source tasks. However, in these setups, the pre-training is
relying on the same costly labels as the regular training of the model for the target task.
In a next step, different molecular similarity functions, such as fingerprint similarities and
the FCHL kernel, are explored to determine their potential for a SimEc pre-training of
SchNet. These similarities are unsupervised in the sense that they are computed from only
the structural information associated with the molecules. Finally, the SimEc pre-training of
SchNet with these similarities is evaluated and we present possible extensions of the model
to further improve the performance.

Pre-training with properties

To establish a baseline for the benefits of pre-training SchNet, we explore in how far the
prediction of the properties with the SchNet model can be improved when pre-training
SchNet either on the target task itself or on a related property. For this, the full SchNet
& feed-forward network architecture is trained on 100k molecules to predict each of the
three selected properties energy U0, HOMO, and LUMO (= source tasks). Then, the
atom embeddings and weights of a new SchNet network are initialized with the pre-trained
network of the respective source task and the whole network is fine-tuned (SchNet) / trained
(FFNN) on the target task using only 100-1000 training samples.

When using as a source task the same property as in the target task (dark blue lines in
Figs. 6.8 & 6.9), the error on the training set is reduced significantly, while the performance
on the test set for most properties is only markedly improved when more than 500 training
samples are available for the fine-tuning. This suggests that a pre-training on the target
property itself leads to overfitting of the network for very small training set sizes.
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Figure 6.8: Mean absolute errors of energy U0 predictions on the training (dashed lines)
and test sets (solid lines) with and without property pre-training (PT). The light gray lines
show the train and test errors when SchNet is trained on the target task with a training
set consisting of 100k molecules, which also acts as the source task for the property PT.
The shaded areas show the standard deviation, computed by fine-tuning the full SchNet
architecture with three different random seeds.
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Figure 6.9: Mean absolute errors of HOMO and LUMO predictions on the training (dashed
lines) and test sets (solid lines) with and without property pre-training (PT). The light
gray lines show the train and test errors when SchNet is trained on the target task with a
training set consisting of 100k molecules, which also acts as the source task for the property
PT. The shaded areas show the standard deviation, computed by fine-tuning the full SchNet
architecture with three different random seeds.

When using a different (but conceptually related) property as a source task (HOMO
and LUMO respectively; light blue lines in Fig. 6.9), while the performance on the training
set is still better than without using pre-training, the test error is actually worse for smaller
training set sizes. Based on this poor generalization performance in this transfer learning
setup, a pre-training on different properties does not seem worthwhile if only very few
training examples are available for fine-tuning the network on the target task.

Similarities between molecules

While the pre-training with properties yields an improved performance at least for larger
training sets, it of course still requires the expensive computation of large amounts of
reference data. Ideally, we would like to utilize the structural information of the molecules
for a pre-training instead. This information is captured by a variety of similarity measures,
which can be used as targets in a SimEc pre-training of SchNet.

One family of computationally cheap unsupervised similarity functions for molecules
are the so-called fingerprint similarities, which are computed based on the structure of the
molecules alone (Fig. 6.10). First, topological fingerprints are computed for all molecules,
which are binary vectors where individual bits are set to 1 based on the hash value of
topological paths of varying lengths along the bonds of the molecule [108, 161]. From these
vectors, the similarity between two molecules is then computed using different similarity
coefficients [92, 156, 192]. An example of such a similarity coefficient is the Rogot-Goldberg
similarity [162], which is defined as

𝑆𝑖𝑗 = 𝑎

2𝑎 + 𝑏 + 𝑐
+ 𝑑

2𝑑 + 𝑏 + 𝑐

with: 𝑎 : number of attributes both 𝑖 and 𝑗 share
𝑏 : number of attributes 𝑖 has and 𝑗 lacks
𝑐 : number of attributes 𝑖 lacks and 𝑗 has
𝑑 : number of attributes both 𝑖 and 𝑗 lack.

(6.1)
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01 01 0 01 01 1

01 11 0 01 01 0

Figure 6.10: Binary topological fingerprints of two molecules are computed based on the
substructures occurring in the molecules. The similarity between two molecules is then
computed by checking which substructures occur in both or only one of the molecules.

We computed the fingerprint similarities between the molecules using the RDKit Python
library.4 It implements a multitude of different similarity coefficients, many of which are
highly correlated (Fig. 6.11).

To limit the computational cost, we picked only three of these similarity coefficients for the
following experiments: in addition to the above mentioned Rogot-Goldberg similarity these
are the McConnaughey similarity [122] (which is strongly correlated with the Kulczynski
similarity [101]), defined as

𝑆𝑖𝑗 = 𝑎2 − 𝑏𝑐

(𝑎 + 𝑏)(𝑎 + 𝑐)

and the Sokal similarity [182], defined as

𝑆𝑖𝑗 = 𝑎

𝑎 + 2𝑏 + 2𝑐
.

As these three similarity coefficients are highly correlated with the remaining similarity
coefficients and therefore provide a good coverage and variety, we conclude that results with
other fingerprint similarities should be similar.

In addition to the fingerprint similarities, we also use the FCHL kernel [38, 54], imple-
mented in the QML Python library [39], to compute molecular similarities. This kernel
function is computed as the sum of all atom-to-atom similarities of two molecules, which in
turn are computed from atom representations based on an atom’s period and group in the
periodic table as well as the interactions between its neighboring atoms. By using the period
and group of the atoms to create their representations, kernel ridge regression models based
on the FCHL kernel are capable of generating predictions even for molecules containing
elements not seen in the training dataset, whereas SchNet is only able to learn representations
for atoms encountered during training. Due to the additive nature of the FCHL kernel, we

4http://www.rdkit.org
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Figure 6.11: Overview of different similarity functions and how they are related. The purple
arrows indicate the fingerprint similarities used for further experiments. The similarities
on the left of the dashed line are computed using topological fingerprints of molecules
(as implemented in the RDKit Python library), while the two right most similarities are
computed using the FCHL kernel (from the QML Python library).
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Figure 6.12: First two kernel PCA components computed on the similarity matrices of the
fingerprint similarities. Each dot represents one molecule, colored according to the respective
property.

additionally report results on a normalized version of it (nFCHL), computed by dividing
the FCHL similarity 𝑆𝑖𝑗 of two molecules 𝑖 and 𝑗 by 𝑛𝑖 · 𝑛𝑗 , the product of the number of
atoms in molecule 𝑖 and 𝑗 respectively.

To get a first impression of the five similarity function used in the following SimEc
pre-training, Figs. 6.12 & 6.13 show scatter plots of the respective first two kernel PCA
(kPCA) components, colored by different molecular properties.5 For computational reasons,
the scatter plots for the (n)FCHL kernel were computed using only 1k randomly selected
molecules, while for the fingerprint similarities 10k samples were used. Both the FCHL and

5The atomization energy of a molecule is computed by subtracting from the energy U0 the individual
atom reference energies of all the atoms in the molecule.
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Figure 6.13: First two kernel PCA components computed on the similarity matrices of
the FCHL kernel functions. Each dot represents one molecule, colored according to the
respective property.
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Figure 6.14: First two kernel PCA components computed on the FCHL and nFCHL kernel
matrices, colored by the number of (heavy) atoms.

nFCHL similarities are strongly related to the atomization energy. The prominent stripe
structure in the first kernel principal component of FCHL is due to the number of atoms in
the molecules (Fig. 6.14), since the FCHL kernel is computed as the sum of the atomwise
similarities; the influence of which is reduced in the nFCHL similarity.

As another indication of how promising a SimEc pre-training with the respective similar-
ities might be, we examined the prediction errors achieved when using the 128-dimensional
kPCA embeddings of the respective similarity matrices together with a linear ridge regression
model to predict the properties (Figs. 6.15 & 6.16). The kPCA was computed based on
a 1000 × 1000 kernel matrix and then applied to the kernel map of all 130k molecules to
create the embeddings. The linear regression model was then fitted with a variable number
of training examples, ranging from 100 to 10k molecules, and using the kPCA embeddings
as input and one of the molecules’ properties as the target. To improve the predictions of
the fingerprint and nFCHL similarities, especially for the atomization energy, the number
of atoms in each molecule was used as an additional input feature (compare Fig. 6.15 left
and right panels). The reported prediction errors were computed on 100k test molecules,
where training and test splits are based on three different random seeds. The regularization
parameter of the ridge regression model was set automatically in the internal cross-validation
loop of the model.

While the molecular property predictions with the kPCA embeddings computed from
the fingerprint similarity matrices are quite poor, embeddings computed from the FCHL
kernel are very informative features and, together with a simple linear regression model,
yield more accurate predictions, at least for the atomization energy, than a SchNet model
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Figure 6.15: Mean absolute errors of atomization energy predictions on the test dataset
with a linear regression model trained on kPCA embeddings (left) or on kPCA embeddings
and the number of atoms of each molecule as an additional input feature (right). The
shaded areas show the standard deviation, computed by training and evaluating the linear
regression model on three different random train/test splits.
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Figure 6.16: Mean absolute errors of HOMO and LUMO predictions on the test dataset
with a linear regression model trained on kPCA embeddings and the number of atoms of
each molecule as features. The shaded areas show the standard deviation, computed by
training and evaluating the linear regression model on three different random train/test
splits.
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trained on a very small training set.

Pre-training with SimEcs

For the SimEc pre-training of SchNet (Fig. 6.17), the individual SchNet atom embeddings
of each molecule are first added or averaged to create a single 128-dimensional embedding
vector for the molecule. This embedding is then multiplied by the linear SimEc last layer to
predict the target similarities. To limit the computational cost, only 1000 molecules were
randomly chosen as targets, but all 130k molecules of the QM9 dataset are used as inputs
to train the network, i.e., a 130k × 1k target similarity matrix had to be computed for each
of the five similarity functions to conduct the SimEc pre-training.

�횺 Linear
1000

Output:
Approximated

Fingerprint/FCHL
Similarities

O

H

H

C

sum/avg

Input:
SchNet Embeddings

Figure 6.17: SimEc pre-training of SchNet.

For the SimEc pre-training, the target similarity matrix is first normalized, either by
standardizing it (subtracting the overall mean from all values and dividing them by the
standard deviation; labeled ‘std’ in the plots), or by scaling the similarities to be between 0
and 1 (min/max scaling; labeled ‘max’). Together with the aggregation strategy (sum/avg)
for creating the molecules’ embeddings from their atom embeddings, this results in four
hyperparameter combinations that were tested for the pre-training (in addition to the
selection of a suitable learning rate) for each of the five similarity functions. The network
was trained for up to 100 epochs on all 130k molecules and usually converged after about
10-30 epochs. While the SimEc pre-training with the three fingerprint similarities was fairly
robust with a good convergence for almost all aggregation and normalization combinations
and across a relatively broad range of learning rates, training the SimEc architecture with
the (n)FCHL kernel proved to be a bit more difficult and only the min/max normalization
yielded acceptable results, possibly due to the additive nature of the kernel function.

As a first check to ensure the SimEc pre-training itself was successful, the resulting
molecule embeddings, just like the kPCA embeddings in the previous section, were used
together with a linear ridge regression model to predict the molecular properties (Figs. 6.18
& 6.19). Noticeably, the prediction errors with the SimEc embeddings based on the
fingerprint similarities are lower than with the corresponding kPCA embeddings. This might
in part be due to the significant negative eigenvalues of these similarity matrices, which are
not captured by the kPCA components but can be learned by a SimEc (compare Sec. 3.6),
as well as the additional domain knowledge inherent in the SchNet model used to construct
the SimEc embeddings. The results with the (n)FCHL SimEc embeddings, on the other
hand, are worse than with the corresponding kPCA embeddings, which indicates that the
SchNet network might not be able to fully capture all the details that went into the FCHL
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Figure 6.18: Mean absolute errors of atomization energy predictions on the test dataset
with a linear regression model trained on SimEc embeddings (left) or on SimEc embeddings
and the number of atoms of each molecule as an additional input feature (right). For each
similarity, only the results of the best aggregation (avg or sum) and normalization (std
or max) hyperparameter combination are shown. The shaded areas show the standard
deviation, computed by training and evaluating the linear regression model on three different
random train/test splits.
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Figure 6.19: Mean absolute errors of HOMO and LUMO predictions on the test dataset
with a linear regression model trained on SimEc embeddings and the number of atoms
of each molecule as features. For each similarity, only the results of the best aggregation
(avg or sum) and normalization (std or max) hyperparameter combination are shown. The
shaded areas show the standard deviation, computed by training and evaluating the linear
regression model on three different random train/test splits.
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        FCHL avg/max                                             nFCHL sum/max                                            nFCHL avg/max                       
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Figure 6.20: T-SNE visualizations of 10k molecules’ 128-dimensional SimEc embed-
dings, where the SimEcs were trained with different target similarities and aggrega-
tion/normalization settings. Each dot represents one molecule, colored by its atomization
energy. From left to right and top to bottom the plots are sorted from best to worst
performance when predicting the molecules’ atomization energy with a linear regression
model from the embeddings. The two-dimensional visualizations were created with identical
t-SNE hyperparameters.

kernel computation.6
Not only the target similarity, that the SimEc was trained with, has an influence on

the accuracy when using the SimEc embeddings to predict the molecules’ properties with a
linear regression model (e.g. for the atomization energy, (n)FCHL yields much better results
than the fingerprint similarities). Within the same similarity function class, the results
also vary based on the different aggregation and normalization settings. Two-dimensional
t-SNE [119] visualizations of the different SimEc embeddings (Fig. 6.20) shed light on
these discrepancies: Those embeddings that result in low prediction errors (e.g. FCHL
avg/max) form tight clusters in the t-SNE visualizations, which suggests that the molecules’

6This finding is corroborated by the fact that the embedding error, i.e., the mean squared error between
the product of the SimEc embeddings and the target similarity matrix, is much higher than the embedding
error of the kPCA embeddings for the (n)FCHL kernel. A similar behavior of SimEcs was observed in
other experiments as well, where, for example, for a class-based similarity matrix a fairly deep net was
needed to achieve a SimEc embedding error comparable to that of an eigendecomposition (Fig. 3.4). For the
fingerprint similarities, on the other hand, the SimEc embedding errors were fairly low, indicating that the
decomposition of these similarity matrices could be learned quite well with a SchNet-SimEc architecture of
the given complexity. However, as the ultimate goal, i.e., the target task in this transfer learning setting, is
the prediction of the molecular properties, not the decomposition of the FCHL kernel matrix, the SchNet
architecture is chosen according to this and the SimEc results just are what they are.
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representations include features unique to each of these groups. In contrast, embeddings
less suited for a prediction with a linear regression model (e.g. Rogot-Goldberg sum/std)
resulted in t-SNE plots with a more global structure, indicating that the representations of
different molecules have more in common. While a linear regression model benefits from
embeddings containing very distinctive features, as we will show below, when it comes to
using the corresponding SimEc weights to initialize SchNet, the resulting performances are
better for the more inclusive representations.

Overall, within the constraints of the chosen SchNet architecture, the SimEc pre-training
seems to have been successful. Although the SimEc embeddings themselves can already be
fairly informative, a linear regression model is not sufficient to generate accurate predictions
from them and the performance of the regular SchNet prediction model (black lines in
Figs. 6.18 & 6.19), which includes a multi-layer feed-forward NN to generate the property
predictions from the SchNet embeddings, is still superior.

Finally, just like for the property pre-training, the SchNet model is initialized with the
pre-trained weights from the SimEc training and the full SchNet+FFNN model is fine-tuned
on a small number of training examples to predict the three properties (= target task). With
the SimEc pre-training of SchNet, the test errors improve and, unlike with the property
pre-training, the training errors are almost unchanged, i.e., the model generalizes better
(Figs. 6.21 & 6.22; Table 6.1). While a pre-training is generally most helpful when there
is only a small number of training samples available for the target task, similar as in the
image classification experiment in the previous section, an additional generalization boost,
although small, can still be observed when SchNet is trained on a larger dataset (Fig. 6.23).
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Figure 6.21: Mean absolute errors of energy U0 predictions on the training (dashed lines)
and test sets (solid lines) with and without a SimEc pre-training (PT). For each similarity,
only the results of the best aggregation (avg or sum) and normalization (std or max)
hyperparameter combination are shown. The light gray lines show the mean train and
test errors when SchNet is pre-trained on the target task itself. The shaded areas show
the standard deviation, computed by fine-tuning the full SchNet architecture with three
different random seeds.

Only the results for the Rogot-Goldberg fingerprint similarity are shown in the plots; for
HOMO and LUMO this was the best performing similarity, while for energy U0 all three
fingerprint similarities (with the sum/std setting) performed equally well. Interestingly,
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Figure 6.22: Mean absolute errors of HOMO and LUMO predictions on the training (dashed
lines) and test sets (solid lines) with and without a SimEc pre-training (PT). For each
similarity, only the results of the best aggregation (avg or sum) and normalization (std or
max) hyperparameter combination are shown. The light gray lines show the mean train
and test errors when SchNet is pre-trained on the target task itself. The shaded areas show
the standard deviation, computed by fine-tuning the full SchNet architecture with three
different random seeds.

Table 6.1: Prediction results for (PG-)SchNet models with different pre-trainings as well
as a linear regression (LR) model trained on FCHL kPCA embeddings. The models were
trained on 100 or 500 molecules; average mean absolute errors ± standard deviation were
computed by training/fine-tuning the models with three different random seeds.

Energy U0 HOMO LUMO
100 500 100 500 100 500

FCHL kPCA&LR 0.310±0.04 0.166±0.00 0.294±0.00 0.242±0.01 0.473±0.01 0.356±0.01

SchNet (no PT) 0.503±0.04 0.232±0.01 0.325±0.02 0.255±0.01 0.618±0.01 0.384±0.01
SchNet Prop. 0.459±0.05 0.234±0.05 0.345±0.04 0.230±0.03 0.450±0.04 0.316±0.01
SchNet Rogot-G. 0.425±0.04 0.219±0.01 0.280±0.01 0.215±0.01 0.459±0.03 0.290±0.01
SchNet nFCHL 0.438±0.05 0.227±0.01 0.305±0.01 0.247±0.01 0.560±0.03 0.348±0.00

PG-SchNet (no PT) 0.528±0.03 0.241±0.01 0.326±0.01 – 0.617±0.02 –
PG-SchNet FCHL 0.439±0.04 0.210±0.02 0.305±0.01 – 0.581±0.01 –
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Figure 6.23: Mean absolute errors for all three properties on the training (left) and test sets
(right) using SchNet without a SimEc pre-training (black), SchNet pre-trained on a fingerprint
similarity (blue), and the PG-SchNet architecture without pre-training (purple). The
models were trained on 100k molecules with a single random seed. The SimEc pre-training
was conducted with the Rogot-Goldberg similarity with the aggregation/normalization
combinations sum/std for energy U0 and avg/max for HOMO and LUMO.

while the sum/max hyperparameter combination worked best for most similarities and
properties when using the SimEc embeddings together with a linear regression model to
predict the properties, here in the pre-training setup the results are very different and the best
hyperparameter choices seem to be more dependent on the property type and corresponding
aggregation in the SchNet FFNN architecture (sum for energy U0 and avg for HOMO and
LUMO), as well as favoring pre-trainings with more “global” embeddings, as visible in the
corresponding t-SNE plots (Figs. 6.24 and 6.25). While the t-SNE visualizations created
from SchNet embeddings when the network was trained with 100k molecules display a global
structure with large clusters (if any), the t-SNE plots obtained from embeddings where
SchNet was trained on only 100 molecules show many small clusters, indicating that the
network might have picked up on the distinguishing characteristics of individual molecules
instead of learning patterns that hold true for a larger set of molecules (Fig. 6.24). This is
especially striking for SchNet trained to predict LUMO: when the network is trained on
100k molecules, one large yellow blob emerges in the t-SNE plot, while when trained on
only 100 molecules, the yellow dots are scattered across multiple smaller clusters. When
SchNet is pre-trained with a SimEc, on the other hand, even when fine-tuned on only 100
molecules, more global patterns can be observed in the t-SNE plot. While a pre-training
with a SimEc with “global” embeddings (nFCHL avg/max) also results in more global
SchNet representations after fine-tuning, a pre-training with “local” embeddings (nFCHL
sum/max) fails to create these global representations (Fig. 6.25) and correspondingly results
in lower accuracy improvements.

Overall, a SimEc pre-training with one of the fingerprint similarities, especially the Rogot-
Goldberg similarity, yields the biggest performance improvements, while a pre-training with
the (n)FCHL kernel, despite its superior results in the kPCA + linear regression experiments,
does not improve the performance of SchNet significantly. This was somewhat expected
considering the inadequate performance of the corresponding SimEc embeddings together
with a linear regression model discussed above.
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Figure 6.24: T-SNE visualizations of 10k molecules’ 128-dimensional SchNet and SimEc
embeddings. Each dot represents one molecule, colored by the property stated in each
row, which is also the property that SchNet was trained/fine-tuned to predict. The SchNet
molecule embeddings were computed by summing up the atom embeddings of each molecule
(t-SNE visualizations created from averaged atom embeddings look structurally similar).
From left to right, the t-SNE visualizations are created from embeddings from a SchNet
network without pre-training (PT) trained with 100k molecules; SchNet without PT trained
with 100 molecules; SchNet pre-trained with a SimEc and fine-tuned on 100 molecules;
and the SimEc embeddings from the pre-training (with the SimEc trained to approximate
the Rogot-Goldberg similarity, with aggregation/normalization sum/std for energy U0 and
avg/max for HOMO & LUMO, i.e., the respective best pre-training settings).
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Figure 6.25: T-SNE visualizations of 10k molecules’ 128-dimensional SimEc (top) and
SchNet embeddings (bottom). Each dot represents one molecule, colored by its atomization
energy. The SchNet architecture was pre-trained with the SimEc from the plot above it and
fine-tuned with 100 molecules to predict the molecules’ energy U0.

Atomwise SimEc pre-training

In light of the comparatively poor performance of SchNet pre-trained with the (n)FCHL
kernel, we devised the “atomwise” SimEc pre-training setup (Fig. 6.26) as an attempt to
adapt the SimEc pre-training of SchNet to the additive nature of the FCHL kernel. Since
the FCHL kernel is computed as the sum over the atomwise similarities of two molecules,
the linear SimEc last layer is extended to reflect this: Instead of aggregating the atom
embeddings of each molecule to create a single molecule embedding vector that is multiplied
by the SimEc last layer, the atom embeddings of each input molecule are now multiplied with
the SimEc last layer directly, where this last layer is extended to include 𝑛𝑖 atom embeddings
for each molecule 𝑖 of the 𝑇 target molecules. These individual atom-to-atom similarity
matrices of each target molecule are then summed up to compute the predicted (n)FCHL
similarity score for the respective molecule pair. This setup results in a vast increase in
parameters, since instead of a 128 × 𝑇 weight matrix, the SimEc last layer now consists of∑︀𝑇

𝑖=1 128 · 𝑛𝑖 parameters, where the 𝑇 target molecules contain on average 𝑛𝑖 = 18 atoms.
We only tested the atomwise SimEc pre-training for the prediction of the energy U0, as

the (n)FCHL kernel is most strongly related to this property and correspondingly one would
expect the largest improvements of a pre-training for this property. Both the FCHL kernel
as well as its normalized version (nFCHL) were used as target similarities. Concerning the
normalization of the similarity matrix, again the standardization (mean: 0, std: 1) of the
matrix resulted in a very poor convergence during the SimEc training, while the min/max
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Figure 6.26: Atomwise SimEc pre-training of SchNet. The linear SimEc last layer contains 𝑛𝑖

atom embeddings for each of the 𝑇 target molecules. The input molecule’s atom embeddings
are multiplied directly with the atom embeddings of the 𝑇 target molecules and these
atom-to-atom similarity matrices are then summed up for each target molecule to yield the
final similarity prediction.

scaling (min: 0, max: 1), as well as an additional std-scaling (min: 0, std: 1), worked
quite well. Due to the vast increase in parameters in the SimEc last layer, we only tested
this pre-training setup with 𝑇 = 50, 100, and 200 target molecules, compared to the 1000
targets used in the regular SimEc pre-training. With 50 target molecules, this results in
approximately the same number of parameters in the SimEc last layer as before.

Unfortunately, this atomwise SimEc pre-training did not yield an improved performance
compared to the regular SimEc pre-training with these similarity functions (on par for
nFCHL, slightly worse for FCHL). Consequentially, the performance is still below that of
the fingerprint similarities and still far from that of the FCHL kPCA embeddings together
with a linear regression model. Apparently, this architectural change is still not enough to
fully capture the intricacies of the FCHL kernel.

Period/Group-SchNet (PG-SchNet)

As a different attempt to improve the SimEc pre-training results with the (n)FCHL kernel,
we adapted the original SchNet architecture to construct atom embeddings based on an
element’s period and group in the periodic table (Fig. 6.27). This period/group-SchNet
(PG-SchNet) architecture is inspired by the fact that the computation of the FCHL kernel
heavily relies on the atoms’ periods and groups as well.

Except for the Lanthanides and Actinides (group 3 periods 6 & 7), every element is
uniquely defined by its period and group in the periodic table, which therefore makes it
possible to construct unique atom embeddings by concatenating the respective period and
group embeddings. Since elements in the same period or group share certain characteristics,
decomposing the atom embeddings this way means incorporating further domain knowledge
into the SchNet architecture while reducing the number of embeddings that need to be
learned, which also acts as a kind of regularization. Furthermore, this makes it possible to
construct meaningful atom embeddings for elements not in the original dataset, provided
other elements from the same period and group were encountered during training. Only the
way the initial atom embeddings are constructed is changed in PG-SchNet, all other aspects
of the prediction problem (Fig. 6.6) as well as the SimEc pre-training (Fig. 6.17) remain the
same.

The prediction errors of PG-SchNet for energy U0 without pre-training, as well as with
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Figure 6.27: Period/Group-SchNet (PG-SchNet) atom embedding construction from the
respective period and group embeddings.
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Figure 6.28: Mean absolute errors of energy U0 predictions on the test set with and without
a SimEc pre-training (PT). The solid lines show the mean test errors of the PG-SchNet
architecture, while dashed lines correspond to the respective errors with regular SchNet.
The shaded areas show the standard deviation, computed by fine-tuning the full PG-SchNet
architecture with three different random seeds.

a pre-training with the Rogot-Goldberg or nFCHL similarity, are on the same level as
the respective results using the regular SchNet architecture. A pre-training of PG-SchNet
with the FCHL kernel, however, leads to slightly better results, comparable to SchNet pre-
trained on a fingerprint similarity (Fig. 6.28; Table 6.1). This indicates that the PG-SchNet
architecture is better suited for learning the information captured by the FCHL kernel. For
HOMO and LUMO, PG-SchNet pre-trained on the nFCHL kernel or the Rogot-Goldberg
similarity (avg/max) yield slightly better results than the respective SchNet prediction errors,
however, the improvement of the nFCHL pre-training still does not come close to the error
achieved by pre-training the regular SchNet architecture with the Rogot-Goldberg similarity
(which might be expected considering (n)FCHL’s strong relation to the atomization energy).
When trained on a larger dataset, the prediction with PG-SchNet is slightly better compared
to the regular SchNet architecture (Fig. 6.23), although it should be noted that this was
only tested with a single random seed.
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The QM9 dataset used in these experiments only contains molecules made up of the
atoms ‘H’ (Period 1, Group 1) and ‘C’, ‘N’, ‘O’, ‘F’ (Period 2, Groups 14-17). With
this limited set of atoms, only the Period 2 embedding of PG-SchNet is learned across
multiple atoms, whereas the embedding for ‘H’ is effectively learned in the same way as
with the regular SchNet architecture. Nevertheless, even on this dataset minor performance
improvements can be achieved using a PG-SchNet architecture, therefore it can be assumed
that, especially together with a SimEc pre-training, PG-SchNet might be a worthwhile
option when the training data contains a more diverse set of atoms and predictions need to
be made for molecules with atoms not encountered during training.
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7
BETTER WORD EMBEDDINGS FROM LOCAL CONTEXT

In this chapter, we show how a variant of Similarity Encoder (SimEc), called Context
Encoder (ConEc), provides a simple but powerful extension of the word2vec neural language
model that can be used to compute embeddings for out-of-vocabulary (OOV) words as well
as better embeddings for words with multiple meanings.

Representation learning is very prominent in the field of natural language processing
(NLP). For example, word embeddings learned by neural language models (NLMs) were
shown to improve the performance when used as features for supervised learning tasks such
as named entity recognition (NER) [42, 196]. The popular word2vec model [129, 130] learns
meaningful word embeddings by considering only the words’ local contexts. Thanks to its
shallow architecture, it can be trained very efficiently on large corpora. The model, however,
only learns a single representation for words from a fixed vocabulary. Consequently, if in a
task a new word is encountered that was not present in the texts used for training, it is
not possible to create an embedding for this word without repeating the time consuming
training procedure of the model.1 Furthermore, a single embedding does not optimally
represent a word with multiple meanings. For example, “Washington” is both the name of
a US state as well as a former president and only by taking into account the word’s local
context can one identify the proper sense.

Based on an intuitive interpretation of the continuous bag-of-words (CBOW) word2vec
model’s negative sampling training objective, we propose an extension of the model we call
Context Encoder (ConEc). This allows for an easy creation of OOV embeddings, as well as
a better representation of words with multiple meanings by simply multiplying the trained
word2vec embeddings with the words’ average context vectors. As demonstrated on the
CoNLL 2003 challenge, the classification performance in a NER task can be significantly
improved when using as features the word embeddings created with ConEcs instead of
word2vec.

Related work In the past, NLMs have addressed the issue of polysemy, i.e., the possibility
of a word having multiple meanings, in various ways. For example, sense2vec is an extension
of word2vec, where in a preprocessing step all words in the training corpus are annotated with
their part-of-speech (POS) tag and then the embeddings are learned for tokens consisting of
the words themselves and their POS tags. This way, different representations are generated,

1In practice the model is trained on such a large vocabulary that it is rare to encounter a word that does
not have an embedding. Yet there are still scenarios where this is the case, for example, it is unlikely that
the term “W10281545” is encountered in a regular training corpus, but one might still want its embedding to
represent a search query like “whirlpool W10281545 ice maker part”.
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e.g., for words that are used both as a noun and verb [194]. Other methods first cluster
the contexts in which the words appear [89] or use additional resources such as WordNet to
identify multiple meanings of words [164]. One possibility to create OOV embeddings is to
learn representations for all character n-grams in the texts and then compute the embedding
of a word by combining the embeddings of the n-grams occurring in it [28]. However, none
of these NLMs are designed to solve both the OOV and polysemy problem at the same time.
Furthermore, compared to word2vec they require more parameters, resources, or additional
steps in the training procedure. ConEcs, on the other hand, can generate OOV embeddings
as well as improved representations for words with multiple meanings by simply multiplying
the matrix of trained word2vec embeddings with the words’ average context vectors.

7.1 ConEc as a simple but powerful extension of word2vec
Word2vec (Fig. 7.1) learns 𝑑-dimensional vector representations, referred to as word em-
beddings, for all 𝑚 words in the vocabulary. It is a shallow NLM with parameter matrices
𝑊1, 𝑊2 ∈ R𝑚×𝑑, which are tuned iteratively by scanning huge amounts of text sentence
by sentence. Based on some context words, the CBOW word2vec model tries to predict
the target word between them. Mathematically, this is realized by first computing the sum
of the embeddings of the context words by selecting the appropriate rows from 𝑊1. This
vector is then multiplied by several rows selected from 𝑊2: one of these rows corresponds to
the target word, while the others correspond to 𝑘 ‘noise’ words selected at random (negative
sampling). After applying a non-linear activation function, the backpropagation error is
computed by comparing this output to a label vector t ∈ R𝑘+1, which is 1 at the position of
the target word and 0 for all 𝑘 noise words. After the training of the model is complete, the
word embedding for a target word is the corresponding row of 𝑊1.

target word

The black    cat    slept on  the bed. 

context words

A!er training

target embedding
2 R1⇥d

Training phase
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Figure 7.1: Continuous bag-of-words (CBOW) word2vec model trained with negative
sampling [64, 129, 130].

Similar words tend to appear in similar contexts [73]. For example, two words synonymous
with each other could be exchanged for one another in almost all contexts without a reader
noticing. Based on the context word co-occurrences, pairwise similarities between all 𝑚
words of the vocabulary can be computed, resulting in a similarity matrix 𝑆 ∈ R𝑚×𝑚 (or
for a single word 𝑤 the vector s𝑤 ∈ R𝑚) with similarity scores between 0 and 1. These
similarities should be preserved in the word embeddings, e.g., the cosine similarity between
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the embedding vectors of two words used in similar contexts should be close to 1, or,
more generally, the dot product of the matrix with word embeddings 𝑌 ∈ R𝑚×𝑑 should
approximate 𝑆. Obviously, the most straightforward way of obtaining word embeddings
satisfying 𝑌 𝑌 ⊤ ≈ 𝑆 would be to compute the singular value decomposition (SVD) of the
similarity matrix 𝑆 and use the eigenvectors corresponding to the 𝑑 largest eigenvalues [114,
115]. However, as the vocabulary typically comprises tens of thousands of words, performing
an SVD of the corresponding similarity matrix is computationally far too expensive. Yet,
while the similarity matrix would be huge, it would also be quite sparse, as many words
are of course not synonymous with each other. If only a small number 𝑘 of random words
is picked, chances are their similarities to a target word would be close to 0. Therefore,
while the product of a single word’s embedding y𝑤 ∈ R𝑑 with the matrix of all embeddings
𝑌 should result in a vector ŝ𝑤 ∈ R𝑚 close to the true similarities s𝑤 of this word, when
considering only a small subset of ŝ𝑤 corresponding to the word itself and 𝑘 random words,
it is sufficient if this approximates the binary vector t𝑤 ∈ R𝑘+1, which is 1 for the word
itself and 0 elsewhere.

The CBOW word2vec model trained with negative sampling can therefore be interpreted
as a neural network (NN) that predicts a word’s similarities to other words (Fig. 7.2).

Input Embedding Output Target

xwi 2 Rm
<latexit sha1_base64="hgnJtv/8TQ/46DOPy1+k6trxrYw=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVQlCgrGChbEg+pCaEDmu01q1nch2gCrKzMKvsDCAECtfwMbf4LQdoOVIVzo6517de0+YMKq043xbpYXFpeWV8mplbX1jc8ve3mmpOJWYNHHMYtkJkSKMCtLUVDPSSSRBPGSkHQ4vCr99R6SisbjRo4T4HPUFjShG2kiBve9xpAdhlD3kQXYf0Bx6VMCJGGbX+S0P7KpTc8aA88SdkiqYohHYX14vxiknQmOGlOq6TqL9DElNMSN5xUsVSRAeoj7pGioQJ8rPxq/k8NAoPRjF0pTQcKz+nsgQV2rEQ9NZ3KhmvUL8z+umOjrzMyqSVBOBJ4uilEEdwyIX2KOSYM1GhiAsqbkV4gGSCGuTXsWE4M6+PE9axzXXqblXJ9X6+TSOMtgDB+AIuOAU1MElaIAmwOARPINX8GY9WS/Wu/UxaS1Z05ld8AfW5w8Oh5sb</latexit><latexit sha1_base64="hgnJtv/8TQ/46DOPy1+k6trxrYw=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVQlCgrGChbEg+pCaEDmu01q1nch2gCrKzMKvsDCAECtfwMbf4LQdoOVIVzo6517de0+YMKq043xbpYXFpeWV8mplbX1jc8ve3mmpOJWYNHHMYtkJkSKMCtLUVDPSSSRBPGSkHQ4vCr99R6SisbjRo4T4HPUFjShG2kiBve9xpAdhlD3kQXYf0Bx6VMCJGGbX+S0P7KpTc8aA88SdkiqYohHYX14vxiknQmOGlOq6TqL9DElNMSN5xUsVSRAeoj7pGioQJ8rPxq/k8NAoPRjF0pTQcKz+nsgQV2rEQ9NZ3KhmvUL8z+umOjrzMyqSVBOBJ4uilEEdwyIX2KOSYM1GhiAsqbkV4gGSCGuTXsWE4M6+PE9axzXXqblXJ9X6+TSOMtgDB+AIuOAU1MElaIAmwOARPINX8GY9WS/Wu/UxaS1Z05ld8AfW5w8Oh5sb</latexit><latexit sha1_base64="hgnJtv/8TQ/46DOPy1+k6trxrYw=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVQlCgrGChbEg+pCaEDmu01q1nch2gCrKzMKvsDCAECtfwMbf4LQdoOVIVzo6517de0+YMKq043xbpYXFpeWV8mplbX1jc8ve3mmpOJWYNHHMYtkJkSKMCtLUVDPSSSRBPGSkHQ4vCr99R6SisbjRo4T4HPUFjShG2kiBve9xpAdhlD3kQXYf0Bx6VMCJGGbX+S0P7KpTc8aA88SdkiqYohHYX14vxiknQmOGlOq6TqL9DElNMSN5xUsVSRAeoj7pGioQJ8rPxq/k8NAoPRjF0pTQcKz+nsgQV2rEQ9NZ3KhmvUL8z+umOjrzMyqSVBOBJ4uilEEdwyIX2KOSYM1GhiAsqbkV4gGSCGuTXsWE4M6+PE9axzXXqblXJ9X6+TSOMtgDB+AIuOAU1MElaIAmwOARPINX8GY9WS/Wu/UxaS1Z05ld8AfW5w8Oh5sb</latexit><latexit sha1_base64="hgnJtv/8TQ/46DOPy1+k6trxrYw=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVQlCgrGChbEg+pCaEDmu01q1nch2gCrKzMKvsDCAECtfwMbf4LQdoOVIVzo6517de0+YMKq043xbpYXFpeWV8mplbX1jc8ve3mmpOJWYNHHMYtkJkSKMCtLUVDPSSSRBPGSkHQ4vCr99R6SisbjRo4T4HPUFjShG2kiBve9xpAdhlD3kQXYf0Bx6VMCJGGbX+S0P7KpTc8aA88SdkiqYohHYX14vxiknQmOGlOq6TqL9DElNMSN5xUsVSRAeoj7pGioQJ8rPxq/k8NAoPRjF0pTQcKz+nsgQV2rEQ9NZ3KhmvUL8z+umOjrzMyqSVBOBJ4uilEEdwyIX2KOSYM1GhiAsqbkV4gGSCGuTXsWE4M6+PE9axzXXqblXJ9X6+TSOMtgDB+AIuOAU1MElaIAmwOARPINX8GY9WS/Wu/UxaS1Z05ld8AfW5w8Oh5sb</latexit>

ywi 2 Rd sw ⇡ twi
2 Rk+1ŝwi
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Figure 7.2: Context Encoder (ConEc) NN architecture corresponding to the CBOW word2vec
model trained with negative sampling. A ConEc is an instance of a SimEc with no hidden
layers and a non-linear activation after the last layer of the full network, trained with sparse
binary inputs and targets with mostly missing values.

During training, for each occurrence 𝑖 of a word 𝑤 in the texts, a binary vector x𝑤𝑖 ∈ R𝑚,
which is 1 at the positions of the context words of 𝑤 and 0 elsewhere, is used as input to
the network and multiplied by a set of weights 𝑊1 to arrive at an embedding y𝑤𝑖 ∈ R𝑑

(the summed rows of 𝑊1 corresponding to the context words). This embedding is then
multiplied by another set of weights 𝑊2, which corresponds to the full matrix of word
embeddings 𝑌 , to produce the output of the network, a vector ŝ𝑤𝑖 ∈ R𝑚 containing the
approximated similarities of the word 𝑤 to all other words. The training error is then
computed by comparing a subset of the output to a binary target vector t𝑤𝑖 ∈ R𝑘+1, which
serves as an approximation of the true similarities s𝑤 when considering only a small number
of random words. We refer to this interpretation of the word2vec CBOW model trained with
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negative sampling as a Context Encoder (ConEc). Indeed, a ConEc is simply a Similarity
Encoder (SimEc) with no hidden layers and a non-linear activation after the last layer of
the full network, and which is always trained with very sparse binary inputs and targets
with mostly missing values.

While the training procedure of the ConEc is identical to that of word2vec, there is a
difference in the computation of a word’s embedding after the training is complete. In the
case of word2vec, the word embedding is simply the row of the tuned 𝑊1 matrix. When
considering the idea behind the optimization procedure, we instead propose to create the
representation of a target word 𝑤 by multiplying 𝑊1 with the word’s average context vector
x𝑤, as this better resembles how the word embeddings are computed during training.

We distinguish between a word’s ‘global’ and ‘local’ average context vector (CV): The
global CV x𝑤global is computed as the average of all binary CVs x𝑤𝑖 corresponding to the
𝑁𝑤 occurrences of 𝑤 in the whole training corpus:

x𝑤global = 1
𝑁𝑤

𝑁𝑤∑︁
𝑖=1

x𝑤𝑖 ,

while the local CV x𝑤local is computed likewise, but considering only the 𝑛𝑤 occurrences of
𝑤 in a single document or paragraph. We can now compute the embedding of a word 𝑤 by
multiplying 𝑊1 with the weighted average of both CVs:

y𝑤 = (𝑎 · x𝑤global + (1 − 𝑎) x𝑤local)⊤𝑊1 (7.1)

with 𝑎 ∈ [0, 1]. The choice of 𝑎 determines how much emphasis is placed on the word’s local
context, which helps to distinguish between multiple meanings of the word [125].2 As an
out-of-vocabulary word does not have a global CV (as it never occurred in the training
corpus), its embedding is computed solely based on the local context, i.e., setting 𝑎 = 0.

With this new perspective on the model and optimization procedure, another advance-
ment is feasible. Since the context words are merely a sparse feature vector used as input
to a NN, there is no reason why this input vector should not contain other features about
the target word as well. For example, the feature vector x𝑤 could be extended to contain
information about the word’s case, POS tag, or other relevant details. While this would
increase the dimensionality of the first weight matrix 𝑊1 to include the additional features
when mapping the input to the word’s embedding, the training objective, and therefore
also 𝑊2, would remain unchanged. These additional features could be especially helpful if
details about the words would otherwise get lost in preprocessing (e.g. by lowercasing) or
to retain information about a word’s position in the sentence, which is ignored in a BOW
approach. These extended ConEcs are expected to create embeddings that even better
distinguish between the words’ different senses by taking into account, for example, if the
word is used as a noun or verb in the current context, similar to the sense2vec algorithm
[194]. But instead of explicitly learning multiple embeddings per term, like sense2vec, only
the dimensionality of the input vector is increased to include the POS tag of the current
word as a feature, which is expected to improve generalization if few training examples are
available.

7.2 Experimental results
The word embeddings learned by word2vec and Context Encoders are evaluated on the
CoNLL 2003 NER benchmark task [191]. We used a CBOW word2vec model trained with

2This implicitly assumes a word is only used in a single sense in one document or paragraph.
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Figure 7.3: Results of the NER task based on three random initializations of the word2vec
model. Left panel: Overall results, where the mean performance using word2vec embeddings
(dashed lines) is considered as our baseline; all other results are computed with ConEc
embeddings using various combinations of the words’ global and local CVs. Right panel:
Increased performance (mean and standard deviation) on the test fold when using ConEcs:
Multiplying the word2vec embeddings with global CVs yields a performance gain of 2.5
percentage points (A). By additionally using local CVs to create OOV word embeddings,
another 1.7 points are gained (B). When using a combination of global and local CVs (with
𝑎 = 0.6) to distinguish between the different meanings of words, the F1-score increases by
another 5.1 points (C ), yielding a F1-score of 39.92%, which marks a significant improvement
compared to the 30.59% reached with the original word2vec features.

negative sampling as described above with 𝑘 = 13, an embedding dimensionality 𝑑 of 200,
and a context window of 5 words. The word embeddings created by a ConEc are built
directly on top of the word2vec model by multiplying the original embeddings (𝑊1) with the
respective context vectors. Additionally, we evaluated the word embeddings on a standard
word analogy task [129]. Code to replicate the experiments is available online.3

Named Entity Recognition The main advantage of Context Encoders is their ability
to use local context to create OOV embeddings and distinguish between the different senses
of words. The effects of this are most prominent in a task such as NER, where the local
context of a word can make all the difference, e.g., to distinguish between the “Chicago
Bears” (an organization) and the city of Chicago (a location). We tested this on the CoNLL
2003 NER task by using the word embeddings as features together with a logistic regression
classifier. The reported F1-scores were computed using the official evaluation script. The
results achieved with various word embeddings in the training, development, and test part
of the CoNLL task are reported in Fig. 7.3. It should be noted that we are using this task
as an extrinsic evaluation to illustrate the advantages of ConEc embeddings over the regular
word2vec embeddings. To isolate the effects on the performance, we are only using these
word embeddings as features, while typically the performance on this NER challenge is
much higher when other features, such as a word’s case or POS tag, are included as well.

The word2vec embeddings were trained on the documents used in the training part of
the task.4 OOV words in the development and test parts were represented as zero vectors.
With three parameter settings, we illustrate the advantages of ConEcs:

3https://github.com/cod3licious/conec
4Since this is a very small corpus, we trained word2vec for 25 iterations on these documents.
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A) Multiplying the word2vec embeddings by the words’ average context vectors generally
improves the embeddings. To show this, ConEc word embeddings were computed using only
global CVs (Eq. 7.1 with 𝑎 = 1), which means OOV words again have a zero representation.
With these embeddings (labeled ‘global’ in Fig. 7.3), the performance improves on the dev
and test folds of the task.
B) Useful OOV embeddings can be created from the local context of a new word. To show
this, the ConEc embeddings for words from the training vocabulary (𝑤 ∈ 𝑚) were computed
as in A), but now the embeddings for OOV words (𝑤′ /∈ 𝑚) were computed using local CVs
(Eq. 7.1 with 𝑎 = 1 ∀ 𝑤 ∈ 𝑚 and 𝑎 = 0 ∀ 𝑤′ /∈ 𝑚; referred to as ‘OOV’ in the figure). The
training performance obviously stays the same, because here all words have an embedding
based on their global contexts. However, there is a jump in the ConEc performance on
the dev and test folds, where OOV words now have a representation based on their local
contexts.
C) Better embeddings for a word with multiple meanings can be created by using a combi-
nation of the word’s average global and local CVs as input to the ConEc. To show this, the
OOV embeddings were computed as in B), but now for the words occurring in the training
vocabulary, the local context was taken into account as well by setting 𝑎 < 1 (Eq. 7.1 with
𝑎 ∈ [0, 1) ∀ 𝑤 ∈ 𝑚 and 𝑎 = 0 ∀ 𝑤′ /∈ 𝑚). The best performances on all folds are achieved
when averaging the global and local CVs with around 𝑎 = 0.6 before multiplying them
with the word2vec embeddings. This clearly shows that ConEc embeddings created by
incorporating local context can help distinguish between multiple meanings of words.

Analogy task To show that the word embeddings created with Context Encoders capture
meaningful semantic and syntactic relationships between words, we evaluated them on
the original analogy task published together with the word2vec model [129].5 This task
consists of many questions in the form of “man is to king as woman is to XXX” where the
model is supposed to find the correct answer queen. This is accomplished by taking the
word embedding for king, subtracting from it the embedding for man, and then adding the
embedding for woman. This new word vector should then be most similar (with respect to
the cosine similarity) to the embedding for queen.6 The word2vec model was trained for ten
iterations on the text8 corpus,7 which contains around 17 million words and a vocabulary of
about 70k unique words, as well as the training part of the 1-billion benchmark dataset,8
which contains over 768 million words with a vocabulary of 486k unique words.9 The ConEc
embeddings were then constructed by multiplying the word2vec embeddings with the words’
average global context vectors obtained from the same corpus as the word2vec model was
trained on. To achieve the best results, we also had to include the target word itself in these
context vectors.

The results of the analogy task are shown in Table 7.1. To capture some of the semantic
relations between words (e.g. the first four task categories) it can be advantageous to use
Context Encoders instead of word2vec. One reason for the ConEcs’ superior performance
on some of the task categories, but not others, might be that the city and country names
compared in the first four task categories only have a single sense (referring to the respective
location), while the words asked for in other task categories can have multiple meanings.

5https://code.google.com/archive/p/word2vec/
6Readers familiar with Levy, Goldberg, and Dagan [114] will recognize this as the 3CosAdd method. We

have tried 3CosMul as well, but found that the results did not improve significantly and therefore omitted
them here.

7http://mattmahoney.net/dc/text8.zip
8http://code.google.com/p/1-billion-word-language-modeling-benchmark/
9In this experiment we ignored all words that occur less than 5 times in the training corpus.
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Better Word Embeddings from Local Context

For example, “run” can be used as both a noun or a verb, additionally, in some contexts
it refers to the sport activity, while other times it is used in a more abstract sense, e.g.,
in the context of someone running for president. Therefore, the results in the other task
categories might improve if the words’ context vectors were first clustered and then the
ConEc embedding was generated by multiplying the word2vec embeddings with the average
of only those context vectors corresponding to the word’s sense most appropriate for the
task category.

Table 7.1: Accuracy on the analogy task with mean and standard deviation computed using
three random seeds when initializing the word2vec model. The best results for each category
and corpus are in bold.

text8 (10 iter) 1-billion

word2vec Context Encoder word2vec Context Encoder

capital-common-countries 63.8±4.7 78.7±0.2 79.3±2.2 83.1±1.2
capital-world 34.0±2.1 54.7±1.3 63.8±1.4 75.9±0.4
currency 15.4±0.9 19.3±0.6 13.3±3.6 14.8±0.8
city-in-state 28.6±1.0 43.6±0.9 19.6±1.7 29.6±1.0
family 79.6±1.5 77.2±0.4 78.7±2.2 79.0±1.4
gram1-adjective-to-adverb 11.0±0.9 16.6±0.7 12.3±0.5 13.3±1.1
gram2-opposite 24.3±3.0 24.3±2.0 27.6±0.1 21.3±1.1
gram3-comparative 64.3±0.5 63.0±1.1 83.7±0.9 76.2±1.1
gram4-superlative 40.3±2.1 37.6±1.5 69.4±0.5 56.2±1.2
gram5-present-participle 30.5±1.0 31.7±0.4 78.4±1.0 68.0±0.7
gram6-nationality-adjective 70.6±1.5 67.2±1.4 83.8±0.6 83.8±0.5
gram7-past-tense 30.5±1.8 33.0±0.6 53.9±0.9 49.2±0.7
gram8-plural 49.8±0.3 49.2±1.2 62.7±1.9 56.7±1.0
gram9-plural-verbs 41.0±2.5 30.1±1.9 68.7±0.2 45.0±0.4

total 42.1±0.6 46.5±0.1 57.2±0.3 55.8±0.3
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CONCLUSION

Representing intrinsically complex structured data is an ubiquitous challenge in machine
learning. While spectral methods such as kernel PCA provide optimal similarity preserving
embeddings by computing the eigendecomposition of a similarity matrix, they are unable to
produce out-of-sample (OOS) solutions for new test samples if their similarity to the original
training examples can not be computed. Neural network based methods provide a mapping
function from an original input feature space to the embedding space and can therefore also
approximate the pairwise relations between new data points. However, existing methods
were not devised to predict non-metric similarities or multiple pairwise relations at once.

Similarity Encoder (SimEc) are a novel neural network (NN) architecture designed for
simultaneously factorizing a target matrix with pairwise relations while learning a mapping
from the original input feature space into a similarity preserving embedding space. As we
have demonstrated in multiple experiments, SimEcs can provide OOS solutions even if the
target similarities were obtained by an unknown process such as human ratings, they can
efficiently handle missing values in the target matrix or noisy inputs, and they are able to
predict non-metric similarities as well as multiple similarities at once.

Depending on the SimEc architecture – linear or with multiple hidden layers – and the
given target similarities, SimEcs can easily recreate solutions found by various spectral
methods such as (kernel) PCA or Isomap. Additionally, SimEcs can learn a mapping into a
similarity preserving embedding space for target similarities not computed from the original
feature vectors, such as similarities based on class labels, whereas creating the embeddings
for new test points based on the SVD of such a similarity matrix would require training an
additional regression model. This, however, can decrease the embedding quality compared
to learning the factorization and mapping simultaneously [33].

Non-metric similarities are characterized by an eigenvalue spectrum with a strong
negative part. As it was previously shown, the eigenvectors associated with these negative
eigenvalues can reveal very interesting features of the data [106]. However, traditional
spectral methods, such as kernel PCA, require positive semi-definite similarity matrices
or would simply ignore the components associated with the negative eigenvalues and only
preserve the information present in the largest positive eigenvalues. Similarly, neural network
based embedding methods that operate on batches of points to approximate a corresponding
symmetric part of the target similarity matrix [31, 93, 117, 118] are unable to capture the
information associated with the negative part of the eigenvalue spectrum, as this would
require that the embeddings contain imaginary numbers in some dimensions. SimEcs, on the
other hand, predict the target similarities as the dot product of the embedding 𝑌 , computed
by mapping the original feature vectors into the embedding space with the first part of
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the network, and the last layer of the full SimEc network, 𝑊𝑙. As these two matrices can
have opposing signs in some dimensions, SimEcs are able to retain the features present in
the components corresponding to the negative eigenvalues; indeed, SimEcs will preserve
the information associated with the eigenvalues of largest absolute magnitude. This is also
important to remember when using a SimEc to preserve multiple pairwise relations at once:
to give equal weight to the targets contained in multiple matrices, these matrices should first
be normalized by dividing them by their respective absolute largest eigenvalue. To predict
multiple pairwise relations at the same time, the last layer of a SimEc network can simply
be extended to a tensor to approximate the tensor containing the different target matrices.

The prediction of pairwise relations is an important component of many practical
applications, such as link prediction or for recommender systems. While SimEcs do not
outperform state-of-the-art models specifically developed to solve these tasks, SimEcs can
serve as a reliable multi-purpose baseline model. Especially when dealing with extremely
sparse target matrices and if mappings from multiple feature spaces (e.g. for items and
users) are required, it might be advantageous to instead use a model with two neural
networks mapping into the same embedding space to predict a single target value [70, 90,
205]. While SimEcs can easily handle missing values in the target matrix by computing the
backpropagation error only based on the given values, the model is designed to efficiently
factorize denser matrices. Similarly, it is possible to learn a second mapping from a different
feature space into the same embedding space by training a second SimEc with a fixed last
layer set to the embeddings computed by the first SimEc. However, in practice this will
introduce additional noise and lead to less accurate mappings compared to those created by
models that learn multiple embedding functions simultaneously.

One application area where we see great promise for using SimEcs is content based
recommendations. As SimEcs are able to learn the mapping from items’ original feature
vectors to an embedding that preserves similarities relevant to user behavior, the model
has the potential to improve recommendations for new items that did not receive any user
ratings yet. This might even improve suggestions based on full text similarity searches,
such as for identifying related scientific literature when writing a new paper [83] or when
searching for a patent’s prior art [77].

As machine learning models make their way into our everyday lives, for example, by
detecting irregularities in medical imaging or as critical components in self-driving cars,
explaining their predictions is now more important than ever. A popular technique to do
this for neural network models is layer-wise relevance propagation (LRP) [9, 13, 95, 132],
which deconstructs the prediction of a NN to reveal which of the input features contributed
most strongly to the decision of the model. As we have demonstrated, it is possible to use
LRP to explain the predictions and similarities computed by a SimEc network. This way,
for example, it could be made more transparent to a user why s/he is recommended certain
products.

As the first part of the SimEc architecture, mapping from the original input features to
the embedding space, can be realized by any (deep) neural network, SimEcs can adapt to a
variety of application areas. This also makes it possible to use SimEcs to pre-train neural
networks for different supervised learning tasks. If only a few labeled examples are available
to train a (deep) neural network on a supervised task, the prediction accuracy can often
be improved by pre-training the network on a related task with more data or on unlabeled
examples, e.g., using an auto-encoder network. Pre-training a network using a SimEc, i.e.,
by replacing the prediction layer with a last layer to approximate some target similarities,
can also improve the performance of this network in the following supervised task. However,
as we have shown by pre-training a CNN with a SimEc for an image classification task, for
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this to work it is important that the target similarities used to train the SimEc are well
aligned with the similarities of the data points’ labels. On the other hand, by constructing
a similarity matrix from the class labels of the training samples, the generalization boost
obtained through the SimEc pre-training is still present even when the final network is
fine-tuned on a large training set.

One supervised learning task where the SimEc pre-training shows particular promise is
for the prediction of chemical properties of molecules. Generating training data for this task,
i.e., computing e.g. the atomization energy of molecules, is computationally very expensive
and takes a long time. But by using topological fingerprints together with common similarity
coefficients, it is possible to efficiently compute similarities between molecules based on
their structural information alone. By pre-training the SchNet neural network architecture
[176, 178] with a SimEc on such a similarity measure, the predictions of the molecules’
properties are more accurate compared to only training SchNet on a few hundred labeled
training samples alone. Additionally, while in the past pre-training on unlabeled data with
auto-encoders (AEs) has also resulted in improved performances on some supervised tasks,
AEs can not be used to pre-train a network architecture like SchNet. It is notoriously
difficult to represent molecules with different numbers and types of atoms as fixed feature
vectors, which is why SchNet instead learns a meaningful representation for each molecule
using embeddings for each of its atoms and computing interactions between them based on
the atoms’ positions in space. Therefore, this network is not trivial to reverse to create the
characteristic mirror architecture used in auto-encoders. And, as SchNet operates directly on
the molecule’s atoms and their coordinates, there are no feature vectors available that an AE
could aim to reconstruct with its output. When performing the pre-training with a SimEc, on
the other hand, one is not faced with these problems. Instead, the molecules’ representations
learned by SchNet can be used together with a SimEc last layer to approximate the target
similarities computed from the molecules’ structures. While a SimEc pre-training of SchNet
with fingerprint similarities has resulted in an improved prediction performance, a pre-
training with the more informative FCHL kernel as a target similarity matrix did not yield
the expected performance boost. While the Period/Group architecture extension of SchNet,
where atom embeddings are constructed from their respective period and group embeddings,
resulted in a more effective FCHL SimEc pre-training, these changes were still not enough
to capture all details and domain knowledge that go into the computation of this kernel
and contribute to its superior performance when used to predict the molecules’ properties
with kernel ridge regression. Nevertheless, the PG-SchNet model might be useful in other
scenarios when predictions need to be made for molecules with atoms not encountered during
training, for which a regular SchNet model would not be able to produce an informative
embedding.

Natural language processing (NLP) is another field where using SimEcs proved beneficial.
With a simple architecture and the ability to learn meaningful word embeddings efficiently
from texts containing billions of words, word2vec remains one of the most popular neural
language models used today. However, as only a single embedding is learned for every word
in the vocabulary, the model fails to optimally represent words with multiple meanings.
Additionally, it is not possible to create embeddings for new (out-of-vocabulary) words on
the spot. Based on an intuitive interpretation of the continuous bag-of-words (CBOW)
word2vec model’s negative sampling training objective in terms of predicting context based
similarities, we motivated an extension of the model we call Context Encoder (ConEc).
By multiplying the matrix of trained word2vec embeddings with a word’s average context
vector, out-of-vocabulary (OOV) embeddings and representations for a word with multiple
meanings can be created based on the word’s local contexts. The superiority of these word
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embeddings was demonstrated by using them as features in the CoNLL 2003 named entity
recognition (NER) task. ConEcs are a simple variant of SimEcs, with a single linear layer
mapping to the embedding, trained on very sparse inputs and binary targets with mostly
missing values. By viewing the word2vec model as a neural network that gets as input
a binary feature vector indicating a word’s contexts words, a further advancement of the
model is possible: additional features, such as a word’s case or part-of-speech (POS) tag
could be used as input as well. This could help retain information that might otherwise get
lost in preprocessing (e.g. by lowercasing) or to include details about the position of a word
in a sentence, which is not considered in a bag-of-words (BOW) approach. We expect that
using such extended feature vectors will further improve the expressiveness of the resulting
word embeddings.
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SIMILARITY ENCODER
A Neural Network Architecture for Learning Similarity Preserving Embeddings

Matrix factorization is at the heart of many machine learning algorithms, for example, for dimensionality
reduction (e.g. kernel PCA) or recommender systems relying on collaborative filtering. Understanding a
singular value decomposition (SVD) of a matrix as a neural network optimization problem enables us to
decompose large matrices e�iciently while dealing naturally with missing values in the given matrix. But
most importantly, it allows us to learn the connection between data points’ feature vectors and the matrix
containing information about their pairwise relations. In this thesis, we introduce a novel neural network
architecture termed Similarity Encoder (SimEc), which is designed to simultaneously factorize a given target
matrix while also learning the mapping to project the data points’ feature vectors into a similarity preserv-
ing embedding space. This makes it possible to, for example, easily compute out-of-sample solutions for
new data points. Additionally, we demonstrate that SimEcs can preserve non-metric similarities and even
predict multiple pairwise relations between data points at once. As the first part of the SimEc architecture,
mapping from the original (high dimensional) feature space to the (low dimensional) embedding, can be
realized by any kind of (deep) neural network, SimEcs can be used in a variety of application areas. As we
will demonstrate, SimEcs can serve as a reliable baseline model in pairwise relation prediction tasks such
as link prediction or for recommender systems. The pairwise relations and similarities predicted by a SimEc
model can also be explained using layer-wise relevance propagation (LRP). Furthermore, SimEcs can be
used to pre-train a neural network used in a supervised learning task, which, for example, improves the
prediction of molecular properties when only few labeled training samples are available. Finally, a variant
of SimEc, called Context Encoder (ConEc), provides an intuitive interpretation of the training procedure of
the CBOWword2vec natural languagemodel trained with negative sampling andmakes it possible to learn
more expressive embeddings for words with multiple meanings as well as to compute embeddings for out-
of-vocabulary words.

Figure0: T-SNEvisualizationsof 10kmolecules’ 128-dimensional SchNet embeddings. TheSchNet architecturewaspre-trainedwith
a SimEc trained to approximate the Rogot-Goldberg molecular fingerprint similarity (aggregation: sum, normalization: max) and
then the network was fine-tuned to predict the energy U0 of 100 training molecules. Each dot represents onemolecule. In the plot
on the le�, the individual SchNet atom embeddings of a molecule were averaged to compute the final molecule embedding and
the points are colored based on the molecules’ atomization energy. In the plot on the right, the atom embeddings were summed
up and the dots are colored based on the molecules’ LUMO values. Further details can be found in Chapter 6.
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