
Towards Applying Cryptographic
Security Models to Real-World

Systems

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Jochen Rill

Tag der mündlichen Prüfung: 21.04.2020
Erster Referent: Prof. Dr. Jörn Müller-Quade
Zweiter Referent: Prof. Dr. Hannes Hartenstein

Acronyms

ATM automated teller machine

EMT electronic money transfer

EMV A technical standard for payment cards, originally an acronym for
Europay, Mastercard, and Visa

EUC Externalized Universal Composability

GUC Generalized Universal Composability

ITM Interactive Turing Machine

mPIN mobile personal identification number

mTIN mobile transaction identification number

PDP proof of data possession

PIN personal identification number

POS point of sale

PPT Probabilistic Polynomial Time

SSE Symmetric Searchable Encryption

TAN transaction authentication number

UC Universal Composability

ii

Abstract

The cryptographic methodology of formal security analysis usually works in
three steps: choosing a security model, describing a system and its intended
security properties, and creating a formal proof of security. For basic cryp-
tographic primitives and simple protocols this is a well understood process
and is performed regularly. For more complex systems, as they are in use in
real-world settings it is rarely applied, however. In practice, this often leads
to missing or incomplete descriptions of the security properties and require-
ments of such systems, which in turn can lead to insecure implementations
and consequent security breaches. One of the main reasons for the lack of
application of formal models in practice is that they are particularly difficult
to use and to adapt to new use cases.

With this work, we therefore aim to investigate how cryptographic security
models can be used to argue about the security of real-world systems. To this
end, we perform case studies of three important types of real-world systems:
data outsourcing, computer networks and electronic payment.

First, we give a unified framework to express and analyze the security of
data outsourcing schemes. Within this framework, we define three privacy
objectives: data privacy, query privacy, and result privacy. We show that data
privacy and query privacy are independent concepts, while result privacy is
consequential to them. We then extend our framework to allow the modeling
of integrity for the specific use case of file systems. To validate our model, we
show that existing security notions can be expressed within our framework
and we prove the security of CryFS—a cryptographic cloud file system.

Second, we introduce a model, based on the Universal Composability
(UC) framework, in which computer networks and their security properties
can be described We extend it to incorporate time, which cannot be expressed
in the basic UC framework, and give formal tools to facilitate its application.
For validation, we use this model to argue about the security of architectures
of multiple firewalls in the presence of an active adversary. We show that a
parallel composition of firewalls exhibits strictly better security properties
than other variants.

Finally, we introduce a formal model for the security of electronic payment
protocols within the UC framework. Using this model, we prove a set of
necessary requirements for secure electronic payment. Based on these findings,
we discuss the security of current payment protocols and find that most are
insecure. We then give a simple payment protocol inspired by chipTAN and
photoTAN and prove its security within our model.

We conclude that cryptographic security models can indeed be used to
describe the security of real-world systems. They are, however, difficult to
apply and always need to be adapted to the specific use case.

iii

Zusammenfassung

Der formale Nachweis von Sicherheitseigenschaften ist eine grundlegende
Anforderung bei der Entwicklung von modernen kryptographischen Ver-
fahren. Die Vorgehensweise ist dabei in der Regel mehrstufig: Zunächst
wird ein geeignetes Sicherheitsmodell ausgewählt und das zu untersuchende
Verfahren wird darin beschrieben. Dafür existieren eine Vielzahl von un-
terschiedlichen Modellvarianten. Die Wahl der richtigen Variante hat einen
entscheidenden Einfluss darauf, welche Sicherheitseigenschaften später über-
haupt nachgewiesen werden können. Anschließend werden die gewünschten
Sicherheitseigenschaften in einem sogenannten Sicherheitsbegriff beschrieben.
Auch hier ist die richtige Wahl entscheidend – bezüglich eines zu schwachen
Sicherheitsbegriffs lässt sich nahezu jedes Verfahren als sicher beweisen
während ein zu starker Sicherheitsbegriff von keinem Verfahren realisiert
werden kann. Schlussendlich wird ein Sicherheitsbeweis durchgeführt, mit
dem gezeigt wird, dass das Verfahren die erwarteten Sicherheitseigenschaften
besitzt.

Diese Vorgehensweise wird bisher jedoch hauptsächlich auf elementare
Bausteine (wie beispielsweise Commitments), einfache Primitiven (wie beispiel-
sweise Verschlüsselungsverfahren) und auf einfache Protokolle angewendet.
Die einzelnen Schritte sind für diese Anwendungsfälle schon gut verstanden.
So wird die Sicherheit von Verschlüsselungsverfahren beispielsweise in der
Regel mit fest definierten Sicherheitsbegriffen in einem spielbasierten Modell
beschrieben.

Bei komplexeren Systemen oder Protokollen, wie sie in der Praxis über-
wiegend im Einsatz sind, findet diese Vorgehensweise jedoch keine Anwendung.
Nicht nur existieren für solche Verfahren keine Sicherheitsbeweise, meistens
existiert noch nicht einmal eine formale Beschreibung des Verfahrens und
der Annahmen, unter denen bestimmte Sicherheitseigenschaften erreicht
werden sollen. Stattdessen wird häufig ein iterativer Entwicklungsprozess
angewendet, bei dem der Entwickler aus den Fehlern der vorherigen Iteration
lernt. Dies führt in der Praxis leider häufig dazu, dass Annahmen, die der
Sicherheit des Systems zugrunde liegen, nur implizit getroffen und daher,
meist unbeabsichtigter Weise, beim Einsatz des Systems nicht berücksichtigt
werden.

Ein Grund für den Mangel an formaler Methodik bei dem Entwurf solcher
Real-Welt-Systeme ist insbesondere, dass bereits die Auswahl und Anwen-
dung eines Sicherheitsmodells ausgesprochen schwierig ist. An das Führen
eines Sicherheitsbeweises ist dann nicht mehr zu denken. Selbst ohne Be-
weisführung bietet jedoch bereits die Modellbildung und -anwendung klare
Vorteile: Sie zwingt den Entwickler dazu, auf systematische Art und Weise,
getroffene Annahmen und potentielle Schwachstellen seines Verfahrens ex-
plizit zu machen. Bekannte kryptographische Modelle sind jedoch nicht
ohne Weiteres auf komplexere Systeme übertragbar und es existiert auch

iv

keine etablierte Vorgehensweise, solche Modelle für neue Anwendungsfälle
anzupassen.

Diese Arbeit geht daher der Frage nach, inwiefern sich die aus der Kryp-
tographie bekannte Methodik für die Modellierung von Real-Welt-Systemen
anwenden lässt. Dazu wurde, anhand von drei konkreten Anwendungsszenar-
ien, untersucht, welche Sicherheitsmodelle und -begriffe sich für das jeweilige
Szenario am besten eignen und welche Anpassungen dafür möglicherweise
vorgenommen werden müssen. Die Ergebnisse dieser Untersuchung wurden
anschließend jeweils am Beispiel von konkreten Protokollen und Systemen
validiert.

Im Einzelnen wurden die folgenden Anwendungsfälle betrachtet:

Die Modellierung von Computer-Netzwerken Computer-Netzwerke
werden in der Regel mit bestimmten Sicherheitszielen im Hinterkopf entwor-
fen. So sollen beispielsweise Firewalls die Computer in einem bestimmten
Netzwerksegment vor Zugriffen aus anderen Segmenten schützen. Die Struk-
turierung des Netzwerks, sowie der Einsatz und die Verteilung von konkreten
Schutzmaßnahmen, erfolgt jedoch häufig auf Basis von Richtlinien und Er-
fahrungswerten und nicht mithilfe formaler Methodik. Ob die gesetzten
Sicherheitsziele durch die konfigurierte Netzwerkstruktur erreicht werden,
kann dann nur empirisch evaluiert werden. In dieser Arbeit wurde un-
tersucht, wie sich Computer-Netzwerke und deren Sicherheitseigenschaften
in dem Universal-Composability-Framework (UC-Framework) beschreiben
lassen. Auf die Modellierung von zeitlichen Zusammenhängen, die bei der
Kommunikation zwischen Netzwerkteilnehmern häufig eine große Rolle spie-
len, wurde dabei ein besonderer Fokus gelegt. Da die Modellierung von Zeit
in dem UC-Modell selbst für einfache Primitiven eine Herausforderung ist,
wurden formale Hilfsmittel und Werkzeuge entwickelt, um die Anwendbarkeit
des Modell in dem konkreten Anwendungsfall zu erleichtern.

Zur Validierung wurde das entwickelte Modell auf eine aus mehreren
Firewalls bestehende Netzwerk-Architektur angewendet.

Die Modellierung von Verfahren für sicheres Daten-Outsourcing
Sicheres Daten-Outsourcing wird in der Kryptographie vor allem im Kontext
der durchsuchbaren Verschlüsselung erforscht. Für solche Verfahren existieren
bereits eine Vielzahl von Sicherheitsbegriffen in unterschiedlichen Sicher-
heitsmodellen. Anders als bei etablierten Verfahren zur einfachen Verschlüs-
selung von Daten, gibt es für durchsuchbare Verschlüsselungen jedoch keinen
Sicherheitsbegriff, der sich als Goldstandard etabliert hat. Das führt dazu,
dass viele Verfahren ihren ganz eigenen, neuen und speziell zugeschnitten
Begriff mitbringen. Die Sicherheitseigenschaften unterschiedlicher Verfahren
miteinander zu vergleichen ist somit ausgesprochen schwierig. Zudem sind
solche hochspezialisierten Sicherheitsbegriffe kaum auf andere, in der Praxis

v

häufiger zum Einsatz kommende, Outsourcing-Verfahren anwendbar.
In dieser Arbeit wurden daher, aufbauend auf den bestehenden Sicher-

heitsbegriffen und -modellen für durchsuchbare Verschlüsselung, neue, general-
isierte Sicherheitsbegriffe in einem spielbasierten Sicherheitsmodell entwickelt,
die sich für alle Arten von Daten-Outsourcing-Verfahren eignen. Um Vergle-
ichbarkeit zu gewährleisten, wurde zusätzlich untersucht, in welchem Bezug
die im Rahmen dieser Arbeit entwickelten Sicherheitsbegriffe zu verschiedenen
bestehenden Sicherheitsbegriffen stehen.

Zur Validierung wurde das entwickelte Modell auf CryFS – ein verschlüs-
seltes Cloud-Dateisystem – angewendet.

Die Modellierung von elektronischen Bezahlverfahren Die EMV-
Protokollfamilie ist weltweit die Grundlage für elektronisches Bezahlen und
Geldabheben. Obwohl die Sicherheit von EMV hoch relevant für das Funktion-
ieren der Wirtschaft weltweit ist, wurde keines der dafür relevanten Protokolle
bisher in einem formalen Sicherheitsmodell beschrieben. Getroffene Annah-
men, potentielle Schwachstellen, sowie erwartete Sicherheitseigenschaften
sind daher nicht explizit beschrieben, sondern können nur durch genaues
Studium der Protokollbeschreibung rekonstruiert werden. Insbesondere bei
den Smart-Card-basierten Bezahlprotokollen zeigen sich genau aus diesem
Grund in jüngster Zeit Schwächen. Der Sicherheit dieser Verfahren liegt die
implizite Annahme zugrunde, dass die Kommunikation zwischen Smart Card
und Point-of-Sale-Gerät bzw. Geldautomat nicht manipuliert werden kann.
Diese Annahme ist heutzutage nicht mehr haltbar. Mit moderner Technik
ist es möglich, einen unauffälligen Chip so auf der Smart Card anzubrin-
gen, dass jegliche Kommunikation abgehört und verändert werden kann.
Da diese Annahme in dem Protokollstandard nicht explizit gemacht wurde,
konnten die Anwender von EMV auch keine weiterführenden und gezielten
Sicherheitsmaßnahmen treffen, um das Bestehen der Sicherheitsannahmen zu
gewährleisten.

In dieser Arbeit wurde, erneut auf Basis des UC-Frameworks, ein Modell
entwickelt, das es erlaubt, verschiedenste Arten von elektronischen Bezahlpro-
tokollen zu modellieren. Dabei wurde insbesondere auch berücksichtigt, dass
bei solchen Verfahren der Faktor Mensch eine große Rolle spielt. Da Menschen,
anders als Computer, beispielsweise nicht die Fähigkeit haben kryptographis-
che Signaturen zu prüfen, müssen andere Sicherheitsmaßnahmen zum Einsatz
kommen, um die Gesamtsicherheit des Systems zu gewährleisten.

Zur Validierung wurde das entwickelte Modell auf L-Pay – ein Verfahren
zum elektronischen Bezahlen und Geldabheben – angewendet.

Im Ergebnis wurden in dieser Arbeit für drei konkrete Anwendungsszenar-
ien Sicherheitsmodelle -und begriffe erarbeitet, die es einfacher machen, die
Sicherheitseigenschaften von Protokollen und Verfahren in diesen Anwen-

vi

dungsfeldern formal zu beschreiben. Auch wenn hinsichtlich der Anwend-
barkeit der kryptographischen Methodik für Real-Welt-Systeme auch weiter-
hin noch viel Forschungsbedarf besteht (insbesondere auch bei der Automa-
tisierung und Softwareunterstützung), leistet diese Arbeit einen wichtigen
Schritt in diese Richtung.

vii

Acknowledgements

About eight years ago, I was quite determined on leaving university and
science behind me and starting with a “serious” job in industry. I was then
fortunate enough to be offered a topic for a diploma thesis by Dirk Achenbach
which re-started my interest in science. As it would turn out, Dirk shared my
curiosity about connecting cryptographic methodology with problems from
the real world and through long and always fruitful discussions over many
years, I think we managed to do just that. Thank you.

Creating this work would also have never been possible without the
tremendous support from family, friends and colleagues. I am particularly
grateful to Jörn Müller-Quade for supervising my dissertation and for always
being available as a constant source of new ideas. My thanks also go to all of
my wonderful co-authors but in particular to Jeremias Mechler, who provided
the energy and determination to carry our work on electronic payment over
the finish line in a time when I was burned out.

Last but not least, thank you Elfi for always providing me with stability,
love, and patience, even through difficult times.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 3
1.3 Structure of this Work . 5

2 Preliminaries 6
2.1 General Definitions and Notation 6
2.2 Game-based Security . 7
2.3 Simulation-based Security . 10
2.4 The Universal Composability Framework 10
2.5 Synchronized Universal Composability 14
2.6 Generalized Universal Composability 15

3 Modeling Secure Data Outsourcing 18
3.1 Introduction . 18
3.2 Related Work . 20
3.3 A Model for Outsourced Data 22
3.4 Security Notions for Data Outsourcing

Schemes . 24
3.4.1 Notation and Conventions 24
3.4.2 Outsourcing Data . 25
3.4.3 Privacy Notions for Outsourced Data Sets 26

3.5 Generalized Security Notions for Data Outsourcing Schemes . 33
3.6 Case Studies . 36

3.6.1 Private Information Retrieval 37
3.6.2 Searchable Encryption using Directed Acyclic Word

Graphs . 38
3.6.3 Indistinguishability under Independent Column Permu-

tations . 38
3.6.4 Semantic Security Against Adaptive Chosen Keyword

Attacks . 39
3.6.5 Adaptive Security for Symmetric Searchable Encryp-

tion (SSE) . 40

ix

3.7 A Security Model for Cryptographic File Systems 41
3.7.1 Basic Definitions . 42
3.7.2 Modelling Non-Adaptive Security 42
3.7.3 Modelling Adaptive Security 43
3.7.4 Modelling Integrity . 44
3.7.5 Security Against Chosen Ciphertext Attacks 45

3.8 Case Study: CryFS . 45
3.8.1 Data Structures, Blocks and Files 46
3.8.2 Directory Structure . 47
3.8.3 Encryption and Integrity 49
3.8.4 Proving the Security of CryFS 49

4 Modeling Computer Networks 57
4.1 Introduction . 57
4.2 Related Work . 58
4.3 Modeling Firewall Architectures 60

4.3.1 Adversarial Model . 61
4.3.2 Trusted Hardware . 61

4.4 Serial Concatenation of Two Firewalls 62
4.5 Parallel Composition of Two Firewalls 64
4.6 Parallel Composition of Three Firewalls 68
4.7 Serial Composition of Three or More Firewalls 72
4.8 Improving the Model: Availability and Bigger Networks . . . 76

4.8.1 The Basic Tools . 76
4.8.2 Example: Byzantine Generals 81
4.8.3 Firewalls Revisited . 85

5 Modeling Electronic Payment 90
5.1 Introduction . 90
5.2 Related Work . 91
5.3 A Formal Model for Electronic Payment 93

5.3.1 Modeling Electronic Payment in the UC framework . . 94
5.3.2 Confirmation is Key 95
5.3.3 How Our Model Captures Existing Attacks 100

5.4 Towards Realizing Secure Electronic Payment 101
5.4.1 Requirements for Secure Electronic Payment 102
5.4.2 No Authentication Using Smartcards Without Addi-

tional Trust . 104
5.4.3 Realistic Assumptions 106

5.5 On the Security of Current Payment Protocols 107
5.6 Realizing Secure Electronic Payment 109

6 Conclusion 112

x

Author’s Publications 116

References 117

xi

xii

Chapter 1

Introduction

1.1 Motivation

Creating formal proofs of security is a basic requirement for the development
of cryptographic protocols nowadays. In general, this task is approached
in multiple steps. First, one has to choose an appropriate security model
or framework and describe the chosen cryptographic scheme within that
model. There exist quite a number of popular security models: game-based
and simulation-based [74] models, Constructive Cryptography [82], UC [22],
and many more. Choosing the right model for a specific scheme or protocol
determines which security properties can later be proven and which can not.
Trying to describe the security of a protocol which guarantees that a message
will always be delivered on time, within the UC framework, will fail, since
the model inherently does not support time.

Having chosen the appropriate security model, one describes the intended
security properties within that model in form of a security notion. As with
the security model, the correct choice of the security notion is critical. With
regards to a security notion which is too weak, almost every scheme can be
proven secure, whereas no scheme can fulfill a security notion which is too
strong. It is also quite tempting to design security notions which perfectly fit
the protocol to which they should be applied. This exhibits the danger that
potential weak spots of the protocol do not become clear from the security
notion and that the protocol is suddenly secure by definition. Ideally one
would first create the security notion and check whether the protocol fits that
notion.

Finally, one creates a security proof, which shows that the created protocol
exhibits the intended security properties. Almost all cryptographic security
proofs consist of arguments and reasoning delivered textually in prose, with
the help of a formal calculus provided by the security model. Proofs are
therefore not only difficult to create correctly, but also difficult to check.
Lacking any form of formal verification tools, only experts in a particular

1

security model can verify proofs within that model—and they are also human
and can therefore make mistakes. Indeed, using anecdotal evidence, the author
of this thesis had a paper submission rejected because its main theorem was
“obvious” and the proof “trivial”. As it became clear later, the proof was
completely wrong and the opposite of the theorem was true.

For all of the above reasons, applying the cryptographic methodology
of models and proofs can be very difficult. Fortunately, with regards to
basic cryptographic primitives (such as commitment or encryption schemes)
and simple protocols, cryptographic research has established a well funded
understanding of all necessary steps over the past decades. For proving the
security of encryption schemes for example, there is a set of pre-defined
security notions in a game-based security model. New encryption schemes
are expected to fulfill these notions if they are to be considered secure.

However, for more complex systems or protocols, such as those used in
applications employed in practice, this methodology is rarely applied. As a
consequence there are little to no guidelines or predefined models and notions
which can be used for these cases. Not only can one not expect to see a
formal proof of the security properties attributed to such a system, they often
lack any formalized description of their workings.

Instead, systems and protocols used in practice are often developed using
an iterative development process, during which the developers learn from
their past mistakes and errors are corrected as they occur. This often causes
assumptions, upon which the security of the whole system relies, to not
be made explicit. Users of such a system run the risk of overlooking these
assumptions and thus using the system in an insecure way. This seems
especially problematic in the case of EMV (the suite of protocols used for
electronic payment), as we will discuss in Chapter 5.

This is not the fault of the system designers, however. As we have
discussed, cryptographic security models are tremendously difficult to apply
correctly even for experts and are often tailored for a specific use case
and can not be applied to a different one without significant modifications.
However, real-world systems could benefit immensely from applying the formal
methodology used in cryptography. Even if creating an actual proof of security
is out of scope, having an easy to apply cryptographic security model at hand,
would allow the designers of a system to make underlying assumptions and
potential weaknesses explicit. Additionally, formally describing the desired
security properties of a system within a security notion before actually
designing the system would allow security relevant design mistakes to become
apparent earlier.

From all the above, there emerges a research question: can cryptographic
methodology be applied to real-world systems, and if so, how? In this work,
we aim to answer this question. We will focus our work on creating or
adapting security models and notions for usage in real-world system and give
security proofs to validate that these models work or to generate more general

2

knowledge about a system. The question of how to facilitate the creation of
cryptographic security proofs for such systems (or in general), however, is its
own field of research and—even though extremely important—will not be
addressed by this thesis.

1.2 Our Contribution

To answer the presented research question we chose three real-world use cases
and investigated which cryptographic security models and which security
notions can be used to describe systems within these use cases. We validated
the results of this investigation by applying these models and notions to
specific systems and protocols from these use cases.

Modeling secure data outsourcing In cryptography, research in practi-
cal schemes for secure data outsourcing is mainly being done with regards to
searchable encryption.

For searchable encryption schemes, there exists a plethora of security
notions in game-based and simulation-based security models. Different from
regular encryption schemes however, there is no single gold standard security
notion, which all schemes must fulfill. This leads to every scheme bringing
its own, specifically tailored security notion. Thus, comparing the security
properties of different searchable encryption schemes is next to impossible.
Also, these highly specific security notions can rarely be applied to other
searchable encryption schemes or even outsourcing schemes in general without
major modifications.

In Chapter 3 we developed new and generalized security notions based on
existing ones for searchable encryption, which are applicable to a wide range
of data outsourcing schemes. To that end, we first precisely define security
notions for three seemingly disparate security objectives: data privacy, query
privacy, and result privacy. We show how these notions are related. Second,
we give generalizations of these notions to make them applicable to both
highly elaborate and practical schemes. To guarantee compatibility with
existing security notions and to allow existing schemes to be compared among
one another, we also investigated how our notions relate to popular existing
notions. We show that several notions from literature are specializations of
one of our notions, others intertwine them.

To validate our model, we tried to apply it to CryFS, an encrypted
cloud file system. We found that the model lacked the ability to describe
an important security property, which is crucial for file systems: integrity.
We extended our model with a new security notions which allows to describe
integrity of file systems.

3

Modeling computer networks Computer networks are usually designed
with specific security goals in mind. Firewalls, for example, should isolate
computers within a specific network segment from access from other segments.
However, the structure of the network, as well as the distribution of specific se-
curity measures within it, is usually chosen based on experience and guidelines,
lacking any kind of formal methodology. Whether the envisioned security
goals are met by a specific network configuration, can only be validated
empirically. In Chapter 4 we investigated how computer networks and their
security goals and properties can be described and analyzed using the UC
framework. Since latency and timing are often very important for networks,
we specifically focus on how to describe theses properties. Since modeling
time is impossible in the basic UC framework, we employ an extension created
by Katz et al. [75]. We developed formal tools and modeling guidelines to
facilitate the modeling of computer networks within this extension.

For validation, we applied the resulting security model and security notions
to architectures of multiple firewalls and restate a popular theorem from
literature within our model.

Modeling electronic payment The world-wide system for electronic
payment and cash withdrawal is based on a family of protocols called EMV.
Even though the security of EMV is extremely important for the functioning
of the world-wide economy, none of the relevant protocols within the family
have been described and analyzed within a formal security model. Underlying
assumptions, potential weaknesses, as well as the expected security properties
are therefore not described explicitly but can only be inferred through careful
study of the protocol description. Smartcard based protocols in particular
have shown weaknesses for this reason in recent times. The security of these
protocols is based upon the implicit assumption that the communication
between smartcard and point-of-sale device can not be manipulated. This
assumption does not hold anymore. Using modern technology, it is possible
to mount an inconspicuous chip on the smartcard which can intercept and
manipulate all communication. Since this assumption has not been made
explicit in the protocol standard, users and implementers of EMV are not
able to take further security measures.

In Chapter 5, we developed a formal model based on the UC framework,
which allows us to describe various kinds of electronic payment protocols and
which incorporates a stronger but also more realistic adversarial model than
has been used for the design of EMV. We first give a formal description of
electronic payment which works for both payment at a point of sale (POS) and
for the withdrawal of cash at an automated teller machine (ATM). Second,
we provide an ideal functionality for electronic payment, which captures the
desired security guarantees for such protocols. In particular, this model allows
for modeling human-based protocol interactions. Since humans, in contrast

4

to computers, are for example not able to verify cryptographic signatures,
other security measures have to been taken in order to ensure the security
goals of the whole system.

We then prove a set of general requirements for designing such protocols.
These requirements can act as a guideline for future protocol designers.
Based on these results, we argue that a number of current payment systems
are insecure, even on a conceptual level. Inspired by this analysis, we
propose a simple electronic payment protocol which mainly requires secure
communication between the bank and the initiator of a transaction. We use
this protocol to validate our model.

1.3 Structure of this Work

Chapter 2 introduces basic definitions and notations used in the remainder
of this work and gives an introduction into game-based and simulation-based
security notions, as well as into the UC framework. In Chapter 3 we explore
how data outsourcing schemes can be modeled. Chapter 4 discusses how to
apply a cryptographic security framework to the case of computer networks. In
Chapter 5 we investigate the case of electronic payment protocols. Chapter 6
concludes.

5

Chapter 2

Preliminaries

In this chapter, we give a brief introduction to the different kinds of security
models used within this thesis, along with general definitions and notations.

2.1 General Definitions and Notation

Definition 1 (Negligable). A function f : N→ R is negligable if the following
holds:

∀c ∈ N∃k0 ∈ N∀k > k0 : |f(k)| < 1

kc

As an abbreviation, we write f(k) < negl(k).

Definition 2 (Indistinguishablity). Two binary ensembles X and Y are
indistinguishable (X ≈ Y), if ∀c, d ∈ N ∃k0 ∈ N , so that for all k > k0 and
all a ∈ ∪κ≤kd{0, 1}κ holds:

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c

In other words, the difference between the two ensembles is negligable.

Definition 3 (Probabilistic Polynomial Time (PPT)). A probabilistic algo-
rithm is PPT, if his time complexity is polynomial with regards to the length
of its input.

Definition 4 (Symmetric Encryption Scheme). A symmetric encryption
scheme E is a tuple E := (Gen,Enc,Dec) with

• Gen : 1k → {0, 1}k is a PPT algorithm which given a security parameter
k, outputs a key K.

• Enc : {0, 1}k ×{0, 1}n → {0, 1}m is a PPT algorithm which given a key
K and a plaintext outputs the corresponding ciphertext.

6

• Dec : {0, 1}k × {0, 1}m → ({⊥} ∪ {0, 1}n) is a PPT algorithm which
given a key K and a ciphertext outputs the corresponding plaintext. It
outputs ⊥ if K is wrong or the ciphertext was not valid.

Definition 5 (Public Key Encryption Scheme). A symmetric encryption
scheme Epk is a tuple Epk := (Gen,Enc,Dec) with

• Gen : 1k → {0, 1}k × {0, 1}k is a PPT algorithm which given a security
parameter k, outputs a private key sk and a public key pk.

• Enc : {0, 1}k × {0, 1}n → {0, 1}m is a PPT algorithm which given a
public key pk and a plaintext outputs the corresponding ciphertext.

• Dec : {0, 1}k×{0, 1}m → ({⊥}∪{0, 1}n) is a PPT algorithm which given
a secret key sk and a ciphertext outputs the corresponding plaintext.
It outputs ⊥ if sk is wrong or the ciphertext was not valid.

Encryption schemes, both public and symmetric, usually need to be
correct. This means that ∀k,m : Dec(sk,Enc(pk,m)) = m (with pk = sk for
symmetric encryption schemes).

2.2 Game-based Security

In a game-based security model, the security of a cryptographic scheme is
described in terms of a game with two players: a challenger C (also called
experiment) and an adversary A. The challenger has a specific question in
mind, which the adversary must answer in order to win the game. To this
end, the adversary can usually ask the challenger various questions about his
task before he has to give an answer. If the adversary can find an answer
better than by guessing, he wins. The specific question the adversary has to
answer, as well as the allowed interaction with the challenger, depends on
the specific security properties (the security notion) one wants to describe
within the security model.

We will illustrate this by example of encryption schemes. One of the
basic security properties each encryption scheme has to have in order to be
considered secure is one-wayness. This means that, only given a ciphertext,
extracting the plaintext is difficult, even if one can encrypt arbitrary messages
(which is always the case when using public key encryption schemes, since
the encryption key is public by definition). This can be formalized by the
following security game.

Security Game 1 (OW-CPAAEpk(k)).

• The challenger generates a key pair (pk, sk)← Gen(1k)

• The adversary gets access to pk.

7

• The challenger chooses a random message m from the message space
M and generates c← Enc(pk,m)

• The adversary gets the encrypted message c and outputs a plaintext
m′.

The result of the game is 1 if m = m′ and 0 otherwise.

In order for an encryption scheme PKE to be secure with regards to this
definion, we require that the advantage of the adversary in the security game
is negligable.

Pr[OW-CPAAEpk(k) = 1] < negl(k)

In this example, the specific question the adversary is asked by the
challenger is “decrypt this ciphertext”. Other than that, no further interaction
with the challenger is possible.

If one wants to describe the security of symmetric encryption schemes
within a game-based model, the introduction of so-called oracles becomes
neccessary. Since with symmetric encryption schemes the encryption key is
the same as the decryption key and has to remain secret, the adversary cannot
easily generate encryptions himself. In order to capture the same security
properties as stated above, the challenger has to provide the adversary with
encryptions. We say, that the adversary has access to an encryption oracle.
The following security game illustrates the difference.

Security Game 2 (OW-CPAAE (k)).

• The challenger generates a key K ← Gen(1k)

• The adversary gets access to an encryption oracle Enc(K, ·).

• The challenger chooses a random message m from the message space
M and generates c← Enc(K,m)

• The adversary gets the encrypted message c and outputs a plaintext
m′.

The result of the game is 1 if m = m′ and 0 otherwise.

Note that we use · to denote free parameters of oracles, which can be
chosen by the adversary.

Since in this work, we mainly consider schemes and protocols which use
symmetric encryption, going forward when stating security notions, we will
always use the oracle-based variant.

It is quite obvious, that one-wayness does not capture all security proper-
ties one would expect from a modern encryption scheme. In particular, one
would expect an encryption to not only be resilient against decryption of
random message, but of any given message. Indeed, even if the adversary gets
to choose the message space, from which the challenger chooses the plaintext

8

for encryption, he should not be able to tell which message got encrypted.
We expect two independantly created ciphertexts (even of the same message)
must be indistinguishable from each other and call the resulting security
notion indistinguishability under chosen plaintext.

Security Game 3 (IND-CPAAE (k)).

• The experiment chooses a key K ← Gen(1k) and a random bit b ←
{0, 1}.

• The adversary is given oracle access to LR(K,m0,m1), which outputs
an encryption of mb under K, if |m0| = |m1|.

• A submits a guess b′ for b.
The result of the experiment is 1, if b′ = b, and 0 otherwise.

So, even if the adversary can choose two arbitrary messages to his liking,
he cannot tell which one of them got encrypted only by looking at the
ciphertext.

Note that there are several equivalent formalizations for IND-CPA secu-
rity [74]. In this work, we use the formalization with a left-or-right oracle to
reduce the complexity of our models and proofs.

Keeping plaintexts hidden is not the only security property we expect
from an encryption scheme nowadays. We also want an encryption to provide
integrity, which means that any manipulation of a ciphertext will be detected
during decryption. This is a security property which is orthogonal to indis-
tinguishability under chosen plaintext and the resulting security notions is
called integrity of ciphertexts [14].

Security Game 4 (INT-CTXTAE (k)).

• The experiment chooses a key K ← Gen(1k).

• The adversary is given oracle access to Enc(K, ·).

• The adversary is given oracle access to Dec(K, ·).
The result of the experiment is 1, if for any Dec oracle query: Dec(K, c) 6=

⊥ and c was never output by the Enc oracle.

Intuitively this states, that even if an adversary can perform arbitrary
encryption and decryption operations, he cannot produce a new, valid cipher-
text.

Proofs within this security model generally work with a technique called
reduction. If one wants to prove that a specific scheme fulfills a specific
security notion, one tries to construct a reduction algorithm. This algorithm
uses an adversary with more than negligable advantage in the corresponding
security game to break a fundamental security assumption upon which the

9

scheme is build (for example that factoring is hard). Since the security
assumption is always true, by contradiction such an adversary cannot exist.
Thus, a proof reduces the security properties of the particular scheme to one
(or even multiple) security assumption.

2.3 Simulation-based Security

Another way of describing security properties is by comparing an actual
execution of a protocol or scheme in presence of an adversary to an idealized
execution, where there is strictly less information available. In the idealized
execution a simulator takes the place of the adversary and tries to simulate
the behavior of the real adversary as best as he can. If the outputs of these
two executions are indistinguishable for a specific scheme, it is considered to
be secure.

For encryption schemes, there also is a simulation-based security notion,
which is called semantic security. We restate its definition as given by Katz
and Lindell [74].

Definition 6 (Semantic Security). A symmetric encryption scheme E is
semantically secure if for every PPT algorithm A there exists a PPT algorithm
S such that for any polynomial-time computable functions f and h, the
following holds:

|Pr[A(1k,Enc(K,m), h(m)) = f(m)]−Pr[S(1k, |m|, h(m)) = f(m)]| < negl(k)

Informally speaking, this states, that each function (f), that an adversary
can compute on a ciphertext, can also be computed by a simulator who receives
no ciphertext at all, but only its length (|m|) and auxillary information (h(m)).
Creating proofs in this model usually works by explicitly constructing such an
algorithm S, which in turn internally simulates the behavior of algorithm A.
One then has to argue, that the input algorithm A receives in both worlds,
is indistinguishable.

Depending on the specific use case, simulation-based security notions can
be more difficult to work with, since proofs are more difficult to perform.
Fortunatelly, in the case of encryption, it can be proven, that semantic
security is equivalent to indistinguishability [58].

2.4 The Universal Composability Framework

In this section we give a brief review of the UC framework by Canetti [21].
It is a tool for proving the security of complex multi-party protocols by
comparing their execution with an idealized version of the protocol. We use
this framework to model more complex systems like firewall architectures,
computer networks and electronic payment, which cannot be adequately

10

captured by game- or simulation-based security notions. In many ways,
the UC framework can be seen as a more strictly formalized version of the
simulation-based security model presented above.

Since its introduction in 2001 the UC framework has changed quite a
bit. In the following we will give a brief overview of the framework based on
its most recent version from 2019. In the UC framework, participants in a
protocol are modeled as Interactive Turing Machines (ITMs). Since there
are different definitions of ITMs in literature, we will briefly summarize the
definition given by Canetti [21].

Definition 7 (Interactive Turing Machine). An ITM µ is a multi-tape turing
machine with the following augmentations: A tape is externally writeable
(EW), if it can be written by every other turing machine.

• an identity tape: This tape is read-only and mainly holds the program
of µ.

• an outgoing message tape: This tape holds all messages µ wants to
send, together with information about the recipient.

• Three externally writeable tapes:

– an input tape: This tape can be used to provide input to µ by
external programs.

– an subroutine-output tape: This tape holds information generated
by sub-programs running on µ.

– a backdoor tape: This tape holds information coming from the
adversary and can be used to influence the program running on µ.

• an activation tape: This tape holds the information, whether the ITM
is currently running or not.

• An external-write instruction: This transfers messages from the outgo-
ing message tape to a specified tape from another ITM.

• A read next message instruction: This instruction reads a complete
message from tape.

We call an ITM probabilistic, if it additionally has a random tape, which
contains a random bit string of a specific distribution.

Informally speaking, an execution of a protocol π in the UC framework,
can be described by a number of interacting ITMs. This execution happens in
the context of two additional ITMs: the adversary A and the environment Z.
The environment represents the perception of the execution from an outside
point of view and is thus generally responsible for proving input to a protocol

11

(i.e. by writing a value to the input tape of an ITM) and receiving its output.
The adversary represents the party which wants to attack the protocol.

The adversary and the environment are allowed to communicate freely.
One can even proof that a dummy adversary, who is completely controlled by
the environment, is equivalent to an adversary who acts on his own accord.

The adversary controls all communication between ITMs. That is, if an
ITM wants to send a message to another ITM, it writes that message to
the backdoor tape of the adversary, who in turn writes the message to the
backdoor tape of the recipient. During this process, there is no guarantee
that message will stay unmodified. Which tape can be written to by which
ITM is enforced by a control function C.

The execution of the protocol is turn-based. If an ITM is activated, it can
perform computations and write to a tape of any other ITM based on the
aforementioned restrictions. Then its turn ends. If an ITM receives input on
one of its tapes, it is the next to be activated. The first ITM to be activated
is always the environment Z.

It is obvious that in a network, where the adversary controls all com-
munication, there can be no secure protocols without some kind of setup
assumption (i.e. pre-distributed keys), since the adversary can change all
messages at will. Indeed, a common reference string is sufficient to securely
realize a broad variety of protocols [22].

While using some form of encryption in a protocol will prevent the
adversary from arbitrarily changing messages, he can always choose to not
deliver a particular message at all. This is nothing that can be prevented
by using some kind of additional setup assumption or security measure, but
is inherent to the framework. For this very reason, availability can not be
expressed in the basic UC framework.

Setup assumptions, like a common reference string, can be expressed using
so-called hybrid or ideal functionalities. Hybrid functionalities can be accessed
by the ITMs running the protocol like a subroutine: they directly write to
the input tape of the functionality and receive the output on their subroutine
tape. With this mechanism, they can perform actions (i.e. receiving a secret
common reference string or send a secret message to a party) without the
adversary having full control over the communication. In theory, it is possible
to define hybrid functionalities which completely leave the adversary out of
the interaction. However, such a functionality will itself never be realizable
by any protocol within the UC framework, since, as we discussed, in the basic
UC framework, the adversary always has the power to stop messages from
being delivered.

If one wants to model adaptive corruption, the adversary can send a special
message to the backdoor tapes of other parties: the corruption message. If a
party receives a corruption message, it stops executing its own program and
instead gives complete control of its functions to the adversary. This includes
disclosing its internal state. However, to simplify the analysis, we will use

12

static corruption, where all parties have been corrupted prior to the protocol
execution.

The output of the whole protocol is the output of Z and we assume,
without loss of generality, that it consists of one bit. The distribution of
all outputs of Z is a random ensemble based on the two parameters z (the
input) and k (the security parameter).

Definition 8 (Ensemble of a protocol execution). We denote the random
variable which describes the execution of a protocol π with adversary A,
environment Z, input z, security parameter k as EXECπ,A,Z(k, z). The set of
random distributions {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗ is denoted as EXECπ,A,Z .

The security of a protocol execution in the UC framework is based on a
comparison with an execution of an idealized version of the protocol: the
ideal protocol. The ideal protocol contains the ideal functionality Fideal which
completely realizes the properties of the analyzed protocol. In the ideal
protocol, all parties only act as dummies which directly give their input to
the ideal functionality and receive back their output without performing any
computation themselves. The ideal functionality may communicate with the
adversary in order to model the influence A is allowed to have. We call this
adversary the “adversary simulator” S. Since all computations are performed
by Fideal, which is ideal by definition, the whole protocol execution is ideal
and thus secure. Note that this does not model an absolute security guarantee
but a guarantee relative to the defined ideal functionality.

Definition 9 (Ideal protocol). Let Fideal be an ideal functionality. Then,
the ideal protocol which realizes Fideal is denoted as IDEALF .

Informally, a protocol π is UC secure if, for every adversary A and every
environment Z, Z can not distinguish if it is interacting with π or with the
ideal protocol implementing π. Because parties may behave indeterministi-
cally, their outputs are modeled as distributions. Further, since protocol runs
are parameterized (e.g. by the security parameter k), the following definition
uses probability ensembles.

Based on that notion, we now formalize the indistinguishability of two
protocols in the UC framework. The simulator’s job is to simulate the
presence of A to the environment, so that it cannot distinguish the real
protocol execution from the idealized version. The security notion requires
that there is a successful simulator for every adversary.

Definition 10 (UC emulates). Let π and φ be two protocols. Then π UC
emulates the protocol φ, if ∀A ∃S, so that ∀Z holds:

EXECπ,A,Z ≈ EXECφ,S,Z

We can now formally state when a protocol realizes a functionality.

13

Definition 11 (UC realizes). A protocol π (securely) UC realizes an ideal
functionality Fideal, if π UC emulates the corresponding ideal protocol
IDEALF .

If a protocol π realizes a given ideal functionality, then we say π is UC
secure.

The UC framework is a powerful instrument for analyzing the security of
protocols because it provides a composition theorem.

Theorem 1 (The Composition Theorem). Let ρ, φ, π be protocols such that φ
is a subroutine of ρ and π UC-emulates φ. Then protocol ρφ→π UC-emulates
ρ

Informally speaking, the composition theorem states that if π securely
realizes an ideal functionality Fideal, one can use π instead of Fideal in other
protocols without compromising security. This allows us to break down large
protocols into smaller components (i.e. hybrid functionalities) and analyze
their security separately.

2.5 Synchronized Universal Composability

As we have discussed, the UC framework is inherently asynchronous. Exactly
one machine can run at any given moment and the adversary is in control of
all communication.

Katz et al. [75] created an extension to the UC framework alleviate
this issue. To this end, they introduced two new hybrid functionalities: a
clock (Fclock, c.f. Figure 2.2) and a bounded delay channel (Fδ,lBD-SMT, c.f.
Figure 2.1).
Fclock allows the parties to wait for each other at synchronization points. A

party can signal when its round is complete. When all parties have completed
their round, the round counter is reset.
Fδ,lBD-SMT allows to model communication channels where the adversary

cannot delay the delivery of messages indefinitely. Each channel has an
incoming queue and each protocol participants polls the queue regularly. The
adversary may increase the delay on the channel up to a predefined limit
(δ). When a party polls the incoming queue for a channel, the counter is
decreased. When it reaches zero, the party receives the next element from
the channel queue.
Fclock together with bounded-delay channels are sufficient to prove guar-

anteed termination for multi-party protocols [75], i.e. the protocol does not
“hang” indefinitely.

This somehow seems to circumvent the impossibility of expressing availabil-
ity in the basic UC framework by the use of only two hybrid functionalities.
Note however that both Fclock, as well as Fδ,lBD-SMT, require fundamental
changes to the basic UC framework. Fclock does not wait upon parties which

14

The bounded delay channel Fδ,lBD-SMT(ps, pr)

Initialise M := ⊥ and D := 1, and D̂ := 1.

• Upon receiving a message m from ps set D := 1 and M := m and
send (send, l(M)) to the adversary.

• Upon receiving a message (fetch) from pr:

1. Set D := D − 1

2. If D = 0, then send (sent,M) to pr

• Upon receiving (delay, T) from the adversary, if D̂+T ≤ δ, then set
D := D + T ,D̂ := D̂ + T , and return (delay-set) to the adversary;
otherwise ignore the message.

• Upon receiving (replace,m′, T ′) from the adversary, if ps is cor-
rupted, D > 0, and delay T ′ is valid, then set D := T ′ and set
M := m′.

Figure 2.1: The bounded delay channel by Katz et al. [75]. δ is an upper
bound on the delay the adversary can impose on the delivery of a single
message.

are under adversarial control in order to prevent the adversary from delaying
the protocol execution indefinitely. Regular hybrid functionalities in the UC
framework however, are not aware which parties are corrupted. Also, in the
basic framework, parties only get activated when they receive a message (i.e.
through delivery by the adversary on their backdoor tape). Using Fδ,lBD-SMT
however, parties do not receive messages until they have polled the channel
a sufficient number of times, which they can only do if they are active. To
circumvent this, Katz et al. [75] change the model of execution in a way that
the environment is responsible for activating all parties and advancing the
protocol.

Even though this seems like a subtle change, we will see in Chapter 4
that it makes the framework more difficult to handle.

2.6 Generalized Universal Composability

When a protocol π has been proven secure in the UC framework, it remains
secure even when composed concurrently with arbitrary protocols. However,
since all parties are freshly created upon each execution of a protocol, UC

15

The clock function Fclock

Initialise for each party pi a bit di := 0.

• Upon receiving message (RoundOK) from party pi set di = 1. If for
all honest parties di = 1, then reset all di to 0. In any case, send
(switch, pi) to A.

• Upon receiving message (RequestRound) from pi, send di to pi.

Figure 2.2: The ideal Fclock functionality by Katz et al. [75]. Parties can
signal that they are done for the current round. When all honest parties have
signaled RoundOK the round counter is reset. Further, parties can request
the status of the round counter, learning whether the round has changed.

does not allow for shared state between different protocols. This makes it
impossible to model a wide variety of protocols which sustain state between
multiple executions of the protocol, such as a bank card. In real life, one
would not use a new card every time one wants to withdraw money.

The Generalized UC framework (GUC) [24] solves this problem. It intro-
duces so-called global functionalities which can not only be used in multiple
instances of the same protocol, but also concurrently in multiple instances of
arbitrary protocols, resulting in a much stronger expressiveness and security
guarantees. Formally, this is captured by modifying the UC experiment. In
the standard UC experiment, the environment Z has to distinguish between
one execution of the real protocol π with the real adversary A (denoted by
EXECπ,A,Z) and the ideal protocol with the ideal functionality F and the
simulator S (denoted by EXECφ,S,Z). In the GUC experiment the environ-
ment interacts with multiple challenge sessions and may additionally invoke
multiple additional protocols ρ1, . . . , ρn of its choice that may arbitrarily
share state even with the challenge sessions.

We re-state the definition of GUC emulation from Canetti et al. [24]:

Definition 12 (GUC-emulation). Let π and φ be PPT multi-party protocols.
We say that π GUC-emulates φ if, for any PPT adversary A there exists a
PPT adversary S such that for any PPT environment Z, we have:

GEXECπ,A,Z ≈ GEXECφ,S,Z .

Since the enviroment can create arbitary parallel instances of the challenge
protocol, prooving that a protocol GUC-emulates another protocol would
require the proof to consider all possible protocols, which is tremendously
difficult.

16

Fortunatelly, there also exists a simplified version of GUC that is called
Externalized Universal Composability (EUC). Here, Z may invoke exactly
one ITM instance with the code of the shared functionality G. Z may interact
with G directly and without the adversary. It also may invoke dummy
parties with arbitrary party IDs (which might coincide with IDs of parties
in the challenge protocol) and use them to access functionalities in G. Thus,
“personalized” hybrid functionalities, such as the per-party global certification
functionality GPcert (cf. [64]) can be arbitrarily used by Z in the name of a
honest protocol party the challenge session.

We say that a protocol π is G-subroutine-respecting if it only shares state
via G.

Definition 13 (The EUC execution [24]). Let π and φ be PPT multi-party
protocols, where π is G-subroutine-respecting. We say that π EUC-emulates
φ with respect to a shared functionality G (or in shorthand, that π G-emulates
φ) if for any PPT adversary A there exists a PPT adversary S such that for
any G-constrained PPT environment Z, we have:

EXECGπ,A,Z ≈ GEXECGφ,S,Z .

For G-subroutine-respecting protocols, EUC and Generalized Universal
Composability (GUC) are equivalent:

Theorem 2 (EUC-GUC equivalence criteria [24]). Let π be any protocol which
invokes no shared functionalities other than (possibly) G, and is otherwise
subroutine respecting (i.e. π is G-subroutine respecting). Then, π GUC-
emulates a protocol φ, if and only if π G-EUC-emulates φ.

17

Chapter 3

Modeling Secure Data
Outsourcing

The following chapter is based on joint work with Dirk Achenbach, Matthias
Huber, Sebastian Messmer and Jörn Müller-Quade. Parts of the included
content have already been presented in the following works:

• Dirk Achenbach, Matthias Huber, Jörn Müller-Quade, Jochen Rill:
Closing the Gap: A Universal Privacy Framework for Outsourced Data.
BalkanCryptSec 2015 [4].

• Sebastian Messmer, Jochen Rill, Dirk Achenbach, Jörn Müller-Quade:
A Novel Cryptographic Framework for Cloud File Systems and CryFS,
a Provably-Secure Construction. DBSec 2017 [83]

• Dirk Achenbach: On Provable Security for Complex Systems. PhD
Thesis 2016 [1]

• Matthias Huber: Provable and practical security for database outsourc-
ing. PhD Thesis 2016 [66]

As the inventor of CryFS, Sebastian Messmer deserves a special mention
at this point. Even though his encrypted cloud file system is presented in
some detail in this thesis, it only serves as a case-study for our security models
and all credit for design and implementation goes to him.

3.1 Introduction

In recent years, cloud computing has transformed from a trend to a serious
competition for traditional on-premise solutions. Elastic cost models and the
availability of virtually infinite resources present an alternative to offers of
a preset volume. The more bandwidth is available to consumers, the more
economically reasonable it is to replace an on-premise solution with a cloud

18

solution. In the wake of the PRISM disclosures, it seems naïve to trust in
the security of one’s data in the cloud, however. The scientific challenge for
security researchers is to solve this dilemma by finding solutions without
sacrificing the economic benefits of cloud technology.

Cryptographic research offers methods that guarantee the confidentiality
and integrity of data in the presence of an adversary. By expressing and
analyzing the resulting schemes in a formal model (as detailed in Section 1.1),
one can reduce trust requirements even further.

Yet, provably-secure schemes are rarely adopted in practice. The abstract
computational models that form the basis of cryptographic frameworks don’t
usually facilitate a straightforward implementation. Also, the concept of
efficiency in these models differs from practical efficiency notions, so that many
schemes which are asymptotically efficient in theory, are next to unusable in
practice. In contrast, there are many practical solutions to security challenges.
They are deployed widely, but seldom lend themselves to a formal security
analysis and are thus analyzed in an “ad-hoc” fashion.

One exemption from this rule is the field of searchable encryption. Re-
searchers in this field aim to design efficient schemes (evaluated using bench-
marks), as well as formal security notions. However, in general these security
notions are custom-made for the particular protocol. While a tailored secu-
rity notion helps accurately express a scheme’s security properties, it makes
comparing security properties difficult.

This chapter, we investigate the question, whether it is possible to provide
a unified formal security model for data outsourcing schemes in general. In
particular, our focus is on allowing to capture the security of schemes used in
practice. We first identify three conceptually different privacy goals: keeping
the outsourced data itself private, keeping the queries to the data private,
and keeping the result of the query private. We show that data privacy and
query privacy are independent concepts, while result privacy is consequential
to them.

We applied our proposed model to different existing outsourcing schemes,
to evaluate its usefulness. We found that our results are applicable to
constructions from seemingly disparate fields of cryptographic research, e.g.
private information retrieval, searchable encryption, and secure database
outsourcing.

When applied to an encrypted cloud file system, however, our model
fails. Different from other outsourcing schemes, file systems must protect the
integrity of the outsourced data in particular. This means that a malicious
server must not be able to provide the client with data that is modified in
any way without the client noticing. In particular, this includes providing an
old state of the data, even though the client has updated the data previously.
We find that this property can not be expressed within our model by means
of data, query or result privacy.

We extend our model by security notions for the integrity of file systems

19

and evaluate them by applying them to CryFS 1, which is a popular encrypted
cloud file system, available by default in many modern linux distributions.

3.2 Related Work

In the following, we introduce new security notions for four concepts: data
privacy, query privacy, result privacy and integrity of ciphertexts. Therefore,
we divide the related work concerning security notions for data outsourcing
schemes into three categories: notions which only consider the privacy of
the outsourced data, notions which only consider the privacy of the queries,
those which intertwine both and security notions for file systems.

Security Notions for Data Privacy There is a rich body of literature on
data outsourcing schemes which only consider the privacy of the outsourced
data in both static and adaptive settings. There are game-based notions [55,
67, 49], simulation-based notions [27, 26, 71], and notions that use the
Universal Composability framework [21, 94, 78]. A well-known example
for an adaptive security notion is IND-CKA established by Goh [55]. The
intuition is that an adversary should not be able to distinguish two sets of
data of his choosing based on the generated index even if he can issue and
observe queries. However, in Goh’s notion, the queries the adversary can
choose are strongly restricted: he is not allowed to query for words that are
exclusive to one of the two sets he chooses as challenge. This severely restricts
the kinds of schemes which can be described within this model.

An example for a notion which only considers static security is Huber et
al.’s IND-ICP [67]. Here, the idea is that an adversary should not be able to
distinguish the encryptions of two databases. However, the databases the
adversary is challenged on are restricted to being independent permutations
of one another.

Security Notions for Query Privacy Hiding queries on outsourced data
on a single server has been studied in the context of Single-Server Private
Information Retrieval [31] (PIR). The PIR notion requires that an adversary
who observes access patterns cannot distinguish any two queries. PIR does
not guarantee that the data itself is kept private [31]. There is a rich body
of literature on PIR schemes which have sublinear communication complex-
ity ([79, 20, 53]). However, all PIR schemes inherently have a computational
complexity for the server which is linear in the size of the data [92]. The PIR
security notion is thus not applicable to efficient schemes.

The privacy of queries on data has also been investigated in the context of
Oblivious RAMs (ORAMs) first introduced by Goldreich and Ostrovsky [56]
and further explored and improved upon by others [87, 91, 38]. Similar to

1https://www.cryfs.org/

20

PIR, an “oblivious” RAM is one that cannot distinguish access patterns—the
data itself is not required to be private. As is the case with PIR, all ORAM
constructions can not be considered efficient in our sense. They either have
polylogarithmic computation cost while requiring the client to store a constant
amount of data [91] or have logarithmic computation cost, but require the
client to store at least a sublinear amount of data dependent on the size of
the RAM [59]. Therefore, the security notion for ORAM is not suitable for
our cause.

Security Notions for Data Privacy as well as Query Privacy There
are security notions in the literature which consider both data privacy as
well as query privacy. Chase et al. [29] introduce the simulation-based notion
of “chosen query attacks” which models both the privacy of queries and that
of the data. However, in their notion, the concepts of privacy for data and
privacy for queries are intertwined. Haynberg et al. [62] try to separate both
properties: they introduce the notion of “data privacy” and complement it
with “pattern privacy”, which is similar to PIR. However, their notion for
data privacy only allows the adversary to observe the execution of one query.
While the notion works for their scheme, this limitation is too strict for other
schemes.

Modeling Information Leakage A reoccurring pattern in security no-
tions for practical schemes is the use of a leakage function which describes the
information the scheme leaks to the adversary during execution. A certain
amount of leakage seems necessary in order for schemes to be efficient. Cash
et al. investigate the construction of efficient and practical schemes that also
have a formal security analysis [27, 26]. Their analyses follow a simulation-
based approach. The constructions leak information about the plaintext
and the query which they explicitly model by a leakage function L. This is
similar to Chase et al. [29], whose notion allows to describe the information
that leaks through the encryption itself (L1) and the information about the
ciphertext and the queries combined that is leaked by evaluating queries (L2).
Stefanov et al. [94] employ the same technique in the Universal Composability
Framework. In game-based notions such leakage is modelled by restricting
the challenges the adversary can choose. Thus, in our framework we define
“leakage relations” that model information leakage.

Secure Cloud File Systems There are various existing commercial and
free solutions for secure cloud storage 234. None of them have a formal
proof of security. There has been research into how to model the security

2https://spideroak.com
3http://tresorit.com
4http://www.boxcryptor.com

21

https://spideroak.com
http://tresorit.com
http://www.boxcryptor.com

of file systems, however, most of this research is directed at disk encryption
schemes. Damgård et al. [37] for example introduce a formalization of encryp-
tion schemes for file systems that is based on the Universal Composability
framework. However, there are many artefacts in their model which are not
relevant in the cloud setting (e. g. they explicitly model physical and logical
sectors). Their model also misses important components on which security
is regularly based upon (i.e. different states for client and server) and thus
is not well suited for our setting. Kristian Gjøsteen [54] and more recently
Khati et al. [76] both introduce a game-based security model, which, however,
is also only suited for modeling full disk encryption. There is a rich body
of work regarding outsourcing schemes and corresponding security models
which provide proofs of data possession (PDPs) and proofs of retrievability
(e. g. Zhang et al. [99], Erway et al. [48] and Cash et al. [25]). Similar to
our goals, all these schemes provide integrity for outsourced data. However,
their requirements are fundamentally different. The goal of a PDP scheme
is for a cloud provider to be able to prove that he has all of the outsourced
data and that he did not modify it maliciously without requiring the user
to hold a copy of the data himself and without having to download it. This
is very useful if the server performs computations on the outsourced data
without interaction of the user and the user wants to verify if all the data
is still correct. In our case however, the server is only used for storage and
users interact with the data only locally. Thus, all integrity checks can be
performed by the user on the data itself. In order to achieve these particular
integrity guarantees, PDP schemes require design and performance trade offs,
which are also reflected in their security models. This makes the schemes
incomparable to our scheme and the security models hard to adapt to our
case.

3.3 A Model for Outsourced Data

Our basic object of interest is a data set—be it a database, an e-mail archive
or a collection of images. One can execute queries on this data. The result
of the execution of a query on a data set can be any function of the data.

We first focus on queries that only return a function of the data they are
executed on. Note, however, that updating data is also important and will
be investigated further later on.

In an outsourcing scenario, a client transfers the data to a server for
storage. Before the data is transferred, the client encrypts it using a private
key. Instead of executing queries locally, the client transforms them into
an interactive protocol that it runs with the server. The client’s input into
the protocol is its private key, the server’s input is the encrypted data. See
Figure 3.1 for an illustration of our outsourcing model.

We assume the server may be under adversarial influence. We restrict

22

Preprocessor Server
d,K

...
q(d)

Enc(d,K)

(a) initialisation phase

Client Server

q,K

q(d)

Enc(d,K)πq

...

(b) query phase

Figure 3.1: We model the interaction of the client with the server in two
phases. In the initialization phase (a) a preprocessing agent receives a data
set d and an encryption key K, prepares the encrypted data Enc(d,K) and
uploads it to the server. In the query phase (b) the client issues queries q
using encryption key K by running protocol πq with the server. The server’s
input is the encryption Enc(d,K). After the interaction the client outputs
the query result q(d).

the adversary to honest-but-curious behavior however—he may not deviate
from the protocol as to interfere with its correct execution, but he may try
to learn private information from the interaction.

Efficiency

We are particularly interested in capturing the security properties of efficient
schemes within our framework. In practice, the size of outsourced data sets
can easily measure terabytes. Since data is uploaded to the server only once
while queries get executed repeatedly, it is not practical to use encryption
schemes which process the whole data set on each query—or even a fraction
of it. Therefore, we consider schemes efficient which have strictly logarithmic
communication and computation complexities per query—for the client as
well as for the server. This is in contrast to many schemes in the literature
which are considered efficient even though they have a polynomial overhead.

Privacy

There are three privacy objectives: Keeping the data private, keeping the
queries private, and keeping the results private.

Keeping the Data Private Bob runs an e-mail service. Alice uses the
service and is concerned Bob might snoop through her private e-mail. Data
Privacy guarantees that Bob does not learn anything about the content of
Alice’s e-mail.

23

Keeping the Queries Private In this scenario, Bob runs a patent search
service. Clients can submit construction plans and Bob’s service looks for
any patents the construction is infringing. Alice is worried that Bob might
learn her ideas and register them as patents himself. If the query protocol
has query privacy, Bob cannot learn the content of Alice’s requests.

Keeping the Results Private Bob also owns a database of DNA markers
that are a sign of genetic diseases. He offers his customers the possibility
to check blood samples against the database. Alice runs a clinic and is
interested in Bob’s services. She has no interest in disclosing to Bob whether
her patients suffer from any genetic diseases. If the method of accessing
Bob’s database has result privacy, the results to Alice’s requests are hidden
from Bob. As we will show, result privacy implies database privacy as well
as query privacy and vice versa.

3.4 Security Notions for Data Outsourcing
Schemes

In this section we define precise terminology for securely outsourcing data
and establish fundamental relations.

3.4.1 Notation and Conventions

We use the probabilistic-polynomial time (PPT) model, i.e. we assume all
machines, algorithms, parties and adversaries to be restricted to a polynomial
number of computation steps (in the security parameter). (Note that the
formal notion of efficiency here is different to our idea of a scheme’s practicality
(see also Section 3.3).) Similarly, we say a protocol is efficient if its number
of communication rounds does not exceed a fixed polynomial (in the security
parameter). We denote the set of all efficient two-party protocols with Π. Our
definitions can be extended to allow for the interaction of multiple servers
with multiple clients. For the sake of clarity, we focus on the single-server-
single-client case and leave a further generalisation of the definitions for future
work.

We define our algorithms and protocols to operate on a domain. In this
work, a domain is the set of all possible values in the given context—for
example, in a database context, a domain would be the set of all databases.
Our algorithms and protocols operate on three domains: a domain of the
data to be encrypted (i.e. plaintexts) ∆, a domain of ciphertexts Γ, and a
domain of results P .

24

3.4.2 Outsourcing Data

In this section, we define the elementary concepts used in the rest of the
paper.

Definition 14. A data set d ∈ ∆ is an element of a domain ∆. By |d| we
denote the length of its (unique) binary representation.

For example, in the scenario of an outsourced e-mail archive, ∆ is the set
of all mailboxes and a concrete data set (mailbox) d ∈ ∆ is a set of e-mail
messages. To outsource data, one requires an algorithm that makes the data
ready to be uploaded to a server. We call this process “encrypting” the data,
as we will require later that no adversary can learn the original data from
the outsourced data.

Definition 15. An outsourcing scheme for data sets is a tuple (Gen,Enc)
such that

Gen : 1k → {0, 1}n

Enc : ∆× {0, 1}n → Γ

We call an outsourcing scheme for a data set retrievable if there is a function
Dec : Γ× {0, 1}n → ∆ such that ∀K ∈ {0, 1}n, d ∈ ∆ : Dec(Enc(d,K),K) =
d.

We do not require that encrypted data sets be decryptable. The main
purpose of outsourcing data in this work is to remotely execute queries on it.

Definition 16. A query q is a PPT algorithm that, on input of a data set
d ∈ ∆ returns a result set q(d) ∈ P and an updated data set dq ∈ ∆.

We point out that, to simplify notation, we do not model parameters for
queries explicitly. Our model supports parameterized queries nevertheless, as
for each pair of a query q with parameters p, there is an equivalent query q(p)
that has the parameters “hard coded”. Without loss of generality we assume
that queries are functions of the data, i.e. ∀q∃d1, d2 ∈ ∆ : q(d1) 6= q(d2), and
the query result is the same if evaluated twice.

Our idea of the “correctness” of a protocol is relative to a given query q.

Definition 17. A two-party protocol πq ∈ Π between a Server S and Client
C executes a query q for a outsourced data set Enc(d,K) if

• The Client, on input of a key K, outputs the result set q(d) =
πCq (K,Enc(d,K)).

• The Server, on input the outsourced data set Enc(d,K), outputs an
updated outsourced data set Enc(dq,K) = πSq (Enc(d,K)).

25

Definition 18. A queryable outsourcing scheme for data sets is a tuple
(Gen,Enc,Q) such that

• (Gen,Enc) is an outsourcing scheme for data sets, and

• Q ⊆ Π is a non-empty set of efficient two-party protocols that execute
a query for outsourced data sets.

We stress that the client has no direct access to the data when interacting
with the server in order to execute a query.

To be able to argue about privacy in the presence of queries to outsourced
data, we require a notion of what a protocol party “sees” during the execution
of a protocol.

Definition 19. A view of a protocol party is the totality of its inputs,
received messages, sent messages and outputs. To denote the view of protocol
party P ∈ {C,S} in protocol π with inputs c and K, we write

viewπP(c,K).

In particular, the encrypted data is part of the server’s view.

3.4.3 Privacy Notions for Outsourced Data Sets

Static Security

The static notion of privacy for outsourced data captures the intuition that
no adversary may deduce any information about the data from its ciphertext
alone. We model it closely after the IND-CPA (Indistinguishability Under
Chosen Plaintext Attack) [74] notion.

Security Game 5 (IND-CDAA(Gen,Enc)(k)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b ←
{0, 1}.

2. The adversary A is given input 1n and oracle access to Enc(·,K).

3. A outputs two data sets d0 and d1 of equal length to the experiment.

4. A is given Enc(mb,K).

5. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 20 (Static Security). An outsourcing scheme (Gen,Enc) has
indistinguishable encryptions under chosen-data attacks IND-CDA or static
security, if

∀A, c ∈ N ∃k ∈ N : |Pr[IND-CDAA(Gen,Enc) = 1]| ≤ 1

2
+ k−c

26

Privacy in the Presence of Queries

When outsourced data sets are queried three conceptually different privacy
goals can be distinguished: keeping the data private, keeping the queries
private, and keeping the results private. We model these privacy goals
as security games. The adversary is supplied an oracle for views on the
interaction between client and server and tries to discern the challenge bit b.

In all three security experiments, in addition to a challenge oracle, the
adversary is supplied with an “open” view oracle. The oracle provides views
for arbitrary queries executed on an encryption of arbitrary data sets using the
challenge key. It implies that the scheme must have a probabilistic property
in the sense that two identical queries on two different encryptions of the
same plaintext will not access the same parts of the ciphertext. This can
either be done by randomizing the structure of the encrypted ciphertext (as
in the work of Haynberg et al. [62]) or by randomizing the protocol which
realizes the query.

Security Game 6 (D-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)) and continues to
have access to it. The oracle takes a query q and a data set d as input
and returns viewπqS (Enc(d,K)).

3. A outputs two data sets d0 and d1 of equal length to the experiment.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπ·S (Enc(db,K)).
That is, the oracle takes any query q such that πq ∈ Q as input, inter-
nally runs the protocol πq on Enc(db,K), and outputs viewπqS (Enc(db,K))
to the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Security Game 7 (Q-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)) and continues to
have access to it. The oracle takes a query q and a data set d as input
and returns viewπqS (Enc(d,K)).

3. A outputs two queries q0 and q1 to the experiment. q0 and q1 must
yield protocols πq0 and πq1 with the same number of protocol messages.

27

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπqbS (Enc(·,K)).
That is, the oracle takes any data set d ∈ ∆ as input, internally runs
the protocol πqb on Enc(d,K), and outputs viewπqbS (Enc(d,K)) to the
adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 21 (Data Privacy). An outsourcing scheme (Gen,Enc,Q) has
Data Privacy, if

∀A, c ∈ N ∃k ∈ N : |Pr[D-INDA,Rd

(Gen,Enc,Q)(k) = 1]| ≤ 1

2
+ k−c

The privacy notion of Query Privacy captures the goal of hiding the
queries themselves from the server. The notion is equivalent to Private
Information Retrieval (see Section 3.6.1 for a discussion and proof).

Definition 22 (Query Privacy). An outsourcing scheme (Gen,Enc,Q) has
Query Privacy, if

∀A, c ∈ N ∃k ∈ N : |Pr[Q-INDA,Rq

(Gen,Enc,Q)(k) = 1]| ≤ 1

2
+ k−c

The third privacy goal, Result Privacy, captures the idea that the adver-
sary must not learn the result of any query executed on any data. To state
this idea formally, we allow the adversary to output two data-set-query pairs
(d0, q0) and (d1, q1), as a result is always determined by a query and a data
set on which it is evaluated. We then challenge the adversary on the view of
query qb executed on data set db.

Security Game 8 (R-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)) and continues to
have access to it. The oracle takes a query q and a data set d as input
and returns viewπqS (Enc(d,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experi-
ment. (|d0| = |d1| and q0 and q1 must yield protocols πq0 and πq1 with
the same number of protocol messages.)

4. The experiment draws a random bit b← {0, 1}.

5. Challenge: The experiment runs the protocol πqb on Enc(db,K) and
outputs viewπqbS (Enc(db,K)) to the adversary.

28

6. A receives oracle access to viewπ·S (Enc(db,K)) and view
πqb
S (Enc(·,K)).

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 23 (Result Privacy). An outsourcing scheme (Gen,Enc,Q) has
Result Privacy, if

∀A, c ∈ N ∃k ∈ N : |Pr[R-INDA,Rd,Rq

(Gen,Enc,Q)(k) = 1]| ≤ 1

2
+ k−c

Fundamental Relations Among the Basic Security Notions

We establish fundamental relations among the three concepts of Data Privacy,
Query Privacy, and Result Privacy.

Theorem 3 (D-IND 6 =⇒ Q-IND). If a data outsourcing scheme that has
Data Privacy exists, there is a data outsourcing scheme that has Data Privacy
but no Query Privacy.

Proof. Let (Gen,Enc,Q) be a data outsourcing scheme that has Data Privacy.
We modify it in a way that we violate Query Privacy, but keep Data Privacy
intact. To this end, we amend the protocols that execute queries to have the
client transmit the executed query in the clear after the actual protocol is
complete. We have to show that the modification violates Query Privacy, but
does not violate Data Privacy.

With the modification, the adversary in experiment Q-IND can easily
extract the executed query from any view and thus determine the challenge
bit with certainty. Thus the modification violates Query Privacy. To see that
this modification does not violate Data Privacy, first note that the modified
scheme retains its Data Privacy up until the point of the modification. We
argue that the transmission of the query in the clear does not break Data
Privacy. Consider experiment D-IND. Because the experiment draws the
key K after the scheme is fixed, the scheme is independent of the actual key
used to encrypt the data set d. Further, because the query is supplied by the
adversary in the experiment and the adversary has learned neither db nor K
up to this point, the query is also independent of db and K. This concludes
the argument. �

Theorem 4 (Q-IND 6 =⇒ D-IND). If there is a retrievable data outsourcing
scheme that has Static Security, there is a data outsourcing scheme that has
Query Privacy and Static Security, but no Data Privacy.

Proof. Let (Gen,Enc,Q) be a retrievable data outsourcing scheme that has
Static Security. We construct a modified scheme (Gen,Enc,Q′) that suits our
purposes. By adopting Gen and Enc, we retain static security. We design

29

Q′ such that it has Query Privacy, but trivially loses Data Privacy. Q′ is
constructed iteratively, starting with an empty set. For each protocol πq ∈ Q
that realizes a query q, we define a protocol π′q to Q′ as follows:

(Recall that the client’s input is the encryption key K and a query q; the
server’s input is an encrypted data set Enc(d,K).)

1. Client: Transfer K to the Server.

2. Server: Decrypt Enc(d,K) and send d = Dec(Enc(d,K),K) back to
the Client.

3. Client: Execute query q locally on d and output q(d).

Protocol π′ transmits the data set d in the open, violating Data Privacy.
Because the client executes q locally and never transmits any information
that depends on q, π′ does have Query Privacy.

�

The following theorems show that Result Privacy is equivalent to both
Data Privacy and Query Privacy (at the same time).

Theorem 5 (R-IND =⇒ D-IND). There is no data outsourcing scheme that
has Result Privacy but no Data Privacy.

Proof. Assume a data outsourcing scheme (Gen,Enc,Q) for which there is
an efficient adversary A against experiment D-IND. We give an efficient
reduction for A that breaks the Result Privacy (experiment R-IND) of the
scheme, contradicting the assumption.

The reduction is straightforward. It has to provide a challenge oracle
viewπ·S (Enc(db,K)). Such an oracle is provided by experiment R-IND and only
has to be “passed through”.

�

Theorem 6 (R-IND =⇒ Q-IND). There is no data outsourcing scheme that
has Result Privacy but no Query Privacy.

Proof. The proof of Theorem 6 is analogous to the proof of Theorem 5 and
omitted here. �

Theorem 7 (D-IND∧Q-IND =⇒ R-IND). Data Privacy and Query Privacy
together imply Result Privacy, i.e. there is no data outsourcing scheme that
has Data Privacy and Query Privacy but no Result Privacy.

We prove the statement using a game-hopping technique. Assume any
adversary against R-IND. We replace both view oracles for db and qb, re-
spectively, with an oracle for fixed challenges d0 and q0. We argue the
indistinguishability of these steps with Data Privacy and Query Privacy.

30

R-IND A

AD
1k

K ← Gen(1k) 1k

viewπ·
S (Enc(·,K))

viewπ·
S (Enc(·,K))

d0, d1

q0, q1 ← Q
(d0, q0), (d1, q1)

b← {0, 1}
viewπ·

S (Enc(db,K))

view
πqb

S (Enc(·,K))
viewπ·

S (Enc(db,K))

b′

b′

Figure 3.2: Sketch for the proof of Theorem 5.

Finally, in the now-transformed experiment, the adversary has no advan-
tage since his input is independent of b. Concluding, given a scheme with
Data Privacy and Query Privacy, no adversary against Result Privacy has a
non-negligible advantage.

Proof. We define two game transformations, R-IND′ and R-IND′′, starting
from the Result Privacy experiment R-IND. In the unmodified experiment
R-IND, the adversary is supplied with two view oracles viewπ·S (Enc(db,K)) and
view

πqb
S (Enc(·,K)). In R-IND′ we replace the viewπ·S (Enc(db,K)) oracle by an

oracle for viewπ·S (Enc(d0,K)). In R-IND′′ we further replace viewπqbS (Enc(·,K))
by view

πq0
S (Enc(·,K)). In R-IND′′ the adversary receives no input that is

dependent on the challenge bit b. He thus has no advantage over guessing
b. We have to argue that R-IND′′ is indistinguishable from R-IND for the
adversary. To this end, we prove the indistinguishability of R-IND from
R-IND′ in Lemma 1 and the indistinguishability of R-IND′ from R-IND′′ in
Lemma 2. �

Lemma 1. An adversary who can distinguish between running in experiment
R-IND and experiment R-IND′ yields a successful adversary against database
privacy.

We model the distinction as an experiment D-Oracle-IND in which the
adversary must decide whether he is running in R-IND or in R-IND′. It is
modeled closely after R-IND. In experiment R-IND′ the challenge database db
is replaced with the fixed database d0. Thus, in D-Oracle-IND the adversary is

31

R-IND A

AQ
1k

K ← Gen(1k) 1k

viewπ·
S (Enc(·,K))

viewπ·
S (Enc(·,K))

q0, q1

q0, q1 ← Q
(d0, q0), (d1, q1)

b← {0, 1}
viewπ·

S (Enc(db,K))

view
πqb

S (Enc(·,K))
view

πqb

S (Enc(·,K))

b′

b′

Figure 3.3: Sketch of the proof for Theorem 6.

challenged on deciding whether he has access to an oracle viewπ·S (Enc(db,K))
which is based on the actual challenge or whether he is accessing the fixed ora-
cle viewπ·S (Enc(d0,K)). (The query view oracle viewπqbS (Enc(·,K)) is provided
with no change.) We give a reduction R which transforms this adversary into
an adversary on database privacy. To clearly separate the different challenge
bits, we name the challenge bit in the distinction experiment c.

Security Game 9 (D-Oracle-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the exper-
iment (under the restriction that |d0| = |d1| and that πq0 and πq1
exchange the same number of messages).

4. The experiment draws two random bits b← {0, 1} and c← {0, 1}.

5. Challenge: If c = 0, output viewπqbS (Enc(db,K)) to the adversary. Else,
output viewπqbS (Enc(d0,K)).

6. Oracles: If c = 0, A receives oracle access to viewπ·S (Enc(db,K)), else
to viewπ·S (Enc(d0,K)).

7. A receives access to view
πqb
S (Enc(·,K)).

32

8. A outputs a guess c′ for c.

Proof. Assume an adversary A with a non-negligible advantage in experiment
D-Oracle-IND. We construct a reduction that has a non-negligible advantage
in experiment D-IND. The experiment D-IND provides us with access to two
oracles: viewπ·S (Enc(·,K)) and viewπ·S (Enc(db,K)). We use these oracles to
simulate the two oracles and the challenge expected by D-Oracle-IND:

• Oracle view
πqb
S (Enc(·,K)): Fix qb := q1 and use the viewπ·S (Enc(·,K))

oracle provided by D-IND to provide view
πq1
S (Enc(·,K)) to A.

• Oracle viewπ·S (Enc(db,K)): This oracle is provided by D-IND and is
relayed.

• Challenge viewπqbS (Enc(db,K)): Fix qb := q1 and provide viewπq1S (Enc(db,K))
as the challenge.

We can now distinguish two cases. If b = 1 in D-IND, the challenges and
oracles provided to A running in D-Oracle-IND are consistent (the selected
database matches the selected oracle) as they would be when used in R-IND.
Therefore the correct challenge bit in the reduction is c = 0. On the other
hand, if b = 0, the views are inconsistent as they would be in R-IND′ and
c = 1. Thus, we return A’s guess as the reduction’s own guess b′ = 1− c′ to
inherit A’s success probability.

�

Lemma 2. An adversary who can distinguish between R-IND′ and R-IND′′ is
also a successful adversary on Query Privacy.

The proof of Lemma 2 is analogous to that of Lemma 1. We omit it.

Corollary 1 (R-IND ⇐⇒ D-IND ∧ Q-IND). Result Privacy is equivalent to
both Data Privacy and Query Privacy (at the same time).

3.5 Generalized Security Notions for Data Outsourc-
ing Schemes

In this section, we generalize the security notions introduced in Section 3.4
to make them applicable to a wide variety of practical schemes. Protocols
that—for the sake of efficiency—base decisions on the content of the queried
data are bound to leak information about it [27, 26, 29] or are only secure
for a limited number of queries [62].

Therefore, we first introduce bounds for the number of oracle calls. A
special case is a bound of 1 that renders the notions non-adaptive.

Second, we define “leakage relations” Rd and Rq. Challenges the adversary
can choose are subject to equivalence under these relations. This way, one

33

can explicitly rule out specific distinction advantages. To model the leakage
of the length of a data set for example, one would define Rd ⊂ ∆2 as the set
of all data set pairs with equal length.

Third, we explicitly model the issuing of queries independently of handing
out the results. This allows us to capture security notions where the adversary
can alter the state of the database, but can not see the immediate result (e.g.
he can only observe the result of the last issued query).

Goh [55] introduces restricting parameters into his security notion as well.
They allow for a bound on the running time, the advantage, and the number
of oracle calls. Our work in this section can be seen as a generalization of his
concept.

In Section 3.6 we showcase case studies that are direct applications of
our generalized notions. We only give the security definitions here and defer
discussion to the following section.

Security Game 10 (IND-CDAA,Rd

(Gen,Enc)(k)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b ←
{0, 1}.

2. The adversary A is given input 1k and oracle access to Enc(·,K).

3. A outputs two data sets d0 and d1 to the experiment. The choice of d0

and d1 is restricted to data set pairs that are equivalent with regard to
equivalence relation Rd ⊆ ∆2, i.e. (d0, d1) ∈ Rd.

4. A is given Enc(mb,K).

5. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 24 (Static Security). An outsourcing scheme (Gen,Enc) has
indistinguishable encryptions under chosen-data-attacks (IND-CDA) or static
security with respect to Rd, if

∀A, c ∈ N ∃k ∈ N : |Pr[IND-CDAA,Rd

(Gen,Enc) = 1]| ≤ 1

2
+ k−c

Security Game 11 (D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)), and continues to
have access to it. A is only allowed to query the oracle for a total
number of n1 times.

34

3. A outputs two data sets d0 and d1 to the experiment. The choice of d0

and d1 is restricted to pairs of data sets that are equivalent with regard
to equivalence relation Rd ⊆ ∆2, i.e. (d0, d1) ∈ Rd.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπ·S (Enc(db,K)),
and continues to have access to it. A may call the challenge oracle for
a total number of n2 times.

6. Run oracle: A is given access to an oracle runπ·S (Enc(db,K)). The run
oracle executes queries just as the view oracle does, but has no output.
A is allowed to call the run oracle for a total number of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Security Game 12 (Q-INDA,Rq ,n1,n2,n3

(Gen,Enc,Q) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)), and continues to
have access to it. A is only allowed to query the oracle for a total
number of n1 times.

3. A outputs two queries q0 and q1 to the experiment. The choice of q0

and q1 is restricted to query pairs that are equivalent with regard to
equivalence relation Rq ⊆ Π2, i.e. (q0, q1) ∈ Rq.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπqbS (Enc(·,K)).
A may call the challenge oracle for a total number of n2 times.

6. Run oracle: A is given access to an oracle runπbS (Enc(·,K)), and con-
tinues to have access to it. The run oracle executes queries just as the
view oracle does, but has no output. A is allowed to call the run oracle
for a total number of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 25 (n1, n2, n3-Data Privacy). An outsourcing scheme (Gen,Enc,Q)
has n1, n2, n3-Data Privacy with respect to Rd, if

∀A, c ∈ N∃k ∈ N : |Pr[D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k) = 1]| ≤ 1

2
+ k−c

35

Definition 26 (n1, n2, n3-Query Privacy). An outsourcing scheme (Gen,Enc,Q)
has n1, n2, n3-Query Privacy with respect to Rq, if

∀A, c ∈ N∃k ∈ N : |Pr[Q-INDA,Rq ,n1,n2,n3

(Gen,Enc,Q) (k) = 1]| ≤ 1

2
+ k−c

Security Game 13 (R-INDA,Rd,Rq ,n1,n2,n3

(Gen,Enc,Q) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·S (Enc(·,K)), and continues to
have access to it. A is only allowed to query viewπ·S (Enc(·,K)) for a
total number of n1 times.

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experi-
ment. The choice of d0, d1, q0, and q1 is restricted to (d0, d1) ∈ Rd and
(q0, q1) ∈ Rq.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge: The experiment runs the protocol πqb on Enc(db,K) and
outputs viewπqbS (Enc(db,K)) to the adversary.

6. A receives oracle access to viewπ·
S (Enc(mb,K)) and view

πqb
S (Enc(·,K)).

He is only allowed to call the oracles a total number of n2, respectively
n3, times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 27 (n1, n2, n3-Result Privacy). An outsourcing scheme (Gen,Enc,Q)
has n1, n2, n3-Result Privacy with respect to Rd and Rq, if

∀A, c ∈ N∃k ∈ N : |Pr[R-INDA,Rd,Rq

(Gen,Enc,Q)(k) = 1]| ≤ 1

2
+ k−c

3.6 Case Studies

In this section we review security notions from the literature and examine
how they fit into our framework. To that end, we translate these notions to
our formalisms.

36

3.6.1 Private Information Retrieval

We give a definition of the original (single-server) Computational Private
Information Retrieval (cPIR) [79] notion using our conventions.

Definition 28 (Private Information Retrieval). A queryable outsourcing
scheme (Gen,Enc,Dec, {π}) exhibits Computational Single-Server Private
Information Retrieval (PIR) when two conditions hold for any n ∈ N, any
security parameter k ∈ N, and any data set d over Σ = {0, 1}n:

1. Correctness: ∀i ∈ {0, . . . , n− 1} : πCi (d) = d[i].

2. Privacy: ∀c ∈ N, i, j ∈ {0, . . . , n− 1}, ∀A∃K ∈ N such that ∀k > K

|Pr[A(viewπiS (Enc(d,K))) = 1]−Pr[A(view
πj
S (Enc(d,K))) = 1]| < 1

max(k, n)c
.

Theorem 8. Private Information Retrieval is equivalent to Query Privacy.

In our proof we implicitly assume a queryable database outsourcing scheme
that has, for each bit in the database, a query that retrieves it, i.e. we exclude
schemes that store unretrievable information in the database. This is not a
restriction, as one can easily construct a “non-redundant” scheme from one
that stores unretrievable information.

Proof. For this proof, let the domain of all data sets be ∆ = {0, 1}∗. Fix
a security parameter k ∈ N. W.l.o.g., assume any queryable outsourcing
scheme (Gen,Enc,Q) with a protocol πi that outputs the i+ 1th bit of the
database for all i ∈ {0, . . . , n−1}, where n is the length of the data set d ∈ ∆.
We prove the theorem in two steps.

PIR =⇒ Q-IND. Assume any efficient adversary A who is successful
in Q-IND with a non-negligible advantage. We show that there are i, j ∈
{0, . . . , n−1} and an efficient algorithm A′ such that they violate the Privacy
condition of Definition 28.

Construct A′ as follows: Simulate experiment Q-IND to obtain πi, πj from
A. i and j are the required indices. Now relay the input viewπbS (Enc(d,K))
(for b ∈ {i, j}) to A. Output A’s guess b′.

Q-IND =⇒ PIR. Assume any i, j ∈ {0, . . . , n − 1} and any efficient
algorithm A′ such that A′ violates the Privacy condition of Definition 28
at indices i and j. We construct an efficient adversary A that has a non-
negligible advantage in Q-IND: Output πi and πj as the challenge queries.
Output b′ = A(viewπbS (Enc(d,K))) (for b ∈ {i, j}). (For any adversary with a
success probability < 1

2 there is an adversary with a success probability > 1
2 ,

easily obtained by flipping its guess.) �

37

3.6.2 Searchable Encryption using Directed Acyclic Word
Graphs

Haynberg et al. [62] construct an efficient scheme for symmetric searchable
encryption and a corresponding security notion. Their construction is not
based on a dictionary, but realizes incremental pattern matching.

Security Game 14 (PrivKcppa
A,Enc(k)).

1. The experiment chooses a keyK ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversary receives oracle access to viewπ·S (Enc(·,K)), and continues
to have access to it.

3. A outputs two plaintexts m0 and m1 of the same length to the experi-
ment.

4. A outputs a number of queries x0, . . . , xq and an integer i ∈ {0, . . . , q}
to the experiment.

5. The queries x0, . . . , xq are evaluated in that order.

6. A is given the view on the challenge ciphertext to query i: viewπxiS (Enc(mb,K)).

7. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

The security notion can be directly instantiated in our framework.

Theorem 9. PrivKcppa is equivalent to Data Privacy.

Proof. PrivKcppa
A,Enc(k) can be directly instantiated from D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k)

with parameters Rd = {d0, d1}, |d0| = |d1|, n1 = poly(k), n2 = 1, and
n3 = poly(k).

�

3.6.3 Indistinguishability under Independent Column Per-
mutations

Huber et al. [67] present a provably-secure database outsourcing scheme which
is es efficient as the underlying database. In their notion the encryptions of
two databases must be indistinguishable if they can be transformed into each
other by permuting attribute values within columns. Since our generalized
notions allow for defining a restriction on the plaintexts, this database-specific
security notion also fits into our framework.

38

Definition 29 (Independent Column Permutation [67]). Let Φ be the set
of database functions p : ∆ → ∆ such that each p ∈ Φ permutes the
entries within each column of a database. We call p an independent column
permutation.

Security Game 15 (IND-ICPAGen,Enc,Φ(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A outputs one plaintext m and an independent column permutation
p ∈ Φ to the experiment.

3. The experiment chooses m0 := m and m1 := p(m) draws b ← {0, 1}
uniformly at random.

4. A is given Enc(mb,K).

5. A submits a guess b′ for b.

Theorem 10. IND-ICP is equivalent to static security.

Proof. IND-ICP is a direct instantiation of IND-CDAA,RICP
(Gen,Enc)(k), whereRICP ⊂

∆2 is the set of all pairs of databases that are independent column permu-
tations of each other: We set ∆ = DB and RICP = ∆/Φ(∆). Then, each
adversary that has a non-negligible advantage in IND-ICPAGen,Enc,Φ(k) can
efficiently be reduced to an adversary that has non negligible advantage
in IND-CDAA,RICP

(Gen,Enc)(k) and vice versa. The reduction from IND-ICP to

IND-CDAA,RICP
(Gen,Enc)(k) sets m0 := m and m1 := p(m), while the reduction

from IND-CDAA,RICP
(Gen,Enc)(k) to IND-ICP determines p with p(m0) = m1.

�

3.6.4 Semantic Security Against Adaptive Chosen Keyword
Attacks

Goh [55] presents a security notion for index-based searchable encryption
schemes. We give a translation into our formalisms. Trapdoors are translated
to a view oracle.

Security Game 16 (IND-CKAA(Gen,Enc,Q)).

1. The experiment chooses a keyK ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversaryA is given input 1k and access to an oracle viewπ·
S (Enc(·,K)).

39

3. A outputs two plaintexts m0 and m1 of the same length to the experi-
ment. The adversary must not have queried the oracle for words that
are only in one of the two plaintexts.

4. A is given EncK(mb) and access to an oracle viewπ·
S (Enc(mb,K)).

5. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

IND-CKA is a weaker form of Data Privacy. Were the adversary not
restricted in choosing queries (Line 3. in Security Game 16), the notions
would be equivalent. As in the case of Curtmola et al.’s notion (Section 3.6.5),
we prove the relation of Goh’s notion to our model without considering
this restriction. We point out that one could easily further generalize our
security notions to include this restriction by additionally forcing queries to
adhere to a relation to the data set. However, we decided against this, as the
applications of such restrictions seem limited.

Theorem 11. IND-CKA implies static security.

The proof is a straightforward reduction and we omit it here.

Theorem 12. Database privacy implies IND-CKA.

Proof. Assume an adversary A who who has a non-negligible advantage in
experiment IND-CKA. We give an efficient reduction that breaks database
privacy. The reduction forwards the two challenge data sets from A to
experiment D-IND. All queries A executes using via the view oracle (before
and after submitting the two challenge databases) can easily be simulated
by using the oracles from the D-IND experiment (this is because the set of
valid queries in D-IND is a superset of the valid queries in IND-CKA). The
reduction forwards the adversary’s guess b′ to the experiment. �

3.6.5 Adaptive Security for SSE

Curtmola et al.’s notion adaptive indistinguishability security for SSE [36] is
also a security notion for symmetric searchable encryption based on indices.

Security Game 17 (Ind∗SSE,A,(Gen,Enc,Q)(k) [36]).

1. The experiment chooses a keyK ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversary A is given input 1k and outputs two plaintexts d0 and
d1 of the same length to the experiment.

3. A is given EncK(db).

40

4. A can output polynomialy many pairs of queries (q0, q1) and is given
view

πqb
S (Enc(db,K)).

5. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Note that in Curtmola et al.’s notion, Query Privacy and Data Privacy
are intertwined. Thus, it can not be directly instantiated from our framework.
We instead show how his notion relates to our notions. Ind∗SSE also requires
the adversary to only choose plaintexts and corresponding search queries
which have the same views for both databases. This is a very strict restriction
which we do not take into consideration here. We instead focus on the more
general notion.

Theorem 13 (Q-IND ∧ D-IND =⇒ Ind∗SSE). If a queryable outsourcing
scheme has Query Privacy, Data Privacy implies Ind∗SSE.

We prove the statement using a game-hopping technique. The argument
is very similar to the proof of Theorem 7. We only sketch the technique.

Proof. Modify Ind∗SSE so that the challenge oracle always returns viewπq1S (Enc(d,K)),
independently of b. An adversary who can distinguish between the two games
also breaks query privacy. Database privacy implies the modified Ind∗SSE
experiment. The reduction is straightforward. If the adversary against Ind∗SSE
requests a view view

πqb
S (Enc(db,K)) for input (q0, q1), the reduction forwards

q1 to the oracle of Database Privacy and returns viewπq1S (Enc(db,K)). �

Theorem 14 (Ind∗SSE =⇒ D-IND). Ind∗SSE implies database privacy.

Proof. We give a reduction from database privacy to Ind∗SSE. It is straightfor-
ward. When the adversary against database privacy requests viewπqS (Enc(db,K)),
the reduction fixes q0 := q1 := q and returns viewπqbS (Enc(db,K)). �

3.7 A Security Model for Cryptographic File Sys-
tems

In this chapter, we expand our model for secure data outsourcing to apply
to encrypted cloud file systems which covers both security and integrity
in a non-adaptive as well as in an adaptive setting. We first give security
definitions in the chosen plaintext attack scenario and then show how to
extend them to the chosen ciphertext attack scenario. Further, we show
that chosen ciphertext security for file systems can be achieved by combining
plaintext security and integrity.

41

3.7.1 Basic Definitions

We give a formal definition of an encrypted file system. In general, a file system
needs four algorithms: one for initializing the file system (like setting up data
structures), one for updating the file system (like adding and removing files),
one for decrypting the file system and one for generating the cryptographic
keys. The file system, and all algorithms which interact with it, are stateful.

Definition 30 (Encrypted File System). Let F be the set of plaintext
file systems, C the set of ciphertext file systems, and S the set of client
states. Let K = {0, 1}k be the set of keys and E = (Gen′,Enc′,Dec′) be
a symmetric encryption scheme. An encrypted file system C is a tuple
C := (Gen, Init,Update,Dec, E) with

• Gen : {1}k → K is a PPT algorithm which generates a key K.

• Init : K → C × S is a PPT algorithm which takes the key K and
initializes an empty ciphertext file system C, and the client state s.

• Update : K× C× F× S→ ({⊥} ∪ C)× S is a PPT algorithm used to
update the file system. It is given the key K, an old ciphertext file
system C, a new plaintext file system F and a client state s. It outputs
⊥ if the decryption of C fails, else a new ciphertext file system C ′, and
a new client state s′.

• Dec : K× C× S→ ({⊥} ∪ F)× S is a PPT algorithm which is given a
key K, a ciphertext file system C, and the client state s and outputs
⊥ if the decryption fails, else the decrypted file system F , and a new
client state s.

3.7.2 Modelling Non-Adaptive Security

Traditionally, security against non-adaptive adversaries requires that an
adversary cannot gain any information from a scheme which they did not
observe or interact with before. In the case of file systems however, we
additionally require that the adversary could have interacted with other
encrypted file systems using the same key. We allow the adversary to create
an arbitrary but constant number of file systems, which are available before
and after he chooses the challenge. Also, we do not require the client state to
be kept secret. We allow the challenges to be restricted by a relation Rd (e. g.
both file systems must store the same amount of data). This means that from
looking at a freshly encrypted file system, an attacker cannot deduce any
information even if he observed modifications on different file systems using
the same key. In particular, this requires the file system to introduce measures
to be secure under key reuse (e. g. a user encrypting two different file systems
with the same password). We call this security notion indistinguishability
under non-adaptive chosen file system attacks (IND-naCFA).

42

Security Game 18 (IND-naCFAA,Rd(k)). • The experiment chooses a
key K ← Gen(1k) and a random bit b← {0, 1}.

• The adversary is given oracle access to Init(K). The j-th query returns a
new ciphertext file system (Cj , sj) using the same key and the following
oracle to interact with it:

– (C ′j , s
′
j)← Updatej(K,Cj , ·, sj). The game sets (Cj , sj) := (C ′j , s

′
j).

The number of Init queries is bounded by an adversary-chosen constant
qInit.

• The adversary outputs two file systems F 0 and F 1 with (F 0, F 1) ∈ Rd.

• The experiment generates (C, s)← Init(K).

• The experiment computes (C ′, s′)← Update(K,C, F b, s).

• A is given (C, s) and (C ′, s′).

• A submits a guess b′ for b.
The result of the experiment is 1 if b′ = b, and 0 else.

Definition 31 (Nonadaptive Security). A file system is IND-naCFA secure,
if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[IND-naCFAA,Rd(k) = 1]| ≤ 1

2
+ k−c

3.7.3 Modelling Adaptive Security

Intuitively, while IND-naCFA models security of a file system directly after
creation, adaptive security models the security of a file system later in its life.
To achieve this, we allow the adversary to choose a file system as challenge
with which he already interacted. We then require that he cannot distinguish
which of two modifications he chose is performed. Again, we allow to restrict
the adversary’s choice of challenge by a relation Rd. We call this security
notion indistinguishability under adaptive chosen file system attacks and it is
a direct extension of IND-naCFA.

Security Game 19 (IND-aCFAA,Rd(k)). • The experiment chooses a key
K ← Gen(1k) and a random bit b← {0, 1}.

• The adversary is given oracle access to Init(K), which on the j-th query
initializes Fj = ⊥ (empty file system), returns a new ciphertext file
system (Cj , sj) using the same key and an oracle to interact with it.

– (C ′j , s
′
j) ← Updatej(K,Cj , ·, sj). The game remembers the most

recent input Fj and sets (Cj , sj) := (C ′j , s
′
j).

43

The number of Init queries is bounded by a constant qInit chosen by the
adversary.

• The adversary outputs j and two file systems F 0, F 1 with (Fj , F
0, F 1) ∈

Rd.

• The experiment computes (C ′j , s
′
j)← Updatej(K,Cj , F

b, sj) and passes
(C ′j , s

′
j) to the adversary.

• A submits a guess b′ for b.
The result of the experiment is 1 if b′ = b and 0 else.

Definition 32 (Adaptive security). A file system is IND-aCFA secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[IND-aCFAA,Rd(k) = 1]| ≤ 1

2
+ k−c

3.7.4 Modelling Integrity

To provide integrity, a cloud file system must ensure that a malicious server
cannot alter the file system in any way, even though the server can observe
every modification made to this file system and to other file systems using
the same key. In particular, a server must not be able to provide the client
with old states of the file system. This results in the following security model,
which we call integrity of file systems.

Security Game 20 (INT-FSA(k)). • The experiment chooses a keyK ←
Gen(1k).

• The adversary is given oracle access to Init(K). The j-th query returns a
new ciphertext file system (Cj , sj) using the same key and the following
oracles to interact with it:

– (C ′j , s
′
j)← Updatej(K,Cj , ·, sj). The game sets (Cj , sj) := (C ′j , s

′
j).

– (F, s′j) ← Decj(K, ·, sj). The game sets sj := s′j for the next
query.

The number of Init queries is bounded by an adversary-chosen constant
qInit.

The result of the experiment is 1 if for any of the decryption oracle queries
Decj(K,C

′, sj) 6= ⊥, Cj 6= C ′.

Definition 33 (Integrity). A file system is INT-FS secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[INT-FSA(k) = 1]| ≤ k−c

44

3.7.5 Security Against Chosen Ciphertext Attacks

Like IND-CCA security is an extension of IND-CPA security, we extend
IND-naCFA to IND-naCCFA and IND-aCFA to IND-aCCFA. The security
games are identical to their chosen plaintext counterparts, except that Init
returns an additional decryption oracle Decj(K, ·, sj), which is modeled like
in the INT-FS game.

For basic encryption schemes, ciphertext security (IND-CCA) can be
achieved by combining plaintext security (IND-CPA) with integrity (INT-CTXT) [14].
We show that this is also true for file systems within our security framework.

Lemma 3. A file system F = (Gen, Init,Update,Dec) is IND-(n)aCCFA se-
cure, if it is IND-(n)aCFA and INT-FS secure.

Proof. Assume a modified version of IND-(n)aCCFA, where the Decj oracle
only works for the most recent output of the corresponding Updatej oracle, or
(if Update has not been called yet) for the output of Init. For all other queries,
it returns ⊥. We call this modified game IND-(n)aCCFA′. It is straightfor-
ward to reduce an adversary against IND-(n)aCCFA′ to an adversary against
IND-(n)aCFA by remembering the most recent Updatej queries and answer
the decryption query accordingly. We now show that any adversary with non-
negligible success probability against IND-(n)aCCFA also has a non-negligible
success probability against IND-(n)aCCFA′. Assume towards a contradiction
an adversary A with a non-negligible different success probability in playing
IND-(n)aCCFA and IND-(n)aCCFA′. We transform this adversary into an
adversary A′ against INT-FS. When A requests access to the Init oracle, A′

forwards the calls to the Init oracle provided by INT-FS, returning (Cj , sj)
and the Updatej oracle. When A requests access to the Decj oracle, A′ calls
the Decj oracle provided by INT-FS, but ignores the response and implements
the behavior described for the IND-(n)aCCFA′ game by remembering the
most recent Updatej query. For IND-aCCFA′, the challenge (C ′j , s

′
j) is gener-

ated by another call to the Updatej oracle. For IND-naCCFA′, the challenge
(C, s, C ′, s′) is generated by calling Init and then using the freshly returned
Updatej oracle. Since the success probability of A is non-negligibly different
for IND-(n)aCCFA and IND-(n)aCCFA′, and the only difference in the games
is the behavior of Decj oracle queries that are not the most recent output
of the Updatej oracle but decrypts successfully, we know such a query must
happen with non-negligible probability. This query can be used directly to
win the INT-FS game.

�

3.8 Case Study: CryFS

CryFS is an overlay file system which can be mounted to a virtual folder. It
is available by default in most major Linux distribution. Everything the user

45

stores in this virtual folder is encrypted in the background. The ciphertexts
are stored on the hard disk (through the underlying file system) and can be
picked up by third party synchronisation clients like Dropbox and uploaded
to a cloud storage. This allows for a flexible use on top of any file system
or cloud storage provider. In contrast to many other encrypted file systems,
we do hide file contents as well as metadata like file sizes, file permissions
and directory structure. We achieve this by splitting all file system data
into same-sized blocks. These blocks are then individually encrypted using
an authenticated cipher. Using a specifically tailored data structure, we
ensure that all file operations are still fast and we induce little space overhead,
even though all files are segmented into small blocks (see Section 3.8.1). To
prevent malicious storage providers from violating the integrity of the file
system, we introduce additional measures to prevent rollback, deletion and
re-introduction of deleted blocks (see Section 3.8.3). We point out that we
decided against using hash trees to protect integrity: The primary reason
behind this decision is our goal to support concurrent access to the file
system. Hash trees induce changes from the affected block up to the root
node, thus increasing the chance of edit conflicts. The second reason for
avoiding hash trees are performance considerations. Although hash trees have
only logarithmic overhead in the size of the file system, any non-constant
overhead is prohibitive for file systems with many frequent changes in many
small files. Even though these integrity protections are only fully effective
when the file system is used by a single user, CryFS is designed to work well
with multiple users. As most other encrypted file systems, CryFS uses two
keys: a file system key for encrypting the file system blocks and a master key
for encrypting the filesystem key. This makes it easy to change passwords for
example.

3.8.1 Data Structures, Blocks and Files

As already mentioned, CryFS does not encrypt files individually. Rather, it
splits every file into same-sized blocks, which are then encrypted. A tree data
structure then associates blocks to files and files to directories. We base our
construction on Dielissen et al.’s work on left-perfect binary trees [42] and
generalize their definition to left-max-data trees.

The main idea for this data structure is that all nodes in the tree are as far
left as possible. The actual binary file data is always stored in the left-most
leaves of the file system tree and in-order. All leaves in the tree are at the
same depth, and with exception of the right-most one, store exactly the same
amount of data. This allows to represent arbitrary file sizes. Internal nodes
contain only pointers to other blocks. If the block size is chosen appropriately
(and thus the number of available pointers in each block), even large files
can be represented by a tree with little depth. Every block is identified by
a unique id, which is randomly chosen each time a block is created. See

46

ID:25 12 87 File: cat.jpg

43ID:12 7 1 ID:87 2 5

3 4 7 1 2 5

Figure 3.4: The tree for an exemplary file “cat.jpg”. Each tree node is one
same-sized block in CryFS. The actual file data is stored in the leaves, whereas
inner nodes store only pointers. For determining the file size, one only has to
descend into the right-most branch of the tree and examine how much data is
stored in the right-most leaf. Since all leaves are at the same depth and only
the right-most elements are allowed to contain a less-than-maximum amount
of data, this descend suffices to know how many blocks the file contains and
thus the total file size.

Figure 3.4 for an example file represented as a left-max-data tree. This
structure leads to very efficient algorithms for file system access. When trying
to read a certain position in a file, one only needs to compute the respective
block number from the total number of blocks in this file and the fixed block
data size. Also, small changes to a file are particularly efficient: only a small
block has to be changed (and synchronized to the cloud) not the whole file.
Increasing the file size is described in Algorithm 1, decreasing is similar.
Since only the right-most leaf can contain a less-than-maximum amount of
data, determining the file size can also be achieved without reading all blocks
by determining the amount of data in the right-most leaf. In our reference
implementation with 32kb blocks and 16 byte block ids, this data structure
induces a space overhead of roughly 0.05% for inner nodes plus an additive
overhead of at most one leaf node’s size if the right-most leaf is not full.

3.8.2 Directory Structure

Directories in CryFS are basically files themselves. Directories, however, do
not store binary data but store a list of the directory’s entries—i. e. pointers
to the root block of files and directories. To allow for an efficient listing of
all directory entries without having to descend into all individual file trees,
we store the name of each entry, as well as all file metadata (like permission
bits) along with the corresponding pointer in the directory structure. This
layout allows for fast modifications of the directory structure. Moving a
large directory only requires re-encrypting both the old and the new parent
directory. See Figure 3.5 for an example of a file system tree with one
directory and one file.

47

Algorithm 1 Grow an existing tree by one leaf
function GrowTree(treeRoot ,newBlock)

`← LowestNonFullInnerNode(treeRoot)
if ` = ⊥ then /* All nodes are full. We need to add a level. */

`← NewInnerNode() /* Create a new root block */
`.AddChild(treeRoot)
treeRoot ← `

end if
while depth(`) < depth(leaves)− 1 do

n ← NewInnerNode()
`.AddChild(n)
`← n

end while
`.AddChild(NewLeaf(newBlock))
return treeRoot

end function

ID:13 cat.jpg: 25 Directory: images/

ID:25 12 87 File: cat.jpg

43ID:12 7 1 ID:87 2 5

3 4 7 1 2 5

Figure 3.5: The file “cat.jpg” is contained in a directory “images”. To list
all files of a directory efficiently, the name of each file is included with the
respective pointer. As it is the case with files, once the number of entries in
a directory exceeds the size of one block, the directory itself is represented as
a tree.

48

3.8.3 Encryption and Integrity

Encryption is on the block level—i. e. each block is encrypted individually.
This allows for good performance because blocks can be encrypted in parallel.
We use a cipher with an authenticated operation mode (e. g. AES-GCM)
to prevent an adversary from altering the content of the blocks themselves.
However, this is not yet sufficient to protect the integrity of the file system
as a whole, since the connections between different blocks are not protected.
An adversary can still try to reorder blocks, replace newer blocks with older
versions, delete or re-add already deleted blocks.

We use a number of different mechanisms to prevent these attacks. First,
we store the block ID in the header of the block, where it is integrity-protected
by the authenticated encryption scheme. This ensures that an attacker cannot
assign a different ID to a block (by changing the name of the file storing
the block) and therefore prevents reordering. To prevent an attacker from
replacing a block with a previous version of the same block, a block also stores
a version counter in its header. Clients store a local list of all known blocks
with a flag whether the block still exists, and their corresponding version
numbers and check that it does not decrease. This list is also used to prevent
an attacker from deleting or re-adding already deleted blocks without the
client noticing. Additionally, the clients remember the master-key-encrypted
file system key to prevent an adversary from replacing the whole file system
including the key. In Section 3.8.4, we formally prove that this approach
achieves the desired security goals. See Algorithm 1 –Algorithm 5 for a
description of relevant file system algorithms in pseudo-code.

3.8.4 Proving the Security of CryFS

In this section, we prove the adaptive and non-adaptive security of CryFS
and show that it also provides integrity. Further, we show that CryFS also
achieves ciphertext indistinguishability. We first give a formal description of
CryFS. To simplify notation, we represent the tree structure of CryFS as a
set of node blocks.

Definition 34 (CryFS). Let I be the space of block IDs, I× {0, 1}n the set
of plaintext blocks, and I×{0, 1}m the set of ciphertext blocks. CryFSE1,E2 is
an encrypted file system (Gen, Init,Update,Dec) with E1 = (Gen1,Enc1,Dec1)
and E2 = (Gen2,Enc2,Dec2). The client state S ⊆ 2I×N×{0,1} ×{0, 1}k′ stores
a set of all known blocks with their id i ∈ I, current version v ∈ N and a flag
whether the block still exists (1) or was deleted in the past (0). The state
also stores cfs ∈ {0, 1}k

′ , an encrypted version of the file system key. For the
sake of clarity of the exposition, we first define intermediate functions:

• Repr : F → 2I×{0,1}
n : Takes a plaintext file system and generates its

representation as a set of plaintext blocks.

49

Algorithm 2 Returns a new block with a unique id and the version number
set to 0

function CreateBlock
i← GenerateUniqueID()
return (i, i||0)

end function

Algorithm 3 Add a file or a folder tree to a directory
function AddToDirectory(directory ,newEntry)

if RightmostLeaf(directory).IsFull() then
GrowTree(directory,CreateBlock())

end if
RightmostLeaf(directory).AddData(newEntry)

end function

Algorithm 4 Creates a tree data structure from a file and returns the root
node
function CreateFile(file)

D := (d0, . . . , dn)← SplitData(file)
t← CreateBlock()
t.AddData(d0)
for all other di ∈ D do

bi ← CreateBlock()
bi.AddData(di)
t← GrowTree(t, bi)

end for
return t

end function

Algorithm 5 Creates the data structure for a complete file system
function CreateFileSystem(sourceFileSystemRoot)

rootBlock ← CreateBlock()
for all Directories dir in sourceFileSystemRoot do

rootBlock .AddToDirectory(CreateFileSystem(dir))
end for
for all Files file in sourcFileSystemRoot do

rootblock.AddToDirectory(CreateFile(file))
end for
return rootBlock

end function

50

• EncBlock : K × (I × {0, 1}n) × N → (I × {0, 1}m): Takes a key Kfs, a
plaintext block (i, b) and a version number v ∈ N. Prepends block ID
and version number to the data and encrypts it. Outputs (i, c) with
c := Enc2(Kfs, i||v||b).

• DecBlock : K× (I× {0, 1}m)→ {⊥} ∪ [(I× {0, 1}m)×N]: Takes a key
Kfs and a ciphertext block (i, c). Decrypts it to i′||v||b := Dec2(Kfs, c).
If decryption fails or i 6= i′, returns ⊥. Otherwise, returns the plaintext
block (i, b) and the version number v.

Now we define the functions forming an encrypted file system.

• Gen(1k) 7→ (Kmaster) : Uses Gen1 to generate a master key Kmaster.

• Init(Kmaster) 7→ (C, s) : Takes Kmaster and generates Kfs ← Gen2(1k).
Encrypts it with the master key to cfs = Enc1(Kmaster,Kfs). Computes
B := Repr(F) = {(i0, b0), . . . , (in, bn)}, a set of blocks representing an
empty file system F .
Sets C := (cfs,EncBlock(Kfs, (i0, b0), 0), . . . ,EncBlock(Kfs, (in, bn), 0))
and s := ({(i0, 0, 1), . . . , (in, 0, 1)}, cfs) and outputs (C, s).

• Dec(Kmaster, C, s) 7→ (F, s) : Reads cfs from C and compares it with
the cfs stored in s. If they differ, returns ⊥. Otherwise, decrypts it to
Kfs := Dec1(Kmaster, cfs). Then, computes
D := {((i′, b), v) | ((i′, b), v) = DecBlock(Kfs, (i, c)), (i, c) ∈ C}. Out-
puts ⊥ in the following cases:

– Dec1 fails to decrypt cfs (wrong key or an integrity violation).
– DecBlock fails to decrypt c (wrong key, an integrity violation, or
i 6= i′).

– There is an ((i, b), v) ∈ D for which there is no (i, v′, 1) ∈ s
– There is an ((i, b), v) ∈ D for which there is an (i, v′, 1) ∈ s with
v < v′

– There is an (i, v, 1) ∈ s for which there is no ((i, b), v′) ∈ D

Otherwise, computes the plaintext file system F := Repr−1({(i0, b0), . . . , (in, bn)})
and outputs (F, s). The client state is not changed.

• Update(Kmaster, C, F
′, s) 7→ (C ′, s′) : Decrypts the old file system state

to F := Dec(Kmaster, C, s). Then, reads cfs from C and decrypts it to
Kfs. If either decryption fails, returns ⊥. Initializes s′ := s. Compares
Repr(F) and Repr(F ′) and does the following:

– For each block (i, b) 6∈ Repr(F), (i, b′) ∈ Repr(F ′):
∗ If (i, v, 0) ∈ s, replace it in s′ with (i, v + 1, 1). Else, add

(i, 0, 1) to s′

51

∗ Note: if (i, v, 1) ∈ s, Dec would have failed above.

– For each block (i, b) ∈ Repr(F), (i, b′) ∈ Repr(F ′), b 6= b′

∗ Replace (i, v, 1) in s′ with (i, v′ + 1, 1), where v′ is the version
number returned from DecBlock on decryption.
∗ Note: (i, v, 1) ∈ s ∧ v′ ≥ v, otherwise Dec would have failed

above.

– For each block (i, b) ∈ Repr(F), (i, b′) 6∈ Repr(F ′)

∗ Replace (i, v, 1) with (i, v, 0) in s′.
∗ Note: (i, v, 1) ∈ s otherwise Dec would have failed above.

Then, encrypts F ′ using EncBlock with updated version numbers and
outputs the new ciphertext file system C ′ (including cfs), and the
modified state s′.

We now show that CryFS exhibits non-adaptive security according to Def-
inition 31. We set Rd to restrict the challenge file systems to be representable
using the same number of blocks. Formally, this means

Rd = {(F 0, F 1) ∈ F× F : |Repr(F 0)| = |Repr(F 1)|}

Theorem 15 (Nonadaptive Security of CryFS).
CryFSE1,E2 = (Gen, Init,Update,Dec) is IND-naCFA secure, if
E1 = (Gen1,Enc1,Dec1) and E2 = (Gen2,Enc2,Dec2) are IND-CPA secure
encryption schemes.

Proof. We prove the claim by reduction using two steps. First, we modify
IND-naCFA to IND-naCFA′ such that when the adversary gets the challenge
(C, s), (C ′, s′), it does not contain an encryption of Kfs, but an encryption of
0s instead. We prove that an adversary which has a different advantage in
IND-naCFA and IND-naCFA′ can be used to break the IND-CPA security of
E1. Second, we give a reduction from IND-naCFA′ to the IND-CPA security
of E2.

Consider the following modification to IND-naCFA: When the adver-
sary expects the challenge (C ′, s′), replace the encrypted file system key
Enc1(Kmaster,Kfs) in state and ciphertext with Enc1(Kmaster, 0). We call
this modified game IND-naCFA′. Now, assume towards a contradiction an
adversary A with a probability of success p against IND-naCFA and p′ against
IND-naCFA′, where p = p′ + d for a positive non-negligible d. This adversary
can be used to construct an adversary B with a non-negligible advantage of
d
2 against the IND-CPA security of E1. The reduction works as follows: The
IND-CPA game draws Kmaster ← Gen1(1k) and a random bit b. When A uses
the Init oracle, B generates K ′fs ← Gen2(1k) and (Cj , sj) using the algorithms
described in Definition 34 and uses the encryption oracle of IND-CPA to
generate c′fs as an encryption of K ′fs. Since B knows K ′fs it can also build

52

the Updatej oracle. When the adversary outputs F 0, F 1, B generates an-
other independent Kfs ← Gen2(1k) and passes 0 and Kfs as challenge to the
IND-CPA game. The game returns cfs. When b = 0, this is an encryption
of 0. When b = 1, this is an encryption of Kfs. B then draws a random
bit a, and knowing Kfs, can build the challenge (C, s) and (C ′, s′) as an
encryption of F a. It replaces the encrypted file system key in C, s, C ′ and
s′ with the cfs and returns the result to A. If A outputs a, A wins and B
outputs 1 to the IND-CPA game. If A loses, B outputs 0. For b = 0, this
was a perfect simulation of the IND-naCFA′ game. B has success probability
Pr[a 6← A | b = 0] = 1− p′. For b = 1, this was a perfect simulation of the
IND-naCFA game. B has success probability Pr[a← A | b = 1] = p = p′ + d.
Together, B has success probability Pr[b← B] = 1

2(1−p′)+ 1
2(p′+d) = 1

2 + d
2 .

Since d is non-negligible, B has a non-negligible advantage in the IND-CPA
game which is a contradiction.

Now, assume towards another contradiction that A′ is a successful attacker
on IND-naCFA′. We transform A′ into a successful attacker B′ on IND-CPA
security of E2: The game draws Kfs and a random bit b. B′ draws Kmaster ←
Gen1(1k). When A′ uses Init, B′ generates a new K ′fs, encrypts it with Kmaster,
and creates an empty ciphertext file system. Knowing Kmaster, the Updatej
oracle can be implemented easily.

Upon receiving challenges F 0 and F 1 from A′, B′ first generates an
empty file system and encrypts it to (C, s) using the encryption oracle and
prepending c′fs = Enc1(Kmaster, 0). Then, B′ updates it with F 0 and F 1

respectively, and uses the LR-oracle provided by IND-CPA successively for
each pair of blocks in Repr(F 0) and Repr(F 1). This is possible, since we
require (F 0, F 1) ∈ Rd (i. e. both have the same number of blocks), Repr can
be implemented to choose the same block ids for F 0 and F 1 and all blocks
are of the same size. B′ remembers all encrypted blocks returned by the
oracle, prepends c′fs to get C ′ and passes it to A′ together with a generated
file system state s′ in which all block ids in have version number 1.

This is a correct simulation of the IND-naCFA′ game. When A′ submits a
guess for b, B′ forwards it and thus inherits its success probability. This is a
contradiction to the assumption that E2 is IND-CPA-secure. �

Theorem 16 shows that CryFS is also adaptively secure according to
Definition 32. Since block IDs are public and CryFS only re-encrypts blocks
for which the plaintext changed (for performance reasons), we set Rd to
restrict both challenge file systems add, delete or modify blocks with the
same block IDs. Theorem 17 shows that CryFS exhibits integrity according
to Definition 33.

Theorem 16 (Adaptive Security of CryFS).
CryFSE1,E2 = (Gen, Init,Update,Dec) is IND-aCFA secure, if
E1 = (Gen1,Enc1,Dec1) and E2 = (Gen2,Enc2,Dec2) are IND-CPA secure
encryption schemes.

53

Proof. Consider the following modification to IND-naCFA: When the adver-
sary queries Init or the Updatej oracles or expects output (C, s), instead of
getting Enc1(Kmaster,Kfs) they instead get Enc1(Kmaster, 0). Now, assume
towards a contradiction an adversary A with a success probability of p
against IND-aCFA and a success probability of p′ against IND-aCFA′, where
p = p′ + d for a positive non-negligible d. This adversary can be used to
construct an adversary B with a non-negligible advantage of d2 which breaks
the IND-CPA security of E1. The game draws Kmaster ← Gen1(1k) and a
random bit b. When A uses the Init oracle, B generates a new file system
key Kfs ← Gen2(1k) and uses the LR oracle of the IND-CPA game to get cfs

as either an encryption of 0 or of Kfs, depending on the value of b. Then it
generates a new empty file system (Cj , sj) but replaces the encryption of Kfs

with cfs. A expects access to an Updatej oracle which can be built by using
Kfs to decrypt and encrypt blocks. Again, B replaces all encryptions of Kfs

with cfs. When the adversary outputs j, F 0, F 1, B draws a random bit a.
It uses Updatej to build the challenge (C ′, s′) as an encryption of F a. If A
outputs a (A wins), B outputs 1. If A loses, B outputs 0. For b = 0, this
was a perfect simulation of the IND-aCFA′ game. B has success probability
Pr[a 6← A | b = 0] = 1− p′. For b = 1, this was a perfect simulation of the
IND-aCFA game. B has success probability Pr[a← A | b = 1] = p = p′ + d.
Together, B has success probability Pr[b← B] = 1

2(1−p′)+ 1
2(p′+d) = 1

2 + d
2 .

Since d is non-negligible, B has a non-negligible advantage against IND-CPA.
Now, assume towards another contradiction that A′ is a successful attacker

on IND-aCFA′. We transform A′ into a successful attacker B′ on the IND-CPA
security of E2. Intuitively, B′ selects a random file system created by A′

and uses A′ to break its security. Since the number of file systems is a fixed
constant, this only reduces the success probability by a constant amount.
The reduction works as follows. The game draws Kfs and a random bit b. B′

draws Kmaster ← Gen1(1k) and draws a random j∗ ← {1, . . . , qInit}. When
A′ uses Init for the j-th time and j 6= j∗, B′ generates a new K ′fs, encrypts
it with Kmaster, and creates an empty ciphertext file system. Knowing
Kmaster, the Updatej oracle can easily be implemented. In every output,
Enc1(Kmaster,Kfs) is replaced with an encryption of 0. When A′ uses Init for
the j∗-th time, B′ generates a new empty file system by using the encryption
oracle of the IND-CPA experiment to encrypt all blocks. Again, B′ prepends
Enc1(Kmaster, 0). B′ also saves the current plaintext file system Fj (which
is empty). If A′ uses their access to the Updatej-oracle, B′ updates the
saved plaintext according to the input to the oracle. It uses the encryption
oracle to encrypt added or modified blocks and exchanges them in the saved
ciphertext. B′ updates the saved file system Fj and the state sj . Upon
receiving challenge j, F 0 and F 1 from A′, B′ updates the corresponding
plaintext Fj for both F 0 and F 1 respectively and passes the added and
modified blocks of Repr(F 0) and Repr(F 1) (when compared to Repr(Fj)) to
the LR oracle of the IND-CPA experiment. It now has an encryption of either

54

the modified blocks in F 0 or in F 1. Since it is required that (Fj , F
0, F 1) ∈ Rd

(i. e. they add, remove, and modify blocks with the same ID), B′ knows
which ciphertext blocks it has to add, remove and replace with their new
versions in order to generate the correct ciphertext file system, even though
it does not know which change was selected by the experiment. B′ prepends
Enc1(Kmaster, 0) to the generated ciphertext and passes it to A′ along with
the updated state. This is a correct simulation of the IND-aCFA′ game. When
A′ submits a guess for b, B′ forwards it to the game and thus inherits its
success probability. This is a contradiction to the assumption that E2 is
IND-CPA secure.

�

Theorem 17 (Integrity of CryFS). CryFSE1,E2 = (Gen, Init,Update,Dec) is
INT-FS secure, if E1 is IND-CPA and E2 is INT-CTXT secure.

Proof. Again, we first change INT-FS to INT-FS′ by replacing Enc1(Kmaster,Kfs)
with Enc1(Kmaster, 0) in the output of all oracles. Assume towards a contra-
diction that an adversary A with success probability of p against INT-FS and
success probability of p′ against INT-FS′ exists (where p = p′+d for a positive
non-negligible d). This adversary can be used to construct an adversary B
with an advantage of d

2 against the IND-CPA security of E1 by using the
following reduction: When A uses Init, B generates Kfs ← Gen2(1k) and uses
the LR oracle of the IND-CPA game to get cfs as either an encryption of 0 or
of Kfs. It generates (Cj , sj) using Kfs but replaces the encrypted file system
key with cfs. B builds the Updatej and Decj oracles using Kfs to decrypt
and encrypt blocks. Each output contains cfs instead of the encrypted file
system key. When Decj is used, B checks whether decryption was successful
for C 6= C ′, i. e. whether A was successful. If A was successful, B outputs
1, otherwise it outputs 0. If b = 0, this was a perfect simulation of the
INT-FS′ game. B has success probability Pr[0 ← B | b = 0] = 1 − p′. If
b = 1, this was a perfect simulation of the INT-FS game. B has success prob-
ability Pr[1← B | b = 1] = p = p′ + d Together, B has success probability
Pr[b← B] = 1

2(1− p′) + 1
2(p′ + d) = 1

2 + d
2 . Since d is non-negligible, this is

a non-negligible advantage for B against IND-CPA.
Now, assume towards another contradiction that A′ is a successful attacker

on INT-FS′. We give a reduction which transforms A′ into a successful
attacker B′ on INT-CTXT. The game draws Kfs ← Gen2(1k) and B′ draws
Kmaster ← Gen1(1k). B′ draws a random j∗ ← {1, . . . , qInit}. When A′

uses Init for the j-th time with j 6= j∗, B′ generates a new independent
K ′fs and creates a new ciphertext file system with this key. Knowing K ′fs,
implementing Updatej and Decj oracles is straightforward. In every output,
Enc1(Kmaster,Kfs) gets replaced by Enc1(Kmaster, 0). When A′ uses Init for
the j∗-th time, B′ creates a new empty file system but uses the encryption
oracle provided by INT-CTXT to encrypt all blocks. It also builds Updatej

55

and Decj but uses the decryption and encryption oracles of the INT-CTXT
game to decrypt and encrypt. Instead of prepending Enc1(Kmaster,Kfs),
which B′ does not know, it prepends Enc1(Kmaster, 0).

Since A′ is successful, there is an oracle query Decj(K,C
′, sj) which de-

crypts successfully with Cj 6= C ′. With non-negligible probability 1
qInit

, this
happens for j = j∗, where B′ implemented Init using the INT-CTXT experi-
ment. Cj and C ′ have the same set of block IDs, otherwise Decj(Kmaster, C

′, sj) =
⊥. So there has to be a block in C ′ which is different from the corresponding
block in Cj , i. e. ∃i, ci, c′i : (i, ci) ∈ Cj , (i, c′i) ∈ C ′, ci 6= c′i. This block c

′
i was

input to the decryption oracle of the IND-CTXT game when decrypting C ′. We
argue that c′i wins the INT-CTXT game. First note that INT-FS′ decrypts with
cfs = Enc1(Kmaster,Kfs) from the state, not with the c′fs = Enc1(Kmaster, 0)
passed to the adversary. Therefore c′i decrypts successfully with the key from
the INT-CTXT experiment. We now have to argue that c′i was never output
by the INT-CTXT encryption oracle. Recall that this oracle is only used
for encrypting the output of the j-th query of the Init oracle and for the
outputs of the Updatej oracle. Since C ′ decrypts successfully, we know that
the plaintext ((i′, b′i), v

′
i) := DecBlock(K, (i, c′i)) has ID i = i′ and a version

number v′i ≥ vsi where vsi is the version number in the state. All previous
Update′j oracle queries for this block ID encrypted a block with version
number vi ≤ vsi , and vi = vsi only for ci where we know c′i 6= ci. So we know
c′i was not output of the Updatej oracle. If (i, c′i) was in the j-th output of
the Init oracle, then v′i = 0. In this case, either block i was never modified,
which is a contradiction to ci 6= c′i, or block i was modified, which means
vsi > 0 and therefore is a contradiction to successful decryption. Taking
everything into account, we know that c′i was never output by the INT-CTXT
encryption oracle and thus wins the game. This is a contradiction to the
assumed security of E2.

�

Lastly, we show that CryFS can also be secure against chosen ciphertext
attacks.

Theorem 18 (Chosen Ciphertext Attacks).
CryFSE1,E2 = (Gen, Init,Update,Dec) is IND-naCCFA and IND-aCCFA secure,
if E1 = (Gen1,Enc1,Dec1) is an IND-CPA and E2 = (Gen2,Enc2,Dec2) an
IND-CPA and INT-CTXT secure encryption scheme.

Proof. This follows directly from Theorem 15, Theorem 17 and Lemma 3.
�

56

Chapter 4

Modeling Computer Networks

The following chapter is based on joint work with Dirk Achenbach and Jörn
Müller-Quade. Parts of the included content have already been presented in
the following works:

• Dirk Achenbach, Jörn Müller-Quade, Jochen Rill: Universally Compos-
able Firewall Architectures Using Trusted Hardware. BalkanCryptSec
2014 [3].

• Dirk Achenbach, Jörn Müller-Quade, Jochen Rill: Synchronous Univer-
sally Composable Computer Networks. BalkanCryptSec 2015 [2].

• Dirk Achenbach: On Provable Security for Complex Systems. PhD
Thesis 2016 [1]

4.1 Introduction

Information Technology (IT) systems are at the heart of most automated
systems today. Not only cars and airplanes rely on networked computer
systems, but also factories, water supply plants, and nuclear facilities. At
the same time, IT systems have never faced more serious threats—national
and foreign secret services, criminal organizations, and even corporate hacker
groups threaten the integrity and availability of services society relies on.

Especially the protection of computer networks against attackers from the
Internet is a crucial component of any security strategy. Network firewalls in
particular seem to be attractive targets for attackers. Documents that were
leaked by Edward Snowden in 2013, reveal that the National Security Agency
has the capability to install backdoors in a number of commercial firewalls:
JETPLOW, HALLUXWATER, FEEDTROUGH, GOURMETTROUGH,
and SOUFFLETROUGH [70]. Likewise, the Chinese government is alleged
to force Huawai to install backdoors in routers and other network gear [17].

As is the case with data outsourcing schemes (as presented in Chapter 3),
however, formal cryptographic security models are rarely used when designing

57

such networks. Instead, such systems are empirically tested for known security
weaknesses.

In this work, we therefore address the research question whether estab-
lished formal security models can be used to analyze real computer networks.
Our goal is to provide a “recipe” for modeling and analyzing networks. We
attempt to achieve this in two steps. First, we start by using the basic
UC framework to model specific and very basic network structures, namely
architectures using multiple firewalls. Using this model, we investigate on
a conceptual level whether the threat of a compromised firewall can be
mitigated by using a combination of multiple firewalls in combination with
trusted hardware. Since the basic UC framework lacks the ability to model
time, availability guarantees can not be expressed within the resulting model.
Therefore, as a second step, we use the extension by Katz et al. [75] to
make this possible. The adapted model also allows the expression of general
network structures.

4.2 Related Work

To the best of our knowledge, we are first to explicitly model computer
networks in the UC framework.

Network Firewalls The purpose, aim and function of network firewalls
is widely understood and agreed upon, e.g. [15, 90, 68]. The informational
RFC 2979 [50] defines characteristics of firewalls. Since there is no globally
agreed-on standard for what constitutes good and bad network packets
however, there is also no complete specification of the function of a firewall.

The security of firewalls or systems of firewalls has mainly been studied
under two aspects. One concern is verifying the correctness and soundness
of rule sets. Gouda et al. [60] develop a formal model for verification of
distributed rule sets based on trees. They are able to check whether the
firewall system accepts or denies a specific class of packets. Ingols et al. [69]
check for conflicting or otherwise problematic rules with the aid of Binary
Decision Diagrams.

We are not aware of any works that consider the firewall as being malicious.

Formal Analysis of Computer Networks While network security is
considered a practical field, formal methods have also been applied to com-
puter networks. Research generally concentrates on modeling attacks and
vulnerabilities [69] and on generating verification policies [65, 80]. While such
approaches help in configuring specific network components and in mitigating
threats, they do not have the advantages of cryptographic security models.

58

UC Proofs for Practical Protocols The UC framework is the quasi
state-of-the-art framework for proving the security of cryptographic building
block protocols like Commitments [22] or Oblivious Transfer [86]. Because
it has a composition theorem, it is argued that more complex protocols
can then be composed of these components. However, the UC framework
has also been used to prove the security of more complex schemes, such
as TLS [51], OAuth [28], disk encryption [37], and robust combinations of
network firewalls [3]. Our contribution falls in line with this work. We
investigate composing large computer networks.

Secure Hardware Katz [73] uses tamper-proof hardware to realize univer-
sally composable multi-party computation. He assumes tamper-proof tokens
that can be programmed with an arbitrary program. Such a programmed to-
ken is then handed to another party in the protocol, which may then interact
with the token. Goldwasser et al. [57] introduce the computational paradigm
of one-time programs, i.e. programs that can only be run once, on one input.
Of course, such programs cannot exist purely in software, as software can be
copied indefinitely. Goldwasser et al. introduce “one-time-memory devices”
to create a compiler for one-time programs.

Robust Combiners The idea of mistrusting the implementation of a
secure functionality has been studied in the scope of robust combiners. A
(k, n)-robust combiner combines n candidate implementations of the secure
functionality P in a way that the overall security still holds if at least k
implementations are secure [63].

The notion of a robust combiner is not suited for our purposes. The very
definition of robust combiners requires a specific and fixed functionality P.
However, in the case of firewalls, it is unclear what this functionality precisely
is. Informally speaking, the functionality of a network firewall is “filtering
all malicious packets”. It is not possible to formalize this functionality in a
protocol or a program, since, in general, it is not possible to decide whether
an arbitrary packet is malicious or not.

Byzantine Fault Tolerance The problem of handling malicious actors is
reminiscent of byzantine fault tolerance. However, we use a very different
communication structure. In the original Byzantine Generals Problem [81],
every party can communicate with every other party. This leads to specific
bounds concerning the number of trusted parties needed to achieve fault
tolerance. Even when signing messages is possible, in order to allow for
m corrupted parties, one still needs at least (2m + 1) trusted parties and
(m+ 1) rounds of communication. In our case, we do not allow the parties
to communicate freely, but only according to the specific structure of the
network—we do not allow firewalls to exchange messages with each other.

59

Thus, the results which byzantine fault tolerance research provides are not
applicable to our scenario.

4.3 Modeling Firewall Architectures

We assume a packet-switched local-area network (LAN) in which there are
only uncompromised hosts. They are connected through a single uplink to
the Internet, in which are potentially compromised hosts. To facilitate an
easier discussion, we call machines in the LAN being “inside” and machines
on the Internet being “outside”. The “inside” is only connected to the “outside”
through a firewall (network), whose job is to protect machines “inside” from
machines “outside”. For ease of exposition, we model communication in
networks in one direction only (cf. Section 4.3).

The output of a firewall then depends on the packet p ∈ P it gets as input
(where P is the set of all possible packets) and its internal state s ∈ S.

After processing this information, the firewall then outputs a packet p′ to
one or multiple connected devices and updates its internal state (e.g. outputs
a new internal state s′). The functionality of a firewall is defined formally in
Definition 35.

Definition 35 (The functionality of an ideal firewall j Ffwj
).

Ffwj
: P × S → (P ∪ ⊥)× S

Ffwj
(p, s) =

{
(p′, s′) if packet is accepted,
(⊥, s′) otherwise.

We stress that our definition of a firewall functionality is universal. Be-
cause it is stateful—it receives its previous state as input, may use it for its
computation and outputs an updated state—a firewall may base its output
on an arbitrarily long history of incoming and outgoing packets. It may, for
example, reconstruct a TCP session. Further, we do not restrict how its
output depends on its input. A firewall might for example receive a packet,
store it, transform it, and output it much later. Because the functionality
processes whole packets including their payload, our definition covers the
whole network protocol stack (e.g. Ethernet, IP, TCP, HTTP, HTML).

To simplify the exposition, we only discuss unidirectional networks. The
easiest approach for extending the model to bidirectional communication
would be using an independent instance of Fideal for each direction and
deducing the security of the composed system by using the Composition
Theorem. However, this approach would require the protocols for each
direction to be independent of each other and not have a joint state. Actual
firewall solutions base their decisions on all observed packets (not only those
in one direction), however. Thus, the security of the bidirectional extensions
of the architectures we discuss has to be proven manually.

60

We only discuss the security of a single atomic building block for complex
firewall architectures. The Composition Theorem of the UC framework
provides us with a strong guarantee for networks composed of several building
blocks.

4.3.1 Adversarial Model

We assume an outside adversary who can statically corrupt exactly one
firewall in the network. He gains full control over this firewall and can send
and receive messages in its name (via a GSM link, for example). Because
our constructions are symmetric, our corruption model is equivalent to an
adaptive model.

4.3.2 Trusted Hardware

Firewalls are inherently complex computer systems, which, as we have dis-
cussed previously, should not be universally trusted. However, secure systems
cannot be build without any trust. Similar to Trusted Platform Modules,
which are being used as hardware-based security anchors for the boot pro-
cess of modern computers, we envision a hardware-based security anchor for
networks. Such a device would have to realize two very simple functionalities
depending on the direction of the packet flow. In one direction its job is to
compare packets that come in from different sources and decide whether to
let them pass. In the other direction its job is to split incoming packets and
distribute them to several firewalls. Because such a “packet comparator” offers
only limited functionality (especially in comparison to a firewall), they could
be manufactured easily, maybe even by the network owner himself. Also, it
would be very hard to hide any backdoors or undocumented functionality in
the device. Thirdly, because of its simple functionality, the device need not
be able to download updates or even be freely programmable. We envision
such a device to be realized as an Application-Specific Integrated Circuit
(ASIC). In our security analysis, we assume that the specialized hardware we
use cannot be compromised, i.e. is trusted hardware. In the following we will
refer to the hardware as trusted component, in short tc.

The specific functionality of such a device depends on the particular
network architecture, but it would always involve some kind of packet com-
parison. We express the notion of “packet equivalence” with a relation ≡ that
we assume to be defined appropriately.

A firewall may change the order of the packets it delivers. Some packets
might need to be inspected more closely (Deep Packet Inspection), while
others would just be waved through—take for example packages from a
voice-over-IP (VoIP) connection. Therefore, it is not sufficient for the trusted
hardware to compare packets one-by-one in the order they arrive.

61

tc1 tc2fw1 fw2

Figure 4.1: The serial concatenation of firewalls using secure hardware to
compare packets. tc2 compares whether “what goes in, comes out”. tc1

forwards the packet to the first firewall and second trusted hardware. The
connecting arrows represent network cables in a “real” network.

4.4 Serial Concatenation of Two Firewalls

The first idea that comes to mind is to concatenate two firewalls and compare
whether packets that exit the network originally were sent from the outside.
This way, no firewall can “make up” packets. his concatenation of firewalls is
not secure however, as we will show.

Figure 4.1 shows a graphical representation of the network architecture
of the serial concatenation. fw1, fw2, tc1 and tc2 will be the parties in the
corresponding UC protocol.

In order to proof the insecurity of this architecture, we have to model it
within the UC framework. To this end, we first provide the protocol of the
serial architecture and define the ideal network function.

Definition 36 (The protocol of the serial firewall architecture πserial-2fw).
The protocol the parties are following is defined as follows:

• tc1: Upon receiving p from Z: Call Fnet,serial-2fw(p).

• fwk: Upon receiving p via Fnet,serial-2fw: Calculate Ffwk
(p, s) = (p′, s′).

If p′ 6= ⊥, call Fnet,serial-2fw(p′). Save the new internal state s′.

• tc2: Upon receiving p from tc1 via Fnet,serial-2fw, store p in a local storage.
Upon receiving p from fw2 via Fnet,serial-2fw, check whether there is an
entry q in the local storage (with p ≡ q). If so, write p to the output
tape and delete the entry.

Packets from outside the network always arrive at tc1 first. Parties cannot
communicate directly. Instead, we provide them with an ideal functionality for
communication. This functionality ensures that parties can only communicate
in a way that is fixed by the structure of the network. This is justified, since
in a “real” network, components can also only communicate along the network
cables.

We omit session IDs from all descriptions of functionalities and protocols.
Different instances behave independently. We use the notion of “public

62

The ideal network function Fnet,serial-2fw

Initialize two empty queues Q1 and Q2

• Upon receiving p from tc1:

– Push p into the Q1 and Q2.

– Give p to the adversary.

• Upon instruction from the adversary, remove p from Q1 and give it
to fw1.

• Upon instruction from the adversary, remove p from Q2 and give it
to tc2.

• Upon receiving p from fw1: Provide a public delayed output of p
to fw2.

• Upon receiving p from fw2: Provide a public delayed output of p
to tc2.

Figure 4.2: The ideal network function representing the serial concatenation
of firewalls with special hardware.

63

The ideal functionality of two firewalls Fideal-2fw

Let fwk be the uncorrupted firewall.

• Initialize s := ⊥.

• Upon receiving p from tc1, compute Ffwk
(p, s) = (p′, s′). If p′ 6= ⊥

make a public delayed output of p′ to tc2.

Figure 4.3: The ideal functionality of two firewalls.

delayed output”, introduced by Canetti [21]. This means that a message is
given to the adversary prior to delivery. The adversary then decides when
(or whether) it is delivered.

The main idea for the ideal functionality is that any firewall architecture,
regardless of the amount of different firewalls or their specific rule set, should
behave as if the corrupted firewall was not there (see Figure 4.3).

Theorem 19. πserial-2fw does not UC realize Fideal-2fw in the Fnet,serial-2fw-
hybrid model.

The idea is that if fw2 is corrupted, it could output a malicious packet
just at the same time this packet arrives at tc1 (sent by the environment).
This would force tc2 to output the packet, even though it was blocked by
fw1.

Proof. Let fw2 be corrupted and fw1 be honest. Let p be a packet that
is blocked by fw1. The environment inputs p to tc1. This will cause tc1

to call Fnet,serial-2fw(p) where p will be saved in Q2. Next, the adversary
instructs Fnet,serial-2fw to deliver p to tc2 and uses fw2 (which he controls) to
call Fnet,serial-2fw(p) and allows the public delayed output of p to be delivered
to tc2. tc2 will now have two identical packets (one from tc1 and one from
fw2) in its storage and will output p, even though p has been blocked by fw1.

There is no simulator which can simulate this attack in the ideal model,
since fw1 will always block the packet in the ideal model and the output of
fw2 will not be considered. �

4.5 Parallel Composition of Two Firewalls

The serial composition of two firewalls is not secure with regard to our
envisioned ideal functionality. Better results can be achieved using parallel
composition. The idea is that the trusted hardware only accepts a packet

64

tc1

fw1

fw2

tc2

Figure 4.4: The parallel composition of two firewalls with trusted hardware.
tc2 only accepts packets that are output by both firewalls.

if both firewalls accept it. Figure 4.4 shows this composition. We will now
discuss the security of this architecture.

The protocol of the parallel architecture is defined in Definition 37.

Definition 37 (Protocol of the parallel architecture πparallel-2fw).

• tc1: Upon receiving p from Z: Call Fnet,parallel-2fw(p).

• fwk: Upon receiving p via Fnet,parallel-2fw: Compute Ffwk
(p, s) = (p′, s′).

If p′ 6= ⊥, call Fnet,parallel-2fw(p′). Save the new internal state s′.

• tc2: Upon receiving p from fwk via Fnet,parallel-2fw, check if there is an
entry (j, q) with k 6= j and p ≡ q in the internal storage. If so, output
p and remove both entries. Else, save (k, p).

The functionality describing the network structure is depicted in Fig-
ure 4.5.

We will compare the protocol from Definition 37 with an ideal functionality.
The ideal functionality is the same as in the serial case, since the natural
approach of defining ideal functionalities only uses the uncorrupted firewall,
which again leads to the functionality in Figure 4.3. However, as in the serial
case, the parallel architecture does not realize this functionality.

Theorem 20. πparallel-2fw does not UC realize Fideal-2fw in the Fnet,parallel-2fw-
hybrid model.

We prove this by describing an attack which cannot be simulated.

Proof. Let, w.l.o.g., fw1 be honest and fw2 be corrupted. Also, let p1 and
p2 be packets that are accepted by fw1. The environment sends packets p1

and p2 to tc1. The adversary triggers the delivery of both packets to fw1.
Both packets are accepted by fw1 and forwarded to tc2. Then, the adversary
sends packets p2 and p1 from fw2. Since both packets have been accepted
and were sent to tc2 previously (but in reverse order), tc2 will output p2

65

The ideal network function Fnet,parallel-2fw

Initialise two empty queues Q1 and Q2 for fw1 and fw2 respectively.

• Upon receiving p from tc1: Push p into Q1 and Q2

• Upon receiving instruction from the adversary: Fetch the next
packet p Q1 and deliver it to fw1

• Upon receiving instruction from the adversary: Fetch the next
packet p Q2 and deliver it to fw2

• Upon receiving p from fwk: Provide a public delayed output of p
to tc2.

Figure 4.5: The ideal network function representing the parallel concatenation
of firewalls with trusted hardware.

and p1—in this order. Thus, the adversary was able to reverse the order of
packets. Since the adversary is not allowed to influence the order of packets
in the ideal model, there exists no simulator which can simulate this attack.

�

The Internet Protocol explicitly does not give any guarantees about the
ordering of packets, since the correct order is encoded in the packet. The
packet itself, however, can not be altered by the adversary. Thus, we modify
our ideal functionality and explicitly grant the attacker the ability to reorder
the outgoing packet stream. The new ideal functionality is described in
Figure 4.6.

Theorem 21. πparallel-2fw UC realizes F reorder
ideal-2fw in the Fnet,parallel-2fw-hybrid

model.

Proof. To prove the statement, we will give the description of a simulator and
show that this simulator can simulate every adversary, so that no environment
can distinguish between the real and ideal model. Let w.l.o.g. fw1 be corrupted
and fw2 be honest. Let S be a simulator with the following functionality:

Upon activation, or when given a packet p, simulate the real model
and observe its output. If the output of the real model is a packet
p′, advise the ideal functionality to deliver p′. (The case that p′ is
not present in the internal memory of the ideal functionality need
not be covered, as is proven below.)

66

The relaxed ideal functionality of two firewalls F reorder
ideal-2fw

Let fwk be the uncorrupted firewall.

• Initialize s := ⊥ and a set of outgoing packets P := ∅.

• Upon receiving p from tc1, compute Ffwk
(p, s) = (p′, s′). If p 6= ⊥,

add p to P . Set s := s′ and give p to the adversary.

• Upon receiving p from the adversary, if p ∈ P , output p to tc2.
Remove p from P .

Figure 4.6: The relaxed ideal functionality of two firewalls. The adversary is
explicitly allowed to reorder outgoing packets.

Note that the simulator receives exactly the same input as the adversary
in the real model—it can perfectly simulate the communication between the
adversary and the environment. Thus, the environment can only distinguish
the models based on their output streams. We argue that the output of the
real and ideal model are identical. Assume towards a contradiction that they
are not.

Let {fw2(S)} denote the set of all packets fw2 outputs when given the
input stream S. There are two possibilities which would cause a difference in
output streams:

Case 1. The adversary in the real model suppressed a packet which did
not get suppressed in the ideal model. This is impossible however, since the
simulator only advises the ideal functionality to deliver a packet if it observes
it being output in its simulation of the real model.

Case 2. The real model outputs a packet which is not output in the ideal
world.
Assume that this was the case and let p be that packet. The following
conditions have to hold: p has to be in {fw2(S)} and p has to be output by
A (using fw1). This is true because the trusted hardware will ensure that a
packet is only output when both firewalls accept it. For a packet not to be
output in the ideal model, one of the following conditions have to hold:

• p is not in {fw2(S)}. This way, p will not be in the internal memory of
the ideal functionality. Thus, the simulator can not advise the delivery
of that packet. This is a contradiction, since we assumed that p was
output in the real model, which in turn implies that p ∈ {fw2(S)}.

• p ∈ {fw2(S)} and the simulator did not advise the functionality to

67

deliver p. This is also a contradiction, since we assumed that p was
output in the real model. This would cause the simulator to advise the
output of p by definition.

We now have shown that the assumption that the environment can observe
a difference in packet output stream in the real and the ideal world leads
to a contradiction in all cases. This, in combination with the ability of the
simulator to fully simulate the adversary, proves the indistinguishability of
the models.

�

4.6 Parallel Composition of Three Firewalls

The parallel approach to compose firewalls described above does indeed
improve security compared to one single and potentially malicious firewall.
However, there is a large class of attacks that become possible when the
adversary can selectively suppress packets. Because the parallel architecture
with two firewalls cannot prevent this attack, we extend the architecture to a
quorum of three firewalls.

In the following section, we assume that all uncorrupted firewalls in this
architecture will have the same behavior. However, we allow them to disagree
on the order of packets.

There is a non-trivial attack on this architecture. When both uncorrupted
firewalls both output the same packet p, the adversary can use clever timing
to output p from the corrupted firewall directly after the first uncorrupted
firewall. The trusted hardware would then observe two p packets on different
interfaces and output p. However, a third p packet would arrive from the
second uncorrupted firewall. Then, the adversary could output p again. This
would cause tc2 to output p again and thus duplicate the packet. The natural
extension of F reorder

ideal-2fw to the case of three firewalls is vulnerable to the attack.
When fw1 and fw2 both output the same packet, both will be saved in P .
The adversary can now output both packets. This functionality is depicted
in Figure 4.7.

The other protocols and functionalities πparallel-3fw and Fnet,parallel-3fw can
easily be extended to the case of three firewalls by adding the third firewall
as an additional party. We will omit their descriptions here.

Theorem 22. πparallel-3fw UC realizes F reorder
ideal-3fw in the Fnet,parallel-3fw-hybrid

model.

The proof is very similar to the proof of Theorem 21. We omit it here.
It is not acceptable to give an attacker the ability to duplicate packets.

We alter the functionality of our trusted hardware slightly to prevent the
attack. The idea is that the moment the hardware outputs a packet, exactly
two firewalls must have output this packet before. Then, the hardware can

68

The relaxed ideal functionality of three firewalls F reorder
ideal-3fw

Let w.l.o.g. fw1 and fw2 be the non-corrupted parties

• Initialize s1 := ⊥, s2 := ⊥ and a set of outgoing packets P := ∅.

• Upon receiving p from tc1, compute Ffw1(p, s1) = (p′, s′) and
Ffw2(p, s2) = (p′′, s′′). If p′ 6= ⊥, add p′ to P and if p′′ 6= ⊥
also add p′′ to P . Set s1 := s′, s2 := s′′ and give p to the adversary.

• Upon receiving p from the adversary, if p ∈ P , output p to tc2.
Remove p from P .

Figure 4.7: The relaxed ideal functionality of three firewalls. The adversary
is explicitly allowed to reorder outgoing packets.

mark this packet as missing from the third firewall. If it arrives eventually,
this mark will be removed and no further action will be taken.

The definition of the resulting protocol can be seen in Definition 38.

Definition 38 (Protocol of tc2 with packet deduplication).
Initialize three empty lists Q1, Q2 and Q3 for each of the three firewalls.

Upon receiving packet p from firewall fwk

• Check if Qk contains an entry −q with p ≡ q. If so, delete −q and halt.

• Check if ∃j 6= k such that ∃q ∈ Qj and p ≡ q:

– Remove q from Qj ,

– output p,

– add an entry −p to all other Qi with i 6= j and i 6= k.

• Otherwise, store p in Qk.

Using this definition, we replace the functionality of tc2 from πparallel-3fw
and call the new protocol πdeduplicationparallel-3fw .

The corresponding ideal functionality is depicted in Figure 4.8. It now
continuously checks whether the amount of identical packets being given to hw
matches the amount of identical packets which either one of the uncorrupted
firewalls sent. As previously however, we allow the reordering of packets.

Theorem 23. πdeduplicationparallel-3fw UC realizes F reorder,deduplication
ideal-3fw in the Fnet,parallel-3fw-

hybrid model.

69

The ideal functionality of three firewalls without packet
duplication F reorder,deduplication

ideal-3fw

Let w.l.o.g. fw1 and fw2 be the non-corrupted parties.

• Initialise three lists Q1, Q2 and Qout. Set s1 := ⊥ and s2 := ⊥.

• Upon receiving p from tc1: compute Ffw1(p, s1) = (p′, s′) and
Ffw2(p, s2) = (p′′, s′′). Set s1 := s′ and s2 := s′′. Save p′ in Q1 and
p′′ in Q2. Give p to the adversary.

• Upon receiving (deliver, p′′′, k) (k ∈ {1, 2}) from the adversary: If
Qk contains a valid packet p′′′:

– Check how many times that packet (or an equivalent packet)
is in Qout. Let that number be n.

– Check if either Q1 or Q2 (or both) contain that packet at least
n+ 1 times.

– If so, give p′′′ to tc2 and save it in Qout.

Figure 4.8: The ideal functionality of three firewalls without packet duplica-
tion. For every packet, at least one of the firewalls must have sent this packet
at least as often as it got passed to tc2.

70

Proof. The proof is similar to the proof of Theorem 21. We argue that the
simulator behaves identically to the adversary and that the output of the
ideal network is identical to the output of the real network. Let S be a
simulator with the following functionality:

Upon activation, or when given a packet p, simulate the real model
and observe its output. If the output of the real model is a packet
p′, calculate (for the ideal functionality) the index of the memory
structure in which p′ is saved as well as its position within the
memory. Advise the functionality to deliver the packet on that index.
(The case that p′ is not found in the internal memory structure of
the ideal functionality need not be covered, as is proven below.)

The argument that S is always able to suppress a packet in the ideal
model, which is suppressed in the real world, is identical to Case 1 in the
proof of Theorem 21. We need to argue Case 2: S is able to schedule every
packet it observes in the output of its internal simulation of the real network.
Assume towards a contradiction, that p is such a packet that, after the input
stream S is processed, is output by tc2 in the real model but not output by
the ideal functionality.

Let Q1, Q2 and Q3 be the lists the trusted hardware uses in the real
protocol for storing the packets output by the firewalls and marking the
“negative” packets. Let Qtc be the list of all packets it has ever output. Let
Q′1, Q′2, Q′out be the lists the ideal functionality uses for keeping track of the
packets. Let ||Q||p denote the number of packets p the list Q contains. We
then define |Q|p := ||Q||p − ||Q||−p.

First, observe that S only schedules packets it observes in its simulation
of the real model. Hence, by the description of tc2 |Q1|p = |Q′1|p− |Qtc|p and
|Q2|p = |Q′2|p− |Qtc|p. We know from the argument for Case 1 that the ideal
functionality will never output packets, which were not output in the real
model (∀p : |Q′out|p ≤ |Qtc|p). We thus have:

|Q1|p ≤ |Q′1|p − |Q′out|p (4.1)
|Q2|p ≤ |Q′2|p − |Q′out|p (4.2)

For p to be output in the real model, one of the following conditions has
to hold:

|Q1|p > 0 and |Q2|p > 0 (4.3)
|Q1|p > 0 and |Q3|p > 0 (4.4)
|Q2|p > 0 and |Q3|p > 0 (4.5)

This is true because the trusted hardware will only forward packets which are
in at least two of the packet lists. The functionality of tc2 can be restated in
the following way: For every packet p which is output, insert a packet −p

71

tc1 fw1 tc2 fw2 tc3 fw3 tc4

Figure 4.9: The serial composition of three firewalls.

into the lists of the three firewalls. If there are two packets p and −p in the
same list, both cancel each other out.

For p not to be written to any of the lists in the ideal model, the following
condition has to hold:

|Q′out|p ≥ |Q′1|p and |Q′out|p ≥ |Q′2|p (4.6)
⇔ |Q′1|p − |Q′out|p ≤ 0 and |Q′2|p − |Q′out|p ≤ 0 (4.7)

This again describes the difference between the amount of packages p each
individual firewall has output and the amount of packages p which got output
in total after processing S.

Concluding the argument, conditions (4.1) to (4.5) give us |Q′1|p−|Q′out|p >
0 and |Q′2|p − |Q′out|p > 0, which contradict condition (4.7). �

4.7 Serial Composition of Three or More Firewalls

Even though the serial combination of two firewalls is insecure, we can now
take inspiration from the parallel architecture with three firewalls to build
a (semi-)secure serial architecture using three firewalls. The main idea is
to place one trusted hardware component between each firewall. These
components have forward each incoming packet to the next firewall as well as
to the next trusted hardware. This ensures that the decision of each firewall
is counted. Figure 4.9 shows this architecture and Definition 39 depicts the
new functionality of the trusted hardware components. The new network
functionality is shown in Figure 4.10. We use the same protocol for the
firewalls, as in the previous chapters—that is, they evaluate their specific
firewall functionality and update their state. We call the protocols for tc and
fw together the protocol of the serial architecture πserial-3fw

Definition 39 (Protocol of the trusted components tci).
Let n be the total number of firewall members in the architecture. Let n

be an odd number.

• tc1:

– Upon receiving p from Z: Call Fnet,serial-3fw(p, (p, 0)).

• tck with k ∈ [2, n[:

72

The network function of the serial architecture with three
firewalls. Fnet,serial-3fw

• Initialize three empty first-in-first-out queues: P1, P2, P3.

• Upon receiving (p, ctrp) from tck: Add (p, ctrp, k) to P1 and (p, k)
to P2.

• Upon receiving p′ from fwk: Add (p′, k) to P3.

• Upon instruction from the adversary, fetch (p, ctrp, k) from P1 and
deliver (p, ctrp) to tck+1

• Upon instruction from the adversary, fetch (p, k) from P2 and deliver
p to fwk.

• Upon instruction from the adversary, fetch (p′, k) from P3 and
deliver p′ to tck+1.

Figure 4.10: Network function of the serial architecture with three firewalls.

– Upon receiving (p, ctrp) from tck−1 via Fnet,serial-3fw:
If there is a saved packet p′ with p ≡ p′, set ctrp := ctrp + 1. Call
Fnet,serial-3fw(p, ctrp).
Else, if there is no saved packet, save p and ctrp.

– Upon receiving p from fwk−1 via Fnet,serial-3fw:
If there is a saved packet p′ ≡ p and a saved counter ctrp′ , set
ctrp := ctrp′ + 1. Call Fnet,serial-3fw(p, ctrp).
Else, if there is no saved packet, save p.

• tcn:

– Upon receiving (p, ctrp) from tcn−1 via Fnet,serial-3fw:

∗ If ctrp ≥ n+1
2 : output p to Z.

∗ If ctrp = n−1
2 : If there is a saved packet p′ and p ≡ p′, output

p to Z. If there is no saved packet, save p.

– Upon receiving p from fwn−1 via Fnet,serial-3fw: If there is a saved
packet p′ and p ≡ p′, output p to Z

We will now show that this architecture is secure—but only if we restrict
the firewall’s functionality in a way that each firewall performs the same,
stateless function. First, observe that this architecture does not work if

73

The ideal functionality of the serial architecture with three
firewalls. F reorder

ideal-serial-3fw

• Initialize s := ⊥ and a set of outgoing packets P := ∅.

• Upon receiving p from tc1, compute Ffw(p, s) = (p, s′) If p 6= ⊥,
add p to P . Set s := s′ and give p to the adversary.

• Upon receiving p from the adversary, if there is a p ∈ P , output p
to tc4. Remove p from P .

Figure 4.11: Ideal functionality of the serial architecture with three firewalls.
If any of the uncorrupted firewalls accepts a packet, it is stored in a packet
list from which it can then be delivered by the adversary.

firewalls change packets. If a packet p enters the network, it is directly
forwarded to tc2, which will wait for the same packet to be output by fw1. If
fw1 now changes that packet to p′, tc2 will never find a matching packet for
p and the architecture will drop the packet.

To make the architecture work at all, we have to restrict the firewall
functionality to accept packets as they are, or drop them completely. Also,
remember that we assume that uncorrupted firewalls will always agree on
whether a particular packet should be dropped or accepted. Thus, it is no
longer necessary to model a firewall functionality for each firewall, since all
uncorrupted firewalls will always agree on the same output anyway. Adhering
to our past notation, we call this global firewall functionality Ffw .

Definition 40 shows the resulting protocol and Figure 4.11 the resulting
ideal functionality, which is an adapted version of F reorder

ideal-3fw.

Definition 40 (Protocol of the firewall fwi).

• Initialize s := ⊥

• Upon receiving p from tci: compute Ffw(p, s) = (p, s′). If p 6= ⊥, call
Fnet,serial-3fw(p) and set s := s′.

We can now state our theorem.

Theorem 24. πserial-3fw does not realize F reorder
ideal-serial-3fw in the Fnet,serial-3fw-

hybrid model.

Proof. To proof our claim, we give an attack in the real model which cannot
be simulated in the ideal world by any simulator.

74

Assume a stateful firewall functionality Ffw2 which drops every second
packet. In the real model, the adversary corrupts fw1. He then switches the
order of the first two packets, which are processed by the architecture. More
concretely, assume two packets p and p′ are input into the network and get
delivered to fw1 in this order. The adversary now reverses the order, which
will cause fw2 to drop p, which in turn will cause the whole architecture to
drop p and accept p′.

In the ideal world, the simulator cannot change the order of incoming
packets and fw2 will drop p′ instead. Thus, the simulator will not be able to
instruct the delivery of p′, even though it was output in the real model.

�

We now state our main result that the serial architecture with three
firewalls is secure for any (stateless) firewall functionality (i.e. s is always set
to ⊥).

Theorem 25. πserial-3fw realizes F reorder
ideal-serial-3fw in the Fnet,serial-3fw-hybrid model

for n firewall members and any stateless firewall functionality Ffw , if there
are at most n−1

2 corrupted firewall members.

Proof. The proof is provided by giving a description of a simulator S and
showing that its behavior is such that no environment Z can distinguish the
execution of F reorder

ideal-serial-3fw from an execution of the real protocol using tci
and fwi. The simulator S is notified by F reorder

ideal-serial-3fw of each packet coming
into the network. He maintains an internal simulation of the real network
and for each packet p in the real network’s output, instructs F reorder

ideal-serial-3fw
to deliver p as well. We argue that the outputs of F reorder

ideal-serial-3fw and the real
protocol are identical.

Let n be the number of firewall members in the architecture. The core
of our argument is that the firewall functionality is stateless, i.e. Ffw(p, s)
ignores its second argument. For simplicity we write Ffw(

p). For the sake of
clarity we denote F reorder

ideal-serial-3fw’s firewall functionality by Ffw−ideal and that
of fwi by Ffw−real.

Note that S is made aware of each packet arriving at the network (in their
correct order) and thus can simulate the behavior of the network perfectly.
Also, because F reorder

ideal-serial-3fw maintains a set of outbound packets from which
the simulator can choose packets to deliver, S can change the order of packets
and also drop them at will. Let I be the set of packets in F reorder

ideal-serial-3fw’s
output and let R be the set of packets in the output of the real network.
We show that there is no packet in R that is not also in I, i.e. I ⊇ R.
Assume towards a contradiction that I + R. Thus ∃p ∈ R : p /∈ I which
must have been output by tcn. By design of the architecture, tcn collects
the decisions of all firewall members. Consequently, there must have been at
least n+1

2 firewall members for which there exists an incoming packet o such
that Ffw−ideal(o) = ⊥ 6= Ffw−real(o) = p. We now observe that F reorder

ideal-serial-3fw

75

evaluates the same firewall functionality as uncorrupted firewall members
in the real protocol: Ffw−ideal = Ffw−real. Thus, only corrupted firewall
members can cause a difference in outputs. This is a contradiction to the
assumption that there are at most n−1

2 corrupted firewall members. �

We point out, that the above argument does indeed not work for stateful
firewall functionalities as there might exist states s, s′ such that Ffw−ideal(o, s) 6=
Ffw−real(o, s

′) = p.

4.8 Improving the Model: Availability and Bigger
Networks

In the previous sections, we have modeled and analyzed several firewall
architectures using the basic UC framework. As discussed previously, one
of the major drawbacks of the basic framework is that it does not allow
the expression of availability guarantees. For computer networks however,
availability is an important property. Fortunately, Katz et al. designed an
extension to the UC framework, which allows to model availability [75].
Unfortunately, this extension introduces a number of modeling artifacts,
which makes it extremely difficult to use. We address some of these problems,
by introducing new formalisms. Finally, while it is easily possible to write a
custom ideal functionality for each network structure, when there are only a
few participants, this does not scale well for bigger networks. We therefore
design a generic network functionality, which takes the graph of the network
as input and automatically takes care of all the required formalisms of the
UC framework.

4.8.1 The Basic Tools

Ideally, modeling and analyzing a network would require four steps: 1)
Specify what the wanted functionality of the network is, 2) draw a graph
of the network layout, 3) specify the protocol the machines in the network
adhere to, and 4) prove that the protocol does achieve what the wanted
functionality does.

We designed tools that capture various technical details of the UC frame-
work and allow to use it in a way that is close to the intuitive approach.
Specifically,

1. By defining Fwrap, we simplify the specification of an ideal network
functionality.

2. We provide an ideal network functionality FGnet that routes messages
according to a given network topology induced by a network graph G.

76

3. We propose a 5-phase paradigm which allows for an easy and structured
modeling of the behavior of machines in the network.

The Ideal Network Functionality We model the network as a directed
graph G = (V,E), while V is the set of machines in the network and E ⊆ V 2

is a relation on V . (We model the network as a directed graph to account
for unidirectional links [72].) To model bidirectional links, one requires that
(v, v′) ∈ E iff (v′, v) ∈ E. There is a delivery queue for each edge in the
graph. Nodes can send messages for each outgoing edge and can poll incoming
messages from each incoming edge. To send a packet, a party src can call the
network functionality FGnet with a (finite) set of packets with corresponding
recipients {(dest1,msg1), (dest2,msg2), . . . }. Each packet in the set will then
be appended to the queue associated with the edge between nodes src and
desti, if it exists. Further, modeling Katz et al.’s bounded delay channels [75],
we associate two counters with each edge in the graph—one for the total
delay and one for the accumulated delay of the channel. The adversary can
increase the delay of a channel up to a fixed maximum amount. When a
machine polls a queue the delay counter is decreased. When the delay has
reached 0, a message is taken from the queue and handed to the machine.
This allows for explicit modeling of different network latencies across different
communication channels and allows the adversary to take advantage of that.
This functionality makes it easy to define the communication channels for
a network since one provides a graph of the network and the corresponding
channel topology for the UC framework is generated automatically. We point
out that we implicitly use Katz et al.’s “multisend” functionality where parties
send multiple packets in one atomic call to the network. Because we do not
consider adaptive corruption, the adversary cannot preempt parties during a
send operation.

The 5-Phase Paradigm We propose a 5-phase paradigm for modeling
network protocols. We require each honest party to follow this paradigm. An
honest party will need exactly five explicit activations by the environment
machine to finish its round. During its first activation (“input phase”), the
party will accept input by the environment. Upon the second activation
(“fetch phase”), it will issue a fetch request to the network to get its input
which it will process and possibly send to other parties in one single call
during the third activation (“send phase”). The fourth activation (“output
phase”) is the only activation in which a party will produce output to the
environment. The fifth activation is used to signal “RoundOK” to Fclock: all
work is done for this round.

Upon further activations the party will wait for the next round to begin.
We stress that an honest party will poll the network exactly once per round
while a compromised party might poll the network more often. We assume that

77

The ideal parameterized network function FG,δnet

Interpret G = (V,E) with E ⊆ V 2 as a directed graph. For each edge
e ∈ E, initialize a queue Qe and two variables de and d′e which represent
the current and the accumulated delay for the queue.

• Upon receiving a message (send,M) with M =
{(dest1,msg1), (dest2,msg2), . . . } from party src, for each
tuple (dest,msg) ∈M do:

– Check if src, dest ∈ V and (src, dest) ∈ E. If so, continue.
Else, ignore this tuple and start processing the next message.

– Append msg to queue Q(src,dest). Hand msg to the adversary.

• Upon receiving message (delay, e, T) from A: Let (de, d
′
e) be the

delay variables for the queue of edge e. If d′e+T ≤ δ, set de = de+T
and d′e = d′e + T and return (delay-set) to the adversary. Else halt.

• Upon receiving message (fetch, Q) from party P and if Q ⊆ V :

– Initialize a set of responses r := ∅ and for every party P ′ ∈
Q ⊆ V with (P ′, P) ∈ E:

∗ Let (d(P ′,P), d
′
(P ′,P)) be the delay variables for edge

(P ′, P).
∗ Set d(P ′,P) = d(P ′,P) − 1. If d(P ′,P) = 0, remove the
first message msg from Q(P ′,P), set d′(P ′,P) = 0, and set
r = r ∪ (msg, (P ′, P)).

– If r 6= ∅, send r to P . Else halt.

Figure 4.12: The generalized ideal network function. It is parameterized
with a graph that features protocol participants as nodes and expresses links
as edges. We model the network as a directed graph to accommodate for
specialized connection types as for example optical fibers or data diodes [72].
We also implemented Katz et al.’s bounded delay-channel [75] to model links
with a delay.

78

every party will initialize and update a round counter and further maintain
state for the number of activations per round and whether (RoundOK) has
already been signaled. This requires sending Fclock a (RequestRound) request
on activation and accordingly updating state information, but imposes no
limitations for the party. This paradigm simplifies the modeling of network
protocols by structuring the behavior of network parties but it also allows for
a more intuitive description of the ideal functionality the network performs,
as we will discuss in the next paragraph.

Note that this model (like the one of Katz et al. [75]) requires the envi-
ronment to explicitly schedule the network. However, intentional starvation
of one network component is not a suitable strategy for distinguishing the
real from the ideal model, as the ideal functionality will be aware of round
changes and can ensure that there is no observable progress in both models.

TheWrapper Functionality To simplify the definition of ideal functional-
ities, we introduce an ideal “wrapper” functionality Fwrap (see Figure 4.13 (a)).
It “wraps around” the ideal functionality and moderates its communication
with the dummy parties in the ideal world. Its main task is to count activa-
tions of dummy parties. Since honest parties adhere to the 5-phase paradigm,
it will only notify the ideal functionality if the environment gives input to a
party (during the first activation), if a party could create output in the real
model (during its fourth activation) and when a round is complete. It also
ensures that the adversary is activated at least as often as in the real model.

Specifying Ideal Functionalities The tools introduced above allow for a
natural description of ideal functionalities. Fwrap will send a notification for
important events (e.g. inputs, outputs and round changes) and the ideal func-
tionality reacts to them appropriately. Specifically, the ideal functionality will
not be required to count activations itself or activate the adversary sufficiently
often. Since the network functionality provides a bound for the maximum
delay a channel can have, it is also easily possible to model availability. The
ideal functionality only has to maintain a counter corresponding to the delay
δ of the channel for each packet and reduce this counter by one every time a
round is complete. When the counter reaches zero, the packet can be output
immediately when output is requested by Fwrap. Since all honest parties will
poll for new packets once per round the adversary can delay a packet delivery
for a maximum of δ rounds per channel.

Note that we only specify the behavior for input by honest parties. We
implicitly assume that messages from the adversary to corrupted parties or
vice versa are delivered immediately.

79

The wrapping function for ideal functionalities Fwrap

Maintain an activation counter cp for each of the honest dummy parties.
Relay all communication from Fideal directly to the environment. Upon
activation by the environment, i.e. upon receiving input m through a
dummy party p:

• If cp < 5 increase the activation counter of the party.

• If cp = 1 send message (input,m, p) to Fideal.

• If cp = 2 or cp = 3, send message (activated, p) to the adversary.

• If cp = 4 send message (output, p) to Fideal.

• If ∀p′ : cp′ = 5 reset all activation counters and send
(RoundComplete) to Fideal.

(a)

Z

D1 D2 D3

Fwrap

Fideal

S

(b)

Figure 4.13: The ideal “wrapper” functionality Fwrap acts as a relay between
the dummy parties and the ideal functionality. It counts activations of parties
and notifies the ideal functionality of important events like round changes,
thus simplifying the formulation of ideal functionalities.

80

G

L1 L2 L3

Figure 4.14: The network graph byz = (V,E) for the Byzantine Generals
problem with V = {G,L1, L2, L3} and E = V 2. It is fully connected—each
party can communicate with every other party.

4.8.2 Example: Byzantine Generals

As an example, we will use the presented methodology to model a popular
example from the literature: the Byzantine Generals problem. We will then
restate a popular result concerning this problem by giving a proof in our
framework.

The Byzantine Generals Problem The Byzantine Generals problem
was first introduced by Lamport, Shostak, and Pease [81]. The motivation
is as follows: suppose that a commanding general wants to give orders (for
the sake of simplicity he will only use “attack” or “retreat”) to his lieutenants
but he does not know which of them are trustworthy. Also, the lieutenants
do not know whether the general himself is trustworthy. Now suppose that
each of the participants can communicate with each other participant via
“oral” messages. The Byzantine Generals problem is to find an algorithm
that, given a number of parties n (one of them is the general), ensures that:

1. All loyal lieutenants obey the same order and

2. If the general is loyal, then every loyal lieutenant obeys the order he
sends.

Note that a disloyal (corrupted) lieutenant can arbitrarily lie about messages
he received and try to deceive other lieutenants. He can also refuse to send
any messages. However, it is assumed that loyal parties will notice when
messages are missing. Lamport et al. [81] show that there can not be a
generic solution to the problem for three parties, but there is a solution for
four parties. We will now model the Byzantine Generals problem with four
parties according to our methodology and give a formal security proof for a
specific solution to the problem.

81

Modeling the Byzantine Generals Problem The network in this ex-
ample is fully connected. Every party can transmit messages to every other
party. There is a maximum latency of 2δ until a packet is output by one
of the parties: a possible delay of δ from the general to the lieutenants and
another possible delay of δ for a packet from one lieutenant to reach the
others.

The Byzantine Generals problem statement implies that a party notices
if it will not receive messages from another party anymore, so that it will not
wait indefinitely. In reality this is usually realized by timeouts—we will use
the same mechanism here.

Figure 4.15 shows the protocol which implements a solution to the generals
problem. Figure 4.16 shows the corresponding ideal functionality. This
functionality fulfills the requirements for a solution to the Generals problem
given earlier.

We will now show that this protocol realizes the ideal functionality.

Theorem 26. πbyz realizes Fbyz-ideal in the Fbyz,δ
net -hybrid model.

Proof. We prove the theorem by giving a stepwise transformation from the
real model to the ideal model. We argue that the individual transformation
steps are indistinguishable for the environment, and thus, by the transitivity
of indistinguishability, the real model is indistinguishable from the ideal
model. Start with the real protocol.

Regroup all parties into a new machine S. The adversary simulator S
will simulate the real network in all transformation steps. Introduce dummy
parties DG, DL1 , DL2 , DL3 for all protocol parties and relay messages from
and to Z appropriately. Introduce a new machine Fbyz-ideal. Route all
communication from the dummies to S and vice versa through Fbyz-ideal. The
regrouping of parties is indistinguishable for the environment. In the upcoming
transformation steps, we will gradually expand Fbyz-ideal’s functionality:

1. Initialize variables mL1 , mL2 , and mL3 . When receiving a message
m from dummy party G, set mL1 := m, mL2 := m and mL3 := m.
Also initialize and save a round counter d := 2δ. This modification is
indistinguishable, since it only stores information and does not alter
the communication.

2. If G is corrupted, accept a message (set,m1,m2,m3) from S. Check
if there are i 6= j such that mi = mj . If so, set mL1 ,mL2 ,mL3 to mi.
Else set mL1 = m1,mL2 = m2,mL3 = m3. This modification again
only stores information.

3. When S attempts to pass output m from an uncorrupted party p in
the simulation back to the dummy party, only allow it to pass through
Fbyz-ideal if either

82

A solution to the Byzantine Generals problem with four
parties πbyz

Each party maintains a local round counter r.

• Party G:

– “Input”: Upon first activation this round and input m by Z,
save m and ignore further inputs.

– “Send”: Upon third activation, call
Fbyz
net (send, (L1,m), (L2,m), (L3,m)) if m was saved.

– “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

• Party Ln:

– “Fetch”: Upon second activation,

∗ call Fbyz
net (fetch, {G,Lk,Lj}) for k 6= j 6= n. If the call

was successful, save the messages for the corresponding
parties.

– “Send”: Upon third activation,

∗ if there is a message m by party G which
has not been broadcast yet, broadcast it: call
Fbyz
net (send, (Lk,m), (Lj ,m)) with k, j 6= n.

– “Output”: Upon fourth activation,

∗ if r < 2δ and there are two identical messages m from two
different parties (other than G), output m. If there are
three different messages from the different parties, output
the message from party 1;
∗ if r = 2δ output retreat.

– “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

Figure 4.15: The protocol for the Byzantine Generals problem with four
parties. The ideal network functionality allows for a maximum delay of δ
for each message and messages have to be sent from the general first and
from the lieutenants afterwards. Thus a party will assume a timeout after 2δ
rounds.

83

The ideal functionality of the Byzantine Generals problem
with four parties Fδbyz-ideal.

Upon initialization store a delay value d := (2δ) and initialize three
variables mL1 := ⊥,mL2 := ⊥,mL3 := ⊥.

• Upon receiving message (input,m,G) from Fwrap and if G is honest:
store mLp := m for p ∈ {1, 2, 3} and send (input,m,G) to the
adversary.

• Upon receiving message (set,m1,m2,m3) from the adversary and if
G is corrupted: if mL1 = ⊥,mL2 = ⊥,mL3 = ⊥, and there are two
identical messages mi,mj with i 6= j, set mL1 ,mL2 ,mL3 := mi, else
set mL1 ,mL2 ,mL3 := mj where j is the smallest index for which
mj 6= ⊥.

• Upon receiving message (output, p1, p2, p3) from the adversary:
mark messages mp1 ,mp2 ,mp3 as ready for output.

• Upon receiving message (output, p) from Fwrap:

– If d = 0: output retreat to p.

– if d 6= 0 and if mp is marked as ready for output, output mp

to p.

• Upon receiving message (RoundComplete) from Fwrap, decrease d
by 1 and send (RoundComplete) to the adversary.

Figure 4.16: The ideal functionality of the three generals problem. If the
general is honest, all honest parties will obey his order. If he is corrupted, all
parties will obey the same order. As in the real protocol the adversary can
not delay the output for more than 2δ rounds.

84

(a) m has been stored as mp in Fbyz-ideal, or

(b) the message is retreat.

We have to argue the indistinguishability of this modification. A real
protocol party will only output a message other than retreat when it
has received two identical messages. This will only happen if

(a) G is honest—then,m will have been provided by Z through dummy
party G and thus saved for every party in the ideal functionality,
or

(b) G is corrupted and sent two identical messages. In this case, S
will have used the set-message to provide these messages and they
will also have been saved for every party.

4. Introduce Fwrap as a wrapper around Fbyz-ideal. For each notification
that a round is complete from Fwrap decrease the delay value d and
notify S that the round is complete. Fwrap will not notify S about
activations in phase 4 (“output”), but Fbyz-ideal instead. The simulator
is thus not able to accurately simulate the exact order of outputs.
However, the simulator is still able to determine the set of messages
to output for each party in each round: he still is notified about the
input to the protocol, when a party sends a message, and when a
round is complete. We alter the strategy of S to make the modification
indistinguishable: in each round, observe which parties will output a
message and notify the ideal functionality that these parties are ready
for output. Now, when Z activates a party and expects output, the
ideal functionality will output possible messages for that specific party.
This allows for all messages other than retreat to be output correctly.
So, if d = 0 after the fourth activation of a party, Fbyz-ideal just outputs
retreat, mimicking the behaviour in the real model. Fbyz-ideal and S
now behave as specified in the ideal model, perfectly emulating the real
model.

This concludes the proof. �

4.8.3 Firewalls Revisited

In this section, we will apply our improved model to the previously discussed
example of the three firewall architecture. In addition to being easier to work
with, this new model also allows us to express the availability properties of
the architecture.

Definition 41 (The functionality of an ideal firewall Ffwj
).

Ffwj
: P × V × S → (P ∪ ⊥)× (V ∪ ⊥)× S

85

tc1

fw1

fw2

fw3

tc2

Figure 4.17: The three firewall network. The graph directly serves as the net-
work model for FGnet: G = (V,E) with V = {tc1, tc2, fw1, fw2, fw3} and
E′ = {(tc1, fw1), (tc1, fw2), (tc1, fw3), (tc2, fw1), (tc2, fw2), (tc2, fw3)}, E =
E′ ∪ {(v, u) | (u, v) ∈ E′}.

Ffwj
(p, v, s) =

{
(p′, v′, s′) if output is generated,
(⊥,⊥, s′) else.

Definition 41 provides a modified definition of the firewall function Ffw ,
adapted to work with the new graph based network model (Figure 4.12). The
function accepts a packet p from the set of all packets P , a node from the
network graph v ∈ V and a state s ∈ S and outputs another packet, another
node (the receiver of that packet) and a new state.

Definition 42 shows the protocol of the three firewall solution as ex-
pressed using the improved model. Figure 4.18 show the corresponding ideal
functionality.

Definition 42 (The protocol of the three firewall architecture πfw).
party tck:

• “Input”: Upon first activation by message (input,m) from Z, save m.

• “Fetch”: Upon second activation by message (output) from Z,

– call Ffw-net(fetch, {fw1, fw2, fw3}), save the message m correspond-
ing to fwi as (m, i);

– if there are two entries (m, i) and (−m, i) on the tape, delete both.

• “Send”: Upon third activation by message (output) from Z, call
Ffw-net(send, (fw1,m), (fw2,m), (fw3,m)) ifm was saved previously. Delete
m.

86

• “Output”: Upon fourth activation by message (output) from Z, if there
are two saved entries (m, i) and (m′, i′) with m ≡ m′ and i 6= i′: delete
both messages and output m. If i, i′ 6= 1, save (−m, 1), else if i, i′ 6= 2,
save (−m, 2), else if i, i′ 6= 3, save (−m, 3).

• “RoundOK”: Upon fifth activation by message (output) from Z, send
(RoundOK) to Fclock.

party fwk:

• “Fetch”: Upon second activation by message (output) from Z,

– call Ffw-net(fetch, tc1, tc2) and save the message m corresponding
to tci as (m, i);

– for all saved messages (m, i): compute Ffwk
(m, i, s) = (m′, i′, s′)

and replace that (m, i) with (m′, i′).

• “Output”: Upon fourth activation by message (output) from Z, if there
are two messages (m, i) and (m′, i′), call Ffw-net(send, (tci,m), (tci′ ,m

′)).

• “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

Theorem 27. πparallel realizes Ffw-ideal in the F fw,δ
net -hybrid model.

Proof. We prove the lemma via game hopping, starting from the real model.
In each step we will modify the ideal functionality and argue that the
modification is indistinguishable. We will w.l.o.g. assume that fw3 is corrupted.
Encapsulate the network in a new machine S, introduce dummies for all fwi

and hwi, and construct a new machine Ffw-ideal which connects the dummy
machines with their counterparts in the (now simulated) real network. Modify
Ffw-ideal step-wise:

1. Introduce variables to keep state for the firewalls. When receiving
(input,m) through hwk, evaluate the firewall functionalities Ffw1 and
Ffw2 , update the respective firewall states and save the output packets p1

and p2 in a list Qk as (in, 1, p1, 2δ) and (in, 2, p2, 2δ). This modification
stores additional information but does not alter the communication
and is thus indistinguishable.

2. When being advised to output a message p for a party hwk by the
simulator, only do so if there is an entry (in, i, p, d) in Qk and delete
that entry. Every message scheduled by the simulator in this manner
was output by one of the firewalls in its simulation. Consequently,
this message is also stored in Qk. The real protocol party fwk will
internally delete all messages it outputs. Thus, this modification is
indistinguishable.

87

The ideal functionality of the firewall architecture Fδfw-ideal

Maintain a list of scheduled packets for each direction: Q1,Q2. Let w.l.o.g
fw3 be the corrupted party. In each case, if there are multiple entries to
choose from, pick the first.

• Upon receiving (input,m, tck) from Fwrap: Compute the firewall
functions and update the internal states. Let the outputs of fw1

and fw2 be p′ and p′′. Store (in, 1, p′, 2δ) and (in, 2, p′′, 2δ) in Qk if
there is no entry (missing, 1, p′, 0) or (missing, 2, p′′, 0) respectively.
Send (input,m, tck) to the adversary.

• Upon receiving (output, tck) from Fwrap:

– If there are two entries (in, 1, p′, 0) and (in, 2, p′, 0) in Qk, erase
the corresponding entries from the queue and output p′ to tck.

– Else: if there is an entry (deliver, i, p, d) in Qk remove it. Check
if there is another entry (in, i′, p, d′) in Qk with i 6= i′. If so,
remove that entry too, if not, add an entry (missing, |i−3|, p, 0)
to Qk.

• Upon receiving (RoundComplete) from Fwrap: Replace each entry
(in, i, p, d) (or deliver, i, p, d) with d > 0 in Q with (in, i, p, d− 1) (or
(deliver, i, p, d) and send (RoundComplete) to the adversary.

• Upon receiving (output, p,tck) from the adversary: if there is an
entry (in, i, p, d) in Qk, replace it by (deliver, i, p, d).

Figure 4.18: The ideal functionality of the three firewall architecture expressed
using the improved model.

88

3. When a packet p is output based on any entry (. . . , i, p, d) in Qk,
check if there is another entry (. . . , j, p, d) with i 6= j. If so, delete
that entry as well. If not, add an entry (missing, |i − 3|, p, d) to Qk.
Further, when receiving (input,m) through hwk and evaluating the
firewall functionalities, before saving the resulting packets p1 and p2,
check if there is an entry (missing, 1, p1, 2δ) or (missing, 2, p2, 2δ) in Qk.
If there is, remove that entry and do not save the resulting packet. This
modification is indistinguishable as Ffw-ideal now implements the exact
behaviour of hw1 and hw2.

4. Add Fwrap as a wrapper around Ffw-ideal. When receiving (RoundComplete)
from Fwrap, decrease the delay value d of each entry in Q1 and Q2 by
1. Send (RoundComplete) to the simulator. When being advised to
output a packet p for party hwk by the simulator, instead of out-
putting the packet immediately, replace the corresponding entry in Qk
by (deliver, i, p, d). When being asked to provide output for party hwj

by Fwrap, check if there is an entry in Qj with d = 0. If so, output
that packet. If not, check if there is an entry marked for delivery. If so,
output the corresponding packet. Always perform the output according
to the mechanism described in Step 3.

The simulator’s simulation of the real network is not perfect after transforma-
tion step 4. Concretely, S is not notified of the fourth activation (“output”) of
honest protocol parties. However, as we argued in the proof of Theorem 26,
the output decision is made during prior activations. Hence, by S announcing
output early to Ffw-ideal, S and Ffw-ideal perfectly emulate the real protocol.
(Fwrap delivers output after the fourth activation only.) �

89

Chapter 5

Modeling Electronic Payment

The following chapter is based on joint work with Dirk Achenbach, Timon
Hackenjos, Alexander Koch, Bernhard Löwe, Jeremias Mechler and Jörn
Müller-Quade. Parts of the included content have already been presented in
the following work:

• Dirk Achenbach, Roland Gröll, Timon Hackenjos, Alexander Koch,
Bernhard Löwe, Jeremias Mechler, Jörn Müller-Quade, Jochen Rill:
Your Money or Your Life—Modeling and Analyzing the Security of
Electronic Payment in the UC framework. Financial Cryptography
2019 [7]

• Alexander Koch: Cryptographic protocols from physical assumptions.
PhD Thesis 2019 [77]

5.1 Introduction

“Your money, or your life!”—surrender your belongings or face death. This
threat was used by bandits in England until the 19th century [85]. As
people often needed to carry all their valuables with them when traveling,
banditry was a lucrative (albeit dangerous) endeavor. Today, electronic money
transfer (EMT) systems alleviate the need to have one’s valuables at hand,
but introduce new threats as well. Instead of resorting to violence, modern
thieves may compromise their victim’s bank account. Once they are widely
deployed, insecure EMT systems are notoriously difficult to transition away
from—magnetic stripes are still in use today. The current state-of-the-art
payment standard EMV (short for Europay International, MasterCard and
VISA, also known as “Chip and PIN”) improves on this, but falls short of
providing a secure solution to payment (or money withdrawal), as shown by
its many weaknesses described in literature.

Among these are practical attacks, such as 1. “cloning” chip cards by
pre-computing transaction messages (so-called “pre-play attacks”) [18], 2. dis-

90

abling the personal identification number (PIN) verification of stolen cards
by intercepting the communication between chip card and POS device [84],
3. tricking an innocent customer into accepting fraudulent transactions by
relaying transaction data from a different POS (so-called “relay attacks”) [43].

Upon close examination of these attacks one finds that these issues
mainly stem from two major false assumptions which are baked into the
design of the EMV protocol: 1. that the communication between all protocol
participants (e.g. between the chip card and the POS) cannot be intercepted
and 2. that the POS (or the ATM) itself is trustworthy. Even though these
assumptions are critical for the security of EMV, they are not explicitly
stated in the standardization documents [45, 46, 47]. We suggest that this is
mainly because EMV has been created by a functionality-focused engineering
process in which problems are fixed as they occur and features are added
when necessary, rather than a design process that uses formal models and
techniques. Modern cryptographic protocols in contrast are designed by
first providing a formal description of the protocol, explicitly stating all
necessary assumptions and then giving a proof of security. This does not
make cryptographic protocols unbreakable, but it does make their potential
breaking points explicit. Therefore, we argue that it is necessary to start
developing electronic payment protocols by using the same methodology of
rigorous formal modeling as has already been established in cryptography.

5.2 Related Work

Secure Human-Server Communication Basin et al. give an enumera-
tion of minimal topologies of channels between a human (restricted in its
abilities), a trusted server, a possibly corrupted intermediary and a trusted
device, that realize an authenticated channel between the human and the
server. There, the authors model the setting of four entities, namely a human
(restricted in its abilities), a trusted server, a possibly corrupted intermediate
platform and an additional trusted device, such as a user’s smartphone, to
which the human may have direct secure channels. They give a complete
enumeration of the minimal channel topologies between these entities that
achieve an authenticated channel between the human and the server. Our
work differs in two main aspects: Their model uses either fully secure or
untrusted channels only and cannot account for just authenticated or just
confidential communication, which is important in our setting due to the
presence of CCTV cameras or shoulder-surfing. For example, we assume that
everything displayed at the ATM or a user’s smartphone is not confidential,
while entering a PIN at the PIN pad can be done in a confidential way, by
suitably covering the pad in the process. Second, our model is based on
the UC framework, which gives stronger guarantees and composability, as
well as security for concurrent and interleaved execution, compared to the

91

stand-alone setting they consider.

Alternative Hardware Assumptions As we will see later in Section 5.3.2,
the confirmation of payment information by the user is an important sub-
problem we aim to solve for achieving secure payment. A possible solution
is “Display TAN” [19] providing a smartcard with a display to show the
transaction data. However, wide-spread adoption is still not in reach anytime
soon. Smart-Guard [40] uses such smartcards with a display together with an
encrypting keyboard fixed to the card to achieve a functionality which may
be used for payment. These strong hardware assumptions allow for flexible
trust assumptions, accounting for several combinations of trusted/hacked
status of the involved devices. Their protocol comes with a formally verified
security proof, albeit not in the UC framework. For our construction we do
not propose a new kind of hardware device, but rely on the user’s smartphone.

Ecash and Cryptocurrencies Besides human-server payment protocols,
there is also electronic cash, first invented by [30], and modern decentralized
cryptocurrencies, such as Bitcoin [52], which can be used to transfer money.
In general, these have very different design goals, as they care to establish an
electronic money system with certain anonymity/pseudonymity properties,
without the possibility to double-spend and in particular, without a trusted
bank. In contrast, we are concerned with the authenticated transmission
of the transaction data from a human user to the bank. To the best of our
knowledge, there is no UC-based model of electronic payment as presented
in our work.

There are many different forms of electronic payment with differing goals,
such as electronic cash schemes and cryptocurrencies. It is important to
note that, beside the correct and extensive formal modeling of payment, our
work focuses on the secure establishment of what can be described as an
authenticated channel of a human user to the bank via certain devices and
channels (plus the extra needed to account for money transfer), to overcome
the many problems of EMV-based payment. In particular, we do not model
the amount of money, or the money being electronically transferred to other
users. For electronic cash systems with formal security proofs, see e.g. [30,
13, 16, 10, 61]. Trolin [96] models ecash with an ideal UC functionality, which
may issue/spend coins, and check for double-spending.

EMV. EMV is not only a single payment protocol, but a complete protocol
suite for electronic payment (cf. [45, 46, 47]). With more than 700 pages for
the basic specification and 4000 additional pages for the VISA specification
alone, EMV is sometimes criticized as too complex [8]. Protocols that are
EMV-compliant might just implement the EMV interface while using another
secure protocol. This means that, while there are multiple attacks against

92

the EMV payment protocol, not every protocol with EMV in its name is
automatically insecure. In addition to the attacks mentioned previously, there
are other attacks as described by Chothia et al. [32] and Emms et al. [44].

Anderson et al. [9] discuss whether EMV is a monolithic system, even
reducing the possibilities for innovation. Since we use the UC framework for
our model, we inherently support non-monolithic, modular systems. Sub-
protocols that UC-realize each other can be exchanged for one another.
Furthermore, [9] explore the possibility to use smartcards (as used by EMV)
for other applications. Following a similar goal, we give a formalization of
signature cards within our model and show limits to using such cards, see
Section 5.4.2.

Degabriele et al. [39] investigate the joint security of encryption and
signatures in EMV using the same key-pair. A scheme based on elliptic
curves (as it is used in EMV) is proven secure in their model. However,
as they conclude, their proof does not eliminate certain kinds of protocol-
level attacks. Cortier et al. [35] present an EMV-compliant protocol using
trusted enclaves and prove the security of their protocol using TAMARIN
[95]. Both approaches lack the modularity, composability and security for
parallel execution provided by the UC framework.

5.3 A Formal Model for Electronic Payment

As a basis for our model, observe the process of withdrawing cash at an
automated teller machine (ATM). First, there is the bank and its customer,
Alice. Second, there is the money dispensing unit inside the ATM. Assuming
authenticated communication from Alice to the bank and from the bank
to the money dispensing unit, secure payment is easy: Alice communicates
the amount of cash she needs and the identity of the money dispensing unit
she expects to receive the cash from. The bank then instructs the money
dispensing unit to dispense the money. However, Alice is a human and
therefore cannot perform cryptographic operations required for a classical
channel establishment protocol. Thus, Alice needs another party which offers
a user interface to her and communicates with the bank, namely an ATM.

This does not only apply to cash withdrawal but can be extended to
electronic money transfer (EMT) in general. To this end, think of Alice as
the initiator of a transaction and the money dispensing unit as the receiver.
The process of money withdrawal can now be framed as a payment of money
from Alice’s account to the account of the money dispensing unit (which,
upon receiving money, promptly outputs cash) using the ATM as an (input)
device. The same works for the point of sale: here, the device’s owner (e.g.
the supermarket) is the receiver. The model must not be restricted to one
initiator and one receiver however, but instead generally must allow for
multiple initiators and receivers. This is important to be able to capture

93

attacks where an adversary attempts to relay a transaction to a different
receiver than originally intended. A corrupted ATM could, for example, try
to relay a message intended for one money dispensing unit to a different one
(a different receiver) in another ATM and thus let a different person collect
Alice’s money.

Regarding our adversarial model, as discussed earlier, we make no as-
sumption about the trustworthiness of the ATM whatsoever and do assume
that the adversary has control over all communication. We do make certain
assumptions regarding the trustworthiness of different protocol participants.
First, we assume the money dispensing unit (or receiver in general) to be
trusted. If it is under adversarial control, the adversary could simply dispense
money at will. Second, since our work focuses on the challenges that arise
from the interaction of humans with untrustworthy devices over insecure
communication, we do not model the bank’s book-keeping and therefore
assume the bank to be incorruptible. Third, for reasons of simplicity, our
model only considers a single bank, even though in practice most transactions
involve at least two banks. This is justified, however, as banks in general can
communicate securely with each other.

5.3.1 Modeling Electronic Payment in the UC framework

In the following, to simplify the model, we consider the case of static cor-
ruption, where parties may only be corrupted prior to protocol execution.
Extending our work to adaptive corruption is left for future work.

We denote the set of initiators as SI, the set of receivers as SR, the set of
devices as SD and the bank as B. We also define a mapping D : SR → SD of
receivers to single devices (D(R)) to explicitly name which device belongs to
which receiver.

In order to model the adversary’s probability of successfully attacking
credentials like PINs, we introduce a parametrized distribution D. Let X
denote the event of a successful attack. Then D : A→ FX maps a value d
(e.g. the amount) from a domain A (e.g. Q) to a probability mass function
fd,X ∈ FX over {confirm, reject}. An adversary’s success probability
of correctly guessing a four-digit PIN chosen uniformly at random with
one try could be modeled as follows: D(m$) = fX for all m$ ∈ Q with
fX(confirm) = 1

10000 , fX(reject) = 9999
10000 . D could also map different d ∈ A

to different fX,d, modeling that transactions with small amounts require less
protection than ones with bigger amounts. FD is the ideal functionality F
parametrized with D. Ideal functionalities may have additional parameters,
either implicit or explicit ones passed as arguments, e.g. FD(A,B).

In the best possible scenario, ideal payment would work as follows: the
initiator submits his desired transaction data to an ideal functionality, which
then notifies the bank and the receiver about who paid which amount of
money to whom without involvement of the adversary whatsoever. In our

94

adversarial model, no payment protocol realizes this strong ideal functionality:
an attacker who controls all communication will at least be able to observe
that a transaction takes place, even if he cannot see or change its contents.
What is more, such a strict security definition would ignore the fact that
in all payment protocols which rely on the initiator being protected by a
short secret (like a PIN), an attacker always has a small chance of success by
guessing the secret correctly.

Our ideal functionality for electronic payment is thus designed with
regards to the following principles: 1. The adversary always gains access
to all transaction data. An electronic payment operation can be secure
(that is all participants of the transaction get notified about the correct and
non-manipulated transaction data) without the transaction data being secret.
2. The adversary can always successfully change the transaction data at
will with a small probability (e.g. if he guesses the PIN correctly). 3. The
payment operation occurs in three stages. In the first stage, the initiator
inputs his intended transaction data which the adversary can change at will.
This models that a corrupted input device will always be able to change the
human initiator’s transaction data, even if it will be detected at a later stage.
In the second and third stage, the receiver and the bank are notified about
the transaction data. The resulting functionality is depicted in Figure 5.1.

5.3.2 Confirmation is Key

Since the human initiator of a transaction can never be sure that an input
device correctly processes his transaction data, he needs a way of confirming
the transaction data with the bank before the transaction is processed. We
formalize this confirmation mechanism within the ideal functionality FCONF

(specified in Figure 5.2). FCONF is a two-party functionality which allows
a sender to transmit a message and the receiver of the message to confirm
or reject it. As with the ideal payment functionality, the adversary gets
the chance to force a confirmation with a certain probability, modeling the
insecurity inherent to real-world protocols which use short secrets. Note that
he can always force the confirmation to be rejected.

To realize FPAY, we need authenticated communication from the bank
to the receiver, so that the receiver can be notified of the transaction. For
most real-world payment protocols, this authenticated communication is easy
to establish, since receivers are electronic devices and not humans. In the
case of cash withdrawal, the bank owns the money dispensing unit and can
pre-distribute cryptographic keys to establish authenticated communication.

Using FCONF and FAUTH [21], we propose a protocol πPAY which realizes
FPAY. This protocol is informally depicted in Figure 5.3.

Theorem 28. Let I, B, R, and D(R) ITMs, where I is human, and B
and R are honest. Then, πPAY, informally depicted in Figure 5.3, UC-

95

The Ideal Functionality for Electronic Payment FPAY,D(I,B,R).

Parametrized by a set of receivers SR, a designated receiver R ∈ SR, a
set of initiators SI, an initiator I ∈ SI, the bank B and a parametrized
distribution D.
Initialize I ′ = I, R′ = R, attacked = no.
Assertion: At any time, I, I ′ ∈ SI and R,R′ ∈ SR. If the assertion is
violated, halt.

Phase 1: Collecting Information
1. Upon receipt of message (transfer, sid , R,m$) from I: Send

(sid , I, R,m$) to the adversary, receive (sid , I ′, R′,m′$) and out-
put (input-received, sid , I ′, R′,m′$) to B.

Phase 2: Confirmation and Execution
2. Resume upon instruction by the adversary.
3. If I ′ is honest, (I ′, R′,m′$) 6= (I,R,m$) and attacked = no, halt.
4. Make a public delayed output of (received, sid , I ′,m′$) to R′.

Phase 3: Ensuring Consistency
5. Resume upon instruction by the adversary and make a public

delayed output of (processed, sid , I ′, R′,m′$) to B. Halt upon
confirmation by the adversary.

Attack

• Upon receiving an input (attack, sid) in Phase 2 from the adversary,
sample an element b ∈ {confirm, reject} according to D(m′$). If
b = confirm, set attacked = yes, otherwise set attacked = no.
Return (attack, sid , attacked) to the adversary. Ignore all further
attack queries.

Figure 5.1: The ideal functionality FPAY for electronic payment.

96

The Ideal Functionality for Confirmation FCONF,D(S,C)

Parameters: The message sender S, the respective confirmer C and a
parametrized distribution D.
Initialize attacked = no, initiated = no, completed = no.

• Upon receiving (initiate, sid , C,m) from ITI S, make a public
delayed output of (initiate, sid , S,m) to C and set initiated =
yes. Ignore all subsequent initiate messages.

• Upon receiving (reply, sid , S, b) from ITI C when initiated = yes,
completed = no and b ∈ {confirm, reject}: Make a public delayed
output of (answer, sid , C, b) to S. Upon confirmation from the
adversary, set completed = yes and halt.

• Upon receiving (force-confirm, sid) from the adversary, assert
that C is honest, initiated = yes, completed = no and attacked =
no. If this holds, set attacked = yes and sample an element
b ∈ {confirm, reject} according to D(m). If b = confirm,
set completed = yes and make a public delayed output of
(answer, sid , C, confirm) to S and halt upon confirmation by the
adversary. Otherwise, return (fail, sid) to the adversary.

• Upon receiving (force-reject, sid) from the adversary, assert that
C is honest, initiated = yes, completed = no and attacked = no.
If this holds, set attacked = yes and completed = yes, make a
public delayed output of (answer, sid , C, reject) to S and halt
upon confirmation by the adversary. Otherwise, return (fail, sid)
to the adversary.

Figure 5.2: The ideal functionality for confirmation of messages.

97

I D(R) B R output

(transfer, R,m$)Phase 1:
(transfer, I, R,m$)

(input-received, I, R,m$)

(initiate, I, (I, R,m$))Phase 2:
(answer, B, confirm)

(pay, I,m$)

(received, I,m$)

(completed, R)Phase 3:
(processed, I, R,m$)

Figure 5.3: The protocol πPAY realizing FPAY,D(I,B,R) using FCONF,D(B, I),
FAUTH(B,R) and FAUTH(R,B), the latter two depicted as . The use
of an imperfect FCONF,D is depicted via . The protocol is between the
human initiator I, the ATM D(R), the bank B and the money dispenser R.
The protocol proceeds in three phases, namely (1) the information collection
phase, (2) the confirmation and execution phase and (3) the phase which
ensures a consistent view on what happened.

realizes FPAY,D(I,B,R) in the FAUTH(B,R),FAUTH(R,B),FCONF,D(B, I)-
hybrid model.

Proof. To proof our statement, we consider a series of hybrid experiments Hi,
starting with the real execution between the environment Z, the real-world
(dummy) adversary A and the real protocol parties in H0. We gradually
change the execution until we end with the execution of the ideal protocol
for FPAY between the environment Z, the simulator S and dummy parties
for FPAY in H5. We give a specific simulator for each of the steps, such that
each step is indistinguishable (even perfectly so) from the previous one. Due
to the transitivity of indistinguishability, it then follows that the real and
ideal execution are perfectly indistinguishable.

Hybrid H0. This denotes the real execution of πPAY between Z, the ad-
versary A and real protocol parties.

Hybrid H1. For H1 we make the following changes. First, we encapsulate
the parties and ideal functionalities from the real protocol within a new
Interactive Turing Machine (ITM) which we call S1 (the simulator). Second,
we add a dummy party for each party from the real protocol. These dummy
parties interact with an ideal functionality F1 that relays all inputs to the

98

simulator and receives back outputs. S1 just simulates the behavior of the
real protocol and performs outputs via F1 as necessary.

We argue that H1 and H2 are perfectly indistinguishable. As the ideal
functionality F1 immediately reports inputs to S1 and allows it to make
arbitrary outputs in the name of all parties, S1 is able to perfectly simulate
the real parties’ protocol.

Hybrid H2. H2 is identical to H1, except that F1 is replaced with the ideal
functionality F2 that works as follows:

• Behave like FPAY for Phase 1 (Collecting Information).

• Do not allow direct outputs of input-received-messages from S2 in
the name of B.

S2 is the same as S1 with the exception that, if I is corrupted, S2 inputs the
(transfer)-message himself upon instruction of Z

We argue that H2 and H1 are perfectly indistinguishable. With the
restrictions imposed on the simulator by the new ideal functionality, two
deviations become possible: either B outputs a different value in H2 than in
H1 or, when I is corrupted, it does not send the message to start a transfer
when instructed. The second case can be handled by S2. It remains to argue
that B’s output remains unchanged.

If I inputs a (transfer)-message, F2 sends (sid , I, R,m$) to the simulator
which contains all of the original information and allows him to continue his
perfect simulation of the real protocol. With this knowledge, S2 can advise
F2 to output the input-received-message to B at the right time.

Hybrid H3. In H3 we make the following changes to the ideal functionality:

• Behave like FPAY for Phase 2 (Confirmation and Execution).

• Add the attack interface of FPAY.

• Do not allow direct outputs of received-messages in the name of R.

S3 works exactly as S2.
We argue that H3 and H2 are perfectly indistinguishable. The main

difference between the two hybrid models is that the simulator can no longer
directly influence the output of the receiver. If the adversary is instructed
to perform an attack on the confirmation channel in the real protocol, the
simulator can use the attack interface to simulate the attack. This, however,
is no problem, since the execution of Phase 2 only resumes upon instruction
of the simulator and he can thus instruct an attack beforehand and cause
the ideal functionality to accept changed transaction details from Phase 1.

99

In all other cases, the simulator can simply instruct the ideal functionality
to continue, based on the output of the receiver in the simulation of the real
protocol. If any changes to I, R or m$ are necessary, the simulator can do so
via the ideal functionality in Phase 1.

The output of the receiver is thus the same in H2 and H3.

Hybrid H4. Hybrid H4 is identical to H3, except that F3 is replaced with
FPAY,D. This means, that the simulator can no longer make outputs of
processed-message in the name of B.

We argue that H4 and H3 are perfectly indistinguishable. This is trivially
the case, since the simulator will only instruct the ideal functionality to
deliver the processed-message to B if he sees this message in his simulation
of the real protocol. If any changes to I, R or m$ have been necessary, the
simulator would have performed them in the previous stages.

�

Even though this might seem unsurprising at first, this allows to break
down the complexity of realizing FPAY into two easier problems: realizing
a confirmation mechanism between the initiator and the bank and realizing
authenticated communication between the receiver and the bank.

5.3.3 How Our Model Captures Existing Attacks

One of our main motivations for establishing a new formal model for electronic
payment is to make trust assumptions explicit in order to detect unrealistic
ones which enable practical attacks like [18], [84] and [43]. Thus, our model
needs to be able to capture these kinds of attacks. Protocols analyzed within
our framework must be insecure if they allow for these attacks. In the
following, we explain how this is achieved.

Changing Transaction Data. The adversary controlling all communi-
cation can easily change transaction data. Protocols which allow this un-
conditionally are insecure in our model, since FPAY only allows to change
the transaction data successfully if the adversary mounts a successful attack
(i.e. guesses the initiator’s PIN in the real world) or the (possibly changed)
initiator is corrupted.

Relay Attacks. The aim of a relay attack [43] is to get Alice to authorize
an unintended transaction, which benefits the attacker, by relaying legitimate
protocol messages between the point of sale (POS) device she uses to pay for
goods to another POS device which Alice uses at the same time. If Alice’s
input device is corrupted, she cannot know with certainty which transaction
data she authorizes. Depending on the point of view, this amounts to either
changing the receiver of a transaction initiated by Alice or changing the

100

initiator of a transaction initiated by a third party Carol. Thus, in our model,
this attack is just a special case of changing transaction data.

Pre-Play Attacks. Pre-play attacks [18] basically rely on two facts: 1. once
unlocked, smartcards, as used in the EMV protocol, can be coerced into
generating message authentication codes (MACs) for arbitrary transaction
messages and 2. that even honest ATMs use predictable “unpredictable
numbers”. Cards interacting with a corrupted ATM can be used to easily
generate additional MAC tags. This attack can be modeled by using a
global smartcard functionality (which we present in Section 5.4.2) within the
Generalized Universal Composability (GUC) extension of the basic Universal
Composability (UC) framework. In the GUC framework, the environment
(and thus indirectly the adversary) can even access the smartcard in the name
of honest parties in protocol sessions different from the challenge session.
Thus, a payment protocol that GUC-realizes FPAY must in particular be
secure against all kinds of attacks that result from injecting pre-calculated
(sensitive) data into other sessions. Protocols which do not prevent these
kinds of attacks (e.g. by enforcing some sort of freshness on the protocol
messages) cannot be secure in our model.

5.4 Towards Realizing Secure Electronic Payment

The core challenge when realizing FPAY is the authenticated transmission
of transaction data from the (human) initiator to the bank. This can also
be captured formally: the functionality FPAY can be used to implement the
ideal authenticated communication functionality FAUTH between initiator
and bank (up to the attack success probability captured by the distribution
D) by encoding the message as an amount to be transmitted. We use
this insight to establish several guidelines for the design of secure payment
protocols: First, we state a necessary condition for protocols that realize
FPAY: they must use setup assumptions that are strong enough to realize
authenticated communication between the (human) initiator and the bank.
Protocol designers can use this condition as an easily checkable criterion for
the insecurity of payment protocols. Second, we state several setups that are
sufficient for realizing FPAY.

Analogous to FCONF as shown in Figure 5.2, we define an ideal functional-
ity FAUTH,D that allows the adversary to change the message transmitted or
force the transmission of messages according to some parametrized probability
distribution D.

For the sake of an easier exposition, we consider ideal functionalities
like FAUTH,D that model the transmission of only one message. If multiple
messages have to be transmitted over the same “channel”, this model does
not adequately capture reality, as an adversary would be able to attack each

101

Ideal functionality FAUTH,D(S,R)

Parametrized by a sender S, a receiver R and a parametrized probability
distribution D. Initially, set initiated = 0, attacked = 0.

• Upon receiving an input (Send, S,R, sid ,m) from ITI S,
set initiated = 1 and generate a public delayed output
(Sent, S,R, sid ,m) to R and halt.

• Upon receiving (force-send, sid ,m′, v) from the adversary: If
initiated = 1 and the (Sent, S,R, sid ,m) output has already
been delivered to R or if attacked = 1, do nothing. Otherwise,
sample r ← D(m′) and set attacked = 1. If r = v, output
(Sent, S,R, sid ,m′) to R and halt. Otherwise, output (fail, sid)
to the adversary.

Figure 5.4: Ideal functionality FAUTH,D.

transmission independently. In this case, ideal functionalities for channels
like FSC (cf. [23]) can be adapted the same way.

5.4.1 Requirements for Secure Electronic Payment

In this section, we establish necessary and sufficient criteria for secure elec-
tronic payment. Let FAUTH,D(I,R) denote the imperfect ideal authenticated
communication functionality between parties I and R, and FSMT,D(I,R)
the corresponding ideal secure message transfer functionality (where correct
guessing according to D results in loss of secrecy and authenticity).

Throughout this section, let I, B, R be ITMs, where I is human1, B is
honest and D a parametrized distribution.

First, we can show that FPAY can be used to realize FAUTH,D and vice-
versa.

Theorem 29. There exists a protocol that UC-realizes FAUTH,D(I,R) in the
FPAY,D(I, ?, R)-hybrid model, where ? is an arbitrary protocol party.

Proof (Sketch). First, we outline the description of π. Upon receiving input
(Send, S,R, sid ,m), S starts an interaction with FPAY where S acts as initia-
tor, receiver and device whileR acts as the bank. S sends (transfer, sid ′, S,m)
to FPAY. When receiving (processed, sid ′, S,R,m), R outputs (Sent, I, sid ,m′).

We now consider how to simulate when Z has changed either the sender
or the amount (corresponding to the message). In case FAUTH,D asks S

1Note that our results hold for arbitrary I.

102

for confirmation about the delayed output, do nothing. When receiving
(attack, v) from Z, S sends (force-send, sid , amount′, v) to FAUTH,D. If
the output is (fail, sid), S reports (fail, sid) to Z. If the attack is successful,
B outputs the correct value in the interaction with FPAY.

�

Note that an authenticated channel between R and S (corresponding to
bank and receiver) is not necessary as π executes FPAY only until the first
message to R (corresponding to the bank) is sent.

Theorem 30. There exists a protocol π in the FAUTH,D(I,B),FAUTH(B,R)-
hybrid model that UC-realizes FPAY(I,R,B,D) for uncorrupted B.

Proof (Sketch). We can use a modified version of πPAY as π. We describe
the necessary changes. Starting with πPAY as shown in Figure 5.3, we first
replace Phase I with a message (sid , Pi, Pk,m$) over FAUTH,D from Pi to B.
We also omit Steps 1-2 in Phase II and abide to the protocol description for
the remaining protocol. �

In particular, Theorem 29 implies that protocols without any authen-
ticated communication or only between the bank and the receiver cannot
realize FPAY:

Corollary 2. Let π be a protocol that is in the FAUTH(B,R), FAUTH(R,B)-
hybrid model only (in particular, there is no authenticated communication
between I and B). Then there is no protocol ρ in the bare model such that ρπ

UC-realizes FPAY,D(I,B,R) if D admits the adversary at least a non-negligible
successful attack probability.

This insight can be generalized and gives a necessary condition: A protocol
π that realizes FPAY,D(I,B,R) must use setups that can be used to realize
FAUTH,D(I,B).

Theorem 31 (Necessary Requirements). Let F be a set of ideal functional-
ities. Let Π be the set of all subroutine-respecting protocols with the set of
protocol parties P ⊆ {I,R,B} that use only ideal functionalities in F . If
there is no protocol π ∈ Π such that πF realizes FAUTH,D(I,B), then there is
no protocol ρ ∈ Π such that ρF realizes FPAY,D(I,B,R).

Theorem 31 can be easily shown using Theorem 29 and the UC composi-
tion theorem:

Proof. Let F ′ ⊆ F . Suppose for the sake of contradiction that there exists a
protocol ρ ∈ Π such that ρF ′ ≥ FPAY(I,R,B,D) and for all protocols π ∈ Π,
it holds that πF ′ 6≥ FAUTH,D(I,B). By Theorem 29, there exists a protocol
τ ∈ Π that UC-realizes FAUTH,D(I,B) in the FPAY(I,R,B,D)-hybrid model.
By the UC composition theorem, it follows that τρF

′
≥ FAUTH,D(I,R). By

103

setting π := τρ, we obtain a contradiction that there is no protocol π ∈ Π
such that πF ′ UC-realizes FAUTH,D(I,B). �

Conversely, it is easy to see that FPAY,D can be realized by (also) using
e.g. FAUTH,D(I,B). We state several sufficient requirements in the following
theorem:

Theorem 32 (Sufficient Requirements). Let π be a protocol that UC-realizes

1. FAUTH,D(I,B), or

2. FSMT,D(B, I), or

3. FCONF,D(B, I).

Then, there exists a protocol ρ such that ρπ UC-realizes FPAY,D(I,B,R) in
the FAUTH(B,R), FAUTH(R,B)-hybrid model.

Proof (Sketch). (1) holds because FAUTH,D(I,B) can be used instead of
FCONF,D(B, I) in πPAY. (2) holds because FSMT,D(I,B) can be used to
realize FAUTH,D(I,B). (3) follows from Theorem 28. �

5.4.2 No Authentication Using Smartcards Without Addi-
tional Trust

By default, EMV uses smartcards containing shared secrets with the
bank in order to authenticate transactions. However, this only works if the
input device which accesses the smartcard (e.g. the automated teller machine
(ATM)) can be trusted. Otherwise, after the initiator enters his personal
identification number (PIN) to authorize a seemingly legitimate transaction,
the input device can present false (transaction) data to the smartcard (cf.
e.g. [18]).

In the following we prove the intuition that smartcards are not sufficient
for realizing FPAY. In Figure 5.5, we give a global signature card functional-
ity GSigCard in the Generalized Universal Composability (GUC) framework,
closely modeled after Gcert as defined by Hofheinz, Müller-Quade, and Unruh
[64]. In complete analogy to Fcert-auth [64], we also define an ideal functional-
ity Fsig-auth which uses GSigCard instead of Gcert as shared functionality. We
omit its formal description here, as it is very similar to the original version.

We can now prove that GSigCard cannot be used to realize any authenti-
cated communication, if one participant is human.

Theorem 33. In the setting of human-server communication, there is no
protocol π that GUC-realizes Fsig-auth in the GSigCard-hybrid model.

Proof (Sketch). Consider a protocol φsig-auth which realizes Fsig-auth using
GSigCard In order to authentically send a message m to the receiver, the

104

Global Signature Card Functionality GSigCard.

Implicitly parametrized by a security parameter λ and an EUF-CMA-
secure signature scheme Σ = (Gen,Sig,Vfy). Let seized , vk, sk denote
arrays with default value ⊥.

Conventions Whenever receiving input of the form (?, sid , ?) from a
party P with identity (PID, SID), check that SID = sid . In case of
a mismatch, ignore the query. Inputs from sub-parties are handled as
being from the respective main party.

Seize and Release On input (seize, sid) from Pi, set seized [Pi] = sid
if seized [Pi] = ⊥ and return (seized, sid) to Pi. Otherwise, ignore
the request. On input (release, sid) from Pi, set seized [Pi] = ⊥ if
seized [Pi] = sid and return (released, sid) to Pi. Otherwise, ignore the
request.

Initialization On input (KeyGen, sid) from Pi, check if seized [Pi] = sid .
Otherwise, abort. If vk[Pi] 6= ⊥, also abort. Generate (ski, vki) ←
Gen(1λ) and set vk[Pi] = vki and sk[Pi] = ski.

Public Key Retrieval On input (PublicKey, sid , Pj) from Pi, make
a public delayed output of (PublicKey, sid , Pj , vk[Pj]).

Signature Generation On input (Sign,m, sid) from party Pi: If
vk[Pi] = ⊥ or seized [Pi] 6= sid , return ⊥. Otherwise, continue. Compute
σ ← Sig(sk[Pi],m). Output (Signature, sid ,m, σ).

Figure 5.5: The ideal global signature card functionality GSigCard.

105

initiator I has to obtain a signature on m from GSigCard. In the setting of
human-server interaction, the initiator cannot do this himself must use an
immediate party instead, as the human cannot interface with the signature
card directly. However, unless the interface device D(I) is trusted, D(I) can
change the received m to an arbitrary m′. Thus, while φsig-auth can be used
for authenticated communication between D(I) and a recipient R, it cannot
be used for authenticated communication between I and R, unless D(I) is
trusted. �

Theorem 34. There exists no protocol π in the GSigCard,FAUTH(B,R),FAUTH(R,B)-
hybrid model that GUC-realizes FPAY(I,B,R) if I is human.

Proof. In Theorem 33 we established that GSigCard cannot be used for au-
thenticated communication, if one participant is human. From Theorem 31,
we know that establishing authenticated communication between I and B
is necessary for any protocol that wants to realize FPAY. The claim follows
directly from these observations. �

5.4.3 Realistic Assumptions

Protocols build on assumptions to achieve security. However, there often is
a huge discrepancy regarding to how realistic these assumptions are. EMV
relies on the security of the ATM which is often publicly accessible and offers
a large attack surface. Unpatched operating systems and exposed Universal
Serial Bus interfaces are only two examples for vulnerabilities that have been
exploited successfully. As explained in Section 5.3.2, a secure protocol can
be constructed by establishing a confirmation mechanism. However, if the
input device is corrupted, an additional device is required.

Such additional devices could for example be transaction authentication
number (TAN) generators or smartphones. In principle these allow for the
creation of protocols that are secure in our model. However, smartphones,
which are increasingly used to replace smartcards, regularly call attention
because of vulnerabilities. They are complex systems connected to the Internet
and are thus more vulnerable to attacks—especially if they are operated by
people without expertise in IT security. However, this dilemma can be resolved
by requiring trust in only one of the two devices. We call this property 1-of-2
(one-out-of-two) security (which is, in the case of authentication, also known
as multi-factor authentication). This means that a protocol is still secure if
one of the two devices is corrupted, no matter which one of them. We argue
that, in addition to realizing FPAY, payment protocols should support this
property in order to further reduce the attack surface.

106

5.5 On the Security of Current Payment Protocols

In this chapter, we use our acquired insights to analyze current protocols
for withdrawing cash, paying at the point of sale (POS), and online banking.
Table 5.1 summarizes our findings. Our model allows for a structured and
fast categorization of payment protocols on a conceptual level, even without
a detailed protocol description. Even though EMV is the most widely used
standard for payments, we do not elaborate on its security in this chapter.
As mentioned before, its design incorporates at least two assumptions that
do not hold, as several attacks have been demonstrated. Current payment
protocols such as Google Pay, Apple Pay, Samsung Pay, Microsoft Pay and
Garmin Pay provide an app that uses the EMV contactless standard to
communicate with existing POS devices via near-field communication [93, 97].
Since they rely on Consumer Device Cardholder Verification Method, the
user is authenticated by the mobile device exclusively. Currently, these apps
use a personal identification number (PIN), a fingerprint or face recognition
and thus do not incorporate a second device such as the POS device for
authentication. Therefore the security of the protocol is solely based on the
mobile device.

The protocols discussed in this section make additional implicit assump-
tions, which we believe to be plausible, but want to make explicit. These
include the following:

1. An additional trusted device beside the input device. This is a plausible
assumption if the device is simple, less so if it is a smartphone. However,
using an additional device could enable protocols to be 1-of-2-secure.

2. Authenticated communication between the initiator of a transaction
and an additional personal device. This is a realistic assumption, since
the initiator owns the device. Likewise the initiator can authenticate
themselves to the device, e.g. by unlocking the screen of a mobile device.

3. Confidential communication from the initiator to the automated teller
machine (ATM), which can be realized by covering the PIN pad with
one’s hand if the ATM is not compromised.

4. Confidential communication from the ATM to the bank. This can be
realized using public-key cryptography.

In the following, we examine multiple protocols for cash withdrawal and
online banking.

Cardless Cash. Cardless Cash [34] is an app-based protocol for cash
withdrawal offered by numerous banks in Australia. In its most simple
variant, it works as follows: After registration, the app can be used to create
a “cash code” by entering the desired amount and a phone number. The

107

phone number is used to send a PIN via SMS and allows to permit someone
else to withdraw cash. To dispense the cash, the PIN has to be entered at the
ATM alongside the cash code. The security of the protocol is solely based on
the ATM, since all relevant information is entered there and no additional
confirmation mechanism is established.

VR-mobileCash. VR-mobileCash [98] is another app-based protocol for
cash withdrawal offered by Volks- und Raiffeisenbanken, a German associ-
ation of banks. Upon registration, the user receives the mobile personal
identification number (mPIN), which has to be entered on the ATM later on
to confirm a transaction. To withdraw cash, the user has to enter the desired
amount into the app. After selecting mobile payment at the ATM, the ATM
shows a mobile transaction identification number (mTIN) which has to be
entered into the app. The ATM then shows the requested amount and asks
the user to enter the mPIN. If the mPIN is correct the ATM dispenses the
requested amount of cash.

Although not stated explicitly in the public documentation, the mobile
device has to be online during the transaction, as the ATM is informed about
the transaction data. If the mobile device is corrupted but the ATM is honest,
a user can detect an attack because he has to confirm the transaction by
entering the mPIN at the ATM and thus verifies the location of the ATM.
However, a corrupted ATM can employ a relay attack by displaying the
mTIN of another corrupted ATM and forwarding the entered mPIN to it thus
allowing the second corrupted ATM to dispense the cash. This could be fixed
by adding a serial number imprinted on the ATM which is also displayed in
the app after entering the mTIN. Thereby VR-mobileCash could potentially
realize FPAY and even be 1-of-2-secure.

chipTAN comfort. ChipTAN comfort [88] is a protocol for online banking
widely used in Germany. Here, the initiator uses a computer as an input device
and possesses two additional personal devices: a transaction authentication
number (TAN) generator and a smartcard. The TAN generator is used to
confirm transactions and thus realizes a confirmation mechanism. This works
as follows: First, a transaction has to be requested in the browser. Then,
the banking website shows a flickering code. The user puts the smartcard
into the TAN generator and scans the flickering code. After reviewing the
transaction data presented on the personal device, he presses a button which
reveals a TAN that has to be entered into the website.

This protocol satisfies all requirements for a secure realization of FPAY by
establishing a confirmation channel that allows a user to detect tampering of
the transaction data. What is more, the protocol potentially provides a form
of 1-of-2 security, since as long as either the input device or alternatively the
TAN generator together with the smartcard are uncorrupted, there exists a

108

Table 5.1: Comparison of different payment protocols. A protocol is marked
as offline, if the additional device does not require an Internet connection
during the payment process. The security of a protocol is put in parentheses
if it meets our requirements for a secure protocol but has not been proven
secure.

Protocol Offline Secure Applicable for

Cardless Cash X × Withdrawal
VR-mobileCash × × Withdrawal
chipTAN comfort X (X: 1-of-2) Online banking

photoTAN X (X: 1-of-2) Online banking
L-Pay (our scheme) X X: 1-of-2 Withdrawal, PoS

confirmation mechanism from the bank to the initiator. This is only true for
single transactions, however (see [89] for details). Collective bank transfers
using chipTAN comfort have been shown to be insecure [89], because the
TAN generator only displays summarized information about the transactions.
ChipTAN comfort with collective bank transfers also does not realize FCONF,
because the transaction data submitted over the confirmation channel are
incomplete.

photoTAN. PhotoTAN (or QR-TAN) is a variant of chipTAN comfort,
where the code to transmit data to the TAN generator is encrypted by
the bank. Furthermore, a smartphone can be used as an alternative to a
special-purpose TAN generator. In our model, this encryption does not have
an impact on security, since the transaction data is not confidential and is
displayed on the smartphone nonetheless. However, some banking apps for
photoTAN [41, 33] show the TAN immediately after scanning the code and
before the transaction data have been confirmed by the user. Thus, in the
scenario of cash withdrawal, an attacker that corrupted an ATM and deploys
a camera monitoring the ATM could change the submitted transaction data at
the ATM, read the TAN from the victim’s display and confirm the transaction
without the initiator’s consent.

5.6 Realizing Secure Electronic Payment

In Section 5.3.2, we gave a protocol πPAY that realizes FPAY,D(I,R,B) in the
FAUTH(B,R), FAUTH(R,B), FCONF,D(B, I)-hybrid model. While realizing
FAUTH between the bank and the receiver is simple, realizing FCONF,D(B, I)
in a way suitable for humans is a challenge under realistic trust assumptions.

The protocols in Section 5.5 use one or more additional devices, such
as smartphones, smartcards or optical code readers to give the initiator a

109

confirmation capability. Yet all cash withdrawal protocols still need a trusted
automated teller machine (ATM).

In the following, we improve on this by presenting a simple offline protocol
called L-Conf (informally described by πL-Conf in Figure 5.6). It is inspired by
chipTAN and photoTAN which use similar mechanisms. Our protocol is secure
even if either the additional device A, such as the initiator’s smartphone,
or the input device is compromised. We call this property one-out-of-two
security, formally defined as follows:

Definition 43 (One-out-of-two security). Let X1, X2 be Boolean variables,
π a protocol and F an ideal functionality. We say that π UC-realizes F
with one-out-of-two security relative to X1 and X2, if X1 ∨X2 implies that π
UC-realizes F.

πL-Conf can be used with πPAY to realize FPAY. We call the resulting
protocol L-Pay. The protocol starts with a setup phase: The bank B and
the initiator I agree on a personal identification number (PIN) and the
initiator’s smartphone shares keys with the bank for an authenticated secret-
key encryption scheme.

The main part, depicted in Figure 5.6, consists of the execution of two pro-
tocols π1 and π2, each realizing FCONF(B, I) under different assumptions. By
combining their results, the composed protocol πL-Conf realizes FCONF(B, I)
even if either the input device or the additional device is compromised.

In π1, the bank first encrypts the transaction data together with a fresh
one-time transaction authentication number (TAN). The ciphertext is then
transmitted to the initiator’s input device, displayed appropriately, transferred
to the smartphone (e.g. by scanning a QR code) and is decrypted. The TAN
is only shown after the transaction data has been checked and explicitly
confirmed by the initiator. Afterwards, the initiator enters the TAN into the
input device.

In order to achieve security even if the initiator’s smartphone is corrupted,
π2 requires the initiator to also check and confirm the transaction by entering
his PIN into the input device (confidentially over FConfid), which is then sent
to the bank confidentially. Only if the bank receives both the correct TAN and
PIN, it considers the transaction to be confirmed. Now, if only the initiator’s
smartphone is corrupted, the adversary is able to present false transaction
data to them or even to perform the confirmation himself. However, this
would be noticed immediately, since the transaction data shown on the input
device would be wrong and the initiator would not enter his PIN. Conversely,
if only the input device is malicious and displays wrong transaction data, the
initiator will notice this using their smartphone.

Theorem 35. Let I, B, D(R) and A be ITMs, where I is human. Let S
be the domain of D1,D2, let π1 UC-realize FCONF,D1(B, I) if A is honest

110

I A D(R) B output

Enc(I,m$, R,nonce)
Part 1:

(I,m$, R)

(fetch)

(nonce)

(nonce)
(if b = 1:)

(nonce)

(I,m$, R)
Part 2:

(PIN)
(if b = 1:)

(PIN)

(answer, B, confirm)

Figure 5.6: Main phase of πL-Conf realizing FCONF,D(B, I) using authenticated
and confidential channels drawn as and , resp. The protocol is between
the human initiator I, his personal device A, the ATM D(R) and the bank
B. The bit b ∈ {0, 1} indicates, whether I wants to confirm, hence (nonce)
and (PIN) are only sent in this case.

and let π2 UC-realize FCONF,D2(B, I) if D(R) is honest. Then, πL-Conf UC-
realizes FCONF,D3(B, I) in the FAUTH(A, I), FAUTH(I, A), FAUTH(D(R), I),
FConfid(I,D(R)), FConfid(D(R), B)-hybrid model where for all x ∈ S:

D3(m$)(x) :=

{
max (D1(m$)(confirm),D2(m$)(confirm)) x = accept

1−max(D1(m$)(confirm),D2(m$)(confirm)) x = reject

Proof (Sketch). The protocol πL-Conf (Figure 5.6) can be interpreted as the
sequential composition of two confirmation protocols π1 (Part 1) and π2 (Part
2). It holds that π1 realizes FCONF(B, I) if A is honest, and that π2 realizes
FCONF,D(B, I) if D(R) is honest (omitting the unnecessary message from B
to D(R) to initiate Part 2). Let b ∈ {confirm, reject} denote the initiator’s
input and let b1, b2 ∈ {confirm, reject} denote the outputs of π1 and π2 as
received by B, respectively. After having received b1 and b2, B outputs b′,
which is confirm if b1 = b2 = confirm, and reject otherwise. By definition,
b′ = confirm while b = reject holds with probability upper-bounded
by max (D1(m$)(confirm),D2(m$)(confirm)). Thus, πL-Conf UC-realizes
FCONF,D3(B, I) with one-out-of-two security relative to the assumptions that
A or D(R) is honest, respectively. �

111

Chapter 6

Conclusion

In this thesis, we investigated the question, if and how the cryptographic
methodology for the development of secure protocols can be applied to real-
world systems. To this end, we considered three different real-world use cases:
computer networks, data outsourcing and electronic payment.

Computer Networks Computer networks can be elegantly described
within the basic Universal Composability (UC) framework [22]. Because
of its composition theorem, which allows to break down complex network
structures into smaller components which can be analyzed separately, the
UC framework seems especially well-suited to this task.

In Chapter 4 we gave hybrid functionalities to model the network structure
and showed how to construct ideal functionalities to describe the intended
security properties of the network. We validated these tools by formally
analyzing the security of networks consisting of multiple firewalls and specially
designed trusted hardware components in the presence of one or more actively
malicious firewalls. We found that, the naïve serial concatenation of two
firewalls is insecure, whereas the serial concatenation of three firewalls is
secure, when firewalls are stateless. The parallel combination of three firewalls
is the most secure solution.

If availability guarantees need to be expressed, the extension to the basic
UC framework by Katz et al. [75] must be used. This posed a particular
challenge, since the extension introduced a lot of modeling artifacts which
need to be incorporated. We showed how this can be somewhat mitigated
by creating a wrapping layer around ideal functionalities. We gave a generic
hybrid functionality to model any network structure as well as a guideline to
using Katz et al.’s framework for modeling computer networks. The model
was validated by (re-)analyzing a solution to the Byzantine Generals Problem
and proving that the parallel combination of three firewalls is available.

In summary, modeling and analyzing real-world computer networks using
the UC framework does seem feasible—if one does not need to express

112

availability. The basic UC framework is expressive enough to capture all
required properties of computer networks and easy enough to use (at least
for experts). Modeling availability however, is extremely complicated and
error-prone (even for experts). A lot more research has to be done in this
area, before it becomes really feasible to apply to real-world systems.

Data Outsourcing Even though data outsourcing has been investigated
by cryptographic research in the past, there is no common consensus which
security model or notion should be used to express protocols in this field.
Instead there exist a plethora of security models and notions from which to
choose, each with wildly different security goals.

Thus, we first presented a game-based framework that aims to unify the
security notions of outsourcing schemes. To this end we precisely defined
outsourcing schemes with queries and introduced the security notions Data
Privacy, Query Privacy, and Result Privacy. While Data Privacy and Query
Privacy capture independent objectives, we showed that both Data Privacy
and Query Privacy are necessary for keeping the results of a query to an
outsourced data set private. We defined generalized versions of these notions
to capture constructions with weaker security properties. For validation, we
showed how security notions for existing outsourcing schemes fit into our
framework.

However, when applied to the cryptographic cloud file system CryFS,
the new model turned out to be insufficient. This was mainly because, a
particular security goal, which traditionally has not been considered for
outsourcing schemes like searchable encryption, and was thus also missing
from our unified model, is very important for file systems: integrity. So, we
introduced a novel model for the security and integrity of cloud file systems
Using this model, we were able to prove the security and integrity of CryFS.

In summary, whether modeling and analyzing real-world outsourcing
schemes is feasible or not, mostly depends on the specific use case. Our
unified framework is easy to use but can only capture two security goals: data
privacy and query privacy. This is enough for most outsourcing schemes from
cryptographic research (like searchable encryption) but fails when applied to
use cases in which other security properties are important (such as integrity).
Our model for security and integrity of cloud file systems, which we developed
as a consequence, is also easy to use, generic and designed to be applicable
for a wide range of file systems. However, it is easy to imagine that there
exist real-world outsourcing schemes for which completely different security
properties are important and which would require the development of yet
another model.

Electronic Payment As with computer networks, the UC framework is
also well-suited for the use for electronic payment, especially because of its

113

composition theorem.
Payment protocols typically involve a human user who is not capable of

performing cryptographic operations and therefore needs an intermediate
device (e.g. an automated teller machine (ATM)) to interface with the
protocol, which can not always be trusted. In this work we introduced a formal
model for the security of such protocols. In particular, we did not assume all
intermediate devices as trusted and we specifically considered that case that
the initiator of a transaction is human. We gave an ideal functionality for
secure electronic payment which can be used as a guideline for the development
of future payment protocols. With our model, we then developed a set of basic
requirements for electronic payment protocols without which no protocol
can be considered secure. We were also able to formalize the intuition
that smartcards (such as bank cards) are not sufficient for establishing
authenticated channels using the Generalized Universal Composability (GUC)
framework [24].

To validate these results, we discussed different current payment protocols
and find that most do not realize these requirements. We then specified a
protocol called L-Pay (based upon chipTAN and photoTAN), which uses an
additional smartphone and which can be proven secure in our model if either
the ATM or the smartphone is honest.

In summary, analyzing real-world electronic payment protocols does seem
partly feasible. We established a set of requirements for secure electronic
payments in general, which can directly be applied to any such protocol as a
kind of litmus test for (in-)security. We can use these requirements to reason
why EMV in particular is not a secure electronic payment protocol according
to our definition. However, modeling EMV directly in our framework seems
impossible, since even the basic specification of EMV is over thousand pages
long. Simpler electronic payment protocols (such as L-Pay) can directly be
modeled within our framework, however.

Directions for Future Research Having an experienced cryptographer
in every development team does not seem to be realistic in the foreseeable
future. Thus, whether or not cryptographic methodology will be used for
real-world protocols in the future will mostly depend on improvements in
usability. While having a software supported process is surely the ultimate
goal, there are several intermediate steps necessary to get there.

One is to continue research into easy-to-use security models and notions
for specific use cases with clear guidelines on how to apply them. Modeling
availability guarantees is particularly difficult. While this work has established
some tools to make this task easier in one particular use case, more research
into simpler models for time-based security guarantees is required before
this methodology can really be applied to real-world systems. This could
also be used to extend our model for electronic payment with the ability to

114

model time-based security measures (such as timeouts). Using Katz et al.’s
extension for this task does not seem feasible. How to proceed with security
models for outsourcing schemes is also an open question. One the one hand,
it seems plausible to try to unify our model for data and query privacy with
our model for security and integrity of file systems. This would make it easier
for protocol designers to chose the right security model. One the other hand,
trying to cover too many use cases within one security model could make its
application more complex. Thus, another direction for research could be to
identify more classes of outsourcing schemes (such as searchable encryption
and file systems) and specifically tailor a security model to their needs.

115

Author’s Publications

1. Ingmar Baumgart, Matthias Börsig, Niklas Goerke, Timon Hackenjos,
Jochen Rill, Marek Wehmer: Who Controls Your Energy? On the
(In)Security of Residential Battery Energy Storage Systems. IEEE
SmartGridComm 2019 [12].

2. Dirk Achenbach, Roland Gröll, Timon Hackenjos, Alexander Koch,
Bernhard Löwe, Jeremias Mechler, Jörn Müller-Quade, Jochen Rill:
Your Money or Your Life—Modeling and Analyzing the Security of
Electronic Payment in the UC framework. Financial Cryptograpy
2019 [7]

3. Sebastian Messmer, Jochen Rill, Dirk Achenbach, Jörn Müller-Quade:
A Novel Cryptographic Framework for Cloud File Systems and CryFS,
a Provably-Secure Construction. DBSec 2017 [83]

4. Dirk Achenbach, Anne Borcherding, Bernhard Löwe, Jörn Müller-
Quade, Jochen Rill: Towards Realising Oblivious Voting ICETE (Se-
lected Papers) 2016 [6]

5. Dirk Achenbach, Bernhard Löwe, Jörn Müller-Quade, Jochen Rill:
Oblivious Voting: Hiding Votes from the Voting Machine in Bingo
Voting. SECRYPT 2016 [5]

6. Dirk Achenbach, Matthias Huber, Jörn Müller-Quade, Jochen Rill:
Closing the Gap: A Universal Privacy Framework for Outsourced Data.
BalkanCryptSec 2015 [4].

7. Dirk Achenbach, Jörn Müller-Quade, Jochen Rill: Synchronous Univer-
sally Composable Computer Networks. BalkanCryptSec 2015 [2].

8. Dirk Achenbach, Jörn Müller-Quade, Jochen Rill: Universally Compos-
able Firewall Architectures Using Trusted Hardware. BalkanCryptSec
2014 [3].

9. Rolf Haynberg, Jochen Rill, Dirk Achenbach, Jörn Müller-Quade: Sym-
metric Searchable Encryption for Exact Pattern Matching using Directed
Acyclic Word Graphs. SECRYPT 2013 [62]

116

References

[1] Dirk Achenbach. On provable security for complex systems. Karlsruhe,
2016. url: http://dx.doi.org/10.5445/IR/1000052204%20;
%20http://nbn-resolving.de/urn:nbn:de:swb:90-522047%20;
%20http://d-nb.info/1084112426/34%20;%20http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000052204.

[2] Dirk Achenbach, Jörn Müller-Quade, and Jochen Rill. “Synchronous
Universally Composable Computer Networks”. In: Cryptography and
Information Security in the Balkans - Second International Conference,
BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015, Revised
Selected Papers. 2015, pp. 95–111. doi: 10.1007/978-3-319-29172-
7_7. url: http://dx.doi.org/10.1007/978-3-319-29172-7_7.

[3] Dirk Achenbach, Jörn Müller-Quade, and Jochen Rill. “Universally
Composable Firewall Architectures using Trusted Hardware”. In: Cryp-
tography and Information Security in the Balkans. Ed. by Berna Ors and
Bart Preneel. Vol. 9024. Lecture Notes in Computer Science. To appear,
preprint version online at http://eprint.iacr.org/2015/099.pdf.
Springer Berlin Heidelberg, 2015. isbn: 978-3-319-21355-2.

[4] Dirk Achenbach et al. “Closing the Gap: A Universal Privacy Framework
for Outsourced Data”. In: Cryptography and Information Security in
the Balkans - Second International Conference, BalkanCryptSec 2015,
Koper, Slovenia, September 3-4, 2015, Revised Selected Papers. 2015,
pp. 134–151. doi: 10.1007/978-3-319-29172-7_9.

[5] Dirk Achenbach et al. “Oblivious Voting: Hiding Votes from the Voting
Machine in Bingo Voting”. In: Proceedings of the 13th International Joint
Conference on e-Business and Telecommunications (ICETE 2016) -
Volume 4: SECRYPT, Lisbon, Portugal, July 26-28, 2016. 2016, pp. 85–
96. doi: 10.5220/0005964300850096. url: https://doi.org/10.
5220/0005964300850096.

[6] Dirk Achenbach et al. “Towards Realising Oblivious Voting”. In: E-
Business and Telecommunications - 13th International Joint Conference,
ICETE 2016, Lisbon, Portugal, July 26-28, 2016, Revised Selected

117

http://dx.doi.org/10.5445/IR/1000052204%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-522047%20;%20http://d-nb.info/1084112426/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052204
http://dx.doi.org/10.5445/IR/1000052204%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-522047%20;%20http://d-nb.info/1084112426/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052204
http://dx.doi.org/10.5445/IR/1000052204%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-522047%20;%20http://d-nb.info/1084112426/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052204
http://dx.doi.org/10.5445/IR/1000052204%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-522047%20;%20http://d-nb.info/1084112426/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052204
https://doi.org/10.1007/978-3-319-29172-7_7
https://doi.org/10.1007/978-3-319-29172-7_7
http://dx.doi.org/10.1007/978-3-319-29172-7_7
http://eprint.iacr.org/2015/099.pdf
https://doi.org/10.1007/978-3-319-29172-7_9
https://doi.org/10.5220/0005964300850096
https://doi.org/10.5220/0005964300850096
https://doi.org/10.5220/0005964300850096

Papers. 2016, pp. 216–240. doi: 10.1007/978-3-319-67876-4_11.
url: https://doi.org/10.1007/978-3-319-67876-4%5C_11.

[7] Dirk Achenbach et al. “Your Money or Your Life - Modeling and
Analyzing the Security of Electronic Payment in the UC Framework”.
In: Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-
22, 2019, Revised Selected Papers. Ed. by Ian Goldberg and Tyler
Moore. Vol. 11598. Lecture Notes in Computer Science. Springer, 2019,
pp. 243–261. doi: 10.1007/978-3-030-32101-7_16. url: https:
//doi.org/10.1007/978-3-030-32101-7%5C_16.

[8] Ross J. Anderson. Security engineering – a guide to building dependable
distributed systems. 2nd ed. Wiley, 2008, pp. I–XL, 1–1040. isbn: 978-
0-470-06852-6.

[9] Ross J. Anderson et al. “Might Financial Cryptography Kill Financial
Innovation? – The Curious Case of EMV”. In: Financial Cryptography
and Data Security, FC 2011. Ed. by George Danezis. Vol. 7035. LNCS.
Springer, 2011, pp. 220–234. isbn: 978-3-642-27575-3. doi: 10.1007/
978-3-642-27576-0_18.

[10] Foteini Baldimtsi et al. “Anonymous Transferable E-Cash”. In: PKC
2015. Ed. by Jonathan Katz. Vol. 9020. LNCS. Springer, 2015, pp. 101–
124. isbn: 978-3-662-46446-5. doi: 10.1007/978-3-662-46447-2_5.

[11] David A. Basin, Sasa Radomirovic, and Michael Schläpfer. “A Complete
Characterization of Secure Human-Server Communication”. In: IEEE
28th Computer Security Foundations Symposium, CSF 2015. Ed. by
Cédric Fournet, Michael W. Hicks, and Luca Viganò. IEEE Computer
Society, 2015, pp. 199–213. isbn: 978-1-4673-7538-2. doi: 10.1109/
CSF.2015.21.

[12] I. Baumgart et al. “Who Controls Your Energy? On the (In)Security
of Residential Battery Energy Storage Systems”. In: 2019 IEEE In-
ternational Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). 2019, pp. 1–6.

[13] Mira Belenkiy et al. “Compact E-Cash and Simulatable VRFs Revisited”.
In: Pairing-Based Cryptography – Pairing 2009. Ed. by Hovav Shacham
and Brent Waters. Vol. 5671. LNCS. Springer, 2009, pp. 114–131. isbn:
978-3-642-03297-4. doi: 10.1007/978-3-642-03298-1_9.

[14] Mihir Bellare and Chanathip Namprempre. “Authenticated encryp-
tion: Relations among notions and analysis of the generic composition
paradigm”. In: Journal of Cryptology 21.4 (2008), pp. 469–491.

[15] S.M. Bellovin and W.R. Cheswick. “Network firewalls”. In: Communi-
cations Magazine, IEEE 32.9 (1994), pp. 50–57. issn: 0163-6804. doi:
10.1109/35.312843.

118

https://doi.org/10.1007/978-3-319-67876-4_11
https://doi.org/10.1007/978-3-319-67876-4%5C_11
https://doi.org/10.1007/978-3-030-32101-7_16
https://doi.org/10.1007/978-3-030-32101-7%5C_16
https://doi.org/10.1007/978-3-030-32101-7%5C_16
https://doi.org/10.1007/978-3-642-27576-0_18
https://doi.org/10.1007/978-3-642-27576-0_18
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1109/CSF.2015.21
https://doi.org/10.1109/CSF.2015.21
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1109/35.312843

[16] Eli Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments
from Bitcoin”. In: 2014, pp. 459–474. doi: 10.1109/SP.2014.36.

[17] Bloomberg alleges Huawei routers and network gear are backdoored. Ars
Technica. https://arstechnica.com/gadgets/2019/04/bloomberg-
claims-vodafone-found-backdoors-in-huawei-equipment-vodafone-
disagrees. Apr. 2019.

[18] Mike Bond et al. “Chip and Skim: Cloning EMV Cards with the Pre-play
Attack”. In: 2014, pp. 49–64. doi: 10.1109/SP.2014.11.

[19] Borchert IT-Sicherheit UG. Display-TAN Mobile Banking: Secure and
Mobile. 2018. url: http : / / www . display - tan . com/ (visited on
09/18/2018).

[20] Christian Cachin, Silvio Micali, and Markus Stadler. “Computationally
Private Information Retrieval with Polylogarithmic Communication”.
English. In: Advances in Cryptology — EUROCRYPT ’99. Ed. by
Jacques Stern. Vol. 1592. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1999, pp. 402–414. isbn: 978-3-540-65889-4. doi:
10.1007/3-540-48910-X_28. url: http://dx.doi.org/10.1007/3-
540-48910-X_28.

[21] Ran Canetti. “Universally composable security: a new paradigm for
cryptographic protocols”. In: Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on. Oct. 2001.

[22] Ran Canetti and Marc Fischlin. “Universally Composable Commit-
ments”. English. In: Advances in Cryptology – CRYPTO 2001. Ed. by
Joe Kilian. Vol. 2139. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2001, pp. 19–40. isbn: 978-3-540-42456-7. doi: 10.
1007/3-540-44647-8_2. url: http://dx.doi.org/10.1007/3-540-
44647-8_2.

[23] Ran Canetti and Hugo Krawczyk. “Universally Composable Notions
of Key Exchange and Secure Channels”. In: Advances in Cryptology
- EUROCRYPT 2002, International Conference on the Theory and
Applications of Cryptographic Techniques, Amsterdam, The Netherlands,
April 28 - May 2, 2002, Proceedings. Ed. by Lars R. Knudsen. Vol. 2332.
Lecture Notes in Computer Science. Springer, 2002, pp. 337–351. isbn:
3-540-43553-0. doi: 10.1007/3- 540- 46035- 7_22. url: https:
//doi.org/10.1007/3-540-46035-7%5C_22.

[24] Ran Canetti et al. “Universally Composable Security with Global Setup”.
In: 4th Theory of Cryptography Conference, TCC 2007. Ed. by Salil P.
Vadhan. Vol. 4392. LNCS. Springer, 2007, pp. 61–85. isbn: 3-540-70935-
5. doi: 10.1007/978-3-540-70936-7_4.

119

https://doi.org/10.1109/SP.2014.36
https://arstechnica.com/gadgets/2019/04/bloomberg-claims-vodafone-found-backdoors-in-huawei-equipment-vodafone-disagrees
https://arstechnica.com/gadgets/2019/04/bloomberg-claims-vodafone-found-backdoors-in-huawei-equipment-vodafone-disagrees
https://arstechnica.com/gadgets/2019/04/bloomberg-claims-vodafone-found-backdoors-in-huawei-equipment-vodafone-disagrees
https://doi.org/10.1109/SP.2014.11
http://www.display-tan.com/
https://doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/3-540-46035-7%5C_22
https://doi.org/10.1007/3-540-46035-7%5C_22
https://doi.org/10.1007/978-3-540-70936-7_4

[25] David Cash, Alptekin Küpçü, and Daniel Wichs. “Dynamic Proofs of
Retrievability Via Oblivious RAM”. In: J. Cryptol. 30.1 (Jan. 2017),
pp. 22–57. issn: 0933-2790. doi: 10.1007/s00145-015-9216-2.

[26] David Cash et al. “Dynamic searchable encryption in very-large databases:
Data structures and implementation”. In: Network and Distributed Sys-
tem Security Symposium, NDSS. Vol. 14. 2014.

[27] David Cash et al. “Highly-scalable searchable symmetric encryption
with support for boolean queries”. In: Advances in Cryptology–CRYPTO
2013. Springer, 2013, pp. 353–373.

[28] Suresh Chari, Charanjit S Jutla, and Arnab Roy. “Universally Compos-
able Security Analysis of OAuth v2. 0.” In: IACR Cryptology ePrint
Archive 2011 (2011), p. 526.

[29] Melissa Chase and Emily Shen. Substring-Searchable Symmetric En-
cryption. Cryptology ePrint Archive, Report 2014/638. http://eprint.
iacr.org/2014/638. 2014.

[30] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Electronic
Cash”. In: CRYPTO ’88. Ed. by Shafi Goldwasser. Vol. 403. LNCS.
Springer, 1988, pp. 319–327. isbn: 3-540-97196-3. doi: 10.1007/0-387-
34799-2_25.

[31] Benny Chor et al. “Private Information Retrieval”. In: J. ACM 45.6
(Nov. 1998), pp. 965–981. issn: 0004-5411. doi: 10.1145/293347.
293350. url: http://doi.acm.org/10.1145/293347.293350.

[32] Tom Chothia et al. “Relay Cost Bounding for Contactless EMV Pay-
ments”. In: Financial Cryptography and Data Security, FC 2015. Ed.
by Rainer Böhme and Tatsuaki Okamoto. Vol. 8975. LNCS. Springer,
2015, pp. 189–206. isbn: 978-3-662-47853-0. doi: 10.1007/978-3-662-
47854-7_11.

[33] Commerzbank. Das photoTAN-Lesegerät. url: https://www.commerzbank.
de/portal/media/a-30-sonstige-medien/pdf/themen/sicherheit-
1/Flyer_Lesegeraet.pdf (visited on 12/13/2018).

[34] Commonwealth Bank of Australia. Cardless Cash. 2018. url: https:
//www.commbank.com.au/digital-banking/cardless-cash.html
(visited on 09/25/2018).

[35] Véronique Cortier et al. “Designing and Proving an EMV-Compliant
Payment Protocol for Mobile Devices”. In: 2017 IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2017. IEEE, 2017, pp. 467–480.
isbn: 978-1-5090-5762-7. doi: 10.1109/EuroSP.2017.19. url: http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
7961955.

120

https://doi.org/10.1007/s00145-015-9216-2
http://eprint.iacr.org/2014/638
http://eprint.iacr.org/2014/638
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
http://doi.acm.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-662-47854-7_11
https://www.commerzbank.de/portal/media/a-30-sonstige-medien/pdf/themen/sicherheit-1/Flyer_Lesegeraet.pdf
https://www.commerzbank.de/portal/media/a-30-sonstige-medien/pdf/themen/sicherheit-1/Flyer_Lesegeraet.pdf
https://www.commerzbank.de/portal/media/a-30-sonstige-medien/pdf/themen/sicherheit-1/Flyer_Lesegeraet.pdf
https://www.commbank.com.au/digital-banking/cardless-cash.html
https://www.commbank.com.au/digital-banking/cardless-cash.html
https://doi.org/10.1109/EuroSP.2017.19
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7961955
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7961955
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7961955

[36] Reza Curtmola et al. “Searchable Symmetric Encryption: Improved
Definitions and Efficient Constructions”. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security. CCS
’06. Full version available at https://eprint.iacr.org/2006/210.
Alexandria, Virginia, USA: ACM, 2006, pp. 79–88. isbn: 1-59593-518-5.
doi: 10.1145/1180405.1180417.

[37] Ivan Damgård and Kasper Dupont. Universally Composable Disk En-
cryption Schemes. Cryptology ePrint Archive, Report 2005/333. http:
//eprint.iacr.org/. 2005.

[38] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. “Perfectly
secure oblivious RAM without random oracles”. In: Theory of Cryptog-
raphy. Springer, 2011, pp. 144–163.

[39] Jean Paul Degabriele et al. “On the Joint Security of Encryption
and Signature in EMV”. In: CT-RSA 2012. Ed. by Orr Dunkelman.
Vol. 7178. LNCS. Springer, 2012, pp. 116–135. isbn: 978-3-642-27953-9.
doi: 10.1007/978-3-642-27954-6_8.

[40] Michael Denzel, Alessandro Bruni, and Mark Dermot Ryan. “Smart-
Guard: Defending User Input from Malware”. In: 2016 Intl IEEE
Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE Computer So-
ciety, 2016, pp. 502–509. isbn: 978-1-5090-2771-2. doi: 10.1109/UIC-
ATC - ScalCom - CBDCom - IoP - SmartWorld . 2016 . 0089. url: http :
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
7814735.

[41] Deutsche Bank. photoTAN – schnell und einfach aktiviert. url: https:
//www.deutsche-bank.de/pfb/data/docs/Photo_TAN_Smartphone_
2.pdf (visited on 12/13/2018).

[42] Victor J. Dielissen and Anne Kaldewaij. “A simple, efficient, and flex-
ible implementation of flexible arrays”. In: Mathematics of Program
Construction: Third International Conference, MPC ’95 Kloster Irsee,
Germany, July 17–21, 1995 Proceedings. Ed. by Bernhard Möller. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, pp. 232–241. isbn: 978-3-
540-49445-4. doi: 10.1007/3-540-60117-1_13.

[43] Saar Drimer and Steven J. Murdoch. “Keep Your Enemies Close:
Distance Bounding Against Smartcard Relay Attacks”. In: Proceed-
ings of the 16th USENIX Security Symposium 2007. Ed. by Niels
Provos. USENIX Association, 2007. url: https : / / www . usenix .
org/conference/16th-usenix-security-symposium/keep-your-
enemies-close-distance-bounding-against.

121

https://eprint.iacr.org/2006/210
https://doi.org/10.1145/1180405.1180417
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7814735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7814735
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7814735
https://www.deutsche-bank.de/pfb/data/docs/Photo_TAN_Smartphone_2.pdf
https://www.deutsche-bank.de/pfb/data/docs/Photo_TAN_Smartphone_2.pdf
https://www.deutsche-bank.de/pfb/data/docs/Photo_TAN_Smartphone_2.pdf
https://doi.org/10.1007/3-540-60117-1_13
https://www.usenix.org/conference/16th-usenix-security-symposium/keep-your-enemies-close-distance-bounding-against
https://www.usenix.org/conference/16th-usenix-security-symposium/keep-your-enemies-close-distance-bounding-against
https://www.usenix.org/conference/16th-usenix-security-symposium/keep-your-enemies-close-distance-bounding-against

[44] Martin Emms et al. “Harvesting High Value Foreign Currency Transac-
tions from EMV Contactless Credit Cards Without the PIN”. In: 2014
ACM SIGSAC Conference on Computer and Communications Secu-
rity. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li. ACM, 2014,
pp. 716–726. isbn: 978-1-4503-2957-6. doi: 10.1145/2660267.2660312.
url: http://dl.acm.org/citation.cfm?id=2660267.

[45] EMV. Integrated Circuit Card Specifications for Payment Systems: Book
1. Application Independent ICC to Terminal Interface Requirements,
Version 4.3. 2011.

[46] EMV. Integrated Circuit Card Specifications for Payment Systems: Book
2. Security and Key Management, Version 4.3. 2011.

[47] EMV. Integrated Circuit Card Specifications for Payment Systems: Book
3. Application Specification, Version 4.3. 2011.

[48] Chris Erway et al. “Dynamic Provable Data Possession”. In: Proceed-
ings of the 16th ACM Conference on Computer and Communications
Security. CCS ’09. Chicago, Illinois, USA: ACM, 2009, pp. 213–222.
isbn: 978-1-60558-894-0. doi: 10.1145/1653662.1653688.

[49] Sergei Evdokimov, Matthias Fischmann, and Oliver Gunther. “Provable
security for outsourcing database operations”. In: Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference on.
IEEE. 2006, pp. 117–117.

[50] Ned Freed. “Behavior of and requirements for Internet firewalls”. In:
RFC 2979 (2000).

[51] Sebastian Gajek et al. “Universally composable security analysis of
TLS”. In: Provable Security. Springer, 2008, pp. 313–327.

[52] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin
Backbone Protocol: Analysis and Applications”. In: EUROCRYPT 2015.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer,
2015, pp. 281–310. isbn: 978-3-662-46802-9. doi: 10.1007/978-3-662-
46803-6_10.

[53] Craig Gentry and Zulfikar Ramzan. “Single-Database Private Informa-
tion Retrieval with Constant Communication Rate”. English. In: Au-
tomata, Languages and Programming. Ed. by Luís Caires et al. Vol. 3580.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,
pp. 803–815. isbn: 978-3-540-27580-0. doi: 10.1007/11523468_65.
url: http://dx.doi.org/10.1007/11523468_65.

[54] Kristian Gjøsteen. “Computer Security – ESORICS 2005: 10th Eu-
ropean Symposium on Research in Computer Security, Milan, Italy,
September 12-14, 2005. Proceedings”. In: ed. by Sabrina de Capitani
di Vimercati, Paul Syverson, and Dieter Gollmann. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005. Chap. Security Notions for

122

https://doi.org/10.1145/2660267.2660312
http://dl.acm.org/citation.cfm?id=2660267
https://doi.org/10.1145/1653662.1653688
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/11523468_65
http://dx.doi.org/10.1007/11523468_65

Disk Encryption, pp. 455–474. isbn: 978-3-540-31981-8. doi: 10.1007/
11555827_26.

[55] Eu-Jin Goh. “Secure Indexes.” In: IACR Cryptology ePrint Archive
2003 (2003). https://eprint.iacr.org/2003/216/, p. 216.

[56] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simu-
lation on Oblivious RAMs”. In: J. ACM 43.3 (May 1996), pp. 431–473.
issn: 0004-5411. doi: 10.1145/233551.233553. url: http://doi.acm.
org/10.1145/233551.233553.

[57] Shafi Goldwasser, YaelTauman Kalai, and GuyN. Rothblum. “One-Time
Programs”. In: Advances in Cryptology – CRYPTO 2008. Ed. by David
Wagner. Vol. 5157. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 39–56. isbn: 978-3-540-85173-8. doi: 10.1007/
978-3-540-85174-5_3. url: http://dx.doi.org/10.1007/978-3-
540-85174-5_3.

[58] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption”. In: Jour-
nal of computer and system sciences 28.2 (1984), pp. 270–299.

[59] Michael T Goodrich et al. “Oblivious RAM simulation with efficient
worst-case access overhead”. In: Proceedings of the 3rd ACM workshop
on Cloud computing security workshop. ACM. 2011, pp. 95–100.

[60] Mohamed G Gouda, Alex X Liu, and Mansoor Jafry. “Verification of
distributed firewalls”. In: Global Telecommunications Conference, 2008.
IEEE GLOBECOM 2008. IEEE. IEEE. 2008, pp. 1–5.

[61] Gunnar Hartung et al. “BBA+: Improving the Security and Applica-
bility of Privacy-Preserving Point Collection”. In: CCS 2017. Ed. by
Bhavani M. Thuraisingham et al. ACM, 2017, pp. 1925–1942. isbn:
978-1-4503-4946-8. doi: 10.1145/3133956.3134071.

[62] Rolf Haynberg et al. “Symmetric Searchable Encryption for Exact
Pattern Matching using Directed Acyclic Word Graphs.” In: SECRYPT.
2013, pp. 403–410.

[63] Amir Herzberg. “Folklore, practice and theory of robust combiners”. In:
Journal of Computer Security 17.2 (2009), pp. 159–189.

[64] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. “Univer-
sally composable zero-knowledge arguments and commitments from
signature cards”. In: 5th Central European Conference on Cryptology.
2005.

[65] Hejiao Huang and H. Kirchner. “Formal Specification and Verification of
Modular Security Policy Based on Colored Petri Nets”. In: Dependable
and Secure Computing, IEEE Transactions on 8.6 (Nov. 2011), pp. 852–
865. issn: 1545-5971. doi: 10.1109/TDSC.2010.43.

123

https://doi.org/10.1007/11555827_26
https://doi.org/10.1007/11555827_26
https://eprint.iacr.org/2003/216/
https://doi.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-540-85174-5_3
http://dx.doi.org/10.1007/978-3-540-85174-5_3
http://dx.doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1145/3133956.3134071
https://doi.org/10.1109/TDSC.2010.43

[66] Matthias Christoph Huber. Provable and practical security for database
outsourcing. Karlsruhe, 2016. url: http://dx.doi.org/10.5445/IR/
1000058652%20;%20http://nbn-resolving.de/urn:nbn:de:swb:
90-586522%20;%20http://d-nb.info/1113109289/34%20;%20http:
//digbib.ubka.uni-karlsruhe.de/volltexte/1000058652.

[67] Matthias Huber et al. “Cumulus4j: A Provably Secure Database Ab-
straction Layer”. In: CD-ARES Workshops. 2013, pp. 180–193.

[68] Kenneth Ingham and Stephanie Forrest. “A history and survey of
network firewalls”. In: University of New Mexico, Tech. Rep (2002).

[69] Kyle Ingols et al. “Modeling modern network attacks and counter-
measures using attack graphs”. In: Computer Security Applications
Conference, 2009. ACSAC’09. Annual. IEEE. 2009, pp. 117–126.

[70] Interactive Graphic: The NSA’s Spy Catalog. Spiegel Online Interna-
tional. http://www.spiegel.de/international/world/a-941262.
html. Dec. 2013.

[71] Seny Kamara and Charalampos Papamanthou. “Parallel and dynamic
searchable symmetric encryption”. In: Financial Cryptography and Data
Security. Springer, 2013, pp. 258–274.

[72] Myong H Kang, Ira S Moskowitz, and Stanley Chincheck. “The pump:
A decade of covert fun”. In: Computer Security Applications Conference,
21st Annual. IEEE. 2005, 7–pp.

[73] Jonathan Katz. “Universally Composable Multi-party Computation
Using Tamper-Proof Hardware”. In: Advances in Cryptology – EURO-
CRYPT 2007. Ed. by Moni Naor. Vol. 4515. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, pp. 115–128. isbn: 978-3-
540-72539-8. doi: 10.1007/978- 3- 540- 72540- 4_7. url: http:
//dx.doi.org/10.1007/978-3-540-72540-4_7.

[74] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. Chapman and Hall/CRC cryptography and network security. 2008,
pp. xviii + 534. isbn: 1-58488-551-3.

[75] Jonathan Katz et al. “Universally Composable Synchronous Computa-
tion”. In: Theory of Cryptography. Ed. by Amit Sahai. Vol. 7785. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 477–
498. isbn: 978-3-642-36593-5. doi: 10.1007/978-3-642-36594-2_27.
url: http://dx.doi.org/10.1007/978-3-642-36594-2_27.

[76] Louiza Khati, Nicky Mouha, and Damien Vergnaud. “Full Disk Encryp-
tion: Bridging Theory and Practice”. In: Topics in Cryptology – CT-RSA
2017: The Cryptographers’ Track at the RSA Conference 2017, San
Francisco, CA, USA, February 14–17, 2017, Proceedings. Ed. by Helena
Handschuh. Cham: Springer International Publishing, 2017, pp. 241–
257. isbn: 978-3-319-52153-4. doi: 10.1007/978-3-319-52153-4_14.

124

http://dx.doi.org/10.5445/IR/1000058652%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-586522%20;%20http://d-nb.info/1113109289/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000058652
http://dx.doi.org/10.5445/IR/1000058652%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-586522%20;%20http://d-nb.info/1113109289/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000058652
http://dx.doi.org/10.5445/IR/1000058652%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-586522%20;%20http://d-nb.info/1113109289/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000058652
http://dx.doi.org/10.5445/IR/1000058652%20;%20http://nbn-resolving.de/urn:nbn:de:swb:90-586522%20;%20http://d-nb.info/1113109289/34%20;%20http://digbib.ubka.uni-karlsruhe.de/volltexte/1000058652
http://www.spiegel.de/international/world/a-941262.html
http://www.spiegel.de/international/world/a-941262.html
https://doi.org/10.1007/978-3-540-72540-4_7
http://dx.doi.org/10.1007/978-3-540-72540-4_7
http://dx.doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-642-36594-2_27
http://dx.doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-319-52153-4_14

[77] Alexander Koch. Cryptographic protocols from physical assumptions.
Karlsruhe, 2019. url: http://dx.doi.org/10.5445/IR/1000097756.

[78] Kaoru Kurosawa and Yasuhiro Ohtaki. How to Construct UC-Secure
Searchable Symmetric Encryption Scheme. Cryptology ePrint Archive,
Report 2015/251. http://eprint.iacr.org/2015/251. 2015.

[79] Eyal Kushilevitz and Rafail Ostrovsky. “Replication is not needed:
Single database, computationally-private information retrieval”. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society. 1997, pp. 364–364.

[80] Romain Laborde et al. “Network security management: A formal evalua-
tion tool based on RBAC policies”. In: Network Control and Engineering
for QoS, Security and Mobility, III. Springer, 2005, pp. 69–80.

[81] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
Generals Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (July
1982), pp. 382–401. issn: 0164-0925. doi: 10.1145/357172.357176.
url: http://doi.acm.org/10.1145/357172.357176.

[82] Ueli Maurer. “Constructive cryptography – A new paradigm for security
definitions and proofs”. In: Theory of Security and Applications (TOSCA
2011). Ed. by S. Moedersheim and C. Palamidessi. Vol. 6993. Lecture
Notes in Computer Science. Springer-Verlag, Apr. 2011, pp. 33–56.

[83] Sebastian Messmer et al. “A Novel Cryptographic Framework for Cloud
File Systems and CryFS, a Provably-Secure Construction”. In: Data and
Applications Security and Privacy XXXI. Ed. by Giovanni Livraga and
Sencun Zhu. Cham: Springer International Publishing, 2017, pp. 409–
429. isbn: 978-3-319-61176-1.

[84] Steven J. Murdoch et al. “Chip and PIN is Broken”. In: 31st IEEE Sym-
posium on Security and Privacy, S&P 2010. IEEE Computer Society,
2010, pp. 433–446. isbn: 978-0-7695-4035-1. doi: 10.1109/SP.2010.33.
url: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=5504620.

[85] Old Bailey Proceedings Online, ed. Trial of JOHN BUCKLEY, THOMAS
SHENTON. Version 8.0. Sept. 1781. url: https://www.oldbaileyonline.
org/browse.jsp?div=t17810912-37 (visited on 09/22/2018).

[86] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A Framework
for Efficient and Composable Oblivious Transfer”. English. In: Advances
in Cryptology—CRYPTO 2008. Ed. by David Wagner. Vol. 5157. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 554–571. isbn: 978-3-540-85173-8. doi: 10.1007/978- 3- 540-
85174-5_31. url: http://dx.doi.org/10.1007/978-3-540-85174-
5_31.

125

http://dx.doi.org/10.5445/IR/1000097756
http://eprint.iacr.org/2015/251
https://doi.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
https://doi.org/10.1109/SP.2010.33
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5504620
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5504620
https://www.oldbaileyonline.org/browse.jsp?div=t17810912-37
https://www.oldbaileyonline.org/browse.jsp?div=t17810912-37
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-540-85174-5_31

[87] Benny Pinkas and Tzachy Reinman. “Oblivious RAM revisited”. In:
Advances in Cryptology–CRYPTO 2010. Springer, 2010, pp. 502–519.

[88] Postbank. Postbank chipTAN comfort. 2018. url: https : / / www .
postbank . de / privatkunden / chiptan - comfort . html (visited on
09/25/2018).

[89] RedTeam Pentesting GmbH. Man-in-the-Middle Attacks against the
chipTAN comfort Online Banking System. 2009. url: https://www.
redteam-pentesting.de/publications/2009-11-23-MitM-chipTAN-
comfort_RedTeam-Pentesting_EN.pdf (visited on 09/25/2018).

[90] Christoph L Schuba and Eugene H Spafford. “A reference model for
firewall technology”. In: Computer Security Applications Conference,
1997. Proceedings., 13th Annual. IEEE. 1997, pp. 133–145.

[91] Elaine Shi et al. “Oblivious RAM with O ((logN) 3) worst-case cost”. In:
Advances in Cryptology–ASIACRYPT 2011. Springer, 2011, pp. 197–
214.

[92] Radu Sion and Bogdan Carbunar. “On the computational practicality
of private information retrieval”. In: In Proceedings of the Network and
Distributed Systems Security Symposium. 2007.

[93] Smart Card Alliance. Contactless EMV Payments: Benefits for Con-
sumers, Merchants and Issuers. url: http://www.emv-connection.
com/downloads/2016/06/Contactless-2-0-WP-FINAL-June-2016.
pdf (visited on 12/17/2018).

[94] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical
Dynamic Searchable Encryption with Small Leakage. Cryptology ePrint
Archive, Report 2013/832. http://eprint.iacr.org/2013/832. 2013.

[95] Tamarin. Tamarin prover. 2018. url: https://tamarin- prover.
github.io/ (visited on 12/19/2018).

[96] Mårten Trolin. “A Universally Composable Scheme for Electronic Cash”.
In: INDOCRYPT 2005. Ed. by Subhamoy Maitra, C. E. Veni Madha-
van, and Ramarathnam Venkatesan. Vol. 3797. LNCS. Springer, 2005,
pp. 347–360. isbn: 3-540-30805-9. doi: 10.1007/11596219_28.

[97] Visa. Visa Token Service. url: https://usa.visa.com/partner-
with-us/payment-technology/visa-token-service.html (visited
on 12/17/2018).

[98] Volksbank Mittelhessen eG. VR-mobileCash: Geld abheben ohne Karte.
url: https://www.vb-mittelhessen.de/privatkunden/girokonto-
kreditkarten/infos- banking/geld- abheben- ohne- karte.html
(visited on 09/25/2018).

126

https://www.postbank.de/privatkunden/chiptan-comfort.html
https://www.postbank.de/privatkunden/chiptan-comfort.html
https://www.redteam-pentesting.de/publications/2009-11-23-MitM-chipTAN-comfort_RedTeam-Pentesting_EN.pdf
https://www.redteam-pentesting.de/publications/2009-11-23-MitM-chipTAN-comfort_RedTeam-Pentesting_EN.pdf
https://www.redteam-pentesting.de/publications/2009-11-23-MitM-chipTAN-comfort_RedTeam-Pentesting_EN.pdf
http://www.emv-connection.com/downloads/2016/06/Contactless-2-0-WP-FINAL-June-2016.pdf
http://www.emv-connection.com/downloads/2016/06/Contactless-2-0-WP-FINAL-June-2016.pdf
http://www.emv-connection.com/downloads/2016/06/Contactless-2-0-WP-FINAL-June-2016.pdf
http://eprint.iacr.org/2013/832
https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://doi.org/10.1007/11596219_28
https://usa.visa.com/partner-with-us/payment-technology/visa-token-service.html
https://usa.visa.com/partner-with-us/payment-technology/visa-token-service.html
https://www.vb-mittelhessen.de/privatkunden/girokonto-kreditkarten/infos-banking/geld-abheben-ohne-karte.html
https://www.vb-mittelhessen.de/privatkunden/girokonto-kreditkarten/infos-banking/geld-abheben-ohne-karte.html

[99] Yihua Zhang and Marina Blanton. “Efficient Dynamic Provable Posses-
sion of Remote Data via Update Trees”. In: Trans. Storage 12.2 (Feb.
2016), 9:1–9:45. issn: 1553-3077. doi: 10.1145/2747877.

127

https://doi.org/10.1145/2747877

	Introduction
	Motivation
	Our Contribution
	Structure of this Work

	Preliminaries
	General Definitions and Notation
	Game-based Security
	Simulation-based Security
	The Universal Composability Framework
	Synchronized Universal Composability
	Generalized Universal Composability

	Modeling Secure Data Outsourcing
	Introduction
	Related Work
	A Model for Outsourced Data
	Security Notions for Data Outsourcing Schemes
	Notation and Conventions
	Outsourcing Data
	Privacy Notions for Outsourced Data Sets

	Generalized Security Notions for Data Outsourcing Schemes
	Case Studies
	Private Information Retrieval
	Searchable Encryption using Directed Acyclic Word Graphs
	Indistinguishability under Independent Column Permutations
	Semantic Security Against Adaptive Chosen Keyword Attacks
	Adaptive Security for SSE

	A Security Model for Cryptographic File Systems
	Basic Definitions
	Modelling Non-Adaptive Security
	Modelling Adaptive Security
	Modelling Integrity
	Security Against Chosen Ciphertext Attacks

	Case Study: CryFS
	Data Structures, Blocks and Files
	Directory Structure
	Encryption and Integrity
	Proving the Security of CryFS

	Modeling Computer Networks
	Introduction
	Related Work
	Modeling Firewall Architectures
	Adversarial Model
	Trusted Hardware

	Serial Concatenation of Two Firewalls
	Parallel Composition of Two Firewalls
	Parallel Composition of Three Firewalls
	Serial Composition of Three or More Firewalls
	Improving the Model: Availability and Bigger Networks
	The Basic Tools
	Example: Byzantine Generals
	Firewalls Revisited

	Modeling Electronic Payment
	Introduction
	Related Work
	A Formal Model for Electronic Payment
	Modeling Electronic Payment in the UC framework
	Confirmation is Key
	How Our Model Captures Existing Attacks

	Towards Realizing Secure Electronic Payment
	Requirements for Secure Electronic Payment
	No Authentication Using Smartcards Without Additional Trust
	Realistic Assumptions

	On the Security of Current Payment Protocols
	Realizing Secure Electronic Payment

	Conclusion
	Author's Publications
	References

