Skip to main content
Log in

Conjunctival Melanoma: Current Treatments and Future Options

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Conjunctival melanoma is a rare tumor of the conjunctival epithelium with a heterogenous clinical presentation and a propensity for regional and distant metastatic spread. Guidelines for the treatment of local conjunctival melanoma are well-established, but there are no standard efficacious therapies for metastatic disease. Given that conjunctival melanoma is genetically similar to cutaneous melanoma and mucosal melanomas, targeted therapies effective in the treatment of these diseases, such as BRAF inhibitors and KIT inhibitors, may be effective in the treatment of patients with metastatic conjunctival melanoma. Other targeted small-molecule drugs in the drug development pipeline for the treatment of more prevalent melanomas could also be applicable to conjunctival melanoma. Furthermore, systemic immunotherapy treatments that are now a mainstay in the treatment of cutaneous melanoma, such as programmed cell death-1 and cytotoxic T lymphocyte-associated antigen-4 inhibitors, could also stand to benefit patients with metastatic conjunctival melanoma. Limited case reports provide clues about the effectiveness of both targeted small-molecule inhibitors and immunotherapy in patients with advanced local and metastatic conjunctival melanoma and give credence to the argument that conjunctival melanoma patients should be included in major trials studying new therapies in both cutaneous and mucosal melanomas where applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photo from the practice of Brian Marr, M.D.

Fig. 2

Photo from the practice of Brian Marr, M.D.

Similar content being viewed by others

References

  1. Shields CL, Shields JA. Ocular melanoma: relatively rare but requiring respect. Clin Dermatol. 2009;27:122–33.

    Article  PubMed  Google Scholar 

  2. McCartney ACE. Pathology of ocular melanomas. Br Med Bull. 1995;51:678–93.

    Article  CAS  PubMed  Google Scholar 

  3. Hu D-N, Yu G, McCormick SA, Finger PT. Population-based incidence of conjunctival melanoma in various races and ethnic groups and comparison with other melanomas. Am J Ophthalmol. 2008;145(418–423):e1.

    Google Scholar 

  4. Seregard T, Triay E. New aspects on the pathogenesis of conjunctival melanoma. In: Reinhard T, Larkin F, editors. Cornea and external eye disease. Berlin: Springer; 2008. p. 201–16. https://doi.org/10.1007/978-3-540-33681-5_11.

    Chapter  Google Scholar 

  5. Seregard S. Conjunctival melanoma. Surv Ophthalmol. 1998;42:321–50.

    Article  CAS  PubMed  Google Scholar 

  6. Vora GK, Demirci H, Marr B, Mruthyunjaya P. Advances in the management of conjunctival melanoma. Surv Ophthalmol. 2017;62:26–42.

    Article  PubMed  Google Scholar 

  7. Ackerman AB, Sood R, Koenig M. Primary acquired melanosis of the conjunctiva is melanoma in situ. Mod Pathol. 1991;4:253–63.

    CAS  PubMed  Google Scholar 

  8. Shields CL, Shields JA, Gündüz K, Cater J, Mercado GV, Gross N, et al. Conjunctival melanoma: risk factors for recurrence, exenteration, metastasis, and death in 150 consecutive patients. Arch Ophthalmol. 2000;118:1497–507.

    Article  CAS  PubMed  Google Scholar 

  9. Zembowicz A, Mandal RV, Choopong P. Melanocytic lesions of the conjunctiva. Arch Pathol Lab Med. 2010;134:8.

    Google Scholar 

  10. Mikkelsen LH, Andersen MK, Andreasen S, Larsen A-C, Tan Q, Toft PB, et al. Global microRNA profiling of metastatic conjunctival melanoma. Melanoma Res. 2019;29:465–73.

    Article  CAS  PubMed  Google Scholar 

  11. Pearson G, Robinson F, Beers Gibson T, Xu B, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    CAS  PubMed  Google Scholar 

  12. Muñoz-Couselo E, Adelantado EZ, Ortiz C, García JS, Perez-Garcia J. NRAS-mutant melanoma: current challenges and future prospect. OncoTargets Ther. 2017;10:3941–7.

    Article  Google Scholar 

  13. Spendlove HE, Damato BE, Humphreys J, Barker KT, Hiscott PS, Houlston RS. BRAF mutations are detectable in conjunctival but not uveal melanomas. Melanoma Res. 2004;14:449–52.

    Article  CAS  PubMed  Google Scholar 

  14. Lake SL, Jmor F, Dopierala J, Taktak AFG, Coupland SE, Damato BE. Multiplex ligation-dependent probe amplification of conjunctival melanoma reveals common BRAF V600E gene mutation and gene copy number changes. Investig Ophthalmol Vis Sci. 2011;52:5598–604.

    Article  CAS  Google Scholar 

  15. Goldenberg-Cohen N, Cohen Y, Rosenbaum E, Herscovici Z, Chowers I, Weinberger D, et al. T1799A BRAF mutations in conjunctival melanocytic lesions. Investig Ophthalmol Vis Sci. 2005;46:3027–30.

    Article  Google Scholar 

  16. Gear H, Williams H, Kemp EG, Roberts F. BRAF mutations in conjunctival melanoma. Investig Ophthalmol Vis Sci. 2004;45:2484–8.

    Article  Google Scholar 

  17. Griewank KG, Westekemper H, Murali R, Mach M, Schilling B, Wiesner T, et al. Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res. 2013;19:3143–52.

    Article  CAS  PubMed  Google Scholar 

  18. Scholz SL, Cosgarea I, Süßkind D, Murali R, Möller I, Reis H, et al. NF1 mutations in conjunctival melanoma. Br J Cancer. 2018;118:1243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T, et al. Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst. 2003;95:1878–90.

    Article  CAS  PubMed  Google Scholar 

  20. Hacker E, Hayward NK, Dumenil T, James MR, Whiteman DC. The association between MC1R genotype and BRAF mutation status in cutaneous melanoma: findings from an Australian population. J Investig Dermatol. 2010;130:241–8.

    Article  CAS  PubMed  Google Scholar 

  21. Goydos JS, Mann B, Kim HJ, Gabriel EM, Alsina J, Germino FJ, et al. Detection of B-RAF and N-RAS mutations in human melanoma. J Am Coll Surg. 2005;200:362–70.

    Article  PubMed  Google Scholar 

  22. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29:1239–46.

    Article  PubMed  Google Scholar 

  23. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Postow MA, Luke JJ, Bluth MJ, Ramaiya N, Panageas KS, Lawrence DP, et al. Ipilimumab for patients with advanced mucosal melanoma. Oncologist. 2013;18:726–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zebary A, Jangard M, Omholt K, Ragnarsson-Olding B, Hansson J. KIT, NRAS and BRAF mutations in sinonasal mucosal melanoma: a study of 56 cases. Br J Cancer. 2013;109:559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Omholt K, Grafström E, Kanter-Lewensohn L, Hansson J, Ragnarsson-Olding BK. KIT pathway alterations in mucosal melanomas of the vulva and other sites. Clin Cancer Res. 2011;17:3933–42.

    Article  CAS  PubMed  Google Scholar 

  27. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  28. Curtin JA, Patel HN, Cho K-H, LeBoit PE. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  CAS  PubMed  Google Scholar 

  29. Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, Wu C, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47:996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genom. 2017;11:13.

    Article  CAS  Google Scholar 

  32. Iida Y, Salomon MP, Hata K, Tran K, Ohe S, Griffiths CF, et al. Predominance of triple wild-type and IGF2R mutations in mucosal melanomas. BMC Cancer. 2018;18:1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, et al. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci. 2005;10:2986–3001.

    Article  CAS  PubMed  Google Scholar 

  34. Cosgarea I, Ugurel S, Sucker A, Livingstone E, Zimmer L, Ziemer M, et al. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget. 2017;8:40683–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garrido M, Bastian BC. Kit as a therapeutic target in melanoma. J Investig Dermatol. 2010;130:20–7.

    Article  CAS  PubMed  Google Scholar 

  36. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14:6821–8.

    Article  CAS  PubMed  Google Scholar 

  37. Wallander ML, Layfield LJ, Emerson LL, Mamalis N, Davis D, Tripp SR, et al. KIT mutations in ocular melanoma: frequency and anatomic distribution. Mod Pathol. 2011;24:1031–5.

    Article  CAS  PubMed  Google Scholar 

  38. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman R-A, Teitcher J, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yap Y-S, McPherson JR, Ong C-K, Rozen SG, Teh B-T, Lee AS, et al. The NF1 gene revisited—from bench to bedside. Oncotarget. 2014;5:5873–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou R, Shi C, Tao W, Li J, Wu J, Han Y, et al. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations. Clin Cancer Res. 2019;25:3448–560.

    Google Scholar 

  41. Kiuru M, Busam KJ. The NF1 gene in tumor syndromes and melanoma. Lab Investig. 2017;97:146–57.

    Article  CAS  PubMed  Google Scholar 

  42. Rivolta C, Royer-Bertrand B, Rimoldi D, Schalenbourg A, Zografos L, Leyvraz S, et al. UV light signature in conjunctival melanoma; not only skin should be protected from solar radiation. J Hum Genet. 2016;61:361–2.

    Article  CAS  PubMed  Google Scholar 

  43. Swaminathan SS, Field MG, Sant D, Wang G, Galor A, Dubovy SR, et al. Molecular characteristics of conjunctival melanoma using whole-exome sequencing. JAMA Ophthalmol. 2017;135:1434–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Furney SJ, Turajlic S, Stamp G, Nohadani M, Carlisle A, Thomas JM, et al. Genome sequencing of mucosal melanomas reveals that they are driven by distinct mechanisms from cutaneous melanoma. J Pathol. 2013;230:261–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wong JR, Nanji AA, Galor A, Karp CL. Management of conjunctival malignant melanoma: a review and update. Expert Rev Ophthalmol. 2014;9:185–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shields JA, Shields CL, De Potter P. Surgical management of circumscribed conjunctival melanomas. Ophthal Plast Reconstr Surg. 1998;14:208–15.

    Article  CAS  PubMed  Google Scholar 

  47. Damato B, Coupland SE. An audit of conjunctival melanoma treatment in liverpool. Eye. 2009;23:801–9.

    Article  CAS  PubMed  Google Scholar 

  48. Larsen A-C, Dahmcke CM, Dahl C, Siersma VD, Toft PB, Coupland SE, et al. A retrospective review of conjunctival melanoma presentation, treatment, and outcome and an investigation of features associated with BRAF mutations. JAMA Ophthalmol. 2015;133:1295–303.

    Article  PubMed  Google Scholar 

  49. Shields JA, Shields CL, Gündüz K, Cater J. Clinical features predictive of orbital exenteration for conjunctival melanoma. Ophthal Plast Reconstr Surg. 2000;16:173–8.

    Article  CAS  PubMed  Google Scholar 

  50. Abraham LM, Selva D, Casson R, Leibovitch I. Mitomycin: clinical applications in ophthalmic practice. Drugs. 2006;66:321–40.

    Article  CAS  PubMed  Google Scholar 

  51. Verweij J, Pinedo HM. Mitomycin C: mechanism of action, usefulness and limitations. Anticancer Drugs. 1990;1:5–13.

    Article  CAS  PubMed  Google Scholar 

  52. Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89:884–93.

    Article  CAS  PubMed  Google Scholar 

  53. Moschos SJ, Edington HD, Land SR, Rao UN, Jukic D, Shipe-Spotloe J, et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J Clin Oncol. 2006;24:3164–71.

    Article  CAS  PubMed  Google Scholar 

  54. Shields JA, Shields CL, Freire JE, Brady LW, Komarnicky L. Plaque radiotherapy for selected orbital malignancies: preliminary observations: the 2002 Montgomery Lecture, part 2. Ophthal Plast Reconstr Surg. 2003;19:91–5.

    Article  PubMed  Google Scholar 

  55. Stannard C, Sauerwein W, Maree G, Lecuona K. Radiotherapy for ocular tumours. Eye. 2013;27:119–27.

    Article  CAS  PubMed  Google Scholar 

  56. Wuestemeyer H, Sauerwein W, Meller D, Chauvel P, Schueler A, Steuhl K-P, et al. Proton radiotherapy as an alternative to exenteration in the management of extended conjunctival melanoma. Graefes Arch Clin Exp Ophthalmol. 2006;244:438–46.

    Article  PubMed  Google Scholar 

  57. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  CAS  Google Scholar 

  58. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17:1248–60.

    Article  CAS  PubMed  Google Scholar 

  60. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  CAS  Google Scholar 

  61. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19:603–15.

    Article  CAS  PubMed  Google Scholar 

  64. Cao J, Heijkants RC, Jochemsen AG, Dogrusöz M, de Lange MJ, van der Velden PA, et al. Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy. Oncotarget. 2017;8:58021–36.

    Article  PubMed  Google Scholar 

  65. Pinto Torres S, André T, Gouveia E, Costa L, Passos MJ. Systemic treatment of metastatic conjunctival melanoma. Case Rep Oncol Med. 2017;2017:4623964.

    PubMed  PubMed Central  Google Scholar 

  66. Pahlitzsch M, Bertelmann E, Mai C. Conjunctival melanoma and BRAF inhibitor therapy. J Clin Exp Ophthalmol. 2014;5:322.

    Article  Google Scholar 

  67. Maleka A, Åström G, Byström P, Ullenhag GJ. A case report of a patient with metastatic ocular melanoma who experienced a response to treatment with the BRAF inhibitor vemurafenib. BMC Cancer. 2016;16:634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Griewank KG, Westekemper H, Schilling B, Livingstone E, Schimming T, Sucker A, et al. Conjunctival melanomas harbor BRAF and NRAS mutations—response [letter]. Clin Cancer Res. 2013;19:6331–2.

    Article  CAS  PubMed  Google Scholar 

  69. Weber JL, Smalley KSM, Sondak VK, Gibney GT. Conjunctival melanomas harbor BRAF and NRAS mutations—letter. Clin Cancer Res. 2013;19:6329–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dagi Glass LR, Lawrence DP, Jakobiec FA, Freitag SK. Conjunctival melanoma responsive to combined systemic BRAF/MEK inhibitors. Ophthal Plast Reconstr Surg. 2017;33:e114–6.

    Article  PubMed  Google Scholar 

  71. Rossi E, Maiorano BA, Pagliara MM, Sammarco MG, Dosa T, Martini M, et al. Dabrafenib and trametinib in BRAF mutant metastatic conjunctival melanoma. Front Oncol. 2019;9:232.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29:2904–9.

    Article  CAS  PubMed  Google Scholar 

  73. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31:3182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roskoski R. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66:105–43.

    Article  CAS  PubMed  Google Scholar 

  75. Germann UA, Furey BF, Markland W, Hoover RR, Aronov AM, Roix JJ, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Mol Cancer Ther. 2017;16:2351–63.

    Article  CAS  PubMed  Google Scholar 

  76. Sullivan RJ, Infante JR, Janku F, Wong DJL, Sosman JA, Keedy V, et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 2018;8:184–95.

    Article  CAS  PubMed  Google Scholar 

  77. Chan XY, Singh A, Osman N, Piva TJ. Role played by signalling pathways in overcoming BRAF inhibitor resistance in melanoma. Int J Mol Sci. 2017;18:1527.

    Article  PubMed Central  CAS  Google Scholar 

  78. Zaoui IE, Bucher M, Rimoldi D, Nicolas M, Kaya G, Gobert RP, et al. Conjunctival melanoma targeted therapy: MAPK and PI3K/mTOR pathways inhibition. Investig Ophthalmol Vis Sci. 2019;60:2764–72.

    Article  CAS  Google Scholar 

  79. Yam C, Xu X, Davies MA, Gimotty PA, Morrissette JJD, Tetzlaff MT, et al. A multicenter phase I study evaluating dual PI3K and BRAF inhibition with PX-866 and vemurafenib in patients with advanced BRAF V600 mutant solid tumors. Clin Cancer Res. 2018;24:22–32.

    Article  CAS  PubMed  Google Scholar 

  80. Algazi AP, Posch C, Ortiz-Urda S, Cockerill A, Munster PN, Daud A. A phase I trial of BKM120 combined with vemurafenib in BRAFV600E/k mutant advanced melanoma. J Clin Oncol. 2014;32:9101.

    Article  Google Scholar 

  81. Algazi AP, Esteve-Puig R, Nosrati A, Hinds B, Hobbs-Muthukumar A, Nandoskar P, et al. Dual MEK/AKT inhibition with trametinib and GSK2141795 does not yield clinical benefit in metastatic NRAS-mutant and wild-type melanoma. Pigment Cell Melanoma Res. 2018;31:110–4.

    Article  CAS  PubMed  Google Scholar 

  82. Vera Aguilera J, Rao RD, Allred JB, Suman VJ, Windschitl HE, Kaur JS, et al. Phase II study of everolimus in metastatic malignant melanoma (NCCTG-N0377, Alliance). Oncologist. 2018;23:887-e94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Winston JT, Coats SR, Wang YZ, Pledger WJ. Regulation of the cell cycle machinery by oncogenic ras. Oncogene. 1996;12:127–34.

    CAS  PubMed  Google Scholar 

  84. Xu L, Cheng Z, Cui C, Wu X, Yu H, Guo J, et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019;17:245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Schuler MH, Ascierto PA, De Vos FYFL, Postow MA, Van Herpen CML, Carlino MS, et al. Phase 1b/2 trial of ribociclib + binimetinib in metastatic NRAS-mutant melanoma: safety, efficacy, and recommended phase 2 dose (RP2D) [abstract]. J Clin Oncol. 2017;35:9519.

    Article  Google Scholar 

  86. Granier C, Guillebon ED, Blanc C, Roussel H, Badoual C, Colin E, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2:e000213.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  88. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  90. Patel SP, Kurzrock R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56.

    Article  CAS  PubMed  Google Scholar 

  91. Cao J, Brouwer NJ, Richards KE, Marinkovic M, van Duinen S, Hurkmans D, et al. PD-L1/PD-1 expression and tumor-infiltrating lymphocytes in conjunctival melanoma. Oncotarget. 2017;8:54722–34.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sagiv O, Thakar SD, Kandl TJ, Ford J, Sniegowski MC, Hwu W-J, et al. Immunotherapy with programmed cell death 1 inhibitors for 5 patients with conjunctival melanoma. JAMA Ophthalmol. 2018;136:1236–41.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kini A, Fu R, Compton C, Miller DM, Ramasubramanian A. Pembrolizumab for recurrent conjunctival melanoma. JAMA Ophthalmol. 2017;135:891–2.

    Article  PubMed  Google Scholar 

  94. Finger PT, Pavlick AC. Checkpoint inhibition immunotherapy for advanced local and systemic conjunctival melanoma: a clinical case series. J Immunother Cancer. 2019;7:83.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  98. Rausch MP, Hastings KT. Immune checkpoint inhibitors in the treatment of melanoma: from basic science to clinical application. In: Ward WH, Farma JM, editors. Cutaneous melanoma: etiology and therapy. Brisbane: Codon Publications; 2017. http://www.ncbi.nlm.nih.gov/books/NBK481851/. Accessed 8 Aug 2019.

  99. Chaves LJ, Huth B, Augsburger JJ, Correa ZM. Eye-sparing treatment for diffuse invasive conjunctival melanoma. Ocul Oncol Pathol. 2018;4:261–6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377:1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fecher LA, Agarwala SS, Hodi FS, Weber JS. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist. 2013;18:733–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Marr.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Joseph M. Grimes, Nirav V. Shah, and Faramarz H. Samie, M.D. declare that they have no conflicts of interests that might be relevant to the contents of this review. Brian P. Marr, M.D. provides consulting services for Aura Biosciences, Castle Biosciences, and Immunocore. Richard D. Carvajal, M.D. provides consulting services for Array, BMS, Castle Biosciences, Compugen, I-Mab, InxMed, Merck, Pierre Fabre, PureTech Health, Sanofi Genzyme, and Sorrento Therapeutics; is on scientific advisory boards for Aura Biosciences, Chimeron, and Rgenix; and receives research funding to Columbia University from Amgen, Array, Astellas, AztraZeneca, Bayer, Bellicum, BMS, Corvus, Eli Lilly, Ideaya, Immunocore, Incyte, Macrogenics, Merck, Mirati, Novartis, Pfizer, Plexxikon, and Roche/Genentech.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimes, J.M., Shah, N.V., Samie, F.H. et al. Conjunctival Melanoma: Current Treatments and Future Options. Am J Clin Dermatol 21, 371–381 (2020). https://doi.org/10.1007/s40257-019-00500-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-019-00500-3

Navigation