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Abstract. During the last decades, the endorheic Lake Ur-
mia basin in northwestern Iran has suffered from declining
groundwater tables and a very strong recent reduction in the
volume of Lake Urmia. For the case of Lake Urmia basin,
this study explores the value of different locally and glob-
ally available observation data for adjusting a global hy-
drological model such that it can be used for distinguish-
ing the impacts of human water use and climate variations.
The WaterGAP Global Hydrology Model (WGHM) was for
the first time calibrated against multiple in situ and space-
borne data to analyze the decreasing lake water volume, lake
river inflow, loss of groundwater, and total water storage
in the entire basin during 2003–2013. The calibration pro-
cess was done using an automated approach including a ge-
netic algorithm (GA) and non-dominated sorting genetic al-
gorithm II (NSGA-II). Then the best-performing calibrated
models were run with and without considering water use
to quantify the impact of human water use. Observations
encompass remote-sensing-based time series of annual irri-
gated areas in the basin from MODIS, monthly total wa-
ter storage anomaly (TWSA) from GRACE satellites, and
monthly lake volume anomalies. In situ observations include
time series of annual inflow into the lake and basin averages
of groundwater level variations based on 284 wells. In ad-

dition, local estimates of sectoral water withdrawals in 2009
and return flow fractions were utilized. Calibration against
MODIS and GRACE data alone improved simulated inflow
into Lake Urmia but inflow and lake volume loss were still
overestimated, while groundwater loss was underestimated
and seasonality of groundwater storage was shifted as com-
pared to observations. Lake and groundwater dynamics could
only be simulated well if calibration against groundwater lev-
els led to an adjustment of the fractions of human water use
from groundwater and surface water. Thus, in some basins,
globally available satellite-derived observations may not suf-
fice for improving the simulation of human water use. Ac-
cording to WGHM simulations with 18 optimal parameter
sets, human water use was the reason for 52 %–57 % of the
total basin water loss of about 10 km3 during 2003–2013, for
39 %–43 % of the Lake Urmia water loss of about 8 km3,
and for up to 87 %–90 % of the groundwater loss. Lake in-
flow was 39 %–45 % less than it would have been without
human water use. The study shows that even without human
water use Lake Urmia would not have recovered from the
significant loss of lake water volume caused by the drought
year 2008. These findings can support water management
in the basin and more specifically Lake Urmia restoration
plans.
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1 Introduction

Iran is a country with an arid and semi-arid climate where
population growth and the government’s aim of food self-
sufficiency has led to increasing irrigated crop production
and exploitation of surface water and groundwater resources.
Climate change has resulted in increased temperatures and,
in particular in the northwest of the country, in decreased pre-
cipitation (Tabari and Talaee, 2011a, b) and thus decreased
renewable water resources. In the last decades, numerous
wetlands and lakes in Iran have dried up, and groundwater
levels have strongly declined in most areas (Madani et al.,
2016). The most serious disaster has occurred in Lake Urmia
basin, an interior basin in the northwest of Iran located in
the three provinces, West Azarbaijan, East Azarbaijan, and
Kurdistan, that covers an area of 52 000 km2 (Fig. 1). At the
downstream of the basin, 17 permanent rivers and 12 sea-
sonal rivers discharge into the largest natural water body in
Iran, Lake Urmia. Over the past two decades, climate varia-
tions and human activities (Hassanzadeh et al., 2012) have
decreased inflow into the lake. Precipitation in the basin
shows a decreasing trend over the period 1951—2013, with
particularly low values after 1995, and evaporation has in-
creased (Alizadeh-Choobari et al., 2016). The lake water vol-
ume is now approximately 30× 109 m3 below its historical
maximum (ULRP, 2015a).

Lake Urmia is one of the largest hypersaline lakes in the
world, which due to its ecological and natural features is a
national park, a Ramsar site, and a UNESCO Biosphere Re-
serve (Eimanifar and Mohebbi, 2007). It is a terminal lake
that loses water only by evaporation (Hassanzadeh et al.,
2012). Abbaspour and Nazaridoust (2007) estimated that in-
flows of at least 3× 109 m3 yr−1 are needed to compensate
for lake evaporation, while Alborzi et al. (2018) estimated
values between 2.9×109 to 5.4×109 m3 yr−1 depending on
climatic conditions. According to Alborzi et al. (2018), re-
covery of the lake could range from 3 to 16 years depend-
ing on climatic conditions, water use reductions, and envi-
ronmental releases. Inflow from groundwater to the lake was
estimated to be less than 3 % of total inflow from precipita-
tion, rivers, and groundwater (Hasemi, 2011). In the 1970s
and 1980s, the water level of Lake Urmia was approximately
at 1276 m a.s.l. (above sea level) and then increased to more
than 1278 m in 1995 due to a few wet years (Shadkam et al.,
2016). Khazaei et al. (2019) identified the year 2000 as the
change point of lake dynamics. The water level dropped to
1274 m in 2003 because of the severe drought in 1999–2001,
exacerbated by human water use (Shadkam et al., 2016).
From 2003 to 2014, lake extent was approximately halved,
and water level declined by another 3 m, while seasonal vari-
ability of lake water extent increased (Tourian et al., 2015)
(Fig. 2).

Studies on various aspects of the Lake Urmia disaster
abound. With decreasing lake water volume, salt concen-
tration has increased (Boroughani et al., 2019), endanger-

ing the aquatic biota feeding birds; exposed salt layers may
lead to salt storms (Pengra, 2012). Precipitation reduction
and temperature increases (Delju et al., 2012; Fathian et al.,
2014; Shadkam et al., 2016; Farokhnia et al., 2018), agri-
cultural development including construction of man-made
dams (Farajzadeh et al., 2014; Banihabib et al., 2015; Azar-
nivand and Banihabib, 2017; AghaKouchak et al., 2015; Al-
izade Govarchin Ghale et al., 2018; Khazaei et al., 2019),
and building a causeway across the lake (Zeinoddini et al.,
2009) have been identified as the reasons for the degradation
of Lake Urmia. By using Gravity Recovery And Climate Ex-
periment (GRACE) satellite observations, altimetry data for
Lake Urmia, and outputs of the Global Land Data Assimila-
tion System (GLDAS), Forootan et al. (2014) estimated the
trend of groundwater storage changes in Lake Urmia basin
as −11.2 mm yr−1 between the years of 2005 to 2011, the
largest decrease of the six investigated Iranian basins. Ah-
madzadeh et al. (2016) investigated the effect of irrigation
system changes in the basin from the surface to pressurized
systems; they found that such changes would increase wa-
ter productivity but would have no effect on lake inflow and
would reduce groundwater levels by 20 %.

Four hydrological modeling studies for Lake Urmia basin
focused on quantifying the contributions of various factors
to lake water volume (Hassanzadeh et al., 2012), lake in-
flow (Shadkam et al., 2016), or both (Farokhnia et al., 2018;
Chaudhari et al., 2018). Using a lumped system dynamics
modeling approach and observed time series of lake water
volume for model calibration, Hassanzadeh et al. (2012) de-
termined that about 65 % of lake level decline between 1997
and 2006 was due to reduced river inflow, while four major
man-made reservoirs contributed 25 % and diminished pre-
cipitation on the lake surface 10 %. Shadkam et al. (2016)
evaluated the impact of climate, irrigation with surface water
and reservoirs on inflow into the lake for the period 1960–
2010 using a modified version of the macro-scale gridded hy-
drological model variable infiltration capacity (VIC) model,
which was calibrated against time series of river discharge
at six observation station at the downstream end of six sub-
basins draining into Lake Urmia. While the model was driven
by a global gridded WFDEI climate data set with a spatial
resolution of 0.5◦, basin-specific information on 41 reser-
voirs and on the temporal development of irrigated areas
were taken into account. The study found that reservoirs
had a very small impact on annual inflows and that climate
variations accounted for 60 % of a lake inflow decrease of
48 % over the 50-year period. In the model, all irrigation
requirements need to be fulfilled by available surface wa-
ter. Therefore, reduced availability of surface water during
the 2000s due to low precipitation and high temperature re-
sulted in unfulfilled irrigated water demand and a cap on
the effect of human water use in the model while in real-
ity, groundwater abstractions occurred and even increased
(Delju et al., 2012; Hesami and Amini, 2016). In addition,
the modeling study of Shadkam et al. (2016) did not con-
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Figure 1. Location of Lake Urmia basin.

Figure 2. Time series of surface water extent and water level eleva-
tion of Lake Urmia (data from Tourian et al., 2015).

sider the impact of domestic and industrial water use in
the basin, which can be expected to have increased during
the last decades, given a population increase from 4.8 to
5.9 million from 2002 to 2010 (http://ulrp.sharif.ir/en/page/
about-urmia-lake-basin, last access: 28 April 2018). Chaud-
hari et al. (2018) used the output of the global HiGW-MAT
model, with 1◦× 1◦ grid cell size of approx. 10 000 km2, to
distinguish climatic and anthropogenic contributions to the
shrinkage of Urmia Lake. By running the model with and
without human impacts (surface and groundwater use as well
as reservoirs), they estimated that the human-induced river
flow decline between 1995 and 2010 accounts for 86 % of the
observed decrease in lake volume. However, a comparison
with GRACE TWSA showed that the model overestimates
the decrease in TWSA in the basin between 2003 and 2010.
The HiGW-MAT model was not calibrated for Lake Urmia
basin but net irrigation requirements were simulated specifi-

cally for this study based on Landsat satellite images for five
years between 1987 and 2016. The lake water balance is not
simulated by the model such that no comparison with ob-
served lake water levels was possible. A comparison with
river discharge or groundwater observations was not done ei-
ther. Farokhnia et al. (2018) developed a Soil & Water As-
sessment Tool (SWAT) model for quantifying the role of an-
thropogenic and climatic factors on hydrological change of
the basin and lake during the 22-year period ending in 2009.
By running the SWAT model under anthropogenic and natu-
ral conditions, they estimated the role of anthropogenic and
climatic factors in the shrinkage of Urmia Lake. They con-
cluded that the contribution of human activities and climate
variability is almost equal to decreasing inflow into the lake
and lake volume loss. They illustrated that in the second half
of their study period, the climatic factors are responsible for
58 % of the lake volume loss. However, they did not provide
any results about the effects of human water use and climate
change on groundwater across the basin. Besides, domestic
and industrial water use was not considered in their study.

In previous hydrological modeling studies of Lake Urmia
basin, either there was no model calibration or calibration
was only done using a single observation type, in particular
surface water inflow into the lake. Although streamflow ob-
servations are very informative for hydrological modeling as
they integrate over processes in the whole upstream basin, a
good fit of simulated and observed streamflow may not nec-
essarily lead to an appropriate simulation of other flows and
storages (Beven and Freer, 2001). Moreover, additional types
of observations have to be added to reduce the possibility of
equifinality (Döll et al., 2016; Kelleher et al., 2017; Khatami
et al., 2019). In this study, a multi-observation calibration ap-
proach was used to calibrate a hydrological model which was
then applied to quantify the contributions of climate vari-
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ations and human activities to the decrease in Lake Urmia
water volume and river inflows. In addition, using Lake Ur-
mia basin as a test case, we wanted to explore the value of
different types of observation data for adjusting a global hy-
drological model by multi-observation calibration. Currently,
global hydrological models are mostly uncalibrated but glob-
ally available satellite-derived observations have increased
the opportunity for model calibration at the global scale (Döll
et al., 2016). For this purpose, the WaterGAP global hy-
drology model (WGHM) was calibrated by means of a ge-
netic algorithm (GA) and non-dominated sorting genetic al-
gorithm II (NSGA-II) for Lake Urmia basin. Descriptions
of the used data and the simulation setup are presented in
Sect. 2. The results of the different calibration variants and
the impacts of human water use are shown in Sect. 3. Sec-
tion 4 discusses multi-observation calibration and the analy-
sis of human impact as well as the limitations of the study.
Finally, conclusions are drawn.

2 Methods and data

We analyzed the 11-year period from the beginning of 2003
until the end of 2013, as both GRACE data and global cli-
mate data were available to drive WaterGAP for this period.
In the following sections, WaterGAP, its input data and the
observational data used for calibration as well as the calibra-
tion approach are described.

2.1 WaterGAP

WaterGAP is a global hydrological model for assessing water
resources under the influence of humans (Döll et al., 2003;
Müller Schmied et al., 2014). With a spatial resolution of
0.5◦× 0.5◦, it simulates water abstractions and consumptive
water use (so-called net abstractions, i.e., the amount of wa-
ter that evapotranspirates during use and does not flow to sur-
face water bodies and groundwater afterwards) in five sectors
(irrigation, livestock, domestic, manufacturing, and cooling
of thermal power plants); then net abstractions from either
groundwater (NAg) or surface water bodies (NAs) are com-
puted (Müller Schmied et al., 2014; Döll et al., 2012). Time
series of NAg and NAs in each grid cell are then input to
WGHM that simulates their effect on water flows and stor-
ages. In its standard version, WaterGAP is calibrated against
observed mean annual river discharge at 1319 stations world-
wide by adjusting 1–3 model parameters related to runoff
generation and streamflow (Müller Schmied et al., 2014), but
due to lack of data not for any station in Lake Urmia basin.
A previous WaterGAP version was calibrated, for 22 large
basins, against streamflow and total water storage anoma-
lies by adjusting 6–8 parameters (Werth and Güntner, 2010).
WGHM can be run globally or for a specific basin. In this
study, it was run only for the 22 0.5◦ grid cells that repre-

Figure 3. Grid cells in WGHM corresponding to Lake Urmia basin
along with the locations of groundwater wells across the basin.

sent Lake Urmia basin in WGHM (Fig. 3). A more detailed
description of WGHM can be found in the Supplement.

2.2 Data

We used the following observations for calibrating WGHM:
(1) remote sensing data including an irrigated area in Lake
Urmia basin and GRACE TWSA; (2) inflow into Lake Ur-
miaQ; (3) groundwater levels from well observations, which
were converted into groundwater storage anomalies GWSA
(see Sect. S2); and (4) statistical information on water with-
drawals and consumptive uses in the basin. In addition, a
time series of lake volume based on remote sensing was used
for validation. The 0.5◦ gridded EWEMBI data set was used
as climate forcing. Irrigated area and Q are at the annual
timescale, TWSA, GWSA, and lake volume on the monthly
scale and the climate forcing is on a daily scale. All data
cover the period 2003–2013 (see Sect. S2 for details).

2.3 Calibration approach

Two calibration variants were applied. In the RS variant, only
the remote sensing information was used for calibration, in-
cluding irrigated area from MODIS and GRACE TWSA. In
the variant RS_Q_GW_NA, ground-based information was
used in addition to the remote sensing observations. This in-
cluded inflow into the lake, groundwater data, and statisti-
cal information regarding water use. Calibration was done
using the GA for variant RS, with just one calibration ob-
jective, and the NSGA-II, a multi-objective version of GA,
for the variant RS_Q_GW_NA. To integrate optimization al-
gorithm with WGHM, we scripted the codes in shell and
R environments by modifying “GA” (Scrucca, 2013), and
“nsga2R” (Tsou, 2013) packages in R. GA and NSGA-II
are the most common evolutionary optimization algorithms
in hydrological model calibration (e.g., Azarnivand et al.,
2020). Both algorithms start with a random population (here
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Figure 4. Flowchart of the WGHM calibration approach.

WGHM parameters) and after evaluating the objective func-
tion(s) (here the Kling–Gupta efficiency, KGE) the better pa-
rameter sets are selected based on the value of the objective
function (in GA) and non-domination and crowding distance
(in NSGA-II). Then, the crossover and mutation operators
are applied and the process will be continued until one stop-
ping criterion is met. The details of GA and NSGA-II can
be found in Mirjalili (2019) and Deb et al. (2002), respec-
tively. Because of the use of the random generators in GA
and NSGA-II, we did five runs for each algorithm to achieve
more reliable results. The selected parameters for each al-
gorithm are presented in the Supplement (Table S3). Fig-
ure 4 shows the flowchart of these algorithms along with
a schematic of the calibration process for the two calibra-
tion variants. In short, calibration included the modification
time series of irrigated areas, of NAg and NAs, with differ-
ent multipliers for individual years, as well as the modifica-
tion of seven temporally constant model parameters or, in the
case of spatially heterogeneous parameters, multipliers (see
Table 1). Modifications were done homogeneously for the
whole basin. Months with assumed irrigation in Lake Urmia
basin according to WaterGAP correspond to the actual irri-
gation months (April and October) in the basin according to
Saemian et al. (2015). Thus no correction of seasonality was
needed in the calibration process. More details are provided
in the Supplement. During calibration, seven model parame-
ters (Table 1) were adjusted that are known to have an impact
on TWSA,Q, and GWSA. We used a modified version of the
KGE as the objective function, where the trend of the time se-

ries was added as a fourth component to the KGE (see Eq. 5
below).

2.4 Performance indicators

Performance of the WGHM was evaluated using the correla-
tion coefficient (CC), Nash–Sutcliffe efficiency (NSE), root
mean square error (RMSE), relative absolute error (RAE),
and a modified version of the KGE with

CC=
Cov(Obs,Sim)
σobs× σSim

, (1)

NSE= 1−

T∑
t=1

(
Sim(t)−Obs(t)

)2
T∑
t=1

(
Obs(t)−Obs

)2 , (2)

RMSE=

√√√√ 1
T

T∑
t=1

(
Obs(t)−Sim(t)

)2
, (3)

RAE=

T∑
t=1
|Obs(t)−Sim(t)|

T∑
t=1
|Obs(t)−Obs|

, (4)

KGE= 1−√√√√
(CC− 1)2+

(
σSim

σobs
− 1

)2

+

(
Sim

Obs
− 1

)2

+

(
TrendSim

TrendObs
− 1

)2

, (5)
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Table 1. WGHM parameters with the most effect on TWSA, inflow into the lake, and groundwater storage.

Parameter Value

Default Minimum Maximum

P1: Rooting depth multiplier 1 0.5 3
P2: Maximum active lake depth (m) 5 2 12
P3: Runoff coefficient multiplier 1 0.5 1.5
P4: Multiplier for the fraction of total runoff that becomes groundwater recharge 1 0.5 5
P5: Maximum amount of groundwater recharge per day multiplier 1 0.5 5
P6: Minimum amount of daily precipitation necessary in arid/semi-arid areas to get groundwater recharge (mm) 12.5 5 15
P7: Maximum canopy storage (mm) 0.3 0.1 1.4

Figure 5. Best convergence history of GA in calibrating WGHM for the variant RS (a) and Pareto fronts for the multi-objective calibrations
generated by NSGA-II for the variant RS_Q_GW_NA (b–d).

where Cov is covariance function, σ refers to standard di-
vision, Trend indicates the linear trend of the time series,
Obs is observed value, Sim is simulated value, t refers to time
counter, and T is the period length. Optimum values of CC,
NSE, and KGE are 1, and of RMSE and RE are 0. Trends
and overall behavior of the time series were also analyzed.

3 Results

3.1 Model calibration

First, NA was adjusted based on either MODIS data only
(variant RS) or MODIS data and information of basin wa-

ter use (variant RS_Q_GW_NA) (Sect. S3). Then, optimal
model parameters were identified using GA and NSGA-II
for both variants. Figure 5a shows the calibration history
of WGHM based on the best performance of GA among
five runs for the variant RS. GA started from a KGE value
with respect to TWSA near 0.60 and reached 0.87 after
about 5000 functional evaluations (WGHM runs). Figure 5b–
d illustrate the final Pareto front obtained by five runs of
NSGA-II for the variant RS_Q_GW_NA. For the variant
RS_Q_GW_NA after about 12 000 functional evaluations
(for each NSGA-II run), NSGA-II found 18 optimal parame-
ter sets. Figure 6 shows the parameter ranges (5 and 18 values
for each parameter for variants RS and RS_Q_GW_NA, re-
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Figure 6. Adjusted WGHM parameter values for variants RS (a) and RS_Q_GW_NA (b).

spectively) obtained by five different runs of GA and NSGA-
II in RS and RS_Q_GW_NA variants. Then, an ensemble of
WGHM simulations was generated for the variants RS and
RS_Q_GW_NA which comprises the model runs with the
optimal parameter sets.

Figure 7 compares the output of the calibrated model en-
sembles (variants RS and RS_Q_GW_NA) with observations
and the output of the standard version of WGHM. The min-
imum and maximum value of each variable in each time pe-
riod are shown as the uncertainty bound of the results in each
variant. Standard WGHM underestimates total water stor-
age decline in Lake Urmia basin between 2003 and 2013 as
compared to GRACE observations. A good fit to GRACE
results in calibration variant RS, due to (1) a stronger in-
crease in human water abstractions over time as indicated
by MODIS (Fig. S4), (2) an almost tripling of rooting depth
and thus soil water capacity (P1), (3) an increased fraction of
runoff that recharges the groundwater (P4–P6), (4) a higher
maximum canopy storage everywhere in the basin (P7), and
(5) an increase in maximum active lake depth of Lake Ur-
mia from 5 m to more than 8 m in variant RS (P2) (Figs. 6a
and 7a). With the larger soil and canopy water storage ca-
pacities, runoff and thus inflow into Lake Urmia decrease as
compared to standard WGHM (Fig. 7b). Still, simulated in-
flows into Lake Urmia computed in variant RS are still much
higher than the observed values (Fig. 7b) and seasonality
of groundwater storage is totally misrepresented (Fig. 7c).
The required reduction of computed lake inflow (Q) can
be achieved in variant RS_Q_GW_NA by adjustment of the
runoff coefficient and a slight further increase in maximum
soil and canopy storage (Fig. 6), while the fit to GRACE
TWSA remains good (Fig. 7a). However, the seasonality of
groundwater storage could only be achieved by adjusting the
sources of total net abstractions in variant RS_Q_GW_NA
(Fig. 7c). NAg in the standard and RS variants is negative,
which means that there is an artificial groundwater recharge
due to irrigation by surface water during the summer irri-
gation months, leading to an increase in groundwater stor-
age. Groundwater storage observations, however, show a de-

crease during this period, indicating that irrigation causes a
net abstraction from groundwater. Therefore, annual values
of NAg as computed by WGHM were multiplied, in variant
RS_Q_GW_NA, by negative correction factors (Table S2).

Performance indicators CC, NSE, RMSE, RAE, and KGE
with respect to monthly TWSA (Fig. 7a), annual Q (inflow
to Lake Urmia, Fig. 7b) and monthly GWSA (Fig. 7c) are
presented in Table 2 for the standard version and the en-
semble means of the two calibration variants. Regarding the
fit to TWSA observations, NSE increased from 0.48 in the
standard version to 0.86 in the RS variant for which TWSA
was the only observation considered and increased slightly
to 0.88 when groundwater observations were taken into ac-
count in the RS_Q_GW_NA variant. This performance im-
provement is also reflected by CC, RMSE, RAE, and KGE.
Although the performance of WGHM with respect to the
observed lake inflow was improved in the RS variant, the
variant does not yet provide reliable simulations of lake in-
flow. The calibration against inflow observations in variant
RS_Q_GW_NA strongly improves inflow simulation, with
NSE and KGE jumping from negative values for the standard
variant to values of 0.93 and 0.82, respectively. The good
performance shown by CC for all model variants indicates
that all model variants correctly identify high- and low-flow
years. In the case of GWSA, all performance indicators show
that consideration of remote sensing data only does not lead
to an acceptable simulation of groundwater storage. Only the
variant for which groundwater observations were taken into
account lead to satisfactory performance.

For model performance evaluation, we compared the lake
volume simulated by WGHM with the observed lake vol-
ume of Tourian et al. (2015) (Fig. 7d and Table 2). The
standard model underestimates the decline in both lake wa-
ter and TWSA, and both calibrated variants simulate the
TWSA trend correctly, but variant RS overestimates the de-
cline of lake water storage, thus compensating for not de-
creasing groundwater storage sufficiently (Fig. 7c) due to as-
suming a net groundwater recharge due to surface water irri-
gation. Only variant RS_Q_GW_NA simulates not only the
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Figure 7. Time series of monthly total water storage anomaly TWSA (a), annual lake inflow Q (b), monthly groundwater storage
anomaly GWSA (c), and monthly lake volume anomaly (d), from observations, standard WGHM, and the two calibration variants RS
and RS_Q_GW_NA.

groundwater dynamics but also the decline of lake water vol-
ume correctly. KGE for the monthly lake volume anomaly is
0.52 for the standard WGHM and improves to 0.75 for RS.
Including groundwater level data further improved the fit to
observed lake volume, leading to a very high KGE of 0.89
(Table 2). We conclude that the calibration of WGHM against

diverse observations (that do not include lake volume obser-
vations) leads to improved simulation of lake volume dynam-
ics.
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Table 2. Performance of standard and calibrated WGHM variants with respect to observations of TWSA, inflow to lake, GWSA and lake
volume anomaly.

Phase Variables Criteria Standard RS RS_Q_GW_NA
C

al
ib

ra
tio

n
Monthly TWSA CC 0.84 0.93 0.94

NSE 0.48 0.86 0.88
RMSE (mm) 77 40 37
RAE 0.72 0.39 0.36
KGE −0.36 0.85 0.86

Annual Q CC 0.94 0.97 0.97
NSE −8.51 −0.75 0.93
RMSE (106 m3 yr−1) 4121 1767 356
RAE 3.92 1.67 0.33
KGE −0.61 0.29 0.82

Monthly GWSA CC 0.03 0.16 0.95
NSE −0.31 −0.28 0.89
RMSE (m) 21 20 6
RAE 1.07 1.04 0.30
KGE −0.87 −0.83 0.85

E
va

lu
at

io
n Monthly lake volume anomaly CC 0.82 0.98 0.98

NSE 0.68 0.92 0.96
RMSE (106 m3) 1922 928 656
RAE 0.51 0.25 0.18
KGE 0.52 0.75 0.89

3.2 Differential impacts of human water use and
climate variation on Lake Urmia basin

The impact of human water use and man-made reservoirs on
water flows and storages was quantified by comparing the
output of WGHM in which human water use and man-made
reservoirs are considered (this is normally done, now called
WGHM-ANT) with the output of a model run for natural-
ized conditions, where it is assumed that there are no reser-
voirs and no human water use (WGHM-NAT). We deter-
mined that the results of the naturalized run for annual in-
flow into the lake differ by less than 2 % from a run with
reservoirs but without human water use. Therefore, differ-
ences between WGHM-ANT and WGHM-NAT outputs can
be considered to be caused by human water use. It should
be mentioned that all simulated and observed storages (to-
tal, groundwater, lake) are not absolute values but anoma-
lies with respect to the mean water storage during 2004–
2009 (baseline period used for the provided GRACE data).
Moreover, to quantify the uncertainty in the model calibra-
tions, WGHM-ANT and WGHM-NAT were run based on
all 18 optimal parameter sets that were obtained from Pareto
front for variant RS_Q_GW_NA. All results were presented
by min–max ranges.

When comparing TWSA under anthropogenic and natu-
ralized conditions in Fig. 8a, remember that TWSA in Lake
Urmia basin is dominated by water storage in Lake Urmia.
Seasonal TWSA variation of WGHM-ANT and WGHM-

NAT do not differ much. Starting after the heavy rain in
April 2007 and strongly caused by the lack of spring pre-
cipitation in 2008, both WGHM-ANT and WGHM-NAT (as
well as GRACE TWSA) show a decreasing trend that is
only somewhat more pronounced in WGHM-ANT (Fig. 8a).
Thus, this decrease is mainly due to dry climate condi-
tions during the well-known severe drought of 2008, with
annual precipitation of only 241 mm, i.e., 74 % of the
mean value for 2003–2013. Also in the absence of hu-
man water use, total water storage would not have recov-
ered after 2009 but would have stayed 50–100 mm be-
low the values occurring before 2008. However, while
in WGHM-NAT the minimum storage in late summer,
i.e., the period with high irrigation, remains almost at a
constant level after 2009, and it decreases each year in
WGHM-ANT due to consumptive increasing irrigation wa-
ter use (see Fig. S4). The linear trends of WGHM-ANT
and WGHM-NAT TWSA time series for the period 2003–
2013 are between −23.6 and −25.1 mm yr−1 (GRACE:
−24.4 mm yr−1) and between −10.1 and −11.9, respec-
tively. The TWSA trend for two sub-periods before and af-
ter 2008, 2003–2007, and 2009–2013 was [−11.7, −18.5]
and [−10.6, −16.3] mm yr−1, respectively, for WGHM-
ANT and only [−1.8, 3.3] and [−2.9, −0.6] mm yr−1, re-
spectively, for WGHM-NAT. The last-mentioned trends are
not significant at the 95 % confidence level based on the
Mann–Kendall test. According to WGHM, the basin lost, on
average during 2003–2013, between 1226× 106 and 1305×
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Figure 8. Time series of simulated (variant RS_Q_GW_NA) and observed monthly TWSA (a), lake water storage anomaly (b), annual inflow
into the lake Q (c), and monthly groundwater storage anomaly GWSA (d), under anthropogenic (WGHM-ANT) and naturalized (WGHM-
NAT) conditions.

106 m3 water per year, while in the absence of human water
use, it would have lost between 524× 106 and 618× 106 m3

water per year, i.e., 52 %–57 % less. Of this, total water vol-
ume between 914×106 and 975×106 m3 yr−1 of lake water
was lost, while only 523×106 and 598×106 m3 yr−1 would
have been lost without human water use (Fig. 8b).

The smaller decreasing trend for lake water volume under
naturalized conditions is clearly caused by more inflow into
the lake, even though lake evaporation is somewhat higher
under naturalized inflow conditions due to the larger lake ex-
tent. While mean inflow during 2003–2013 is computed to
be between 4323× 106 and 4685× 106 m3 yr−1 under nat-
uralized conditions, it decreases by 39 %–45 % and reached

between 2463× 106 and 2742× 106 m3 yr−1 under anthro-
pogenically altered conditions (Fig. 8c). The difference is
only 50 % of NA as only a fraction of (potential) net ab-
stractions from surface water NAs (required to allow opti-
mal irrigation) could be made (1) due to a lack of water
availability in the surface water bodies and (2) because a
fraction of NAg is provided a decrease in groundwater stor-
age. Since 2008 the inflow into the lake has never reached
3085×106 m3 yr−1. This is the value estimated to be the min-
imum environmental water requirement that compensates the
amount of annual evaporation from the lake surface (Ab-
baspour and Nazaridoust, 2007). Therefore, a decrease in
lake water storage can be expected for the estimated inflow
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by WaterGAP between 2463× 106 and 2742× 106 m3 yr−1

during 2003–2013. In WGHM-NAT, the inflow was lower
than 3085×106 m3 only in 2008 and 2009. Still, the average
inflow into the lake from 2009 to 2013 of between 3528×106

and 3840×106 m3 yr−1 would have been only enough to keep
the lake from further losing volume) needed to compensate
for lake evaporation). Thus even in the WGHM-NAT, inflow
into the lake would not have been enough for a recovery to
conditions between 2003 and 2007 (Fig. 8b).

Groundwater storage is estimated to decline by be-
tween 239×106 and 267×106 m3 yr−1 during 2003–2013 in
WGHM-ANT, and the decline is only between 24× 106 and
35× 106 m3 yr−1 in WGHM-NAT (Fig. 8d). Different from
lake water storage, groundwater storage would have recov-
ered after 2008–2009 if there had been no (increasing) net
groundwater abstractions (Fig. 8d, compare Fig. S4b), even
though mean groundwater recharge were between 2340×106

and 3103× 106 m3 yr−1 during 2009–2013 as compared to
between 3091× 106 and 4179× 106 m3 yr−1 during 2003–
2007. To summarize, human water use was the reason for
52 %–57 % of the total water loss in the basin, for a maxi-
mum of 87 %–90 % of the groundwater loss and for 39 %–
43 % of the Lake Urmia water loss during 2003–2013, and
lake inflow was 39 %–45 % less than it would have been
without human water use.

4 Discussion

4.1 Model calibration

Global hydrological models suffer from high uncertainty, in
particular as model inputs are uncertain. For example, cli-
mate input data are based on low-density climate observa-
tions and information on water use is often very scarce and
outdated. For modeling at the global scale, it is generally not
possible to obtain the same detailed data for a specific re-
gion compared to the case modeling this region only. Still,
a global hydrological model includes all data for simulating
water flows and storages in specific regions of interest ev-
erywhere on the globe, and model calibration against mul-
tiple (regional) observations is a means for improving the
performance of the global model regionally. In this way, effi-
cient simulation of regional water flows and storages can be
achieved, possibly as an alternative to a costlier setup of a
regional model. More importantly, the regional-scale multi-
observation calibration done in this study can serve to inform
efforts for global-scale but region-specific multi-observation
calibration of global hydrological models that would allow
the performance of global hydrological models to be strongly
improved at the scale that they are made for (Döll et al.,
2016).

Remote sensing data are the most accessible data for cal-
ibration of global hydrological models, including TWSA
from GRACE. Therefore, the model variant RS only used

globally available RS data, and MODIS and GRACE data
products. However, MODIS data can only be used to deter-
mine the temporally variable extent of irrigated areas in dry
regions of the globe such that the important adjustment of
temporal dynamics of statistics-based irrigated areas is not
possible everywhere. GRACE TWSA quantify the anomalies
and changes of water storage aggregated over all land water
storage compartments such as snow, soil, groundwater, lakes,
wetlands, and rivers. Considering GRACE TWSA improved
the simulation of the important water storage compartment
of Lake Urmia. However, the unsatisfactory simulation of in-
flow into Lake Urmia and of groundwater dynamics clearly
shows that a good fit to observed TWSA does not guarantee a
good simulation of river flows or groundwater storage. Still,
calibration against TWSA did, even if only very slightly, im-
prove model performance, also with respect to lake inflow
and groundwater dynamics.

To assess the value of using inflow into the lake (Q),
groundwater (GW) observations and observed lake vol-
ume (LV) time series in model calibration, WGHM was cal-
ibrated manually based on some other variants, i.e., RS_Q,
RS_LV, RS_Q_LV, and RS_Q_GW, in a step-wise fash-
ion (not shown). Based on the results, by adding dis-
charge data (RS_Q variant), the model was able to simu-
late TWSA and Q accurately without changing the inputs
of the model and only based on modifying the parameters.
Groundwater level data were found (variants RS_Q_GW and
RS_Q_GW_NA) to be necessary to identify that, different
from what is estimated by the standard version of Water-
GAP, there is more irrigation with groundwater and less with
surface water such that a net abstraction of groundwater and
not artificial groundwater recharge occurs due to irrigation.
Information on groundwater level dynamics with a suitable
spatial density is not readily available for most regions of the
globe. To simulate groundwater dynamics properly, it was
not sufficient to adjust parameters of the hydrological model
(in particular two groundwater recharge-related model pa-
rameters; Fig. 6b), but it was necessary to alter the fractions
of net water abstractions that come from groundwater and
surface water bodies. Only then was groundwater storage de-
cline by net groundwater abstraction simulated, and lake wa-
ter storage decline could be correctly simulated instead of
being overestimated when only TWSA and lake inflow data
are used for calibration. As in the case of adding lake inflow
as calibration data type, no trade-off between the fits to the
different data types occurred.

Consideration of regional estimates of human water with-
drawals in a specific year as well as regional estimates of
return flow fractions in variant RS_Q_GW_NA does not im-
prove the fit to observations compared to variant RS_W_GW
significantly and only leads to slight parameter adjustments.
This indicates a reasonable simulation of per hectare water
consumption for irrigation by the WaterGAP model. To sum-
marize, consideration of more and more observations and
other independent data results in improved fits to three types
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Table 3. Water loss in the storage compartments of Lake Urmia basin between 2003 and 2013 as observed and simulated by the WGHM
variants that were calibrated using different observation variables.

Water loss between 2003 and 2013 (109 m3)
(mean annual storage in 2003 minus mean annual storage in 2013)

Storage compartment Observed Standard RS RS_LV RS_Q RS_Q_LV RS_Q_GW RS_Q_GW_NA

TWS storage 9.90 3.62 10.30 7.86 12.20 8.24 9.78 9.84
GW storage 1.80 0.17 0.33 0.06 0.02 0.03 2.68 2.26
Soil water storage NA 0.15 0.26 0.20 0.29 0.24 0.25 0.25
Lake storage 8.00 3.16 9.53 7.37 11.83 7.78 6.62 7.24

NA stands for not available.

of observations (TWSA, lake inflow, and groundwater dy-
namics), while at the same time more parameters need to be
adjusted (Tables 1 and 2 and Fig. 6). No trade-offs between
the fits to the three observational data types occurred in the
case of Lake Urmia basin.

While the introduction of annually varying corrections
for NAg and NAs (Table S2) for variant RS_Q_GW_NA
leads to the best fit to multiple observation types, it may be
preferable to have just 1 instead of 11 free parameters, i.e., a
temporally constant β. With a temporally constant β of−0.5,
the fit to TWSA and inflow to the lake does not change at
all, and groundwater storage is only slightly increased in the
dry years 2008 and 2009. Thus, given the uncertainty of ob-
served groundwater storage variations, a temporally constant
NAg correction factor is sufficient for achieving a good fit for
all observations.

In the RS_LV variant, simulation of TWSA and GWSA
did not change appreciably but both simulated lake volume
anomaly and lake inflow greatly improved as compared to
the RS variant. NSE for monthly lake volume anomaly and
annual lake inflow reach 0.95 and 0.44, respectively. Inflow
into the lake is much less overestimated than in variant RS.
To achieve these fits, the variant RS parameters were ad-
justed: the rooting depth multiplier was set to 2.5 and the
potential evaporation multiplier was set to 2. Adding lake
volume observations on top of lake inflow observations in
RS_Q_LV variant leads to an improved fit to lake volume
observations, with NSE increasing from 0.81 to 0.95, but the
fit of observed inflow into the lake slightly worsens from 0.88
in RS_Q to 0.85 in RS_Q_LV. In this variant, the RS_Q vari-
ant parameters were used, except the maximum active lake
depth was set to 9 m and the potential evaporation multiplier
to 2. We conclude that in the case of the end lake, Lake Ur-
mia, calibration against time series of lake volume anoma-
lies could, in the absence of inflow data, help to improve the
simulation of inflow, while calibration against time series of
inflow could, in the absence of lake volume observation, im-
prove the simulation of lake volume anomalies. Still, calibra-
tion to both observational data types leads to the best simu-
lation of both annual lake inflow and lake volume anoma-
lies. However, the groundwater storage dynamics could not

be improved without calibration against groundwater level
dynamics.

In many hydrological model calibrations, trends are not
used as performance criterion. We found that model vari-
ants obtained by calibration without a trend criterion, and
which have a very similar performance criterion, do not
necessarily lead to similar estimates of total and compart-
mental water losses over the whole time period 2003–2013.
For example, using variants RS_LV and RS_Q with sim-
ilar NSE with respect to monthly time series of TWS,
TWS loss between 2003 and 2013 is simulated to be
7.86× 109 and 12.20× 109 m3, respectively (Table 3). TWS
loss according to variant RS_Q_GW_NA (based on en-
semble mean) is 9.84× 109 m3, even though NSE is only
0.04 higher, while modified KGE (Eq. 5) for RS_LV, RS_Q,
and RS_Q_GW_NA is 0.68, 0.71, and 0.86, respectively. We
conclude that in the case of relevant trends, the calibration
criteria should include the minimization of the difference be-
tween observed and simulated trends.

Based on satellite-derived TWSA and lake level obser-
vations, total water storage in Lake Urmia basin declined
by 9.9× 109 m3 from its annual average in 2003 to its an-
nual average in 2013 and about 80 % was due to the loss of
lake water (Tourian et al., 2015). The observed decline of
groundwater storage was 1.8× 109 m3, i.e., 18 % of the ob-
served total water storage loss in the basin. WGHM overes-
timates observed loss from groundwater in both calibrations
variants that take into account groundwater observations. In
WGHM simulations, groundwater decline and depletion be-
low the level of surface water storages occur in only 7 out of
the 22 0.5◦ grid cells within the basin (Fig. S5a). In 5 of
these 7 grid cells, groundwater levels were stable during
2003–2007 and only declined from 2008 to 2013, caused by
increased NAg and decreased groundwater recharge in the
latter part of the study period. It is these 7 cells that cause
the basin groundwater decline under the anthropogenic con-
ditions shown in Fig. 8d. For naturalized conditions, peak
seasonal water storages decrease somewhat but minimum
water storages cannot drop appreciably given the already
very low minimum seasonal storage values during the rela-
tively wet five first years of the investigate period (Fig. S5b),
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because WaterGAP cannot simulate a possible drop of the
groundwater table below the surface water level in the ab-
sence of groundwater abstractions. Thus, the contribution of
human water use to groundwater storage decline might be
overestimated because (1) groundwater storage decline un-
der the impact of human water use is overestimated (Table 3,
variant RS_Q_GW_NA) as compared to observations and
(2) groundwater storage decline under naturalized conditions
without human water use may be underestimated.

It is worth mentioning that WGHM as a hydrological
model that does not include a gradient-based groundwater
model has some limitations for studying groundwater-lake
water flows. We attempted to calibrate WGHM under the
assumption that there are direct water flows between lake
and groundwater. Under this assumption, the seasonality of
the groundwater storage was strongly misrepresented. There-
fore, as accepted by ULRP (2015b), we assumed there is no
direct flow between the lake and groundwater. This is con-
sistent with Danesh-Yazdi and Ataie-Ashtiani (2019) who
stated that a significant water exchange between the lake and
groundwater is unlikely. Also, Amiri et al. (2016), based on
isotope and chemical tracer analyses, rejected any signifi-
cant relationship between the lake and groundwater. How-
ever, some studies, e.g., Ashraf et al. (2017) and Vaheddoost
and Aksoy (2018), stated the opposite. In conclusion, the re-
sults of this study support the idea that there are no significant
direct interactions between lake and groundwater in Lake Ur-
mia basin.

4.2 Distinguishing the contributions of human water
use and climate variability to lake shrinkage

In order to design the Lake Urmia restoration program, it
is vital to know which factors contribute how much to the
shrinkage of the lake. All previous studies (e.g., Hassan-
zadeh et al., 2012; AghaKouchak et al., 2015; Alizade Go-
varchin Ghale et al., 2018; Chaudhari et al., 2018; Farokhnia
et al., 2018) agreed that shrinkage is caused by both cli-
mate variations and human activities, but there is no con-
sensus about the relative contributions. For example, Chaud-
hari et al. (2018) concluded that human-induced changes ac-
counted for 86 % of the lake volume decline during 1995–
2010, while we determined values of 39 %–43 % for 2003–
2013. In line with our results, Farokhnia et al. (2018) showed
that due to high climate variability in Lake Urmia basin dur-
ing 1999–2009, the climate was the dominant factor in lake
volume loss, causing 58 % of observed loss. According to
our study, human water use was the reason for 39 %–45 % of
the inflow reduction into the lake during 2003–2013, which
is very similar to the values of Shadkam et al. (2016) for the
years 2003–2009 (see their Fig. 8). Discrepancies are likely
due to different analysis methods, but different analysis pe-
riods and conceptualizations make a direct comparison of
the estimated contributions difficult. Chaudhari et al. (2018)
performed a comprehensive hydrological modeling of Lake

Urmia basin. They also studied the land use changes in de-
tail over 1987–2016 and determined a ∼ 98 % and ∼ 180 %
increase in agricultural lands and urban areas, respectively.
However, their uncalibrated global hydrological model that
represented the basin by 5–6 cells only was not able to sim-
ulate the flows and storages in the basin well. For exam-
ple, simulated annual inflow into the lake was estimated to
be 3700× 106 m3 in 2003 (their Fig. 8) while observed in-
flow was much higher, 5835× 106 m3. In 2009, observed in-
flow, with 1036×106 m3, was only half of the simulated one.
Therefore, the very high human contribution to the lake vol-
ume decline of 86 % determined by Chaudhari et al. (2018)
may arise from the poor performance of the uncalibrated
model. In addition, Chaudhari et al. (2018) studied a con-
siderably longer period, i.e., 1995–2010, that includes the
change point of lake dynamic (the year 2000 based on Khaz-
aei et al., 2019 and 2001, based on Fazel et al., 2017). Al-
though including years prior to 2000 might be lead to differ-
ent results, some other studies like Shadkam et al. (2016) and
Farokhnia et al. (2018), whose modeling included years 2000
and 2001, support the results of the current study. Shadkam
et al. (2016) stated that climate change was responsible for
three-fifths of the inflow reduction into the lake, and the rest
was caused by water resources development between 1995
and 2010. Also, Farokhnia et al. (2018) showed that during
a 22-year period ending in 2009, the effect of anthropogenic
and climatic factors in reducing the inflow into Lake Urmia
was almost equal.

While Alizade Govarchin Ghale et al. (2018) seem to sup-
port the results of Chaudhari et al. (2018), who state that
80 % of drying of Lake Urmia is due to anthropogenic im-
pacts during 1998–2010, their statistical analysis assumes
that lake inflow from rivers can be considered to reflect “an-
thropogenic impacts” while precipitation and evaporation re-
flect climatic variation. However, although inflow into the
lake is surely affected by human water use upstream, it is also
affected by climatic variations over the basin. Using a statis-
tical change point analysis and without modeling, Khazaei et
al. (2019) stated that given the stable conditions of precipi-
tation and temperature, climatic variations could not explain
the dramatic decline of the lake level. They also estimated the
change of vegetation dynamics and its associated hydrolog-
ical loss in terms of evapotranspiration. They used monthly
GPCP precipitation data for assessing the trend of precip-
itation over the basin. However, the proportion of shared
variance between GPCP and in situ data over the basin is
about 0.75 on a monthly scale (see Table 2 in Jalili et al.,
2012). Therefore, their analysis suffers from the poor quality
of precipitation data. Moreover, their analysis was done on a
monthly scale that cannot capture the sub-monthly variability
of climatic variables. Also, they did not account for the role
of groundwater dynamics in their analysis. Based on an anal-
ysis of the Standardized Precipitation Index (SPI), a drought
index, AghaKouchak et al. (2015) reported there was no sig-
nificant trend in droughts over the basin during the past three
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decades and concluded from this that human activities and
not climatic variations were the main reason for lake shrink-
age. Different from our study and the modeling studies of
Shadkam et al. (2016), Farokhnia et al. (2018), and Chaud-
hari et al. (2018), the studies by Alizade Govarchin Ghale
et al. (2018), Khazaei et al. (2019), and AghaKouchak et
al. (2015) considered only the dynamics of monthly and an-
nual precipitation and neglect changes in the variability of
daily precipitation. During the last three decades, there was a
significant increase in the frequency of daily precipitation of
less than 5 mm and a significant decrease in the frequency of
daily precipitation of 10–15 mm, suggesting a runoff reduc-
tion even in the case of constant annual precipitation (Fig. 2
in Bavil et al., 2018). Hosseini-Moghari et al. (2018) showed
that an increasing frequency of days with less than 5 mm pre-
cipitation in combination with decreasing monthly precipita-
tion has led to the observed reduced inflow into two dams
in Lake Urmia basin that are located downstream of areas
with insignificant human water use. We conclude that for
assessing the effect of climatic variability on hydroclimatic
variables, the analyses should be done on a daily timescale
or shorter to consider the change in amount and patterns of
variables. Moreover, we examined the ratio of annual inflow
into the lake (based on the ensemble mean) over annual pre-
cipitation during the study period. This ratio reached max-
imum values in 2003 (0.29 and 0.41 for the anthropogenic
and naturalized conditions, respectively) and minimum val-
ues in 2009 (0.07 and 0.15). Averaged over the period 2009–
2013, these ratios are, with 0.11 (ANT) and 0.22 (NAT),
much smaller than the values for 2003–2007, 0.20 and 0.32.
Thus, the drought year 2008 as well as the relatively small ra-
tio of inflow into the lake over precipitation in the last 5 years
of the study period play a significant role in the decline of in-
flow and lake water storage.

For quantifying human and climatic contributions to ob-
served hydrological changes, a comprehensive modeling ap-
proach that takes into account, for example, the impacts of
changing temperatures and land use change (e.g., urbaniza-
tion and cropland expansion) on runoff generation and thus
river inflow and on evaporation of the lake itself is prefer-
able to statistical analyses such as trend and correlation anal-
ysis. Such statistical analyses may be misleading about rea-
sons for certain temporal changes. For example, when there
is no trend in precipitation but a significant trend in stream-
flow, it may be concluded that human activities are the dom-
inant cause of streamflow reduction; most of the trend stud-
ies for Lake Urmia suffer from such a hasty conclusion. In
hydrological modeling, more detailed information such as
the depth of precipitation in each event, the interval between
rainfall events (represented in soil moisture) and other in-
volved elements to generate runoff are considered. All mod-
eling studies (except Chaudhari et al., 2018, who used an un-
calibrated model), i.e., Shadkam et al. (2016), Farokhnia et
al. (2018), and our study, found that the impact of climatic
variations could not be ignored over the basin, while trend

and correlation analysis studies such as Khazaei et al. (2019)
and Alizade Govarchin Ghale et al. (2018) stated the cli-
mate contribution is negligible compared to anthropogenic
impacts. We suggest to do trend analysis of daily precipita-
tion distinguishing different intensity classes (e.g., Bavil et
al., 2018).

As a final word, the irrigated area used in this study
obtained from the official report of ULRP (Kamali and
Youneszadeh Jalili, 2015). However, Chaudhari et al. (2018)
estimated the irrigated area significantly less than the irri-
gated area used in the current study (Fig. S3 compared to
Fig. 9 in their study). They used September for estimation
of the irrigated area while the crops are completely ma-
tured in July and August in the basin. As a result, some
crops are harvested in September. Therefore, it could be the
main reason for such a significant underestimation of irri-
gated areas in the basin by Chaudhari et al. (2018). Also, Al-
izade Govarchin Ghale et al. (2019) estimated the irrigated
area in the basin. Although their result is much closer to
Kamali and Youneszadeh Jalili (2015) relative to Chaudhari
et al. (2018), they used April and August for the estimated
irrigated area, while Kamali and Youneszadeh Jalili (2015)
used July and August that lead to some differences. Also, the
month of April that was used by Alizade Govarchin Ghale et
al. (2019) includes both irrigated and rainfed farms, and the
distinction between irrigated and rainfed cultivation may also
make some differences. However, due to the fact that Ka-
mali and Youneszadeh Jalili (2015)’s report was approved by
the ULRP, we believe that the use of the official report from
ULRP would be more reliable than other sources. However,
the data reported by Kamali and Youneszadeh Jalili (2015)
surely suffer some uncertainties that are inevitable.

4.3 Limitations

Even after multi-objective calibration of a state-of-the-art
comprehensive hydrological model, there remain many un-
certainties that affect the accuracy of the model results. Like
the results of all hydrological models, our results are af-
fected by uncertainties in model input, model parameters,
and model structure. Model parameter uncertainty was re-
duced by the comprehensive multi-observation calibration,
albeit conditioned on just one climate input data set and
using just one model (instead of the state-of-the-art multi-
model ensemble approach; compare https://www.isimip.org/,
last access: 11 May 2019). Given the low spatial model res-
olution (0.5◦× 0.5◦), the model results are preferably aggre-
gated to the basin as a whole, as results for individual grid
cells are very uncertain. Also due to a lack of data at the
basin scale, the hydrogeology of the basin was not taken
into account in the model. Information on the irrigated area
in each grid cell was taken from a global data set of areas
equipped for irrigation from groundwater and surface water
(Siebert et al., 2010), which was adopted in this study by
scaling it by basin-wide correction factors to better capture
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the temporal development of irrigation. Calibrated modeling
results are also affected by the uncertainties of the observa-
tion data. GRACE TWSA data are more reliable for larger
(100 000 km2 according to Landerer and Swenson, 2012) ar-
eas than the basin area of 52 000 km2. Estimation of ground-
water storage changes based on water level data for unevenly
distributed wells is rather uncertain due to the unknown het-
erogeneities in the subsurface and uncertain specific yields.
The “observed” lake water volume decline likely underesti-
mates the actual decline, as a constant bathymetry was as-
sumed when deriving lake water volume decline from re-
mote sensing of lake water level elevation and lake water
area (Tourian et al., 2015). However, there was an increase
in the elevation of the lake bottom due to sedimentation and
salt precipitation (Shadkam et al., 2016; Sima and Tajrishy,
2013; Karimi et al., 2016).

We determined that the results of the naturalized run with
and without reservoirs for annual inflow into the lake dif-
fer by less than 2 %, whereas Fazel et al. (2017) and Al-
izade Govarchin Ghale et al. (2018) stated that dams have
a significant impact on the lake shrinkage. However, Shad-
kam et al. (2016) showed the role of dams in the reduction
of inflow into the lake did not exceed 5 % due to evapo-
ration from reservoirs. Moreover, in this study, the inflow
into the lake was assessed on an annual scale, and there is
no correlation between the dams’ operation and annual in-
flow in the basin (Fathian et al., 2014). Therefore, the error
from this source to our result should be negligible. Also, in
this study, it is assumed that there is no significant direct
relationship between the lake and groundwater. However,
the hydrologic connectivity between the lake and ground-
water remains an under-studied aspect of the lake dynamics
(Danesh-Yazdi and Ataie-Ashtiani, 2019). Finally, the study
period 2003–2013 does not include some of the years with
significant changes in the dynamics of the lake and the basin
(i.e., years 2000 and 2001 that identified as the change point
of the lake by Khazaei et al., 2019, and Fazel et al., 2017,
respectively) due to data availability. Therefore, our results
cannot be generalized to previous decades.

5 Conclusions

This study investigated the differential impact of human wa-
ter use and climate variations on total, groundwater, and lake
water storage in Lake Urmia basin as well as on inflow into
the lake during 2003–2013. This was done by utilizing the
information contained in multiple types of observation data
to calibrate, specifically for Lake Urmia basin, the global hy-
drological model WGHM, which takes into account the im-
pact of human water use and man-made reservoirs on flows
and storages. Observations include remote sensing data (for
irrigated area, TWSA, and lake volume), in situ streamflow
observations (for of lake inflow), groundwater well data (for
deriving groundwater storage anomalies), and statistical data

on water use in the basin. A time series of observed lake vol-
ume was used for evaluation. Using the ensemble of best-
performing models where all available observations were
used for model calibration, the impact of human water use
was determined by comparing the output of a naturalized
run, with human water use assumed to be zero, with the runs
with the historical water use. To understand the value of dif-
ferent observational data types for calibration, WGHM was
calibrated in six variants (two auto-calibrated and four man-
ually calibrated) to different combinations of observational
data types.

We found that the time series for water demand by irri-
gation, as assumed in the standard WGHM version, had to
be adjusted using MODIS data such that the modification
of seven model parameters could result in a good fit to ob-
served GRACE TWSA. Consideration of these remote sens-
ing data somewhat improved the dynamics of both inflow
into Lake Urmia and lake water storage, but lake inflow was
still overestimated by 66 % and the seasonality of ground-
water storage was strongly shifted. Additional calibration
against observed inflow into the lake did not affect TWSA
simulation and slightly improved the simulation of the lake
water storage anomaly. Only by using monthly time series
of mean groundwater level variations in the basins for cal-
ibration, we could adjust the fractions of human water use
taken from groundwater and surface water such that season-
ality of groundwater storage was simulated correctly. Only
then was it possible to simulate the observed groundwater
loss, and loss of lake volume was no longer overestimated.
Statistical information on sectoral water withdrawals in the
basin for 1 year as well as estimates for sectoral return flow
fractions further improved the model, but only slightly. We
recommend including, in the case of relevant trends in ob-
servations, the difference between observed and simulated
trends as one of the calibration criteria, not only differences
between time series of daily, monthly, or annual values.

The calibration exercise showed that the calibration vari-
ant for which the highest number of observational data types
were used, WGHM variant RS_Q_GW_NA, showed the best
fit to all observations. Certainly, no general conclusions on
the worth of specific observation data types for model cal-
ibration, including trade-offs among fits to multiple data
types, can be derived from this study. Lake Urmia basin is
unusual due to (1) draining into a large end lake that domi-
nates TWSA, (2) the strong impact of human water use and
(3) the fact that the standard WGHM version estimates a net
recharge to the groundwater due to surface water irrigation,
which had to be corrected to a net abstraction. In basins with
large lakes, and in particular with end lakes, remotely sensed
time series on lake area and the elevation of the lake wa-
ter level should be used to estimate time series of lake wa-
ter storage as these observational data can be expected to be
of high value for understanding the freshwater system using
hydrological model calibration. Groundwater storage cannot
be observed from space but relies on in situ observations on
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groundwater heads in wells but, as in the case of Lake Urmia
basin, such data can be crucial for a correct understanding of
the freshwater system.

Based on the good fit of WGHM variant RS_Q_GW_NA
to four types of observational data, we found that human wa-
ter use reduced lake inflow that would have occurred without
human water use during 2003–2013 by about 39 %–45 %.
About 52 %–57 % of the total water storage loss in Lake
Urmia basin and only 39 %–43 % of lake water loss during
this time period was due to human water use, and 43 %–
48 % and 57 %–61 %, respectively, was due to climate varia-
tions. 87 %–90 % of groundwater storage loss is estimated to
be caused by human water use but this value may be some-
what overestimated by WGHM because climate-driven loss
under naturalized conditions may be underestimated due to
the simplified representation of groundwater–surface-water
exchanges in the model.

GRACE TWSA data indicate an increasing trend in wa-
ter storage in the basin during 2014–2017 due to both less
water use due to water management (ULRP, 2015c) and the
wet years 2015–2016. This trend is about half as strong as
the decreasing trend during 2003–2013. Further strengthen-
ing of efforts for decreasing human water use in the basin
should be undertaken, while at the same time there should be
global-scale mitigation of climate change by reducing green-
house gas emissions to prevent strong decreases in precipi-
tation and runoff. Our study has shown that the management
of Lake Urmia basin should be based on a comprehensive
assessment of all water storages and flows in the basin, in-
cluding human water uses of groundwater and surface water.
We recommend refining the estimated net abstractions from
surface water and groundwater by a basin-wide spatially ex-
plicit quantification not only of water abstractions but also
return flows to groundwater and surface water.
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