Skip to main content
Log in

Unveiling the secrets of Roman craftsmanship: mortars from Piscina Mirabilis (Campi Flegrei, Italy)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Aim of this study is the characterisation of ancient Roman mortars collected in Piscina Mirabilis, located in the important geological, archaeological and historical area of the Campania Region (southern Italy): the Campi Flegrei. Goals of this research were (a) improving knowledge of Roman construction techniques by means of detailed microstructural and compositional examination of cementitious binding matrix and aggregates, to point out both mortar mix-design and provenance of raw materials, (b) the study of secondary minerogenetic processes and (c) comparison with modern mortars. Thanks to the permission by the former Soprintendenza Archeologia della Campania (authority of the archaeological heritage) current “Parco Archeologico dei Campi Flegrei”, it was possible to collect small, non-invasive, but representative samples of mortars. Samples were studied by combined methodologies such as optical microscopy (OM) on thin sections, X-ray powder diffraction (XRPD), scanning electron microscopy analysis (SEM), energy-dispersion X-ray spectroscopy (EDS), simultaneous thermal analyses (STA) and mercury intrusion porosimetry (MIP). Results showed that local geomaterials were used in this archaeological site, as they are well consistent with the surrounding geological setting. A relevant characteristic is the hydraulicity of these mortars shown by the reaction rims of pozzolanic materials. Composition of the cementitious binding matrix is characterized by various products of reaction, including amorphous C-A-S-H gel, calcite and Al-tobermorite. Results also highlighted that porosity represents the main difference between ancient Roman mortars and modern hydraulic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amalfitano P, Comodeca G, Medri M. (1990) I Campi Flegrei, un itinerario archeologico. Venezia

  • ASTM D4404–10:Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry

  • Bakolas A, Biscontin G, Contardi V, Francesehi E, Moropoulou A, Palazzi D, Zendri E (1995) Thermoanalytical research on traditional mortars from Venice. Thermochim Acta 269/270:817–828

    Article  Google Scholar 

  • Barba L, Blancas J, Manzanilla LR, Ortiz A, Barca D, Crisci GM, Miriello D, Pecci A (2009) Provenance of the limestone used in Teotihuacan (Mexico): a methodological approach. Archaeometry 51:525–545

    Article  Google Scholar 

  • Belfiore CM, La Russa MF, Mazzoleni P, Pezzino A, Viccaro M (2010) Technological study of “ghiara” mortars from the historical city centre of Catania (eastern Sicily, Italy) and petro-chemical characterisation of raw materials. Environ Earth Sci 61:995–1003. https://doi.org/10.1007/s12665-009-0418-5

    Article  Google Scholar 

  • Borriello M. and D’Ambrosio A. (1979) Baiae-Misenum, Forma Italiae, Regio I, Vol. XIV. Firenze.

  • Boynton R. S. (1996) Chemistry and technology of lime and limestone. John Wiley & Sons. 

  • Brandon CJ, Hohlfelder RL, Jackson MD, Oleson JP (2014) Building for eternity. The history and technology of roman concrete engineering in the sea.  Oxford: Oxbow Books.

  • Colella A, Di Benedetto C, Calcaterra D, Cappelletti P, D’Amore M, Di Martire D, Graziano SF, Papa L, de Gennaro M, Langella A (2017) The neapolitan yellow tuff: an outstanding example of heterogeneity. Constr Build Mater 136:361–373

    Article  Google Scholar 

  • Collepardi M (2003) La lezione dei romani: durabilità e sostenibilità delle opere architettoniche e strutturali. In: III Convegno AIMAT “Restauro e Conservazione dei Beni Culturali: Materiali e Tecniche.” Cassino (FR)

  • Collepardi M, Collepardi S, Troli R (2009) Il nuovo calcestruzzo, 5th edn. Treviso

  • De Feo G, De Gisi S, Malvano C, De Biase O (2010) The greatest water reservoirs in the ancient Roman world and the “Piscina Mirabilis” in Misenum. Water Sci Technol Water Supply 10:350–358. https://doi.org/10.2166/ws.2010.106

    Article  Google Scholar 

  • de Gennaro M, Colella C, Pansini M (1993) Hydrothermal conversion of trachytic glass into zeolite. II reactions with high-salinity waters. Neues Jahrb Far Mineral 3:97–110

    Google Scholar 

  • de Gennaro M, Incoronato A, Mastrolorenzo G, Adabbo M, Spina G (1999) Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy). J Volcanol Geotherm Res 91:303–320. https://doi.org/10.1016/S0377-0273(99)00040-2

    Article  Google Scholar 

  • de Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the neapolitan yellow tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petrol 139:17–35. https://doi.org/10.1007/s004100050571

    Article  Google Scholar 

  • De Luca R, Miriello D, Pecci A, Dominguez-Bella S, Bernal-Casasola D, Cottica D, Bloise A, Crisci GM (2015) Archaeometric study of mortars from the Garum shop at Pompeii, Campania, Italy. Geoarchaeology 30:330–351. https://doi.org/10.1002/gea.21515

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the neapolitan yellow tuff caldera-forming eruption (Campi Flegrei caldera-Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170. https://doi.org/10.1016/S0377-0273(03)00396-2

    Article  Google Scholar 

  • Delile H, Keenan-Jones D, Blichert-Toft J, Goiran JP, Arnaud-Godet F, Romano P, Albarède F (2016) Urban development in ancient Naples. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1600893113

  • Di Benedetto C, Cappelletti P, Favaro M, Graziano SF, Langella A, Calcaterra D, Colella A (2015) Porosity as key factor in the durability of two historical building stones: neapolitan yellow tuff and vicenza stone. Eng Geol 193:310–319. https://doi.org/10.1016/j.enggeo.2015.05.006

    Article  Google Scholar 

  • Di Benedetto C, Graziano SF, Guarino V, Rispoli C, Munzi P, Morra V, Cappelletti P (2018) Romans’ established skills: mortars from D46b mausoleum, Porta Mediana necropolis, Cuma (Naples). Mediter Archaeol Archaeom 18:131–146. https://doi.org/10.5281/zenodo.1285895

    Article  Google Scholar 

  • Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008) The breccia museo formation, Campi Flegrei, Southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70:1189–1219. https://doi.org/10.1007/s00445-008-0197-y

    Article  Google Scholar 

  • Fedele L, Insinga DD, Calvert AT, Morra V, Perrotta A, Scarpati C (2011) 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (Southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull Volcanol 73:1323–1336

    Article  Google Scholar 

  • Fernández R, Nebreda B, De La Villa RV, García R, Frías M (2010) Mineralogical and chemical evolution of hydrated phases in the pozzolanic reaction of calcined paper sludge. Cem Concr Compos 32:775–782. https://doi.org/10.1016/j.cemconcomp.2010.08.003

    Article  Google Scholar 

  • Fichera GV, Belfiore CM, La Russa MF, Ruffolo SA, Barca D, Frontoni R, Galli G, Pezzino A (2015) Limestone provenance in roman lime-volcanic ash mortars from the Villa dei Quintili, Rome. Geoarchaeology 30:79–99. https://doi.org/10.1002/gea.21504

    Article  Google Scholar 

  • Gotti E, Oleson JP, Bottalico L, Brandon C, Cucitore R, Hohlfelder RL (2008) A comparison of the chemical and engineering characteristics of ancient roman hydraulic concrete with a modern reproduction of vitruvian hydraulic concrete. Archaeometry 50:576–590. https://doi.org/10.1111/j.1475-4754.2007.00371.x

    Article  Google Scholar 

  • Graziano SF, Di Benedetto C, Guarino V, Rispoli C, Munzi P, Morra V, Cappelletti P (2018) Technology and building materials in Roman age (1st BC-2nd AD): the “Mausoleo Della Sfinge” from the archaeological site of Cuma (Italy). Mediter Archaeol Archaeom 18:81–94. https://doi.org/10.5281/zenodo.1256057

    Article  Google Scholar 

  • Howarth J (1998) Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. Am J Sci 298:594–607

    Article  Google Scholar 

  • Izzo F, Arizzi A, Cappelletti P, Cultrone G, De Bonis A, Germinario C, Graziano SF, Grifa C, Guarino V, Mercurio M, Morra V, Langella A (2016) The art of building in the Roman period (89 B.C.-79 a.D.): mortars, plasters and mosaic floors from ancient Stabiae (Naples, Italy). Constr Build Mater 117:129–143. https://doi.org/10.1016/j.conbuildmat.2016.04.101

    Article  Google Scholar 

  • Izzo F, Grifa C, Germinario C, Mercurio M, De Bonis A, Tomay L, Langella A (2018) Production technology of mortar-based building materials from the arch of Trajan and the Roman theatre in Benevento, Italy. Eur Phys J Plus 133. https://doi.org/10.1140/epjp/i2018-12229-1

  • Jackson M, Marra F (2006) Roman stone masonry: volcanic foundations of the ancient city. Am J Archaeol 110:403–436. https://doi.org/10.3764/aja.110.3.403

    Article  Google Scholar 

  • Jackson MD, Chae SR, Mulcahy SR, Taylor R, Li P, Emwas A, Moon J, Yoon S, Vola G, Wenk H, Monteiro P (2012) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am Mineral 98:1669–1687. https://doi.org/10.2138/am.2013.4484

    Article  Google Scholar 

  • Jackson MD, Gudmundsson MT, Bach W, Cappelletti P, Coleman NJ, Ivarsson M, Jónasson K, Jørgensen SL, Marteinsson V, McPhie J, Moore JG, Nielson D, Rhodes JM, Rispoli C, Schiffman P, Stefánsson A, Türke A, Vanorio T, Weisenberger TB, White JDL, Zierenberg R, Zimanowski B (2015) Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey volcano. Sci Drill 20. https://doi.org/10.5194/sd-20-51-2015

  • Jackson MD, Mulcahy SR, Chen H, Yao L, Qinfei L, Cappelletti P, Rudolf H (2017) Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am Mineral 102:1435–1450. https://doi.org/10.2138/am-2017-5993CCBY

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA, Ricca M, Rovella N, Comite V, De Buergo MA, Crisci GM, Barca D (2015) Archaeometric approach for the study of mortars from the underwater archaeological site of Baia (Naples) Italy: preliminary results. Period di Mineral 84:553–567. https://doi.org/10.2451/2015PM0031

    Article  Google Scholar 

  • Langella A, Bish DL, Cappelletti P, Cerri G, Colella A, de Gennaro R, Graziano SF, Perrotta A, Scarpati C, de Gennaro M (2013) New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Appl Clay Sci 72:55–73. https://doi.org/10.1016/j.clay.2013.01.008

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Mays L, Antoniou GP, Angelakis AN (2013) History of water cisterns: legacies and lessons. Water 5:1916–1940. https://doi.org/10.3390/w5041916

    Article  Google Scholar 

  • Melluso L, de’Gennaro R, Fedele L, Franciosi L, Morra V (2012) Evidence of crystallization in residual, Cl-F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt-trachyphonolite interaction in the lava domes of the Phlegrean fields (Italy). Geol Mag 149:532–550. https://doi.org/10.1017/S0016756811000902

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Bisbikou K (1995) Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim Acta 269–270:779–795. https://doi.org/10.1016/0040-6031(95)02571-5

    Article  Google Scholar 

  • Moropoulou A, Cakmak A, Labropoulos KC, Van Grieken R, Torfs K (2004) Accelerated microstructural evolution of a calcium-silicate-hydrate (C-S-H) phase in pozzolanic pastes using fine siliceous sources: comparison with historic pozzolanic mortars. Cem Concr Res 34:1–6. https://doi.org/10.1016/S0008-8846(03)00187-X

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cem Concr Compos 27:295–300. https://doi.org/10.1016/j.cemconcomp.2004.02.018

    Article  Google Scholar 

  • Morra V, Calcaterra D, Cappelletti P, Colella A, Fedele L, de Gennaro R, Langella A, Mercurio M, de Gennaro M (2010) Urban geology: relationships between geological setting and architectural heritage of the Neapolitan area. J Virtual Explor 36. https://doi.org/10.3809/jvirtex.2010.00261

  • Munsell Color (1994). Munsell Soil Color Charts (1994). Rev. edn. Macbeth Division of Kollmorgen Instruments, New Windsor, NY

  • Rispoli C. (2017) Ancient Roman mortars: mix design, mineralogical composition and minerogenetic secondary processes. Ph.D. Thesis, Federico II University of Naples, Naples, Italy

  • Rispoli C, Graziano SF, De Bonis A, Cappelletti P, Esposito R, Talamo P (2015) Piscina Mirabilis: characterization of geomaterials. In: 1st International Conference on Metrology for Archaeology. Benevento, pp 266–270

  • Rispoli C, Graziano SF, Guarino V, De Bonis A, Di Benedetto C, Esposito R, Budetta T, Morra V, Cappelletti P (2016) Characterization of ancient mortars: preliminary results from Villa del Pezzolo, Sorrento Peninsula, Italy. In: IMEKO International Conference on Metrology for Archeology and Cultural Heritage, MetroArcheo 2016. pp 151–156

  • Rispoli C, Fedele L, Di Benedetto C, Esposito R, Graziano SF, Guarino V, Morra V, Cappelletti P (2019a) Characterization of building materials from the Anfiteatro Flavio (Pozzuoli, Southern Italy): a mineralogical and petrographic study. Ital J Geosci 138:103–115. https://doi.org/10.3301/IJG.2018.29

    Article  Google Scholar 

  • Rispoli C, De Bonis A, Guarino V, Graziano SF, Di Benedetto C, Esposito R, Morra V, Cappelletti P (2019b) The ancient pozzolanic mortars of the thermal complex of Baia (Campi Flegrei, Italy). J Cult Herit, ISSN 1296–2074. https://doi.org/10.1016/j.culher.2019.05.010

  • Scarpati C, Cole P, Perrotta A (1993) The neapolitan yellow tuff-a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55:343–356. https://doi.org/10.1007/BF00301145

    Article  Google Scholar 

  • Silva DA, Wenk HR, Monteiro PJM (2005) Comparative investigation of mortars from Roman colosseum and cistern. Thermochim Acta 438:35–40. https://doi.org/10.1016/j.tca.2005.03.003

    Article  Google Scholar 

  • Stanislao C, Rispoli C, Vola G, Cappelletti P, Morra V, de Gennaro M (2011) Contribution to the knowledge of ancient Roman seawater concretes: Phlegrean pozzolan adopted in the construction of the harbour at Soli-Pompeiopolis (Mersin, Turkey). Period di Mineral 80:471–488. https://doi.org/10.2451/2011PM0031

    Article  Google Scholar 

  • UNI-EN 11305:2009 Beni culturali: Malte storiche, linee guida per la caratterizzazione mineralogico petrografica, fisica e chimica delle malte

  • UNI-EN 196-1:2005 Methods of testing cement-Part 1: Determination of strength

  • UNI-EN 197-1:2011 Cemento-Parte 1: Compopsizione, specificicazioni e criteri di conformità per cementi comuni

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral:185–187

  • Zawawi R (2006) Artificial hydraulic lime mortar obtained by calcining limestone and siliceous waste materials. J Adv Appl Ceram 10:175–178

    Article  Google Scholar 

Download references

Acknowledgements

This paper stem from the doctoral thesis of one of the Authors (CR) in earth science, environment and resources at DiSTAR of Federico II University of Naples. The authors would like to thank Dr. Roberto de Gennaro for the invaluable assistance during EDS microanalyses, Dr. Sergio Bravi for his technical ability in thin sections preparation and Dr. Pierfrancesco Talamo, former Soprintendenza per i Beni Archeologici della Campania that provided authorisation and useful support on sampling. Thanks are also due to CTG Italcementi Heidelberg Group for supporting this research activity. The authors would like to thank the journal editors and the anonymous reviewers for their useful comments that helped us in the revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Rispoli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rispoli, C., De Bonis, A., Esposito, R. et al. Unveiling the secrets of Roman craftsmanship: mortars from Piscina Mirabilis (Campi Flegrei, Italy). Archaeol Anthropol Sci 12, 8 (2020). https://doi.org/10.1007/s12520-019-00964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-019-00964-8

Keywords

Navigation