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Abstract

In theoretical computer science, the SAT problem is the archetypal representative
of the class of NP-complete problems for which the widely accepted conjecture
holds, that there exists no poly-time algorithm for solving the problem, and thus
SAT solving is generally considered intractable [41]. However, SAT algorithms are
an active area of research, as exciting results can be found in practical SAT solving,
where some applications generate problems with millions of variables, that can be
solved in a reasonable time by recent solvers.

Background.

The success of practical SAT solving is due to state-of-the-art implementations
of the Conflict Driven Clause-Learning (CDCL) algorithm. The performance of
CDCL largely depends on the employed heuristics, e.g., for branching, learning and
forgetting. Such heuristics implicitly exploit the structure of instances generated
in industrial practice [137]. Formalizations of structure in SAT instances include
the structure of their graph representations [29, 7, 124], properties of high-level
constraints [26, 131] and gate structure in problem encodings [111, 59, *3].

The gate structure of combinational circuits is a wide-spread intermediate
problem representation in many applications [126, 6, 1, 34]. In order to use a SAT
solver, these combinational circuits are encoded in conjunctive normal form (CNF)
using structural encodings like the well-known Tseitin encoding [128, 112].

The syntactic properties of structural encodings have been studied exten-
sively [86, 15]. Järvisalo showed that structural CNF encodings can induce exponen-
tially shorter proofs in CDCL for some unsatisfiable problems, as these encodings
introduce encoding variables just like extended resolution, which is one of the
strongest known proof systems [88, 94].

Contributions.

In this thesis, we present a new generic algorithm to efficiently recognize gate
structure in CNF encodings and three approaches in which we exploit that structure.
Our contributions also include the implementation of these approaches in the new
SAT solver Candy and the development of a tool for distributed management of
benchmark instances and their attributes, the Global Benchmark Database (GBD).

Gate Recognition. Based on a combined exploitation of syntactic and semantic
properties of CNF formulas, we devised a generic gate recognition algorithm which
is based on the detection of functional relations between variables [*3]. Our
hierarchical approach allows for efficient tracking of monotonic arguments in the

i



ii

detected functional relations and thus also enables the recognition of optimized
circuit encodings.

Gate Exploitation. We use our algorithm for efficient model minimization
via detection of “don’t cares” in the decoded gate structure [*2]. In another
approach, we generate conjectures through random simulation on the extracted
circuit structure [96]. The conjectures are then used in two approaches. In one
approach, we perform abstraction by under-approximation and in another approach,
we experimented with the modified conjecture-driven branching heuristic implicit
learning [96, *5].

Candy. All the developed algorithms are implemented in our SAT solver Candy,
which is publicly available on Github [*10]. Candy is forked from Glucose 3 [11]
and underwent a complete refinement in order to provide a modular architecture
that makes it specifically easy to implement new strategies for existing solver
sub-systems. Candy also has a parallel mode with concurrent access to a shared
clause database, which is described in [*8].

Global Benchmark Database. We collected benchmark meta-data in our pub-
lic project Global Benchmark Database (GBD), and used the tool for evaluating
our algorithms [*7]. GBD is available on Github [*12] and is aimed to support the
research community in exchanging, organizing and analyzing benchmark attributes.



Structure is just lack of entropy.

Preface

Computer science includes the exploration of boundaries in the nature of compu-
tation and algorithms. In theoretical computer science, the SAT problem is the
archetypal representative of the class of NP-complete problems, thus SAT solving
is generally considered intractable. However, SAT algorithms are an active area of
research, and exciting results can be found in practical SAT solving, where huge
instances can be solved in a reasonable time by recent solvers.

In order to explain the success of state-of-the-art SAT solvers in industrial
practice, SAT practitioners conjecture that the heuristics which are employed in
these solvers implicitly exploit the structure of the highly structured industrial
SAT instances.

Fundamental questions arise, which demonstrate the necessity to analyze the
structure of SAT problems. Which formalism is most suitable to characterize the
structure of SAT instances? How can we connect structure to complexity? Does the
existence of structure impose a structure upon the space of unstructured instances?

In this thesis, we analyze gate structure in SAT instances and devise an efficient
and generic algorithm for recognizing gates, i.e., functional relations of variables,
in SAT instances. In three exemplary procedures, we show how these functional
relations can be used to speed up SAT solving and SAT-based approaches. Our
work includes the development of the new modular SAT solver “Candy” and
the benchmark instance and attribute management system “Global Benchmark
Database” (GBD).
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If you really want to escape the things that
harass you, what you’re needing is not to be in a
different place but to be a different person.

Seneca, Letters from a Stoic

Chapter 1

Introduction

SAT solving denotes the automatic determination of the satisfiability (SAT) of
propositional formulas. In the past decades, SAT solvers have been applied in an
increasing number of application domains, such as formal software verification [27,
57], hardware model checking [28, 24], electronic design automation [120, 107],
bioinformatics [102] or applications in artificial intelligence (AI) such as automated
planning [113] and scheduling [78, 5].

At the time of writing, state-of-the-art SAT solvers are based on the conflict-
driven clause learning (CDCL) algorithm [121, 108] and capable of solving huge
problem instances which contain millions of variables. The performance of CDCL
SAT solvers largely depends on heuristics [119, 90], e.g., branching and forgetting
heuristics [83], and the most successful heuristics implicitly exploit the structure of
many instances which are generated in industrial practice [137].

Many recent solvers [*4] extract structural features in order to classify benchmark
problems for subsequent automated algorithm selection or heuristic configuration
by using methods of machine learning [136, 89, 7].

1.1 Structure of SAT Instances

Structure in SAT instances can be formalized in many ways, e.g., based on graph-
based features such as communities in the variable incidence graph of a given
problem instance [29, 124, 8] or symmetries [4].

Properties of SAT encodings of high-level constraints have been studied as
well [26, 131] and Dixon et al. [50, 49, 48] generalize constraints with their definition
of augmented clauses, where an augmented clause is the tuple of a clause and a
permutation group over its literals. They show how to express high-level constraints,
e.g., cardinality constraints, with a single augmented clause, and they even devise
a resolution procedure for augmented clauses, which is, however, NP-complete.

Due to its ubiquity, the analysis of gate structure in circuit encodings has been
of particular interest [111, 59, *3] and forms the basis of sophisticated preprocessing
technology in state-of-the-art SAT solvers [85, 86]. In some experimental approaches,
the preservation of information about the original circuit structure and its specialized
exploitation was suggested [122, *1].

The size of unsatisfiable cores [103] and backdoors [133] has been related to
problem hardness. Gaspers and Szeider use backdoors [61] and tree-width [62] to
analyze SAT solving by methods of parameterized complexity.
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Tractable Subclasses

Schaefer [117] identified 6 tractable subclasses of the SAT problem which are defined
based on syntactic properties. Positive (negative) formulas are characterized such
that their clauses only contain literals of positive (negative) polarity and are
trivially satisfiable. Poly-time algorithms also exist for horn formulas (reverse horn
formulas) which only consist of clauses which contain at most one positive (at most
one negative) literal, and for 2-SAT formulas where clause length is bound by 2.
Affine formulas are equivalent to a conjunction of XOR-terms which can efficiently
be solved using a system of linear equations.

Structure of Application Instances

In many decision procedures for NP-hard problems, the problem instances are
represented as directed acyclic graphs (DAG) resembling the gate structure of
combinational circuits [126, 6, 1, 34]. In order to reduce the problem to SAT, these
problems are encoded in conjunctive normal form (CNF).

Traditional CNF encodings can lead to exponential increase in formula size due
to nested applications of the distributive rule [36]. Thus, in practice, structural
encodings like the well-known Tseitin encoding [128] and the optimized Plaisted
Greenbaum encoding [112] are used, which only require linear overhead in formula
size. Other researchers combine traditional and structural encodings, and mitigate
the linear blow-up of structural encodings by using traditional encodings in special
cases when they are smaller [127, 82].

The syntactic properties of structural encodings have been studied intensely [86,
75, 15]. Järvisalo showed in [88] that structural CNF encodings can induce expo-
nentially shorter proofs in CDCL for some unsatisfiable problem instances, as these
encodings introduce additional encoding variables, which results in proofs which
are similar to those produced by extended resolution [128], which is one of the
strongest known proof systems [68, 94].

Combinational gate structure depicts a set of functional relations of variables
in SAT instances. Such functional relations might not always be explicitly encoded
by using the aforementioned structural encodings. They can even be present
in randomly generated SAT instances and may surface after further problem
transformations [*3].

Can we efficiently recognize gate structure in CNF formulas? Does gate structure
affect the tractability of SAT instances? How can we effectively exploit gate structure
in SAT applications?

1.2 Contributions

In this thesis, we present a new generic algorithm to efficiently recognize gate
structure in CNF encodings and three approaches in which we exploit that structure.
Our contributions also include implementations of these approaches in the new
modular SAT solver Candy and the distributed management of benchmark instance
feature data in our project Global Benchmark Database (GBD).

Gate Recognition.

Based on the combined exploitation of syntactic and semantic properties of struc-
tural CNF encodings, we devise a generic gate recognition algorithm which is based
on the detection of functional relations between variables [*3]. Our generic approach
together with its hierarchical tracking of monotonicity also enables the recognition
of optimized Plaisted Greenbaum encodings. We demonstrate the efficiency and
effectiveness of our algorithm despite its greedy parts.
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Gate Exploitation.

We used our algorithm for efficient model minimization via detection of “don’t cares”
in the decoded gate structure [*2]. In another approach, we generate conjectures
about variable equivalences and constants using random simulation on the extracted
circuit structure [96]. We further use these conjectures in two approaches. In one
approach, we perform abstraction by under-approximation and in another approach,
we employ the conjecture-driven branching heuristic implicit learning [96, *5].

Candy – A Modular SAT Solver.

We implemented our algorithms as part of our open-source SAT solver Candy
which is available on Github [*10]. Candy is forked from Glucose 3 [11] and we
refined it completely in order to provide a modular architecture that facilitates
implementing new strategies for existing solver sub-systems. Candy is the first
parallel inprocessing SAT solver which allows for concurrent access to a shared
clause database [*8].

Global Benchmark Database.

In our public project Global Benchmark Database (GBD) we collect benchmark
instance features and use the tool for evaluating our algorithms [*7]. GBD is
available on Github [*12] and aims to assist in the exchange and organization of
instance meta-data across the research community. GBD has a command-line tool
and a web interface. However, the main contribution is the GBD hash function,
which we use for identifying benchmark instances.

1.3 Structure of this Work

In Chapter 2, we introduce essential terminology and notations. Chapter 3 is
dedicated to the theory and practice of gate recognition, where we formalize the
procedure and present our algorithm in detail. Three exemplary approaches that
exploit gate structure to speed up SAT solving and SAT-based applications are
presented in Chapter 4. The tools which have been implemented in the course
of this thesis are presented in Chapter 5. In Chapter 6, we present an extensive
evaluation of our algorithmic approaches. Finally, our conclusions can be found in
Chapter 7.





The first rule is to keep an untroubled spirit.
The second is to look things in the face and
know them for what they are.

Marcus Aurelius, Meditations

Chapter 2

Preliminaries

We denote the set of finite propositional formulas in the Boolean domain B = {0, 1}
by Φ. Formulas in Φ are built from a countably infinite set of variable symbols X,
the unary negation symbol ¬, binary logical connectives κ = {∧,∨,→,↔,⊕}, and
constants B = {0, 1}.

Each formula F ∈ Φ is defined over a finite set of variables XF ⊆ X. The
function vars(F ) denotes the set of variables which actually occur in F . XF and
vars(F ) are not necessarily equal but it holds that vars(F ) ⊆ XF . Unless stated
otherwise for a given formula F , we define that XF := vars(F ). Variables in
XF \ vars(F ) are considered unconstrained in F .

Given a set of variables X ⊆ X, the function lits(X) denotes the set of literals
over X, i.e., lits(X) = X ∪ {¬x | x ∈ X}. Given a formula F ∈ Φ, the function
lits(F ) denotes the set of literals which actually occur in F .

The complement l of a literal l is defined such that l = ¬v if l = v, and l = v
if l = ¬v. The variable of a literal l is denoted by var(l) which is v if l = ¬v and
l otherwise. The polarity of a literal l with var(l) = v is negative if l = ¬v and
positive otherwise.

In order to eliminate ambiguity, e.g., in argument lists of functions and in tuples,
we impose a fixed ordering <X over the variables in X. Without loss of generality,
whenever we use variable indices it holds that vi <X vj iff i < j for indices i, j ∈ N.

Semantics

Given a formula F ∈ Φ over variables XF , a variable assignment for F is a function
α : XF → B. Given an assignment α the interpretation function Iα : Φ→ {⊥,>}
is defined as in Figure 2.1. An assignment α is represented by the set Mα of all
literals which are satisfied under alpha, i.e., Mα := {l | l ∈ lits(XF ) ∧ Iα(l) = >}.
Moreover, we use A(F ) to denote the set of possible assignments for variables in
XF , i.e., A(F ) := {P ∪ {¬v | v ∈ XF \ P} | P ∈ 2XF }.

Definition 1 (Model). Given a formula F , an assignment α is a model for F
denoted by Mα |= F iff Iα(F ) = >. The set of models of a formula F is specified
byM(F ) = {Mα | Iα(F ) = >}.

Definition 2 (Logical Consequence). A formula F is a logical consequence of
a formula G, denoted by G |= F , iff every model of G is also a model of F , i.e.,
M(G) ⊆M(F ).

Definition 3 (Logical Equivalence). Two formulas F and G are logically equiva-
lent, denoted by F ≡ G, iffM(G) =M(F ), i.e., F and G have exactly the same
models.

7



8 CHAPTER 2. PRELIMINARIES

Iα(0) = ⊥
Iα(1) = >

Iα(v) =
{
>, if α(v) = 1

⊥, if α(v) = 0

Iα(¬F ) =

{
>, if Iα(F ) = ⊥
⊥, if Iα(F ) = >

Iα(F ↔ G) =

{
>, if Iα(F ) = Iα(G)

⊥, if Iα(F ) 6= Iα(G)

Iα(F → G) =

{
>, if Iα(F ) = ⊥ or Iα(G) = >
⊥, if Iα(F ) = > and Iα(G) = ⊥

Iα(F ⊕G) =

{
>, if Iα(F ) 6= Iα(G)

⊥, if Iα(F ) = Iα(G)

Iα(F ∧G) =

{
>, if Iα(F ) = > and Iα(G) = >
⊥, if Iα(F ) = ⊥ or Iα(G) = ⊥

Iα(F ∨G) =

{
>, if Iα(F ) = > or Iα(G) = >
⊥, if Iα(F ) = ⊥ and Iα(G) = ⊥

Figure 2.1: Interpretation of a formula under an assignment α

Equivalence under Projection

In this work, we investigate transformations of formulas which introduce encoding
variables. For the sake of brevity, we define equivalence under projection. Let F
be a propositional formula over variables XF , and let X be a non-empty subset of
variables X ⊆ XF . We define the projection of modelsM(G) to X as follows:

M(F,X) := {M ∩ lits(X) |M ∈M(F )}

Based on this projection we extend the definition of equivalence.

Definition 4 (Equivalence under Projection). Given formulas F and G with a
non-empty intersection of variables I = XF ∩ XG. F and G are equivalent under
projection, denoted by F ∼≡ G, iffM(G, I) =M(F, I).

Boolean Functions

We denote the set of Boolean functions [132] by Ω. For every k ∈ N0 we denote the
set of Boolean functions of arity k by Ωk. For each formula F ∈ Φ we define its
characteristic function C(F ) ∈ Ω|XF | as follows.

Definition 5 (Characteristic Function). Given a formula F with models M(F )
over variables XF = {v1, . . . , vk}, we construct the set of tuples T (F ) ⊆ Bk, such
that T (F ) := {(t1, . . . , tk) | ∃M ∈ M(F ) : if vi ∈M then ti = 1 else ti = 0}. We
denote the characteristic function of the such constructed auxiliary set T (F ) as the
characteristic function C(F ) of F .

Note that formulas having the same characteristic function of fixed arity are
equivalent. The set of Boolean formulas which have the same characteristic function
ω ∈ Ω is denoted by Φω. We denote formulas F ∈ Φω as ω-encodings.

Examples. Boolean functions are, e.g., AND, OR, EQIV, XOR. The propositional
formulas (a ∨ b) ∧ (¬a ∨ ¬b) and a ⊕ b are both XOR-encodings of arity 2. All
unsatisfiable propositional formulas with n variables are encodings of one n-ary
function that maps all n-tuples to zero.

Conjunctive Normal Form (CNF)

A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions
of literals. A CNF formula F has the form F = D0 ∧ · · · ∧Dm and each Di is of
the form (l1 ∨ · · · ∨ ln) with li ∈ lits(XF ). A CNF formula F is represented by a set
of clauses, where a clause is a set of literals and represents one disjunction in the
formula.
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x ∨ (y ∨ z) ≡ (x ∨ y) ∨ z
x ∧ (y ∧ z) ≡ (x ∧ y) ∧ z

(2.1)

x ∨ y ≡ y ∨ x
x ∧ y ≡ y ∧ x

(2.2)

x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z)

(2.3)

¬(x ∨ y) ≡ ¬x ∧ ¬y
¬(x ∧ y) ≡ ¬x ∨ ¬y

(2.4)

x ∨ (x ∧ y) ≡ x
x ∧ (x ∨ y) ≡ x

(2.5)

¬(¬x) ≡ x
(2.6)

x ∨ x ≡ x
x ∧ x ≡ x

(2.7)

x ∨ 0 ≡ x
x ∧ 1 ≡ x

(2.8)

x ∧ 0 ≡ 0

x ∨ 1 ≡ 1
(2.9)

x ∧ ¬x ≡ 0

x ∨ ¬x ≡ 1
(2.10)

¬0 ≡ 1

¬1 ≡ 0
(2.11)

Figure 2.2: Some tautologies in propositional logic

Example 1 (CNF Notation). The set {{a}, {b, c}} denotes the CNF formula
a ∧ (b ∨ c). Important edge cases are the set containing the empty set {∅}, which
denotes false, and the empty set ∅, which denotes true.

Definition 6 (Tautology). A propositional formula F is a tautology, denoted by
|= F , iff every assignment in A(F ) is a model of F .

A clause C is tautologic if it contains a literal l as well as its complement l.
Figure 2.2 shows some well-known tautologies, subsets of which have also been
used in axiomatic systems of Boolean algebra [125]. In Section 2.1 we use semantic
tautologies to transform propositional formulas.

Resolution and Blocked Clauses

Resolution is a well-known inference rule in propositional logic. The resolution
operator (Definition 7) can be applied to clauses which contain the same variable
in complementary polarities.

Definition 7 (Resolution). Given two clauses C1 and C2 and a literal l with l ∈ C1

and l ∈ C2, the resolvent C1 ⊗l C2 is the clause (C1 ∪ C2) \ {l, l}. It holds that
{C1, C2} |= C1 ⊗l C2.

Given a CNF formula F and a literal l, the set of literal occurrences F [l] is
defined to be the subset of clauses in F which contain the literal l, i.e.,

F [l] := {C ∈ F | l ∈ C}

The clauses which can be used to perform resolution with a variable v are denoted
as the resolution environment of v.

Definition 8 (Resolution Environment). Given a formula F and variable v, the
resolution environment of v is the set F [v] ∪ F [¬v].

Definition 9 (Pure Literal). Given a formula F , a literal l ∈ lits(F ) is pure in F
iff F [l] = ∅.
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Given a formula F and a literal l, if l is either pure in F or if all possible resolvents
of clauses in F [l] and F [l] are tautologic, we denote l as blocking literal [94]. Note
that given a formula F and a blocking literal l ∈ lits(XF ), no resolvents on l can
be used in a resolution proof of F . Clauses which contain a blocking literal are
denoted as blocked clauses.

Definition 10 (Blocked Clause). Given a CNF formula F , a clause C ∈ F is
blocked in F if there exists a literal l ∈ C such that l is either pure in F , or for
every clause D ∈ F [l] the resolvent C ⊗l D is a tautology. In that case, the literal l
is also called the blocking literal of C.

Given a formula F , the set of unit clauses is the set of clauses of size 1 in F .
The set of facts denotes the set of literals which appear in unit-clauses of F .

Given a formula F , a variable assignment α : XF  B is partial, if some variables
in XF are not assigned by α. Given a partial assignment Mα, unit-propagation is
the method to deduce an extended set of literals of M∗α ⊇Mα which is implied by
the clauses in F and the literals in Mα.

Definition 11 (Unit Propagation). Given a CNF formula F and a partial assign-
ment Mα, the result of unit-propagation is the set of literals M∗α ⊇ Mα which is
created as follows. A formula F ′ is created by removing all literals which are not
satisfied under Mα from clauses in F . Then M0

α is the union of Mα and facts
in F ′. The procedure is repeated with the extended set of literals M0

α to obtain the
set M1

α and so on. The result of unit-propagation is the set M∗α which is obtained
when we repeat the procedure until fix point.

Given a formula F , a partial assignment Mα is conflicting iff M∗α, which is
obtained by unit-propagation, contains two complementary literals l and l.

2.1 CNF Encodings

Given a formula F , a CNF encoding usually refers to a set of rules that transforms
the formula F to an equivalent formula F ′ ≡ F such that F ′ is in CNF. Structural
encodings do not maintain equivalence as they usually introduce new variable
symbols. However, in structural encodings F ′ equivalence under projection is
maintained, i.e., F ′ ∼≡ F .

Direct CNF Encodings

One possibility to convert propositional formulas to CNF is the selective application
of the tautologies shown in Figure 2.2. We denote this method as the direct encoding
and use the symbol DE .

In order to reduce the set of operators, first, operators in {→,↔,⊕} are replaced
by equivalent representations using only operators in {∧,∨,¬}. This is denoted by
the following rules 2.12, 2.13 and 2.14, where A,B ∈ Φ.

A→ B
DE−−→ ¬A ∨B (2.12)

A↔ B
DE−−→ (¬A ∨B) ∧ (¬B ∨A) (2.13)

A⊕B
DE−−→ (¬A ∨ ¬B) ∧ (B ∨A) (2.14)

In order to convert a formula to CNF, subsequently the following rules are
applied.
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¬¬A
DE−−→ A (2.15)

¬(A ∨B)
DE−−→ ¬A ∧ ¬B (2.16)

¬(A ∧B)
DE−−→ ¬A ∨ ¬B (2.17)

(A ∧B) ∨ C
DE−−→ (A ∨ C) ∧ (B ∨ C) (2.18)

C ∨ (A ∧B)
DE−−→ (A ∨ C) ∧ (B ∨ C) (2.19)

Given a formula F , DE(F ) denotes the CNF formula which is obtained by
application of the rules 2.12 to 2.19 until no more rule can be applied, and the
application of rules is prioritized by the order in which they are given above. Note
that by specifying rule prioritization we achieve confluence such that DE(F ) is
well-defined. For the sake of termination, we introduced rule 2.19 and left out
general commutativity.

In Example 2, a direct CNF encoding of the formula ¬
(
(a ∨ ¬b) ∧ (¬c ∨ ¬d)

)
is

deduced by subsequent rule application.

Example 2 (Direct Encoding of a Negated CNF).

¬
(
(a ∨ ¬b) ∧ (¬c ∨ ¬d)

)
≡ ¬(a ∨ ¬b) ∨ ¬(¬c ∨ ¬d)

≡ (¬a ∧ b) ∨ (c ∧ d)

≡
(
(¬a ∧ b) ∨ c

)
∧
(
(¬a ∧ b) ∨ d

)
≡ (¬a ∨ c) ∧ (b ∨ c) ∧ (¬a ∨ d) ∧ (b ∨ d)

One disadvantage of the direct encoding is that it often obscures the structure
of the original formula. Additionally, the size of the resulting CNF formula grows
exponentially, as the distribution rule is required to be applied repeatedly [36].

Structural CNF Encodings

Based on Tseitin’s extension rule of the resolution calculus [128], Plaisted and
Greenbaum developed a structure-preserving method of converting propositional
formulas to CNF [112]. An extensive set of references on CNF encodings and
related work can be found in Chapter 3.

Given a formula F , structural encodings introduce new encoding variables
X ∗F 6∈ XF (Equation 2.20) and define their equivalence to sub-formulas of F
(Equation 2.21). We define structural encodings only for the reduced set of operators
{∧,∨,¬}, assuming that other operators are first eliminated using rules 2.12, 2.13
and 2.14.

Let S be the formula to be encoded. In Equation 2.20, we define the operator
X ∗F . If F is a literal in lits(XS), then X ∗F = F . Otherwise, X ∗F specifies a unique
new variable dF for the sub-formula F of S. Subsequently, e.g., if a sub-formula
F occurs multiple times, X ∗F specifies the same variable such that at most one
variable is obtained for F . Note that X ∗F returns a literal in order to inline negation
operators.

X ∗F =


dF , if F = G ◦H with ◦ ∈ {∧,∨}
¬dG, if F = ¬G and F 6∈ lits(XS)

F if F ∈ lits(XS)

(2.20)
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Tseitin Encoding. The Tseitin encoding can be used to transform a structured
propositional formula to CNF by introducing new variables and their definitions.
In the following equations it holds that ◦ ∈ {∧,∨}.

E ′(F ) =


DE(X ∗F ↔ (X ∗G ◦ X ∗H)) ∧ E ′(G) ∧ E ′(H), if F = G ◦H
DE(X ∗F ↔ ¬X ∗G) ∧ E ′(G), if F = ¬G
1, if F ∈ lits(X)

(2.21)

TE(F ) =


[X ∗G ◦ X ∗H ] ∧ E ′(G) ∧ E ′(H), if F = G ◦H
¬X ∗G ∧ E ′(G), if F = ¬G
X ∗F , if F ∈ lits(X)

(2.22)

Given a formula F , in its Tseitin encoding F ′ = TE(F ), new variable symbols X ∗G
are introduced for sub-formulas G of F . Thus, the set of variables XF ′ can be
partitioned into input variables XF that stem from the original formula F and
encoding variables XF ′ \XF . The formulas F ′ and F are not necessarily equivalent,
as models Mα of F do not include assignments to encoding variables in XF ′ \ XF .

However, it holds that TE(F ) ∼≡ F , i.e., TE(F) and F are equivalent under
projection to input variables. Given an assignment α for variables XF , a complete
assignment for XF ′ can be deduced by unit-propagation. Note that it holds that
TE(F ) and F have the same number of models.

The direct encoding of a negation of a set of clauses has been shown in Example 2.
The Tseitin encoding of the same formula is shown in Example 3.

Example 3 (Tseitin Encoding of a Negated CNF).

¬
(
(a ∨ ¬b) ∧ (¬c ∨ ¬d)

)
∼≡ ¬e0 ∧ DE

(
e0 ↔ (e1 ∧ e2)

)
∧ DE

(
e1 ↔ (a ∨ ¬b)

)
∧ DE

(
e2 ↔ (¬c ∨ ¬d)

)
The number of clauses in the resulting formula is in O(n) where n is the number

of sub-formulas of the formula to be encoded. The encoding of the equivalences
contributes a constant factor to the number of generated clauses. Note that for
readability, we did not apply the direct encoding of the equivalences.

Plaisted Greenbaum Encoding. Plaisted and Greenbaum [112] present an
optimized Tseitin encoding, based on the observation that monotonic sub-formulas
provoke the emergence of “don’t care” values. They keep track of the polarity of
the assignments under which the sub-formulas to be encoded are satisfied. In case
of monotonic sub-formulas, there is one polarity under which the sub-formula is
always satisfied and another under which that sub-formula is not satisfied. In this
case, implications are used instead of equivalences to define the encoding variables
and the direction of the implication depends on the polarity as can be seen in
Equations 2.23 and 2.24.

Ep(F ) =



DE(X ∗F ← (X ∗G ◦ X ∗H)) ∧ Ep(G) ∧ Ep(H), if F = G ◦H, p = 0
DE(X ∗F → (X ∗G ◦ X ∗H)) ∧ Ep(G) ∧ Ep(H), if F = G ◦H, p = 1
DE(X ∗F ← ¬X ∗G) ∧ Ep⊕1(G), if F = ¬G, p = 0
DE(X ∗F → ¬X ∗G) ∧ Ep⊕1(G), if F = ¬G, p = 1

1, if F ∈ lits(X)

(2.23)

PGE(F ) =


[X ∗G ◦ X ∗H ] ∧ E1(G) ∧ E1(H), if F = G ◦H
¬X ∗G ∧ E0(G), if F = ¬G
X ∗F , if F ∈ lits(X)

(2.24)
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Using implications instead of equivalences causes encoding variables in Plaisted
Greenbaum encodings to be slightly under-constrained in comparison to Tseitin
encodings, meaning that additional models emerge due to spurious assignments
to “don’t cares” in the circuit encoding. However, F ′ and F are equivalent under
projection as no spurious assignments to input variables emerge.

As the encoded formula is normalized such that it only contains binary AND

and OR operators, non-monotonic formulas are not recognizable locally. However,
variables XF of a non-monotonic formula F appear as literals of both polarities in
the direct encoding of F (see Equations 2.14 and 2.13). In that case, both functions
E1 and E0 are used to encode the respective sub-formula, thus producing a Tseitin
encoding in the non-monotonic case.

Like in Examples 2 and 3 for direct and Tseitin encoding, we show in Example 4
the Plaisted Greenbaum encoding of the negation of a set of clauses.

Example 4 (Plaisted Greenbaum Encoding of a Negated CNF).

¬
(
(a ∨ ¬b) ∧ (¬c ∨ ¬d)

)
∼≡ ¬e0 ∧ DE

(
e0 ← (e1 ∧ e2)

)
∧ DE

(
e1 ← (a ∨ ¬b)

)
∧ DE

(
e2 ← (¬c ∨ ¬d)

)
The encoding of the implications contributes to a smaller constant factor to the

number of generated clauses than the encoding of the equivalences in the Tseitin
encoding. Note that for readability, we did not apply the direct encoding of the
implications.

2.2 Conflict-Driven Clause Learning (CDCL)

The Conflict-Driven Clause Learning (CDCL) algorithm emerged as an extension
to the previous systematic search algorithm by Davis, Putnam, Logemann and
Loveland (DPLL) [45]. Clause learning has been introduced by Marques-Silva and
Sakallah with the SAT solver GRASP [121].

Whenever search determines a conflicting assignment, clause learning deduces a
conflict clause by a limited set of resolution operations on the reason clauses, i.e.,
clauses which contributed to the conflict via unit-propagation. Therefore, CDCL
can be understood as search-directed resolution.

Data structures for efficient unit-propagation and the successful branching
heuristic Variable-State Independent Decaying Sum (VSIDS) have originally been
developed for the SAT solver Chaff [108]. Random restarts [66, 22, 65] and
clause forgetting [64] became crucial for CDCL SAT solver efficiency. Furthermore,
efficient clause learning data-structures [115, 98] are essential for the performance
of state-of-the-art SAT solver.

Presently, some of the most successful CDCL SAT solvers are descendants of
Minisat [52] such as the well-known solver Glucose [11, 10]. Further successful
descendants of Minisat and Glucose include Maple, RISS and CryptoMinisat, but also
competing systems such as Lingeling and CaDiCal are well-known for outstanding
performance [71, 72]

The efficiency of SAT solvers is largely determined by heuristics [55]. Heuristics
are used to determine branching order or restart intervals, and control strategies for
clause learning and forgetting, among others. An empirical study of some heuristics
used in CDCL has been conducted by Katebi and Sakallah [90].

Many heuristics can be explained by using connected components in graph
representations of the SAT problem [29]. Recently, Jamali and Mitchel showed how
branching and forgetting can be improved by taking into account the betweenness
centrality of variables in the variable incidence graph of a SAT instance [83]. Ganesh
et al. focus on statistical methods in order to weigh the success of heuristics based
on successful clause learning [100, 56].
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Instance-specific algorithm configuration is used in sophisticated portfolio ap-
proaches like SATZilla by Hoos et al. [136] and ISAC by Kadioglu et al. [89].
Ansotegui et al. empirically showed that only a few graph-based structural features
of SAT instances can already be very effective in algorithm selection [7].

Recent work on CDCL includes satisfaction-driven clause learning by Heule
at al. [74, 73] which they successfully applied to automatically generate cubic-
sized proofs for pigeon hole formulas. Heule recently devised the largest known
mathematical proof with Cube-and-Conquer and massively parallel SAT solving [70].

Pre- and Inprocessing

In the context of SAT solving, preprocessing denotes a family of various deductive
formula simplification techniques which are aimed at reducing formula size and which
are usually applied before CDCL search starts. Recent CDCL implementations
regularly interrupt search in order to apply these preprocessing techniques in
combination with learned clauses, which is commonly denoted as inprocessing.

Early work on SAT preprocessing includes the deduction of additional binary
clauses via hyper-resolution [13] and an important landmark approach was presented
by Eén and Biere who integrate variable and clause elimination strategies [51].

Järvisalo, Biere and Heule address blocked clause elimination [85, 84] and its
power to simulate circuit level simplification techniques [86]. They present an
implication graph based inprocessing procedure [76] and present a model that
captures many recent inprocessing techniques [87].

Manthey et al. experimented with variable addition techniques [104]. Re-
cently, elimination of redundant literals from clauses through vivification has been
addressed in the context of inprocessing [99].

Incremental SAT Solving

Incremental SAT decision procedures are online algorithms that solve a sequence
of SAT problems S = (F0, F1, F2, . . . ) such that Fi ⊆ Fi+1 [81, 9]. Research on
incremental SAT solving includes the applicability of known optimizations through
pre- and inprocessing [110, 58].

In SAT modulo theory (SMT) solvers [118] and other approaches using counter-
example guided abstraction refinement (CEGAR) [38], incremental SAT solving
is applied for solving a sequence of related problems which are encoded to SAT.
Incremental SAT solving has been used to increase the efficiency of SAT-based ap-
plication, e.g., bounded model checking (BMC) [31, 95], hardware verification [109],
AI planning [63] and optimization problems [105].

IPASIR [80] is an interface for incremental SAT solvers which has been developed
for SAT Race 2015 [*4] in order to include the new incremental library track in SAT
Race 2015 and the following SAT Competitions. In the encoding and solution of
incremental SAT problems, special variables are used as assumption and activation
literals [97].

Definition 12 (Assumption Literal). Given an incremental SAT solver S, an
assumption literal l is used to define the assignment of the variable v = var(l),
such that v is set to 0 iff l = ¬v and to 1 otherwise. Assumption literals specify
temporary facts which hold for a sequence of instances solved by S.

In order to be able to remove clauses from the problem instance between
subsequent incremental solver runs, clauses can be augmented by a so-called
activation literal. A clause augmented in this way can be activated and deactivated
by setting the value of its activation literal by using assumption literals.

Definition 13 (Activation Literal). Given an incremental SAT solver S, an
activation literal l is a literal that is added to a clause or a set of clauses. Such
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clauses are activated (deactivated) when their activation literal is set to 0 (1) via
an assumption literal ¬l (l).

Given a sequence S = (F0, F1, F2, . . . ) of incrementally solved SAT instances, a
clause C ∈ Fi which contains an activation literal l can be permanently deactivated
by adding the unit-clause {l} to subsequent SAT instances Fj , j > i. As {l}
subsumes C, incremental SAT solvers delete C during preprocessing.

CDCL Algorithm Outline

In Algorithm 1, we outline CDCL with input formula F and assumption literals K.
CDCL accesses and modifies the current assignment A and the set of clauses DB,
which is initialized with the clauses in F . If a satisfying assignment A is found,
the algorithm returns SAT (line 23), otherwise, if we deduce the empty clause, the
algorithm returns UNSAT (lines 3, 6 and 11)

If no conflict is found during preprocessing (lines 1 to 3), we initialize A with
assumptions K and execute unit-propagation (line 4). If no conflict is detected
(lines 5 and 6), search starts in line 7. During search, a partial assignment is
determined by a sequence of branching decisions (line 22) with subsequent unit-
propagation (line 8).

If a conflict occurs (line 9) and no branching decision is involved (line 10), the
formula F is provably unsatisfiable and search stops (line 11). Otherwise, a conflict
clause and backtracking level is derived via conflict analysis (line 13). Subsequently,
the decisions having induced the conflict are undone in A (line 14) and the conflict
clause is added to the clause database DB (line 15).

Several heuristics control the frequency of common extensions to CDCL such as
search restarts (lines 16f.), inprocessing (lines 18f.) or clause forgetting (lines 20f.).
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Algorithm 1: Conflict-driven Clause Learning (CDCL)
Input: CNF Formula F , Assumptions K
Output: SAT or UNSAT

Data: current-assignment A ← ∅
Data: clause-database DB ← F

1 PREPROCESSING

2 if empty clause in clause-database then
3 return UNSAT

4 Propagate Assumptions K

5 if A falsifies a clause in DB then
6 return UNSAT

7 while A is not complete do
8 PROPAGATION

9 if A falsifies a clause in DB then
10 if branching is at level 0 then
11 return UNSAT

12 else
13 (conflict-clause, backtrack-level) ← CONFLICT-ANALYSIS
14 backtrack to backtrack-level
15 add conflict-clause to clause-database

16 if RESTART is triggered then
17 backtrack to level 0

18 if INPROCESSING is triggered then
19 process clause database

20 if CLEANUP is triggered then
21 forget some learned clauses

22 BRANCHING

23 return SAT



The rules of logic are to mathematics what those
of structure are to architecture.

Bertrand Russel, The Study of Mathematics

Chapter 3

Gate Recognition

Gate recognition denotes the problem of recovering structural information from
CNF encodings of general Boolean formulas and combinational circuits. In this
chapter, we devise an efficient and effective gate recognition algorithm which is
superior to previous approaches as it is generic. We published an early version of
this approach in [*3]. Gate recognition forms the basis for the approaches presented
in Chapter 4.

In combinational logic, complex Boolean functions are represented by combina-
tional Boolean circuits. The building blocks of Boolean circuits are Boolean gates
representing elementary Boolean functions. In Table 3.1, we show an exemplary list
of gate symbols as defined in the IEC 60617-12 standard. Most of these symbols
can be extended to n-ary gates by adding more inputs (as in Example 5).

Internally, many SAT-driven applications use variants of Boolean circuit rep-
resentations. In symbolic model checking [106] commonly used data structures
are Reduced Boolean Circuits (RBC) [1] or Binary Decision Diagrams (BDD) [35].
Andersen et al. suggest Binary Expression Diagrams (BED) for a concise and
efficient representation of Boolean functions [6]. And-Inverter Graphs (AIG) are
applied, e.g., in SAT-based Bounded Model Checking (BMC) [34] or hardware
equivalence checking [24]. In the relational model finder Kodkod, a data-structure
called Compact Boolean Circuits (CBC) [126] is used. Boolean circuit represen-
tations have also been used in the development of one of the most effective CNF
encodings of cardinality constraints [123].

The aforementioned data structures can be represented by directed acyclic
graphs (DAG) with inner nodes representing operators and leaves that represent
literals. The operators of the inner nodes represent different types of Boolean
functions and each of the aforementioned data structure uses an individual subset
of functions which are allowed for the inner nodes.

1)
&i2

i1 o 2)
&i2

i1 o 3)
= 1i2

i1 o

4) ≥ 1i2
i1 o 5) ≥ 1i2

i1 o 6)
= 1i2

i1 o

7)
1i o

Table 3.1: Symbols of binary Boolean gates as defined in the IEC 60617-12 standard.
The symbols represent (from 1 to 7) AND-, NAND-, XOR-, OR-, NOR-, XNOR-, and NOT-
gates.

17
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3.1 Related Work

Tseitin introduced the extension rule for the resolution calculus which is the basis for
structural CNF encodings used in practice to convert Boolean circuit representations
to CNF [128]. Greenbaum et al. later demonstrated its application to clause form
translations and devised an optimized structural CNF encoding [67, 112]. Further
optimized structural encodings have been developed by Boy de la Tour and Jackson
and Sheridan [127, 82].

CNF encodings based on the extension rule, also called Tseitin encodings,
have been analyzed with regard to proof complexity by Egly and others [53, 54].
Kullmann generalized the extension rule improving worst case lower bounds for
SAT algorithms by introducing the notion of blocked sets [94].

Blocked sets are the basis for CNF formula simplification methods which have
been shown to simulate circuit simplification methods [85, 86]. Blocked clause
decomposition has been used in experimental methods to speed-up SAT solving [75,
15].

Using resolution graph representations of SAT instances, Ostrowski et al. extract
AND, OR as well as binary EQIV gates based on sub-graph isomorphism [111]. In the
resolution graph for each resolvent, they add an edge and an annotation which
indicates whether that resolvent is tautological or not. The authors use the fact
that the encodings of AND, OR and EQIV-gates appear as blocked sets and cliques in
the resolution graph. However, they perform blocked clause elimination in order to
simplify the remaining problem, which indicates they could have detected more
gates.

Roy et al. devise an algorithm that explicitly searches for clauses that exhibit the
pattern of a specific gate type by looking at literal polarities and occurrences [114].
Their algorithm recognizes AND, OR and EQIV-gates as well as NAND, NOR, NOT, XOR,
XNOR, and MAJ3-gates.

Balyo et al. presented a gate recognition algorithm which is based on blocked
clause decomposition [15]. We could show in [*3] that their approach uses blocked
sets in a less effective way than our gate recognition algorithm.

3.2 Gate Structure

In order to extract structural information from CNF formulas, we analyze the
properties of structural encodings. The analysis is based on a formalism for gate
structure. We start by the definition of a gate.

Definition 14 (Gate). A gate G over a finite set of variables XG ⊆ X is a tuple
(o, P, g) such that XG = {o} ∪ P . We denote o as the output variable and P as
the set of input variables of G. The third element is the |P |-ary Boolean function
g : B|P | → B, denoted as the characteristic function of G.

The arity n of a gate G = (o, P, g) is determined by the number of input variables
n = |P |. Furthermore, the type of a gate is determined by its characteristic Boolean
function g. We emphasize the type of G by calling it a g-gate. A gate G = (o, P, g)
is a |P |-ary g-gate with output o and inputs P .

Example 5 (AND-Gate). The gate H = (o, {i1, i2, i3}, AND) is a ternary AND-gate
with output o and input variables {i1, i2, i3}. The symbol used in circuit representa-
tions after IEC 60617-12 looks as follows.

i1
i2
i3

& o
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The semantics of a gate G = (o, P, g) is specified by its characteristic function
g. The interpretation function is specified in Definition 15.

Definition 15 (Gate Semantics). Given a gate G = (o, P, g), the assignment
α : XG → B is a model of G iff the interpretation function I̊α(G) evaluates to >.
The interpretation function I̊α(G) is defined as follows.1

I̊α(G) =

{
>, if α(o) = g (α(p1), . . . , α(pn))

⊥, otherwise

Each n-ary gate G = (o, P, g) imposes an (n+1)-ary functional relation on the
variables XG. A relation is functional iff it is left-total and right-unique as specified
in Definition 16.

Definition 16 (Functional Relation). A relation R ⊆ Bn+1 is functional iff the
following two formulas hold.

∀P ∈ Bn, ∃o ∈ B : (p1, . . . , pn, o) ∈ R (left-totality)
∀P ∈ Bn, ∃o ∈ B : (p1, . . . , pn, o) 6∈ R (right-uniqueness)

Given a gate G, there exists a bijection between models of G and a functional
relation R, such that for each tuple (p1, . . . , pn+1) ∈ R the corresponding model
Mα of G is constructed such that pi ∈Mα iff pi = 1 and ¬pi ∈Mα iff pi = 0.

Structural Formulas

Our gate recognition algorithm starts with a given CNF formula F and an empty
set of gates Γ = ∅. Whenever an encoding E ⊆ F of a gate G is detected, we
remove the clauses E from F and add G to Γ. In the following, we formalize this
process starting with Definition 17.

Definition 17 (Structural Formula). A structural formula is a tuple (F,Γ) with a
finite set of clauses F and a finite set of gates Γ.

The semantics of structural formulas combines the semantics of propositional
formulas and gate semantics.

Definition 18 (Structural Formula Semantics). Given a structural formula S =
(F,Γ) over variables XS = XF ∪ {v | v ∈ XG, G ∈ Γ}, the assignment α : XS → B
is a model of S iff Iα(F ) = > and ∀G ∈ Γ : I̊α(G) = >.

Given a structural formula S = (F,Γ), its set of models M(S) is defined as
follows.

M(S) := {Mα | Iα(F ) = >, ∀G ∈ Γ : I̊α(G) = >}

For establishing the notion of equivalence of structural formulas, we have to take
projection to its input variables into account, as the Plaisted Greenbaum encoding
is not preserving equivalence. The set of input variables inp(S) of a structural
formula S = (F,Γ) is defined as follows.

inp(S) := XS \ {o | (o, P, g) ∈ Γ}

In Chapter 2, we defined model projection for propositional formulas. Similarly,
we introduce model projection for structural formulas such that M(S, inp(S))
denotes the projection of models of S to its input variables.

1Note that i < j =⇒ pi <X pj for all pi, pj ∈ P as specified in Chapter 2.
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Definition 19 (Structural Formula Equivalence). Given two structural formulas
S1, S2 with a non-empty intersection of input variables I = inp(S1) ∩ inp(S2), then
S1 and S2 are equivalent, denoted by S1

∼≡ S2, iff their sets of models projected to
I are equivalent, i.e.,M(S1, I) =M(S2, I).

Based on structural formula semantics, we now specify the coherence of structural
encodings and gates in Definition 20.

Definition 20 (Gate Encodings). A CNF formula E encodes a gate G iff XE = XG
and (E, ∅) ∼≡ (∅, {G}).

Given a structural formula S = (F,Γ) over variables XS , a variable v ∈ XS can
be output of a gate G ∈ Γ and at the same time input to several other gates H ∈ Γ.
This induces the nesting relation < which is a transitive, irreflexive and asymmetric
relation of gates, thus, imposing a strict partial order on Γ.

Definition 21 (Nesting of Gates). Given two gates G = (og, Pg, g) and H =
(oh, Ph, h), G is directly nested in H, denoted by G < H, iff og ∈ Ph. Furthermore,
G is nested in H, denoted by G <+ H, iff it is in the transitive closure of <.

Given a set of gates Γ, we call the maximal elements of its nesting relation the
output gates of Γ. Similarly, we call the minimal elements of < the input gates of
Γ. Furthermore, we call the union of output variables of output gates the output
variables of Γ and the union of input variables of input gates the input variables of
Γ.

Definition 22 (Monotonicity). A function g(p1, . . . , pi, . . . , pn) is monotonically
increasing in argument i iff a ≤ b implies g(p1, . . . a, . . . pn) ≤ g(p1, . . . b, . . . pn),
and monotonically decreasing in argument i iff a ≤ b implies g(p1, . . . a, . . . pn) ≥
g(p1, . . . b, . . . pn). A Boolean function is monotonic iff it is monotonically increasing
or decreasing in every argument.

We define a gate to be monotonic iff its characteristic function is monotonic.
Examples for monotonic functions are AND and OR, and examples for non-monotonic
functions are XOR and EQIV. In Definition 23 we define the notion of monotonic
nesting, allowing further insight into optimized gate encodings.

Definition 23 (Monotonic Nesting). Let Γ be a set of gates with G,H ∈ Γ, G =
(og, Pg, g), H = (oh, Ph, h) such that G < H. G is monotonically nested in H iff og
is a monotonic argument in h. G is monotonically nested in Γ iff ∀I, J ∈ Γ with
I < J such that G <+ I it holds that I is monotonically nested in J .

Plaisted and Greenbaum devised an optimized encoding for monotonically
nested gates [112] as defined in Equations 2.23, where implications can be used
whenever a gate is monotonically nested. Given a formula F , its Plaisted Green-
baum encoding PGE(F ) allows for additional models which are not models of
the Tseitin encoding TE(F ) (assuming both use the same encoding variables, i.e.,
vars(PGE(F )) = vars(TE(F ))).

Given such an additional model M ∈ M(PGE(F )) \M(TE(F )), there exists a
set of literals L ⊂ M such that the set M ′ := (M \ L) ∪ {l | l ∈ L} is a model of
PGE(F ) and TE(F ), the variables in vars(L) are output variables of monotonically
nested gates.

Example 6 (Combinational Gate Structure). In Equation 3.1, we show a propo-
sitional formula which is also illustrated by the combinational circuit below. The
circuit in our example consists of a root-level OR-gate and subsequently nested XOR-
and AND-gates which is also illustrated in the circuit below. In Equation 3.2 the
XOR is replaced by an equivalent representation using AND and OR functions. The
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Plaisted Greenbaum encoding of the such obtained formula is successively derived in
Equations 3.3 and 3.4.

¬c ∨ (c⊕ (a ∧ b)) (3.1)
≡ ¬c ∨

(
(¬c ∨ ¬(a ∧ b)) ∧ (c ∨ (a ∧ b))

)
(3.2)

∼≡ o1 ∧
(
o1 → (o2 ∨ ¬c)

)
∧ (o2 → o3 ∧ o4)

∧ (o3 → ¬c ∧ ¬o5) ∧ (o4 → c ∧ o5) ∧ (o5 ↔ a ∧ b) (3.3)
≡ o1 ∧ (¬o1 ∨ o2 ∨ ¬c) ∧ (¬o2 ∨ o3) ∧ (¬o2 ∨ o4)

∧ (¬o3 ∨ ¬c) ∧ (¬o3 ∨ ¬o5) ∧ (¬o4 ∨ c) ∧ (¬o4 ∨ o5)

∧ (¬o5 ∨ a) ∧ (¬o5 ∨ b) ∧ (o5 ∨ ¬a ∨ ¬b) (3.4)

a b c

= 1 ≥ 1
&

1
o5

o2
o1

Left-Totality of Gate Encodings

From the functional relation which is imposed by a gate and which is reflected
in gate encodings, we deduce additional properties of CNF encodings of gates.
Proposition 1 shows that the semantics of blocked sets captures left-totality of
variable relations.

Proposition 1 (Left-Totality of Gate Encodings). Given a gate G with output
variable o and its encoding E, it holds that for every clause C ∈ E either o ∈ E or
o ∈ E (part 1) and all resolvents in E[o]⊗o E[o] are tautologic (part 2).

Proof of Part 1. Let E be the CNF encoding of a gate G = (o, P, g). Assume that
there is a clause C ∈ E such that o 6∈ vars(C). It follows that there exists an
assignment to input variables P which falsifies C for any assignment to o. This
contradicts left-totality. Thus, it follows that ∀C ∈ E : o ∈ vars(C).

Proof of Part 2. Let R be a non-tautological resolvent in E[o]⊗oE[o]. By Definition
of resolution, it holds that o 6∈ vars(R) and E |= R. It follows that there exists an
assignment to input variables P which falsifies R for any assignment to o. This
contradicts left-totality. Therefore, each resolvent in E[o]⊗o E[o] is tautologic.

3.3 Gate Recognition

Given a structural formula (F,Γ), gate recognition is a set of rules which we use to
subsequently identify encodings E ⊆ F of gates G = (o, P, g), and create the new
structural formula (F \ E,Γ ∪ {G}) ∼≡ (F,Γ).

Given a set of gate recognition rules GR, we denote the application of a rule in
GR by (F,Γ)

GR−−→ (F ′,Γ′). For rules which should only be applied if a condition
K holds, we use the notation K | (F,Γ)

GR−−→ (F ′,Γ′) [12, 46].

The reflexive transitive closure of GR−−→ is denoted by GR∗−−−→. A structural formula
(F,Γ) is irreducible regarding GR if no rule in GR can be applied. If (F,Γ) is

irreducible in GR, F is called the remainder of GR∗−−−→. If Γ contains exactly one
output gate with output literal o such that F = {{o}}, then (F,Γ) is called generally
irreducible.

Gate recognition rules must be constructed such that
∑
C∈F ′ |C| <

∑
C∈F |C|

and Γ′ ⊃ Γ, i.e., the size of the conjunctive formula strictly decreases and the
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number of gates strictly increases under repeated application of the rules such that
the procedure is terminating.

However, a set of gate recognition rules is not necessarily confluent. The set of
rules determines the power of gate recognition. Some recognition rules can only be
used to recognize a limited set of gate types.

Definition 24 (Validity of Gate Recognition). A set of gate recognition rules GR
is valid iff for every rule application A GR−−→ B it holds that A ∼≡ B.

Example 7 (AND Gate Recognition). Given a CNF formula F with a set of clauses
E ⊆ F such that E = {{¬o, p1}, {¬o, p2}, {o,¬p1,¬p2}}. Clearly, E is a binary
AND-encoding with output o, i.e., E ≡ (o↔ (p1 ∧ p2)).

Let GR−−→ be a gate recognition procedure which recognizes AND-encodings, then(
F, {}

) GR−−→
(
F \ C, {(o, {p1, p2}, AND)}

)
is a valid transformation in the sense of Definition 24.

Trivial Gate Recognition

A CNF Formula is a conjunction of disjunctions such that we can trivially convert
a given CNF formula F to a set of OR-gates whose outputs are then combined in
one AND-gate. The trivial gate recognition rules TGR are defined as follows.

For each clause C, we introduce a fresh output variable X ∗C in order to create
an OR-gate with output X ∗C . Similarly, we introduce an output variable X ∗F in order
to create an AND-gate with output X ∗F .

∃C ∈ F, |C| > 1
∣∣ (F,Γ)

TGR−−−→
(
F \ C ∪ {{X ∗C}},Γ ∪ {(X ∗C , vars(C), OR)}

)
∀C ∈ F, |C| = 1, |F | > 1

∣∣ (F,Γ)
TGR−−−→

(
{{X ∗F }},Γ ∪ {(X ∗F , vars(F ), AND)}

)
Note that the TGR rules are conditional, ensuring that we first rewrite all clauses

C with |C| > 1 before we apply the second rule once. The resulting structural
formula is generally irreducible. In the following, given a set of gate recognition
rules GR and a structural formula S which is irreducible in GR, we can subsequently
apply TGR rules in order to achieve general irreducibility. Algorithms which process
gates, such as those presented in Chapter 4, can often be simplified when we assert
generally irreducibility of the processed input formula.

Hierarchical Gate Recognition

Given a CNF formula F that has been created using a structural encoding, there
exists a hidden gate structure and a nesting hierarchy. Starting with the output
gates of the gate structure which is encoded in F , we hierarchically search for
gate encodings by considering the resolution environments F [o] ∪ F [o] of candidate
output variables o.

For each recognized gate (o, P, g), we add new input variables P to the gate
structure and remove its output variable o from the input variables of the gate
structure. For each candidate gate encoding E, we apply the following general gate
recognition rule.

∃E ⊆ F :
(
E, ∅

) ∼≡ (∅, {(o, I, g)}
) ∣∣ (F,Γ)

GR−−→ (F \ E,Γ ∪ {(o, I, g)})
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Algorithm 2: Root Selection
Data: (F,Γ) ∈ Ψ

1 S ← ∅
2 R← {C ∈ F | |C| = 1}
3 (F,Γ)← hierarchicalGateRecognition((F \R,Γ), lits(R))
4 S ← S ∪R
5 R← selectUnblockingClauses(F )
6 while R 6= ∅ do
7 (F,Γ)← hierarchicalGateRecognition((F \R,Γ), lits(R))
8 S ← S ∪R
9 R← selectUnblockingClauses(F )

10 return (F ∪ S,Γ)

Root Selection

As the maximal gates of the gate structure to be decoded are unknown in advance,
we use heuristics to determine candidate output variables of possible output gates.
In Algorithm 2, we heuristically select clauses and treat their literals as candidate
gate outputs in our hierarchical procedure. In the following we denote those clauses
as root clauses.

In non-simplified CNF formulas F generated by gate encoders, the output
variable of the maximal gate is a unit clause F . Therefore, unit clauses are
generally promising candidates for root selection (line 2).

In absence of unit clauses, we continuously select candidate root clauses in F
in such a way that at least one blocked set emerges in F (lines 5 and 9). Further
details and an efficient data structure for this root selection heuristic is explained
at the end of this section.

We keep the root clauses in a separate list (lines 1, 4 and 8) in order to add
them to the remainder of the gate recognition procedure (line 10).

Hierarchical gate recognition is performed with the literals of the selected root
clauses (lines 3 and 7). Note that hierarchical gate recognition modifies and returns
the structural formula (F,Γ).

Hierarchical Gate Recognition

Hierarchical gate recognition is implemented as a breadth first search. The procedure
is outlined in algorithm 3. In the inner loop (line 4), we iterate the root literals
in order to perform gate recognition for each root literal o. First (in line 5), we
determine whether o is nested monotonically in the gate structure decoded so far.
In line 6, we use decodeGate to test if the resolution environment of o in F is a gate
encoding with output o (see Algorithm 4 for details).

If decodeGate successfully recognizes a gate encoding (line 7), we add (o, P, g) to
the set of gates Γ (line 8) and remove the resolution environment of o from the set
of clause F (line 9). New input literals are appended to list L (lines 10 and 11) to
serve as new root literals in the next iteration of the outer loop (lines 16, 2 and 3).

In lines 1 and 13, we keep track of the input literal polarities of the previously
recognized gates. This is an efficient method for tracking non-monotonic arguments
of the decoded gates, as the presence of input literals in both polarities is a necessary
criterion for non-monotonicity in direct gate encodings (line 5). Note that in line 15,
we transitively pass on non-monotonicity to nested gates.
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Algorithm 3: Hierarchical Gate Recognition
Input: (F,Γ) ∈ Ψ, roots ⊆ lits(F )
Output: (F,Γ) ∈ Ψ

1 for l ∈ roots do setAsInput(l)

2 while roots 6= ∅ do
3 L← ∅
4 for o ∈ roots do
5 monotonic← ¬isSetAsInput(o) ∨ ¬isSetAsInput(o)
6 (o, P, g)← decodeGate(F, o, monotonic)

7 if (o, P, g) 6= ⊥ then
8 Γ← Γ ∪ (o, P, g)
9 F ← F \ (F [o] ∪ F [o])

10 L′ ← lits(F [o]) \ {o, o}
11 L← L ∪ L′
12 for l ∈ L′ do
13 setAsInput(l)
14 if ¬monotonic then
15 setAsInput(l)

16 roots← L

17 return (F,Γ)

Decode Gate

As we have seen in Proposition 1, blockedness is a necessary criterion for left-totality
of gate encodings. Using the argumentation in Proposition 1, it is easy to see that
blockedness is also a sufficient criterion for left-totality of gate encodings.

In the following, we use this fact to discover candidate gate encodings. Fur-
thermore, we relate monotonic nesting and the possibility to skip right-uniqueness
proofs with the optimized Plaisted-Greenbaum encoding PGE . This leads to an
incremental algorithm that subsequently discovers partial candidate gate-encodings
by keeping track of monotonicity and using right-uniqueness proofs when necessary.

Given a formula F and a candidate output o, we distinguish forward clauses
fwd (line 1) and backward clauses bwd (line 2) in the resolution environment of

Algorithm 4: Decode Gate
Input: F ∈ Φ′, o ∈ lits(F ), monotonic
Output: Gate (o, P, g)

1 fwd← F [o]
2 bwd← F [o]
3 inputs← vars(fwd) \ {o}
4 if fwd and bwd are blocked on o then
5 if monotonic is true then
6 return (o, inputs, anon(fwd ∪ bwd))

7 else if isRightUnique(F , o, fwd ∪ bwd) then
8 return (o, inputs, anon(fwd ∪ bwd))

9 return ⊥
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Algorithm 5: isRightUnique
Input: Formula F , Output o, Clauses E
Output: true if right-unique, false otherwise
Configuration : Strategy ∈ {Patterns,Semantic,Holistic}

1 switch Strategy do
2 case Patterns do
3 return E matches AND, OR or full pattern with output o

4 case Semantic do
5 C = {C \ {o, o} | C ∈ E}
6 return C is UNSAT

7 case Holistic do
8 C = {C \ {o, o} | C ∈ E} ∪ {C ∈ F | C ∩ lits(E) 6= ∅}
9 return C is UNSAT

o in F . Literals in fwd other than o are the input literals of the candidate gate
(line 3). If forward and backward clauses are blocked on o, we detected a left-total
relationship between o and the inputs.

If the nesting is monotonic (as indicated by the flag calculated in hierarchical
gate recognition), an anonymous gate with output o and inputs inputs is returned
(line 6). An anonymous gate is a gate of which we have not decoded the encoded
function. However, the implementation keeps references to the clauses in fwd∪ bwd.
In our algorithm, we use the expression anon(fwd ∪ bwd) to comply with the
formalism, which requires a function as the third element of the triple which defines
the gate.

If the nesting is non-monotonic, we test the encoding for right-uniqueness (line 7)
by using one of the methods described in Algorithm 5.

The blockedness check in our implementation has quadratic time complexity
in maximum clause lengths of any two clauses C1 and C2 occurring in the input.
Depending on the number of tests this might induce large execution time costs for
some problem instances and can be optimized by using blockedness checks of linear
time complexity with sorted clauses based on a fixed literal ordering which also
ensures that all literals v and ¬v directly follow one another.2

In our implementation, we keep a literal occurrence list which is updated when
the clauses of successfully decoded gates are removed from F . If a gate G is nested
in many gates Hi > G, i ∈ N, the same resolution environment can be tested
multiple times for blockedness before G can be decoded. To limit the amount of
redundant blockedness tests we cache the result of each such test and recalculate
the result locally whenever the occurrence list is updated.

Right-Uniqueness

In order to check for right-uniqueness of variables occurring in the blocked sets
F [o], F [o], we use known patterns of the Tseitin encodings of a set of common
functions. This is similarly limited as previous approaches which search for such
patterns globally [111, 114]. Due to its efficiency, we evaluate this approach and
compare its performance to that of our generic approach which is described later
in this Section.

Given a formula F and a candidate gate output o such that F [o] and F [o]
are blocked, we use fwd, bwd and inputs as defined in Algorithm 4. Under the
precondition that fwd and bwd are blocked on o, we only need a few checks to test

2The approach is already very efficient, so we did not sort clauses in our implementation.
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for some patterns. We also assume that neither redundant literals nor redundant
clauses occur in fwd and bwd.

The AND/OR Pattern

Given that fwd and bwd are blocked on o, if |fwd| = 1 and ∀c ∈ bwd : |c| = 2, the
clauses are an OR- or NAND-gate encoding, and if |bwd| = 1 and ∀c ∈ fwd : |c| = 2,
the clauses are an AND- or NOR-gate encoding. Whether the clauses are an OR- or
NAND gate encoding (or an AND- or NOR-gate encoding, respectively) depends on the
polarity of o.

The Full Pattern

Let n = |vars(inputs)|. Given that fwd and bwd are blocked on o, if |fwd|+|bwd| = 2n

and ∀C ∈ fwd∪ bwd, |C| = n+ 1, then from blockedness and absence of redundancy
follows that for each of the 2n possible assignments to vars(inputs) there exists
exactly one assignment to o and exactly one clause C ∈ fwd ∪ bwd such that C is
falsified. The encodings of many gate-types satisfy this pattern, some of which are
NOT, XOR, XNOR or MAJ3.

For some gate encodings which are detected by this pattern, it holds that literal
could be the output literal due to the symmetry of their encoding. Previous ap-
proaches use special post-processing algorithms which consider the nesting structure
to determine which literal is the output literal.

Due to hierarchical gate recognition, breadth first search and incremental
blockedness checks we do not need this kind of post-processing. In our approach,
as the output is determined by the so far decoded gate structure, the recognized
variation can safely be integrated into the recognized gate structure.

Semantic Right-Uniqueness Check

We have proven that a set of clauses E is blocked on a variable o ∈ vars(E) iff it
encodes a left-total relation between o and P = vars(E) \ {o}. What remains in
order to prove that E encodes a functional relation of o on P , is determination of
right-uniqueness.

In the previously presented heuristics, we recurred on clausal patterns of known
encodings. To overcome this, we devise a generic method, that is capable of
detecting right-unique relations independently of their clausal patterns. In the
following, we reformulate the criterion for right-uniqueness.

∀A ∈ A(P ), ∃l ∈ {o, o} : A ∪ {l} |= ¬E
=⇒ ¬∃A ∈ A(P ), ∀l ∈ {o, o} : A ∪ {l} |= E

=⇒ ¬∃A ∈ A(P ) : A |= E|o=0 ∧ E|o=1

This can be efficiently transformed to a SAT instance as shown in Equation 3.5.
Obviously, the encoding time for such SAT instance is linear in the size of E.

6|= E|o=0 ∧ E|o=1 (3.5)

Similarly, we obtain a propositional formula which we can use to test for left-
totality. As can be seen in Equation 3.6, the construction of the CNF formula
involves the negation of a set of clauses. As shown in Examples 2, 3 and 4 in
Section 2.1, the negation of a set of clauses can be achieved by methods of direct
encoding or by using a structural encoding.

6|= ¬E|o=0 ∧ ¬E|o=1 (3.6)
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Occurrence Lists with Blocking Counters

As indicated in Algorithm 2, in order to devise an effective repeated root selection
heuristic, we use the new data structure occurrence lists with blocking counters.
Given a CNF formula F , for each literal l in lits(F ) we keep an occurrence list of
clause F [l]. In addition, we keep track of a blocking counter c[l], where we store
the number of clauses in F [l] which are blocked on l.

During hierarchical gate recognition, clauses recognized as gate encodings are
repeatedly removed from F . Whenever a clause C is removed from F , the occurrence
lists F [l] for literals l ∈ C are updated. Likewise, we update the blocking counters
c[l] and c[l] for each literal l ∈ C.

As a result of keeping track of blocking counters, we can efficiently test if F [l] is
blocked on l. If c[l] equals the size of F [l], each remaining clause in F [l] is blocked
by F [l] and vice versa.

Furthermore, this optimization allows for an efficient and effective root selection
heuristic. During root selection, we select a literal l with minimal blocking counter
c[l]. Then we select all clauses in F [l] which are not blocked by F [l] and use them
as root clauses for hierarchical gate recognition. This is how we ensure that at least
F [l] and F [l] are blocked when we start decoding gates with root literal l.

Sub-Gate Encodings

Some gate encodings are optimized, such that multiple gates with shared input
variables might share a substructure of the encoding via additional encoding
variables. This type of variable addition reduces the formula size and might result
in smaller resolution proofs, but in the presence of such optimizations our method
of local blockedness and right-uniqueness checks fails.

However, by using semantic checks for both right-uniqueness and left-totality,
we could fix our method if we included the clauses in the resolution environments
of the candidate inputs. This single-level look-ahead in the gate structure includes
all clauses which in combination form a gate encoding.

However, the CNF formulas in this single-level look-ahead recognition method
are likely to become infeasible for gate recognition where thousands of these checks
are executed. Possible optimizations based on size-limits and other trade-offs have
not been evaluated in this dissertation.

3.4 Conclusion

Hierarchical gate recognition allows for the recognition of monotonically nested gates
in order to recognize both Tseitin and Plaisted Greenbaum optimized encodings.
The beauty of gate recognition via blocked sets and semantic right-uniqueness checks
lies in its genericity, as it decouples recognition of functional variable relations from
the recognition of a specific gate type.

Note that each gate structure can have at most one monotonic root structure and
if it is not fully monotonic, it must yet contain fully non-monotonic substructures.
This follows from the transitivity of non-monotonic nesting. Moreover, we observed
that Plaisted Greenbaum encodings of monotonic gates are isomorphic to horn
problems. In Plaisted Greenbaum encodings of monotonic gates, the output literal
of each gate encoding can be flipped such that it is the only positive literal in its
encoding clauses.





Il semble que la perfection soit atteinte non
quand il n’y a plus rien à ajouter, mais quand il
n’y a plus rien à retrancher.

Antoine de Saint-Exupéry, Terre des Hommes

Chapter 4

Exploiting Gate Structure

In this chapter, we leverage gate structure extracted by the previously described
algorithm in three exemplary approaches. In Section 4.1, we use gate structure
in order to improve an algorithm that minimizes models. An early version of the
minimization algorithm is published in [*2].1

The other two approaches, described in Sections 4.2 to 4.4, have been originally
presented by Felix Kutzner in his diploma thesis in [96] and are published in [*5].
In Section 4.2 we use gate structure to perform random simulation in order to
calculate conjectures about equivalent and constant gate output variables.

We effectively use these conjectures in two different ways. In Section 4.3, we
use abstraction via under-approximation to solve SAT problems exhibiting gate
structure. In a second approach, presented in Section 4.4, the conjectures are used
to direct the search in a new branching heuristic based on implicit learning.

4.1 Model Minimization

Model minimization is the process of generating satisfying partial assignments from a
satisfying full assignment. Minimization of a found model can be beneficial for many
applications of SAT solvers. In software verification, minimization of a counter-
example can be used to increase explainability by shifting the focus to the relevant
parts of the complete assignment. In prominent approaches like Counter-example
Guided Abstraction Refinement (CEGAR) [37, 130] and DPLL(T) [60, 33], model
minimization can be employed to reduce the number of spurious counter-examples,
thus, reducing the number of refinement loops.

In the following, we use the interpretation function depicted in Figure 4.1
in order to evaluate partial assignments α : XF  B for a formula F . The
universe of the modified interpretation is extended by the third value U signifying
“unknown”. Given a formula F , the evaluation Ĩα(F ) of partial assignments is used
in Definition 25 to classify the set of satisfying partial assignments that can be
derived from a given full model.

Definition 25 (Model Minimization). Given a model α |= F , a model β |= F is
called α-minimized if Mβ ⊆ Mα. The partial model β is α-minimal if no further
subset Mγ ⊂ Mβ is a model of F. Furthermore, β is called α-minimum if there
exists no other α-minimal partial assignment γ with |Mγ | < |Mβ |. We omit α if α
is clear from the context.

The minimization of a model Mα for a formula F can be translated to a hitting
set problem, in which we ask for a hitting set M ⊆Mα for the clauses in F .

1Due to a bug in the first version of our gate recognition algorithm, the evaluation of our
minimization approach described in [*2] contains erroneous results which has been fixed in the
version used in the evaluation presented in this work.

29
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Ĩα(0) = ⊥

Ĩα(1) = >

Ĩα(v) =


>, if α(v) = 1

⊥, if α(v) = 0

U, otherwise

Ĩα(¬F ) =


>, if Ĩα(F ) = ⊥
⊥, if Ĩα(F ) = >
U, otherwise

Ĩα(F → G) = Ĩα(¬F ∨G)

Ĩα(F ↔ G) = Ĩα((F → G) ∧ (G→ F ))

Ĩα(F ∧G) =


>, if Ĩα(F ) = > and Ĩα(G) = >
⊥, if Ĩα(F ) = ⊥ or Ĩα(G) = ⊥
U, otherwise

Ĩα(F ∨G) =


>, if Ĩα(F ) = > or Ĩα(G) = >
⊥, if Ĩα(F ) = ⊥ and Ĩα(G) = ⊥
U, otherwise

Figure 4.1: Interpretation of a formula under a partial assignment α

Definition 26 (Hitting Set Problem). Given a finite set of symbols Σ and a set
S ⊆ 2Σ the hitting set problem is the problem of determining a minimal subset of Σ
which contains an element of each set in S.

Finding a hitting set M ⊆Mα for F is equivalent to the problem of finding a
hitting set for the purified formula purifyα(F ), which we obtain by removing all
literals from F which are not satisfied by α.

Definition 27 (Purification). Given a formula F and a model Mα |= F , the
purified formula purifyα(F ) is defined as follows.

purifyα(F ) =
{
C ∩Mα | C ∈ F

}
Given a formula F and a model Mα |= F , for all models M ′ ⊆Mα it holds that

M ′ |= F iff M ′ |= purifyα(F ).

Definition 28 (Flip). Given a set of literals L and a model α, the method flipα(F )
flips the polarity of all literals in L whose variable is negated under α.

flipα(L) = {l | l ∈ L,α(var(l)) = 1} ∪ {l | l ∈ L,α(var(l)) = 0}

We extend flipα() such that it can be applied to formulas as follows. Given a
formula F and a model α then flipα(F ) = {flipα(C) | C ∈ F}.

Proposition 2 (Model Preservation). Given a formula F and a model Mα, it
holds for all models M ′ that M ′ |= F iff flipα(M ′) |= flipα(F ).

=⇒. Let C ∈ F and flipα(C) ∈ flipα(F ). Given a modelM ′, such thatM ′ |= C, i.e.,
C ∩M ′ 6= ∅, then flipα(C ∩M ′) 6= ∅ such that flipα(C) ∩ flipα(M ′) 6= ∅. It follows
that flipα(M ′) |= flipα(C). The argument for M ′ 6|= C works analogously.

⇐=. We can reuse the argumentation from above because flipα() is an involution,
i.e., flipα(flipα(F )) = F .

Iterative Minimization

Given a formula F and a modelMα |= F , we first compute an α-minimum modelM ′

of F ′ = flipα(purifyα(F )). Then, from M ′ we construct the model M = flipα(M ′).
M is an α-minimum model of F .

In order to minimize the number of variables assigned true, we encode a
cardinality constraint cc(vars(F ′), k) and solve the problem F ′ ∪ cc(F ′, k). We
start with an upper bound k = |vars(F )| and decrement k iteratively as long as
a solution with that bound exists by using incremental SAT solving. In order
to encode cardinality constraints, we use the parallel encoding presented by Sinz
in [123]
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Algorithm 6: Iterative Minimization
Input: Formula F , complete model α of F
Output: Minimized model αmin as a set Mαmin of literals

1 F ′ = flipα(purifyα(F ))
2 M ′ = flipα(M)
3 repeat
4 M = M ′

5 k = |M ∩ X|
6 C = cc(X, k)
7 (r,M ′) = solve(F ′ ∪ C)

8 until r = ⊥
9 return flipα(M)

Definition 29 (Cardinality Constraint). Given a set of variables V and a bound
k ∈ N, the cardinality constraint cc(V, k) is a CNF formula such that for all models
M ∈M(cc(V, k)) it holds that |M ∩ V | < k.

Algorithm 6 outlines the procedure. Given a formula F and a model α, we first
create the normalized formula F ′ (line 1). F ′ now contains only pure and positive
literals, such that we start with the model M ′ = vars(F ′) (line 2). In the loop
(lines 3 and 7), we calculate the number k of variables assigned true (line 5), after
which we generate a cardinality constraint C that allows at most k − 1 variables
assigned true. Then we solve F ′ including the cardinality constraint C (line 7).
If we find a solution, the model is updated (line 4), and the process is repeated.
Otherwise, the model M is denormalized and returned (line 9).

Eager Iterative Minimization

Algorithm 6 computes an α-minimum model for F . By replacing line 6 with the
statement C =

{
{¬v | v ∈M ∩ X}

}
∪
{
{l} | l ∈M \ X

}
we obtain a much simpler

eager algorithm. In this statement, the full cardinality encoding is replaced by a
single clause. The second part of the statement depicts the eager part of the solution,
i.e., the addition of a unit clause for each negative literal in M . However, the such
obtained algorithm computes an α-minimal and not necessarily an α-minimum
model.

Structural Pruning

Structural pruning is a pre-processing step to model minimization, which exploits
structural encodings to further minimize a model. Assuming that we can reconstruct
gate structure from a structurally encoded formula F with the procedure described
in Chapter 3, the idea of structural pruning is to exploit “don’t cares” in the circuit
structure in order to create the pruned formula P ⊆ F by purging all clauses
belonging to encodings of monotonically nested, unsatisfied sub-formulas. After
pruning, we minimize α with respect to the pruned formula P as we have seen in
Section 4.1.

Algorithm 7 outlines the procedure. Starting with root gates, in line 2, we
traverse the gate structure Γ of the given structural formula (F,Γ) by breadth first
search (lines 3 and 4). Whenever the traversed gate G is not satisfied under the
given model α and G is not monotonically nested in Γ, the substructure is subject
to pruning (line 5). Otherwise (lines 6 to 8), G is added to Γ′ and its child-gates
are enqueued in Q. The algorithm returns the pruned structural formula (F,Γ′).

Note that gate recognition caches the encoding clauses for each gate G ∈ Γ,
such that a CNF formula can be easily obtained from the pruned formula (F,Γ).
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Algorithm 7: Structural Pruning
Input: Structural Formula (F,Γ), Model α
Output: Pruned formula (F,Γ′)

1 Γ′ ← ∅
2 Queue Q← root gates of Γ

3 while not empty Q do
4 G← Q.pop-front()
5 if (α satisfies G) or (G is not monotonically nested in Γ) then
6 Γ′ ← Γ′ ∪ {G}
7 for child gate C of G do
8 Q.push-back(C)

9 return (F,Γ′)

4.2 Random Simulation

Given a combinational circuit, random simulation is the process of repeatedly
assigning random values to its input variables and propagating their values down to
the root of the circuit in order to generate a complete assignment. The extraction
of signal correlations via random simulation in combinational circuits has been
studied by Feng Lu et al. in [101]. Random simulation has also been successfully
applied in hardware verification with Binary Decision Diagrams (BDD) [92] and
Bounded Model Checking (BMC) with And-Inverter Graphs (AIG) [93].

Heule and Biere use random simulation to apply SAT sweeping techniques to
CNF formulas [75]. They use Blocked Clause Decomposition (BCD) to compute a
large satisfiable subset of a given CNF formula, on which they apply a sweeping
algorithm to generate a set of conjectures about literal equivalences which they
subsequently verify. In their experiment, they selected 81 application instances
from the benchmark set of SAT competition 2013, for which their tool was able to
compute a large satisfiable subset within 100 seconds. With their approach, their
solver Lingeling could solve 9 more instances than without it.

Signal correlations in terms of literal equivalences and constants can efficiently
be recorded by keeping track of equivalence classes of literals during several steps
of random simulation [101, 96]. Literals are kept in equivalence classes, which
are split as soon as an assignment in one step of random simulation proves the
opposite. Literals which have the same value under each complete assignment are
kept separately. The procedure allows us to construct conjectures about literal
equivalences and backbone variables.

Definition 30 (Backbone Variable). Given a formula F , a variable v ∈ vars(F ) is
a backbone variable iff ∃l ∈ {v,¬v}, ∀M ∈M(F ) : l ∈M .

Definition 31 (Conjecture). A conjecture K is a non-empty set of literals. We call
K a backbone conjecture if its cardinality |K| = 1 and an equivalence conjecture
otherwise.

If a gate output literal has the same value in each simulation step, a backbone
conjecture is generated. Equivalence conjectures are generated for those literals
for which random simulation could not find a counter-example to prove their
non-equivalence.

A backbone conjecture {l} is satisfied under an assignment α iff α(l) = 1. An
equivalence conjecture {l1, . . . , ln} is satisfied under an assignment α iff it either
holds that ∀i, α(li) = 1 or that ∀i, α(li) = 0.
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Approach

We combine gate recognition and random simulation. For a given CNF formula
F , we use gate recognition to construct a structural formula representing a com-
binational circuit. If the amount of gates surpasses a given threshold relative to
the total number of variables, we perform random simulation on the extracted
structure.

We generate pseudo-random bit-vectors containing one bit for each input vari-
able, such that each bit holds the value of an input variable. Experiments suggest
that the conjectures generated by random simulation are more likely to hold when
using non-uniform probability distributions to randomize the circuit inputs [2]. For
instance Knuth [91] (p.12) observed this by assigning the value 1 with a probability
of 90% instead of 50%. We exploit this effect by generating bit-vectors with higher
probability of assigning 1 than 0. The precise specification of bit-vector generation
alongside an evaluation of several methods can be found in [96].

A complete assignment of gate outputs is determined by propagation within the
gate structure. Our propagation algorithm is an optimized adaption of algorithm
GetMultipleSolutions in [75]. During random simulation, conjectures are gener-
ated and maintained by a fast partitioning algorithm [96]. The process is repeated
until a given maximum of simulation steps is reached, or if the amount of changes
to conjectures falls below a given threshold.

The output of our algorithm is a set of conjectures which is generated from the
results of random simulation. The generated set of conjectures C can be used to
speedup the subsequent search. Kutzner presented this in his diploma thesis [96],
parts of which we published in [*5]. His work encompasses the implementation
and analysis of what is presented in the following two Sections. In Section 4.3,
we introduce an approach where conjectures are used to under-approximate a
formula in an incremental abstraction-refinement loop. In the approach described
in Section 4.4, the same conjectures are input to a novel branching heuristic that
stimulates implicit learning.

4.3 Abstraction Refinement

Abstraction is a method of problem simplification, e.g., problem size reduction,
and has been used in many applications. Given a formula F , its abstraction F ′

can be created by omitting constraints or by adding more concise and at the same
time stricter constraints. Solving the abstraction F ′ can produce results which
do not hold for the original problem F . Consequently, it is necessary to maintain
knowledge about the relationship between F and F ′ such that F ′ can be refined
when necessary.

Counter-Example Guided Abstraction-Refinement (CEGAR) has been described
by Clarke et al. [38, 39] and is the foundation of DPLL(T) and SMT-solvers [60].
Silva et al. present a formalization of abstraction-based approaches for CDCL [42].
They embed CDCL in a system in which they perform over- and under-approximating
fix-point iteration. At the same time, they lift CDCL to other problem domains
(similar to constructions like DPLL(T) or SMT). They even present a language for
Abstract CDCL and combine it with other theories [43].

While in most approaches an abstraction refinement loop is built on top of an
incremental SAT solver, only in a few approaches the abstraction refinement loop is
integrated in the SAT solver itself. Dantsin and Wolpert [44] used clause-shortening-
based abstraction in combination with local search and successive refinement to
efficiently find models for SAT problems. In Cube and Conquer [77], Heule et al. use
a look-ahead solver to examine a problem first and later propose unit-literals to the
CDCL solver. Nadel et al. [109] observed that adding assumptions as unit-clauses
to the problem increases the effectiveness of preprocessing.
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Over- and Under-Approximation

Given a formula F , its abstraction F ′ can be created by over- or by under-
approximation. The two types of abstraction specify the semantic relationship of
the abstraction and the original problem.
Definition 32 (Over- and Under-Approximation). Given a Boolean formula F , its
abstraction F ′ over-approximates (under-approximates) F iff it holds that F |= F ′

(F ′ |= F ). This implies that the number of solutions of F ′ is larger (smaller) than
or equal to that of F .

In this approach, we create abstractions which are under-approximations of the
given problem, i.e., they might have fewer solutions than the original problem and
might even be unsatisfiable while the original problem is satisfiable.

Methods of deriving an under-approximation F ′ from a given formula F include
the addition of a new clause or the removal of literals from an existing clause. In
Example 8, we show possible CNF-based under-approximations.
Example 8 (Under-Approximation). Given a formula F =

{
{a, b, c}, {a,¬b,¬c}

}
,

the following abstractions are under-approximations of F .{
{a, b, c}, {a,¬b,¬c}, {¬a, c}

}
|= F (Clause Addition){

{a, b, c}, {a,¬b}
}
|= F (Literal Removal)

Approach

Given a formula F , we use random simulation as described in Section 4.2 to create
a set of conjectures S. Subsequently, we encode each conjecture K ∈ S to CNF as
follows.

As can be seen in Definition 33, the encoding of a backbone conjecture is a
unit-clause, and the encoding of a binary conjecture is the direct encoding of literal
equivalence. For encoding n-ary conjectures we use the direct encoding of a circular
implication chain.
Definition 33 (Conjecture Encoding). Given a conjecture K, its CNF encoding
CE(K) is defined as follows.

CE(K) =


{{l}} if K = {l}
DE(l1 ↔ l2) if K = {{l1, l2}}
DE(l1 → l2) ∧ DE(l2 → l3) ∧ . . .DE(ln → l1) if K = {{l1, l2, . . . , ln}}

In the following, the clauses in a conjecture encoding of a conjecture K are called
conjecture clauses of K. Given a set of conjectures S, its encoding is specified by the
union of the conjecture clauses K ∈ S, such that CE(S) = {C | C ∈ CE(K),K ∈ S}.

In Figure 4.2, we outline our approach. Given a formula F with conjectures S,
we create the under-approximation F ′ of F such that F ′ = F ∪ CE(S). We then
use CDCL and solve F ′. It holds that F ′ |= F , and therefore, any model we find
for F ′ is also a model of F . However, unsatisfiability of F ′ does not necessarily
imply unsatisfiability of F .

If the approximation F ′ is unsatisfiable, we first check if a clause in CE(S) has
been used to deduce its unsatisfiability. If a conjecture K ∈ S has been used in
the proof, we refine K as described later. We then use the refined conjectures S to
restart the search with the update formula F ′ = F ∪ CE(S \K). This procedure is
repeated until either a model for F ′ is found or no conjecture in S was used to derive
unsatisfiability (with S = ∅ being the trivial case). Figure 4.2 includes an outline
of the CDCL algorithm in order to highlight that branching with backtracking can
be regarded as a specialized form of under-approximation with refinement.



4.3. ABSTRACTION REFINEMENT 35

F

Problem Analysis,
Conjectures S

Abstraction
F ′ ← F ∪ S

Branching

Unit Propagation

Conflict? Learn

Backtracking

Refinement
S ← S \K

Solved?

SAT

∅ ∈ F ′?

Proof uses
K ∈ S?

UNSAT

yes

yes

no

no

yes

yes

no no

Figure 4.2: Model of an under-approximating SAT solver

Incremental Refinement

We add an activation literal to each clause in a conjecture encoding, in order
to be able to activate and deactivate clauses during incremental solving. In the
course of refinement, some conjectures are removed and their conjecture clauses
are deactivated by satisfying their activation literals. We also use the activation
literals to check if conjectures have been used in derivation of UNSAT by checking
if they occur in the clauses that were reason to the final propagation [97].

While unary and binary conjectures can be easily removed by deactivating their
clauses, n-ary conjectures have to be re-encoded when only a subset of their literals
is to be removed. As an optimization, we identify the exact clauses which have
to be removed from the implication chain, and deactivate only those clauses that
include the literals to be removed from the chain. Then we add a few clauses to
patch the implication chain.

Example 9 (N-Ary Conjecture Encoding). Given the conjecture K = {v1, v2, v3}
and its encoding {{¬v1, v2}, {¬v2, v3}, {¬v3, v1}}, we add a number of activa-
tion literals {a1, a2, a3} in order to gain control and we receive the set of clauses
{{¬v1, v2, a1}, {¬v2, v3, a2}, {¬v3, v1, a3}}.

Example 9 shows the encoding of the n-ary conjecture K = {v1, v2, v3}. In
order to activate the conjecture clauses, we run the solver with assumptions
A = {¬a1,¬a2,¬a3}. Let v2 ↔ v3 be the conjecture to be deactivated during
refinement. This means that now we are left with two conjectures v2 ↔ v1 and
v1 ↔ v3. So we permanently deactivate {¬v2, v3, a2} by adding the unit clause
{a2}. Furthermore, we encode two new implications {¬v2, v1, a4} and {¬v3, v1, a5}
with fresh activation literals a4 and a5.

Conjecture Reliability

Subsequently, those conjectures are removed which are not implied by the original
problem, i.e., which are false positives. In order to estimate the “reliability” of a
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Algorithm 8: Random-Simulation based Abstraction Refinement (RSAR)
Input: F : CNF formula, [ai] : list of filter arguments
Output: R : SAT or UNSAT

1 gates← extractGates(F )
2 conjectures← randomSimulation(gates)
3 i← 0
4 conjectures← filter(conjectures, a0)
5 (E,A)← encode(conjectures)
6 while cdcl(F ∪ E,A) = UNSAT do
7 U ← calculateUsedConjectures()
8 if U 6= ∅ then
9 i← i+ 1

10 conjectures← filter(conjectures \ U, ai)
11 (E,A)← reencode(conjectures)

12 else
13 return UNSAT

14 return SAT

conjecture, i.e., its probability to hold, we define the gate-width of a variable in
Definition 34.

Definition 34 (Gate Inputs and Gate Width). Given a gate structure (F,Γ) and
a gate G ∈ Γ with G = (o, I, g), the gate width of G is given by the number of inputs
|δ(o)| with the set of inputs δ(o) being recursively defined as follows.

δ(v) =


⋃
p∈P

δ(p) if ∃(v, P, g) ∈ Γ

v otherwise

Given a gate structure (F,Γ) and a gate G ∈ Γ with G = (o, P, g), the number
of possible evaluations for G and gates nested in G grows exponentially in the
number of inputs |δ(o)|. Thus, the likelihood for a conjecture K = {v, . . . } to be
false positive (after a fixed amount of random simulation steps) increases quickly
with the number of inputs |δ(v)|.

In order to respect conjecture reliability, we define the function filter which,
given a set of conjectures S and natural number a, returns the set of conjectures
with maximum number of inputs less than a. We use this filter to reduce the
amount of possible false positive conjectures a priori.

filter(S, a) =
{
K | ∀l ∈ K : |δ(l)| ≤ a

}
Algorithm

In Algorithm 8, we summarize the approach. In lines 1 and 2, gate structure is
extracted and a set of conjectures is determined by random simulation. A counter
(line 3) is used in order to keep track of the number of refinement steps. In line 4,
we filter the conjectures as described in Section 4.3. In line 5, we generate the
conjecture encodings, which gives us a set of clauses E and a set of assumptions A.
In line 6, the CDCL algorithm is executed on the formula F ∪ E with assumptions
A. If the result is SAT, we are done (line 14).

If the result is UNSAT, we calculate the set of conjectures U which were used
in the proof (line 7). If U is empty, we are done (line 13). Otherwise, we remove U
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Algorithm 9: Random-Simulation based Implicit Learning (RSIL)
Data: CNF formula F , Conjectures S, Current Assignment A, Bound b
Result: l : Branching Literal
// p is globally initialized with 1

1 if randomNumber(0, 1) ≤ p then
// i is globally initialized with 0

2 i← i+ 1
3 if i > b then
4 b← b+ b/2
5 p← p/2

6 for K ∈ S do
7 D ← vars(K) ∩ vars(A)
8 if D 6= ∅ ∧ |D| < |K| then

// Violate conjecture K
9 v ← pickOne(vars(K) \D)

10 l← pickOne(D)
11 if l ∈ A then
12 return v ∈ K ? ¬v : v

13 else
14 return v ∈ K ? v : ¬v

15 else
16 return branchDefault

from the conjectures and filter again (line 10). The conjectures are re-encoded in
line 11 and we continue with a new set of assumptions A and conjecture clauses E.

4.4 Implicit Learning

Implicit learning is a branching heuristic which takes into account a set of conjectures
about variable equivalences [101]. Given an equivalence conjecture K, whenever
a variable var(l0), l0 ∈ K is assigned, we heuristically prefer to branch on another
variable var(l), l ∈ K and its value is picked such that K is violated by the solvers
current assignment. Considering K holds, a conflict is provoked and thus implicit
learning guides the solver to quickly learn clauses C ≡ l0 ↔ l.

In Algorithm 9, we describe the branching algorithm of our implicit learning
approach. We use implicit learning in combination with VSIDS in order to mitigate
the possible runtime deterioration. Therefore, in line 1, we deterministically
calculate a random number in order to determine if implicit learning is used or not.
Otherwise, we fall back to the default branching strategy of the solver (line 16).
We keep track of the number of calls (line 2), and if that number reaches the given
bound b, the probability p is decreased and the bound b increased (lines 3 to 5).

If implicit learning is chosen by the algorithm (line 1), we iterate over the given
equivalence conjectures (line 6) in order to find a conjecture with both assigned
and unassigned variables (lines 7 and 8). We then select an unassigned variable v
and an assigned variable r of the conjecture K (lines 9 and 10). In lines 11 to 14,
we pick a value for v such that its assignment violates the conjecture as determined
by r.
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Optimizations

In the implementation, we optimize the overhead of the branching algorithm in
two ways. First, we only use conjectures of a maximum size of 3. Furthermore,
considering the current assignment A, we only use a bounded number of the most
recent assignments [96].
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Implementation

We implemented our algorithms in a fashion allowing for experimentation, analysis
and systematic evaluation of the developed concepts. SAT-related algorithms have
been implemented in the SAT solver Candy, which is presented in Section 5.1.

For the purpose of systematic evaluation, we developed the Global Benchmark
Database (GBD). With GBD, we manage a collection of attributes of benchmark
instances. The system is presented in Section 5.2.

5.1 Candy – A Modular SAT Solver

Candy [*10] is a fork of Glucose 3 [11] which is one of the most well-known
descendants of Minisat [52]. Not only does Candy provide implementations of
the previously presented approaches, also, its architecture facilitates building
and maintaining a portfolio of competing solving strategies. Candy provides
implementations of the IPASIR interface [80], as well as of the interface of the
generic massively parallel SAT solver HordeSAT [21, 14]. Candy’s sonification
interface makes solver runs audible [*6].

The Architecture of Candy

With Candy, we provide a modular SAT solver architecture to efficiently experiment
with many different strategies for branching, learning, restarting and so on. In order
to increase separation of concerns, we orchestrate a set of loosely coupled systems
by a close to bare-bone implementation of the CDCL algorithm. The authors of
Minisat implemented simplification by using inheritance, which in our opinion is a
design error which now persists in the Minisat family of solvers. By following the
paradigm composition over inheritance, we eliminated that error in the code-base
of Candy.

In Figure 5.1, we outline the architecture. At the time of writing, Candy is
composed of the following five systems: branching, propagation, conflict-analysis,
simplification and restart. Direct communication between systems is prohibited.
All systems interact with two objects that manage the clause database and the
current assignment, respectively.

The modular design of Candy allows for efficient and maintainable implementa-
tions of different strategies in a system. Among others, the branching system can
resort to implementations of gate recognition and random-simulation based implicit
learning (RSIL) which uses the algorithms presented in Chapter 4 [*5, *3].

Candy also has a parallel mode running selected combinations and configurations
of different strategies. Candy is capable of maintaining clauses in a shared memory

39



40 CHAPTER 5. IMPLEMENTATION

Clause
Database

&
Current

Assignment

Propagation

Branching

Conflict Analysis

Restart

Simplification

MINISAT, LIM-
MAT,
CONSTRAINTS,
. . .

VSIDS, LRB, RSIL,
CENTRALITY, . . .

1-UIP LEARN-
ING & NON-
CHRONOLOGICAL
BACKTRACKING

GLUCOSE, LUBY,
. . .

SUBSUMPTION,
VARIABLE ELIM-
INATION, ASYM-
METRIC BRANCH-
ING, . . .

Figure 5.1: The Compositional Architecture of Candy

region with sophisticated management of concurrent access, which makes Candy
the first parallel inprocessing SAT solver with shared clause memory [*8].

Converting CNF instances to AIG: cnf2aig

And-Inverter Graph (AIG) is a format for circuit encodings that uses only binary AND-
gates and negations, which has been used in several model checking competitions [25].
Part of Candy is our tool cnf2aig, in which we employ our hierarchical gate
recognition algorithm with subsequent trivial gate recognition in order to generate
a generally irreducible structural formula from a given CNF formula. Subsequently,
we convert the structural formula to a circuit representation which uses only
AND-gates and negations in three steps.

In the first step, we introduce an n-ary AND-gate for each gate in the structural
formula. As input variables of these AND-gates we create new variables for each
forward clause in the gate encoding. The forward clauses of the gate are modified
such that they do not contain the output literal and an OR-gate is created for each
such modified clause.

In the second step, all OR-gates are converted to AND-gates by double negation
and by using their negated output variable as an input to their nesting AND-gates.

In a third step, we convert all n-ary AND-gates to binary AND-gates by introducing
new output variables. We do this by subsequently splitting the inputs of each n-ary
AND-gate into two halves until only binary AND-gates remain. The such transformed
data structure is then output in the AIG format [25].

Sonification

Sonification of scientific data is the art of mapping aspects of a given dataset
to sound. Executions of algorithms are suitable for sonification, as they produce
time-series of internal states, and human auditory perception is particularly suitable
for extracting time-series from auditory signals [69].

In order to sonify executions of the CDCL algorithm, we integrated the OSCPack
library of Bencina [23] into Candy. Open Sound Control (OSC) is a network protocol
based on UDP and was initially specified by Wright [134], which was well-received
in the electronic music community, such that OSC has been implemented for most
electronic sound generators [135].
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We use OSC to transmit internal states of our SAT solver, namely the conflict-
level, backtrack-level, restarts and conflict-clause size. Moreover, we use the pro-
grammable software synthesizer CSound [30] as a sound generator. We programmed
CSound to receive and map OSC messages of a SAT solver to parameters used in
sound synthesis.

We sonify changes in conflict-level and backtrack-level by scaling and mapping
them to the frequency of a continuous sound. conflict-clause size is only sonified
when clauses are sufficiently small and we emit special sounds for binary and ternary
clauses. We map the size of longer learned clauses of up to size ten to the frequency
of a low-pass filter over white noise. Restarts are sonified with an electronic drum
sound.

Listening to sonified runs of a SAT solver gives a deep impression on the
temporal relation of events in a SAT solver. Especially interesting was listening to
the actual frequency of restarts and learned unit-clauses. Furthermore, listening
to sonified runs of a SAT solver stimulates intellectual attempts to relate events
perceived in in the soundscape to each other.

A presentation in the student cultural center “Arbeitskreis Kultur und Kom-
munikation” (AKK) on the KIT campus included visuals compiled by Jennifer
McClelland which displayed SAT Problem visualizations of Carsten Sinz, the source
of a CNF instance generated by Vegard Nossum and the source code of MiniSAT
by Niklas Eén and Niklas Sörensson. Audible was a run of MiniSAT with an early
implementation of our sonification interface.1

Future Work

In the future, using the observer pattern for system interaction could increase
the modularity of Candy. The observer pattern is harder to optimize due to
execution-time lookup of jump targets and conditional event consumption, but this
does not affect the bottlenecks (namely branching and propagation) and hardware
optimizations like optimized memory access or speculative execution could mitigate
runtime overhead.

Possible future work on Candy’s sonification interface includes an improved and
more pleasing sonification interface as well as the sonification of further parameters,
such as incremental calls and assumption usage, or clause forgetting.

5.2 Global Benchmark Database (GBD)

In our project “Global Benchmark Database” (GBD), we collect attributes of SAT
instances and develop tools to organize, distribute and query that data. The
core contribution of GBD is the definition of a hash function for SAT instances,
which we use to identify benchmark problems in order to associate the collected
benchmark attributes, such as solver runtimes or problem families. The main ideas
of GBD have been presented and discussed at the Pragmatics of SAT Workshop
2018 (POS-2018) [*7].

GBD fills a gap in practical SAT research due to several reasons. Benchmark
instance feature data which is crucial for a deep analysis of experimental results is
not always available. Furthermore, association of instance feature data to actual
instances based on filenames is unreliable. Compilations of SAT instances with
specific attributes are hard to obtain and some existing compilations even contain
duplicate instances.

1Recording: https://www.youtube.com/watch?v=iupgZGlzMCQ

https://www.youtube.com/watch?v=iupgZGlzMCQ
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Function GBD Hash(DIMACS File)
Input: DIMACS File
Output: GBD Hash

1 remove comments
2 remove header
3 replace each sequence of white-space characters (including line-breaks) by a

single blank
4 append trailing 0 to last clause if missing
5 return md5sum of the remaining content

GBD Hash

SAT benchmark problems are used to compare and evaluate the performance
of state-of-the-art SAT solvers, e.g., in international competitive events such as
the SAT competition [116]. The widely used file format for CNF problems was
specified by the Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS) [47] and is known as the DIMACS format for CNF.

Due to its ubiquity, we use the md5sum hash function to associate instance
features with DIMACS files. However, our definition of a benchmark hash includes
a couple of normalization steps, such as removal of comments and normalization of
white-space characters.

The DIMACS format requires clauses to be terminating with 0 which means
that we can safely replace line-breaks by a single white-space character in order
to harmonize line-breaks for the sake of portability. As the DIMACS header is
redundant and sometimes incorrect, normalization also includes the removal of the
DIMACS header. In Function GBD Hash, we summarize the GBD hash generation.

After discussions at the POS-2018 workshop about capturing different kinds
of isomorphisms of CNF formulas by the hash function, such as clause order or
variable names, we decided not to capture such isomorphisms in the GBD hash. A
strong argument against clause and variable order invariance of the GBD hash is
that the runtime of solvers can diverge tremendously for isomorphic formulas.

However, further equivalence classes can still be captured by using attributes
such as representants (e.g. union-find data structure) or other hash functions which
can be defined to include further normalization steps.

GBD Command Line Interface

We created our reference implementation using the programming language Python [129]
and the database framework SQLite [3] to calculate the hashes and provide methods
to maintain and query data [*12].

Initialization

In order to initialize GBD, we need a database which at the time of writing is an
SQLite file. GBD uses the database path which is specified in the environment
variable GBD_DB. In order to setup the database, GBD needs to register the paths
to the locally available benchmark instances. For this purpose, the command gbd
init <path to benchmarks> exists. When executed, GBD recursively scans the
given directory and saves the association of found benchmark instances and their
hash-values in the database.
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GBD Queries

In Figure 5.2, we depict the query language of the GBD command line interface in
Extended Backus-Naur-Form (EBNF) [79]. GBD allows querying for benchmark
instances with specific attributes by automatic translation of the simplified GBD
queries to SQL commands.

In Figure 5.3, we show two exemplary queries on a dataset which we collected for
benchmark instances of SAT Competitions 2006 to 2018. With the first command,
we query for benchmark instances with more than 5, 000, 000 variables and display
three attributes, their number of variables, clauses and the competition years in
which they were used.

With the second command in Figure 5.3, we query for benchmark instances in
which our gate recognition algorithm found more than 90% of the variables being
output of the encoding of a monotonic function. In this example, we query for the
benchmark family which the instances belong to and continue grouping them by
their family and counting them.

In Figure 5.4, we show how we use GBD for targeted experimentation with
specific instances. In the exemplary command, we query for the paths to instances
of the argumentation-network family [18]. In an experiment, e.g., the thus obtained
paths can be used as input to a SAT solver. Runtimes and other newly calculated
instance attributes can then be stored in the database by using the corresponding
GBD hash.

Collecting Data

In order to store attributes in the database, GBD provides two commands: gbd group
and gbd set. The group command is used to create a new attribute in the database
by specifying a name, type and default value. The set command is used to store
a value for a specific attribute and benchmark instance in the database by specifying
the GBD hash, attribute name and value.

We maintain a collection of benchmark attributes for all instances available
at SAT competition websites [116] in our database which we published for down-
load [*11]. Some of the instance attributes we collected are listed in Table 5.1.

Our database can be downloaded and used on a local machine by initializing
GBD hashes using the locally available benchmark instances. After calculation

〈start〉 = 〈query〉 | ε
〈query〉 = ’(’, 〈query〉, ’)’ | 〈query〉, (’ and ’ | ’ or ’), 〈query〉 | 〈constraint〉

〈constraint〉 = 〈name〉, (’=’ | ’!=’), 〈value〉 |
〈name〉, ’ like ’, [’%’], 〈value〉, [’%’] |
’(’, 〈term〉, (’=’ | ’!=’ | ’<’ | ’>’), 〈term〉, ’)’

〈term〉 = 〈name〉 | 〈number〉 |
’(’, 〈term〉, (’+’ | ’-’ | ’*’ | ’/’), 〈term〉, ’)’

〈name〉 = 〈letter〉, {〈letter〉 | 〈digit〉 | ’_’}
〈number〉 = [’-’]〈digit〉{〈digit〉}[’.’〈digit〉{〈digit〉}]
〈value〉 = {〈letter〉 | 〈digit〉 | ’_’ | ’.’ | ’-’ | ’/’}
〈letter〉 = ’a’ | ’b’ | · · · | ’z’ | ’A’ | ’B’ | · · · | ’Z’
〈digit〉 = ’0’ | ’1’ | · · · | ’9’

Figure 5.2: Query Language of GBD Command Line Interface
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Figure 5.3: Screenshot of GBD Command Line Interface

Local Path to Instance

Number of Variables / Clauses

Solution: SAT, UNSAT or UNKNOWN

Problem Family

Competition Year

Number of Horn, Positive and Negative Clauses

Number of Gates and Monotonic Gates

Runtimes of Diverse Configurations of Candy

Table 5.1: Exemplary Attributes in our GBD Database

of GBD hashes, GBD can associate the available attributes of the downloaded
database and the corresponding instances on the local file-system.

Duplicates

Note that no hash collisions have been recorded so far in hashing all the available
competition instances. However, the data sets might contain duplicates. In past
SAT competitions, benchmark sets have been compiled by using newly as well
as previously submitted instances. By preferring GBD hashes over filenames as
instance identifier, we can safely experiment with the complete instance set without
wondering about which instances appear more than once in our data set.

Figure 5.4: Screenshot of GBD Command Line Interface
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Figure 5.5: Screenshot of GBD Web Interface

One surprising result is that the agile set of instances used in the Agile tracks
of SAT competitions 2016 and 2017 contains many duplicates. For the Agile tracks
of the two competitions, 2× 5, 000 instances have been automatically generated by
recording the instances of incremental SAT solver calls of a regular SMT solver.
Out of these 10, 000 instances, GBD found only 2, 361 instances to be unique. For
only 713 instances, no duplicate exists in the dataset. For other instances, there
exist up to 225 duplicate files in the dataset. The results were so surprising that we
immediately checked for hash collisions, by checking the diff of all the files GBD
recorded as duplicates. All diffs were empty.

Benchmark Classification

Benchmark features have been used for benchmark classification [136], a method
which plays a major role in automatic algorithm configuration [89]. Some strategies
in SAT solving work well on specific types of problems but not on others. Benchmark
classification, as well as algorithm selection, are driven by experiments and statistical
methods [7].

The data that is used for automatic classification of benchmarks consists of
fast to compute features of SAT instances. Based on a set of training instances,
a classifier selects the best algorithm or configuration for new instances. Since
AI classification is tremendously successful, the question arises whether similar
classifications can be achieved by a more analytic approach. While classifiers such
as neural networks are used as black boxes, what is the exact relation between
structural property and “optimal” configuration?

The characteristics of SAT instances which can be solved quickly by a new SAT
algorithm might be unknown in advance, and attributes of SAT instances are very
diverse and distributed. Maintaining a collection of metadata of SAT instances
gives us the advantage of a more differentiated analysis of our algorithms. Thus,
we can gain a better understanding of the method under analysis.
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GBD Web Interface

A web interface for GBD [*11], of which we show a Screenshot in Figure 5.5,
is currently under development. The GBD web interface allows to query GBD
databases from the web browser. Thus, collections of attributes can be downloaded
as CSV files. Furthermore, archives of instances with specific attributes can be
downloaded. Due to the sheer size of the archives created as a result of most queries,
future work should include sharing of dynamically built collections of instances
using a peer-to-peer protocol such as BitTorrent [40].



Essentially, all models are wrong, but some are
useful.

George Box, Empirical Model-Building and
Response Surfaces

Chapter 6

Evaluation

We experimentally investigated the effectiveness and efficiency of our methods. Our
experiments were executed on Acamar, a compute cluster hosted at our institution.
Acamar consists of 20 compute nodes with each node equipped with 32 GiB of RAM
and 2 Intel Xeon E5430 CPUs running at 2.66 GHz. An additional node with the
same specification is used as a master node to control job scheduling. Acamar’s
operating system is Ubuntu 16.04 Xenial Xerus (LTS) which uses Linux kernel
4.4.0.

Each process ran with a CPU time limit T and a memory limit M . We used
the limits (T,M) = (5000 s, 16 GiB). We executed at most two SAT solver processes
per compute node.

6.1 Benchmark Instances

We experimented with a collection of SAT benchmark instances stemming from
the annual SAT competitions of the years 2006 to 2018. We denote the set of all
instances of the competition sets of benchmark instances by Comp. If we used a
competition set from a specific year, we add the year as a suffix, e.g., Comp2014.
Usually, we experimented with the most recent competition set, and if there
were several tracks we used the instances of the main track. We indicate the
restriction to a specific track of a competition by the addition of another suffix,
e.g., Comp2018-main.

Other sources of benchmark instances have been used as well. For one experi-
ment, we obtained a set of unsatisfiable circuit equivalence checking problems of
Armin Biere [24] denoted by Miter.

Table 6.1 depicts the distribution of instances and their problem families over
the competitions as we extracted them from GBD. The number of instances of
important applications like cryptographic problems or instances from software- and
hardware-verification domains are highlighted in bold.

The descriptions of the instance families submitted to SAT competitive events
can be found in the proceedings of several SAT Competitions including the SAT
Challenge [16, 17, 18, 19, 20, 71]. For many past competitive events, no proceedings
have been published, which is why we augmented the information about problem
families in GBD with information from additional sources in the Web and by con-
tacting benchmark authors. However, some instances in GBD are still unclassified
(depicted by unknown in Table 6.1).

47
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Problem Family Total
Year 2006 - 2018

06 07 08 09 10 11 12 13 14 15 16 17 18

agile 2361 - - - - - - - - - - 1580 1981 -
argumentation 20 - - - - - - - - 20 6 - - -
auto-correlation 47 - - - - - - - 30 24 - - - -
automata-synchron. 12 - - - - - 12 8 - 1 - - - -
biology 60 - - - 50 6 11 28 5 11 3 11 - -
bitvector 115 - - - - - 26 21 33 12 - 40 - 20
cellular-automata 11 - - - - - - - - - - - - 11
chromatic-numbers 20 - - - - - - - - - - - - 20
clique-width 24 - - - - - - - 24 2 - - - -
cryptography 349 20 20 17 48 18 87 69 107 79 39 19 - 37
design-debugging 120 - - - - - 120 - - - - - - -
diagnosis 74 - 13 - 29 4 25 37 14 19 12 9 - -
edge-matching 32 - - - 30 - 5 32 8 6 - - - -
ensemble-computation 13 - - - - - - 12 7 5 - - - -
erdos-discrepancy 20 - - - - - - - - 20 - - - -
factorization 5 - - - - - - - - - - - - 5
fdmus 1000 - - - - - 1000 - - - - - - -
grandtour-games 19 - - - - - - - - - - - - 19
graph-coloring 51 - - - - - - - - 21 - 15 - 15
graph-isomorphism 60 - - - - - - - 30 30 - - - -
gray-codes 34 - - - - - - - - - 34 - - -
hardware-verif. 530 118 36 24 50 31 185 142 46 36 11 39 - -
hidoku 34 - - - - - - 3 22 12 - - - -
modulo-game 31 - - - - - - - - - 31 - - -
n-queens 31 - - - - - - - - 30 - - - 1
ordering 8 - 7 - 3 - 1 8 2 - - - - -
parity-games 28 - - - 25 - 2 26 - 2 - - - -
partial-ordering 4 - - - - - - - - - - 4 - -
pebbling-games 18 - 12 - 5 - 1 13 2 1 - 5 - -
phnf 11 - 10 - 8 - 1 3 2 - - - - -
pigeon-hole 102 - 7 - 5 - 6 4 13 1 - 35 - 40
planning 211 1 8 1 3 - 81 57 55 49 44 54 - -
polynomial-multipl. 19 - - - - - - - - - - - - 19
prime-numbers 43 - 4 - 4 - 1 37 4 2 - - - 2
product-conf. 22 - - - - - 22 - - - - - - -
protocol-verification 12 3 5 2 1 - 1 7 - - - - - -
railway 9 - - - - - - - - - - 9 - -
ramsey-theory 91 - 1 - 10 - 1 8 1 1 - 80 - -
random 399 - 10 - 23 - 27 66 27 6 26 89 - 165
scheduling 111 - - - - - 9 9 62 28 13 5 - 12
sgen 78 - - - 26 - 19 54 9 16 - - - -
social-golfer 1 - - - - - 1 - - - - - - -
software-verif. 392 22 58 30 66 30 100 138 26 36 16 19 - 34
sorting-network 26 - 5 - 3 1 2 3 - - - 22 - -
stone 13 - - - - - - - - - - 13 - -
strippacking 46 - - - - - 46 10 5 4 2 3 - -
subgraph-isomorphism 80 - 2 - 22 - 52 46 - - - - - -
subset-cardinality 10 - - - - - - - - - - 10 - -
sudoku 1 - - - - - 1 - - - - - - -
toughsat 8 - - - - - - - 8 4 - - - -
tree-decompositions 22 - - - - - - - - - - - - 22
tseitin-grid 38 - - - - - - - - - - 38 - -
uniform-random 3206 - 511 - 570 - 600 600 430 225 - 180 - 90
unknown 977 32 197 26 162 10 330 315 49 90 54 40 - 143
waerden-numbers 110 - - - - - 110 41 9 1 - - - -
zero-one 30 - - - - - - - - 30 - - - -

Table 6.1: SAT Benchmark Instances of Competitive Events from 2006 to 2018 by
Problem Family
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Figure 6.1: Effectiveness of Gate Recognition Methods: Percent Encoding Clauses
(left) and Percent Dependent Variables (right)

6.2 Gate Recognition

We evaluated our gate recognition algorithms using 5, 632 benchmark instances in
Comp excluding the uniform-random and agile problem families. In the following,
we compare the effectiveness and efficiency of three methods for right-uniqueness
checks: patterns, semantic and holistic.

In patterns, we use clausal patterns for right-uniqueness checks, while in semantic,
we employ Candy for conducting semantic right-uniqueness checks. In holistic we
include the resolution environment of candidate gate inputs in the semantic right-
uniqueness checks. In this comparison, we employed only unit clauses for root
selection without further iterations.

Successful Gate Recognition

On the right in Figure 6.1, we show the percentage of variables per instance which
we recognized as being functionally dependent on other variables by using one of
our methods to test for right-uniqueness. Clearly, our generic semantic method has
a significant advantage over the method patterns which is limited to specific clausal
patterns.

patterns semantic holistic family-size family
25 25 25 47 auto-correlation
41 53 53 115 bitvector
- 11 11 11 cellular-automata
87 96 96 349 cryptography
3 7 7 120 design-debugging
3 3 3 74 diagnosis
13 13 13 13 ensemble-computation
1000 1000 1000 1000 fdmus
149 244 181 530 hardware-verification
30 30 30 31 n-queens
- - 13 18 pebbling-games
2 2 2 211 planning
36 41 41 43 prime-numbers
12 12 12 12 protocol-verification
112 115 114 392 software-verification
6 6 6 26 sorting-network
82 96 95 977 unknown

Table 6.2: Number of instances per problem family where more than 90% of
variables were recognized to be functionally dependent on other variables.
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patterns semantic holistic family-size family
24 24 24 47 auto-correlation
76 93 93 115 bitvector
- 11 11 11 cellular-automata
94 103 103 349 cryptography
4 9 9 120 design-debugging
3 3 3 74 diagnosis
13 13 13 13 ensemble-computation
1000 1000 1000 1000 fdmus
153 248 281 530 hardware-verification
13 13 13 18 pebbling-games
2 2 2 211 planning
36 41 41 43 prime-numbers
12 12 12 12 protocol-verification
119 121 121 392 software-verification
6 6 6 26 sorting-network
100 124 124 977 unknown

Table 6.3: Number of problems per problem family where pattern-, semantic- or
holistic gate recognition found more than 90% of clauses to encode a gate.

Our holistic approach however, with which we should theoretically be capable
of recognizing more gates, turned out to be infeasible in terms of runtime. As a
result of several timeouts, the holistic recognition method recognizes fewer gates
than our semantic method.

On the left in Figure 6.1, we depict the percentage of clauses per instance
which we recognized as gate encodings. In many instances all clauses have been
discovered to be part of a gate encoding, i.e., gate recognition left no remainder.
While we recognized 1, 539 problems without remainder with the pattern method,
we recognized 1, 597 instances without remainder with the semantic method. With
the holistic approach, we only recognized 1, 586 instances without remainder. Again,
we see in Figure 6.1 that the semantic approach has been most successful in terms
of remainder sizes.

Our algorithm discovered 90 instances where more than 90% of all variables are
output variables of the encoding of a monotonic gate. Monotonic root structures
are particularly useful for structural pruning (see Section 6.5).

We investigated in which problem families our gate recognition methods are
particularly successful. Table 6.2 shows the number of instances where more than
90% of variables were discovered to be output of a gate, and Table 6.3 shows the
number of problems where more than 90% of clauses were discovered to be part of
a gate encoding.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4800  5000  5200  5400  5600

R
u
n
ti

m
e
 i
n
 S

e
co

n
d

s

Problems

M-holistic
M-patterns

M-semantic

configuration timeouts
patterns 95
semantic 95
holistic 181

Figure 6.2: Longest 1, 000 Runtimes of Gate Recognition Methods



6.2. GATE RECOGNITION 51

#conflicts #instances #semantic checks ∅checks per problem
0 2,382 83,991,813 35,261
1 754 14,848,502 19,693
2 97 950,734 9,801
3 86 258,900 3,010
4 27 32,780 1,214
5 23 26,157 53
6 0 0 0
7 17 1,528 90

Table 6.4: Number of instances, total and average number of SAT-based right-
uniqueness proofs according to their number of conflicts

The diverging numbers between the two tables show that both measures do not
necessarily correlate, as an instance’s gate structure might be fully exposed by our
algorithm but at the same time, it might contain many variables which are not
functionally dependent.

As shown in Table 6.2, for many hardware-verification instances we discovered less
dependencies with our holistic method than with our semantic method. However,
Table 6.3 shows that with the holistic method, we discovered more instances
without remainder. Hardware verification instances seem to be generated with
many optimizations which our holistic method seems to recognize, but due to its
infeasibility regarding runtime, the approach is not reliable.

Runtime of Gate Recognition

In Figure 6.2, we plotted the 1, 000 longest runtimes (out of a total of 5, 632) of
our gate recognition methods. We omitted the smaller runtimes, as most instances
have been processed in a couple of seconds.

In this plot, we can see that the semantic approach is very competitive in
terms of runtime as compared to the patterns approach. For most instances, gate

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0  20  40  60  80  100  120

N
u
m

b
e
r 

o
f 

S
A
T
 P

ro
b

le
m

s

Conflicts

semantic
holistic

Figure 6.3: Number of SAT-based right-uniqueness checks grouped by their number
of conflicts



52 CHAPTER 6. EVALUATION

recognition finishes within a minute. However, both the patterns as well as the
semantic approach exhibit 95 timeouts.

The runtime curve of the holistic approach depicts runtimes of several minutes
for many more instances, and does not finish recognition within the time-limit of
5, 000s in 181 cases.

In our semantic approach, we generate a large number of small SAT problems
to prove right-uniqueness. Running gate recognition on 2, 382 instances for which
semantic right-uniqueness checks were produced, we counted a total of 100, 110, 414
SAT solver calls. On average, each execution of gate recognition generated 42, 028
SAT solver calls per instance. In Table 6.4, we show the hardness of these problems
in terms of the number of conflicts occurring in our solver while solving these
problems.

Note that solver reinitialization times can become a bottleneck in such a scenario.
Candy is optimized for this massively incremental application as we reduced the
reinitialization overhead in our implementation to a minimum.

In each call to the SAT solver, we actually proved right-uniqueness. From a
practical point of view, that means that left-totality (or blockedness, respectively)
is a strong indicator for functionality of gate encodings. The evaluation underlines
the feasibility of our SAT-based approach to prove right-uniqueness.

As shown in Figure 6.3, in contrast to the semantic approach, we can see that
the problems generated by the holistic approach are much harder to solve in terms
of conflicts. While for 17 instances the semantic approach employs 1, 528 SAT
instances with a maximum number of 7 conflicts, the holistic approach generates
instances inducing a significantly larger amount of conflicts (up to 123 conflicts).

6.3 Repeated Root Selection

In this section, we evaluate gate recognition with respect to repeated root selection
based on occurrence lists with blocking counters. Again, we experimented with a
total of 5, 632 instances in Comp under exclusion of the uniform-random and agile
instance families.

In repeated root selection, we repeatedly select new candidate root literals. In
a first iteration, we select roots via unit clauses as in the previous approach. Then,
we continue selecting roots based on minimal blocking counters for a bounded
number of iterations.

We evaluate four configurations of repeated root selection using different bounds
for the maximum number of repeated root selections. In the first configuration,
we unboundedly select roots (T-unlimited), in two further configurations, we
select roots with number of repetitions bounded by 10 (T-10) and 100 (T-100),
respectively. We added a fourth configuration (T-1) as a reference, where we only
select unit clauses.

In the evaluation of the four configurations we used a combination of the
previously evaluated pattern- and semantic-based approach, in which we first
use the pattern method for right-uniqueness checks and fall-back to the semantic
method if the pattern method does not succeed.

In Figure 6.4, we show that gate recognition with repeated root selection is
significantly more effective. The percentage of dependent variables as well as the
percentage of encoding clauses increases as we increase the repetition bound.

However, in Figure 6.5 we see that runtimes deteriorate dramatically with
increasing bounds. Each configuration exhibits timeouts, even configuration T-1.
In the approaches evaluated in Section 6.2, we lazily executed blockedness checks.
In this approach we use occurrence lists with blocking counters not only for repeated
root selection but also for blockedness checks. As blocking counters are calculated
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Figure 6.4: Effectiveness of Gate Recognition with Repeated Root Selection: Percent
Encoding Clauses (left) and Percent Dependent Variables (right)
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in advance, the approach turned out to be infeasible for large problems. This calls
for optimizations which we address in Chapter 7.

6.4 Comparison to mvSAT

Balyo et al. developed the toolmvSAT which creates And-Inverter Graphs (AIG) [25]
from a given CNF formula using Blocked Clause Decomposition (BCD) [15]. They
simplified the such created AIGs using the tool abc [32] (with option -dc2) and
investigated the efficiency of SAT solvers applied to the re-encoded CNF instances
of the such simplified AIGs.

Using the application instances in Comp2013, we repeated the same experiment
with mvSAT [15] and our tool cnf2aig [*3] which generates AIGs based on our gate
recognition algorithm. Note that in this approach we only used unit clauses for
root selection.

We show in Figure 6.6 that in most cases, our approach could discover more
functional dependencies per CNF instance. We also measured the runtime of
lingeling on the simplified and re-encoded formulas. The cactus plot in Figure 6.7
depicts a runtime comparison using lingeling on the re-encoded CNF instances by
using mvSAT and by using cnf2aig. Lingeling could solve the re-encoded CNF
instances which we generated based on our approach much faster than the original
instances as well as those instances generated based on the competing approach of
Balyo et al.
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Figure 6.6: cnf2aig builds AIG with fewer input variables and more gates than
mvSAT.
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6.5 Model Minimization

We experimentally evaluated our model minimization algorithm on satisfiable
instances in Comp. We evaluated the different minimization methods and their
combinations with respect to their effective reduction of model size. Note that for
formula pruning, we used a configuration of our gate recognition algorithm that
used unit clauses for root selection.

Minimization

In Figure 6.8, we show two scatter plots which compare the sizes of the minimized
models with their original sizes. Few models can be minimized with our eager
iterative approach as can be seen in the left plot in Figure 6.8. The right plot shows
the results of minimization by formula pruning based on “don’t care” information and
subsequent eager iterative minimization. Note that fewer instances are considered
in the right plot, as only those instances can be considered for pruning where we
recognized monotonic root gates.

We also experimented with full cardinality encodings in order to generate a
minimum model with respect to the given model. However, no further minimization
could be achieved than with the eager iterative minimization. While the runtime
of greedy minimization for most instances is below one second and always below 10
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Figure 6.8: Model size reduction by greedy minimization (left) and greedy mini-
mization with structural pruning (right)
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Figure 6.9: Model size reduction with structural pruning and projection compared
to the total number of variables (left) and to the total number of input variables
(right)

seconds, the runtimes of the full cardinality encodings were much higher (including
3 timeout above 5000s). In conclusion, the greedy approach was as effective as the
non-greedy approach while being orders of magnitude more efficient.

Minimization with Projection

In Figure 6.9, we evaluate minimization with pruning and projection. After having
run gate recognition, we know the input variables of the problem. Projection
to input variables is very effective, as can be seen in the left part of Figure 6.9.
However, in the right plot, we compare minimization with pruning and projection
to the number of input variables, i.e., projection without minimization. Only for a
few models, the number of input variables can be significantly reduced.

6.6 Abstraction Refinement

In our experiments with the RSAR algorithm, we used a maximum of 220 random
simulation rounds (as described in Chapter 4). Note that in this experiment we only
used unit clauses for root selection in gate recognition. We ran our experiments
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Figure 6.10: Distribution of fractions of numbers of variables in conjectures used in
the initial approximation of problems in Comp2014 for unbounded conjecture sizes
(left) and conjecture sizes bound by 3 (right)

with instances in Comp2014 and a timeout of 5000 seconds. Relative to the timeout,
the total runtime of preprocessing, i.e., gate recognition and random simulation,
was negligible, as it never exceeded 12 minutes and for the great majority completed
within 2 minutes [96].

We used a harsh refinement heuristic removing all conjectures generated during
preprocessing in the first refinement. In Variant A, we use all conjectures, and
in variant B, we bound conjecture size by 3 (denoted by “opt 3” in Figures 6.11
and 6.10). The reason for the additional size constraint in variant B is our assump-
tion that small conjectures are more likely to hold.

In Figure 6.10, we show two histograms depicting the distribution of the
fractions of numbers of variables constrained by conjectures used to construct the
first approximation. The data shows that by using harsher filtering, significantly
fewer variables are constrained by conjectures.

In Table 6.5, we show the runtimes for instances in Comp2014. In the first
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Variant A Variant B
filter SAT UNSAT SAT UNSAT
[2, 0] 48 (+1) 86 (-6) 49 (+2) 87 (-5)
[4, 0] 48 (+1) 86 (-6) 50 (+3) 86 (-6)
[8, 0] 48 (+1) 81 (-11) 49 (+2) 86 (-6)
[16, 0] 49 (+2) 79 (-13) 49 (+2) 88 (-4)
[32, 0] 49 (+2) 72 (-20) 49 (+2) 83 (-9)
[64, 0] 49 (+2) 74 (-18) 49 (+2) 76 (-16)

Table 6.5: Amount of problems solved by RSAR on instances in Comp2014

bound Comp2014/sat Comp2014/unsat Miter
103 49 (0) 92 (−1) 316 (0)
104 49 (0) 93 (0) 316 (0)
105 49 (0) 93 (0) 320 (+4)
106 49 (0) 94 (+1) 323 (+7)
107 49 (0) 91 (−2) 323 (+7)

Table 6.6: Amount of problems solved by RSIL on instances in Comp2014 and Miter

column, the heuristic configuration of filter indicates the number of maximum input
dependencies allowed in each refinement step (compare with Section 4.3).

In the second and third column, we specify the number of solved instances for
each variant. While we solved 47 of the satisfiable instances using Glucose, our
modifications using RSAR allowed us to solve up to 3 more satisfiable instances.

However, RSAR did not work particularly well on unsatisfiable instances in
Comp2014. The bad runtimes that RSAR produced on these instances could not
be mitigated by the harsh filter configuration. For example, in variant B with
filter configuration [4, 0], we solved only 86 unsatisfiable instances using RSAR,
as opposed to 92 solved instances using Glucose.

In Figure 6.11, we show the runtime scatter plots for two heuristic configurations
of the RSAR algorithm. Although we observed fewer timeouts with RSAR, the
results are mostly inconclusive. We highlighted the deteriorating runtimes on the
9vliw family of problems contained in Comp2014. We could observe that curiously,
the pattern for 9vliw repeats in all the experiments that we conducted, also in the
following evaluation of RSIL (Section 6.7).
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6.7 Implicit Learning

In our experiments with the RSIL algorithm, we used a maximum number of
random simulation rounds of 217 (in RSAR we used 220), as RSIL is more robust
regarding false positive conjectures. We also only use conjectures with a maximum
size of 3 in order to reduce the overhead in branching, where we iterate conjectures.

In Table 6.6, we show the number of solved instances for several bounds. We
achieved the best results with a bound of 106, where we solved 1 more unsatisfi-
able instance in the Comp2014 benchmark set and 7 more instances in the Miter
benchmark set.

In Figure 6.13, we show two runtime scatter plots for bounds 106 and 107

on the Comp2014 benchmark set. We achieved significant speedups on the circuit
equivalence problems. However, the performance on the 9vliw family of problems
included in Comp2014 deteriorated in any scenario we used in our experimentation
(see also Section 6.6).
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In the cactus plot in Figure 6.12, we summarize the runtimes of RSIL configu-
rations using several bounds on instances in Miter. Clearly, no bounding of the
method is needed for the Miter set of instances. Small bounds mitigate runtime de-
terioration for instances where the method is unsuccessful. However, the advantage
of RSIL is noticeable for instances in Miter, even if the bounds are small.

In Figure 6.14, we show a runtime scatter plot for unbounded RSIL on the
Miter benchmark set, where the method exhibits significant speedups. For the
lower runtimes (a few seconds and less) the overhead incurred through the problem
analysis step is clearly noticeable in the plot. However, the advantage of RSIL
becomes clearly visible in runtimes of long-running benchmark instances.





So Long, and Thanks for All the Fish

Douglas Adams, The Hitchhiker’s Guide to the
Galaxy

Chapter 7

Conclusion

We devised a generic algorithm for recognizing gate structure in CNF formulas.
The algorithm is generic as it does not require knowledge about the clausal patterns
of the encoded gates. We proved that the semantics of blocked sets captures
left-totality and devised a semantic method for proving right-uniqueness by solving
a small SAT problem. In our experiments, we could show that the algorithm is
efficient, and that it effectively recognizes gate structure in many SAT instances
which have been used as benchmark problems in past SAT competitions.

We showed that our tool cnf2aig is superior to previously presented gate
recognition tools in terms of the number of recognized gates. We also showed that
the recognized gate structure can be used to improve the runtime efficiency of SAT
solvers on many application instances after application of circuit simplification
techniques.

Furthermore, we exploited gate structure in an approach that uses “don’t care”
variables in the circuit encoding to minimize models and experimentally showed
that this helps reducing the model sizes of some satisfiable problem instances.

Moreover, we used random simulation on the extracted circuit structure of a
given CNF formula in order to generate conjectures about backbone literals and
literal equivalences. We experimented with using those conjectures to perform
under-approximation in incremental SAT solving, which was only successful on
some satisfiable instances. In another approach, we used these conjectures to
employ the branching heuristic “implicit learning” which performed particularly
well on unsatisfiable circuit-equivalence checking problems. Both approaches are
complementary as in the abstraction approach, we stimulate faster solution of some
satisfiable problems and in the implicit learning approach, we target violations of
conjectures to stimulate faster proof generation for unsatisfiable instances.

The SAT solver Candy is a result of implementing many new strategies for
CDCL heuristics. Its compositional architecture facilitates the implementation
of new strategies. Candy can also be used as a parallel portfolio solver, and as
such Candy is the first inprocessing solver which is able to manage a shared clause
database in the parallel scenario.

The Global Benchmark Database (GBD) is a tool for distributed management
of benchmark instances and their attributes. Its key innovation is the definition
of the GBD hash function, which is mandatory for reliable association of bench-
mark instances and their attributes. Analysis of large collections of benchmark
instance features in our data-driven approach leads to more informed evaluations
of experiments, and thus, it can lead to better hypotheses in the future.
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Future Work

We have seen that instances of the circuit equivalence checking domain can be solved
much faster with random-simulation-based implicit learning (RSIL). In a portfolio
of strategies, properties of those instances where SAT solver performance benefits
from RSIL can be used by methods of dynamic strategy selection in order to use
less restrictive strategy configurations for those instances than the configurations
which we used to obtain a better overall performance.

If the monotonic root structure in a CNF formula is large and many clauses
can be deactivated for propagation, then specialized propagation algorithms and
data-structures which exploit “don’t care” information in the gate structure could
be beneficial for SAT solver performance.

Gate recognition can also be the foundation to recognize more expressive
constraints, e.g., adder circuits, parity constraints or circuit-based cardinality
constraints [123, 26], which could then be exploited by specialized constraint
propagation algorithms and data-structures [131]. Moreover, constraint-based
abstraction, which is based on necessary but insufficient criteria to correctly classify
constraints, should be examined.

GBD has turned out to be a powerful tool for analyzing SAT instances and
algorithms, thus, suggesting the further development of the tool. More instance
features should be collected such as the number of models of satisfiable instances,
the size of the shortest known proof of unsatisfiable instances, the number of
connected components, or the number of mincuts of a certain size in the variable
incidence graph, to name a few. GBD should be used to run the evaluations of the
annual SAT competitions.

The modular design of Candy improves the comparability of experiments
with different strategies in CDCL. A thorough delta-analysis of recently devised
competing strategies in SAT solving, including instance metadata available in GBD,
should follow.
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