Concepts and Models for Creating Distributed
Multimedia Applications and Content in a
Multiscreen Environment

vorgelegt von
Dipl.-Ing.
Louay Bassbouss
ORCID: 0000-0001-6801-0924

an der Fakultat IV - Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Thomas Sikora
Gutachter: Prof. Dr. Manfred Hauswirth
Gutachter: Prof. Dr. Jean-Claude Dufourd
Gutachter: Prof. Dr. habil. Odej Kao

Tag der wissenschaftlichen Aussprache: 12. Marz 2020

Berlin 2020

Abstract

The continuing trend towards consuming media content on multiple screens such as
smart TVs and smartphones is growing steadily. The key enabler for the adoption of
multiscreen is the consumption of multimedia content on almost any device with
a screen. It is becoming even more significant with the introduction of new media
formats such as 360° videos featuring new device categories like head-mounted
displays. While traditional application models focus on individual screens, investi-
gations into concepts and models for the provisioning of multiscreen applications
and multimedia content across different devices and platforms are only partially
addressed. The lack of methods for modeling and conceptualizing multiscreen
applications, the requirement for interoperable APIs and protocols, and the need
for techniques to deliver high-quality multimedia content to devices with restricted
resources are currently the main limitations for a unique multiscreen experience.

This dissertation tackles these limitations and introduces a unified multiscreen appli-
cation model and runtime environment targeting devices with varying characteristics
and capabilities. The proposed approach applies the Separation of Concerns design
principle to the multiscreen domain. It enables the composition of modular, reusable,
atomic, and self-adapting components that can be dynamically migrated between
devices within a multiscreen application. Thereby, different communication and
distribution paradigms of application components are examined and evaluated.

This work focuses primarily on multimedia applications and presents new techniques
for the preparation, distribution, and playback of multimedia content in a multi-
screen environment. It proposes a novel approach that enables the playback of
processing-intensive content on constrained devices such as the playback of 360°
videos on TV sets. The foundation of this approach is the partial pre-rendering of
multimedia content and the distribution of the processing load across devices on
which the application is running. This also results in a reduction of the required
bitrate by up to 80% with the same image quality.

We investigated open web standards as the foundation for the introduced solutions,
as the web has quickly developed towards a platform for multimedia applications
characterized by rich graphical interfaces and a high level of interactivity across
multiple devices and platforms. Some results of this work have been published
at international conferences and contributed to the W3C Second Screen Working
Group, which defines specifications for multiscreen-related APIs and protocols. Parts
of the work have also been patented.

iv

Kurzfassung

Der anhaltende Trend, Medieninhalte auf mehreren Bildschirmen wie Smart TVs und
Smartphones zu konsumieren, nimmt stetig zu. Der Hauptfaktor fiir den Einsatz von
Multiscreen ist der Konsum von Multimedia-Inhalten auf fast jedem Gerdt mit einem
Screen. Sie gewinnt mit der Einfithrung neuer Medienformate wie 360° Videos
und neuen Gerédtekategorien wie Head Mounted Displays noch mehr an Bedeutung.
Waihrend traditionelle Applikationsmodelle sich auf einzelne Screens beschrianken,
wurden Konzepte und Modelle zur Bereitstellung von Multiscreen Anwendungen
und multimedialen Inhalten {iber verschiedene Gerate und Plattformen hinweg nur
teilweise untersucht. Das Fehlen von Methoden zur Modellierung und Konzeption
von Multiscreen Anwendungen, die Anforderungen an interoperable APIs und Pro-
tokolle, sowie die Notwendigkeit, hochwertige Multimedia-Inhalte fiir Gerdte mit
begrenzten Ressourcen bereitzustellen, sind derzeit die wichtigsten Einschrankungen
fiir ein durchgéangiges Multiscreen-Erlebnis.

Diese Dissertation befasst sich mit diesen Einschrdnkungen und stellt ein einheitliches
Multiscreen-Anwendungsmodell und eine Laufzeitumgebung fiir Gerédte mit unter-
schiedlichen Eigenschaften und Fahigkeiten vor. Der vorgeschlagene Ansatz wendet
das Separation of Concerns Design-Prinzip auf die Multiscreen-Doméne an. Es
ermoglicht die Verwendung modularer, wiederverwendbarer, atomarer und sich
selbstanpassender Komponenten, die innerhalb einer Multiscreen-Anwendung dy-
namisch zwischen Geraten migriert werden konnen. Dabei werden verschiedene
Kommunikations- und Distributionsparadigmen von Anwendungskomponenten er-
forscht und bewertet.

Diese Arbeit konzentriert sich in erster Linie auf Multimedia Anwendungen und
stellt neue Techniken zur Aufbereitung, Verteilung und Wiedergabe von Multimedia-
Inhalten in einer Multiscreen-Umgebung vor. Sie schligt einen innovativen Ansatz
vor, der die Wiedergabe von rechenintensiven Inhalten auf Gerdten mit eingeschrank-
ten Ressourcen wie der Wiedergabe von 360° Videos auf TV Geraten ermoglicht.
Grundlage dieses Ansatzes ist die partielle Prerendering von Multimedia-Inhalten
und die Verteilung der Verarbeitungslast auf die Gerite, auf denen die Anwendung
lauft. Dies fithrt auch zu einer Reduzierung der erforderlichen Bitrate um bis zu 80%
bei gleicher Bildqualitat.

Dazu werden offene Webstandards als Grundlage fiir die vorgestellten Losungsan-
siatze untersucht, da sich das Web schnell zu einer Plattform fiir Multimedia An-
wendungen entwickelt hat, die sich durch vielfaltige grafische Oberflachen und ein
hohes Mal? an Interaktivitit iiber mehrere Plattformen hinweg auszeichnet. Einige
Ergebnisse dieser Arbeit wurden auf internationalen Konferenzen veroffentlicht
und in die W3C Second Screen Working Group eingebracht, die Spezifikationen
fiir Multiscreen-bezogene APIs und Protokolle definiert. Teile der Arbeit wurden
patentiert.

Acknowledgement

First of all, I would like to thank my supervisor Prof. Dr. Manfred Hauswirth,
who gave me the opportunity to work on this doctoral thesis. I am grateful for his
continual openness, patience, and guidance. I would also like to thank Prof. Dr.
Jean-Claude Dufourd and Prof. Dr. habil. Odej Kao for their kind support and for
reviewing this thesis.

I am also deeply thankful to all my colleagues at the business unit FAME for their
support and fruitful discussions over the last years. A special thank goes out to Dr.
Stephan Steglich for his continuous support and for giving me the opportunity to do
fundamental and applied research in the domain of multiscreen applications and
media. I would also like to thank all the students who have graduated under my
supervision for their outstanding work.

Finally, I would not have been able to complete this work without the continuous
support, encouragement, and warmth of my family. I am grateful for the tremendous
support they gave me in the past years to complete this thesis.

Contents

1 Introduction 1
1.1 Motivation v v v v e e e e e e e e e e e e e e

1.2 Problem Statement And Research Questions 2
1.3 Contributions 3
1.4 StructureoftheThesis, 5

2 State of the Art and Related Work 7
2.1 Multiscreen Definition 7
2.2 Motivating Real World Scenarios 8
2.3 State of the Art Technologies and Standards 10
2.3.1 Discovery, Launch and Control 10

2.3.2 Screen Sharing and Control 14

2.3.3 Application to Application Communication 15

2.3.4 Media Delivery and Rendering 17

2.3.5 WebAPIs 22

2.4 Related Work 24
2.4.1 Multiscreen Applications 24

2.4.2 Multiscreen Multimedia Content 31

2.5 DiSCuSSiON e 36

3 Use Cases and Requirements Analysis 41
3.1 UseCases oottt 41
3.1.1 UC1: Remote Media Playback 41

3.1.2 UC2: Multiscreen Game 43

3.1.3 UC3: Personalized Audio Streams 44

3.1.4 UC4: Multiscreen Advertisement 46

3.1.5 UCS5: Tiled Media Playback on Multiple Displays 47

3.1.6 UC6: Multiscreen 360° Video Playback 48

3.2 Requirements Analysis 49
3.2.1 Functional Requirements. 49

3.2.2 Non-Functional Requirements 54

3.3 Conclusion e 56

4 Multiscreen Application Model and Concepts 57

Vii

viii

4.1 Introduction
4.2 Multiscreen Model Tree
4.2.1 Instantiation

4.2.2 Discovery,

4.2.3 Launching and Terminating of Application Components. . . .

4.2.4 Merging and Splitting
4.2.,5 Migration
4.2.6 Mirroring
4.2.7 Joining and Disconnecting
4.2.8 Rendering

4.3 Multiscreen Application Concepts and Approaches

4.3.1 Message-Driven Approach
4.3.2 Event-Driven Approach.
4.3.3 Data-Driven Approach
4.4 Multiscreen Platform Architecture
4.4.1 Multiscreen Application Runtime . .
4.4.2 Multiscreen Application Framework
4.4.3 Multiscreen Network Protocols . . .
4.5 MultiscreenontheWeb
4.5.1 Web Components Basics
4.5.2 Web Components for Multiscreen . .
4.6 Implementation
4.6.1 Discovery and Launch
4.6.2 Communication and Synchronization
4.6.3 Application Runtime

5 Multimedia Streaming in a Multiscreen Environment

5.1 Multimedia Sharing and Remote Playback .
5.2 Spatial Media Rendering for Multiscreen . .

5.2.1 Content Preparation

5.2.2 Seamless, Consistent and Synchronized Playback

5.3 360° Video for Multiscreen
5.3.1 Challenges of 360° Video Streaming

5.3.2 Classification of 360° Streaming Solutions

5.3.3 16K 360° Content Generation
5.3.4 360° Video Pre-rendering Approach .
5.3.5 Improvement
5.3.6 Implementation.

6 Evaluation

6.1 Multiscreen Application Model and Media Synchronization

6.2 Multiscreen Application Runtime Approaches

101
101
109
113

117
117
120
121
122
126
127
131
133
134
144
146

6.2.1
6.2.2
6.2.3
6.2.4

Evaluation of the Simple Application
Evaluation of the Video Application
Evaluation of the Cloud-UA Approach on the Server
Summary e e

6.3 360° Video Rendering and Streaming

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

7 Conclusions

Bitrate Usage« ...
Client Resources v i v i ..
Motion-To-Photon Latency
Server Resources,
Summary

and Outlook

7.1 Conclusions e e e e
7.2 Outlook e

Bibliography

Appendices

A Author’s Publications
A.1 Accepted Papers and Published Articles

A.2 Patents

A.3 Contributionto Standards
A.4 Supervision Supportof Theses

A5 OpenS

ource Contributions o it v

A.6 University Courses And Guest Lectures

B Multiscreen

Web Application Examples

B.1 Multiscreen Slides Application

B.2 Video Wall Multiscreen Application

B.2.1
B.2.2

Multiscreen Application Tree
Implementation

169
169
173

175

199

201
201
204
204
205
206
207

Introduction

1.1 Motivation

The majority of our media consumption today occurs in front of a PC, TV, smart-
phone or tablet. According to the Google Research Study on Multiscreen User Behavior,
“the majority (90 percent) of our daily media interactions are screen based. Only 10
percent of all media interactions are non-screen based (radio, newspaper, and mag-
azine). Smartphones are the most frequent companion devices during simultaneous
usage especially when we are watching TV” [1].

The interaction and collaboration between devices of different types and varying
characteristics are becoming increasingly important. For example, Netflix lists more
than 25 supported devices in 7 different categories such as Smart TVs and Game
Consoles [2] which are also potential candidates to interact with each other espe-
cially between mobile and TV devices. The development of multiscreen applications
for this heterogeneous landscape of devices and platforms is extremely time and
resource intensive. Operators, content providers, and device manufacturers are
increasingly looking for solutions that simplify the technologically complex multi-
screen landscape and reach consumers on all devices they use in their daily life,
regardless of the underlying technologies.

The development of multiscreen applications is facing new challenges that go beyond
traditional single-screen applications and requires developers to consider additional
aspects such as the discovery of devices, launching applications on remote devices,
synchronizing application data and multimedia content across devices, commu-
nication between application components, security, and privacy. Therefore, new
application development paradigms, models, concepts and technologies that address
these challenges are required and worth further investigation.

The main driver for the further development of multiscreen applications is the
consumption of Internet-delivered video on all screens. According to the Cisco Visual
Networking Index: Forecast and Methodology, 2016-2021, “Internet video streaming
and downloads are beginning to take a larger share of bandwidth and will grow to more
than 81 percent of all consumer Internet traffic by 2021” [3]. Delivering a seamless
video experience across different types of devices and platforms is one of the major

2

challenges for content creators, application developers, distributors and platform
providers. Due to the heterogeneous landscape of platforms and extremely varying
media rendering capabilities (different formats, codecs, media profiles) even on
devices from the same manufacturer, it is almost impossible to distribute the same
media content to all user devices in a single format.

Furthermore, the introduction of new media types in recent years, such as 360°
video on YouTube [4] and Facebook [5], which is becoming increasingly popular
and commercially relevant, adds a new level of complexity to the already complex
media delivery landscape. Currently, most 360° videos offer Field of View (FOV)
with Standard Definition (SD) resolution, which significantly limits the immersive
experience for the user. Bandwidth limitations, end device constraints and lack of
higher resolution 360° cameras prevent FOV with better quality to be delivered.
Many devices like TVs are also unable to perform the geometric transformation to
render the field of view from the spherical video.

Today’s multimedia services are either implemented as native software applications,
running on a particular device and Operating System (OS) or as web applications
served from the Internet (online) and running on a variety of devices and plat-
forms that provide a web runtime. There are already existing open and proprietary
solutions that address individual multiscreen features, but unified concepts and
models for developing, distributing and running multiscreen applications across
multiple devices and platforms are still missing. For example, iOS uses a proprietary
protocol called Airplay [6] to share content on Apple TV [7] via video streaming
while Android uses a protocol called Miracast [8] for the same purpose. Google
Cast [9] follows another concept that allows displaying hosted web content served
from the internet on receiver devices like Chromecast [10]. In this case, multiple
interlinked applications run on host and presentation devices and collaborate with
each other. There is also ongoing research on another mechanism that allows to run
the application in the cloud and to stream the user interface (UI) or part of it to
target devices such as low-cost set-top-boxes (STBs).

1.2 Problem Statement And Research Questions

As outlined in the motivation, the development of interactive multiscreen applica-
tions and the creation and delivery of multimedia content across different devices
and platforms are highly challenging tasks, and many issues are still not solved or
only addressed partially. The problems this dissertation focuses on are:

Chapter 1 Introduction

* Problem 1: Lack of a unified method for modeling and conceptual design of
multiscreen applications.

* Problem 2: Lack of interoperable APIs and protocols for a cross-platform,
multiscreen runtime environment.

* Problem 3: Lack of techniques for streaming and playback of high-quality
multimedia content especially 360° videos on low capability devices with

limited resources.
Based on these problems, the following research questions were identified:

* Research Question 1: How to design and develop multiscreen applications,
taking into account aspects such as development costs and time, platform
coverage and interoperability between devices and technology silos?

* Research Question 2: How to efficiently distribute and run multiscreen appli-
cations, taking into account available resources such as bandwidth, processing,
storage and battery without affecting the user experience?

* Research Question 3: How to efficiently prepare, stream and play multi-
media content, especially 360° videos, across different platforms taking into
account available bandwidth, content quality, media rendering capabilities and
available resources on target devices?

* Research Question 4: How to support the standardization of an interoperable
and flexible model for distributed multiscreen applications and the specification
of related standard APIs and network protocols?

1.3 Contributions

This work has a strong software engineering focus driven by the substantial con-
tributions to international standards. It aims to solve the problems of "Wild West"
architectures and technologies in the open Internet by providing the first struc-
tured analysis and classification of methods and concepts for the distribution of
applications and media across heterogeneous devices. Based on this structured and
methodical analysis, a comprehensive architecture, protocols, and APIs are defined
and implemented, and their efficiency is proved by an extensive evaluation process.
More specifically, the research contributions of this thesis are:

* Contribution 1: Study and evaluate design patterns, concepts, and tech-
nologies for creating distributed multimedia applications and identify the
requirements to define a unified application model by considering the most rel-
evant multiscreen use cases and application scenarios. The new model defines
a set of communicating application components where each of them can be dy-

1.3 Contributions

namically migrated to other devices at any time, and automatically adapted to
the target execution context. Thereby, the Separation of Concerns (SoC) design
principle is applied to this domain by enabling the composition of multiscreen
applications from modular and reusable atomic software components.

* Contribution 2: Design and development of a multiscreen application frame-
work that reduces the complexity of building and distributing applications
across multiple screens and platforms. The core of the framework is a unified,
cross-domain and web-based application model that abstracts from the underly-
ing technologies and offers a set of APIs that provide access to core multiscreen
functions like device discovery, application launch, synchronization, signaling,
and communication. This new framework supports the application model
discussed in the first contribution.

* Contribution 3: A mechanism to prepare, deliver, and playback multimedia
content especially 360° videos even on low-capability devices with limited
resources. All methods for processing and streaming of 360° videos such
as local rendering, cloud rendering, and the new pre-rendering approach
introduced in this thesis are evaluated and compared.

* Contribution 4: The results of this thesis are contributed to multiscreen stan-
dardization activities in the World Wide Web Consortium (W3C) [11] especially
to the Second Screen Working Group [12] which works on the two specifica-
tions, Presentation API [13] and Remote Playback API [14], and to the Second
Screen Community Group [15] which incubates and develops specifications of
a network protocol called Open Screen Protocol [16].

These contributions were successfully presented at peer-reviewed international
conferences by the author of this dissertation:

* Paper 1: Louay Bassbouss, Max Tritschler, Stephan Steglich, Kiyoshi Tanaka,
and Yasuhiko Miyazaki. ,,Towards a Multi-screen Application Model for the
Web*“. In: 2013 IEEE 37th Annual Computer Software and Applications Con-
ference Workshops. Kyoto, Japan, 2013, pp. 528-533. This paper provides
the foundation for the development of web-based multiscreen applications.
It is expanded in this thesis to support the application model and concepts
presented in Chapter 4, using new techniques such as Web components that
have been widely adopted by the Web community in recent years. Section 4.5
presents the new enhancements in detail.

* Paper 2: Louay Bassbouss, Gérkem Giclii, and Stephan Steglich. , Towards a
wake-up and synchronization mechanism for Multiscreen applications using
iBeacon“. In: 2014 International Conference on Signal Processing and Multi-
media Applications (SIGMAP). Vienna, Austria, 2014, pp. 67-72. This paper
provides the basis for discovering devices in a multiscreen environment by
considering the spatial aspect. The results of this paper are considered in Sec-

Chapter 1 Introduction

tion 4.6.1, which presents the implementation of the multiscreen application
runtime introduced in Section 4.4.

Paper 3: Louay Bassbouss, Stephan Steglich, and Martin Lasak. , Best Paper
Award: High Quality 360° Video Rendering and Streaming“. In: Media and
ICT for the Creative Industries. Porto, Portugal, 2016. This paper provides a
comparison between the 360° rendering and streaming methods and serves
as input for the classification of the different 360° approaches presented in
Section 5.3.2.

Paper 4: Louay Bassbouss, Stephan Steglich, and Sascha Braun. , Towards a
high efficient 360° video processing and streaming solution in a multiscreen
environment®“. In: 2017 IEEE International Conference on Multimedia Expo
Workshops (ICMEW). 2017, pp. 417-422. This paper introduces the 360°
pre-rendering approach presented in Section 5.3.4 of this thesis. The new
approach enables the playback of 360° videos even on devices with limited
processing resources like TVs.

Paper 5: Louay Bassbouss, Stefan Pham, and Stephan Steglich. ,,Stream-
ing and Playback of 16K 360° Videos on the Web“. In: 2018 IEEE Middle
East and North Africa Communications Conference (MENACOMM) (IEEE MEN-
ACOMM’18). Jounieh, Lebanon, 2018. This paper provides an overview for
the creation, delivery, and playback of high-resolution 360° content using the
Dynamic Adaptive Streaming over HTTP (DASH) standard, and following the
pre-rendering approach introduced in the previous paper. The results are
presented in Section 5.3.

1.4 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 - State of the Art and Related Work: This chapter includes an overview
of related scientific research in the field of this thesis. Also related state-of-the-art

technologies and standards in the domain of distributed multimedia applications and

content in a multiscreen environment are discussed and evaluated in this chapter.

Chapter 3 - Use Cases and Requirements Analysis: This chapter begins with the

definition of use cases that cover most relevant multiscreen application scenarios

with focus on mobile and home networked devices like smartphones, tablets, and TVs.

Afterward, the defined use cases are analyzed, and the functional and non-functional

requirements are identified.

1.4 Structure of the Thesis

6

Chapter 4 - Multiscreen Application Model and Concepts: Based on the require-
ments identified in Chapter 3, this chapter focuses on the definition of a unified
model for multiscreen applications and the evaluation of different options for a
distributed runtime architecture. Hereby, the different methods for application
execution, rendering, and distribution are identified and compared. This detailed
analysis is used to derive the technical specifications of the system components and
APIs aligned with current standardization work.

Chapter 5 - Multimedia Streaming in a Multiscreen Environment: This chapter
focuses on the efficient streaming and playback of high-quality multimedia content
with a focus on 360° videos. Based on the use cases and requirements identified
in Section 3, the architecture of the playout system is specified, and the different
methods for 360° video rendering are studied and evaluated. This chapter provides
also a proof-of-concept implementation of most relevant system components enabling
the delivery, playback, and synchronization of multimedia content across devices.

Chapter 6 - Evaluation: This chapter evaluates the results of Chapters 4 and 5
according to the functional and non-functional requirements identified in Chapter
3.

Chapter 7 - Conclusions and Outlook: This chapter concludes the thesis with a
summary that discusses the achievements of this work against the research questions
defined in Section 1.2. Finally, a short outlook on future work and potential follow-up
activities are given.

Chapter 1 Introduction

State of the Art and Related Work

This chapter discusses state-of-the-art technologies and related work in the fields of
distributed multiscreen applications and multimedia streaming. It is structured as
follows: Section 2.1 explains the basic terminology and defines the context of this
thesis. Afterward, section 2.2 gives an overview of relevant real-world scenarios that
motivate the topic of this work. Section 2.3 focuses on state-of-the-art technologies in
the field of distributed multiscreen applications and media streaming in general and
360° video streaming in particular. Section 2.4 analyses further scientific activities
and research in this field.

2.1 Multiscreen Definition

There are many definitions and interpretations for the term Multiscreen depending
on the domain being used. There are also alternative or similar terms like second
screen, companion screen, and dual screen which are widely used and usually refer
to the same concept but for a specific application context. This section will discuss
these terms and provide a clear definition of the term multiscreen.

One of the first terms used in this context is second screen. In 2007 Cruickshank
et al. introduced in a study an approach for enhancing interactive TV services like
Electronic Program Guide (EPG) using portable second screen: "A portable second
screen offers the opportunity to remove the need to show UI elements on the main
television screen" [22]. The usage of the second screen at that time was motivated
by the limited capabilities of TVs concerning user interface rendering latency and
responsiveness. The second screen hype continued in the following years, especially
with the launch of the iPad in 2010 accompanied by the increasing number of smart-
phones and the introduction of HbbTV. Since then, broadcasters have begun to think
about valuable real-world scenarios that can enhance the TV experience not only
by using the second screen as a replacement for the TV remote control. In Section
2.2, some of the most important scenarios in the broadcast domain will be explained
in more detail. At the same time, the trend towards Video on Demand (VOD) has
played an important role in the way we consume media. The mobile device began
to be the main device attracting our attention and no longer considered as the
second screen. The role of TV also began to change from a device for consuming

8

linear broadcast video to a device featuring personalized OTT content delivered
over the Internet. The TV remote control is used in this case to interact with the TV
application, mainly to search for new content, control video playback and explore
additional information about the current media playing on the TV. It has been proved
in [23] that these tasks can be done more easily and quickly with a smartphone or
tablet than with a TV remote control. It is also easier to provide a personalized user
experience with a personal device like a smartphone than with a shared device like
TV. For this reason, big players in the OTT industry especially YouTube and Netflix
started to work on methods to connect applications on mobile and TV to provide a
better user experience and to elaborate on new application scenarios that go beyond
content search and media playback like "multiscreen advertisement".

Another relevant term in the context of multiscreen is companion screen, which
is widely used in the broadcast domain. It represents devices such as smartphones,
tablets, and laptops that can be connected to HbbTV applications provided by the
broadcaster.

Dual screen is another term used in conjunction with mobile platforms such as
iOS and Android for connecting mobile devices to external displays either wired or
wireless to extend or mirror the view of the application running on the host device.
These platforms provide SDKs for application developers to display content on the
remote display when used in extended mode.

In this thesis, we will consider multiscreen as an umbrella for all these terms
and define it as "the participation within a common execution context involving
more than one screen with application instances interacting and complementing
each other". The application instances can be distributed to devices of different
categories and platforms and are not restricted to a specific number of screens or
specific device classes. The number of devices involved in a multiscreen scenario can
vary during runtime, as screens can be added or removed at any time. Application
instances must adapt to the capabilities of the device on which they are running.

Note: multi-screen is another spelling for the term multiscreen and also frequently
used in the literature. In this work, we will use multiscreen, but the spelling multi-
screen may appear when external sources and publications are addressed.

2.2 Motivating Real World Scenarios

There is a variety of multiscreen multimedia applications and services already avail-
able. Video streaming is the most relevant category for enhancing the user experience

Chapter 2 State of the Art and Related Work

by using a mobile device while watching a video on the TV. The most popular video
streaming services like YouTube [4] and Netflix [24] already support multiscreen.
The mobile application allows users to browse the catalog and stream selected
content to a connected TV or a streaming device like Chromecast [10] and Apple
TV [7]. Providers like Netflix are also experimenting with new features like "Netflix
QuietCast" [25], which allows viewers to mute the video on TV and play the audio
stream on a companion device while keeping both streams in sync. Social media
applications like Facebook [5] also support multiscreen by enabling to cast videos to
the big screen while the user can continue to use the app on the mobile device.
Productivity is another important category with relevant multiscreen applications
like Google Slides [26] which allows users to display presentation slides on a large
screen like Chromecast while using the mobile device as a controller.

Gaming is also one of the important domains for multiscreen applications. The
famous mobile game Angry Birds [27] was one of the first gaming applications that
supported Chromecast. In most multiscreen games, the player uses the smartphone
as a game controller while the TV displays the main game field. Some multiscreen
games also support multiple players.

Another domain for using multiscreen is Sport. During the World Cup 2014 in
Brazil, the two German public broadcasters ARD and ZDF extended their second
screen offer by showing customizable game statistics in the mobile application while
the viewer watched the game on the TV [28]. However, one of the most exciting fea-
tures of the app was the ability to choose individual camera perspectives from more
than 15 cameras distributed in the stadium. Multiscreen advertisement is also one
of the most important commercially relevant scenarios. Services like wywy, which
support hundreds of TV channels in Europe and the US, and create a seamless brand
experience through multiscreen advertisement by analyzing the TV audio signal to
recognize the content and display complementary and interactive ad content on the
TV. A user study with a Nissan TV synced campaign led to 96% brand uplift [29].
Other providers like Shazam [30] also use content recognition techniques with audio
watermarking for real-time synchronization between TV and companion screen.

Many broadcasters also see social TV and storytelling applications as a way to
engage viewers with the content displayed on TV. The Walking Dead Story Sync [31]
is one of the most popular storytelling second screen applications in the USA for
the TV series Walking Dead. This kind of applications also offers social media in-
tegration, which allows viewers to engage with friends about the current TV program.

Also, many of the VOD and social media services such as YouTube and Facebook are
now supporting 360° videos on various devices like head-mounted displays. Many
broadcasters and content providers such as ZDF [32], Arte [33] and RedBull [34]
have created their own 360° content and made it available to viewers via mobile

2.2 Motivating Real World Scenarios

10

applications. 360° video on TV is still limited and only supported in the YouTube
application [35] on a few new Android TV models.

2.3 State of the Art Technologies and Standards

This section discusses state-of-the-art technologies and standards that are relevant for
the multiscreen multimedia application domain. Different aspects will be considered
in each of the following sections.

2.3.1 Discovery, Launch and Control

In this section, existing protocols and standards for discovering devices or services,
launching and controlling applications and media on secondary devices will be
discussed.

SSDP

The Simple Service Discovery Protocol SSDP [36] is a network protocol for ad-
vertising and discovery of network services without the need for a server-based
configuration to register the services and also without the need for a special static
configuration of a network host. SSDP is the discovery layer of the UPnP protocol,
but it is often used in other technologies and standards like DIAL and HbbTV as
a standalone discovery protocol without the other UPnP components. SSDP is a
text-based protocol that uses UDP [37] as the underlying transport protocol. It can be
implemented on any platform that supports UDP sockets. All SSDP Service announce-
ment and discovery requests are sent to the multicast address 239.255.255.250
(IPv4) and port 1900.

UPnP

The Universal Plug and Play protocol UPnP [38] defines an architecture for ad-
hoc and peer-to-peer connectivity in small and unmanaged networks. The UPnP
architecture includes other protocols like TCP, UDP, HTTP, and XML. UPnP also
requires that a device has been assigned an IP address. Besides addressing, UPnP
architecture includes the following layers:

* Discovery: UPnP uses SSDP as a discovery protocol.

Chapter 2 State of the Art and Related Work

* Description: After a device or service is discovered, control devices can re-
trieve its device description from the LOCATION URL provided in the discovery
response message.

* Control: When a control device receives and parses a device description, it
can connect and control a specific service offered by that device.

* Eventing: In many situations, it is necessary to send update events to control
devices. For example, a media rendering device can send events about the
current status and playback position to control devices in order to update the
control UL

DIAL

The Discovery and Launch protocol DIAL [39] developed by Netflix [24] allows
second screen devices like smartphones and tablets to discover and launch appli-
cations on TVs and streaming devices. The DIAL protocol reduces the number of
steps needed to connect an application running on a second screen to its counterpart
application running on the TV. There is no need for end-users to enter PIN codes
manually or scan QR codes to pair the devices together. DIAL specifies client and
server components for first and second screen devices. The DIAL server exposes a
service in the network that provides interfaces for launching, stopping and checking
the status of a specific application. DIAL clients discover devices exposing DIAL
services in order to launch or stop TV applications. Application names like YouTube
and Netflix are used as identifier. To avoid conflicts, providers need to register the
names or namespaces of their applications in a DIAL registry. Similar to UPnP, DIAL
also uses SSDP as underlying discovery protocol.

mDNS/DNS-SD

The multicast Domain Name System mDNS [40] and the DNS-based service discovery
DNS-SD [41] are two protocols that can be used in conjunction with each other to
support network service discovery.

* mDNS: The mDNS protocol uses APIs similar to the unicast Domain Name
System, but it relies on multicast UDP protocol. It enables the lookup of DNS
resource records without the need for a conventional managed DNS server.
Each device in the network stores a list of DNS resource records and joins
the mDNS multicast group by sending requests and listening to the multicast
address 224.0.0.251 and port 5353. mDNS defines a top-level domain .local
for local addresses. When a client needs to resolve a hostname, it sends a

2.3 State of the Art Technologies and Standards

11

12

request to the multicast address and asks the host with that name to identify
itself. The host sends a multicast message with its IP address. All devices in
the multicast group also receive the message and update their cache. When
a device disappears, it sends a multicast message with Time To Live header
TTL=0. All devices in the multicast group receive the message and remove that
device from the cache.

* DNS-SD: It extends mDNS to provide simple service discovery and not only
advertising and resolving hostnames. Similar to SSDP, DNS-SD provides
functions to advertise and discover services in the network. It allows clients to
discover a named list of services from a specific type using the DNS PTR record.
A service instance can be described using DNS SRV and DNS TXT records.

Google Cast

Google introduced the Google Cast SDK for the platforms Android, iOS and Web
which allows developers to stream content to Cast devices such as Chromecast and
Android TV. The Google Cast Protocol used behind the Cast SDK enables sender
and receiver devices to discover, control and communicate with each other. The
first version of Google Cast used DIAL for discovery and launch of applications and
a proprietary socket-based protocol for communication. The latest version of the
protocol also supports mDNS/DNS-SD for discovery and a proprietary socket-based
protocol for application control. Cast receiver applications incorporate HTML5
technologies and can be hosted on any Web Server and updated any time.

HbbTV

The Hybrid broadcast broadband TV HbbTV [42] is a global initiative aimed at
harmonizing the broadcast and broadband delivery of entertainment services to
consumers through connected TVs, set-top boxes and multiscreen devices. HbbTV
has a wide range of supporters, especially from European broadcasters and consumer
electronics manufacturers. The consortium published recently the version 2.0.2 of
the HbbTV specification which includes a set of new features like HTML5, CSS3,
HEVC, DASH, Companion Screens, and Media Synchronization. The main functions
of the Companion Screens and Media Synchronization components are:

* Launching a companion screen application: allows an HbbTV application
to launch a second screen application on a companion device using the
HbbTVCSManager interface.

Chapter 2 State of the Art and Related Work

* Application to application communication: allows second screen and HbbTV
applications to establish a communication channel using WebSocket [43]. The
HbbTV terminal runs a WebSocket server and each of the second screen and
HbbTV applications connects to that server and joins the same session.

* Remotely launching an HbbTV application: allows a second screen applica-
tion to join or launch an HbbTV application from a companion device using
DIAL. The HbbTV terminal runs a DIAL server that offers an application called
HbbTV that is responsible for handling all HbbTV related requests. The DIAL
server may be used to launch other applications like YouTube which is not in
the scope of the HbbTV specification.

* Multi-Device Synchronization: allows synchronizing data and media streams
delivered over broadcast or broadband between companion devices and HbbTV
terminals. It also allows synchronizing audio and video streams on the same

terminal.

BLE based discovery

Bluetooth Low Energy BLE [44] (also called Bluetooth Smart) provides a power-
friendly solution to discover devices nearby. A service device transmits during its
operating time a BLE packet also called Beacon containing information that can be
used to identify the device. Control devices listen to beacons from a specific type
and notify applications if users enter or leave a region of a beacon. The Bluetooth
signal strength can also be used to estimate the distance to the service device. There
are two popular technologies on top of BLE introduced in recent years:

* iBeacon: is a special format of BLE Beacons introduced by Apple [45] that
allow devices or sensors to transmit beacons that contain in addition to the
BLE packet headers three main parameters proximityUUID, major and minor.
proximityUUID is A 128-bit value that uniquely identifies one or more bea-
cons as a certain type or from a certain organization. major is a 16-bit un-
signed integer that can be used to group related beacons that have the same
proximityUUID. minor is a 16-bit unsigned integer that differentiates beacons
with the same proximityUUID and major value. iOS devices with integrated
BLE sensors already support iBeacon and allow to wake up applications and
run them in the background for a limited time when the user enters or leaves a
beacon region. The application needs to register itself for beacons with specific
proximityUUID to use this technology.

* Eddystone: is also a protocol based on BLE introduced by Google as part of
the Physical Web [46] project using a special format of BLE beacons. It is more
open than iBeacon since it broadcasts URLs or URIs that can be consumed by

2.3 State of the Art Technologies and Standards

13

14

any web browser. This is an advantage compared to iBeacon, where a native
application must be installed to receive and interpret the beacon. Eddystone
BLE packets contain header parameters and the encoded URL with a length
up to 18 bytes. URL shortener services can be used if the original URL cannot
be encoded in less than 18 bytes. Eddystone Browsers listen to beacons and
retrieve additional information like title, description, and icon of the web page
behind the Eddystone URL.

BLE based protocols like iBeacon and Eddystone can be used in a multiscreen
application to discover and pair devices based on their proximity.

2.3.2 Screen Sharing and Control

The following sections introduce state-of-the-art technologies and standards for
Screen Sharing and Control across devices and platforms.

Airplay

Airplay [6] is a streaming protocol supported on Apple platforms like iOS, ma-
cOS, and tvOS. iOS provides an SDK that hides the complexity of the protocol for
developers. Airplay can be operated in two modes "Media Sharing" and "Screen
Sharing":

* Media Sharing: allows to share and control media content like audio, video,
and image on Airplay-enabled receivers like AppleTV. This feature is available
in safari browser for HTML media elements and can be activated using the
x-webkit-airplay="allow" attribute.

* Screen Sharing: enables screen mirroring or extension on Airplay-enabled
receivers. In extension mode, the application can render any content on the
connected Airplay device using the Airplay SDK.

The Specification of the Airplay protocol is not public, but there are different Airplay
server and client implementations of the protocol which are based on the Unofficial
AirPlay Protocol Specification [47].

Chapter 2 State of the Art and Related Work

Miracast

Miracast [8] is a peer-to-peer wireless screen sharing standard formed via Wi-Fi
Direct connections without a wireless access point. It allows client devices like
laptops, tablets, and smartphones to stream audio and video content to Miracast-
enabled receivers like TVs and projectors. Miracast is effectively a wireless HDMI
cable, copying everything from one screen to another using the H.264 codec and
its digital rights management (DRM) layer emulating the HDMI system. Miracast is
already supported on a wide range of devices like Android smartphones and tablets
(version 4.2 and higher), Windows PCs, projectors, TVs, Set-Top-Boxes and game
consoles. Older devices can also be extended with Miracast adapters which can be
plugged into the HDMI input of any display device.

MHL

The Mobile High-Definition Link MHL [48] is an industry standard which allows
sharing screen content of a mobile device like a smartphone or tablet on large
screens like high-definition TVs while charging the device. It is an adaptation of
HDMI intended for mobile devices. MHL also supports interactions using the Remote
Control Protocol RCP. In this case, users can use the TV remote control as an input
device instead of the touchscreen which is suitable for video-centric applications.
The MHL 3.0 standard supports up to 4K (Ultra HD) video and 7.1 surround-sound
audio. MHL 3.0 also supports simultaneous high-speed data channel and improved
RCP with new commands.

2.3.3 Application to Application Communication

Application to application (App2App) communication is one of the essential features
when developing multiscreen applications. It allows application components dis-
tributed on different devices to interact with each other in order to share content or
synchronize application state and media streams. The following sections introduce
state-of-the-art technologies that are relevant for App2App communication in a
multiscreen environment.

IP-based Communication Protocols and their counterpart W3C APIs

IP-based protocols are most often used for the communication between multiscreen
application components especially when it comes to Web-based applications that can

2.3 State of the Art Technologies and Standards

15

16

make use of these protocols using standard W3C APIs. The most relevant protocols
and their counterpart W3C APIs are described below:

* HTTP: The Hypertext Transfer Protocol (HTTP) [49] forms the foundation for

communication on the Web. It is a Request/Response protocol widely used in
distributed systems based on the Client/Server computing paradigm. HTTP is
an application protocol and often uses TCP as a transport protocol, but it is
not necessarily limited to it. For example, the new state-of-the-art transport
protocol QUIC (Quick UDP Internet Connections) [50] can be used instead
of TCP. QUIC reduces the latency in the communication and the connection
establishment costs compared to that of TCP and supports all new features
introduced in version 2 of the HTTP protocol. QUIC is already supported
in the Chrome Browser and will be automatically selected instead of TCP if
the server that hosts the requested resource also supports QUIC. Since HTTP
is a Request/Response protocol, it is not suitable for multiscreen App2App
communication and used in most cases as a fallback to other more suitable
protocols like WebSocket and WebRTC. A proxy server is needed to enable
App2App communication over HTTP. It acts as a relay by sending data back
and forward between the application components. Thereby, long polling is
used as a mechanism that allows the server to push data to the clients. In Web
runtimes like browsers, the XMLHttpRequest API [51] and the new Fetch API
[52] can be used to access resources on the server using HTTP.

WebSocket: WebSocket [43] is a bi-directional communication protocol be-
tween client and server. The protocol aims to enable the server to push data to
the client without establishing a new connection like in the case when using
HTTP with long polling. By using WebSocket, the client establishes a single
TCP connection to the server which can be used to send data in both direc-
tions multiple times. For App2App communication, each application needs to
establish a WebSocket connection to the server which forwards the data be-
tween paired connections. HbbTV follows this concept for the communication
between companion screens and TV terminals by running a WebSocket Server
on the TV. The WebSocket API [53] can be used to establish a WebSocket
connection from a web page running in a browser or any web runtime.
WebRTC: WebRTC [54] is a peer-to-peer protocol that enables real-time com-
munication (RTC) between web applications via simple APIs. Most relevant
scenarios for using WebRTC are messaging, video chat and file transfer applica-
tions without the need to install browser plugins and run server infrastructure
since the data transfer is done directly between the peers without the need for
a proxy. The W3C WebRTC API [55] can be used in browsers and web runtimes
to access the underlying WebRTC protocol. The most relevant components of
the API are listed below:

Chapter 2 State of the Art and Related Work

MediaStream API: enables the access to local multimedia devices like micro-
phone and camera. The API also allows to capture the screen and use it as a
media source.

RTCPeerConnection API: enables the exchange of media streams and data
between browsers. Exchanging signaling messages during the connection
setup phase is necessary. How to exchange these messages is not part of the
WebRTC protocol. Developers can use existing signaling protocols like X\MPP
or WebSocket for this purpose. Once the connection is established, both peers
can add media sources to it or create data channels. Once a media source is
added on one end, the media stream can be consumed on the other end using
HTML video and audio elements.

RTCDataChannel API: enables the peer-to-peer exchange of arbitrary data,
with low latency and high throughput.

WebRTC is already supported in major browsers like Chrome, Firefox, Opera
and Safari on Desktop and mobile platforms. WebRTC is an appropriate
App2App communication protocol in a multiscreen environment since no
central server is required to transmit the data. There is even no need for a
signaling server in local networks since the signaling messages for establishing
the WebRTC connection can be exchanged using network discovery protocols
like SSDP or mDNS/DNS-SD.

Wi-Fi Direct: Wi-Fi Direct [56] is a standard that enables the direct commu-
nication between devices without a wireless access point. Screen Sharing
like Miracast is one usage scenario for Wi-Fi Direct. It uses the same Wi-Fi
technology for communicating with wireless routers. A Wi-Fi Direct device can
essentially function as an access point, and other Wi-Fi-enabled devices can
connect directly to it. Wi-Fi Direct also supports device and service discovery.
For example, a control device can search for receiver devices that support only
Miracast Screen Mirroring. Currently, there is no W3C API which allows web
applications to make use of this technology.

2.3.4 Media Delivery and Rendering

Media Delivery and Rendering play an essential role in multiscreen multimedia
applications. The challenge is to provide a smooth media playback on devices with
varying screen resolutions, network connectivity, and media rendering capabilities.
Also, new formats like 360° videos add a new level of complexity since the rendering
of 360° content requires additional processing resources and network bandwidth.
The following sections discuss state-of-the-art technologies and standards for video
codecs, media streaming principles, and 360° video rendering.

2.3 State of the Art Technologies and Standards

17

18

Video Codecs

Delivering video content to devices with varying media capabilities requires to
identify the best video codec and profile for each supported device and platform.
For example, the H.265 and VP9 video codecs are more suitable for UHD 4K content
than H.264 video codec since they save between 30%-50% of the bitrate with the
same output quality. In many situations, the media content needs to be encoded with
different codecs in case there is no common codec supported on the devices under
consideration. There are even different profiles for the same video codec which are
suitable for a specific resolution, bitrate, and framerate. State-of-the-art video codec
technologies are discussed below.

* H.264: The H.264 or MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC)

[57] is an industry standard for video compression first published by ITU-T
and ISO/IEC in 2003. H.264 defines a set of profiles which corresponds to
a set of capabilities targeting a specific class of applications like OTT, video
conferencing and TV broadcast. The standard also defines levels in the same
profile which indicate the required decoder performance. H.264 is the video
codec with the most coverage across all platforms. A multiscreen multimedia
application can provide the video content in H.264 in order to support most
devices and platforms. Other codecs can also be provided and dynamically
selected if they are supported on the target platform.

H.265: The H.265 or High Efficiency Video Coding (HEVC) [58] brings around
30%-50% better compression with equal video quality comparing to H.264. It
also supports resolutions up to 8K UHD. The adoption of H.265 is still low on
the Web. Currently, Edge and Safari Browsers support H.265. Therefore, it is
recommended to use H.265 together with H.264 in a multiscreen application.
If a target device cannot play the H.265 content, it will switch to the H.264
version.

VP9: VP9 [59] is an open and royalty-free video codec developed by Google
and is a competitor of HEVC. It has more Browser support than HEVC but still
not at the same support level as H.264. Safari is one of the major browsers
that does not support VP9. Large-Scale comparison of the three codecs H.264,
H.265, and VP9 done by Netflix [60] showed that H.265 and VP9 save 53,3%
and 42.6% bitrate compared to H.264 for a video resolution of 1080p.

AV1: AOMedia Video 1 (AV1) [61] is also an open and royalty-free video
codec developed by the Alliance for Open Media which was founded by leading

Chapter 2 State of the Art and Related Work

Internet companies like Google, Netflix, and Amazon. AV1 is the successor of
the VP9 codec and will replace it in the future.

As can be seen from this overview, the media codec landscape is complicated and
fragmented. It is recommended to use H.264 as a common video codec in video-
centric multiscreen applications. Other video codecs can be provided on top and can
be selected instead of H.264 if they are supported on the target device.

File and Container Formats

In the previous section, we discussed the most important video codecs. In this section,
we will focus on container formats which define how video data and metadata coexist
in media files. The client program needs to understand the container format and to
be able to decode the video and audio data in it. The most relevant state-of-the-art
container formats are introduced below:

* ISOBMFF: The ISO base media file format (ISOBMFF) [62] developed by
ISO/IEC specifies the file structure of metadata and media content. It is one of
the most important file formats for media delivery and playback on the web.
The W3C Media Source Extension API (MSE) [63] works on top of ISOBMFF
which supports a variety of codecs like H.264, H.265, and VP9.

* MPEG-TS: The MPEG Transport Stream (MPEG-TS) [64] is another container
format also developed by ISO/IEC. It is widely used in Broadcast streaming
and supports different codecs like H.264 and H.265.

* CMAF: ISOBMFF and MPEG-TS are the two most used container formats
for streaming OTT content over the internet. The reason for this is because
ISOBMFF is the standard container format for DASH and MPEG-TS is the
standard container format for HLS and both are the two dominant Adaptive
Bitrate streaming technologies for media delivery over the internet. In order
to reach all user devices, content providers need to create the content for
both formats which requires additional storage and processing resources. Also,
CDNs need to cache two different versions of the video which contain the same
video data. The Common Media Application Format (CMAF) [65] was recently
introduced as a common container format for DASH and HLS. CMAF will play
an important role in video-centric multiscreen applications in the future since
the media content will be available in a single format which will reduce the
storage and streaming costs.

2.3 State of the Art Technologies and Standards

19

20

* OMAF: the Omnidirectional Media Application Format (OMAF) [66] is a new
container format under development for VR content such as 360° videos.
It uses ISOBMFF as file format and provides all the metadata required for
interoperable rendering of 360° monoscopic and stereoscopic videos. The
metadata may include, for example, the type of the projection used in the 360°
video.

Adaptive Bitrate Streaming

Adaptive Bitrate (ABR) streaming is a technique for streaming media content to user
devices in an efficient way and the best usable quality under specific conditions.
The most relevant factors that are considered in ABR streaming are the available
bandwidth, device resolution, and video decoding capabilities. The basic idea of
ABR streaming is to spit media content into small video segments (a segment has a
duration of few seconds) and make them available in different bitrates, resolutions
and maybe in different codecs. The client implements the entire player logic for
accessing video segments in the best possible quality and play them back in the
correct sequence. The client monitors the network bandwidth and adapts to changes
by selecting higher or lower bitrates according to the newly available bandwidth.
ABR brings many advantages compared to progressive video streaming where the
media content is provided in single files that can be downloaded and played back
but without any adaptation to the device and network capabilities. The best known
ABR streaming standards are listed below:

* DASH: The Dynamic Adaptive Streaming over HTTP (DASH) [67] is a stream-
ing protocol that allows video players to switch between different video bitrates
based on different metrics like network performance. It also allows the player
to select the appropriate video segments based on device capabilities like
display resolution and supported video codecs. Video segments are usually
delivered via HTTP. The entire player logic including buffering strategies is
implemented in the client. Content Delivery Networks (CDNs) are used to
provide high availability of the content. The most important part of DASH is
the Media Presentation Description (MPD) manifest which is an XML based
document containing all information a client needs to play a video like the loca-
tion of media segments, supported codecs and available bitrates. Some devices
provide native DASH support, but most implementations for web Browsers like
dash.js are based on the W3C Media Source Extension MSE. DASH works with
different container formats and video codecs, but most DASH profiles specify
ISOBMFF as a container format.

Chapter 2 State of the Art and Related Work

e HLS: HTTP Live Streaming (HLS) [68] is also a streaming protocol from Apple
providing the same features as in DASH. HLS uses MPEG-TS as a container
format, but it is codec agnostic. Similar to DASH, HLS defines a manifest
format called m3u8 which defines the available bitrate levels and the video
segments associated with each level. Many browsers like Safari, Edge and
Chrome for Android support HLS natively. It is also possible to play HLS
videos in browsers that support MSE by transmuxing MPEG-TS segments into
ISOBMFF segments which are supported in the MSE API. hls.js is an open
source project that provides an HLS player implemented on top of MSE.

360° Video Rendering

The production of 360° videos comprise several steps starting from capturing the
video content to stitching, encoding, delivery, decoding and rendering on the client.
Usually, a 360° video is captured with multiple wide-angle cameras with overlapping
field of views. Their content is put together to produce a single video. This process
is called stitching. The output of the stitching is a regular video where the video
frames are created from the captured content by applying a specific projection. The
most important projection formats are listed below:

* Equirectangular projection [69]: It is the most used and most common
projection in 360° video production where latitudes and longitudes are used
to form a square grid. This type of projection is easy to visualize on a plane,
and the output is rectangular which allows the software to encode it in a
regular video and stream it using existing delivery infrastructures. On the
other hand, this type of projection has some disadvantages. First, the poles of
the projection get a lot more pixels than the equator which results in a higher
bitrate for the same quality due to redundant pixels. Secondly, 360° videos
produced with equirectangular projections have a high distortion which makes
the video compression harder compared to regular videos.

* Cube map projection [69]: The idea behind the cube map projection is to
project portions of the videos behind the six faces of a cube. It is used frequently
in the gaming industry to create skyboxes [70]. There are a few benefits of
using a cube map instead of the traditional equirectangular projection: Cube
maps don’t have geometric distortion and each face looks exactly as if the viewer is
looking directly at it with a perspective camera that warps or transforms an object
and its surroundings. This is important because video codecs assume motion
vectors as straight lines. And that’s why it encodes better than with bended
motions in equirectangular videos [71]. Another advantage of the Cube Map

2.3 State of the Art Technologies and Standards 21

22

projection is that the output video bitrate can be reduced since there are no
redundant pixels as in the equirectangular projection.

* Pyramid Projection [72]: The Pyramid projection is about putting a sphere
inside a pyramid so that the base of the pyramid is the full-resolution FOV and the
sides gradually decrease in quality until they reach a point directly opposite from
the viewport, behind the viewer [72]. The sides of the pyramid are stretched
to fit the entire 360° image into a rectangular frame, which reduces the file
size by 80 percent against the original. In order to preserve the quality when
the viewer changes the perspective, multiple videos with different viewports
need to be generated. In total, there are 30 viewports covering the sphere,
separated by about 30° [72]. This increases the storage costs comparing to the
equirectangular and cube map projections. On the client side, the player jumps
between the videos depending on the view angle of the viewer.

After the content is delivered to the client, the 360° video player needs to process
each video frame based on the current viewing angle to calculate the FOV image and
display it to the user. To perform the geometrical transformation, there are some
requirements on the graphical processing capabilities; otherwise, the user experience
will suffer. Another implication that may also affect the performance of the client is
the high resolution and bitrate of the source 360° video which is mostly produced
in 4K resolution and results in a FOV resolution between SD and HD depending on
opening angle of the FOV. Some APIs like WebGL and HTML5 Canvas are required
in order to render a 360° video in a browser environment. WebGL is available in all
modern browsers on desktop and mobile and offers a set of functions implemented
on top of OpenGL. Input devices like keyboard, mouse, touch or gyroscope can be
used to control the FOV. The motion-to-photon latency on head-mounted displays
must be under 20ms to avoid motion sickness. The new WebXR Device API [73]
which is still under development addresses these requirements. This specification
describes support for accessing virtual reality (VR) and augmented reality (AR) devices,
including sensors and head-mounted displays, on the Web [73].

2.3.5 Web APlIs

In a web runtime, a multimedia application can access underlying system functions
using a set of Web APIs. These APIs are standardized or still under development in
different W3C standardization groups. The author of this thesis is actively involved
in the Second Screen Working Group [12] where the Presentation API [13] and the
Remote Playback API [14] are standardized. The author has contributed research
results in the field of multiscreen applications, in particular, the results published in
[17].

Chapter 2 State of the Art and Related Work

W3C Presentation API

The W3C Presentation API defines a specification that allows web pages to display
web content on presentation devices like TVs and to establish a communication
channel between the pages running on the different devices. The specification is
part of the W3C Second Screen Working Group and focuses only on the application
interfaces but abstracts from the underlying protocols for discovery, launch, and
communication.

W3C Remote Playback API

The Remote Playback API is another specification of the W3C Second Screen Working
Group. Through the W3C Remote Playback API, it is possible with a few lines of
code to cast a video or audio from a web page to a presentation device in the same
network. Furthermore, it allows the player on the host device to control the media
playback on the presentation device. It also offers a mechanism to synchronize the
video timeline and playback state between the host and presentation devices.

W3C Web Media APIs

In the first generation of web browsers, the only method to play media content
was using third-party plugins. The situation has changed in recent years, and all
browser vendors already support media playback using the HTML video and audio
elements on all platforms. Most browser vendors have also removed support for
third-party plugins. The specification defines the interfaces and events of the HTML
Video and Audio elements, but it does not force browser vendors to use a specific
codec or container format. Most browsers support H.264 video codec and mp4
container, and some of them also support adaptive bitrate streaming formats like
DASH and HLS. Browsers with no native support for adaptive bitrate streaming
provide the Media Source Extension API (MSE) [63] which allows implementing
DASH and HLS only using JavaScript. hls.js and dash.js are two widely used open
source libraries that implement HLS and DASH. The MSE specification is currently a
W3C recommendation and offers functions that allow web applications to append,
replace or remove video segments to/from the media buffer.

2.3 State of the Art Technologies and Standards

23

24

2.4 Related Work

This section covers other work and research activities related to applications and
multimedia content in a multiscreen environment. The following sections explore
each of these areas and weigh them against the expected results of this thesis.

2.4.1 Multiscreen Applications

Igarashi et al. propose in the paper "Expanding the Horizontal of Web" [74] an
approach that allows web applications to interact with home-networked devices like
Smart TVs. It proposes a "Network Device Connection API" that allows web pages
to stream media content to UPnP devices [38]. A similar approach is introduced
in the paper "A Multi-protocol Home Networking Implementation for HTML5" [75],
which focuses on the discovery of home-networked devices from web applications
using UPnP and mDNS [40] through a Java Applet that acts as an interface between
JavaScript and the networking layer. The "W3C Network Service Discovery API" [76]
with initial draft specification published in 2012 follows a similar approach. Only
one browser vendor has implemented this API in experimental mode, but for security
and privacy concerns never utilized it in a production deployment. For example, if a
user allows a Web page to access the API, it will be able to find and access any home
networked device and create a fingerprint of the user. According to the latest status
update from January 2017, the work on the API has been discontinued.

Baba et al. introduced in the paper "Advanced Hybrid Broadcast and Broadband Sys-
tem for Enhanced Broadcasting Services" [77] a technology called Hybridcast which
aims to integrate broadcast and broadband technologies to provide a better user
experience for linear and on-demand TV. Hybridcast enhances existing broadcast ser-
vices with additional broadband services on TV and mobile. It provides the required
components for the linkage of mobile and TV devices, communication, and synchro-
nization of content across devices. Hybridcast applications are web applications with
additional JavaScript APIs to access features like launch and communication with
second screen applications. The launch process of a companion application requires
cooperation between the broadcaster and the TV manufacturer for injecting a manu-
facturer specific JavaScript library in the broadcaster companion application. This
solution has some disadvantages concerning security and makes the development of
applications more complex and dependent on the device manufacturer.

Imoto et al. introduced "A Framework for supporting the development of Multi-
Screen Web Applications" [78]. The framework aims to simplify the development
of multiscreen applications by using web technologies like HTML, JavaScript, and

Chapter 2 State of the Art and Related Work

CSS. The main approach of the framework is to allow developers to implement
single web applications without dealing with core multiscreen aspects like discovery,
communication, and synchronization. The runtime environment consists of a user
agent that runs the application within a single execution context in the cloud and
distributes parts of the DOM tree to connected devices. The client is a JavaScript
library that runs in the Browser and connects to the corresponding application
running in the cloud. The client gets a copy of a particular part of the DOM tree
that corresponds to the device on which the client is running. The framework keeps
copies of the DOM on all devices in sync. All user inputs like keyboard, mouse, and
touch are sent to the cloud application and triggered on the corresponding elements.
The advantage of this solution is to accelerate the development of multiscreen
applications while reducing development costs. On the other hand, the framework
has many limitations regarding the support of different capabilities, access to device
APIs, offline usage, and synchronization of HTML elements that are not under DOM
control like video and canvas elements.

Song et al. introduced in a paper a "Multiscreen Web App Platform" called Pars [79].
"A Pars web app consists of components that can run distributed on a set of devices as if
they are running on a single device". The Pars platform consists of a daemon which
runs on each device and enables the discovery of devices and the communication
between them. It also consists of a JavaScript library which allows Pars applications
to interface with the underlying network layer. The Pars framework focuses on
migrating parts of a web application to other Pars devices in the network while
keeping them in sync using a coordination component. It follows a similar approach
as proposed by Imoto et al. [78] but without the need for a central entity running in
the cloud.

Kim et al. discussed in the paper "Partial Service/Application Migration and Device
Adaptive User Interface across Multiple Screens" [80] different approaches for full and
partial migration of applications across devices. The full migration of an application
from one device to another restores the state and functions of the application on
the target device and closes the connection to the source device while the partial
migration moves or replicates part of the application on the target device without
closing the connection. The paper also addresses the need for a mechanism to adapt
migrated applications to I/O capabilities like screen resolution and input method.
The paper does not provide a solution on how to implement app migration rather
than just discussing the use cases that can be enabled by it.

Thomsen et al. introduced in the paper "Linking Web Content Seamlessly with
Broadcast Television: Issues and Lessons Learned" [81] a platform called LinkedTV that
aims to enrich broadcast content with additional information available on the Web
and displayed on the second screen in sync with the TV. The paper focuses mainly on

2.4 Related Work

25

26

the way how to address and identify specific parts of the broadcast program using
the Media Fragment URI specification [82]. It uses an open annotation model to
augment parts of TV content with annotations. The LinkedTV provides a generic
solution for specific use cases which can be adopted across different broadcasters.

Borch et al. introduced "An architecture for second screen experiences based upon
distributed social networks of people, devices and programs" [83] which describes a
new idea accompanied with use cases for encouraging TV viewers to use the second
screen to enable interactive social experiences. This solution differs from other
solutions in the fact that it uses social media networks as an underlying platform
for discovering and connecting devices. A device can share its presence information
together with information about the location with other friend’s devices. A location
can be determined from the public IP address, GPS or via Bluetooth beacons. The
paper also describes how the UI of the application can be synchronized across
devices based on "dynamic measurement of network latency and delaying actions by
the maximum latency for all of the devices".

Kim et al. introduced in the paper "Inter-Device Media Synchronization in Multi-Screen
Environment" [84] a concept for synchronizing media streams across devices by
exchanging playback timing information between involved devices and adjusting the
system clock on each device to a common reference time from a central server. "The
actual inter-device media synchronization algorithm consists of exchanging timestamps,
computing time offsets according to the round-trip delay between the server and client,
and adjusting the system time" [84].

Klos et al. discussed in the paper "Three Challenges for Web&TV" [85] the differences
between Web Browsers and TVs and introduced a new approach for migrating
functionalities of a set-top-box (STB) to the cloud. It allows operators to provide
low-cost devices like HDMI dongles which only need to render media. The entire
application runs in the cloud which captures and streams the UI output to the client
as a video.

Howson et al. introduced in the paper "Second screen TV synchronization" [86] a
concept for synchronizing audiovisual content delivered using different transport
protocols and in different networks. The authors focus in this paper on synchronizing
broadcast and broadband content across devices. The challenges addressed in
the paper are the different wall clocks used in broadband and broadcast and the
differences in latency for receiving content in both networks. In this context, the wall
clock measures the time elapsed since the start of a TV program. The paper solves
this issue by inserting an "Event Timeline" in the broadcast stream which contains
information about the event itself and a timestamp according to a reference clock.
The players on the client devices can use this information to adjust the playback.

Chapter 2 State of the Art and Related Work

Tolstoi el al. presented in the paper "An Augmented Reality Multi-Device Game" [87]
a concept for using multiple devices and augmented reality techniques to play a
game and increase the immersive user experience. The authors demonstrated their
concept using a strategy game called "tower defense" and two devices, a tablet and
smartphone. The tablet shows the main game field and allows a user interaction
using touch. The player can use a mobile device to enhance the user experience
by showing additional interactive elements. The position of the elements on the
smartphone screen is determined using motion sensors on the smartphone. The
game state is synchronized by exchanging the state of the game on each device in
the local network.

Sarkis et al. introduced in the paper "A multi-screen refactoring system for video-
centric web applications" [88] an authoring system that allows end users to split
the user interface of a web application which is designed to run on a single screen
and migrate part of it to other screens. The refactoring system focuses on web
applications where the user interface is defined using HTML and JavaScript. The
Browser stores the state of the web application in a so-called Document Object
Model (DOM). The refactoring system operates on the DOM tree and based on user
selection splits it into different sub-trees which can be migrated to other screens.
Migration means that a copy of the selected part of the DOM tree is created and
displayed on the target device and kept in sync with the original DOM on the host
device. The challenge of the system is to adapt the application to the target screen
by considering all input and output capabilities. Also, the split of the application
designed to run on a single screen can affect the usability. Currently, there are no
existing applications in production that use this or a similar concept.

A similar approach is followed by Oh et al. in their research "A remote user interface
framework for collaborative services using globally internetworked smart appliances"
[89]. They introduced a Remote User Interface (RUI) framework that allows users to
mirror the entire Ul or share part of it on devices in the same or different networks.
Each home network consists of a gateway that connects devices in a home network
to an RUI server. The RUI server is needed if devices in different networks need to
connect. Devices in the local network can use SSDP as a discovery protocol. The
framework also provides a virtual IO component that captures user inputs like touch
on host devices and triggers them on the presentation device using appropriate
events that are supported on the target device.

Jin et al. presented in the paper "Multi-Screen Cloud Social TV: transforming TV
experience into 21st century" [90] a multiscreen cloud social TV framework which
encapsulates a set of media services that can be composed together using a set of
APIs and a multiscreen orchestration protocol to build social TV applications on
multiple screens. This research identifies relevant functions related to social TV

2.4 Related Work

27

28

experiences and offers for each of them a component with integrated UI like "Video
Chat", "Text Chat", "Video Comment", and "Video Player" which can be composed
together in a social TV application. Each of the components can be easily migrated
between devices connected to the TV. For example, the user may move the chat
component to the mobile device and keep the video player component on the TV.

Krug et al. followed in their research "SmartComposition: A Component-Based
Approach for Creating Multi-screen Mashups" [91] a similar approach as considered
in the research from Jin et al. [90] which is based on individual components that
can be composed together to build a multiscreen mashup. The system is called
SmartComposition and extends the Open Mashup Description Language (OMDL)
developed in the EU FP7 Project OMELETTE [92]. OMDL is designed initially to
build single screen mashups by composing reusable web components or widgets.
SmartComposition extends OMDL to support multiscreen mashups by extending
the inter-widget communication model to support multiple screens based on the
publish/subscribe pattern.

Martinez-Pabon et al. proposed in their research article "Smart TV-Smartphone Multi-
screen Interactive Middleware for Public Displays" [93] a new concept for multiscreen
interaction focusing on non-personal devices like public displays. The approach
followed in this article is a loosely coupled interaction model based on the pub-
lish/subscribe paradigm. It utilizes the Web Application Message Protocol (WAMP)
which implements the publish/subscribe approach on top of WebSocket. An Android
reference implementation is available and used to evaluate the system with an
advertisement scenario on digital signage displays located in shopping malls. It is
still not clear how the user can link the mobile device with the public screen. It only
focuses on the messaging between different applications distributed on multiple
devices.

Yoon et al. present in the research article "Classification of N-Screen Services and its
Standardization" [94] the results of a study focusing on scenarios for consuming
content on multiple terminals with different capabilities. The study aligns with the
standardization activities in the ITU-T Study Group 13 (ITU-T SG13) which addresses
service scenarios over FMC (Fixed-Mobile Convergence). The study classifies the
scenarios in three categories: 1) deliver the same content to multiple screens with
different capabilities, 2) migrate content from one device to another and 3) consume
different content on multiple screens in a collaborative manner. The study describes a
model based on the five entities Person, Terminal, Network, Content, and Service.

Xie et al. introduced in their research "The design and implementation of the multi-

screen interaction service architecture for the Real-Time streaming media" [95] a
method for rendering applications on a remote machine (server) hosted in the local

Chapter 2 State of the Art and Related Work

network or the cloud. The server consists of components for capturing the UI output
of the application, encoding using MPEG-4 and streaming using the Real Time
Streaming Protocol (RTSP). The client which runs on a TV or a smartphone consists
of a video player and a component for sending user inputs to the remote rendering
server. The presented approach applies to any application, but the authors used a
game for the evaluation.

Lee et al. introduced in their research "Remote Application Control Technology and
Implementation of HTML5-based Smart TV Platform" [96] an approach for controlling
HTML5 Smart TV applications remotely based on JSON-RPC specification. The
approach provides features similar to DIAL, but using other protocols. DIAL uses
SSDP for discovery and REST for launching and stopping applications while the
remote control protocol abstracts from the underlying discovery protocol by defining
an abstract discovery API and App control protocol using JSON-RPC on top of
WebSocket. However, the fundamental difference between both protocols is the
location of the server which runs on the TV in case of DIAL and on the mobile device
in case of the remote control protocol. Running a server on a mobile device may
have implications regarding battery life, privacy, and security.

Abreu et al. followed in the research "Enriching Second-Screen Experiences with
Automatic Content Recognition" [97] another approach for enhancing the TV viewing
experience using second screen applications. The main difference to the previous
work is the synchronization of content on TV and second screen. In this approach,
the author used Automatic Content Recognition (ACR) techniques through audio-
fingerprinting to identify the content displayed on the TV and present enhanced
information on the second screen. There is no need to run a Smart TV application
which enables content providers and broadcasters to provide services without relying
on a specific TV platform or manufacturer. The solution works with broadcast
and broadband content in the same way. The authors evaluated the introduced
approach using a second screen application called "2NDVISION" which identifies
content on the TV using audio fingerprint and image recognition technologies. One
disadvantage of the ACR solutions is the lack of privacy since the second screen
needs to capture audio or video from the microphone or camera and send them to a
server to recognize the content.

Yoon et al. presented in the paper "Thumbnail-based Interaction Method for Interactive
Video in Multi-Screen Environment" [98] an approach for supporting interactive video
on multiple screens. The TV displays the main video and the second screen shows
interactive elements related to content on the TV. The main limitation of this kind
of scenarios is the user experience since there is no intuitive connection between
elements in the second screen and objects appearing in the video on the TV. To solve
this issue, the authors followed a new approach by creating thumbnails from specific

2.4 Related Work

29

30

keyframes in the video and making them available in the second screen synchronized
with the video playback on the TV. The second screen shows the interactive elements
on top of the thumbnails at the same position of the object in the video on the TV.

Punt et al. focused in the paper "Rebooting the TV-centric gaming concept for modern
multiscreen Over-The-Top service" [99] on the gaming domain. The authors introduced
a framework called SHARP to develop TV-centric games and provided a proof-
of-concept implementation for Android TV. The primary approach for TV-centric
gaming is using the TV to show the common game field and mobile devices as game
controllers or to show private information. The authors also discussed other options
like displaying the game field on top of broadcast content and use information from
the broadcast or OTT content like EPG in the game.

Centieiro et al. published in their research "Enhancing Remote Spectators Experience
During Live Sports Broadcasts with Second Screen Applications" [100] a study about
engaging users while watching sports events using the second screen. For this
purpose, four second-screen application prototypes were developed and evaluated.
The motivation behind these applications is to enhance the user engagement during
a soccer game in different ways. The first application "WeApplaud" is designed to
allow a group of users to participate in the applause happening in the stadium using
the smartphone. The accelerometer and the microphone were used to detect a
clap and clap intensity of each team will be collected and displayed in sync on the
TV. Also, vibration sensors of the smartphone are used to alert users to initiate a
synchronized applaud for their team. The second application of the study is called
"WeBet" which prompts users to bet if a goal in a soccer game is about to happen.
The innovative idea of this app is "eyes-free interaction" which allows a user to bet
without to look in the smartphone by using gestures. The third application "WeFeel"
allows friends to share their opinions and emotions while watching a sports event
in a minimally disruptive way by using a straightforward interaction on the mobile
device to express emotions and displaying emotions of friends as an overlay on the
TV screen. The last application "WeSync" synchronizes the second screen application
with the broadcast stream on the TV which can be delayed compared to the live
event at the stadium and affect the user experience. The authors decided not to use
the ACR approach to synchronize the second screen with the live broadcast and used
a manual approach instead. The user needs to answer specific questions related to
specific moments in the game, and the delay will be guessed. The results showed a
significant engagement of users participating in the study and considerable interest
in this kind of applications.

Geerts et al. investigated in their experiment "In front of and behind the second

screen: viewer and producer perspectives on a companion app" [101] second screen
applications. The authors evaluated the user experience of the second screen by

Chapter 2 State of the Art and Related Work

addressing issues producers face during the development and deployment of second
screen applications based on interviews with producers and observations of viewers
using a camera placed in their living room. The experiment focuses on the drama
series "De Ridder" and its second screen application, which consists of a timeline
showing information related to the current scene on the TV. The result of the
experiment shows that the way how to connect the second screen to the TV must be
straightforward and intuitive. For example, creating a profile and requesting the user
to login on both the TV and the second screen is ambiguous. A zero-conf mechanism
for discovering and pairing devices should be used instead. Another outcome of the
experiment is to use a single app for all programs of a broadcaster and not a single
app for each program. Live synchronization between second screen and broadcast
is also crucial. Audio watermarking was not good enough for synchronization and
took 6-10 seconds which is too long and decreases the user experience. Also, it is
essential to offer the synchronization not only during the scheduled broadcast time
but also for recorded programs. The experiment also provides recommendations
for improving features related to Timing, Social Interaction, Attention, and Added
Value.

Seetharamu et al. showed in the paper "TV remote control via wearable smart watch
device" [102] how to use a smartwatch instead of a smartphone to control a TV. The
smartphone is still involved since the smartwatch cannot directly communicate with
the TV. The smartwatch consists of many sensors that can be used to detect user
gestures and control the TV accordingly. Thereby, the smartwatch sends the sensor
data to the smartphone which detects the gesture by evaluating the received data
and controls the TV according to the selected rule. In most cases, the connection
between the smartwatch and the smartphone is established using Bluetooth Low
Energy (BLE) while the smartphone establishes a connection to the TV over the
local WiFi network. The authors evaluated the solution by using the smartwatch to
control the web browser running on the TV, for example, to scroll through the page
or to change the active tab.

2.4.2 Multiscreen Multimedia Content

One of the fundamental concepts for the delivery and playback of multimedia con-
tent on devices with varying characteristics like screen resolution, media decoding
capabilities, and available bandwidth is adaptive streaming. It enables the selection
of media content that is best suited for a particular device and under certain condi-
tions. Stockhammer et al. introduced the standardization of adaptive streaming in
the paper "Dynamic adaptive streaming over HTTP - standards and design principles"
[103]. The paper focuses on the Dynamic Adaptive Streaming over HTTP (DASH)
standard which includes a specification of media presentation, formats of media

2.4 Related Work

31

32

segments, and delivery protocols. It also supports different service types like Live,
On-Demand, and Time-Shift. The basic principles of DASH and other HTTP-based
streaming protocols such as HTTP Live Streaming (HLS) are to replace traditional
stateful streaming protocols such as Real-Time Streaming Protocol (RTSP) with a
stateless delivery approach based on HTTP. Before the introduction of DASH, most
HTTP-based solutions were based on progressive download and using HTTP byte
range requests. Progressive download has many disadvantages especially regarding
wasted bandwidth and missing support of adaptive bitrate. DASH addresses these
issues by breaking down the media content into short media segments which can
be delivered over HTTP and played independently from each other. DASH also
considers the generation of multiple versions of the media segments using different
bitrates and media codecs. The XML-based Media Presentation Description (MPD)
provides information about media segments and other metadata the client needs to
request and play the content. The DASH segments and the MPD can be hosted on
an HTTP server while the entire logic for streaming and playback is implemented in
the player. Existing Content Delivery Networks (CDNs) which are successfully used
for delivering web pages and static web content can be also used as a scalable and
reliable system for delivering DASH content.

Niamut et al. introduced in the paper "MPEG DASH SRD: Spatial Relationship
Description" [104] an extension of the DASH protocol to support spatial media. The
Spatial Relationship Description (SRD) feature of DASH enables the streaming of
parts of a video in different qualities. The SRD extends the MPD to describe the
relationships between associated parts of video content. It allows a client to select
and retrieve only those video streams at those resolutions that are relevant to the user
experience. There are multiple application scenarios where SRD can be applied like
"High-quality zoom-in" where the viewer can zoom-in in a UHD video with the best
available quality for each zoom level. The client uses the SRD information from the
MPD and selects only the video segments for the requested region of interest in the
appropriate bitrate.

Jung et al. introduced in their research "A web-based media synchronization frame-
work for MPEG-DASH" [105] a peer-to-peer based mechanism to synchronize DASH
content on multiple screens using web technologies. The framework synchronizes
audio and video content across different devices using WebRTC [54] for exchanging
the playback states across devices and the Media Source Extension API (MSE) [63]
for playing back DASH content in the Browser.

Another application domain for DASH SRD is the streaming of spherical 360° videos.
Hosseini et al. focused in their research "Adaptive 360 VR Video Streaming Based on
MPEG-DASH SRD" [106] on this domain by applying the SRD concept to spherical
videos in order to reduce the required bandwidth by streaming high-resolution

Chapter 2 State of the Art and Related Work

content like 8K and 12K. The basic idea of the presented solution is that the viewer
can only see a fraction of the 360° video at a particular time, while the other part
remains unseen. The 360° video will be spatially divided into several tiles, and each
of them will be encoded in different bitrates according to the SRD concept. The 360°
player will request the tiles in the bitrate according to the SRD metadata from the
MPD file. Tiles inside the viewport will be requested with the highest reasonable
bitrate while tiles outside the viewport will be requested in a lower bitrate. The
authors did not mention the supported video codecs and the costs for merging the
tiles.

Concolato et al. proposed in their research "Adaptive Streaming of HEVC Tiled Videos
using MPEG-DASH" [107] a tile-based approach using DASH SRD together with High-
Efficiency Video Coding (HEVC) [58]. The paper describes the whole process from
content preparation where the source content is split into different tiles, and those
are packaged as ISOBMFF/HEVC compliant video segments that can be referenced
independently by the client. ISOBMFF stands for ISO Base Media File Format [62]
which is a structural, codec-independent file format. On the client side, an HEVC
compliant single stream is created from selected tiles which are described in the
DASH MPD. The paper deals also with the challenges related to HEVC encoding,
storage of HEVC tiles in ISOBMFF format and DASH content generation.

Van Brandenburg et al. and Niamut et al. focused in their research "Spatial segmen-
tation for immersive media delivery" [108] and "Towards A Format-agnostic Approach
for Production, Delivery and Rendering of Immersive Media" [109] on an approach
similar to [106] and introduced a system which is able to capture, create and deliver
immersive videos where users can interact with the content via Pan, Tilt or Zoom
(PTZ). Only Ultra High-resolution panorama videos are considered in these works.
Spatial segmentation is used as a method to efficiently deliver parts of an ultra high-
resolution video to devices which are not capable of displaying the entire resolution
at once. In order to save process resources for the decoding and recombination of
several spatial segments on target devices, these tasks are performed in the cloud on
so-called Segment Recombination Nodes (SRN).

Mavlankar et al. introduced in their research "Peer-to-peer multicast live video stream-
ing with interactive virtual pan/tilt/zoom functionality" [110] an approach based
on P2P multicast for delivering video with interactive region-of-interest (IROI) to
peers. The application scenario motivated by this work is the same as in the previous
research mentioned in [108] but following a different approach for delivering the
video segments using a P2P Overlay Protocol. The new protocol tracks the available
video segments on each peer to deliver content between peers in the networks based
on their location and available videos without the need to stream the content from
the source server.

2.4 Related Work

33

34

Wen et al. introduced in the research "Cloud Mobile Media: Reflections and Outlook"
[111] a media platform focused on one fundamental principle to reduce the capability
requirement on content sources and playback devices. The system introduced in
this work is based on cloud computing paradigms which enable the migration of
resource-intensive tasks like media transcoding and caching into the cloud. Zare
et al. also follow a similar approach in their research "HEVC-compliant Tile-based
Streaming of Panoramic Video for Virtual Reality Applications" [112] with focus on
360° videos.

Jin et al. proposed in their research "Reducing Operational Costs in Cloud Social TV: An
Opportunity for Cloud Cloning" [113] another approach that uses cloud computing
paradigms for media delivery and playback in a multiscreen environment. The
main idea of the proposed approach is to instantiate a virtual machine in the cloud
called "cloud clone" for each user. The cloud clone provides essential features like
application execution, media transcoding, ad insertion, and session management.
The cloud clone allows users to migrate sessions between devices and to mirror the
application running in the cloud clone to multiple devices. The research focuses
mainly on reducing the cost for such a deployment by finding the best location in
the network for the cloud clone. The authors formulated the problem as a Markov
Decision Process to balance a trade-off between the transmission and migration
costs. It is not clear from the results how the system performs in a large scale
deployment.

Carlsson et al. presented in their research "Optimized Adaptive Streaming of Multi-
video Stream Bundles" [114] an approach for the delivery and synchronized playback
of multi-view videos. The authors introduce a concept of “multi-video stream bundle”
which includes the different video streams for all camera views and deliver the whole
content to the client using adaptive streaming techniques. The challenge is to reduce
the required bandwidth since only one camera view is shown at a specific time while
the other views remain unseen until the user manually changes the view. A core
element of the system is the content prefetching and buffer management component
which applies an optimization model based on heuristics to balance the playback
quality and the probability of playback interruptions. This approach streams the
current camera view in a quality that consumes a specific amount of the available
bandwidth, and the remaining bandwidth will be used to prefetch other camera

views in lower qualities.

Gunkel et al. introduced in their research "WebVR meets WebRTC: Towards 360-degree
social VR experiences" [115] a VR framework that addresses the problem of isolating
users while watching 360° videos on head-mounted displays. The framework is
based on the web technologies WebVR [73] and WebRTC [54] and extends existing
video conferencing systems with new virtual reality functionalities. For example,

Chapter 2 State of the Art and Related Work

multiple users can watch TV or play games together via synchronized playout. The
WebRTC connection is used to synchronize the playback or game state and share
content in a peer-to-peer manner.

Belleman et al. discussed in the paper "Immersive Virtual Reality on commodity
hardware" [116] new approaches to build and run VR systems on low-end devices.
The research was more focused on enterprise and scientific VR applications, for
example, to explore data from live, large-scale simulations. At the time of publication,
this type of application required special VR systems that were only available in
research labs. The paper identified the need to run VR applications on commodity
hardware and showed in the first experiments acceptable performance for rendering
VR content on a PC and displaying the output on a connected VR system.

Qian et al. presented in the "Optimizing 360 video delivery over cellular networks"
[117] an approach that addresses the critical aspects of 360° video playback such
as performance and resource consumption. The approach followed in the paper
considers an infrastructure that facilitates ubiquitous access of VR resources in the
cloud. The authors proposed a cellular friendly streaming mechanism for 360° videos
which only fetches the visible part of the video instead of downloading the whole
content in order to reduce the bandwidth consumption. A part of the solution is a
component that predicts the head movement of the user in order to prefetch content
for the predicted FOV in advance. The accuracy of the prediction is evaluated in an
experiment that resulted in an accuracy of 90% .

Neng et al. introduced in the paper "Get around 360° hypervideo" [118] a concept
for enabling interactions in 360° videos through clickable objects and customizable
overlays. The authors propose an interactive layer on top of the 360° video which
includes an indicator where the user can see in which direction he is looking and a
mini-map that contains thumbnails of the original video (equirectangular) with a
visualization of the interactive spots in the visible and non-visible area. If the user
selects an object which is not in the current FOV, the virtual camera moves to the
position of the selected element in the 360° video. The focus in the paper was only
on touchscreen and desktop devices.

Pang et al. introduced in the paper "Mobile interactive region-of-interest video stream-
ing with crowd-driven prefetching" [119] an approach for interactively selecting
region-of-interests (ROIs) in a video by using Pan/Tilt/Zoom (PTZ) controls while
saving bandwidth. The provided solution facilitates displaying the selected ROI in
the best possible quality without wasting bandwidth for downloading unseen ROIs.
At the same time, the paper provides a solution for low-latency switching between
ROIs using a crowd-driven prediction scheme to prefetch regions that are expected
to be selected next. The authors focus in the paper on mobile devices like tablets and

2.4 Related Work

35

36

smartphones where PTZ controls can be easily implemented using touch inputs, but
the concept can be applied to any playback device by adapting to the PTZ controls
to the input methods provided on these devices. Similar to other approaches, this
solution splits the video in different tiles that can be encoded independently using
H264/AVC. Since most clients are only capable of decoding one video at a time,
the solution provides a mechanism to decode a ROI in a single tile, but the tiles
may overlap and can have different dimensions or zoom levels. The system can
automatically produce ROI videos that track objects of interest, and only these videos
are available to the viewer.

Ochi et al. introduced in the paper "HMD Viewing Spherical Video Streaming System"
[120] an approach to reduce the bandwidth required to stream 360° videos by
generating multiple versions of the video where certain regions are encoded at a
higher bitrate while the remaining regions at a lower bitrate. The player requests
the video version with the highest overlap between the high bitrate region and
the current FOV. When the user changes the FOV, the player requests the new
video version corresponding to the new FOV. The player may show the new FOV in
lower quality after changing the view until the video segments of the new FOV are
loaded.

2.5 Discussion

In this chapter we have discussed relevant state-of-the-art solutions and related works
in the field of multimedia multiscreen applications and content. We have shown on
the one hand the relevance of this research area, but on the other hand that a uniform
concept for modeling multiscreen applications and the possibility to implement them
in a standardized way, especially on the Web, is still missing. Most related work
focuses on providing customized solutions for specific multiscreen features, but
not on how these solutions, in combination with standard APIs and protocols, can
be used to make multiscreen application development as easy as for single-screen
applications by hiding the complexity of the underlying components and technologies.
[74] [75] and [76] introduce similar approaches that allow Web pages to discover
and connect to home networked devices using specific technologies like UPnP and
mDNS without providing any concept or model for building multiscreen applications.
It has become evident that these approaches bring security and privacy risks, as
a Web page gets a direct access to critical services in the home network and for
this reason the work on the API in [76] has been discontinued. [78] introduces a
framework for supporting multiscreen Web applications using a cloud rendering
approach which has limitations regarding offline support, access to device APIs as
well as video and graphical rendering capabilities. This thesis will abstract from

Chapter 2 State of the Art and Related Work

the underlying runtime environment by providing a new concept for modeling
multiscreen applications (Section 4.2) that can be applied to different runtime
architectures (Section 4.4.1) including cloud rendering. [79] and [80] follow a
different approach as in [78] by distributing the application execution on multiple
devices in the home network. This approach has some drawbacks if one or more
devices are not able to execute the parts of the application assigned to them, e.g., due
to limitations on graphical processing, computation or media rendering capabilities
on these devices. This thesis addresses this issue by allowing application components
to be rendered remotely on other devices that are able to execute these components
or in the cloud without the need to update the application. [83] uses social media
networks as an underlying platform for discovering and connecting devices. The
approach presented has a strong dependency on third-party services that can store
critical application data and increase the risk of data misuse. This thesis follows
Separation of Concerns design principles using modular and reusable components
that work across multiple runtime architectures (Section 4.4) and allow switching
between them at minimal cost. This also applies to the approach presented in [85],
which uses cloud rendering mechanisms to support low-cost TV dongles that are
powerless to render the application locally. [95] follows also a similar approach.
[88] presents a refactoring system that makes it possible to split a Web page and
transfer parts of it to other screens with almost no additional costs. This approach is
well suited for simple video-based applications, but is difficult to use for complex
applications that are not designed to run on multiple screens. [89] follows also
a similar approach. This thesis provides the tools and concepts for designing,
modeling, and implementing multiscreen applications while reducing development
costs and time through a number of software components (Section 4.4.2) that are
used in almost every multiscreen application. [87] and [99] show the importance
of multiplayer games using multiple screens which is also considered in this thesis
(Section 3.1.2) in order to derive the functional and non-functional requirements
especially regarding the synchronization of game state across different devices using
state-of-the-art synchronization techniques (Section 4.3.3). [100] and [98] show
the relevance of using second screens as companion devices for broadcast services
running on the TV. This thesis also deals with this type of scenarios (Section 3.1.4)
and considers their requirements. [90] introduces a set of social TV application
components that can be freely moved between devices especially between TV and
smartphone. This thesis expands this approach by introducing modular and reusable
components (Section 4.2) that work across different domains and are not limited
to a specific one. [91] extends the concept of Mashups to support multiple screens
using modular components called widgets, and by using an event-based approach
for the interaction between these widgets. One limitation of the mashup approach is
the way how several widgets can share a single screen. A widget can occupy a part
of the screen and can be exclusively used by it. This thesis presents two different
types of application components, atomic and composite (Section 4.1). Composite

2.5 Discussion

37

38

components allow developers to define how atomic components running on the same
device can share common resources. In addition to the event-driven approach, this
thesis also introduces the message-driven and data-driven approaches (Section 4.3),
which can be individually selected by the application developer. [101] addresses
issues producers are facing during the development and deployment of second
screen applications. This thesis addresses the findings presented on this study
regarding the usage of simple mechanisms to discover and connect to devices with
minimal interaction with the user via network service discovery techniques or a new
approach using iBeacons (Section 4.6.1). Another finding of the study is the poor
user experience of using Automatic Content Recognition techniques for synchronizing
content across devices. This thesis also addresses this finding by using dedicated
communication channels for exchanging playback and timing information between
the screens (Section 5.2.2).

We have also introduced in this chapter state-of-the-art technologies and research
activities for the delivery and playback of multimedia content in a multiscreen
environment such as Adaptive Bitrate Streaming, Content Delivery Networks, Tiled
Media and Web APIs that enable the efficient delivery and playback of multimedia
content on almost any device and platform. However, the introduction of new
multimedia formats, such as 360° video, poses new challenges on the bandwidth
and graphical processing capabilities of target devices. This results in a limitation
of the number of supported devices and platforms. This thesis will address these
new requirements and present a new approach for the playback of 360° video on
embedded devices with limited capabilities and bandwidth. [104] introduces an
extension of MPEG-DASH called Spatial Relationship Description which is considered
in this thesis to describe tiled video content for synchronized and adaptive playback
in a video wall (Section 5.2). [105] already presents an algorithm for synchronizing
DASH content on multiple screens using WebRTC. The introduced algorithm assumes
that the latency for the communication between the master and slave clients is
constant or insignificant and the browsers used on all screens are from the same
vendor. This thesis extends this algorithm by considering the offset between the
clocks on the different screens using state-of-the-art time synchronization techniques
(Section 5.2.2). The new algorithm introduced in this thesis also keeps the quality
levels (DASH representations) of all video tiles displayed on the different screens
constant by monitoring the amount of buffered content and the bandwidth on each
individual display for calculating the best appropriate quality level at a specific
time. The proof of concept implementation of the synchronization algorithm using
HTMLS5 video element considers the inaccuracy of using the seeking method to
adjust the current playback position. Instead, the algorithm introduced in this thesis
uses a more accuate method by updating the playback rate of the video to adjust
the playback position on the individual displays. [106], [108] and [109] present
similar approaches of using DASH and HEVC tiled streaming for efficient delivery

Chapter 2 State of the Art and Related Work

and playback of immersive content. The main limitation of these and other similar
approaches like [120] that rely on client-side transformation (Section 5.3.2) is the
limited support of low-capability devices like TVs and low-cost streaming devices
that are not able to render the Field of View or Region of Interest locally. [117]
and [112] present new approaches that rely on server-side transformation (Section
5.3.2) by moving processing intensive tasks like FOV rendering to the cloud. These
approaches are not suitable for media delivery for the mass audience due to the
operation costs and scalability limitations. This thesis introduces a new approach
that tackles the limitations of these approaches based on the pre-rendering of FOV
videos (5.3.4).

2.5 Discussion

39

Use Cases and Requirements
Analysis

This chapter defines and discusses a number of relevant use cases in the field of
multi-screen multimedia applications, intended to form the foundation for deriving
and analysing functional and non-functional requirements. These requirements will
be considered and evaluated in Chapters 4 and 5 to develop and implement a concept
for creating multiscreen applications and multimedia content. The remainder of
this chapter is structured as follows: Section 3.1 defines and describes the use cases
while Section 3.2 focuses on identifying and analyzing the requirements from the
use cases.

3.1 Use Cases

There are many use cases for consuming media content, playing games, displaying
information and running other types of applications on multiple screens such as
TVs, smartphones, tablets, and PCs. However, there are also several aspects when
it comes to designing and developing such applications that are common to all of
these areas. Finding out these aspects will guide us in developing concepts and
models for building applications across different domains and identify the building
blocks for the underlying software components that can be reused across different
application areas. It is essential to define the use cases that cover all potential
real-world scenarios in each domain. These use cases are described in the following
sections. Also, each use case is assigned a list of related real-word examples as
evidence of its relevance in this context.

3.1.1 UC1: Remote Media Playback

Remote Media Playback is one of the most important and popular use cases in the
multiscreen domain. It is supported in different variations by most popular Video
and Music Streaming services like YouTube [4] and Netflix [24]. These services may
support different types of remote playback devices, but the basic flow is always the
same which is illustrated in Figure 3.1 and described in the steps below:

41

TV e.g. Showing
Broadcast
Stream

Playing
onTV

—

Figure 3.1.: UC1: Remote Media Playback

1. As a first step, the user starts the video or music application on a mobile device.
The application can be downloaded from an App Store and installed on the
device, or it can be a simple web page that can be opened in the browser after
entering the service URL.

2. The user browses the media catalog in the application looking for specific
content and starts the playback on his local device after selecting a specific
media item. The application offers Ul elements which allow the user to control
the media playback like play, pause, and seek.

3. In the mobile application there may also be a button indicating that there
is a remote playback device available, e.g., a TV. Its state indicates that the
application is currently not connected to a remote playback device. The user
decides to continue watching the video on the TV. He clicks on the button and
selects a remote playback device from the list.

4. Now the playback stops on the local device and continues from the same
position on the TV. The local player shows a message that the video is cur-
rently playing on the TV. The user can still control the video from the mobile
application. Furthermore, the current time and playback state are always
synchronized between local and remote playback devices.

5. The user can disconnect at any time from the remote playback device, and the
video playback continues on the mobile device from the current position. The
user can also disconnect from the remote device without terminating the video
playback and can reconnect to it at a later time.

In addition to the basic flow of the Remote Media Playback use case, there are
important aspects to discuss that can lead to requirements which cannot be derived

42 Chapter 3 Use Cases and Requirements Analysis

from the steps described above. For example, the application must ensure that the
remote playback device can play the selected video. Otherwise, the user will receive
an error after starting the video on the remote device which will affect the user
experience. Another relevant aspect is the ability to customize the remote player,
i.e., to display additional content such as advertisements over the video, which is
essential for most commercial applications. Furthermore, it is crucial to provide the
video in the quality that fits best to the screen size of the playback device.

3.1.2 UC2: Multiscreen Game

Gaming is another important category of applications that benefit from multiple
screens to improve the user experience while playing a game. Many popular games
like Angry Birds [121] already support "multiple screen" mode. There are many
variations on how the different screens can be used in a game. The simplest case
is to use the smartphone or tablet as a replacement for the physical controller of a
game console. In other situations, a large screen like a TV can be used to extend
the view of the game field. In two-player or multi-player games, a third screen can
be used to display the common game field while each personal screen displays the
player UL The following steps illustrate the flow for all these variations using a card
game showed in Figure 3.2 as an example:

Game Field Game Field

TV e.g. Showing iaa fes les ing e e

LK LI
Broadcast e e e
Stream

r1: €€ P2 E

Figure 3.2.: UC2: Multiscreen Game

1. A Player "P1" launches a card game on his smartphone or tablet in single player
mode and starts playing a game against the computer. The game field consists
of two parts, the first one shows the player’s private cards and coins while the
second part is the common game field that shows common game information
among all players like open cards and game state.

2. A second player "P2" decides to participate in the game. Since the two players
"P1" and "P2" are in the same physical place, they decide to switch to the

3.1 Use Cases

44

multiscreen mode, in which each player can use his device while the common
playing field is displayed on the TV. For this, the player "P1" clicks on a button
in the application to connect to the TV. As soon as the connection is established
and the game has started on the TV, the common game field moves from the
screen of player "P1" to the TV.

3. Now player "P2" can participate in the game. He starts the application as for
player "P1" and clicks on the same button to connect to the TV. Player "P2" can
now choose whether he wants to start a new game or join the already running
game. He chooses the option to join the game.

4. Player "P1" decides to invite a third player "P3", who is not at the same place,
to the game. For this, he creates and sends an invitation link. After player
"P3" has received the invitation, he clicks on the link to start the game and
participates in the current session. Player "P3" can also connect and migrate
the common game field on his TV at home.

The final state of this use case is depicted in the second part of Figure 3.2 where five
screens in two different places are involved. The game flow described above can be
applied to nearly any multiscreen game, but in some situations, there are additional
aspects that need to be considered. For example, in games where intensive graphical
processing is required, it is essential to know if the remote device can perform the
graphical processing or not. Another aspect is the latency of the interaction with the
game which can affect the user experience.

3.1.3 UCS3: Personalized Audio Streams

This use case shown in Figure 3.3 focuses on the synchronized playback of audio
and video streams on multiple screens. It is relevant, for example, if two viewers
are watching TV in the same physical location, but each of them wants to select a
different audio language for the broadcast content displayed on the TV. Another
important case is, if one of the viewers is visually impaired and wants to select a
narration track with audio description while others can select the default audio track
without audio description. These scenarios are already discussed and considered in
new standards like HbbTV. The following steps illustrate the procedure of this use
case.

1. Two viewers are watching a movie on a broadcast channel on the TV. The
channel offers the three languages German, English and French for the audio
while German is the default language delivered in the broadcast stream.

Chapter 3 Use Cases and Requirements Analysis

J Select Device

Broadcast Device 1
. Device 2

@Launch App

@en @R

TV Remote Device 1 Device 1 Device 2
Control

Figure 3.3.: UC3: Personalized Audio Streams

2. The first viewer decides to select the English audio track and the second viewer
the French audio track. Since it is not possible to select two different audio
tracks on the TV, each viewer can use his smartphone as a playback device.
The audio tracks need to be always synchronized with the broadcast stream on
the TV.

3. The broadcaster offers a hybrid application that runs on the TV and offers
a feature to change the audio language. The first viewer selects using the
TV remote control the "Audio Language" menu which shows the companion
devices of the two viewers. The viewer selects his device from the list and
clicks on the launch button. He receives a push notification which allows him
to launch the Broadcaster’s companion application on his smartphone.

4. After the broadcaster’s companion application is launched, it connects automat-
ically to the TV. The viewer can now select the English audio track. In order to
not disturb the second viewer, he uses a headset instead of the loudspeakers of
the smartphone.

5. The second viewer repeats the same steps, but he selects the French audio
track instead. Also, he chooses the option to mute the broadcast audio on the
TV as both viewers now use their smartphones as playback devices for the
audio tracks.

This use case can be also applied to other audio tracks like the audio description
for visually impaired viewers. The technical challenges for synchronizing broadcast
video with broadband audio on different devices remain the same. There are also
other scenarios for synchronizing broadcast video on TV with broadband video on

3.1 Use Cases

45

46

mobile devices with the same challenges. One of these application scenarios are
events with multiple camera perspectives. In this case, the TV shows the main
broadcast stream while the viewer can select a specific camera in the companion
application.

3.1.4 UCA4: Multiscreen Advertisement

The basic idea of this use case is to engage the viewer with the content displayed on
the TV. Multiscreen Advertisement is a very important commercial use case for many
broadcasters. The basic flow of this use case is depicted in Figure 3.4 and described
below:

2

Broadcast

TV Remote
Control

Figure 3.4.: UC4: Multiscreen Advertisement

1. A viewer is watching a broadcast channel on the TV. During the Ad break,
the TV shows the option "Push2Mobile" which allows the viewer to launch a
companion application with just one interaction, i.e., via the red button of the
TV remote control as depicted in the first part of Figure 3.4.

2. The viewer presses the red button to get more information about the adver-
tisement displayed on the TV and receives a notification on his smartphone.
The viewer will not be asked to select a specific companion device that should
receive the notification. Instead, all viewer devices already paired with the TV
will receive the notification.

3. The viewer clicks on the notification and a web page related to the TV adver-
tisement opens in the browser. The companion page connects automatically
to the TV and shows information related to the advertisement, for example,
details about the product and how to buy it online or in a store nearby.

Chapter 3 Use Cases and Requirements Analysis

4. The viewer can configure the TV app to send always a notification when a TV
advertisement from a specific category starts on the TV without the need to
press the red button.

There are also other non-commercial use cases with the same technical challenges.
For example, the companion app can show additional information about actors in
the current TV show or display related content from social media networks. The
primary challenge in all these cases is how to discover only companion devices of
viewers sitting in front of the TV and not any device paired with the TV but currently
not in the same place.

3.1.5 UCS5: Tiled Media Playback on Multiple Displays

This use case is about using multiple displays in a specific order, i.e., in a matrix form
to build a larger presentation screen. This kind of installations is popular for public
screens. Traditional installations use specific hardware that connects all displays and
exposes them to applications as a single virtual display. The underlying system will
then map each part of the virtual display to its corresponding physical display. The
use case depicted in Figure 3.5 provides an alternative method to present content
on multiple displays using multiscreen technologies without the need for additional
hardware. The basic idea is to split the content to multiple tiles in advance, and
each of these tiles will be assigned to a specific display. The flow of this use case is
described below:

‘Displayl \ Display 2

Display 3 Display 4

il

w L) A 7
S \ 4 e
N -

Figure 3.5.: UC5: Tiled Media Playback on Multiple Displays

1. An organizer needs to present video content on a public screen for a large
audience during an event. The video is available in UHD (Ultra HD) with a

3.1 Use Cases

47

48

resolution of 3840x2160 pixels which has four times more pixels than FHD
(Full HD) video which has a resolution of 1920x1080 pixels.

2. The organizer decides to use an installation of four FHD displays in a setup of
a 2x2 matrix and form a larger virtual display which can present UHD videos.

3. In order to create content for each display;, it is necessary to split the video into
four tiles which can be delivered and played back on the individual displays.

4. In order to select a video and control the playback, a control application
running on a tablet as depicted on the left side of Figure 3.5 is used. It
launches the video application with the corresponding tile on each display.

5. The displays play back the video tiles in sync with the video playing in the
control application running on the tablet which also allows the user to control
the video playback or stop the video on all displays at any time.

The biggest challenge in this application scenario is the frame-accurate synchroniza-
tion of the video tiles on the individual displays.

3.1.6 UCG6: Multiscreen 360° Video Playback

360° video is one of the new media formats that started to reach a wider audience in
recent years. There is already a wide range of 360° cameras that make it possible
to produce 360° videos for everyone not just for professionals. 360° video can be
played on different devices like smartphones, head-mounted displays (HMD) and
TVs. This use case introduces the basic flow for watching 360° videos on different
devices as depicted in Figure 3.6 and described in the steps below:

1. A user opens on his tablet a video application that supports 360° video playback.
He selects a 360° video from the catalog, and the player starts rendering the
field of view (FOV) from a specific angle ("View 1" depicted in Figure 3.6).
Other parts of the video remain unseen. The user can change the FOV or zoom
in the video using the touchscreen ("View 2" depicted in Figure 3.6).

2. The user decides to continue the video on a head-mounted display (HMD). For
this, he opens the 360° video application on his smartphone which detects the
last session on the tablet and offers the user to continue the video. The user
connects the smartphone to the HMD, and the playback continues in VR stereo
mode in which the player splits the screen into two parts for the left and right
eyes. The FOV is detected using motion sensors of the HMD.

Chapter 3 Use Cases and Requirements Analysis

View 1
. N
Jﬂ..J =
View 1 View 2 . 4+
>
oo

Figure 3.6.: UC6: Multiscreen 360° Video Playback

3. After a few minutes wearing the HMD, the user feels isolated and decides to
continue the 360° video on the TV. After disconnecting the smartphone from
the HMD, the video application discovers a TV able to play the 360° video.
After establishing the connection, the 360° video playback continues on the TV.
The user can use his smartphone or the TV remote control to navigate in the
360° video.

There are also other relevant features which are not addressed in this use case like
live streaming and interactive 360° videos.

3.2 Requirements Analysis

This section analyses the use cases defined in the previous section and derives the
functional and non-functional requirements described in the following subsections.
The requirements for the application model and the underlying multiscreen system
are considered in Chapter 4, while the remaining requirements for media processing,
delivery and playback are studied in Chapter 5.

3.2.1 Functional Requirements

The functional requirements define the behavior and functions of multiscreen ap-
plications, media processing tools and the underlying runtime environment. Each
functional requirement is described in the following subsections.

3.2 Requirements Analysis 49

50

F-REQ1: Discovery

Discovery is an important requirement that enhances the user experience in a
multiscreen environment. A component of a multiscreen application running on
one device like a smartphone should be able to discover other devices like TVs
that can display a specific content type and fulfill certain criteria without the need
for additional user interaction or configuration. Some discovery technologies use
the term "zero-configuration" as an indication that no additional configurations are
required. The target content requested to display on the remote device could be a
video, audio, image or any digital content. Optional criteria can be used for further
filtering. For example, in the case of media content, it can filter devices that support
a specific video or audio codec. Other filtering options related to software and
hardware capabilities of the target device can also be considered. The output of the
discovery step is a list of devices with all the information needed to connect to each
of them and to display the requested content. The discovery should avoid finding
devices that cannot display the requested content or not fulfill the input criteria. If
this happens, the request for displaying the content in the next step will fail which
will impact the user experience.

Related use cases: UCI, UC2, UC5, UC6

F-REQ2: Pairing

There are situations where discovery is technically not possible or has limitations.
For example, a TV or any presentation device connected to the local network should
only be discovered from devices in the same network. Also, personal devices
like smartphones forbid to run services in the background that make the device
discoverable by other devices due to security, privacy, and battery life considerations.
In these situations, a manual pairing can help. It allows two devices to connect with
each other for a limited or unlimited time and requires in most cases additional
interactions with the user, for example, to enter a PIN-code or to scan a QR-code.
Related use cases: UC3, UC4

F-REQ3: Launch

A component of a multiscreen application running on one device should be able
to launch another application component or display media content on a previously
discovered device. Information of the discovered device returned after discovery or
a pairing step will be used to establish a connection between sender and receiver

Chapter 3 Use Cases and Requirements Analysis

devices. "Sender" is the term used for devices or applications that request the
launch while the "receiver" represents presentation displays on which the requested
application will be launched. Some devices support only pre-installed services for
displaying media content like DLNA [122] certified devices with UPnP [38] media
rendering capabilities. Other device categories may support only rendering of web
content in a browser installed on the device. In this case, the HTML video and audio
elements can be used to render media content. A new generation of presentation
devices enables the launch of any native application already installed on the receiver
device. It should also be possible to launch applications or display media on multiple
receiver devices simultaneously, sent from the same sender device.

Related use cases: UC1, UC2, UC5, UC6

F-REQ4: Wake-up

The remote launch of applications is not always supported especially on devices like
smartphones and tablets in order to not affect the user experience. The launch of
applications on these devices is only allowed after user confirmation. The only option
to interact with the user while the application is not running in the foreground is
through notifications. The application itself can trigger a notification if it is running
in the background or by sending push notifications to the device. Triggering the
application to run in the background is called wake-up. Only if the user taps on the
notification, the desired application will be launched in the foreground.

Related use cases: UC3, UC4

F-REQ5: Joining

A component of a multiscreen application running on one device should be able
to join a previously launched application on another device. This is important,
for example, in multi-user multiscreen applications like multi-player games where
one user starts the application on the receiver device while another application
component running on a different device connects to it without launching a new
application. Joining can also be used if a sender application launches a receiver
application on a presentation device and then disconnects without terminating the
receiver application. The sender application can reconnect at a later time to the
receiver application using the "joining" feature.

Related use cases: UCI1, UC2, UC4

3.2 Requirements Analysis

51

52

F-REQ6: Terminating

A component of a multiscreen application should be able to terminate other applica-
tion components previously launched from the same application. All connections to
the terminated application components should be closed, and all affected application
components should be notified accordingly.

Related use cases: UC1, UC2, UC5, UC6

F-REQ7: Communication

Two components of a multiscreen application running on two different devices should
be able to establish bidirectional communication channels. These communication
channels should support the exchange of text and binary data as well as low latency
streaming of continuous binary content especially media streams.

Related use cases: UC1, UC2, UC5, UC6

F-REQ8: Synchronization

Components of a multiscreen application distributed on multiple devices should
be able to synchronize their internal application state in real-time. It should also
be possible to provide a frame-accurate synchronization of media streams and
timed data across multiple devices. Examples of timed data are subtitles and timed
captions. The synchronization can also be realized on the application level using
the communication channels but the time accuracy cannot be guaranteed as it is
supported at the platform level.

Related use cases: UC1, UC2, UC5, UC6

F-REQ9: Migration

An application running on one device should be able to migrate one or more of its
components to another application running on a different device without losing its
state. This process is called push migration. It should also be possible to migrate
one or more components from a remote device to the application running on the
local device which is called pull migration. Migrated components disappear from
the source application and appear in the target application after completing the
migration process.

Related use cases: UC1, UC2, UC6

Chapter 3 Use Cases and Requirements Analysis

F-REQ10: Cloning

An application should be able to clone one or more of its components to an appli-
cation running on another device by keeping the state of the original and cloned
components in sync. The user interfaces of the original and cloned components do
not necessarily have to look the same since they can adapt to the devices they are
running on.

Related use cases: UC2

F-REQ11: Instantiation

An application should be able to create a new instance of a component either locally
or on a different device. Furthermore, it should be able to set the initial state of
the new instance or to use the last known state of the original component before
instantiation. After instantiation, the two instances of the application components
should run independently from each other.

Related use cases: UC2, UC3, UC5

F-REQ12: Adaptation

An application component should adapt to the target device on which it is running.
There are multiple factors related to the capabilities of the target device that should
be considered during adaptation. The most important capabilities relevant for
multiscreen applications are screen resolution, supported input methods and media
rendering capabilities. For example, an application running on a smartphone and
later migrated to a TV should adapt to the screen size and the input method (remote
control) of the TV. Adaptation is not only important for applications but also for
media rendering, especially video. For example, if a low-resolution video gets
migrated from a smartphone to the TV, a better resolution version with appropriate
encoding should be selected.

Related use cases: UC1, UC2, UC3, UC4, UC5, UC6

F-REQ13: Partial and 360° Video Rendering

We assume in this thesis that the devices should at least support regular video
rendering. Also, it should be possible to render a rectangular region of a video
to enable partial media rendering. In case of 360° videos, it should be possible to

3.2 Requirements Analysis

54

display a field of view from a source video.
Related use cases: UC1, UC5, UC6

F-REQ14: Remote Media Control

A component of a multiscreen application should be able to control the playback
of media content displayed on a remote device and receive the accurate playback
position. In the case of partial video playback, it should also be possible to change
the visible rectangular region. In 360° videos, it should be possible to change the
angle and the zoom level of the field of view.

Related use cases: UC1, UC5, UC6

3.2.2 Non-Functional Requirements

In addition to the functional requirements defined in the previous section, this section
focuses on the non-functional requirements which have impact on the technical
implementation of the system components and the quality of service (QoS).

NF-REQ1: Motion-to-Photon Latency

Motion-to-Photon Latency is a relevant metric in multiscreen applications and mul-
timedia rendering which has a direct impact on the user experience. It is defined
as the time until a user interaction is fully reflected on the presentation screen and
is widely used in gaming or 360° video applications. The maximum allowed value
for Motion-to-Photon Latency on head-mounted displays is 20ms to avoid motion
sickness. In multiscreen applications, the user interacts in most cases with one device
while the content is displayed on another device. This means that the latency for
the communication between two application components running on two different
devices should also be considered in the overall Motion-to-Photon Latency. The
maximum allowed value for Motion-to-Photon Latency depends on the use case. For
example in case of 360° video rendering on TV and navigation via remote control or
second screen, the Motion-to-Photon latency can be higher than 20m:s.

NF-REQ2: Bandwidth

Bandwidth is another critical factor for multiscreen applications and multimedia
rendering. It has a direct impact on the user experience, especially on the quality

Chapter 3 Use Cases and Requirements Analysis

of the video content that can be streamed with a specific bandwidth. It plays a
more critical role in partial media and 360° video rendering where only a part of
the content is displayed to the user. The challenge is to stream the content to the
user device without wasting the bandwidth for streaming unseen content. In case
of application rendering on remote devices, there are different requirements on
bandwidth depending on how and where the application Ul is rendered. For example,
if the application is rendered on a remote device and the Ul output is captured as a
video and streamed to the presentation device, then a higher bandwidth is required
compared to the case when the application Ul is rendered locally on the same device
where it is running.

NF-REQ3: Processing Resources

Application and media rendering requires computation and graphical processing
resources, which can vary between different application scenarios. For example,
some video codecs require minimum hardware capabilities in order to decode and
render the video content. The rendering of 360° videos, 3D content, and graphical
animations require more processing resources. The challenge is to support this kind
of computing-intensive applications even on low-capability devices. Rendering 360°
videos on TV is just one example.

NF-REQ4: Storage

The storage requirement addresses multimedia content rather than data and assets
of the application itself. As mentioned in the introduction section, it is expected
that in 2021 more than 80% of internet traffic will be video streaming which
needs to be stored and cached in the network. Furthermore, in order to support
adaptive streaming, different versions of the same video with different bitrates need
to be created and stored or cached in the network. Creating videos with specific
bitrates for individual users produces more costs than storing multiple versions of the
video. The challenge is to find a balance between storage, processing and streaming
requirements in order to minimize the total costs.

NF-REQ5: Scalability

Scalability is another important aspect for the deployment of a system that sup-
ports multiscreen multimedia applications. It is particularly relevant in case of a
cloud-based solution where specific components in the cloud are responsible for

3.2 Requirements Analysis

55

56

the rendering of application interfaces and for processing multimedia content for
individual users. In this cases, the system must be designed in a way that it scales
even for a large number of parallel users and ensuring the availability of required
resources.

NF-REQ6: Interoperability

Interoperability is of particular importance in the multiscreen domain since the
application may be distributed on devices from different manufacturers and running
different software platforms. The challenge here is to identify the minimal set of
interfaces, protocols, and vocabularies that can be standardized in order to ensure
the interoperability across devices and platforms. This work will be done in standard
organizations and institutions like the World Web Consortium W3C [11].

3.3 Conclusion

In this chapter, the most important use cases in the area of multiscreen multimedia
applications were identified, and the functional and non-functional requirements
were derived. These requirements are considered in the next chapters for the
definition of a multiscreen application model, related concepts and design patterns.
Also, some of the requirements will result in the specification of APIs that can be
used in multiscreen applications to access functions of the underlying platform.
The interworking between the runtime environments on different devices is also
considered, and the corresponding network protocols are identified. Furthermore,
the media-related requirements serve as input for the design and specification
of a multimedia playout system that can address devices with different playback
capabilities. Finally, the non-functional requirements listed above will be addressed
in the proof-of-concept implementation as well as in the evaluation.

Chapter 3 Use Cases and Requirements Analysis

Multiscreen Application Model
and Concepts

This chapter forms the foundation of this thesis and presents a novel model for
the development of multiscreen applications and related concepts. Section 4.1
discusses initial ideas for the conceptual design of multiscreen applications based
on the use cases and requirements identified in the previous chapter. Section 4.2
introduces a new method called Multiscreen Model Tree for modeling multiscreen
applications during each stage of the application lifecycle. Section 4.3 presents the
different concepts and approaches for interworking between multiple components in
a multiscreen application. Section 4.4 introduces the architecture of a multiscreen
application platform and related protocols. Section 4.5 focuses on the usage of Web
technologies as a cross-platform solution for developing multiscreen applications.
Finally, Section 4.6 provides a proof-of-concept implementation of the architecture,
the application model and the runtime environment introduced in this chapter.

4.1 Introduction

The use cases and requirements defined in the previous chapter will serve as input
for the definition of a unified model for multiscreen applications. One of the common
characteristics required in all use cases is the high flexibility and adaptability of
multiscreen applications. Parts of a multiscreen application can be freely migrated
between screens during runtime, and the number of devices involved can increase
or decrease dynamically as devices can join or leave at any time. The multiscreen
application model should consider these key characteristics during the design and
specification phase. A proper approach to address the flexibility and adaptability
characteristics is to consider a multiscreen application as a set of loosely-coupled
application components that can be easily migrated between devices during runtime.
In the remainder of this thesis, the term M SA is used as an abbreviation for a
Multiscreen Application and M SC for a Multiscreen Application Component. A
M S A consists of a set of M SC's. Each component M SC; of a multiscreen application
has an internal state S;, a representation of its view V;, and a runtime function R;,
ie., MSC; = (S;,Vi, R;). In order to ensure the flexibility and adaptability, some
rules have to be considered:

57

58

1. Only the runtime function R; of a multiscreen component M SC; can change
its state S; and view V.

2. Changes to the internal state S; of a multiscreen component M SC; can result
in changes to its view V;.

3. Only the runtime function R; can interact with other application components
running on the same or other devices.

4. Creating two instances of the same application component M SC; and with
the same initial state S; on devices with the same characteristics results in two
identical views.

Multiscreen applications often consist of identical functions for different devices
and contexts. Implementing these functions multiple times for each device and
application context increases the development and maintenance costs and time.
Support of reusable components is a critical factor that prompts us to distinguish
between two types of application components, atomic and composite. An Atomic
Application Component AAC' is the smallest indivisible entity in a multiscreen
application and can run together with other atomic components on the same device.
Each AAC; has its own state S;, view V;, and runtime function R; and shares the
device display with other atomic components assigned to the same device. The
combination of all AAC's assigned to the same device builds a Composite Application
Component C'AC where its state is the combination of the states of all containing
AACs. The same applies to views and runtime functions of each atomic application
component. A CAC can be seen as an entity that coordinates the execution and
resources of the containing AAC'’. For example, it defines how the AAC's can share
the screen of the assigned device to display the individual views. It can also act as a
broker between the containing AAC's assigned to the same device or other C' AC's
running on other devices within the same multiscreen application. Furthermore, a
C AC provides functions to add, remove or migrate atomic components.

To illustrate the concept of AAC's and C'AC's, let us consider the Multiscreen Game use
case from Section 3.1.2 as an example. We can identify from this application scenario
two atomic application components, AAC), representing the player game field (index
p in AAC), is the abbreviation of player) and AAC} representing the common game
field or table (index ¢ in AAC; is the abbreviation of table). There are different
compositions, how the atomic components are distributed on the screens, depending
on the current state of the game and the number of connected players. At the
beginning of the game, there is one instance of each AAC and both run on the device
of the first player. This means that the multiscreen application has after the first
launch (M SA(t = 1) in Figure 4.1) only one composite component instance C ACy;;
which consists of two atomic component instances AAC,; and AAC; as shown in
Figure 4.1. It is worth to mention that the notation M S A(¢) defines the multiscreen
application at time ¢ which increases stepwise after an application component is

Chapter 4 Multiscreen Application Model and Concepts

added, removed or migrated using one of the operations we will introduce later in
Section 4.2. Figure 4.1 shows the multiscreen application at the different time steps.
This is just an informal visualization of the application components in order to make
the idea of AAC's and C'AC's more understandable. Section 4.2 will provide a better
comprehensive approach to visualize the composition of the application components
at any stage of the application lifecycle. Back to the multiplayer game example,
the AAC}; instance gets migrated in the next step to the TV and runs inside of the
newly launched composite instance CAC; (M SA(t = 2) in Figure 4.1). After the
second player joins the game, a new composite instance C' AC); with a single atomic
instance AAC), will be launched on his device (M SA(t = 3) in Figure 4.1). In the
next step, the third player joins the game after he received an invitation from the
first or second player. Since he is not at the same physical location as the first two
players, he needs in addition to a new atomic player instance AAC), also a new

atomic table instance AAC] which needs to stay in sync with the first AAC} instance.

MSA(t = 4) in Figure 4.1 shows the state of the multiscreen application after the
third player joins the game. Finally, M SA(t = 5) in Figure 4.1 shows the state of
the application after the third player migrates the table component AAC] from his
device to the TV and creating a new composite component instance C AC;.

MSA(t=1) MSA(t=2) MSA(t=3) MSA(t=4) MSA(t=5)
@ - @ - 4 - L,

.‘————~.‘————.,‘————zl————t.(————"
I 11 I | I I
I[AACpl]||[AACP1]|:[AACP1]||[AACP1]|:[AACp1]I
(Canc I 1L AGa 1] cAG 1] CAG, [ry] cAc, !
| cac, i ! Aol !
____,,[AAQ],:[AAQ],I & ,: ARG 1
| cac, iyl cac :: cac i !

I I I
I | !
:[AACPZ]l:[AACp2]|:[AACp2]|
| CAG, || CAC, |li] cAC, !
- e omm == o= I I I

Ly
[=)
I :I CAC,; :
| ! |
.': AAc, |l
| cac,]
o

Figure 4.1.: Components of the Multiscreen Multiplayer Game at different Stages

Thus, the basic idea for designing a multiscreen application in the first step is to
identify all relevant atomic application components. This can be done by analyzing
the application scenario and deriving the requirements from it. The next step is to
identify the possible combinations of atomic application components and to find out
which composite application components are relevant. If during the design phase

4.1 Introduction

59

60

two or more atomic application components always appear together in composite
application components, they should be replaced with a new atomic component
that provides the same functionalities. It does not make sense to consider these
atomic components individually if they always belong together. Each unnecessary
atomic component is an additional effort during the conception and later during
the implementation of the multiscreen application. An important aspect while
identifying the atomic components is to consider the role and functionality of each
component rather than how it could be displayed on each device. For example,
in the multiscreen game use case, the table component is identified as atomic
application component AAC; and can be displayed on the player device together
with the player atomic component AAC), as part of the composite component
CAC,; or as a standalone component on the TV as part of composite component
CAC;. The AAC; may look different on each device class, but it is still the same
logical component. In this case, the component needs to dynamically adapt to the
capabilities of the target display like screen resolution and supported input methods.
In the next sections, we will go deeper into all multiscreen aspects and address each
of the identified requirements. We will first introduce a new method for modeling
multiscreen applications called "Multiscreen Model Tree" (MMT), which describes
the composition of the components of a multiscreen application, the dependencies
between them and their assignment to individual devices. It is worth to mention that
the multiscreen model tree is not a method for describing or tracking the state of the
entire application or of individual components. There are well-studied concepts and
methods such as "State Machines" [123] and "Timed Automata" [124] that can be
used for this purpose. For example, [125] uses the concept of timed automata as "a
formal model for the representation of Web Service workflows".

4.2 Multiscreen Model Tree

As mentioned in the introduction, the multiscreen model tree provides a way to
track the components of a multiscreen application and describes the dependencies
between them as well as the assignment to individual devices during the application
lifecycle. Figure 4.2 shows an example of the multiscreen model tree. The root
element of the tree is always the multiscreen application M S A itself. The second
level of the tree contains all devices D; involved in the application. For example,
there are four devices Dy, Ds, D3 and D, involved in the multiscreen model tree
depicted in Figure 4.2. The third level of the tree contains the composite application
components C'AC; assigned to devices D; from the second level. It is important to
know that a device D; can be either empty or runs only one composite application
component CAC;. A device like D, in the example tree is empty which means
that it is available, but currently, there is no C AC launched on it. In the example

Chapter 4 Multiscreen Application Model and Concepts

MSA

//’//\

D1 D2 D3 D4
CAC, CACy CACs
AAC AACy AACY AACS

T T T T

St Vi R Sy Vo Ry S5 Vi Ry S3 Vi3 Ry

Figure 4.2.: Multiscreen Model Tree Example

model tree, there are three composite application components C ACy, C ACy and
C ACs, each assigned to the devices Dy, Ds, and Ds. The fourth level of the tree
contains the atomic application components AAC} that are part of the corresponding
composite application components C' AC; from the third level. An atomic application
component instance can be only part of one composite application component
instance at a time. A composite application component can be empty like CAC5 in
the example tree which means that the application is assigned to the corresponding
device and is ready to add atomic application components to it, but no components
are currently added to it. In the example tree, there are two atomic application
component instances AAC; and AAC, as part of C AC, and two atomic application
component instances AAC) and AACj5 assigned to CAC,. In this example, the
instance AACY is a mirror of AAC,. The notations ’, ”, and "’ mean that atomic
application component instances AAC!, AAC”, and AAC?/ are mirrored from the
origin instance AAC,. The following subsections explain how to use the multiscreen
application tree to describe various functions of a multiscreen application.

4.2.1 Instantiation

Instantiation is the process of creating and initializing a new multiscreen applica-
tion or a new multiscreen application component. In case of atomic application
components, there are two methods for creating a new instance AAC, of an atomic
application component AAC": 1) the new instance is created and initialized using
default data according to the runtime function of the atomic component, or 2) the
new atomic application component instance AAC, = (S, V;, R,) is created from
the current state .S, (77) at time T} of another atomic application component instance
AAC, = (Sy,Vy, Ry) as initial state of the newly created atomic application compo-
nent. In other words, the expression S;(77) = S,(71) is correct at time 75 = 77 but
not necessary at time 75 > T7.

In the case of composite application components, a newly created instance is always

4.2 Multiscreen Model Tree

61

62

empty. Once a new C'AC instance is created, then atomic application components
can be added to it. In other words, to create a new C AC,, instance from an existing
instance C' AC,, which already contains atomic component instances, it is necessary
to create a new AAC), instance for each AAC, instance and add it to CAC,. The

MSA MSA MSA
Dy D D4
AACH AAC, AAC,
St Vi Ry Si Vi Ry S5 Voo Rp
(a) iVISA M,Od,el Tr?ecjtgr (b) MSA Model Tree after (c) MSA Model Tree after
nstantiation o 1 Instantiation of AAC; Instantiation of AAC,

Figure 4.3.: Multiscreen Model Tree: C AC and AAC Instantiation

initial state of a multiscreen application is always a single screen application which
contains a single composite component assigned to the device on which the user
started the application. Figure 4.3a shows a minimal multiscreen application tree
immediately after instantiating a new C'AC. This may trigger the instantiation of
atomic component instances as depicted in Figures 4.3b and 4.3c where the two
instances AAC; and AAC, are created and added to C AC;. During runtime, the
single screen application can turn itself in a multiscreen application after discovering
new devices and launching new composite component instances on them. New
atomic application instances can be instantiated and added to newly launched com-
posite instances as well. All these steps will be discussed and described in the next

sections.

4.2.2 Discovery

A multiscreen application is intended to run on multiple devices simultaneously. As
mentioned in Section 4.2.1, a multiscreen application runs on a single device after the
first launch similar to any single screen application. During runtime, the single screen
application can discover other devices and launch other application components
on them. Thereby, devices may appear and disappear at any time depending on
many factors like availability and reachability. The multiscreen application should
take these factors into account and expect changes in device availability during
application lifecycle. Therefore, a multiscreen application should be able to discover
other devices during runtime either on demand or via notification when suitable

Chapter 4 Multiscreen Application Model and Concepts

MSA MSA

T _— X

D, Do Dy Dy D3 Dy
| | | |
CAC, CAC, CAC, CACs
| | | |
AAC, AAC, AAC, AAC,
= =
St Vi RS2 Vo R St Vi RS2 Vo Ry
(a) Before discovery (b) After discovery

Figure 4.4.: Multiscreen Model Tree before and after discovery

devices become available. The multiscreen application should also get notified when
an already discovered device disappears. The application can keep its internal list of
discovered devices in sync with physically existing devices and avoid unexpected
behavior in case devices are not available but still exist in the list of discovered
devices.

Discovered devices can be tracked in the multiscreen model tree by adding a new
node for each discovered device to the second level of the tree. The nodes of newly
discovered devices do not have child nodes as shown in Figure 4.4b. Figure 4.4a
shows the multiscreen model tree before triggering the discovery process. The
children of device nodes are always composite application instances that can only be
added after the launch step. One important aspect of the discovery is the capability
to find only devices that fulfill specific requirements. This facilitates avoiding runtime
errors in case a discovered device does not support a specific mandatory feature in
order the application works properly. For example, in the remote media playback
use case defined in Section 3.1.1, the component running on the mobile device may
request to discover only devices that support specific video and audio codecs.

The discovery can be triggered by any atomic application component already assigned
to a device. The discovery request will be forwarded to the parent composite
application component which calls the underlying discovery API on the assigned
device. Once the list of discovered devices is available, the multiscreen application
provides the result to the component that triggered the request and optionally to
other components of the application. Composite application components can now
be launched on any of the newly discovered devices. The launch process is described

in the next section.

4.2 Multiscreen Model Tree

63

64

4.2.3 Launching and Terminating of Application
Components

After a device is discovered, the application component that initiated the discovery
request will get all information necessary for launching application components on
it. Which information is required depends on the underlying technologies. In most
cases, a "friendly name" of the discovered device will be displayed to the user to
distinguish discovered devices from each other when multiple devices are available.
Based on the discovery information, the requesting application component AAC,

MSA MSA MSA
/\
Dl/\Dg Dl/\Dz D, Dy
CAC, CAC, CAC, CAC, CAC,
AACY AACH AAC, AACH
51/‘/,1\R1 Sml 51/‘/,1\R1 52/‘/,2\32
(a) Before launch (b) After launch of CAC, (c) After launch of AAC,

Figure 4.5.: Multiscreen Model Tree before and after launch

can now initiate a request for a specific composite application component C ACy
to be launched on a selected device D, as shown in Figures 4.5a and 4.5b. Once
CACj is launched, the requesting application component AAC; and optionally
other components of the same multiscreen application will get notified and the
atomic application component AAC, can be added to the newly launched composite
component C ACs as depicted in Figure 4.5c.

After the launch is completed, the requesting atomic application component AAC!
and the newly launched atomic application component AAC, will be able to in-
teract with each other using different methods like establishing an application-to-
application (App2App) communication channel between the two components, using
a publish/subscribe paradigm or by following a data-centric approach where the
state of the multiscreen application is synchronized between all devices on which the
application is running. All these approaches will be discussed in following sections
of this chapter.

Similar to the launch feature, any application component can terminate other ap-
plication components running on remote devices. In this case, all connections
established to the terminated component will be closed, and affected components
will be notified.

Chapter 4 Multiscreen Application Model and Concepts

4.2.4 Merging and Splitting

Atomic application components are the smallest entities in a multiscreen application.

Their main purpose is to build applications from modular components that can

be freely moved between devices and even be reused in different applications.

This means that multiple atomic application components may run inside the same
composite application component on the same device. Let us consider the two
atomic components AAC] = (51, V1, R1) and AACy = (S, Va, Ry) which both run
inside the composite component C' AC as depicted in Figure 4.6a. There are two

MSA MSA
o o
CAC, CAC,
A
AACY AAC, AAC2
51/‘/,1\}31 52/‘/,2\32 S 12/‘/,12\31 2
(a) Before merging (b) After merging

Figure 4.6.: Multiscreen Model Tree before and after merging

options for running the atomic components AAC; and AAC, on the same device:
Option 1: The atomic application components AAC; and AAC5 run inside of C AC,
independent of each other in two different and isolated execution contexts. AAC,
and AAC, can interact with each other in the same way as if they were running
on two different devices. Since both components AAC, and AAC, are sharing the
same screen, C' AC needs to coordinate how the views V; and V5 are rendered on
the device’s display. This simplest approach to do this is to assign parts of the screen
as rendering areas for each view. Another approach is to assign the whole screen to
each view but as a different layer. All layers have a transparent background and are
placed on top of each other. The application developer can define the logic for the
layering in C' AC. An atomic component may be notified after adding and removing
other atomic components to the same composite component which allows adapting
the views to the new context.

Option 2: The atomic components AAC] and AAC; are replaced with a new atomic
component AAC7s which provides the same functionality as if AAC; and AAC,
were running simultaneously on the same device. In other words, the components
AACT and AAC, are merged into a new atomic component AAC» as depicted in
Figure 4.6b. This is needed if the first option is not applicable, for example, if the
application developer needs to customize the application Ul in a very flexible way

4.2 Multiscreen Model Tree

65

66

where each AAC can control any part of the screen and not only a pre-defined area.
In this case, a new view Vo = V; + V; is created by merging V7 and V5. We will
use the + operator for the merge operation. The states S; and S2 as well as the
runtime functions R; and R can still run simultaneously in two different execution
contexts as described in the first option. This means that the new runtime function is
Ri12 = R1|R2 and the new state is S12 = S1|S2 where | designates parallel execution.
Finally AAC2 = (51|52, Vi + Va2, R1|R2). Any changes in the states S; or S; may
lead to changes in V5.

The second option describes the most important combination for merging two AAC's
by merging their views and keeping the states and runtime functions running in
different contexts. This is important since the application may request to split
the merged AACSs again at any time later, for example, to migrate one of the
AACSs to another device. In this case, it is easier only to split the views instead of
splitting the states and runtime functions if they were merged before. However, in
extreme situations, for example, when a merged component performs better and
more efficient than when each AAC is running in a separate context, it is possible to
replace the source AAC's with a completely new AAC: 2 = (S1+S2, Vi+ Vo, R1+ R3).
This should be avoided if possible since in this case the developer needs to implement
a new component AAC", in addition to the source components AAC; and AAC5.

As stated before, splitting is the inverse operation of merging which allows an
existing AAC to be divided into two AAC's that can be executed separately in two
different runtime contexts. In most cases, this is needed when part of an AAC
needs to be migrated to another device. For example, in the multiscreen game
use case described in Section 3.1.2 after the first player launches the game, both
atomic components AAC), (player component) and AAC; (table component) will
run together on the user device as merged AAC); where both views V), (player view)
and V; (table view) share the same screen. When the player decides to migrate the
table component to the TV, the AAC), first needs to be split into AAC, and AAC}
where AAC), stays on the player device and the AAC; is migrated to the TV. The
concept migration will be described in the next section.

4.2.5 Migration

Migration is defined the process of moving an atomic application component from
one composite application component C AC; running on a device D; to another
composite application component C AC, running on a device D,. Migration can be
completed in four steps where the first and last steps are optional.

1. If the atomic component under consideration AAC) is part of a merged com-
ponent AAC» as depicted in Figure 4.7a, then the split operation described in

Chapter 4 Multiscreen Application Model and Concepts

the previous section needs to be applied. Therefore, AAC:5 will be replaced
by the two atomic components AAC| and AAC as depicted in Figure 4.7b.

2. In next step, the atomic component AAC, will be detached from C AC. This
means that the state S, of AAC, will remain available, but the view V5 will no
longer be displayed as shown in Figure 4.7b (dotted line). Furthermore, the
runtime function R will be suspended, i.e., no changes will be made to the
state Se anymore.

3. Launch a new instance AAC3 on C'AC, assigned to device Dy using the state
Sy as the initial state. The view V5" will be attached to C AC5, and the runtime
function Ry will be resumed which means that it can make changes to the
application state S;. At the same time, the atomic component AAC> will be
removed from CAC;.

4. Merge the AACS with existing atomic components running on C' AC, if neces-

sary.
MSA MSA
/\ /\
D1 DQ D1 D2

| | | |
CAC, CAC, CAC, CAC,

| | T |
AAC AACs AACH AAC, AACSs

Si2 Vig Ry S3 V3 R3S Vi Ry Sy Vo Ry Sz Vi3 Rs

(a) Before migration (b) After split AAC)»
MSA MSA
/\ /\
D,y Doy Dq D
CAC, CACs CAC, CAC,
AACH AA&’; / \AACg AAC AACHs

S i Ry S5 Ve Ry Sy Vs R3S1 Vi Ri Say Vs Rog
(c) After cloning AAC, (d) After migration

Figure 4.7.: Multiscreen Model Tree before and after Migration

4.2 Multiscreen Model Tree 67

4.2.6 Mirroring

Mirroring is the process of cloning an atomic application component instance AAC,
assigned to a composite application component C'AC; running on device D; and
launching the cloned atomic instance AACY on another composite component C' AC5
running on device D,. At any time after the cloning, both components C AC, and
C' AC| must keep their states synchronized, which will also imply their views. Similar
to migration, the mirroring can be completed in three steps, where the first and last
steps are optional:

MSA MSA
/\ /\
D Dy Dy D
CAC CAC, CAC CAC,
/\
AACY, AAC; AACY, AAC) AACs

Sio Vie Ria S3 Vi3 Rs S Viz Rip Sy Vi Ry Sz V3 R3

(a) Before mirroring (b) After launch of AACY
MSA
/\
D, Dy
CAC, CACy
AACY, AAC),

T~ T

Si2 Via Rz Sy Vi 53
(c) After mirroring

Figure 4.8.: Multiscreen Model Tree before and after mirroring

1. If the atomic component AAC5 under consideration is part of a merged compo-
nent AAC1, with a merged state S1, as shown in Figure 4.8a, then the state .S,
of AAC5 needs to be determined after splitting the state S;5 without making
any changes on AAC, .

2. Launch a new instance AACY on C'AC assigned to device D, using the state
Ss as the initial state. Furthermore, the view VJ will be attached to C AC,

68 Chapter 4 Multiscreen Application Model and Concepts

and the runtime function Ry will be resumed which means that it can make
changes on the application state 5.

3. Merge the AACY, with existing atomic components running on C'AC5 if neces-
sary. This step is not necessary in cases there is no need to merge components.

4.2.7 Joining and Disconnecting

Disconnecting is the step when a composite application component C' AC running on
device D, closes its connections to all other composite application components run-
ning on other devices as shown in Figure 4.9. Therefore, the multiscreen application
will be split into two parts that run separately from each other. The disconnection
may occur either on demand upon user request or due to an unexpected problem.
The most relevant example for disconnecting is the remote playback use case. In
most situations, the user uses the smartphone to search for media content and the
TV to playback selected media. The user can also disconnect the smartphone from
the TV without stopping the playback and connect again at any time later. Joining

MSA MSA, MS A,
/\

Dy Dy Dy Dy
CAC CAC, CAC, CACy
AACH AACH AAC AACs

51/‘/,1\31 52/‘/2RR2 51/V1RR1 52/V2RR2
(a) Before disconnecting (b) After disconnecting

Figure 4.9.: Multiscreen Model Tree before and after disconnecting

is the opposite operation of disconnecting. It allows an application running on one
device to connect to another application that runs on a second device. The result
is a multiscreen application containing all components of both source applications.
Joining may occur after the disconnecting step, for example, in the remote play-
back use case described above, the disconnected control application may connect
again to the player application running on the TV. However, there are cases where
joining does not occur necessarily after disconnecting. For example, a companion
screen application can connect to a hybrid broadcast application launched on the TV
automatically after the user switches to the corresponding channel.

4.2 Multiscreen Model Tree

69

4.2.8 Rendering

In the previous sections, we considered an atomic application component as a
triple (S, V, R) that consists of a state S, a view V and a runtime function R. We
considered implicitly that the view V' is rendered on the same device to which the
parent composite application component is assigned. Rendering is the function for
creating the image output I of the application interface at a specific time. There
are new emerging technologies that allow to render the application output on one
device or in the cloud and to send the image output and display it on a second
device. This is relevant on low-capability devices that are not capable of rendering
the application interface by themselves. During the modeling and design phase

MSA MSA
/\ /\
D, D, D, Dy

/\
CAC, CAC, CACy CAC, CAC,
AAC, AAC, AACY AAC, AAC,

S Vi R L S Vo Ry IS Vi R L Sy Voo Ry D
(a) Local Rendering (b) Remote Rendering

Figure 4.10.: Local and Remote Rendering

of a multiscreen application, it is not important to know where the application
runs and where it is displayed, but this is relevant when it comes to identifying the
right architecture based on given non-functional requirements. Therefore, we will
extend the Multiscreen Model Tree to distinguish between the different rendering
options. A new optional element I which represents the rendering function at a
given time will be added to an atomic application component AAC = (S,V, R, I).
This means that the same AAC can be part of two different composite application
components. For example, Figure 4.10a shows a multiscreen application where
each device renders the Ul of CAC, and C'AC, locally while Figure 4.10b shows a
multiscreen application where device D, renders the Ul of CAC; and C' AC, locally,
but only the image output of C'AC} is displayed on device Ds.

70 Chapter 4 Multiscreen Application Model and Concepts

4.3 Multiscreen Application Concepts and
Approaches

In previous section, we discussed and introduced a new method for modeling a
multiscreen application using a tree-based structure. This model allows us to capture
the state of a multiscreen application at every stage of its lifecycle, regardless of the
underlying platform and development paradigm that are presented in this and next
sections.

4.3.1 Message-Driven Approach

As the name of this approach suggests, the main idea is to enable collaboration and
interaction between atomic application components running on the same or different
devices by exchanging messages between the components. In order to establish a
communication channel between two atomic application components AAC; (the
sender) and AAC, (the receiver), AAC; must know the receiver component AAC,
with all related information like the end-point to open the communication chan-
nel. In this section, we will discuss the concepts and approaches apart from the
technical details. There are three options for how the sender can get the required
information:

1. After launch: If the atomic component AAC; was the component that trig-
gered the launch of AAC5, then it should receive all information needed to
establish a communication channel to the newly launched component. For
example, in the multiscreen gaming use case described in Section 3.1.2, the
application running on the device of the first player launches the table com-
ponent on the TV and can immediately establish a communication channel to
it.

2. After discovery: if the atomic component AAC; wants to connect to an
already launched atomic component instance from a specific type, then it
should trigger a discovery request using the component type as a filter. If
multiple devices are available, the user will be requested to select one of them.
For example, in the same multiscreen gaming use case, the application running
on the device of the second player discovers the application running on the TV
and gets the necessary information about the table component to establish the
communication channel to it.

3. After invitation: If the atomic component AAC was launched after receiving
an invitation from a component already in the multiscreen application, then
AAC, can use the information sent in the invitation to connect to the desired
receiver component AAC5. For example, also in the same multiscreen gaming

4.3 Multiscreen Application Concepts and Approaches

71

72

use case, the components running on first or second player devices that are al-
ready in the game can send an invitation (using an out-of-band communication
channel) to a third player to join the same game. The third player launches
the player component which uses the information from the invitation to join
the same game.

MSAjame
Dplayerl DplayerQ Dtv DplayerB
CACp .-~ TACis---._ CAG CAC)ys

Vo Rpi Sp2 Ve Rp Si Vi Ry PV RL Sp Vs

Figure 4.11.: Multiscreen Model Tree of a Multiplayer Game following the Message-Driven

Approach

Designing a multiscreen application using the message-driven approach should be
aligned to the following rules:

. Identify atomic application component classes. In the multiscreen model tree

example depicted in Figure 4.11 and the diagram depicted in Figure 4.12, we
can identify the two atomic component classes AAC), and AAC for player and
table components.

Identify the number of instances that can be created for each atomic component.
In the game example, a new AAC),, player instance will be created for each
user. Furthermore, at least one AAC, table instance should be created, and all
table instances should stay in sync.

. Identify the atomic component instances that could play a master role. The

master is capable of coordinating the interworking between the components. In
the gaming example, the first created AAC, table instance is a good candidate
to play the master role.

Identify the sender and receiver components. In most situations, the master
component can be the receiver and the other components the senders. In the
gaming example, the AAC; component takes the receiver role, and all other
components are senders.

Identify the data that should be kept in the state of each atomic component.
Some data can be stored redundantly across multiple components. In the
gaming example, the game state can be stored on AAC; while the AAC), stores
the state of each player component.

Chapter 4 Multiscreen Application Model and Concepts

6. Identify the messages and commands that can be exchanged between the
atomic components. In the gaming example, the component of the player who
is currently playing sends a message to the table component containing the
performed action with other related information such as the cards played. The
table component sends a notification message to all other components in order
to update their internal states and to select the next player.

o CAC, CAC,p; 39 Player
AAC, [=--=7-- AAC, = AAC;
: B oS SS
AAC,; AAC,;
wpayer CACpy CAC,; 2% player

Figure 4.12.: Message-Driven Approach

In summary, in the message-driven approach, the multiscreen application is responsi-
ble for keeping the states of all atomic application components in sync by exchanging
messages through the established communication channels. This also means that the
multiscreen application is responsible for keeping the states of mirrored instances
of an atomic component in sync with the origin atomic component. Furthermore,
migration of atomic application components between devices will be handled en-
tirely on the application level. If an atomic component gets migrated from one
device to another, then each atomic component which was already connected to the
component before the migration should reconnect to the new atomic component

instance after migration.

4.3.2 Event-Driven Approach

The event-driven approach for developing multiscreen applications addresses the
challenges of the message-driven approach especially for establishing and maintain-
ing communication channels between atomic component pairs on the application
level. It can become more complicated if the atomic components often migrate
between devices and the affected components need to reconnect to the migrated
components. The main idea of the event-driven approach is to follow another con-
cept that does not require a logical communication channel between two atomic
components. In contrast to the message-driven approach, the event-driven approach

4.3 Multiscreen Application Concepts and Approaches

73

allows any atomic component to access an "event broker" entity which offers two
main functions: one for subscribing to events of specific types and another one for
publishing events of specific types. An event is defined as £ = (T, D, P) where T is
the type of the event, D is the data or content of the event, and P is the publisher of
the event which is the identifier of the atomic component instance that published
the event. Designing a multiscreen application using the event-driven approach is

TV CACt CACtp3 3 Player
AAC s AAC AAC
' (5\?33’5@ //{ t] [”]
Pty QT ==

\ -

Event V-
-

. Broker
ERN /v'
B LS
or i R
z S<
AAC,, AAC,,
1% Player CACpl CACpZ 2" Player

(a) Centralized Event Broker

3" Player
CACyy3

CAC,
1

@ subscribe L 11 notify 3 !
1 1

| Event Broker Proxy ——— Event Broker Proxy |

TV

| Event Broker Proxy —— Event Broker Proxy |
@ publish |

1%t Player CACpl CACpZ 2" Player

(b) Decentralized Event Broker

Figure 4.13.: Event-Driven Approach

similar to the message-driven approach defined in Section 4.3.1 except the following
differences:

* An atomic component can interact with other atomic components running
on the same or different devices without knowing the end-points of these
components or the need to handle the reconnection in case a component
migrates from one device to another. Instead, an atomic component only needs
to subscribe to event types of interest or publish events using the event broker.

74 Chapter 4 Multiscreen Application Model and Concepts

* The developer needs to identify all relevant event types, the structure and
format of the data published with each event instead of identifying the mes-
sages that can be exchanged between two atomic components when using the
message-driven approach.

As depicted in Figure 4.13, we can see that there are two different architectures
for realizing the event driven approach and both offer the same publish/subscribe
operations for the atomic application components. This means that the selected
architecture will not affect the conceptual design and development of the multiscreen
application, but will only have an impact on the underlying implementation of the
event broker and related publish/subscribe operations. The two architectures are:

* Centralized Event Broker: The centralized event broker architecture is de-
picted in Figure 4.13a. There is one central entity that plays the role of the
event broker and this entity is well known to the underlying runtime on each
device. The event broker may run on a central server in the cloud, on a
dedicated server in the local network or on a dedicated master device of the
multiscreen application.

* Decentralized Event Broker: The decentralized event broker architecture is
depicted in Figure 4.13b. There is no central event broker, but instead, each
device involved in the multiscreen application runs an event broker proxy. All
event broker proxies are connected with each other and build a virtual event
broker. An event broker proxy offers the same publish/subscribe operations as
the event broker in the centralized architecture.

The event-driven approach makes the conceptual design and development of mul-
tiscreen applications simpler compared to the message-driven approach since it
hides the complexity of using dedicated communication channels between any two
atomic application components. On the other hand, the underlying implementation
of the event-driven approach on the platform level is more complicated than the
message-driven approach especially if the decentralized approach is selected. These
challenges will be discussed in more details in the implementation section.

4.3.3 Data-Driven Approach

The data-driven approach addresses the synchronization challenges which are not
solved in the message-driven and event-driven approaches. The synchronization of
the application state across multiple atomic components can be implemented on top
of the messaging channels in case of message-driven approach or on top of events
in case of event-driven approach. The data-driven approach addresses this aspect
and integrates the synchronization functionality on the platform level instead of

4.3 Multiscreen Application Concepts and Approaches

75

76

letting application developers deal with it on the application level. The basic idea
of this approach is to let the runtime function R of an atomic component operate
only on the state object S of the same component without the need to interact with
other components via dedicated events or messages. The underlying platform will
synchronize the state object or part of it of one atomic component with the state
objects of other atomic components in the same multiscreen application. Other than
in the event-driven or message-driven approaches where the state S of an atomic
component is entirely under control of the runtime function R, in the data-driven
approach the atomic component should expect that the underlying platform can also
manipulate the state S. Designing a multiscreen application using the data-driven
approach has the same rules as the event-driven approach defined in Section 4.3.2
(which also includes the rules of the message-driven approach defined in Section
4.3.1) except for the following:

* There is no need for atomic components to interact via messages or events
with each other. The atomic component only needs to operate on its state .S
which will be synchronized automatically with the corresponding elements of
the shared object.

* The developer needs to identify the data structure of the shared object and
which atomic component can read or write which elements of the shared
object.

The data-driven approach introduces a new operation that allows the runtime
function R of an atomic component to observe changes in the state object S or any
of its properties. All state objects or sub-objects that are subject to synchronization
comprise the so-called shared object that holds the state of the whole multiscreen
application. As in the event-driven approach, there are also two architectures for the
data-driven approach as depicted in Figure 4.14:

* Centralized Shared Object: The centralized shared object architecture is
depicted in Figure 4.14a. There is a central entity that holds the shared object
and keeps local state objects in sync with it. Each manipulation on a local state
object will be first applied on the centralized shared object before the changes
are applied on the local state objects, and registered observers are notified.
Similar to the event broker, the centralized shared object may run on a central
server in the cloud, on a dedicated server in the local network or on a master
device involved in the multiscreen application.

* Decentralized Shared Object: The decentralized shared object architecture
is depicted in Figure 4.14b. There is no centralized shared object, but instead,
each device involved in the multiscreen application runs a shared object proxy.
The shared object proxies are connected with each other, and any change to a

Chapter 4 Multiscreen Application Model and Concepts

TV

1%t Player 2" Player

(a) Centralized Shared Object
CAC 3 Player
tp3

TV

1
| Shared Object Proxy ——— Shared Object Proxy |

| Shared Object Proxy —— Shared Object Proxy |
1

CAsz 2" Player

1%t Player
(b) Decentralized Shared Object

Figure 4.14.: Data-Driven Approach

local state object will propagate in the network until all affected state objects
are updated, and all observers are notified.

In both approaches, conflicting changes and state inconsistencies may occur since
the object can be manipulated from various clients simultaneously. There are already
well-known synchronization algorithms that address these issues:

* Lockstep Synchronization: The lockstep synchronization [126] follows a pes-
simistic approach for synchronizing the state of a shared object in centralized
or decentralized systems. The state of the shared object advances step-wise.
This means that each client needs to issue in each step an event to the entity
managing the shared object and not proceed until an acknowledgement event
is received from all other clients. The acknowledgement event includes also the
changes made to the object in last step so that each client or peer can update its
local copy of the object. Concurrent changes in the same step are resolved or

4.3 Multiscreen Application Concepts and Approaches

77

78

rejected by the managing entity and can be applied in a sequence or in parallel
using transactional memory approaches [127] [128]. A disadvantage of the
lockstep synchronization mechanism is that it depends on the performance of
the client with the highest network latency or lowest processing capability.
Bucket Synchronization: The bucket synchronization algorithm [129] is
an improvement of lock synchronization by allowing clients to not wait for
acknowledgement events before they can proceed. The timeline is divided into
time buckets of fixed length based on the client or peer with the highest latency.
The timelines on all clients are synchronized with a global clock using the
Network Time Protocol (NTP) [130]. The bucket synchronization algorithm
follows an approach for delaying events for a time that is long enough to avoid
incorrect ordering before execution. Inconsistencies can still occur if events
are lost or arrive late.

Time Warp Synchronization: Time warp synchronization [131] follows an
optimistic approach by allowing peers to execute events on their local copies
of the object while taking a snapshot of the state before each execution. If an
earlier event is received, a rollback to the last snapshot before the time of this
event will be performed and the events occurred after the snapshot time will
be re-executed. Anti-messages are sent during rollback to cancel events which
become obsolete. A drawback of this algorithm is the high memory usage to
keep snapshots of the state and received events. Also the cancellation of events
during the rollback can trigger a rollback on other peers and lead to a high
number of anti-messages transmitted over the network.

Trailing State Synchronization: Trailing state synchronization [132] im-
proves the time warp synchronization in terms of memory and processing
usage by reducing the number of snapshots taken of the state. Instead of
keeping a snapshot after executing each command, the trailing state approach
keeps snapshots at different simulation times. These snapshots are called
trailing states and are intentionally delayed (with different delay times). All
received events are immediately applied to the main state of the application
and scheduled to be applied on the trailing states with fixed delays. If an event
arrives that causally precedes events waiting for application to a trailing state,
then the new event and all waiting events will be immediately applied to the
trailing state and it becomes the main state.

In summary, the data-driven approach addresses the synchronization challenges and
moves the complexity from the application level to the platform level. This will also
make the migration of atomic components between devices more straightforward
than in the message-driven or event-driven approaches since the local state of an
atomic component will not get lost during migration and can be restored from the
shared object on the target device. On the other side, the data-driven approach has
its drawbacks depending on the selected synchronization algorithm. This selection

Chapter 4 Multiscreen Application Model and Concepts

depends on multiple factors like latency, bandwidth, memory usage and performance.

For example, the lockstep and bucket synchronization algorithms can be selected
in multiscreen application scenarios where all devices are connected to the same
network and the latency is expected to be very low or the application scenario can
tolerate higher latency. For multiscreen applications like real-time multiplayer games
where the state is target to be changed in high frequency, optimistic approaches like
trailing state synchronization are the better choice. The application must in this
case tolerate inconsistencies in the state. Therefore, the underlying implementation
of the data-driven approach should support multiple synchronization algorithms
and allow developers to select the synchronization algorithm that best suits their
needs.

4.4 Multiscreen Platform Architecture

This section defines the architecture of the multiscreen platform by considering the
application model and concepts discussed in the previous sections. The architecture
of the platform which runs on any device participating in a multiscreen application is
shown in Figure 4.15 and consists of the three layers Multiscreen Application Runtime,
Multiscreen Application Framework and Multiscreen Network Protocols. These layers
will be discussed in detail in the following subsections.

Multiscreen Apps

Multiscreen Application Runtime

Rendering}[Scripting W(Memory
A e

J J

Multiscreen APIs

!

Multiscreen Application Framework

e N [N N
Synchro-
Messagin Eventin o .
sing & nization
_ J AN y,
e N [N N

! ! !
() () () (o)

Multiscreen Network Protocols
[SSDP] [mDNS][DIAL][WS][HTTP]

i Discovery Launch Ul Capturing
@ @ @ i Pairing Signaling Ul Rendering
: _ VAN J\ J

[RTC] [ch] [Airplay] [Miracast]

Figure 4.15.: Multiscreen Platform Architecture

4.4 Multiscreen Platform Architecture

79

80

4.4.1 Multiscreen Application Runtime

The Multiscreen Application Runtime, or in short the App Runtime, is responsible
for executing a CAC and its children AACs on a specific device. Each device involved
in a multiscreen application should implement all three layers of the Multiscreen
Platform Architecture including the App Runtime.

The App Runtime consists of the four modules Rendering, Scripting, Memory and
the Multiscreen APIs. The Scripting engine executes the runtime function R of an
AAC and holds its state S in a dedicated memory. Furthermore, the App Runtime
consists of a Rendering Engine which is responsible for displaying the view V on
the device where the atomic component AAC is running. The rendering engine
visualizes periodically in a fixed time interval the image output / of the view V' on
the graphics output interface.

In order to access the multiscreen functions offered by the underlying framework,
the App Runtime offers a set of high-level APIs that allow the Runtime function R of
an AAC to make use of these functions without the need to deal with the complexity
of the underlying system interfaces and protocols. The architecture introduced in this
section abstracts from specific technologies used for implementing the applications,
the OS running on the target device and the underlying network protocols. In the
implementation section, we will discuss the realization of this architecture with a
focus on web technologies. In this case, the App Runtime will be just a Web browser
extended to the Multiscreen APIs. The AAC's are realized as Web applications by
using HTM L and C'SS for implementing the view V, JavaScript for implementing
the runtime function R and JSON as the format for recording the state S.

There are different mechanisms for executing and rendering multiscreen application
components based on the location where the runtime function R of each component
is running and where the corresponding view V' is rendered and displayed. The
most three important mechanisms Multiple Execution Contexts, Single Execution
Context, and Cloud Execution, will be discussed in the following by considering a
multiscreen application M S A with two composite components C AC; (containing
one atomic component AAC:) and C AC, (containing one atomic component AAC5)
and assigned to devices D; and Ds.

Multiple Execution Contexts Figure 4.16 shows the App Runtime of the multiscreen
application M SA on devices D; and D,. We can see that each device executes,
renders and displays its composite application component and the child atomic
application components in its own App Runtime within a separate execution context.
Both atomic components AAC, and AACs can interact with each other using one of
the approaches introduced in the previous section via the Multiscreen API, which
offers interfaces to the underlying framework layer. Google Cast [9] and DIAL [39]
are two state-of-the-art technologies for this mechanism.

Chapter 4 Multiscreen Application Model and Concepts

,,

Figure 4.16.: Multiscreen Application Runtime - Multiple Execution Contexts

Single Execution Context Figure 4.17 shows the App Runtime of the multiscreen
application MSA on devices D; and Dy;. As we can see, device D; executes,

__

Multiscreen Apps

Multiscreen Application Runtime (D,)

Rendering

Figure 4.17.: Multiscreen Application Runtime - Single Execution Context

renders, and displays the composite application component C AC, and its child
atomic application component AAC, but only executes and renders the composite

application component C'AC> and its child atomic application component AACj.

The rendering happens without displaying the UI output on device D; which is
also called "silent rendering". The rendered image I, of C' AC, will be captured on
device D; and sent to device Ds for display. Since the execution of both components

happens on a single device, this mechanism is called Single Execution Context.
Miracast [8] and Airplay [6] are two state-of-the-art technologies for this approach.

Most of these technologies support connecting only to one device at a time.

4.4 Multiscreen Platform Architecture

81

82

Cloud Execution Figure 4.18 shows the App Runtime of the multiscreen application
M S A on devices D; and D5 as in previous examples. In addition to the previous

Multiscreen Application Runtime (C)
Rendering Scyrjptjpg? _(Memory

Figure 4.18.: Multiscreen Application Runtime - Cloud Execution

two mechanisms, this method involves a new entity C' which runs applications in
the cloud in headless mode. In this example, C' executes the composite application
components CAC, and C AC, and their child atomic application component AAC,
and AACs. It also renders the view V5 of AAC, and sends the rendered Ul I to
device D, for display while device D, renders the view V; and displays the output
I;. Cloud Browser [133] and Cloud Gaming platforms like Google Stadia [134] are
two technologies that implement this mechanism.

Table 4.1 compares the three App Runtime mechanisms according to various aspects.
This is a high-level comparison, and all measurable metrics will be considered in the
evaluation section. The color in the table represents the best result, Red the
worst value and Blue in the middle between both. An explanation for each result in
the table is given below:

Chapter 4 Multiscreen Application Model and Concepts

Multiple Execu- Single Execu- Cloud Execu-
tion Contexts tion Context tion
D, Dy D, Dy D, Dy
Processing Medium High Medium
Software Maintenance High High
Disconnection Allowed No
Multiple Connections No
Scalability Medium | Low
Battery Lifetime Medium Low Medium Medium
Motion-To-Photon Latency Medium High
Offline Capability No

Table 4.1.: Comparison of the Three Runtime Mechanisms

Processing: In the first approach, each application component is executed
and displayed on the same device. In the second approach, the first device
needs to execute two application components which require high processing
capabilities while the second device displays only a video without the need for
additional processing resources. In the third approach, the first device needs
to render and display the view while the second device needs only to display a
video similar to the second mechanism. The video codec used to encode and
decode the videos of the captured views plays an important role, especially in
the third approach in case the available bandwidth to stream the video from
the cloud to the user’s device is limited.

Software Maintenance: In general, devices that only need to play videos like
D- in the second and third approaches do not require a software update and
maintenance as for devices that need to execute and render the application
locally like devices Dy and Ds in the first approach.

Disconnection Allowed: This means that device D; can disconnect from Dy
without stopping the application running on it. This is possible in the first and
third approaches but not in the second one, since the application is executed
on device D; and the connection is required to send the image output to device
Ds.

Multiple Connections: This means that device D; can connect to a new device
Dj3 at the same time while it is connected to device Ds. This is possible without
any limitation in the first and third approaches. In practice, all implementations
of the second approach like Miracast and Airplay allow only one connection to
the receiver device due to the limited processing capability of device D;.
Scalability: The first and second approaches are scalable since there are no
backend resources required for application execution and rendering during
runtime. Only resources for the hosting and delivery of the application are
needed.

4.4 Multiscreen Platform Architecture

83

84

* Battery Life: The battery life is only relevant for devices that are not per-

manently connected to power like smartphones and tablets. It depends on
multiple factors like processing resources needed for executing the runtime
function R of each atomic component, for video encoding and decoding, ren-
dering, and display of content. In the first approach, the application needs to
execute, render and display content while in the third mechanism the video
received from the cloud instance needs to be decoded and displayed which re-
sults in similar battery life. In the second mechanism, the battery life on device
D, is low since it also needs to execute and render the UI of the application
component displayed on device Ds.

Motion-To-Photon Latency: In a multiscreen context, Motion-To-Photon la-
tency is the time needed until a user action performed on device D; is fully
reflected on the display of device D,. There are different limits for the Motion-
To-Photon Latency depending on the use case. For example, in action games,
it cannot exceed 20ms. The first approach has the lowest Motion-to-Photon
Latency compared to the other two, since the devices D; and Ds need to
exchange only messages with very low latency if both devices are in the same
network. In the second approach, device D; needs to encode the output of
V5 as video or image stream and send it to device D, where it is decoded and
displayed. These steps take more time compared to the step for exchanging
small messages. The third approach produces the highest latency compared to
the first two. The process is similar to the second approach with the exception
that the video data is sent over the Internet to device Dy. This means that
the connection latency and bandwidth need to be considered in the Motion-
To-Photon Latency. Since the bandwidth is limited, video codecs with better
compression ratio need to be applied which can also have an impact on the
latency. In this case, a balance between latency and video quality needs to
be achieved. Figure 4.19 shows the Motion-To-Photon latency of the cloud

MSA
D, c D,
CAC, CAC, CAC, CAC,

| | T

1AA01 —)ZAACl _)?)AACQ —)SAACQ
L Vi 51 Ri Ry S Vs 127f)

Figure 4.19.: Motion-To-Photon Latency for Cloud Execution Mechanism

execution approach in detail, starting from the user input on device D; until

Chapter 4 Multiscreen Application Model and Concepts

the interaction is reflected on device D,. The blue arrows (Steps 1..3) show
the flow of control messages while the red arrows (Steps 4..7) show the flow
of video or image data to display on D,. In Step 1, user inputs are captured
in AAC] on D;. In Step 2, the captured inputs are sent over the Internet to
AAC: running in the cloud instance C. In Step 3, the runtime function R;
processes the received inputs and interacts with AAC5 running on the same
cloud instance C'. In Step 4, the runtime function R, of AAC reacts to the
data received from AAC,, updates its view V5 and captures the UI of AACs.
The capturing also includes the encoding of the Ul output as video or image
stream which will be sent over the Internet to AAC5 on device D5 in Step 5. In
Step 6, the received video or image stream will be decoded and then displayed
in Step 7 on device D,. Therefore, it is recommended to use this mechanism
if there are good reasons for this like the use case described in Section 3.1.6
which will be considered in greater detail in Section 5.

» Offline Capability: The first and second approaches can be used in offline
mode without connecting to the Internet in case all applications and required
resources are already installed on the corresponding devices. The third ap-
proach requires a connection to the cloud instance, and the offline mode
cannot be applied.

In section 6, we will provide a detailed evaluation of the different multiscreen
execution approaches under real conditions using the metrics listed above to proof
the intermediate evaluation we provided in this section.

4.4.2 Multiscreen Application Framework

The Multiscreen Application Framework (in short Framework) is the second layer
of the Multiscreen Application Platform. It consists of different building blocks
each of them implementing one of the identified multiscreen features (see Figure
4.15). Not all of the building blocks are mandatory, for example, the framework
can provide only one of the Messaging, Eventing and Synchronization components
that implement the three approaches message-driven, event-driven and state-driven
described in Section 4.3 accordingly if only one of these approaches is desired.
Also, the component UI Capturing & UI Rendering is only needed if either the Single
Execution Context or Cloud Execution approach described in Section 4.4.1 is selected.
Figure 4.20 shows a detailed architecture of the framework layer by considering the
three device roles Sender, Receiver, and Broker. Senders are devices like smartphones
that discover and launch applications on receivers like TVs. Brokers act as connectors
between senders and receivers if direct communication between them is not feasible.
In a multiscreen application, at least one device implementing the framework sender
components and another device implementing the framework receiver components

4.4 Multiscreen Platform Architecture

85

86

Framework (Sender) Framework (Broker) E Framework (Receiver)

! Device/Session
] Registry

Discovery Client Service Advertiser

Launcher Client Launcher Service

App Ul Renderer

Messaging Peer Messaging Peer

Eventing Peer Eventing Peer

Synchronization

/—|—n—|—< E Broker
1 I | Smmmmmmmmmmmmoo-o--oc
) 1

Synchronization Peer Synchronization Peer

(
]
]
]
]
]
]
]
]
]
]
]
]
:
| App Ul Capturer
|
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

N e e e e e e e e — — — ———

__

Figure 4.20.: Multiscreen Application Framework

are required. A device can also implement the framework sender and receiver
components at the same time. The Framework broker is optional and can run on a
dedicated server in the local network, in the cloud or together with the receiver on
the same device. The framework components are described below:

* Discovery/Advertisement: The Discovery Client and Service Advertiser are the
two counterpart components running on the sender and receiver devices. The
Service Advertiser is responsible for making the receiver available for senders
that run Discovery Clients to find receiver devices of interest. If direct discovery
is not possible, for example, in case the sender and receiver devices are not in
the same network, then a broker entity that may run in the cloud can be used
as a central registry for receiver devices that can be easily browsed by senders
using certain search criteria.

* Launch: The Launcher Client and the Launcher Service are the two counterpart
components running on the sender and receiver devices and allow an appli-
cation running on the sender to launch another application on the receiver.
In some situations, it is not possible to launch an application on the receiver
device directly. In this case, a Launch Broker is required. This is the case, for
example, on most popular mobile platforms like Android and iOS which do
not allow an application to launch another one without asking the user.

* App UI Capturing and Rendering: The App UI Capturer and App UI Renderer
are the two counterpart components running on the sender and receiver
devices and responsible for recording the UI of an application running on the
sender device or for rendering the recorded content on the receiver device. In
case the sender and receiver devices support different video codecs, then the

Chapter 4 Multiscreen Application Model and Concepts

Media Transcoder component that runs on the broker will be needed to convert
between the source and target video codecs.

* Messaging: The Messaging Peer components which are provided on the sender
and receiver devices are responsible for exchanging data between senders and
receivers by implementing the Message-Driven Approach approach introduced
in the previous section. If a direct communication between the sender and the
receiver is not possible, then the Message Broker component can be used to
forward messages forth and back between the sender and the receiver.

* Eventing: Similar to the Messaging component, the Eventing Peer components
that are provided on the sender and receiver devices implement the Event-
Driven Approach introduced in the previous section. Each sender or receiver
peer can subscribe or publish events to the Event Broker that runs either in the
cloud or on the receiver device.

* Synchronization: The Synchronization Peer components on the sender and
receiver implement the Data-Driven Approach and keep the states of the ap-
plication components running on the sender and the receiver devices in sync.
It applies the concept of shared object for synchronization which can be im-
plemented in a decentralized manner by distributing its functionality on each
synchronization peer or in a centralized manner by implementing the shared
object on the Synchronization Broker.

4.4.3 Multiscreen Network Protocols

Multiscreen Network Protocols is the third layer of the Multiscreen Application Platform
which addresses all standards and technologies that are relevant for supporting
the components of the framework layer. There is no single protocol supports all
multiscreen features at the same time, but instead, a selection of protocols addressing
specific functions of the multiscreen platform like discovery, pairing, launch, and
communication can be used jointly to build more complex multiscreen functions.
The Open Screen Protocol [16] which is still work-in-progress at the time of writing
this thesis is an open standard developed by the W3C Second Screen Community
Group [12]. It deals with the specification of network protocols that can be used to
implement the Presentation API [13] and Remote Playback API [14] which are two
APIs developed by the W3C Second Screen Working Group. The author of this thesis
is a founding member of the group and active in the development of the protocol
and related APIs. It is not the intention of the group to develop the Open Screen
Protocol from scratch, but to evaluate and use existing protocols according to specific
multiscreen aspects. Some of these protocols are listed below:

* Discovery: SSDP [36] and mDNS/DNS [40] are the two most relevant tech-
nologies for discovery in local networks while BLE Discovery [44] is one of the

4.4 Multiscreen Platform Architecture

87

88

most relevant discovery technologies to find devices in the range of another
device. There are also other proprietary protocols which are not within the
scope of this thesis. In the implementation section, we will show how BLE
Beacon technology can be used to find nearby devices and launch applications
on them.

* Pairing: If a device is not able to discover other devices automatically using
one of the discovery protocols, then pairing techniques can help to connect
the devices manually with the help of the user. QR codes and NFC are two
relevant technologies that can be used for this propose.

* Launch: DIAL [39] is one of the most relevant protocols for launching appli-
cations on remote devices, especially on TVs. There are also other protocols
that can be used to launch and control specific services on remote devices like
UPnP and Airplay that allow applications to launch and control media render-
ing (Video, Audio or Image renderer) on TVs instead of launching arbitrary
applications.

e Communication: HTTP [49], WS [43] and WebRTC [54] are the most relevant
protocols that can be applied for the communication between application
components running on devices involved in a multiscreen application.

* App UI Sharing: Airplay [6] and Miracast [8] are the most popular protocols
for capturing and sharing the entire screen or the Ul of a specific application
in local networks.

4.5 Multiscreen on the Web

In the previous section, we presented a multiscreen application model and discussed
various approaches for developing multiscreen applications, followed by an architec-
ture of a multiscreen platform. In this section, we will focus on the applicability of
Web technologies like HTML, CSS, JSON, and JavaScript for developing multiscreen
applications following the application model we introduced in the previous section.
Web technologies have proven to be a cost-effective way to create apps that run
on multiple platforms, which is essential for developing multiscreen applications
where application components are distributed across multiple devices and platforms.
Furthermore, Web technologies are supported on nearly any platform, and some
of them like HbbTV, Tizen, WebOS, and Google Cast support only Web technolo-
gies for developing applications. Before we introduce the new approach of using
Web technologies for developing multiscreen applications, let us have a look at
the traditional model for building single-screen Web applications: Traditional Web
browsers and Web runtimes are designed to render Web documents hosted on a
Web server or are available offline and display the rendered UI to the user on the
device’s display. Web documents are composed of three main parts: HTML, CSS,

Chapter 4 Multiscreen Application Model and Concepts

and JavaScript. HTML contains the markup of the content to display, CSS defines

how the HTML elements should look like, and JavaScript implements the logic of

the application, e.g., listening to user inputs, manipulating the DOM or accessing

underlying device APIs. Furthermore, a Web application can request data or perform

actions on a server using the XMLHTTPRequest API (XHR) or open a bidirectional

communication channel to the server using the WebSocket API. JSON [135] is used

as a web-friendly format for exchanging data between the Web client and the server

since it can be easily processed in Web applications without changing its structure.

Listing 4.1 shows a simple Web application with the following characteristics:

1 <!DOCTYPE html>
2<html>

3

24

<head>

<meta name= content= />
<title>Simple Web App</title>
<style type= >
#info {
background-color: blue;
}
</style>
<script src= ></script>
<script type= >
var ws = new WebSocket () ;
ws.onmessage = function(msg){
$() .text (msg);
g
addEventListener (, function(e){
ws.send (JSON.stringify ({alpha: e.alpha, beta: e.betal}));
1) 8

</script>

</head>
<body>

<div id= > </div>

</body>

25 </html>

26

Listing 4.1: Web Application Example

It uses the <meta> element (line 4) to define the author metadata. There are
also other standardized metadata that allow providers to add more semantic
to their applications.

It uses the <style> element (lines 6-10) which contains CSS to set the back-
ground color of the HTML element with id=info.

It uses the <script> element (line 11) to load a third party JavaScript library.
It uses the <script> element (lines 12-20) that implements the logic of the
application using JavaScript: The script opens a WebSocket connection to the

4.5 Multiscreen on the Web

89

server (line 13), listens to messages from the server (line 13), and updates
the text of the info element each time a message is received (line 15). It also
listens to deviceorientation events (line 17) and sends the orientation data as
JSON string to the server (line 18) which creates a user-friendly message and
send it back to the client using the same WebSocket connection (Line 13).

* It uses the <div> HTML element (Line 23) to define the view of the applica-
tion. HTML provides many other elements like , <video>, <audio>,
and <canvas> that support the development of complex multimedia Web
applications with little effort.

As we can see, the Web offers very good tools and building blocks, not only for devel-
oping traditional single-screen Web applications but also to develop multiscreen web
applications. There is a direct mapping between the three elements (.5, V, R) of an
atomic application component to Web technologies as shown in Figure 4.21. HTML
and CSS can be used to define the view V', JSON to hold the state S and JavaScript
to implement the runtime function R. Furthermore, a Multiscreen JavaScript API
can be provided to allow applications to access multiscreen features without the
need to deal with the complexity of the underlying protocols. The author of this
thesis published the basic idea of this approach in the paper Towards a Multi-Screen
Application Model for the Web [17]. Since its publication, the approach of the paper
has been improved as Web technologies have been developed further. The solution

Browser
v N (Runt N D
View: V Runtime Function: R State: S
<html> <script>
<body> // get state JSON object "keyl": {
<style> var state = getState(); "child1": “some value”,
#view{ color: #FFF; ...} ”child2": [1, 2, 3, ...],
</style> // get View DOM Element L
<div id="view" > var view = getView(); "key2": 1234,
<l-DOM --> "key3": “some value”,
</div> // use Multiscreen APIs "key4”: true,
</body> multiscreen.api(...) "key5”: false,

@html> . @script> Y, \} Y,
4 Multiscreen APIs)
- multiscreen.discover(...) - multiscreen.migrate(...)

- multiscreen.launch(...) - multiscreen.sync(...)
- multiscreen.connect(...) - multiscreen.stop(...)

Figure 4.21.: Mapping of the Multiscreen Model to Web Technologies

introduced in [17] allows developers to implement multiscreen web applications
in a single document similar to traditional web applications. Listing 4.2 shows a
simple multiscreen application document following this approach. The application

Chapter 4 Multiscreen Application Model and Concepts

can declare itself as multiscreen-capable using the custom <meta> element (Line
3). This tells the browser that the web page (also called master page) can receive
events when a device (display) is connected or disconnected (Lines 5 — 11). The
example shows that the application assigns the HTML element with "id=receiver" to
the connected device (Line 6) and hides it from the master document (Line 7). The
element will be visible again in the master document after the device is disconnected
(Line 10). The browser will keep the HTML element including its DOM sub-tree in
the master document and its mirror element assigned to the connected device in
sync. If the user clicks on the Say Hello button, the Hello text will be added to the
HTML element with id=receiver. If no device is connected, the text will be displayed
on the master page. Otherwise, it will be shown on the connected device. The logic
of the application remains unchanged, regardless of whether a device is connected
or not.
1 <html>
2 <head>

<meta name= content= />
4 <script type= >

addEventListener (, function(e){

6 e.device.assign() §
7 $() .hide () ;
8 b
9 addEventListener (, function(e){
10 $ () .show () ;
11 B 3
12 </script>
13 </head>
14 <body>

w

<button onclicks= >Say Hello</button>
16 <div id= ></div>

7 </body>

18 </html>

Listing 4.2: Multiscreen Web Application Example

The concept introduced in [17] was the first step towards a web-based model for
multiscreen applications. Using this model, the development process is nearly the
same as for single-screen Web applications. On the other hand, the introduced model
has some limitations and cannot be applied to arbitrary multiscreen scenarios. For
example, it is difficult to use device APIs and run JavaScript on the target device
which are essential features for media-related Web applications. Therefore, the
approach introduced in [17] will be extended to consider the multiscreen concepts
and approaches presented in Section 4.3 and the multiscreen model tree presented
in Section 4.2. The next section introduces a promising HTML technology called
Web Components that provides relevant building blocks for the development of
multiscreen web applications.

4.5 Multiscreen on the Web

91

4.5.1 Web Components Basics

According to the Multiscreen Model Tree concept, a multiscreen application M S A
consists of a set of Composite Application Components C' AC; each of which is
associated with a device D; and consists of a set of Atomic Application Components
AAC;;. As discussed before, Web technologies can be used to develop an AAC =
(S,V,R): JSON can hold the state S, HTML and CSS can be used to define and
describe the layout of view V' and the runtime function R can be implemented using
JavaScript. Since multiple AAC's can run in the same C AC on the same device, we
need a mechanism that separates the execution of each AAC to avoid conflicts with
other components running on the same device. For example, if an AAC uses CSS to
define the layout of all <div> elements in its DOM, the <div> elements of other
AACSs in the same C' AC will be affected as well. The reason for this is the limited
scripting capability in CSS. This also applies if an AAC needs to find elements in
its DOM tree using HTML query selectors. In this case, the DOM elements of other
AACSs that fulfill the selector will be also considered. The new HTMLS5 specification
Web Components addresses these issues and provides a set of promising APIs which
allow developers to extend the Web using modular, standards-based, and reusable
components that encapsulates the styling and custom behavior with scoping similar
programming languages. These are also essential features for developing modular
and reusable multiscreen application components. Web components consists of the
following four specifications shown in Listing 4.3:
1<!-- my-component.html -->
2<template id= >

<style>
4 h3 {color: blue;}
5 </style>
6 <div> <h3>This is a simple Web Component</h3> </div>
7</template>
§<script>
9 class MyComponent extends HTMLElement {
10 constructor () {/*...%/}
11 static get observedAttributes() {/*...*/}
12 attributeChangedCallback (attrName, oldValue, newValue) {/*...*/}

13 disconnectedCallback () {/*...x*/}
14 connectedCallback () {

15 var template = document.querySelector () .content;
16 var shadow = this.attachShadow ({mode:) ;

17 shadow.appendChild (document.importNode (template, true));

18}

19 }

20 customElements.define (, MyComponent) ;

21 </script>
22
23<!-- index.html -->

24<link rel= href= >

Chapter 4 Multiscreen Application Model and Concepts

25 <my-component></my-component>

Listing 4.3: Multiscreen Application Example

Custom Elements The Custom Elements specification [136] is still under develop-
ment as part of the W3C Web Platform Working Group [137] and has the status
"Working Draft" at the time of writing this thesis. It allows Web developers to define
their own fully-featured DOM elements. The example depicted in Listing 4.3 show-
cases all Web Components features including Custom Elements. The first step is the
definition of the custom element class MyComponent (Lines 9-19). This class must
always inherit from HT M LElement or any subclass of it. The constructor (Line
10) supports initializing the newly created instance. It is also possible to observe the
value of an attribute by overriding the attributeChangedCallback(...) method. Only
attributes returned by the method observedAttributes() can be observed. Further-
more, the methods connectedCallback() and disconnectedCallback() can be over-
ridden to get notified after the element is appended or removed from the DOM. In
addition to the definition of the element class, it must be registered using the function
customElements.de fine() (Line 20). After this, the new element <my-component>
can be used like any other HTML element (Line 25). It can be also instantiated and
added to the DOM using JavaScript: appendChild(new MyComponent()).

Shadow DOM Similar to other Web Components specifications, Shadow DOM [138]
is a living standard under development in the W3C Web Platform Working Group. It
provides a way to encapsulate the DOM and CSS in a Web Component. It separates
the DOM of a custom or literal HTML element from the DOM of the main document.
This avoids CSS styling conflicts especially on large pages or if the application uses
third-party Web components. The Web component example depicted in Listing
4.3 uses Shadow DOM: The method attachShadow() (Line 16) creates a Shadow
DOM and attaches it to the defined custom element. The same DOM manipulation
methods can also be used to manipulate the shadow DOM. For example, the method
appendChild() (Line 17) can be used to add elements to the shadow DOM.

HTML Templates HTML Templates [139] is also developed in the W3C Web Platform
Working Group and allows developers to write markup templates that are not
displayed on the rendered page. Templates are defined in the HTML <template>
element and can be reused multiple times in the application by cloning the content
of the template element and appending it to any HTML element. In Web components,
the DOM and CSS styling can be defined through HTML templates (Lines 2-7), and
each time a custom element is appended to the main document, the content of the
template will be cloned and appended to the shadow DOM (Lines 15 and 17).

4.5 Multiscreen on the Web

93

94

HTML Imports The implementation of a Web component that includes the definition
of Custom Elements using Shadow DOM and HTML Templates can be kept in a separate
HTML file and be reused in other HTML documents. HTML Imports provide a way to
do this using the new <link> type import. In Listing 4.3, the main page index.html
imports the Web component HTML file my-component.html (Line 24) in order to use
the new element <my-component>. As we can see in the main document, we can
import the Web component and use it by just two lines of code.

4.5.2 Web Components for Multiscreen

In this section, we will investigate the adoption of Web components for developing
multiscreen applications following the concepts and models we presented in this
chapter. The main motivation for applying Web components in the multiscreen
domain is that this technology has many features in common with Composite Ap-
plication Components and Atomic Application Components, e.g., the modular design,
reusability, easy instantiation and ability for migration between Web documents. In
other words, Composite Application Components and Atomic Application Components
can be considered as Web Components with extended multiscreen functionalities that
are not necessarily relevant for single-screen Web applications. Figure 4.22 shows
the UML class diagram which corresponds to the Multiscreen Model Tree using
Web Components. As we can see, CAC and AAC are two abstract Web component

HTMLElement

Lﬁ

MSA

devices.

Device

cacs

- devices
- syncGroups

- startDiscovery(opt)
- stopDiscovery()
- syncGroup(name)

- ondevicefound
- ondevicelost

syncGroup.

SyncGroup

- mediaElements

- addMedia(elem)
- removeMedia(elem)

S

- msa
- metadata
- capabilities
- cacs

- connect()

- disconnect()

- addCAC(name)

- removeCAC(name)
- getCAC(name)

- onaddcac
- onremovecac

<<web component>>

aacs

<<web component>>

- msa
- device
- aacs

- addAAC(name)
- removeAAC(name)
- getAAC(name)

- msa
- device
- cac

- state

- onaddaac
- onremoveaac

- publish(name, data)
- subscribe(name, cb)
- unsubscribe(name)
- object(name, json)
- postMessage(msg)

~

- onmessage

MyCAC

<<web component>>

7y

MyAAC

<<web component>>

Figure 4.22.: Web Components for Multiscreen (UML Class Diagram)

classes that inherit from HT M LFElement and implement common functions for
all composite and atomic application Web components. The classes MyC AC and
MyAAC are concrete implementations of composite and atomic application compo-
nents. Each concrete implementation of a composite application component must
inherit from the generic C AC Web component class, and each atomic application

Chapter 4 Multiscreen Application Model and Concepts

component must inherit from the generic AAC Web component class. The four main
classes depicted in the UML diagram are described below:

* MSA: All instances of the MSA class are representatives of the multiscreen appli-
cation on each device. The MSA class provides the methods start Discovery()
and stopDiscovery() to start and stop discovery of devices independent of the
used technology. The events device found and devicelost will be triggered each
time a new device is discovered, or an existing device disappears. The event
data contains the discovered or disappeared Dewvice instance. Furthermore,
each MSA instance holds a list of devices on which the multiscreen application
is currently running.

* Device: The Device class represents device instances which are discovered by
the application or are currently running application components. The list of
device instances will be kept in sync with the actual physical devices that
run the multiscreen application. A device provides metadata and information
about its capabilities which can be used for device filtering. The metadata
contains device name, manufacturer and other relevant information about
the device. A device also offers the methods connect() and disconnect() that
enable connecting a new device to the multiscreen application or disconnecting
an existing device. The list devices in the MSA class will be updated accordingly.
After connecting to a device, the methods addC AC/() and removeC AC() can
be used to add or remove composite components to or from the device. Fur-
thermore, any component can monitor if a composite application component is
added or removed from the launched application by subscribing to the events
onaddcac and onremovecac.

* CAC: The CAC class represents composite application component instances
and must always inherit from HT M LElement since a C AC' is always a Web
component. The CAC class itself is an abstract class, and each concrete im-
plementation must inherit from it such as the MyC AC class depicted in the
UML diagram. A C'AC instance holds references to the M S A and the Device
instances on which the component is running. Before a device can be used,
the application must connect to it via the connect() method. Similarly, the
disconnect() method allows an application to disconnect from a device with the
option to keep or terminate the application. Through the methods addAAC()
and removeAAC(), a new AAC can be added, or an existing AAC can be re-
moved which will trigger the events onaddaac or onremoveaac. Both methods
can only be used if the application is currently connected to the device.

* AAC: The AAC class represents atomic application component instances and
must always inherit from HT M LElement since an AAC is always a Web
component similar to CACs. An AAC instance holds also references to the
MSA and the Device instances on which the component is running and to
the parent C AC instance. Furthermore, the AAC class offers methods related

4.5 Multiscreen on the Web 95

96

to the supported multiscreen approaches presented in Section Multiscreen
Application Concepts and Approaches. In case the Message-Driven Approach
is supported, an AAC can receive messages sent by other AAC'’s by listening
to onmessage events which contain the event data (in event.data) and the
sender AAC (event.source). The counterpart method for the onmessage event
is post Message() which allows to send a message to a specific AAC. If the
Event-Driven Approach is supported, then any AAC can publish or subscribe
to events from specific types using the publish() and subscribe() methods.
Finally, if the Data-Driven Approach is supported, then the method object()
which creates or connects to a named shared object can be used. This method
returns an object with a structure and interfaces similar to JSON. Any changes
to the content of the shared object will be synchronized across all components
on all devices that hold a copy of the shared object with the same name. An
AAC can observe changes to any property of the shared object by using the
observe(path, listener) function which takes the JSON path as input of the
property under consideration and a listener function that will be triggered
each time the value of the corresponding property is updated. At least one of
the three approaches must be implemented in order to allow the application
components to interact with each other.

To illustrate the usage of Web Components for developing multiscreen applications
following the concept described above, let us consider a Multiscreen Slides application
such as Google Slides as an example. Figure 4.23 shows useful combinations of the
following four AACs on devices like laptop, TV, projector, and smartphone:

_ e
00:02:14 T_I - 00:02:14 §]
<& T Notes
] & Slides N
Not
SligeisN 4 N 21 Q
— Ii @IE
D L —

Figure 4.23.: Multiscreen Slides

1. Slide Preview AAC: provides a preview of the current slide and a thumbnail
view of all other slides.

2. Slide Control AAC: provides Ul elements for selecting the current slide like
buttons for switching to the previous, next or first slide. Other UI elements to
open or load the presentation slides may also be added to this component.

3. Slide Note AAC: shows the notes of the current slide if they exist.

4. Slide Show AAC: shows the current slide on the presentation display.

Chapter 4 Multiscreen Application Model and Concepts

In this example, the laptop and the smartphone act as a presenter and the TV as
display for the slides. Due to its small screen size, the smartphone shows only the
Slide Note AAC and Slide Control AAC while the laptop shows also the Slide Preview
AAC in addition to these two AACs. The composite application components that
cover the three combinations of AACs are listed below:

1. Slide Display CAC for TV or projector: is a container for the Slide Show AAC.

2. Slide Presenter CAC for laptop or PC: is a container for Slide Control AAC,
Slide Note AAC and Slide Show AAC.

3. Slide Presenter CAC for smartphone: is a container for Slide Control AAC and
Slide Note AAC. Furthermore, the control AAC adapts to the input capabilities
of the smartphone and allows the user to switch to the previous or next slide
by swiping on the touch screen to the left or to the right.

It is important to mention that multiple composite component instances can be
launched simultaneously on multiple devices. For example, the Slide Display CAC
can be launched on multiple presentation displays. Also, the Slide Presenter CAC can
be launched on multiple laptops or smartphones, if multiple users are collaborating
on a single presentation.

After identifying the atomic and composite application components of the multi-
screen slides application, it is important to select the best suitable of the multiscreen
approaches presented in Section 4.3. In case the Message-Driven Approach is se-
lected, each application component must ensure that every single update is reflected
on all other components by exchanging messages. The complexity of using this
approach increases with the growing number of connected devices since each com-
ponent must maintain a list of remote components on which the postMessage()
method is called in order to send the messages. The Event-Driven Approach reduces
the complexity of the Message-Driven Approach since the components do not need
to know about each other, but only a set of events need to be defined. The only
limitation of the Event-Driven Approach is that new devices that join the applica-
tion must ensure that the components are initialized properly by asking already
running components about their current states. This issue can be solved by using the
Data-Driven Approach where a shared object is initialized automatically if another
component already created the object. Therefore, this approach is selected for
developing the multiscreen slides application. The structure of the shared object is
kept simple in this example application. It consists of the two properties slides, an
array of JSON objects where each item in the array represents a slide, and currSlide
that indicates the number of the current slide (index in the slides array). Each JSON
object in the slides array consists of the two properties content and notes which
hold the content and notes of the corresponding slide. Listings 4.4 and 4.5 show the
Web components implementation of the two atomic components Slide Control AAC
and Slide Show AAC. The complete implementations of all Atomic and Composite

4.5 Multiscreen on the Web

97

Web Components of the Multiscreen Slides application are provided in Appendix
B.1.

1/* Slide Control AAC Web Component: aac-control.htmlx*/

2<template id= >

3 <style>

4 /* styles for the control AAC */

5 </style>

6 <div>

7 <button id= >0pen Slides</button>

8 <button id= >Previous Slide</button>

9 <button id= >Next Slide</button>

10 </div>

11</template>

12

13 <script>

class AACControl extends AAC {
connectedCallback () {
var template = document.querySelector () .content;
var shadow = this.attachShadow ({mode: 1D
shadow.appendChild (document.importNode (template, true));

var openBtn shadow.querySelector () 8
var prevBtn = shadow.querySelector ()
var nextBtn = shadow.querySelector () 8
this.msa.object (,

currSlide: O,
slides: []
}) .then(function(state){
openBtn.onclick = function(){
this.loadSlides () .then(function(slides){
state.slides = slides;
b
}
prevBtn.onclick = function(){
state.currSlide > 0 && state.currSlide--;
}
nextBtn.onclick = function(){
state.currSlide < slides.length-1 && state.currSlide++;
}
b
}
loadSlides (){
/* load slides from somewhere x*/
¥
}
customElements.define (, AACControl);

44 </script>

98

Listing 4.4: Multiscreen Slides using Data-Driven Approach: Slide Control AAC Web
Component

Chapter 4 Multiscreen Application Model and Concepts

As we can see in the Control AAC Web Component in Listing 4.4, it consists of a
template part where the UI and styles of the component are declared (Lines 2-11),
a JavaScript implementation of the AACControl component which inherits from
the AAC generic class (Lines 13-41) and a registration of the AACControl class
as a Web Component under the name aac—control (Line 42). This component can
be instantiated in any composite component either programmatically in JavaScript
using the AACControl() constructor or declaratively using the custom HTML tag
<aac-control>. The main part of the implementation is the connectedCallback()
function which will be triggered after the component is added to the DOM. After the
HTML elements from the template are added to the shadow DOM of the component,
the shared object state will be created and initialized if it does not exist yet. If a
shared object with the same name state was already created by another component
on the same or another device, then a copy will be created and kept in sync with any
other shared objects of the same name. For example, the Slide Show AAC component
in Listing 4.5 creates also a shared object with the same name (Lines 12-15). In order
to switch to the next slide, the click handler of the nextBtn only needs to increment
the value of state.currSlide in the shared object. Other components observing the
same property will be notified after each change to that property. For example, the
Slide Show AAC component in Listing 4.5 observes changes to any property of the
shared object state and updates the UI accordingly (Lines 16-19).

1 /* Slide Show AAC Web Component: aac-show.html */
2<template id= >
<p id= ></p>

4</template>

5<script>

6 class AACShow extends AAC {

7 connectedCallback () {

8

9 var slideEl = shadow.querySelector ()
10 this.msa.object (,{

11 currSlide: O,

12 slides: []

13 }) .then(function(state){
14 state.observe (,function(newVal, oldVal, path){
15 var slide = state.slides[state.currSlide];

16 slideEl.innerHTML = slide && slide.content? slide.content: 5
17 ¥

18 1
19}
20 }
21 customElements.define (, AACShow) ;

22</script>

Listing 4.5: Multiscreen Slides using the Data-Driven Approach: The Slide Show AAC Web
Component

4.5 Multiscreen on the Web

99

100

After the atomic application components are implemented (each in a separate HTML
document), the composite application components can now be developed also as
Web components by including the atomic components using HTML imports. Usually,
the composite components are containers for atomic components with additional
logic for layouting and positioning of these atomic components. Furthermore, a
composite component is the right place for implementing the distribution logic
of the application. In the multiscreen slides example, the Slide Presenter CAC is
usually the component that is launched manually by the user on his device. It
can discover presentation displays and launch the Slide Display CAC on one of the
discovered displays selected by the user. Listing 4.6 shows the implementation of
the CAC Presenter Component which imports three AAC components (Lines 2-4). In
this example, we use the declarative method for creating the AAC instances (Lines
11-13). It is also possible to use the scripting method, but it requires more line of
codes to create an AAC instance and append it to the DOM. Furthermore, the UI of
the Presenter CAC provides a button (Line 10) which can be used to discover devices
and to launch the Display CAC on one of them (Lines 22-42).

1 /* Slide Presenter CAC Web Component: cac-presenter.html */

2<link rel= href= >

3<link rel= href= >

4<link rel= href= >
s<template id="cac-presenter'>

6 <style>

7 /* styles for positioning and styling the AACs x/
g </style>

9 <div>

10 <button id= >Present</button>

11 <aac-preview></aac-preview>
12 <aac-notes></aac-notes>

13 <aac-control></aac-control>
14 </div>

5 </template>

17<script>
18 class CACPresenter extends CAC {
19 connectedCallback () {

21 var self = this;

22 presentBtn.onclick = function(){

23 self.discoverFirstDevice () .then(function(device){
24 device.launch() g

25 }) .catch(function(err){

26 /* no device found */

27 »;

28 }

20 }

30 discoverFirstDevice() {

31 var self = this;

Chapter 4 Multiscreen Application Model and Concepts

32 return new Promise(function(resolve, reject){

33 self.ondevicefound = function(evt){

34 self.stopDiscovery () ;

35 resolve (evt.device) ;

36 T

37 setTimeout (function (){

38 self.stopDiscovery () ;

39 reject (new Error (D)
40 },5000) ;

41 B

42 3

43}

44 customElements.define('cac-presenter', CACPresenter) ;

45 </script>

Listing 4.6: Multiscreen Slides using Data-Driven Approach: Slide Presenter CAC Web
Component

4.6 Implementation

In the previous section we introduced the application of the Web Components
technology for developing multiscreen applications following the concept of atomic
and composite application components. Now we focus on the implementation
of selected components of the Multiscreen Application Architecture presented in
Section 4.4.

4.6.1 Discovery and Launch

Discovery and Launch are two essential features in a multiscreen environment.
Discovery enables an application component to find relevant devices while launch
starts an application component on a discovered device. The methods of the M SA
and Device classes depicted in the UML diagram of Figure 4.22 are bound to the
discovery and launch functions of the underlying multiscreen application framework.
In this section, we will discuss and explain the implementation of discovery and
launch using state-of-the-art technologies and standards. We will focus on Web
technologies and consider the browser as application runtime.

To trigger the discovery, an atomic application component calls start Discovery()
which forwards the request to the discovery engine of the underlying multiscreen
framework. The discovery request should contain at least the launcherUrl pointing
to the composite application component to launch plus other optional filter parame-
ters like device type and required capabilities. The result of the discovery process is a
list of devices where each item in the list consists of the parameters friendlyName,
deviceld, and launcher Endpoint. Other device metadata like manufacturer and

4.6 Implementation

101

102

device capabilities can also be included in the device description. It is also important
to note that receiver devices should make their multiscreen services discoverable by
other devices, e.g. through service advertising in the local network or by registering
them in a service repository. In this thesis, we will focus on the implementation
of the following service discovery methods: 1) context-based lookup in a device
registry, 2) discovery of devices in the same network and 3) discovery of nearby
devices. Each of these methods will be explained in detail below.

Context-based lookup in a device registry The context-based lookup process in
a device registry is shown in the sequence diagram in Figure 4.24. The context

| Sender | | Discovery Client | I Registry I | Service Advertiser | | Receiver |

registerDevice(params)

register(device,, context)

startAdvertisement(params)

setAvail (device;)

startDiscovery(params)

req= createSearchReq(params)

send(req)

j res= lookup(req)

receive(res)

]devices = getAllDevicelnfo(res)

notify(“devicefound”, device,) i

notify(“devicefound”, device,)

Figure 4.24.: Context based lookup in a device registry

is defined as a set of properties or key-value pairs which are used to register the
device in a central registry. In most situations, it is bound to a user account which
supports the discovery of devices belonging to the user after login. The Registry
stores also device metadata and capabilities which are used to filter devices during
lookup. The context can be extended, for example, to facilitate the discovery of
devices for a group of persons. Platforms like Apple TV and Amazon Fire TV use
this concept by assigning devices to a user account. The device registration step
needs to be done only one time until the device is deregistered by removing its
entry from the registry. A registered device is not necessarily always accessible, as
it can be switched off at any time. Therefore, each time the receiver is switched
on, it advertises itself as "available" in the registry. The sender can start discovery
by sending a search request to the Registry which queries the database for devices
that fulfill the request and send them back to the sender. The sender triggers the
device found event for each device in the list. Newly available devices will also be
returned until the stopDiscovery() is called. After discovery is completed, in the
next step the sender can use the device.launcher Endpoint of the selected device to
launch the composite component.

The implementation of this discovery method is straightforward: The JSON format
can be used for message exchange between the Sender or Receiver and the Registry,
and WebSocket or HTI'T P can be used as transport protocols.

Chapter 4 Multiscreen Application Model and Concepts

Discover devices in the same network The context-based lookup has the disadvan-
tage that it requires a Registry as a central entity to manage the devices and the user
needs to perform additional steps, for example, log in on all devices. Furthermore,
each manufacturer uses its own registry, and it is difficult to standardize a neutral
central entity that works across providers. Network Service Discovery solves these
issues in case the sender and the receiver devices are connected to the same network.
The idea behind this method is depicted in the sequence diagram in Figure 4.25.
After the receiver device is turned on, it advertises its multiscreen services in the net-

| Sender | | Discovery Client | I Network I | Service Advertiser | | Receiver |

startAdvertisement(params)

startLi: ing(params)

startDiscovery(params)

req= createSearchReq(params)

send(req)

receive(re_q_)

|res= createSearchRes(device;)

send(res)

receive(res)

]device 1= getDevicelnfo(res)

notify(“devicefound”, device,)

r-----1

notify(“devicefound”, device,)

stopDiscovery(params)

Figure 4.25.: Discover devices in the same network

work by using UDP multicast which contains basic information about the device and
service endpoints such as the launcher Endpoint in our case. Furthermore, the re-
ceiver listens to search requests sent to the multicast address after startDiscovery()
is called on the sender. The sender receives responses from all devices in the network
that fulfill the request and triggers the devicefound event for each device found
until stopDiscovery() is called. SSDP and mDNS/DNS — SD are the most two
relevant protocols that support network service discovery and are supported on most
TV and mobile platforms. The author of this thesis published an implementation
of the SSDP protocol for Node.js [140] as well as for Android and iOS as part of
the HbbTV Cordova Plugin [141]. As we can see in both discovery methods, the
sender will get a list of devices with friendlyName and launcher Endpoint for each
discovered device. The friendlyName will be presented to the user in the device
selection dialog while the launcher Endpoint is used to launch the application on the
selected receiver device. There are two possible implementations for "launch": 1) The
receiver offers a Launcher Service with an HTTP API behind the launcher Endpoint
(for example a REST API). The Launcher Client running on the sender sends a request
to the launcher Endpoint with all relevant data in the HTTP body to launch the
application; 2) If direct communication between the sender and the receiver is not
possible, for example, if both devices are not connected to the same network, then
a Launcher Proxy that runs on a central server can be used to bridge the requests
between the sender and the receiver. In this case, the Launcher Service running on
the receiver must establish a bi-directional communication channel to the Launcher

4.6 Implementation

103

104

Proxy and waits for launch requests pushed to this channel. WebSocket supports this
type of communication between the Launcher Client or the Launcher Service and the
Launcher Proxy.

Discover devices nearby The network service discovery approach is mostly relevant
for networked devices that are always connected to a power supply and can run ser-
vices in the background all the time. In most cases these are TVs or streaming devices
like Apple TV, Fire TV, and Chromecast. The sender devices, e.g., smartphones and
tablets, do not need to run any service in the background, but only start discovery
on demand when the application is running in the foreground. The question is how
we can enable the discovery of companion devices from TV applications. In this
case, the TV plays the role of the sender and the companion device the role of the
receiver. It is not recommended to run a launcher service in the background on the
smartphone and use network service discovery to advertise the service for many
reasons: 1) Many mobile platforms like iOS provides limited support for running
services in the background, especially when it comes to services that accept requests
from other networked devices, 2) running services in the background will have
impact on the battery life, and 3) running background services on personal devices
will have impact on privacy and security by opening the door for attackers especially
in open networks. For this reason, in this section we will provide a solution based on
the BLE beacon technology to support the discovery of nearby devices from the TV by
taking advantage of existing discovery approaches and considering the limitations
above. The author published this approach in [18]. The details of the approach are
provided in the next section.

Discovery and Launch using iBeacon

In order to discover companion devices like smartphones or tablets from an applica-
tion running on the TV, it is necessary to use an appropriate technology that finds
only devices within a specific range of the TV and without affecting other aspects
like usability, battery life, privacy, and security. Bluetooth Low Energy (BLE) [44] is
one of the relevant technologies worth further investigation, as only devices within
the range of the BLE transmitter which receive the BLE signal are considered in the
discovery. Furthermore, the distance between the BLE transmitter and the receiver
device can be estimated from the measured signal strength. This information can
then be used, for example, to sort the list of discovered devices presented to the user
by distance.

"Also, the flow for remotely launching companion applications is from a usability
perspective, not the same as for launching TV applications. Putting an application
on a companion device in the foreground without asking the user is an annoying ex-

Chapter 4 Multiscreen Application Model and Concepts

perience for the user. Most mobile platforms enable this feature only in combination
with user interaction, for example, when the user starts a new application by clicking
on a button in the current application or from a notification. On iOS, there are two
types of notifications: local and remote notifications. The end-user does not see any
difference between them since, they differ only in the way how they are triggered: Local
notifications are triggered by applications running in the background on the same device
while remote notifications are sent via the Apple Push Notification service (APNs) [142].
This means that if an application is not running at all (neither in the foreground nor in
the background), the user can be notified only through remote notifications. One option
to wake-up and launch a not running iOS application in the background is by using
iBeacon, a technology that extends Location Services introduced in iOS7. iBeacon uses a
Bluetooth Low Energy (BLE) signal which can be received by nearly all iOS devices. Any
device supporting BLE can be turned into an iBeacon transmitter and alert applications
on i0OS devices nearby. In general, iBeacon transmitters are tiny and cheap sensors
that can run up to 2+ years with a single coin battery depending on how frequent they
broadcast information. The main usage area of iBeacon is for location-based services:
Apps will be alerted when the user approaches or leaves a region with an iBeacon. While
a beacon is in range of an iOS device, apps can also monitor the relative distance to
the beacon. If the application was not running while the user crosses (enters or leaves)
the region of a beacon, the iOS device wakes up the application and launches it in the
background for 10 seconds only (iOS limitation to save battery). During this time, the
application can respond to changes in the user position and may request to show a local
notification, through which the user can bring the application to the foreground. Based
on this, we will propose some ideas for a user-friendly remote launch mechanism of
TV companion applications using iBeacon and push notification technologies. We will
limit this solution to iOS devices that support iBeacon and consider Apple’s application
development guidelines to ensure best user experience. Nevertheless, the concept can be
adapted easily to other devices and platforms that support BLE, e.g., Android. Unlike
on i0S which is the only platform that provides native iBeacon support, the iBeacon
functionality needs to be implemented on application level for other platforms.

As mentioned before, the iBeacon protocol uses BLE technology to transmit information
in a specific interval, for example, every second. Besides the BLE packet headers and
Apple’s static prefix, an iBeacon message consists of the following values:

* Proximity UUID: A 128-bit value that uniquely identifies one or more beacons as
a certain type or from a certain organization.

* Major: A 16-bit unsigned integer that can be used to group related beacons that
have the same proximity UUID.

* Minor: A 16-bit unsigned integer that differentiates beacons with the same
proximity UUID and major value.

4.6 Implementation

105

106

i0S applications can use the iBeacon API introduced in iOS7 for registering a beacon’s
region using the proximity UUID, major and minor parameters described above. If
a device crosses the boundaries of a registered beacon’s region, the application will
be notified on entering or leaving that region. The proximity UUID is mandatory for
registering a Beacon region while major and minor are optional. The application
provider needs to choose a value for the proximity UUID and use it in all beacons as
well as in the iOS application. This means that the proximity UUID is a static value in
the context of a specific application or organization. Major and minor values can be
used to differentiate between different locations or places for the same application or
organization. iBeacon seems to be a promising technology not only for location-based
services, but also for launching companion applications in a multiscreen environment
if the new generation of TVs and streaming devices are equipped with BLE sensors
and act as beacon transmitters. The main advantage of this approach is that the TV
will be able to wake-up companion applications only on devices belonging to viewers
sitting in front of the TV independent if they are connected to the local or mobile carrier
network. Unlike the traditional usage of iBeacon where the proximity UUID is static and
known for a specific application, a more dynamic behavior using different values for the
proximity UUID on different TV sets is required in the multiscreen domain: If the TV
manufacturer uses a unique proximity UUID, the companion application will always be
notified when the user crosses the beacon region of any TV from the same manufacturer.
In case the TV sets transmit different proximity UUIDs, it will be possible to notify
companion applications associated with a specific TV. Furthermore, it is possible for a
companion application to subscribe to different beacon regions at the same time and
therefore to get notified by different TV sets, i.e., if the user has more than one TV at
home. Figure 4.26 shows an example with two TV sets that transmit different proximity
UUIDs. Companion Device 2 is registered for both proximity UUID1 and proximity
UUID2 and can be notified from both TV1 and TV2. The other two companion devices
can only be notified from one TV set. Since there is no unique and known proximity
UUID to be used in the TV companion application, we need a mechanism to generate
and exchange proximity UUIDs between the TV and the companion application. UUIDs
can be randomly generated and stored on the TV without any user interaction. The
probability of collision with UUIDs used in other applications is almost zero since
proximity UUIDs are 128-bit long. The best way to exchange the generated UUID is
during first connection (setup phase) of the companion application with the TV. Figure
4.27 illustrates the steps needed for the creation and exchange of the proximity UUID
between TV and companion applications. After this, each time the user turns on the TV
or enters the TV’s beacon region (e.g., living room) while the TV is on, the companion
application will be woken up and launched in the background for approximately 10
seconds. The same applies if the user turns off the TV or leaves the TV’s beacon region. In
both cases, the companion application connects to a signaling server (e.g., maintained
by the TV manufacturer) when running in the background and requests to update its
availability in the TV’s beacon region by sending the proximity UUID and the device

Chapter 4 Multiscreen Application Model and Concepts

Proximity Proximity
uUuID1 UuID2

Companion Companion Companion
Device 1 Device2 Device3

Figure 4.26.: Example with two TV sets and three companion devices

Subscribe for Beacon Region .
! using proximity UUID !

Figure 4.27.: Creation and Exchange of proximity UUID

token (we suppose that the companion application already requested a device token
from the Apple Push Notification Service). As depicted in Figure 4.28, the signaling
server maintains a table for device availability and offers a lookup function to find
devices (identified by the device token) in range of a specific beacon (identified by the
proximity UUID). On the other hand, if a TV Application (Hybrid or Smart Application)
provides multiscreen support and needs to launch a companion application, it uses a
specific TV API for this purpose (Figure 4.28 - step 2). The TV sends its proximity UUID
and other application-specific information to the Signaling Server (Figure 4.28 - step 3).
The signaling server searches in the table for all devices in range of the beacon with the
received proximity UUID (Figure 4.28 - step 4) and sends a request to the APN service
using the tokens of the devices from the previous step. The APN service sends push
notifications containing all information necessary to launch the companion application
on each device found (Figure 4.28 - step 6). If the user clicks on the push notification,

4.6 Implementation

107

108

I Notify device !
' with token = le

Signaling Server

/
/
/

......... Apple Push
Notification

' SN
1 devices in ! Service

| range of |

[atataiaitaiiuiat
'
)

Send Push !
6. Notification |

—

! 3| EF

"""""" Hybrid/Smart TV App '
App i

Update Device ! o
! availability (e.g. in E
| range of UUID1) !

Figure 4.28.: Launch a Companion Application from a TV Application

the companion application will be launched in the foreground, and the notification
data will be passed to it (Figure 4.28 - step 7). Remote push notifications are necessary
in this scenario because local notifications are only possible when the app is running
in the background at that moment which is not necessarily the case. Though apps are
woken up through iBeacons, they only run for 10 seconds and are then terminated by
the operating system. Moreover, the OS will only wake up apps when entering or exiting
a region of a beacon. For this reason, we cannot assume that the Companion App is
running at this time and available to send a local notification. Therefore, it is necessary
to use remote push notifications via APNs.

Figure 4.28 shows the flow for notifying and launching the companion application
provided by the TV manufacturer from a hybrid or smart TV application provided by
a broadcaster or a third party provider. However, our goal is to launch the compan-
ion application related to the TV application and not the manufacturer companion
application. There are different options to achieve this goal depending on the kind
of the companion application to launch if it is a hosted web application or a native
i0S application. We will focus in this work on hosted web applications. As mentioned
above, The TV application passes information about the application to launch on the
companion device in step 2. It includes a URL of the hosted Web application to launch
and will be passed to the companion device through all steps in Figure 4.28 until the
user clicks on the notification. The TV companion application will be launched in the
foreground and can retrieve the URL of the hosted companion web application from
the launch information passed to it. Finally, the TV companion application opens the
hosted companion application in a Web View (UIWebView), a kind of integrated web
browser for displaying web content in iOS applications. Now the TV application and the
hosted companion web application can collaborate and synchronize content between
each other by using an appropriate communication mechanism" [18].

Chapter 4 Multiscreen Application Model and Concepts

4.6.2 Communication and Synchronization

After an application is launched on a receiver device, a communication channel
can be established between the sender and receiver components. In Section 4.3
we introduced the three available approaches, message-driven, event-driven, and
data-driven, for developing multiscreen applications. All three approaches rely
on a communication layer between the multiscreen components. The message-
driven approach is the easiest to implement since it can be mapped directly to the
underlying communication layer. The other two approaches require an intermediate
layer between the Multiscreen API, and the communication layer.

In a first step, let us consider the implementation options for the establishment of
a communication channel between two multiscreen components running on two
different devices. Communication between two components running on the same
device is also essential but its implementation is straightforward, and therefore our
focus will be only on inter-device communication. In both cases, all APIs provided
to the application (for all three approaches) should abstract from the underlying
communication protocol. As depicted in Figure 4.29, there are two ways for two
application components to establish a communication channel:

WebRTC

a) Peer-to-peer using WebRTC

b) Proxied Communication with WS running on receiver c) Proxied Communication with WS running in the cloud

Figure 4.29.: Direct VS. Indirect Communication

* Direct communication: both application components establish a peer-to-peer
communication channel without the need for a third entity (intermediate
server or proxy). In Web environments, WebRTC [54] is the most appropriate
protocol for this kind of communication. It is based on UDP but at the same
time offers reliable communication. It is supported in all modern browsers for

mobile and desktop platforms, but its support on TV devices is still limited.

Although WebRTC offers a peer-to-peer communication between peers, it still
requires the exchange of signaling data like "RTC offer and answer" in order to
establish the peer-to-peer communication channel. However, it is not specified
in the WebRTC protocol how to exchange the signaling data. In our case, the

4.6 Implementation

109

110

same channel used for launching applications can be used to exchange the
RTC signaling data and the communication channel can be established. It is
important to know that WebRTC also works across different networks even if
both peers are behind NAT/Firewalls. Some network topologies are restricted
and are not compatible with the Session Traversal Utilities for NAT (STUN)
protocol used in WebRTC. In this case, the Traversal Using Relays around NAT
(TURN) can be used to overcome this issue. This issue is not relevant if both
application components are running on devices in the same local network.

* Indirect communication: this kind of communication requires a third entity
that acts as a relay or proxy between the sender and receiver application
components. The proxy must be well-known to the sender and receiver
components. The sender application will get the endpoint of the proxy either
after launching the receiver application or after joining an already running
receiver application. As depicted in Figure 4.29 parts b) and c), the sender and
receiver components need to establish bi-directional communication channels
to the proxy server which may run on a receiver device as in option b) or in
the cloud as in option ¢). In Web environments, WebSocket is one of the widely
used protocols for duplex communication between client and server. In case c),
the sender and the receiver play the role of the clients, and the proxy plays the
role of the server. The connection establishment process starts after the sender
application launches or connects to the receiver application. During this step,
the sender also sends a unique random token to the receiver and instructs it
connect to the proxy server using the token. Similarly, the sender connects to
the proxy using the same token. The proxy now puts both connections in the
same pool and each message sent over one connection will be forwarded to
the second connection and vice versa. It is also possible to add more than two
connections in the same pool for example in a multiplayer game which allows
sending a message to multiple receivers in the same pool. The total number of
connections is the same as the number of senders and receivers.

After the communication channels between the application components of a multi-
screen application are established, the three approaches message-driven, event-driven
and data-driven can be implemented on top. As we mentioned before, the message-
driven approach can be mapped directly to the underlying communication layer, and
its implementation is straightforward.

Event-Driven

As described in Section 4.3.2, the event-driven approach requires an entity that acts
as Event Broker and holds the event subscriptions. There are two ways to implement

Chapter 4 Multiscreen Application Model and Concepts

this approach depending on which communication mechanism is used. In case
of indirect communication, it makes sense to run the Event Broker on top of the
Communication Proxy. Each sender or receiver can send the event subscription or
publication data in JSON format to the proxy which forwards them to the Event
Broker. The Event Broker holds a table which maps each connection of a multiscreen
application component (either sender or receiver) to a list of event subscriptions.
When an application component publishes data related to a specific event, it sends a
publication message to the Event Broker which looks in the table for subscribers and
notifies them by sending a JSON notification message. The following list shows the
JSON structure of all message types exchanged between the application components
and the event broker:

n, n nn ", n

* Subscription: {"type": "subscribe", "event": "foo"}

non n, n

* Unsubscription: {"type": "unsubscribe", "event": "foo"}

nmn

* Publication: {"type": "publish", "event": "foo", "payload": "..."}

" n,n

* Notification: {"type": "notify", "event": "foo", "payload": "...", "publisher": "pid"}
The implementation of the event-driven approach in a decentralized environment
follows the principles of the Gossip protocol [143] for spreading information across
nodes in a peer-to-peer network. For this, each device runs an event broker proxy
locally and offers the same interfaces and JSON messages as the event broker de-
scribed above. The event broker proxy also consists of a table for event subscriptions
but holds only local subscriptions. In this case, the publisher needs to send the event
to all other peers of a multiscreen application. Since the publisher is not necessarily
connected to any other peer, it sends the event to known peers first. The event broker
proxy running on each of these peers will check if there are subscriptions for the
received event and notify the subscriber components if needed. Furthermore, each
event broker proxy will resend the event to known peers until it has been propagated
to all peers. However, this solution still has a drawback since the propagation of
the event will continue recursively in an endless loop. To overcome this issue, we
extended the event propagation algorithm with a function that checks if the event
was already received by a peer and in this case, the event will be dropped. The easi-
est option to implement the check function is to assign a unique random identifier
to each event before publishing it for the first time. In addition to the subscription
table, each event broker proxy needs a second table which holds received events.
If the event is received for the first time which means that the event is not in the
table, then it will be added, and the event will be sent to other peers. In case the
event was already added to the table, it will be dropped and not sent to other peers.
Since the number of events may increase rapidly, the size of the event table will also
grow over time which requires more storage, and the lookup will take more time. A
solution for this issue is to use an additional time-to-live attribute ttl either for each
event or globally for all events. All events whose ttl has expired will be removed

4.6 Implementation

111

112

from the table. Below is an example of the publication JSON message with a ttl of 5
seconds:

* Publication: {"type": "publish", "event": "foo", "payload": "...", "id": "el", "ttl": 5}

All other messages will remain the same as for the centralized approach.

Data-Driven

In this section, we will discuss the implementation of the data-driven approach
introduced in Section 4.3.3. The implementation provides the following functions
that allow applications to use this approach through corresponding APIs:

* Initialization: An application component creates a new object with a given
name and optional initial state in JSON format using the object () method.
If an object with the same name has already been created before (e.g. by
another component of the same application), it will be retrieved, otherwise
a new object will be created with the name and the initial state passed as
input. In both cases, the application will be notified when the object is ready.
For example, object ("foo", {"bar": 1}).then(callback) creates a new
object with the name "foo" and initial state *bar’: 1. The callback function,
e.g., callback = function(foo){/* use foo*/}, will pass the object foo
to the application.

* Read: Once the object is ready, the application can access it as any JSON
object. For example, var =z = foo.bar can be used to read the value of the
property bar.

* Update: Similar to the read operation, the application can also update the
object as any JSON object. For example, foo.bar = 2 sets the value of the prop-
erty bar. The underlying synchronization protocol used in the implementation
propagates the changes to other peers or clients. Since any manipulation on
the object may result in an inconsistent state and rollbacks may be applied
at any time, it is important to notify the application in order to react to this
changes.

* Notification: Since the object can be manipulated by other components of a
multiscreen application, it is important to notify the application about these
updates. Therefore, the object should provide interfaces to allow the ap-
plication to observe the value of any property in the object. For example,
foo.observe("bar", function(newVal, oldVal){ /* ... */}) notifies
the application any time the value of bar is changed. The old and new values
will be passed to the application in the listener function.

Chapter 4 Multiscreen Application Model and Concepts

It is important to mention that at least one of the synchronization algorithms Lock-
step Synchronization [126], Bucket Synchronization [129], Time Warp Synchro-
nization [132] or Trailing State Synchronization [132] described in Section 4.3.3
must be implemented to keep the state of the object between the application com-
ponents in sync. In case multiple synchronization algorithms are supported, the
object () interface should to be extended to allow the selection of a specific algo-
rithm. For example, object ("foo", {"bar": 1}, "trailing-state”) creates a
new object and tells the underlying system to select the trailing state algorithm for
synchronization. This way, application developers can select the algorithm that best
suits their requirements. Other synchronization algorithms that are not listed in this
thesis should be supported in a similar way without changing the interfaces for the

application.

4.6.3 Application Runtime

Since our focus is on Web technologies, we extended existing browser-based runtimes
such as WebViews [144] on mobile platforms (Android and iOS) and Chromium
[145] on desktop with multiscreen APIs and used them as runtime environement for
multiscreen application components. These APIs enable access to core multiscreen
features provided by the underlying layer as defined in the UML diagram depicted in
Figure 4.22. Web technologies were selected because of their cross-platform support
especially on receiver devices like HbbTV, SmartTVs, and streaming devices. On
some devices like Chromecast, this is the only type of supported technology. In
addition to Web technologies, some platforms support also native applications like
Android Apps in the case of Android TV and tvOS Apps in the case of Apple TV.
Therefore, we will use the term User Agent (UA) in this section which cover all types
of applications. A native application runtime is also considered as a UA which acts on
behalf of the user and launches native applications instead of Web pages. There are
efforts to unify the launch APIs of Web and native Apps by using Uniform Resource
Identifiers (URIs) [146]. The most relevant part of a URI is the scheme [147] which
can be used by the underlying platform to identify the corresponding user agent. for
example, URIs with the scheme http:// or https:// are launched in a Web browser
while URIs with the scheme youtube:// are launched in the YouTube native App if
it is available. We will differ between the following three implementations for the

application runtime:

Multiple User Agents: This option considers a user agent for each device involved
in the multiscreen application and responsible for the execution of the corresponding
Composite Application Component assigned to that device. Figure 4.30 illustrates

this implementation option with a multiscreen application assigned to two devices.

The dotted red line between the Multiscreen APIs represents the communication

4.6 Implementation

113

114

channel between the application components running on the two devices. We

Device; Device,

Multiscreen APl |- - === === === === = — = — — — - — —————— Multiscreen API

Figure 4.30.: Multiple User Agents

implemented this option as proof-of-concept using the DIAL protocol [39] that
launches a User Agent called FAMIUM. FAMIUM is an extended Web Browser that
implements the Multiscreen API and runs a DIAL Client on sender devices and a
DIAL Server on receiver devices. Furthermore, the FAMIUM receiver device runs
a WebSocket Server as a communication proxy between the sender and receiver
applications. The WebSocket Server can also be hosted anywhere in the cloud. The
FAMIUM sender implementation is available for Android while the FAMIUM receiver
implementation is available for all desktop platforms as Node.js module.
Furthermore, we provide a pure JavaScript implementation for this option which can
be integrated into any Web application without the need to extend the Browser. This
implementation includes a JavaScript client library and a server as Node.js module.
The only limitation of this implementation is the discovery. It is not possible to
discover other devices in the local network through a JavaScript API in the Browser
due to security and privacy reasons. For example, a Web page could discover and
connect to a network attached storage or get access to other network connected
devices in the home and transfer data to a server without the user notice anything.
Also, a Web page can use the metadata of discovered devices like serial number or
unique device identifier to create a fingerprint and track all devices in the home
visiting the same web page. Therefore, this implementation provides a fallback for
discovery using a manual pairing of devices via PIN or QR code.

Single User Agent: This option considers a user agent on a device that executes
multiple Composite Application Components each in a separate execution context.
The Application Components are implemented in the same way as for multiple user
agents since they use the same Multiscreen API which provides the same interfaces in
all implementations. Figure 4.31 illustrates this option with a multiscreen application
assigned to two devices. As we can see, the first device runs two Composite Appli-
cation Components in the same user agent but in two different execution contexts.
U A; executes the first Application Component assigned to device D; where the Ul
output is displayed on the same device D;. The Application Component assigned to
device Ds is also executed on device D; in another execution context inside of U A].
However, since the Application Component is assigned to device D5, the Ul needs to

Chapter 4 Multiscreen Application Model and Concepts

Device, Device,

[Multiscreen API]-—-[Multiscreen API] —————————————————

Figure 4.31.: Single User Agent

be also displayed on Ds. Therefore, this Application Component will be rendered in
silent mode. This means that the UI will not be displayed on device D1, but it will
be captured as a video stream and sent to device D, which needs only to display the
received video. As we can see, the dotted red line between the Multiscreen APIs of
the two execution contexts represents the local communication channel between the
two application components. On the other side, the dotted blue line represents the
cross-device communication channel for sending the captured video stream to D. It
is important to use suitable protocols designed for Ul sharing such as Airplay and
Miracast.

As proof of concept, we implemented this option for the iOS and Android platforms.

The iOS implementation is based on the Airplay protocol [6] and supports Airplay
receivers like Apple TV while the Android implementation is based on the Miracast
protocol [8] and supports Miracast receivers like new Smart TV models.

Cloud User Agent: This option considers a user agent running in the cloud and
executes multiple Composite Application Components in silent mode and each in
a separate execution environment. The UI of each component will be captured
and sent to the corresponding device as a video stream. Furthermore, all user
inputs like keyboard and touch screen are captured and sent to the cloud user agent
which triggers the input events in the corresponding execution context. Figure

4.32 illustrates this option with a multiscreen application assigned to two devices.

We can also see in this example similar to the Single User Agent case, that the
communication between the Multiscreen APIs is local (dotted red line). We can also
see that the video stream of the captured UI of both application components will be
sent over the internet to the corresponding devices (dotted green and blue lines). We
implemented this option as proof-of-concept using the Chrome Embedded Framework

(CEF) [145] as a user agent for the silent rendering of the application components.

We also experimented with the following profiles for capturing and streaming of the
rendered UI:

* Capturing and encoding the UI output as images in Bitmap, PNG and JPEG
formats and sending them to the client over HTTP or WebSockets.

4.6 Implementation

115

116

Device; Cloud Runtime Device,

I o s
a e

—
_

- -[Multiscreen API]- - -[Multiscreen API]— - =

Figure 4.32.: Cloud User Agent

* Capturing and encoding the UI output as video stream using the codecs h264
and VP8 and sending it to the client over HTTP or WebSockets.
* Capturing and sending the UI output using WebRTC media streams.

Device; Cloud Runtime Device,
o

; e
% //6% S
Multiscreen API Multiscreen APl | -= == ===~

Figure 4.33.: Combination of Multiple and Cloud User Agents

Even though we discussed the three implementation options for the Application Run-
time in this section, a combination of these implementations is also possible. Figure
4.33 shows an example that combines the multiple user agent implementations with
the cloud user agent implementation. In real-world scenarios, it makes sense to use
this option for low capability receiver devices like Set-Top-Boxes that are not capable
of running the receiver application. The sender application will be executed and
rendered on the sender device, e.g., a smartphone. In Section 6.1 we will provide an
evaluation of the implementation options we considered in this section and discuss
the advantages and disadvantages of each implementation.

Chapter 4 Multiscreen Application Model and Concepts

Multimedia Streaming in a
Multiscreen Environment

In the previous chapter, we focused on multimedia applications in a multiscreen
environment, introduced a multiscreen application model based on Web technologies
and discussed all potential implementation options. In this chapter, we will focus
on multimedia content in a multiscreen environment. After we having introduced
state-of-the-art technologies for multimedia content preparation, streaming and
playback in Chapter 2, we will now discuss the applicability of these technologies in
multimedia applications. in general, multimedia content refers to video, audio, and
image but our focus will be on video which is the most important and challenging
format. Besides regular fixed-perspective videos, we will investigate immersive
videos especially 360° videos. This new video format is highly challenging regarding
different aspects like content production, preparation, storage, delivery, and playback
especially in a multiscreen environment where devices have different characteristics
like processing capabilities, supported video codecs and connectivity. This chapter is
structured as follows: Section 5.1 investigates the different methods for sharing mul-
timedia content on different devices while Section 5.2 focuses on spatial multimedia
content. Section 5.2.2 deals with the synchronization of multiple media streams
on multiple screens. Afterward, Section 5.3 discusses the different approaches for
immersive media playback and provides an innovative solution that enables 360°
video playback on a wide range of devices especially on TVs. Finally, Section 5.3.6
gives an overview of our implementation of the most relevant components.

5.1 Multimedia Sharing and Remote Playback

Multimedia sharing is one of the most important and widely deployed multimedia
application scenarios. The basic flow is depicted in Section 3.1.1. This scenario
can be realized as a multiscreen application with sender and receiver components
following the models and concepts we introduced in the previous chapter. The
receiver is just a simple Web component that includes an HTML video element in
fullscreen, launched remotely by the sender application. To control the playback of
the video on the receiver device, one of the three approaches introduced in Section
4.3 can be applied. The event-driven approach fits well for this kind of application
scenarios and can be implemented easily. The sender application shows the video

117

118

controls such as Play/Pause buttons and progress bar showing the current video
time and triggers multiscreen events each time the user makes an interaction. On
the other side, the receiver application component plays the video and listens to
multiscreen events triggered on the sender. It also triggers multiscreen events each
time the playback state changes which can be used on the sender to update the video
controls. Listings 5.1 and 5.2 shows parts of the sender (AACControl) and receiver
(AACPlayer) atomic application components for this scenario.

1/* Video Control AAC */ 1 /* Video Player AAC */

2class AACControl extends AAC { 2class AACPlayer extends AAC {

3 connectedCallback () { 3 connectedCallback () {

4 ... 4

5 var aac = this; 5 var aac = this;

6 playBtn.onclick = function(){ 6 vid.ontimeupdate = function(){
7 aac.publish () 8 7 var t = vid.currentTime;

s }; 8 aac.publish (, t);
9 aac.subscribe (,t=> 9 };

{ 10 aac.subscribe(,e=>{

10 progress.value = t; 11 vid.play () ;
11 3 12 });
12} 13}
13} 14 }

Listing 5.1: Multimedia Sharing Sender Listing 5.2: Multimedia Sharing Receiver

As we can see, the implementation of the multimedia sharing scenario is straight-
forward, but since it is a common scenario, it makes more sense to extend the
multiscreen model to a new Remote Playback API that enables multimedia sharing
using a simple and easy to use interface. In this case, the developer only needs to
implement the sender application which uses the new API to play the media remotely
on the receiver device. The advantage of this approach is that it is not only easier to
implement, but also supports a wider range of receiver devices that provide media
rendering capabilities but not necessarily an application runtime with a complete
stack (to run receiver applications). The Remote Playback API adds a new method
setMedia(media) to the Device class depicted in the Multiscreen UML diagram in
Section 4.5.2. setMedia can be called on a discovered device instance and accepts as
input an HTML media element (HT M LVideoElement or HT M L AudioElement).
In this case, the media playback will be stopped on the sender device and continues
on the receiver device. If the input passed to this method is null, then the media
playback will be stopped on the receiver device and continued on the sender device.
The sender application only needs to operate on the HTML media element passed as
input parameter to control the playback on the receiver device, subscribe to player
events or read playback info like the current playback time.

1 <button id= >Cast</button>
2<video id= >

<source src= type= >
4 <source src= type= >

Chapter 5 Multimedia Streaming in a Multiscreen Environment

5 <source src= type= >

6 <source src= type= >
7</video>

s <script>

9 var video = document.querySelector ()
10 var castBtn = document.querySelector ()
11 var device;

12 var msa = this.msa;

13 msa.ondevicefound = function(e){

14 msa.stopDiscovery () ;

15 device = e.device;

16 F;

17 castBtn.onclick = function(){

18 device && device.setMedia(video);

19 };

20 msa.startDiscovery ({canPlay: videol});

21 </script>

Listing 5.3: Multimedia Sharing Receiver

Listing 5.3 shows an example for multimedia sharing using the new API. As we can
see, the startDiscovery function uses the video element as a filter (canPlay) which
is necessary to find only devices that can play the requested video. The HTML video
specification enables providing multiple sources for the same video, e.g., for different
streaming formats and video codecs. The browser selects the best suitable source
it supports. This can also be used during discovery to find only devices that can
play at least one of the available sources. The video element in the example above
provides four sources: the first two are adaptive streaming formats HLS [68] and
DASH [67] while the last two are regular single file MP4 and WebM videos. Since
the landscape of media formats and codecs is highly fragmented, it is essential for
content providers to know the devices and platforms that need to be supported and
provide compatible video sources. Another method is to support widely adopted
container formats such as MP4 and video codecs such as H.264 as a fallback to
adaptive streaming formats like DASH and HLS which are the preferred formats
in a multiscreen environment. As the name "adaptive streaming" suggests, the
main reason why it fits best for multiscreen applications is that the video playback
adapts automatically to the device capabilities and network conditions. When the
user starts the video on a small screen like a smartphone, then the adaptation set
that corresponds to the screen resolution and available bandwidth will be selected
automatically in the player. If the user starts the remote playback on a UHD TV, then
the UHD adaptation set will be selected if it is available and the network condition
supports this selection.

5.1 Multimedia Sharing and Remote Playback

119

120

5.2 Spatial Media Rendering for Multiscreen

Spatial Media Rendering is an approach for playing a spatial sub-part of a video
on a target display. The visible area of the video is called Region-of-Interest (ROI)
which is defined as a rectangle (x,y,w,h) where (x,y) is the coordinate of the top left
corner and (w,h) is the dimension of the viewport. The selection of supported ROIs
varies from use case to use case. The example depicted in figure 5.1 shows three
versions of a video with three different resolutions low (a), medium (b), and high
(c). The dimension of the viewport is, in general, the same as the dimension of the
target display. If the viewer wants to see the entire video, then the low-resolution
version is selected. On the other hand, if the user wants to display a sub-part of
the video (which is relevant for videos recorded using wide view cameras) while
retaining the output resolution and quality, then a higher resolution version needs
to be selected. In this case, the user can zoom into the video without affecting the
output quality. Since the transition between two levels (for example from level a)
to level b) depicted in Figure 5.1) takes some time until the video segments of the
new level are streamed to the client, the player can zoom in the video of the source
level which results in a lower quality for the selected ROI during the transition time.
The transition time depends on several factors like latency, bandwidth and segment
duration. A side effect of spatial media rendering is the wasted bandwidth since

oy

e

Figure 5.1.: Spatial Media

more video data is streamed to the client than the amount of video data actually
displayed to the user. In the example depicted in Figure 5.1, the ROI in level b) is
25% (1/4) of the entire video and in level c¢) about 11% (1/9). This issue is already
addressed in current research, for example, [104] and [107] we discussed in Section
2.4.2 use state-of-the-art video codecs that support tiling like HEVC [148]. In this
case, the video will be split into multiple tiles that can be requested individually by
the client. Furthermore, each tile can be provided in multiple bitrates which allows
the client to request tiles that intersect with the ROI in a higher bitrate than the tiles
outside of the ROI. For example, the ROI in video b) intersects with tiles 2 and 4
and in video c) with tiles 1, 2, 4 and 5 and only these tiles need to be streamed in a
higher bitrate.

Chapter 5 Multimedia Streaming in a Multiscreen Environment

Until now, we considered the rendering of partial video content on a single screen,
but what if we want to show the whole video on a multi-display installation in a
certain arrangement, e.g., video wall which consists of a NxM matrix of single dis-
plays. The total resolution of the whole video wall is, in this case, NxMxWxH where
WxH is the resolution of a single display. For example, a 2x2 video wall composed
of 4 Full HD (1920x1080) displays has a total resolution of (2x1920x2x1080) or
(3840x2160) which is equal to 4K. The following sections describe the different meth-
ods for content preparation and synchronized playback for the video wall scenario
which may also be applied to other application use cases where synchronization
between multiple media streams is required.

5.2.1 Content Preparation

Each display of the video wall should play the ROI that corresponds to its position in
the matrix. One option to achieve this is depicted in Figure 5.2 a). It streams the
whole video to each display which selects and shows only the ROI that corresponds to
its position in the matrix. The disadvantage of this method is the wasted bandwidth
since the same video content is sent to the displays multiple times. The option

Figure 5.2.: Video Wall

depicted in 5.2 b) addresses this issue and streams the video only to one master
display which distributes it to all other displays. This option solves the bandwidth
problem, but it still has the disadvantage that the player on each display needs to
decode a high-resolution video even though it displays only a small part to the user.
Furthermore, this option requires a local peer-to-peer communication mechanism
among the displays which is not always guaranteed. The last option depicted in
Figure 5.2 ¢) is the recommended one and uses the same technique for spatial media
rendering as described in Section 5.2. The video is split into several tiles in the
same order as the displays in the video wall, and each display requests the tile
that corresponds to its position. The only difference compared to the spatial media

5.2 Spatial Media Rendering for Multiscreen

121

122

rendering method is that there is no need to use special video codecs that support
tiling like HEVC since each display plays only one single tile. Therefore, there is no
need for merging tiles, and any video codec like H.264 can be used.

5.2.2 Seamless, Consistent and Synchronized Playback

As in most media-related scenarios, adaptive streaming and optimal usage of avail-
able resources are essential for enabling seamless video playback. This also applies to
the video wall scenario, but it raises additional challenges which are not necessarily
relevant for video playback on a single screen. We will address these new challenges
by considering option c) described above which splits the video into multiple tiles
that are played individually on the corresponding displays of the video wall. To
enable adaptive streaming on each display, the video tiles should be provided in
different bitrates. It is important that all displays play the tiles with the same bi-
trate at any time to avoid inconsistencies in the video quality between the displays.
Furthermore, the players on the different displays should playback the tiles with
frame-accurate synchronization. To achieve this, the players on all displays should
coordinate among each other to control the buffering behavior and playback state by
exchanging relevant playback metrics like player state and time, available bandwidth
on each display and the amount of buffered video data. We assume that the players
can communicate with each other using one of the multiscreen approaches intro-
duced in the previous chapter. The synchronization algorithm is described below. It
follows a master/slave approach, where one of the displays, i.e., the first display in
the video wall, is the master (also called coordinator) and all other displays are the
slaves.

The master part is depicted in Algorithm 1 while the slave part is depicted in Al-
gorithm 2. Furthermore, Figure 5.3 highlights the most important steps of the
algorithm in a UML sequence diagram. As we can see, the master algorithm
keeps the amount of buffered video content on each display at the same level by
synchronizing the HTTP requests to load the segments. A display can request a tile
segment k only if all displays already buffered tile segment k£ — 1. Furthermore, the
master determines the bitrate level before sending each request by considering the
smallest bandwidth available on the displays. Since the bandwidth may vary over
time, it is important to measure it after each HTTP request and update the bitrate
level accordingly. At the beginning, the lowest bitrate level is selected. To synchro-
nize the playback across all displays, the master periodically sends its playback time
along with the system time to all slave displays. The slave part of the algorithm
handles events from the master to load and buffer tile segments and to synchronize
the playback state and time with the master. The slave receives periodically the
master video time and master system time which are used together with the slave
video time and slave system time to calculate the time difference between the master

Chapter 5 Multimedia Streaming in a Multiscreen Environment

Algorithm 1 Master Algorithm

Input: [> Number of displays
Input: J > Number of bitrate levels
Input: K > Number of video segments
Input: bitrate; > Bitrate of level j
Input: tile; > Tile segment k for display i and with bitrate level j
Define: display; > Display with index i. Display; is the master
Define: j < 1 > current bitrate level
Define: %k « 1 > index of the current segment
Define: player > Video player on the master
: function INITIALIZE
send event READY to display,
end function
upon receiving event READY from display; do
display;.state < ready
if Vi=1.1, display;.state = ready then
BUFFERNEXTSEGMENT()
end if
end event
upon receiving event BUFFERED (bandwidth) from display; do
display;.state < buf fered
display;.bandwidth < bandwidth
ifVi=1.1, display;.state = buf fered then
14: BUFFERNEXTSEGMENT()
15: end if
16: end event
17: upon receiving event REQUEST(tile) from display; do
18: req < CREATEHTTPGETREQ(tile)
19: res < SENDREQANDWAITFORRES(req)
20: APPENDTOVIDEOBUFFER (player, res.data)
21: send event BUFFERED(res.bandwidth) to display;
22: end event
23: upon receiving event TIMEUPDATE (videoTime) from player do
24: systemTime < GETSYSTEMTIME()
25: foralli=2.I do
26: send event TIMEUPDATE (videoT ime, systemTime) to display;
27: end for
28: end event
29: function BUFFERNEXTSEGMENT

W XN QTR wh

—_ e e
W N2

30: if k < K then > End of video not reached yet
31: j < DETERMINEBITRALELEVEL()

32: forall; =1..] do

33: display;.state < ready

34: send event REQUEST (tile; ;1) to display;

35: end for

36: k+—k+1

37: end if

38: end function

39: function DETERMINEBITRALELEVEL

40: bandwidth < min(display;=1. ;.bandwidth)

41: level < | where bitrate; < bandwidth < bitrate;;1
42: return level

43: end function

5.2 Spatial Media Rendering for Multiscreen

123

124

Display, Display, Display,
(Master) (Slave) (Slave)

Init

j display[1..3].state = ready; segment=1; level=1;

Loop until all segments |
are buffered s’

j RequestAndBufferTile(1, level, segment)
RequestAndBufferTile(2, level. segment)

RequestAndBufferTile(3, level, segment)

] display[1].state = buffered; display[1].bandwidth = b,
display[2].state = buffered, display[2] bandwidth =b,

display[3].state = buffered; display[3].bandwidth = b3

display[1..3].state = ready; segment++;
level = DetermineBitrateLevel(by,bybs)

"a]'.':
repeat steps every time period |
T until end of video is reached, -’

b))
[(
)).
W

:| mVidTime = player.currentTime; mSysTime = GetSystemTjme();

TimeUpdate(mVidTime, mSysTime); |

TimeUpdate(mVidTime. mSysTime);

sVidTime = player.currentTime;

sSysTime = GetSystemTime();

latency = sSysTime — mSysTime;
targetTime = mVidTime + latency;
adjustPlaybackRate(sVidTime, targetTime)

)
)))
))
«

~ ~
~ ~

] AdjustSystemTime(NTPServer) j AdjustSystemTime(NTPServer) :|

Figure 5.3.: Video Wall Synchronization Algorithm Sequence Diagram

and slave players. If the time difference exceeds the threshold of a given accuracy
which is, in general, the time of a single frame (40ms for video frame rate of 25 fps),
then the slave needs to update its player time accordingly. There are two methods to
do this: a) seek immediately to the newly calculated target video time or b) change
the video playback rate to a value so that the target video time can be achieved
after a specific time 7'. In the slave algorithm, method b) is selected since video
seeking is not accurate compared to changing the playback rate in most player
implementations. Playback rate of 1 means that the video plays at normal speed,
while values < 1 or > 1 indicate that the video playback speed is slower or faster
than the normal speed. The playback rate is updated after each timeupdate event
until the difference between the master and slave video times stabilizes below the
accuracy threshold. In some situations, the video playback rate may not stabilize
quickly and cause the player to oscillate. This can happen if the underlying player
implementation does not support accurate setting of the playback rate. Some old
players even support only few playback rate factors, e.g., 0.5 or 2. A way to avoid the

Chapter 5 Multimedia Streaming in a Multiscreen Environment

oscillating behavior is to trigger the timeupdate event more often and by increasing
the accuracy threshold. In the evaluation section we will show that we can achieve
nearly frame-accurate synchronization while avoiding oscillation in the video play-
back. The calculation of the video playback rate on the slave display after each

Algorithm 2 Slave Algorithm

Input: accuracy > max allowed diff between master and slave video times

Input: T > accuracy > max time needed to achieve the playback position of the
master

Define: master > master display

Define: player > Video player on slave

1: function INITIALIZE
2: send event READY to master
3: end function

upon receiving event REQUEST(¢ile) from master do
req < CREATEHTTPGETREQ(tile)
res <— SENDREQANDWAITFORRES(req)
APPENDTOVIDEOBUFFER (player, res.data)
send event BUFFERED (res.bandwidth) to master

end event

ek

10: upon receiving event TIMEUPDATE(mVidTime, mSysTime) from master do
11: sSysTime < GETSYSTEMTIME()

12: sVidTime < player.time

13: latency < sSysTime — mSysTime

14: targetTime < mVidTime + latency

15: if |sVideoTime — targetTime| < accuracy then

16: player.playback Rate +— 1

17: else

18: player.playback Rate < 1 + targetTime}SVidEOTime
19: end if

20: end event

received timeupdate event is highlighted in Figure 5.4. It is important to mention
that it is not a method for clock sychronization. The video wall synchronization
algorithm above expects that the master and slave system times (mSysTime and
sSysTime) are synchronized with a time server. Clock synchronization is a well
researched topic and there are already available solutions for it. Probabilistic clock
synchronization [149] is one of the simplest algorithms for clock synchronization in
distributed systems. A master device can take the role of a time server which handles
requests from other computers (slaves) in the network by responding with its local
time.The Round-Trip-Time (RTT) for the message exchange between the master
and the slaves is taken into account for calculating the time on the slaves. Another
solution is the Network Time Protocol (NTP) [150], an IETF standard for clock syn-
chronization of computers on the Internet. It is based on a client-server model with

5.2 Spatial Media Rendering for Multiscreen

125

126

a network of time servers distributed around the globe. It can be also operated in
local networks with a time server running on dedicated computer. NTP uses UDP to
exchange messages between computers and time servers by taking network latency
into account. In the implementation of the video wall synchronization, we used
NTP for clock synchronization. Back to the method for calculating the playback rate
on slave players, the latency between sending the timeupdate event on the master
and receiving it on the slave is calculated as sSysTime — mSysTime. It means
that at the time of receiving the event on the salve, the master video position was
targetTime = mVidTime + latency where mVidTime is the master video position
at the time of sending the event. If the difference between the slave video position
(sVidTime) at the time of receiving the event and the calculated target video time
(targetTime) is above the accuracy threshold, then the playback rate of the slave
video will be set to a value r with the goal, that after a time T the master and slave
video times are equal. In practice, it is nearly impossible to achieve the same values
for the master and slave player times. This is the reason why the accuracy threshold
was introduced. The algorithm can be used not only to synchronize video tiles on

send event

timeupdate at
mVidTimef mSysTime
~N

~
N L
targetTime = mVidTime + latency

Master

targetTime + T

| targetTime —sVidTime
mm =1+ T

receive event
timeupdate at

sVidTime +r*T
sSysTime

S

sVidTime

Slave

hd
'
'
'
'
1
'
'
'
1
]
'
'
1
1
'
'
1
1
1
'
L
T
1
'

N5
Cd

B e

latency = sSysTime - mSysTime

Figure 5.4.: Calculation of slave video playback rate r

multiple displays but also for any multi-stream synchronization on multiple devices
like the scenario described in Section 3.1.3. In this case, a video stream playing on
TV will be synchronized with one or more audio streams on mobile devices. Another
application domain that requires synchronization of multiple videos is multi-view
and multi-camera streaming, especially for sports events. For example, during live
streaming of a car race, the viewer can follow the main view on the TV and select an
alternative camera stream on the companion device, i.e., the camera installed in the
car of the favorite driver.

5.3 360° Video for Multiscreen

In the previous sections, we focused on media sharing, remote playback, synchro-
nization of multiple media streams, and spatial media in a multiscreen environment.

Chapter 5 Multimedia Streaming in a Multiscreen Environment

In the last section of this chapter, we will investigate immersive media formats espe-
cially 360° videos on various playback devices like Head-Mounted Displays (HMDs),
Smartphones and TVs. We will provide a solution that enables the application
scenario described in Section 3.1.6. The work introduced in this section is based on
the four accepted publications [19], [151], [20] and [21] submitted by the author
of this thesis at international conferences.

5.3.1 Challenges of 360° Video Streaming

Immersive video has been around for some time, dating back to the "A Tour of the
West" short movie from 1955 [152] using Disney’s "Circle-Vision 360°" technology
[153]. It re-emerged a couple of times, though mostly as a showcase exhibit at
trade fairs rather than as a real-world video format in its own right. Only in recent
years the market situation changed. Affordable cameras with sufficient resolution
became available to allow professionals and interested amateurs to create 360°
movies. Also, stitching software became good enough to stitch the videos and hide
the seams with reasonable quality. Networks became fast enough to allow end-users
to stream 360° video content in reasonable quality. Smartphones and tablets are
sufficiently powerful and have the necessary sensors to handle the content up to
certain video quality and now can react to view changes without noticeable delay. As
a result, major video and social media platforms such as YouTube and Facebook have
introduced 360° video on a variety of mobile devices and head-mounted displays.
Also, some providers enabled 360° video on TV devices like YouTube which supports
360° on new high-end Android TVs and Facebook which supports 360° on Apple TV.
Although 360° video technology has improved over time in the last years, it still faces
many challenges and limitations which significantly limit the immersive experience
for the user. In the following, we will discuss these challenges in more detail:

Bandwidth: Current 360° video streaming solutions use the same streaming tech-
nologies and content delivery networks as for regular videos. On the distribution
side, almost all current solutions stream the full 360° content to the end-user device,
whereby only a small area of the sphere is presented to the viewer while the other
parts are disregarded, causing a huge bandwidth consumption. While the actual
amount of video content displayed to the user depends from multiple factors like
video projection (see Section 2.3.4), supported codecs (see Section 2.3.4), the view-
ing angle and the visible area, the viewer sees about 1/10 of the available sphere in
average. Let us consider as an example the equirectangular video frame depicted
in Figure 5.5. Two Field of Views (FOVs) with a horizontal angle of 90° (green
area) and 120° (yellow area) are calculated from the equirectangular frame. The
output FOV frames are depicted in Figures 5.6a and 5.6b. As we can see, the green
part of the equirectangular video which is required to calculate the FOV with a

5.3 360° Video for Multiscreen

127

128

horizontal angle of 90° is about 1/12 of the whole video. In other words, 91.67% of
the equirectangular video is streamed to the client but remains unseen. The same
applies to the yellow part of the equirectangular video which is about 1/6 of the
equirectangular video and needed to calculate the FOV with a horizontal angle of
120°. As we can see, the distortion in the calculated FOV becomes more visible for a
wider angle of view. This is why most players consider a FOV with a horizontal angle
of view between 90° and 100°. If the equirectangular video has a 4K resolution of

(a) FOV with a horizontal angle of 90° (b) FOV with a horizontal angle of 120°

Figure 5.6.: Calculated FOVs with two settings

4096x2048 pixels, then the approximate resolution of a FOV with 90° horizontal
view angle is about 1024x576 (1024 is a quarter of 4096 since a 90° FOV is a quarter
of the total 360°. 576 is used to get a 16:9 aspect ratio for the FOV) which is between
SD (640x360) and HD (1280x720) resolutions. Inversely, to allow the end user to
experience 360° content in 4K FOV resolution, i.e., on 4K TVs, the source 360° video
must have a resolution of 16K (16384x8192).

Processing: In order to display a FOV of a 360° video to the user, the following
three steps are required: 1) decode the 360° video (mostly equirectangular video),

Chapter 5 Multimedia Streaming in a Multiscreen Environment

2) calculate the FOV frames from the decoded 360° video frames by performing the
geometrical transformation that corresponds to the used projection, and 3) render
the calculated FOV frames. The decoding of the source 360° video requires more
graphical processing resources compared to decoding regular videos with the same
FOV resolution. This means that a device must be able to decode a 4K video in
order to display an HD FOV or a 16K 360° video in order to display a 4K FOV.
In addition to the encoding, the device must be able to perform the geometrical
transformation of the FOV video in real-time. For example, the time limit to calculate
a FOV frame from a 360° video frame with 30fps is 33.33ms (the display time of a
single frame). Otherwise, the player will drop frames, and this will have a negative
impact on the user experience. The processing costs for calculating a FOV frame

Figure 5.7.: Projection on FOV plane

increase proportionally to the resolution of the FOV. Figure 5.7 shows the projection
of one point from the sphere on the FOV plane which represents a single pixel and
therefore, the total number of projected points is equal to the total number of pixels
in the FOV.

Video Encoding: In Section 2.3.4 we discussed state-of-the-art video codecs which
can also be used for 360° videos. H.264 is one of the most supported video codecs
compared to other codecs like HEVC and VP9. Hardware-accelerated decoding of
H.264 videos is supported on almost any device. On the other hand, the codecs HEVC
and VP9 provide better compression rates compared to H.264 according to [154].
Although these codecs provide better compression rates, many content providers
still use H.264 in order to reach users on all devices and platforms. Furthermore, all
evaluations of state-of-the-art video codecs consider mainly regular videos and not
360° videos which are more relevant for this work. In order to get more accurate
results of codec compression efficiency for 360° videos, we evaluated multiple 360°
YouTube videos which are available in different resolutions and with the codecs
H.264 and VP9 (HEVC is not supported). According to YouTube’s recommended

5.3 360° Video for Multiscreen

129

130

Bitrate (Mbps) H.264 vs VP9 for 8 different YouTube 360° Equirectangular Videos

W144p W 240p ® 480p W 720p W1080p W1440p M2160p

Figure 5.8.: Bitrates of 8 360° YouTube videos with varying output resolutions and codecs

upload encoding settings [155], the bitrate for a 4K H.264 encoded video with 30fps
is about 45 Mbps while the recommended bitrate for an HD video also encoded
with H.264 is about 5Mbps. In other words, an uploaded 360° 4K H.264 video
has a 9 times higher bitrate than a FOV H.264 HD video calculated from it. After
uploading a 360° video to YouTube, it will be processed, and multiple versions
with different resolutions and codecs (H.264 and VP9) will be generated from the
originally uploaded video. For our evaluation, we selected eight different 360° videos
with a maximal resolution of 4K and measured the bitrate for each combination
of output resolution and codec. The results are depicted in the chart in Figure
5.8. The average bitrates of all videos for the H.264 and VP9 codecs and with
different resolutions is depicted in Figure 5.9. We see that the bitrate saving of

. Avg. Bitrate in Mbps - H.264 vs VP9 ’ Res. ‘ H.264 ‘ VP9 ‘ Saving ‘
144p | 0,24] 0,19 | 19,44%
240p | 0,37 |029 |22,62%
o 480p | 1,15 | 0,80 | 30,09%
720p | 1,87 | 1,53 | 18,18%
1080p | 4,10 | 2,66 | 34,97%
v 1440p | 9,38 | 8,40 | 10,47%
2160p | 17,45 | 17,34 | 0,65%
o s FOV-% | 10,72%) 8,82%

Figure 5.9 & Table 5.1: Avg. Bitrates in Mbps for codecs H.264 and VP9

the VP9 codec compared to H.264 is between 10% and 35% at resolutions up to
1440p (2K). This result is expected according to scientific publications that evaluate
video compression standards [156] [157]. If it comes to 2160p (4K) resolution
which is the minimum preferred resolution for 360° videos in order to provide a
FOV resolution of nearly 720p (HD), the bitrates for H.264 and VP9 are nearly the
same. This result shows that the compression efficiency of conventional codecs

Chapter 5 Multimedia Streaming in a Multiscreen Environment

such as H.264 and VP9 behaves differently between 2D and 360° equirectangular
(EQR) video content. "The main drawback of EQR is its latitude dependent sampling
density unlike conventional 2D content" [158]. This could be the reason why YouTube
supports H.264 for 360° videos up to 4K resolution, while the maximum supported
resolution of regular 2D videos using H.264 is 1440p (2K) and higher resolutions
are only supported using the VP9 codec. H.264 is the better choice in case the
compression efficiency is the same compared to other video codecs since H.264 with
hardware-accelerated decoding is supported on nearly any device and platform with
video playback capability. Let us now consider the amount of wasted bandwidth of
360° streaming using both codecs H.264 and VP9 . From Figure 5.9, we can see that
the percentage of bitrate saving of HD FOV videos compared to 4K equirectangular
videos is about 10,72% for H.264 and 8,82% for the VP9 codec. This means that on
average around 90% of the bandwidth is wasted for streaming unseen content. In
the next sections, we will introduce a solution for 360° video streaming and playback
that addresses the main challenges discussed in this section.

5.3.2 Classification of 360° Streaming Solutions

A 360° video playout consists mainly of four key components as shown in Figure
5.10 (which does not include the content generation process). We assume that either
a recorded 360° video or a 360° stream coming from a live source like a 360° camera
is already available. The four components are:

Network Border
for CST

Server

Network Border
for SST

Content E
Preparation ‘

360° Video
Storage

560 y—— ——y FOV
Transformation Playback

User Controlg
(Motion, Touch, RIC,

User Input
Capturing

Figure 5.10.: 360° Playout - CST vs SST

* Content Preparation: This component includes all steps necessary to make
the 360° video ready for streaming and playback on a set of devices and plat-

5.3 360° Video for Multiscreen

131

132

forms. In most cases, this component takes care of the generation of adaptive
bitrate content, such as HLS and DASH. Also, this component may convert the
projection used in the source 360° video to another (more efficient) projection.
For example, most cameras produce 360° videos using equirectangular projec-
tion, but after converting a video to cube map projection, the video bitrate can
be reduced by around 25%.

* 360° Transformation: An important part of 360° solutions is the transforma-
tion of a projected 360° video to a FOV, which is essentially the 2D viewport
of the user. This component takes the 360° content from the previous step
and performs the geometrical transformation that corresponds to the used
projection in order to calculate the FOV. It expects as input the FOV dimension
(w, h, fov) and the center angle (phi,theta). w and h are the width and height
of the viewport in pixels, and fov is the vertical opening angle (the horizontal
opening angle can be calculated from w, h, and fov).

* FOV Playback: This component is just a video player that renders the FOV
calculated in the previous step on various types of end-user devices like HMDs,
TVs, and mobile devices.

* User Input Capturing: This component captures the user inputs control
the view port. The captured inputs are used to calculate the center angle
(phi, theta) of the FOV before sending it to the 360° Transformation component.
The captured user inputs can vary from device to device. For example, motion
sensors are used on HMDs to detect head movements while remote control
inputs (arrow keys) are used to change the FOV on TV devices.

The four components described above are the basis for almost all 360° playouts.
The difference between existing 360° solutions we discussed in Section 2.4.2 lies in
the location where each of these components is running, especially the component
for performing the 360° transformation. Therefore, we can identify two classes of
360° streaming solutions: 1) Solutions that rely on Client Side Transformation (CST)
and 2) solutions that rely on Server Side Transformation (SST). As we can see in
Figure 5.10, CST performs the 360° transformation on the client while SST performs
the 360° transformation on the server. In order to guarantee a smooth transition
between FOVs, i.e., when the user is equipped with a head-mounted display and
moves his head, most solutions rely on CST. In the CST approach, the whole 360°
video is streamed to the client, and the 360° transformation is performed locally.
Moreover, the CST approach captures and processes user inputs locally, resulting in
lower latency compared to the SST approach. Technologies for the CST approach
are dependent on target devices and platforms. For cross-device deployments,
Web apps are a promising technology to develop code once and reach a variety of
devices. Web browsers and HTML5 technology have become a commodity across
devices and enable current 360° video solutions with CST. These rely on WebGL
(an OpenGL implementation targeted at Web browsers) and the Canvas API. The

Chapter 5 Multimedia Streaming in a Multiscreen Environment

W3C WebVR specification uses these APIs to provide support for VR devices such as
HMDs. YouTube uses the CST approach and applies ABR (Adaptive Bitrate) on the
entire 360° video and uses the same streaming infrastructure as for regular videos.
Our measurements have shown that this works well for projected 360° videos at
4K resolution, but for higher resolution 360° videos, CST takes too much time and
prevents a smooth transition between FOVs. Besides the processing issue, the bitrate
evaluation of YouTube 360° videos in Section 5.3.1 has shown that around 90%
of the bandwidth is wasted with streaming unseen content when using the CST
approach.

The SST approach addresses the processing and bandwidth issues of the CST ap-
proach by performing the 360° transformation on the server instead of the client.
As a result, only the FOV video will be streamed to the client and rendered directly
to the user similar to regular videos without additional processing on the client.
This means that devices with limited capabilities concerning hardware and software
resources can be supported as well. The drawbacks of the SST approach are the
limited scalability and latency. In SST, the server needs to run an instance of the
360° transformation component for each client which increases the average costs
per user. Furthermore, all captured user inputs on the client need to be sent to the
360° transformation component running on the server which increases the latency
compared to the CST approach. In Section 5.3.4, we will introduce a novel solution
that enables high quality 360° video playback by using pre-processing techniques
for preparing the 360° videos in advance and providing a right balance between the
CST and SST approaches. Before we introduce the new solution, we will describe
the process of generating 16K 360° content which is required to enable 4K FOV.

5.3.3 16K 360° Content Generation

"360° videos with resolutions higher than 4k are currently rare. However, 16K 360°
videos are needed to produce a 4K FOV which can be displayed on 4K screens like
UHD TVs. The Blender Foundation and the Google VR team worked together in 2016
to convert the opening sequence of the Llama cartoon “Caminandes” into a 360°
VR experience [159]. As a result, they created the 360° equirectangular frames using
Blender and generated the 360° video for YouTube in different resolutions up to 8K [160].
Since we need a resolution of at least 16K (4 times 8K) to enable 4K FOV, we generated
the 360° equirectangular frames in 16K resolution (16384x8192 pixels) from Blender
Caminandes source material" [21]. Figure 5.5 shows an example of a Caminandes
360° equirectangular frame while Figure 5.6a shows the calculated 4K FOV frame
with 90° horizontal FOV angle. It is important to mention that the generation of
each equirectangular frame took around 1 hour on a PC with four modern GPUs
(NVIDIA's GeForce GTX 1080). In total, we generated 960 equirectangular frames

5.3 360° Video for Multiscreen

133

134

in PNG format which result in a video duration of 40s with a frame rate of 24fps
(960 = 24fps*40s). The generated content will be used to evaluate (in Section 6.3)
our pre-rendering based solution by comparing it to existing 360° video streaming
solutions. Figure 5.11 shows the difference between a FOV generated from a 4K
equirectangular frame and a FOV generated from a 16K equirectangular frame. We
can clearly see that the quality of the FOV generated from the 16K equirectangular
frame is better than the FOV generated from the 4K frame. This is because a 16K

frame has a 16 times higher resolution than a 4K frame as we mentioned earlier.

Figure 5.11.: (a) FOV created from 4K equirectangular frame vs. (b) FOV created from 16K
equirectangular frame

5.3.4 360° Video Pre-rendering Approach

As we discussed in Section 5.3.2, the CST and SST approaches both have advantages
and disadvantages. While the CST approach enables low motion-to-photon latency
which is a key requirement for 360° playback on HMDs and uses existing streaming
infrastructure without the need for computation or graphical processing resources
on the server, the SST approach reduces the bandwidth consumption and processing
requirements on the client. In this thesis, we will introduce a new 360° streaming
and playback solution that provides a good balance between the CST and SST
approaches and supports the following requirements:

* reduce bandwidth consumption by streaming only the FOV and not the entire
360° video;

* support constrained devices or any device that can play regular videos without
the need for additional processing resources;

* use existing streaming infrastructures and content delivery networks for stream-
ing regular videos;

* increase scalability and reduce operating costs by minimizing additional pro-
cessing resources required on the server comparing to regular video streaming;

* minimize motion-to-photon latency to a level that enables best user experience
depending on the input method and target device;

Chapter 5 Multimedia Streaming in a Multiscreen Environment

* support FOV with a native resolution of the target device, i.e., 4K FOV on UHD
TVs; and

* support state-of-the-art video codecs especially H.264 which is supported with
hardware acceleration on almost any playback device;

The new solution may have some drawbacks such as additional storage compared to
the CST and SST approaches which will be evaluated in Section 6.3.

The main idea of this new approach is the pre-rendering of FOV videos in a way that
additional processing on the streaming server and the playback device is no longer
required. The pre-rendered FOV videos can be stored on streaming servers and
delivered to playback devices through existing CDNs without the need to perform
the geometrical transformation for calculating the FOV for each connected client.
This means that the pre-rendering approach requires more storage resources but less
processing resources on the other side. This means that nearly any device that is able
to play a video can be supported by this approach. For example, broadcasters can use
this solution to offer 360° video streaming on televisions using HbbTV technology
at almost the same cost as conventional video streaming. The concept of storing
pre-processed content is not new and is already used in the media streaming domain,
especially for adaptive bitrate streaming. In this case, the source video will be
pre-processed, and multiple versions of it will be generated and stored for different
combinations of bitrate, resolution, and codec. This allows the player on the client
to select the best suitable version of the video depending on available bandwidth,
display resolution and supported video codecs.

In our 360° streaming approach, we will pre-render and store multiple FOV videos
with certain overlap by varying the view angle along the horizontal and vertical
axis in the spherical space. The overlap factor has an impact on the number of
FOV videos and the navigation granularity which will be discussed in more detail
in this section. The motion-to-photon latency is one of the critical factors that has
a direct impact on usability. In the case of head-mounted displays, the maximum
allowed delay is 20ms to avoid motion sickness. Our solution cannot reduce the
latency to 20ms thus is not suitable for HMDs. But for flat screen devices like TVs, it
offers a solution with a unique user experience that allows viewer to display 360°
videos and use the TV remote control for navigation without the need for additional
hardware. Bringing the 360° video experience to the TV is what many content
providers, especially broadcasters, are currently looking for. HbbTV is the enabler
technology that makes our solution attractive to broadcasters. As already mentioned,
most German and many European broadcasters already offer HbbTV services such as
electronic programme guide (EPG) and video-on-demand (VOD) services. With our
solution, broadcasters can expand this offering with a 360° video playback service
that can be easily integrated into existing HbbTV applications. The architecture
of our approach is shown in Figure 5.12 and comprises four steps: Pre-processing,
Storage, Streaming, and Playback. The pre-processing step includes the pre-rendering

5.3 360° Video for Multiscreen

135

136

3

L
9

SST
(pre-rendering) o E

Player [> i

1
| —_—
FOV, | |
' CMD: L,R,U,D=>
| ©
DASH i i
packaging KN :
1
]
1
1
1
1
1

Figure 5.12.: 360° Video Pre-rendering Approach

and packaging of all FOV videos which will be stored on dedicated streaming servers
in the next step. Afterwards, the created FOV videos and manifest files will be
made available for clients through existing CDNs. The manifest file provides all
the configurations and locations of the FOV video segments together with other
relevant information for the player. Section 5.3.6 provides more information about
the manifest file and its structure. In the last step "Playback", the client requests the
manifest file of a video which includes information about pre-rendered FOVs, starts
playback with the default FOV and reacts to user inputs to change the FOV. The four
steps are described in detail in the following subsections.

Pre-processing

The pre-processing step includes the two components "Pre-renderer" and "Packager"
that will be described in this subsection. The pre-renderer operates on the source 360°
video and calculates the requested FOVs defined in the configuration file provided
as input. A FOV is defined using the four parameters (¢, 0, Ay, A,) where:

* Ay is the horizontal opening angle of the FOV in degree

* A, is the vertical opening angle of the FOV in degree

* ¢ is the horizontal angle in degree measured from the origin to the center of
the FOV. 0° < ¢ < 360°

* @ is the vertical angle in degree measured from the origin to the center of the

A, A,
FOV. (~90°+ =) < 6 < (90° —)

Chapter 5 Multimedia Streaming in a Multiscreen Environment

The opening angle (A4, A,) defines the zoom level of the FOV and remains constant
during pre-rendering if only a single zoom level is requested. Most 360° video players
like YouTube provide a default FOV with A;, between 90° and 100° and 16 : 9 aspect
ratio. In our case, we will use a default vertical opening angle of A, = 60° and a
16 : 9 aspect ratio which results in a horizontal opening angle of A, = 91.5°. Figure
5.13 and the corresponding equations 5.1-5.6 explain the relationship between A,
and A, and how A, = 91.5° is calculated. The FOV is the projection of a part

w 16
180° T=9 (5.1
A w o1
) tan(—h): — k= (5.2)
Horizontal 2 2 7
270° 90° A, H 1
Ath taﬂ(T) =5 % (5.3)
A
+90 ' tan (—h)
fge 2 ° _ 16 (5.4)
Vertical i0 = Ay, T 9 '
: tan (—)
2
) I - Fov H s
: _1,16
: Ap =2 tan" (= xtan (=2)) (5.5)
—————————————————— Wommmm e e e 9 2
o Ay =60°= A, =91.5° (5.6)

Figure 5.13.: FOV with a WxH resolution and aspect ratio 16:9

of the sphere onto the tangent plane at the point ¢ and #. The dimension of the
FOV depends on the opening angles A; (Equation 5.2) and A, (Equation 5.3). Ay,
determines the height H of the FOV while A, determines the width W of the FOV.
Since we need a specific aspect ratio, e.g., 16:9 (Equation 5.1), we need to pass only
the value of A, or A;, and the value of the second parameter can be calculated using
Equation 5.5.

We will consider in the remainder of this section a constant zoom level (constant
FOV opening angle (A4;, A,)) and use (¢,) as a shortcut to describe a FOV instead
of (¢,0, A, A,). In general, a single zoom level is sufficient for most use cases,
especially for TV. If multiple zoom levels are required, the FOV pre-rendering
algorithm must be applied to each zoom level (A4;, A,).

Since the idea of our approach is to pre-render FOVs in advance, it is important to
know the angle of each of these FOVs. One way to do this is to specify a constant
horizontal and vertical angle distance between two adjacent FOVs. The horizontal
angle distance between two adjacent FOVs (¢1,0) and (¢2,6) is defined as Ag,
and the vertical angle distance between two adjacent FOVs (¢, 6;) and (¢, 02) is
defined as Af. In other words, all adjacent FOVs of (¢, #) along the x-axis and y-axis
are: (¢ — A, 0), (¢ + Ag,0), (¢,0 — Af) and (¢,0 + AF). Ap < A or Af < A,
means that there is an overlap between the adjacent FOVs. Figure 5.14 shows an
example for the FOVs by varying (¢, §) with A¢ = 30° and Af = 30°. The number of

5.3 360° Video for Multiscreen

137

138

FOVs for each horizontal level (keeping vertical FOV angle # constant and changing

horizontal FOV angle ¢ stepwise by A¢) is N, = 320 and the number of FOVs for

each vertical level (keeping horizontal FOV angle ¢ constant and changing vertical
1 o

FOV angle 6 stepwise by Af) is N, = % — 1. The total number of FOVs is then

N = Ny * N,. Figure 5.14 shows all combinations of FOV angles ¢ and # with the

following settings:

* A, =91.5°and A, = 60° (A, is calculated from A, as shown in Figure 5.13)
* A¢ =30°and Af = 30°

A A
0° < ¢ < 360° and —60° < 0 < 60° (—60° = —90° + ? and 60° = 90° — 7”)

360° 180°
¢ Nj, = =12,N,= —— —1=5,N = N, * N, = 60
h A¢ v AD h v
0 ¢$0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
S |
1 ﬁ —30° A,=91,5°
< _/_> 46=30 <€ -+ _/_ __hT'_—_J
-30° — ¥y %
fao= FOV | AAe |
0° !
\ :
+30° I v
(9.0)=
+60° (180°,0°)
I

Figure 5.14.: FOVs by varying ¢ and 6 stepwise with A¢ = 30° and Af = 30°

The main steps for pre-rendering all FOVs that come into account are shown in the
main function of Algorithm 3. In the first step, the function SETUPFOVANGLES()
calculates and adds all combinations of FOV angles to the list FOV Angles based on
the parameters A¢ and Af. In the next step, RENDERFOVFRAMES() renders the FOV
frames for each angle in FOV Angles and each equirectangular frame EQRFrame;
decoded from the source 360° video. The configuration of the example in Figure
5.14 was used in most of our pre-rendered videos. Furthermore, the process can
be optimized if less or non-relevant FOVs are skipped and not rendered. This is
the case, for example, when the relevant regions of interest are located around
the equator of the equirectangular video (vertical FOV angle # = 0°). As a result,
A6 = 60° (no vertical overlap) can be used instead of Af# = 30° (vertical overlap
factor = 50%) with no major impact on the user experience. In this case, the total
number of FOVs N = Nj, * N, can be reduced from 60 (N;, = 12 and N, = 5)
to 36 (N, = 12 and N, = 3). It is also possible to skip non-relevant FOVs, i.e.,
for 6 # 0° and render only relevant FOVs, e.g., for § = 0°. In this case, the total
number of FOVs N can be reduced to 12 (N, = 12 and N, = 1). This setting was
applied in many pre-rendered 360° videos especially those recorded using a static
360° camera (position of the camera does not change during the recording). Figure

Chapter 5 Multimedia Streaming in a Multiscreen Environment

5.15 shows a snapshot of a 360° video provided by the German public broadcaster
ZDF during the Biathlon World Cup in Oberhof/Germany from January 10 to 13,
2019[161]. As we can see, the upper and lower parts of the image can be skipped
since the relevant regions of interest are located in the middle part of the image.
ZDF used our solution with this configuration and offered a 360° live streaming of
the Biathlon World Cup via HbbTV [162]. It is important to mention that projections

Figure 5.15.: Snapshot of a 360° video frame during the Biathlon World Cup 2019 in
Oberhof/Germany

other than equirectangular can be applied without changing the main algorithm.
Only the function RENDERFOVFRAME() needs to be updated to create a FOV frame
using the new projection. In the last step, the function CREATEFOVSEGMENTS()
creates the FOV video segments for each combination of angle (¢, §) from the FOV
frames created in the previous step. The parameter GOP specifies the number
of frames in a video segment. The acronym GOP stands for Group Of Pictures
which is an important parameter for encoding a video and has an impact on the
compression ratio which may vary depending on the used video codec. GOP has
also an impact on the latency when switching between different FOVs. This happens
because the first frame of a segment is a self-contained picture (Intra-coded picture
or I-frame) that can be independently decoded and displayed, and all other frames in
the same segment can be predicted only from the previous frame (Predicted Picture
or P-frame) or from the previous and the following frames (Bidirectional predicted
picture or B-frame) [163]. Since B-frames are predicted from past and future frames
(I/P-frames) in the same GOP, the video decoder needs to load future I/P-frames
in order to decode the B-frames. In other words, the video player can only start
the playback from the first frame (I-Frame) of the new segment and therefore, a
switch between FOVs without skipping frames is only possible after the playback of
the current segment is completed. The duration of a segment can be calculated as
Gor

TFpg seconds, for example, a segment with GOP size of 10 frames and frame rate

5.3 360° Video for Multiscreen

139

140

of 50 frames per second results in a segment duration of 0.25 seconds or 250ms. In

this case, the average latency caused by the segment duration is 125ms. In Section

6.3, we will compare our solution to other existing solutions by evaluating them

according different metrics including the latency.

Algorithm 3 Pre-rendering of all FOVs

Input:
Input:
Input:
Input:
Input:

Define:
Define:
Define:
Define:

Ap, Ay, W, H > FOV dimension
EQRVideo > Input Equirectangular 360° video
FPS > Video frame rate
N > Total number of video frames
GOP > Number of frames in a FOV video segment
EQRFrame; > Equirectangular 360° frame 4
FOV Frame; 49 > FOV frame ¢ for angle (¢, §)
FOV Segment; 49 > FOV video segment j for angle (¢,)
FOV Angles < {} > All combinations of FOV angles (¢,)

: function MAIN() > The start function of the algorithm
SETUPFOVANGLES()

CREATEFOVSEGMENTS()

1
2
3: RENDERFOVFRAMES()
4
5

: end function

: function SETUPFOVANGLES() > Calculates all combinations of FOV angles (¢, 6)
¢+ 0°
while ¢ < 360° do

0+ 0°
FOV Angles < FOV Angles U (d, ¢, 0)
while 6 < 90° — % do
0«0+ Af
FOV Angles < FOVs U (¢, +6)
FOV Angles < FOVs U (¢, —0)
end while

¢ o+ A0

17: end while

18: end function

Chapter 5 Multimedia Streaming in a Multiscreen Environment

19: function RENDERFOVFRAMES() > Generates FOV frames from EQR frames

20 1+ 0 > Index of current frame
21: whilei < N do

22: EQRFrame; < DECODENEXTFRAME(FEQ RV ideo)

23: for all (¢, 0) in FOV Angles do

24: FOV Frame; ¢ g < RENDERFOVFRAME(EQRFrame;, ¢,0, Ay, A,, W, H)
25: end for

26: 14 1+1

27: end while
28: end function

29: function CREATEFOVSEGMENTS() > Generates FOV Segments from FOV frames

30 j+0 > Index of current segment

31: while j «x GOP < N do

32: EQRFrame; < DECODENEXTFRAME(FEQRVideo)

33: for all (¢,0) in FOV Angles do

34: il < j* GOP

35: i24+ (j+1)*GOP

36: FOV Segment; 4 9 < CREATEFOVSEGMENT(F'OV Frame;_i2 4,0, GOP, FPS)
37: end for

38: j—i+1

39: end while
40: end function

Storage

After all FOV video segments have been rendered in the previous step, they are
made available on a simple file storage server following a specific file and folder
structure. There are several methods for storing the FOV video segments. The two
most important are:

Method 1: Each FOV video segment is saved in a separate video file. All video files
related to segments of the same FOV are grouped in a folder with an appropriate
name. Furthermore, a manifest file which holds information about existing video
segments like file path of each FOV segment will be created and stored in the root
folder of the video. The example below shows the file and folder structure of this
method.

5.3 360° Video for Multiscreen 141

142

root

| fov-0-0
seg-0.mp4
seg-1.mp4

| fov-30-0
seg-0

seg-1

| _manifest.json

Method 2: All video segments related to a FOV angle (¢, #) are stored in the same
order in a single file. In order to locate a segment in the corresponding FOV video,
the byte offset of the segment in the file must be known. Therefore, the manifest
file which is also available in the root folder as in the first method needs to hold the
byte offset of each FOV segment. The example below shows the file structure of this
method.

root
fov-0-0.mp4
fov-30-0.mp4

manifest.json

Each of the storage methods described above has its advantages and disadvantages.
In the first method, the manifest file is very compact since there is no need to store
the byte offsets for each segment as in the second method. On the other hand,
the second option allows the client to request multiple segments in a single HTTP
request by using the HTTP Range header and reduce the overhead to establish an
HTTP connection for every single segment. The second method performs better if the
player runs in a browser that supports the W3C Fetch API [52]. This API allows the
application to access chunks of the binary data sent in the HTTP response while the
content is still downloading. In this case, the player can request multiple segments
from the CDN in a single HTTP request and append each segment to the video buffer
without the need to wait for all requested segments to be downloaded. If the Fetch
API is not supported, each segment needs to be downloaded in a separate HTTP
request using the old XHR API [51] which allows to access the content after all data
is received and the connection is closed. In this case, the first method performs
better since the manifest file is much smaller and simpler to parse than in the second
method.

Chapter 5 Multimedia Streaming in a Multiscreen Environment

Streaming

After the video segments and manifest files are available on the storage server,
they can be streamed to the client. The client decides based on user inputs which
segment to request at which time. There are two streaming approaches that can be
applied (Figure 5.16): In the first approach, a streaming server which acts as a proxy

Streaming Server Origin Storage Server
CDN
GET segments %%% (GET segments) Edge
= CCache>
|) \ J

Streaming || Streaming
Session Session

Y
FOV Video Segments manifest

Push or progressive GET segments
download of segments
Client Client

Figure 5.16.: 360° Streaming Approaches

between the storage server and the client is required. For each connected client, the
streaming server creates a session which holds necessary information like current
FOV angle, segment index, and other relevant information. The streaming server
pushes new segments to the corresponding connection. The second approach uses
Content Delivery Networks (CDNs) which enable stateless connections to one or
multiple segment files and allow to run the entire streaming logic on the client. The
segments will be cached on dedicated edge nodes in the CDN. The CDN approach
has proven to be the most effective method and is the de-facto standard for media
streaming over the Internet. The first approach can be applied to legacy devices like
old HbbTV terminals that are not able to construct the final video stream from the
individual FOV video segments due to the missing APIs to control and manage the
video buffer. The next section will describe the player components for the second
approach.

Playback

The player constructs the final video stream from the individual FOV video segments.
There is no need to process the received video data before playback. The client
platform only needs to provide an API that allows the application to control the
video buffer by adding, removing or replacing video segments to or from it. In our
implementation, we focused on Web technologies and used the W3C Media Source

5.3 360° Video for Multiscreen

143

144

Extension API (MSE) for this purpose. The player consists of the following three
components:

* Manifest parser: The URL of the manifest file is the only input required in
the player. As described above, the manifest contains all metadata of the video
as well as all information of the available FOVs and the bytes offsets for each
FOV video depending on which storage method is used. The implementation
section shows how to use the DASH Media Presentation Description (MPD) as
a manifest format for this solution. A Web client can request the manifest file
using a simple HTTP GET request.

* Player and Buffer Control: After the manifest is parsed, the player will be
initialized with the default FOV angle (0, 0). By default, the player starts the
playback from segment index j = 0. In each step, the player requests a segment
from the server using an HTTP GET request. If the segments corresponding
to a FOV angle are stored in a single file (as described in storage method 2
above), then the client needs to determine the byte offset of the first and last
segment from the manifest file in order to calculate the value of the HTTP
Range header.

* User Input Control: This module is responsible for navigating in the video. It
receives a request from the input device, for example, a TV remote control or
keyboard and changes the FOV. The player updates its internal state with the
coordinates of the new FOV and sends a new HTTP GET request to retrieve
the next segments of the new FOV. Once the new segments are received, the
segments of the old FOV will be automatically replaced.

5.3.5 Improvement

The pre-rendering-based approach we introduced in this thesis has a drawback
concerning the transition between FOVs: If the viewer changes the FOV, i.e., using
the arrow keys of the TV remote control, then the video segments of the target FOV
will be requested and appended to the video buffer. This leads to an abrupt transition
between the two perspectives, which has a negative impact on usability and does
not give the viewer the feeling of navigating in a 360° video. This happens because
only static FOVs for selected perspectives are rendered. Figure 5.17 illustrates this
problem. As we can see, the FOV ¢ = 15° is replaced by the adjacent FOV ¢ = 30°
at time ¢ = 1s. The viewer will not see the FOVs between ¢ = 15° and ¢ = 30°. To
solve this issue, we improved the solution by rendering transition videos (also called
motion videos) in addition to the static FOV videos. The number of the transition
videos depends on the directions that must be supported. When the four arrow keys
of TV remote control are considered, then four transition videos (left, right, up and
down) are needed for each static FOV video. This increases the total number of

Chapter 5 Multimedia Streaming in a Multiscreen Environment

© 1 1

1 1

Static Videos for !
‘g ®= 30°, 45°, 60°, 75° ,
b
. Static Static
8 | Video for Video for
f@ =15° o= 90°
o IA(D =/15°
o
[sp]
o)
T T=0.333s
1s 2s - 3s 4s time

Figure 5.17.: Abrupt transition between FOVs

videos that must be rendered to N = 5 % N, * N,, (static, left, right, up and down).
For example, the transition video FOVL (¢,) with left motion starts at video time

© 1 1

\ Transition Video from \
N ®=15° at t=1s
o
o
™ [static Video Static Video
S for ®=15° for ®=90° |
o
<~
o IACD =115°
o
(32}
o
- T=0.333s

1s 2s - 3s 4s time

Figure 5.18.: Dynamic transition between FOVs

t = 0 by FOV (¢,) while the horizontal angle ¢ increases by A¢ within the period
T (T = % is the duration of a FOV segment). This means that at time ¢t = T, the
transition video reaches the FOV angle (¢ + A¢,#) and at time ¢t = 2 x T it reaches
the FOV angle (¢ + 2 « A¢, 0) and so forth. The example in Figure 5.18 shows the
transition video with left motion from angle ¢ = 0° at time ¢ = 1s to angle ¢ = 90° at
time ¢t = 2.666s for A¢p = 15°, GOP = 10 and F'PS = 30 which results in segment
duration of 7' = 0.333s.

The idea of the improvement by rendering transition videos is submitted in Novem-
ber 2017 to the German Patent And Trade Mark Office', and the patent "[DE] Verar-
beitungsverfahren und Verarbeitungssystem fiir Videodaten" (DE102017125544B3)
[164] has been granted and published in June 2018. An international application
for the invention is also submitted in April 2018 to the World Intellectual Property Or-
ganization - WIPO? and the international patent "Processing method and processing
system for video data" (W02018210485A1) [165] has been published in November
2018.

Thttps://www.dpma.de
2https://www.wipo.int

5.3 360° Video for Multiscreen

145

5.3.6 Implementation

In order to evaluate the pre-rendering approach and compare it to other existing
solutions (see evaluation section), we implemented it including the components de-
scribed in the previous section as a proof-of-concept prototype that runs on Amazon
AWS. An overview of the technologies used in the implementation is provided in
Figure 5.19. For FOV rendering, we selected Amazon EC2 G3 instances that provide

FOV Rendering Storage
360° Video FOV Frame FOV Video DASH
Decoding Rendering Encoding Packaging Amazon S3
ffmpeg OpenGL ffmpeg Node.js
Amazon EC2 P2 with NVIDIA K80 GPUs Amazon AWS SDK
Player CDN
Playback Decryption Buffer Control Downloader Amazon
HTML5 Video EME API MSE AP/ fetch() API GoudFront
Web Browser / HbbTV HTTP

Figure 5.19.: Implementation Technology Stack

GPU-based (NVIDIA K80 GPUs) parallel compute capabilities® which are required
in our case to perform the 360° transformation. The prototype supports as input
equirectangular videos in any format that can be decoded by ffmpeg. Afterwards, the
FOV frames for all combinations of angles (¢, #) are calculated from each equirectan-
gular frame using OpenGL, a cross-platform library for 2D and 3D graphics. The FOV
frames will be then encoded into FOV video segments also using ffmpeg. In order to
guarantee playback interoperability across devices, we choose MPEG DASH [67] as
the streaming format and ISOBMFF as the file format. To enable quick switching
between FOVs on the client side, low latency streaming mechanisms are utilized.
After all FOV ISOBMFF video segments and DASH manifest are generated, they
will be uploaded to Amazon Simple Storage Service S3# without changing the file
and folder structure. For delivery, we used Amazon’s CDN CloudFront® that can
be configured easily to use AWS S3 as an origin for media files. Other CDNs like
Akamai can be used instead of CloudFront. Listing 5.4 shows an example of the
DASH manifest where each FOV is described as a separate AdaptationSet.

1 <?xml version='1.0"' encoding="'utf-8'?>

2 <MPD availabilityStartTime="2017—-05-11T14:29:14.6672"
3 publishTime="2017—05—11T14:29:14.667Z"

4 maxSegmentDuration="PT0.5S"

5 mediaPresentationDuration="PT1M14S"

®https://aws.amazon.com/ec2/instance-types/g3/
*https://aws.amazon.com/s3/
Shttps://aws.amazon.com/cloudfront/

146 Chapter 5 Multimedia Streaming in a Multiscreen Environment

34

minBufferTime="PT4S"
profiles="urn:mpeg:dash:profile:isoff—live:2011">

<Period id="0" start="PT0S">
<!— AdaptationSet for FOV (static,0,0) —>
<AdaptationSet codecs="avcl.64001F" contentType="video" mimeType="video/mp4"
id="static —0-0">
<Role schemeldUri="urn:mpeg:dash:role:2011" value="main"/>
<SupplementalProperty schemeldUri="urn:fhg:fokus:fov:2017" value="(static
,0,0)"/>
<SegmentTemplate duration="0.5" initialization="$RepresentationID$/init.mp4"
media="$RepresentationID $/seg—$Number$.m4s" startNumber="1"
/>
<Representation bandwidth="5000000" id="video—5000000—static —0—0" />
<Representation bandwidth="2000000" id="video—2000000—static —0-0" />
<Representation bandwidth="1000000" id="video—1000000—static —0—0" />
</AdaptationSet>

<!— AdaptationSet for FOV (static ,30,0)—>
<AdaptationSet codecs="avcl.64001F" contentType="video" mimeType="video/mp4"
id="static —30—0">
<Role schemeldUri="urn:mpeg:dash:role:2011" value="main"/>
<SupplementalProperty schemeldUri="urn:fhg:fokus:fov:2017" value="(static
,30,0)"/>
<SegmentTemplate duration="0.5" initialization="$RepresentationID$/init.mp4"
media="$RepresentationID $/seg—$Number$.m4s" startNumber="1"
/>
<Representation bandwidth="5000000" id="video—5000000—static —30—0" />
<Representation bandwidth="2000000" id="video—2000000—static —30—0" />
<Representation bandwidth="1000000" id="video—1000000—static —30—0" />
</AdaptationSet>

<!— other AdaptationSets for remaining FOV videos —>
</Period>
</MPD>

Listing 5.4: Example DASH Manifest with FOV AdaptationSets

"Using SupplementalProperty, the FOV type (static or motion) and FOV angle are
described. Within each AdaptationSet, multiple Representations with varying bitrates
of the FOV video are made available. An AdaptationSet includes a role element
with value “main” and all other AdaptationSets include a role element with value
“alternate”. The value of the role element is used in the DASH player to select the
default FOV. Since the transition between FOVs is triggered by the user, i.e., using
remote control inputs, existing DASH players need to be extended to implement the
transition logic by selecting the appropriate AdaptationSet. An AdaptationSet may
also contain a “low-latency” representation, which has higher bitrate due to short
segment length and is used when the player switches between FOVs. Also, it can
contain a “regular” representation with longer segment lengths, e.g., 2s which is
used by the player when the FOV remains unchanged. This representation saves
bandwidth, because of lower bitrates due to longer segment lengths" [21]. After the
packaging is completed, all FOVs and the manifest file are published to Amazon’s

5.3 360° Video for Multiscreen

147

148

CDN CloudFront which can be easily configured to use AWS S3 as CDN origin. Other
CDNs like Akamai can be used instead of CloudFront as well.

"On the client side, we leverage Web technologies such as W3C Media Source Exten-
sion API (MSE). MSE API allows Web applications to control the source buffer of an
HTMLS5 video object by appending, removing or replacing segments. No Canvas API
is needed since pre-rendering was used in the previous step. Therefore, the content
can also be DRM-protected and played with the help of the W3C Encrypted Media
Extensions API (EME). We use a single MSE SourceBuffer for seamless transitions
between FOVs. Multiple SourceBuffers could cause video decoding interrupts. Using
MSE’s appendBuffer() ISOBMFF segments of a FOV are fed into the SourceBuffer for
playback. When the FOV changes, existing segments are replaced by segments of the
new FOV. Moreover, the adaptation logic in a DASH player needs to be modified for
this type of playback. Besides pre-buffering of adjacent FOVs, the different bitrate
representations can be used to optimize FOV switching latency further. For example,
when the user is switching between FOVs, only the lowest bitrate of the low-latency
Representations is requested from the CDN. Once the FOV remains unchanged,
and the playback stabilizes, the adaptation logic can decide to switch to higher
bitrates. Furthermore, for requesting FOV video segments we use the new W3C
fetch API instead of XHR API. The fetch API allows the client to access downloaded
chunks before the whole content is fully loaded. In this case, the player can request
multiple segments in a single request (using the HTTP Range header) and still
be able to access each segment as soon as all its chunks have been downloaded."
citeBass1804:Streaming

Chapter 5 Multimedia Streaming in a Multiscreen Environment

Evaluation

In this chapter, we will evaluate the approaches and solutions presented in this thesis
and compare them with existing state-of-the-art solutions. Section 6.1 evaluates
the Multiscreen Application Model and the Media Synchronization algorithm while
Section 6.2 evaluates the three Application Runtime approaches introduced in

Section 4.4.1 according to different metrics like bandwidth, latency, and battery life.

Finally, Section 6.2.4 provides an evaluation of the 360° pre-rendering approach
we introduced in Section 5.3 and compares it to existing state-of-the-art rendering
approaches.

6.1 Multiscreen Application Model and Media
Synchronization

In order to evaluate the accuracy of the Multistream synchronization algorithm we
introduced in Section 5.2.2, we developed a prototype based on the Multiscreen
Application Model that implements the video wall use case described in Section
3.1.5. Besides the evaluation of the synchronization accuracy, this use case addresses
also most of the identified multiscreen requirements listed in Section 3.2.1 such
as discovery, launch, instantiation, communication, terminating and joining. From
the use case defined in Section 3.1.5, which describes the functionality of the
video wall, we can identify the two composite application components CACClient
and CACDisplay, which in turn include the atomic components AACControl and
AACPlayer, as described below:

* Atomic Application Component AACControl:

— As depicted in Figure 6.1a, this component provides a cast button that
allows the user to discover displays of the video wall;

- launches a CACDisplay instance on each discovered display. For the sake
of simplification, we assume that the names of the displays are used to
determine the position of the corresponding display in the video wall as
depicted in Figures 6.1b and 6.1c;

— assigns a video URL to each AACPlayer instance and uses the display
names to determine the video URL of the corresponding tile;

149

co control '\,
bar of the

(c) Video Wall Display: Before Launch (d) Video Wall Display: After Launch

Figure 6.1.: Video Wall Application Components

n-n

- provides player controls like "play", "pause", and "seek" that allow the
user to control the playback of the video wall.

* Atomic Application Component AACPlayer:

— runs inside CACClient or CACDisplay components;

- receives target video URL from the AACControl instance;

— all player instances are kept in sync by assigning each of them to the same
sync group.

The implementation of the Video Wall Multiscreen application is described in Section
B.2.2 of the Appendix, and the corresponding Multiscreen Model Tree is depicted
in Section B.2.1. The Multiscreen Model Tree captures the status of the video wall
application during all relevant phases at runtime. Visualizing the whole application
state in a single model makes the development of the application much easier since
the application components are derived directly from it. Each of the identified
atomic and composite components is implemented as a Web Component following
the approach we introduced in Section 4.5. The advantages of this approach are
summarized below:

* the application is built using modular and reusable components (atomic or
composite).

150 Chapter 6 Evaluation

* the introduced approaches and concepts hide the complexity of integrating
individual multiscreen features by using simple and powerful APIs.

* it is built on top of standardized web technologies which are essential for
developing interoperable multiscreen applications since the involved devices
may run different platforms and operating systems while most of them provide
a web browser or embedded web runtime.

* enables migration of application components between devices without notice-
able effort;

* enables synchronization of application content and media streams across
different devices through a simple API that implements the synchronization
algorithm introduced in this thesis;

* allows using different application concepts and approaches introduced in
Section 4.3 in the same application without changing the code. This enables a
high degree of flexibility by selecting the best suitable approach for a concrete
application;

* supports multiple application distribution methods that can be applied based
on available computing resources and media rendering capabilities on each
connected device; If target devices are unable to process or render the appli-
cation, the processing-intensive components or the entire application can be
migrated to dedicated servers in the cloud without modifying or updating the
application.

Content Generation for the Video Wall Application: For evaluation purposes, we
set up a video wall with nine displays in a 3x3 matrix. Each of the displays has a
resolution of 1920x1080 pixels which results in a total resolution of 5760x3240
pixels. The computer-animated film Big Buck Bunny by the Blender foundation [166]
is used as input content for the Video Wall. The source video was made using the
Blender software and is available under the Creative Commons License Attribution
3.0. For the video wall application, we need to split the content into nine tiles (3x3
matrix) that can be mapped to the displays of the video wall. We used the open
source software ffmpeg for this purpose. The following ffmpeg commands are used
to generate the 9 video tiles from the source video bbb.mp4 (video/audio codec is
H.264/AAC):

ffmpeg —i bbb.mp4 —filter:v "crop=in w/3:in_h/3:0:0" bbb—1.mp4

18
2 $ ffmpeg —i bbb.mp4 —filter:v "crop=in w/3:in_h/3:in w/3:0" bbb—2.mp4

3 oo

4 $ ffmpeg —i bbb.mp4 —filter:v "crop=in w/3:in_h/3:in_ w=2/3:in_h+«2/3" bbb—9.mp4

In next step, the DASH content for each video tile (bbb-1.mp4 ... bbb-9.mp4)
will be generated and made available on a static HTTP server or CDN. The same

configuration which includes five bitrate levels (0.5 Mbps, 1Mbps, 1.5Mbps, 2Mbps,
and 3Mbps) and H.264/AAC as video/audio codec is used for the source video

6.1 Multiscreen Application Model and Media Synchronization 151

152

and all tiles. The DASH content is generated using node-segmenter developed at
Fraunhofer FOKUS. node-segmenter is a command line tool written in Node.js which
generates DASH compliant content from various input sources (Meanwhile ffmpeg
supports also DASH as output format which can be used to create the DASH content
in a single command):

1 $ node—segmenter —i bbb.mp4 —c config.json bbb/manifest.mpd
2 $ node—segmenter —i bbb—1.mp4 —c config.json bbb—1/manifest.mpd

4 $ node—segmenter —i bbb—9.mp4 —c config.json bbb—9/manifest.mpd

The most relevant part of the distribution logic of the video wall application is
provided in the AACControl component shown in Listing B.6 of Appendix B.2.2. It
uses the APIs for discovery, connecting, disconnecting, launch and communication
in one place without increasing the complexity of the application. This allows the
developer to focus on the essentials for implementing the application itself and frees
him/her from common implementation details that occur in nearly every multiscreen
application and can be provided by the underlying platform. For example, in the
video wall application the synchronization of all video tiles is implemented in
the AACPlayer component in Listing B.7 in just two lines of code (lines 14-15) by
assigning the video element on each device to the SyncGroup with the same name
VideoWall. The screenshots of the video wall application components depicted
in Figure 6.1 show the video wall using the Big Buck Bunny content created as
described above. However, for evaluation purposes, it is difficult to measure the
synchronization accuracy of the playback on the displays using this content. Instead,
we will use test streams provided by the BBC Research and Development group [167]
which are created as MPEG DASH test streams and to measure the synchronization
accuracy between multiple players since each video frame contains indicators like
time and color codes that can be used to uniquely identify the current frame and
playback time. In order to capture the playback on all displays of the video wall, the
recording should be made using a camera with high frame rate to achieve a better
precision. For example, if the camera used for the recording has a frame rate of 60
FPS (frames per second), then we can achieve a precision of 16.67ms (time between
two adjacent frames). The snapshots of the recording in Figure 6.2 show the video
wall at four different playback times. For example, Figure 6.2a shows the video
wall at video time 00:11:02:00 where we can see that all displays are presenting
the same frame if we compare the time codes. It is important to mention that the
time code has the format hh:mm:ss:ff where ff is the index of the video frame in the
current second ss. The video on each display has a resolution of 1920x1080 pixels
and a frame rate of 25 frames per second which results in frame indexes ff ranging
from 00 to 24 (first and last frames in a second).

Chapter 6 Evaluation

(c) Video Wall Snapshot at 00:17:50:00 (d) Video Wall Snapshot at 00:17:58:00

Figure 6.2.: Video Wall Components

In order to measure the synchronization accuracy very precisely at any time during
playback, we started the video wall application using the BBC test video as input and
recorded all displays using a camera with higher frame rate than the test video itself.
In our evaluation, we used the camera of an iPhone 7 and changed the settings to
record videos in 60 frames per second (default is 30) which is more than two times
higher than the frame rate of the test video itself. The synchronization accuracy is
defined as the frame difference between the slowest and fastest players. We used
the first display of the video wall as a reference for the measurement. Figure 6.3
shows the maximum frame difference between the slowest and fastest players and
the average frame difference for all players. We can see that most of the time the
maximum frame difference is only one frame except in the time interval 00:17:48:17
-00:17:50:00. This happens because we changed the playback position in the control
AAC which requires all players to adjust their position. It took about 2 seconds for
all players to buffer the content of the new position and until the synchronization
stabilizes again.

There is another strategy which can be applied for seeking, namely pausing the video
and waiting for all players to buffer enough data in the new position. After starting
the playback from the paused state, a frame-accurate synchronization can be reached
immediately as we can see in the chart at time 00:19:48:00 (the video was paused
before this time). As a conclusion, the implemented synchronization algorithm
delivered a good result with maximal frame difference of only one frame. The ideal

6.1 Multiscreen Application Model and Media Synchronization

153

154

Synchronization Accuracy

12

10

8

6

4

2
o~

—AVG MAX

Frames Difference

Figure 6.3.: Video Wall Synchronization Accuracy

synchronization result is when all displays show the frame with the same number
(frame difference is 0) at any time. This result can be achieved with our algorithm
when the synchronization is integrated at a lower level of the browser’s media
engine, which we could not consider in our implementation without manipulating
the browser. The reason behind this lies in the fact that the methods for reading and
changing the current video time in JavaScript are not as accurate as if they were
implemented natively at the platform level.

6.2 Multiscreen Application Runtime Approaches

In Section 4.4.1 we introduced the three multiscreen application runtime approaches
Multiple Execution Contexts, Single Execution Context, and Cloud Execution. This
section evaluates the three approaches according to the metrics shown in Table 4.1
which provides only a high-level comparison. For this, we developed two multiscreen
applications which are briefly described below:

» Simple Application: This application consists of a sender and receiver com-
ponents. The sender offers a "cast" button that allows launching the receiver
component on a target device, and then establish a communication channel
between both components. Afterward, the sender reads the system time every
20ms and displays it in the format hh:mm:ss.SSS (SSS are the milliseconds).
The time displayed on the sender will also be sent over the established com-
munication channel to the receiver to display it. This method allows us to
measure the Photon-To-Motion latency as we will see later.

Chapter 6 Evaluation

* Video Application: The video application is identical to the first application
with the only difference that the receiver component plays the Big Buck Bunny
video and the time sent by the sender will be displayed on top of it. The
selected Big Buck Bunny version has a resolution of 1280x720 pixels and a
frame rate of 30 frames per second.

There are of course other more complex applications like multiscreen games with
extensive graphics processing that could be also used for the evaluation but the
results can vary considerably depending on the processing capabilities of the devices
under considerations. Our goal is to evaluate the multiscreen approaches according
the metrics listed below and not the performance of the application itself on each
single device. For complex applications, the evaluation values can be different
because they contain not only the values for the evaluation metrics, but also the
values for the execution and rendering of the application itself. Therefore, we
selected very basic multiscreen applications and evaluated them on the following
devices:

* Sender Device: We used a MacBook Pro with a 3,1 GHz Intel Core i7 CPU with
2 cores, Intel Iris Graphics 6100 1536 MB integrated graphics and a memory
of 16 GB 1867 MHz DDR3. It is important to mention that the CPU, Memory,
and Energy Impact evaluation results also include the usage of the integrated
graphics.

* Receiver Device: The receiver device used in the evaluation is Chromecast
Ultra', a widely used low-cost HDMI streaming device from Google. It can be
connected to the internet via Wi-Fi or Ethernet and includes a Marvell Armada
1500 Mini Plus processor that supports 4K video playback and has 512MB of
memory.

* Cloud Server: This server is only relevant for the evaluation of the Cloud
Execution approach and runs on a Microsoft Windows machine with an Intel
Core i7-6820HQ CPU with 4 cores, integrated Intel Graphics HD 530, 16 GB of
memory.

The sender and receiver devices were connected to the same local network, and the
bandwidth of the Internet connection was 6Mbps. The evaluation was performed
according to the following metrics, which are derived from the non-functional
requirements identified in Section 3.2.2.

* Bitrate: The bitrate (bandwidth) [Kbps] required by the application during
runtime for the communication between the sender, receiver and server (in
case of cloud rendering).

https://store.google.com/product/chromecast_ultra

6.2 Multiscreen Application Runtime Approaches

155

156

* Motion-To-Photon Latency: This is the time [ms] required until a user inter-
action performed on the sender device is reflected on the receiver device. Both,
the Simple and Video multiscreen applications mentioned above display the
sender time on the sender and receiver devices. The output of both devices
is captured with the iPhone7 camera in slow-motion mode (240 frames per
second) which provides high accuracy measurements.

* CPU Usage: This metric measures the percentage of processing time used by
the multiscreen application on a particular device (Sender or Receiver) or on
the server in case the Cloud Rendering approach is considered.

* Memory Usage: Memory [MB] used by all processes of the multiscreen appli-
cation and the underlying runtime on the end-user device or the Server in the
case of the Cloud Rendering approach.

* Energy Impact: The energy impact is an indication of the power consumption
of the application on the sender device provided via the activity monitor on
the Mac. It is "a relative measure of the current energy consumption of the app.
Lower numbers are better" [168]. It takes into account CPU usage, GPU usage,
network and disk activities.

6.2.1 Evaluation of the Simple Application

The evaluation results of the simple application are shown in Figure 6.4. Each chart
shows the evaluation results of the three approaches. It is worth to note that the
x-axis in all diagrams represents the time of each measurement in seconds. The
following list shows the legend of the rendering approaches in all charts:

* 1-UA (Single User Agent): Single Execution Context
* 2-UA (Two User Agents): Multiple Execution Contexts
* Cloud-UA (Cloud User Agent): Cloud Execution

Below is a discussion of the evaluation results:

* Bitrate: The bitrate usage is shown in Figure 6.4a. As we can see, the bitrate
in the 2-UA mode is insignificant compared to the other two approaches. The
reason for this is that in the 2-UA mode, the data messages are sent directly to
the receiver while in the other two approaches the UI of the receiver application
is rendered in headless mode, i.e., the output is captured and streamed as
video to the receiver device. The impact of the bitrate is more relevant for
the Cloud Execution approach. In this case, the video content is transferred
to the client over the Internet where the available bandwidth may be limited
compared to the Single Execution Context where the video is streamed directly
from the sender to the receiver device over the local network.

Chapter 6 Evaluation

Bitrate [Mbps]

CPU Usage [%]

~
@

~
o

-
@

.
5

@

Bitrate - Simple App Motion-to-Photon Latency - Simple App

12 350
i 300
~ & 250

08 z
=200

06 >
$ 150

©
= 100

02 50 /—\/—
— 0

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
t[s] t[s]
———Bitrate 1-UA === Bitrate 2-UA Bitrate Cloud-UA Latency 1-UA Latency 2-UA Latency Cloud-UA
(a) Bitrate (b) Motion-To-Photon latency
CPU Usage - Simple App Memory Usage - Simple App

~
=}
S)

i
®
S}

-
@
<)

Memory Usage [MB]
.
[N
S o

=
o
1S}

%
o

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
1s] tls]
———CPU Usage 1-UA ====CPU Usage 2-UA CPU Usage Cloud-UA Memory Usage 1-UA Memory Usage 2-UA Memory Usage Cloud-UA
(c) CPU usage (d) Memory usage

Energy Impact - Simple App

t[s]

Energy Impact 1-UA Energy Impact 2-UA Energy Impact Cloud-UA

(e) Energy impact

Figure 6.4.: Evaluation of the 3 runtime approaches using a simple application

* Motion-To-Photon Latency: Regarding Motion-To-Photon latency, we can see

in Figure 6.4b that the 2-UA approach achieves the best result followed by
the 1-UA and Cloud-UA approaches. This result is expected since, in the 2-UA
approach, the sender transmits the application runtime data (e.g. in JSON
format) directly to the receiver in the local network where the transmission
latency is negligible. The reason why the Motion-To-Photon latency is around
50ms on average despite the low transmission latency, is that it also includes
the time the receiver UA needs to parse the message and update the application
in addition to the time until the changes are reflected on the display. This
shows why a low-cost streaming device like Chromecast still has a certain
latency that needs to be considered. For example, the Motion-To-Photon
latency will be lower when a high-performance device such as a game console

6.2 Multiscreen Application Runtime Approaches

157

158

is used as the receiver. The reason why the Motion-To-Photon latency is higher
for the 1-UA and Cloud UA approaches than for the 2-UA approach is that
additional video encoding (sender side) and decoding (receiver side) steps are
required. This requires buffering some amount of video data in order to react
to network fluctuations especially in the Cloud-UA approach where the video
is transmitted over the Internet to the receiver.

* CPU Usage: The evaluation of the CPU usage is shown in Figure 6.4c. We
can see that the usage of the Cloud-UA approach is the lowest compared to
the other two approaches since the sender only needs to play a video without
any application processing. The 2-UA approach is second because the CPU
utilization involves the execution of the sender application and the transfer of
data to the receiver. The highest CPU usage is measured for the 1-UA approach
since both applications (sender and receiver) are executed on the sender device
(receiver application in headless mode), and the receiver application UI will
be captured and transmitted to the receiver device as a video stream.

* Memory Usage: The evaluation results of the memory usage which are shown
in Figure 6.4a are similar to the CPU usage results. The Cloud-UA approach
requires memory as a buffer for decoding the video which has a low bitrate
(around 1Mbps) for the simple application. On the second place there is the
2-UA approach which requires a certain amount of memory for executing the
sender application and for the underlying application runtime. Finally, the
1-UA approach requires the highest amount of memory for executing both
applications and for encoding a video from the headless receiver application.

* Energy Impact: Finally, the energy impact evaluation shown in Figure 6.4e
shows that the energy consumption on the sender device is the highest in the
1-UA approach and lowest in the Cloud-UA approach. As expected, the 1-UA
consumes more energy than the other two approaches since it executes two ap-
plications and encodes and streams a video. Regarding the 2-UA and Cloud-UA
approaches, the results show that the energy consumption for decoding a low
bitrate video for the simple application is lower than the energy consumption
for executing the application itself.

From the evaluation results, it is clear that the Multiple Execution Contexts (2-UA)
approach is the better choice if the receiving device has enough power to run
the application without affecting the use experience. For demanding applications
such as games that cannot be processed on the device under consideration due to
lack of resources, the Cloud Execution approach can be used at the costs of higher
bandwidth consumption and the costs of operating and maintaining a cloud runtime
environment. Cloud gaming platforms such as Google Stadia [134] use this approach
to enable gaming applications on low-performance devices such as Chromecast.

Chapter 6 Evaluation

6.2.2 Evaluation of the Video Application

The evaluation results of the video application are shown in Figure 6.5. The structure

is the same as above:

Bitrate - Video App

Motion-To-Photon Latency - Video App

600

7 - 500
é ¢ é 400
z, z
] < 300
s 2
£2 3 200
3

1 100

0 0

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
t[s] tfs]
e=——=Bitrate 1-UA ====Bitrate 2-UA Bitrate Cloud-UA Latency 1-UA Latency 2-UA Latency Cloud-UA
(a) Bitrate (b) Motion-To-Photon latency
CPU Usage - Video App Memory Usage - Video App

50 280

45 260 /_/

40 2 240
- s
£35 o 220 /
& 30 & 200
& 25 3
=} 180
>0 3 f—~—
a 160
g1 - — g

10 ——— s 140 ’/

0 5 10 15 20 25 30 35

t[s]

=== (CPU Usage1-UA ==CPU Usage 2-UA

(c) CPU usage

CPU Usage Cloud-UA

120

100

40 0 5 10 15 20 25 30 35
t[s]

Memory Usage 2-UA

Memory Usage 1-UA

(d) Memory usage

Energy Impact - Video App

400

1 300
&

2250
< 200
g 150
2

“ 100

Energy Impact 1-UA

10 15 20 25 30 35 40
t[s]

Energy Impact 2-UA Energy impact Cloud-UA

(e) Energy impact

Figure 6.5.: Evaluation of the 3 runtime approaches using a video application

* Bitrate: Figure 6.5a shows a similar distribution for the bitrate as for the simple
application with the difference, that the 1-UA and Cloud-UA approach that
capture and stream the receiver application as video require more bandwidth
compared to the simple application. We can also see that the bitrate of the
Cloud-UA approach is around 30% lower than for the 1-UA approach due to
the compression settings in the video encoder on the server in order to provide

6.2 Multiscreen Application Runtime Approaches

40

Memory Usage Cloud-UA

159

160

a smooth playback on the receiver, in case the video is streamed over the
Internet. The bitrate can vary when network conditions change.

* Motion-To-Photon Latency: Regarding Motion-To-Photon latency, we can
also see that the ranking of the three approaches is the same as in the simple
application but with higher latency up to 600ms on average for the Cloud-UA
approach which is an expected result due to the higher video bitrate and video
encoding or decoding times (Figure 6.5b). On the other hand, we expected
that the latency for the 2-UA approach remains the same as in the simple
application. However Figure 6.5b shows that the latency increased from 50ms
to 250ms on average. The explanation is that the receiver is a low-performance
device and needs more time to display the received data from the sender if it
plays a video at the same time.

* CPU Usage: The results of the CPU usage evaluation are shown in Figure
6.5c. There is no difference in the 2-UA approach between the evaluation of
the simple and video applications which is expected since the sender compo-
nent is the same in both applications. However, we can see that there is an
increase in the CPU usage for the 1-UA and Cloud-UA approaches compared
to the simple application. The explanation for this increase is the additional
processing resources needed to decode and play a high bitrate video in the
video application.

* Memory Usage: As for the CPU usage, the memory usage shown in Figure
6.5a for the simple and video applications is the same for the 2-UA approach
and increases in the other two approaches due to the higher video bitrates.

* Energy Impact: The energy impact evaluation is shown in Figure 6.5e. Also,
the energy impact for the simple and video applications is the same for the
2-UA approach and increases in the other two approaches due to the higher
video bitrates.

The evaluation of the video application shows similar results as for the simple
application. Here is also the Multiple Execution Contexts (2-UA) approach is the better
choice if the end device is able to play the video and supports the corresponding
codecs. In case the end device cannot render the video locally, for example 360°
videos which require additional processing resources compared to normal videos to
perform the geometrical transformation, then the Cloud Execution approach can be
applied. The evaluation of 360° video streaming and playback will be discussed in
Section in more detail.

6.2.3 Evaluation of the Cloud-UA Approach on the Server

So far, we evaluated and analyzed the three multiscreen runtime approaches 1-UA, 2-
UA, and Cloud-UA using a simple and a video application. In the Cloud-UA approach,

Chapter 6 Evaluation

it is also important to evaluate the resources (CPU and memory) used on the server
for both applications. These evaluation results are shown in Figure 6.6.

CPU Usage - Server Memory Usage - Server

30 800

25 @ 70

< = 600

=20 & 500
3

3 15 3 400
f >

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
tfs] t[s]
=== CPU Usage - Video App e=CPU Usage - Simple App

%

CPU Usag;
-
o

o w
-
)
S

Memory Usage - Video App == \emory Usage - Simple App
(a) CPU Usage (b) Memory Usage

Figure 6.6.: Evaluation of server resources for the Cloud-UA approach

* CPU Usage: Figure 6.6a shows that the CPU usage for the video application
is higher than for the simple application which is an expected result because
the applications were started on the server at time O while the capturing and
streaming at time 15 which explains the increase in the CPU usage at this time.

* Memory Usage: Figure 6.6b shows that the memory usage for the video
application is higher than for the simple application which is related to the
amount of video data that needs to be buffered in the memory. The increase
in memory consumption for both applications occurs after the capturing and
streaming were started at time 15s. This result is also expected since the
capturing requires additional memory for the encoding and buffering of the
output video.

6.2.4 Summary

We can see from the evaluation of the three approaches that the 2-UA approach pro-
vides the best results regarding all metrics. This is because the application execution
is distributed on multiple devices and there is no UI capturing and streaming of
application components. The question that arises from this result is, why we still
need the other two approaches. The answer for this question is that in the 1-UA
approach there are no requirments for the application runtime on the receiver device
and the sender only needs to support wireless display standards such as Miracast and
Airplay which are supported on Android and iOS platforms as well as on the majority
of TV platforms such as Tizen, WebOS, and AppleTV. Also from a security & privacy
perspective, the 1-UA approach keeps all application data in one place on the sender
device and no information will be shared with other devices. Regarding the 2-UA
approach, a widely deployed open standard is still missing, but this may change in
the near future when the work of the Open Screen Protocol [16] is finished which

6.2 Multiscreen Application Runtime Approaches

161

162

is currently developed in the W3C Second Screen Community Group as an open
standard. Currently, the most widely deployed solution for the 2-UA approach is the
Google Cast Framework supported in Chrome browser (as sender) on all desktop
and mobile platforms and receiver devices (Chromecast and Android TV).

Finally, the results of the Cloud-UA approach show that this option is only relevant for
high-performance applications that require upscale graphic computation capabilities
like games or VR applications. Therefore, the scalability and additional server costs
must be weighed against the benefits of this approach. Another use case for this
approach is the virtualization of TV applications (which usually run on dedicated
hardware such as Set-Top-Boxes) using edge computing paradigms. The W3C Cloud
Browser Task Force [133] discusses first ideas for standardizing this approach, but
there is still little support from the industry side.

6.3 360° Video Rendering and Streaming

This section evaluates the 360° pre-rendering solution we introduced in Section
5.3.4 and compares it to the CST (Client Side Transformation) and SST (Server Side
Transformation) approaches. The three solutions will be evaluated according to the
metrics: bitrate usage, client resource usage (includes CPU usage, memory usage,
and energy impact), motion-to-photon latency, and used server resources.

6.3.1 Bitrate Usage

To compare the required bandwidth for each of the three approaches, we will use
360° equirectangular videos with 4K (3840x1920) resolution and corresponding FOV
videos (60° vertical FOV angle) with HD (1280x720) resolution. More specifically,
we will use 8 different 360° videos provided by several German broadcasters like
Arte, ZDF, RBB, and BR. All videos are encoded in H.264 and have a frame rate of 30
frames per second. for each of these videos we generated the corresponding FOVs
also using the H.264 codec with a GOP size of 10 frames using the pre-rendered
approach and then calculated the average FOV bitrate for each video. Figure 6.7
compares the bitrates of the source 360° videos (in blue) which are equivalent to the
required bandwidth for the CST approach and the average bitrates of FOV videos
(in orange) which are equivalent to the required bandwidth for the SST and pre-
rendered approaches. The bitrate overhead for the CST approach compared to the
other two approaches is around 83,5% (red line, top area). The comparison between
the bitrates of 4K and HD H.264 encoded videos in Figure 5.9 shows an overhead
of around 89,3% which is higher than the result of this experiment. The reason
for this difference is because the GOP size of the generated FOV videos is set to 10
frames which impacts the compression rate of the encoder. The reason why the GOP

Chapter 6 Evaluation

Bitrate Comparaison

50 83,5% 82.1% 84,2% 84,4% 83,8% 84,5% 83,2% 82.2% 0,90

0,50
25

0,40
20

0,30
15
10 0,20
5 l [|
; o = | [| H

1 2 3 4 5 6 7

0,00
8

Bitrate [Mbps]

Video

[Bitrate - CST W Bitrate - SST/Pre-rendering == Qverhead CSTvs. SST/Pre-rendering %

Figure 6.7.: Bitrate overhead for CSP compared to SSP and pre-rendering approaches

size is set to 10 frames will be explained in the discussion of the motion-to-photon
evaluation below.

6.3.2 Client Resources

This usage of client resources for the three 360° rendering and streaming approaches
CST, SST, and pre-rendering are shown in Figure 6.8. As we can see from these
results, there is no difference between SST and pre-rendering since the client is the
same for both approaches and needs only to play the FOV video stream already
processed on the server. The client device used in the evaluation is a MacBook
Pro with a 3,1 GHz Intel Core i7 CPU (2 cores), integrated Intel Iris Graphics 6100
1536 MB and 16 GB 1867 MHz DDR3 memory. The content used in the evaluation
is a 4K 360° H.264 video with a bitrate of around 30Mbps (used in CST) which
is the average bitrate required to encode 4K video in H.264 and FOV bitrate of
around 4Mbps (used in SST and pre-rendering) which is the average bitrate required
to encode an HD video in H.264. As we can see from these results, the SST and
pre-rendering approaches outperform the CST approach regarding all three metrics
(CPU usage, memory usage, and energy impact). The CST approach requires 50%
more CPU, 65% more memory and consumes 7 times more energy than the SST
and pre-rendering approaches. This result is expected since the CST client needs to
decode a 4K 360° video and calculate the FOV on the client device while the other
two approaches only need to play an HD video without any additional processing.

6.3.3 Motion-To-Photon Latency

The Motion-To-Photon latency (see Section 3.2.2) is one of the essential metrics with
a direct impact on the usability of 360° video playback on a specific device. The most

6.3 360° Video Rendering and Streaming

163

164

CPU Usage Memory Usage

25 600

o
500
0w T——— s

& 400

&
15 35 300

CPU Usage [%]

=

10 g 200
3]
s 100

0 5 10 15 20 25 30 35 40 t[s]

t[s]
——CPU Usage- CST CPU Usage - SST/Pre-rendering

Memory Usage - CST Memory Usage - SST/Pre-rendering

(a) CPU Usage (b) Memory Usage

Energy Impact

400
350

i 300

3 250

E

=200

&

@ 150

2

< 100
50

0 5 10 15 20 25 30 35 40
t[s]

Energy Impact - CST Energy Impact - SST/Pre-rendering
(c) Energy Impact

Figure 6.8.: Evaluation of client resources for the three approaches

relevant device categories that are used to display 360° content are head-mounted
displays which use motion sensors, mobile devices like smartphones and tablets
which use touch inputs, desktop PCs and laptops which use mouse or keyboard
inputs, and TV devices that use remote controls as input devices. The evaluation
of the Motion-To-Photon latency for the three 360° approaches CST, SST, and pre-
rendering is shown in Figure 6.9b but before we analyze these results, we will discuss
the impact of GOP size on the bitrate and Motion-To-Photon latency at same time
(Figure 6.9a). The figure shows the bitrate of Caminandes 360° Equirectangular
video in 8K resolution (8192x4096) with an average bitrate of the generated FOV
videos (60°x36°) in FHD resolution (1920x1080) when varying the GOP size. The
Peak Signal-to-Noise Ratio (PSNR) which measures the quality of reconstruction
of lossy compression codecs (like the H.264 video codec in this evaluation) is kept
constant (around 45 dB) in all measurements. We can see that long GOPs provide
better compression rates for both videos (8K and FHD). However, large GOPs increase
the complexity and thus the required resources for encoding, decoding and even
seeking in the video. The preferred GOP size depends on the content and is most
often under 50 frames. YouTube recommends a GOP of half of the frame rate for
H.264 videos [155]. The GOP size also has an impact on the Motion-To-Photon
latency, but only for the pre-rendered approach. The duration of a GOP can be
calculated as D = GOP/F PS. For example, the duration of a GOP with 10 frames
in a video with a frame rate of 25 FPS is 400ms. If the player is at time ¢ in the
current GOP and the user makes an interaction to change the FOV, then the player

Chapter 6 Evaluation

Bitrate Motion-To-Photon Latency

L, 13810 . 0] [1021]

86,77 256

56,29

46,02
o 37,96 64 m m m
32
R I T Ba 9 B2 B8 B

0 10 20 30 a0 50 0 10 20 30 40 50
GOPSSize GOP Size
—e—Bitrate FOV FHD H264 Bitrate EQR 8K H264 —e—Pre 24fps —e—Pre 30fps ——Pre 48fps ——Pre 60fps —e—CST —e—SST 24fps —=SST 30fps —e=—Pre 48fps —e=SST 60fps

(a) Impact of GOP size on bitrate (b) Motion-To-Photon latency comparison

Figure 6.9.: Motion-To-Photon Latency of 360° Streaming and Rendering Approaches

must continue the current GOP before starting the playback of the new GOP. In

this case, the player needs the time D — ¢ to fetch the new GOP (on average D/2).

The total Motion-To-Motion latency for the pre-rendered approach also includes the
time needed to capture the user input, the network latency and the download time

for requesting the new GOP, and finally the time to decode and display the video.

Since the download time depends on the available bandwidth, we assumed in the
experiment that the available bandwidth is equal to the bitrate of the source 360° 8K
video in order to compare the different approaches fairly. Since the CST approach is
independent of the GOP size of the source video, we selected a bitrate of 33,49 Mbps
which corresponds to a GOP size of 50 frames. In this case, the duration of a GOP
in a video with a frame rate of 25 FPS is 2s, which is a widely used segment length
for adaptive streaming. If we consider a GOP size of 10 frames, we can see that
the bitrate of the FOV video is 8,17Mbps. The Motion-To-Photon latency in Figure
6.9b shows the highest values for the pre-rendered approach followed by the SST
approach and then the CST approach. For example, the Motion-To-Photon latency
for a GOP size of 10 frames and a video frame rate of 24 FPS is around 503ms for the
pre-rendered approach, 96ms for the SST approach and 20ms for the CST approach.
Based on these results, we can see that only the CST approach is suitable for HMDs,
since a latency of more than 20ms leads to motion sickness. The pre-rendered
approach is suitable for devices that use keyboard or remote control as input. This is
because the user is not interacting directly with the content itself (e.g., via dragging
on a touch screen to change the FOV, where the user expects the video content
of the touched video area to remain under his finger), but using a second device
like the TV remote control to change the view on the TV. TV viewers are used
to experience delays when they interact with video services, e.g. when switching
between channels. The pre-rendered approach has already been used successfully
with the broadcasters WDR, ZDF (Germany) and ERT (Greece) as VOD and live
streams on HbbTV-enabled terminals. For example, the Biathlon World Cup 2019 in

6.3 360° Video Rendering and Streaming

165

166

Oberhof/Germany was available as a 360° live stream in the HbbTV application of
the German public broadcaster ZDF using our solution [169]. It was very exciting to
see that during the Biathlon World Cup the number of viewers who watched the 360°
live stream in HbbTV was very high and almost as high as the number of viewers
who watched the 360° live stream in the VR app for mobile devices and HMDs. This
shows that the pre-rendered approach is a good choice for TV sets.

6.3.4 Server Resources

Storage: The CST and SST approaches operate directly on the source 360° video
while the pre-rendered approach creates N different FOV videos where N depends
on A¢ and A6 as explained in Section 5.3.4. Our experience has shown that
A¢ = 30° and Af = 60° provide a good user experience on TV for most videos when
using the remote control as input device. The total number N of FOV videos will
be in this case 180. The bitrate of a FOV video is 16,5% of the source 360° video
(see Section 6.3.1) on average. This means that the total bitrate of all FOV videos is
180 * 0,165 = 29, 7 times higher than the bitrate of the 360° video. In other words,
the storage required for the pre-rendering approach is around 30 times higher than
the storage required for the other two approaches.

Rendering: In the CST approach, the rendering happens in the client without
involving any server. In the SST approach, a server instance is needed for each
session to render the video in the cloud. In our experiment, we selected Amazon
AWS EC2 instances equipped with the new generation of NVIDIA GPUs for the SST
and pre-rendering approaches. We used the smallest GPU-based EC2 instance type
offered by AWS which is fully capable of rendering 360° videos up to resolution of
4K in real time. Other more powerful GPU-based EC2 instance types can also be
used, but it is an overhead to use them for 360° video rendering in 4K resolution.
According to Amazon pricing, each instance of this type costs around 1,14$/h for
the US East region. This is also the costs for each SST session per hour. Regarding
the pre-rendering approach, a server instance is used only for generating the FOV
videos which are made available to clients via CDNs.

6.3.5 Summary

From the evaluation results of the three 360° approaches, we can see that each of
these approaches has its advantages and disadvantages. CST is the only approach
that can be applied to HMDs due to the Motion-To-Photon latency requirement of
under 20ms. This can be achieved, if there is enough bandwidth to deliver the 360°
video in real time and the are sufficient graphical processing resources (GPU) on

Chapter 6 Evaluation

the client to perform the 360° transformation which is not available on embedded
devices such as TV sets. If at least one of these two requirements is not fulfilled,
SST and pre-rendering can be used. The SST approach can be applied to all device
types except HMDs. However, it is costly and does not scale for massive 360° video
delivery since each client (360° player) requires a GPU server instance running in
the cloud or on the edge to render and stream the 360° video. But this approach
is gaining a lot of attraction in the gaming industry where costumers are ready to
pay for such a service to play games on any device even on low capability devices
like TVs. For example, Google recently announced the launch of the new cloud
gaming platform Stadia [134], which is able to stream games up to a resolution of
4K on almost any screen, including low capability devices like Chromecast. "Stadia
works across various connections from 35 Mbps down to a recommended minimum
of 10 Mbps" [170]. The pre-rendering solution introduced in this thesis solves the
scalability issue concerning the required graphical processing resources of the SST
approach and the bandwidth and processing issues of the CST approach at the cost
of increasing the Motion-To-Photon latency. Our approach is applicable to TVs that
use remote controls or arrow keys for navigation with acceptable user experience.
This has been proven by the use of our approach on various broadcasters in HbbTV,
as mentioned above.

6.3 360° Video Rendering and Streaming

167

Conclusions and Outlook

7.1 Conclusions

In this thesis, new concepts for modelling and developing multiscreen applications as
well as a new approach for the creation, delivery, and playback of multimedia content
in a multiscreen environment with a focus on 360° videos were presented. Key
multimedia multiscreen use cases and application scenarios have been considered
to derive the requirements of the application model and the underlying framework.
The research questions identified in Section 1.2 were addressed in the following
ways.

Research Question 1: How to design and develop multiscreen applications, taking into
account aspects such as development costs and time, platform coverage and interoper-
ability between devices and technology silos.

This research question was addressed in this thesis from two different viewpoints:
The conceptual design of multiscreen applications was analyzed independently of
the underlying framework and utilized technologies. This enables the modelling
of multiscreen applications without being dependent on the underlying platform.
Once the concepts and models of a multiscreen application have been created, it
can be mapped to technologies supported by the platforms on the devices under
consideration. This thesis investigated this aspect since there are no comparable
methods and tools for modelling and designing multiscreen applications, while there
are already well-proven concepts and design patterns for single-screen applications
such as the Model View Controller (MVC) paradigm [171]. More specifically, in
Section 4.2 of this thesis, a new method called Multiscreen Model Tree was presented
that allows the modelling of a multiscreen application and its components in every
phase of its lifecycle. The newly introduced method supports the core multiscreen
functions identified in Section 3.2 such as discovery, launch, joining, instantiation,
mirroring, and migration of application components. The fundamental elements
of the multiscreen model tree are the application components which can be either
composite or atomic. This classification enables the reusability of the components,
especially the atomic ones, and the capability to migrate, instantiate or mirror them
across heterogeneous devices at any time and without additional effort for the
developer.

169

170

This approach reduces development costs and times on one hand, and the maintain-
ability and expandability of the application on the other hand. It also enables the
distribution of application components to devices with heterogeneous platforms with-
out having to reimplement the entire application, but only individual components for
the desired platforms. This provides an increased "Separation of Concerns" according
to the modern software engineering principles. Concerning the interaction among
the application components during runtime, this thesis has identified the three
well-suited approaches Message-Driven, Event-Driven, and Data-Driven described
and considered the realization of each approach in centralized and decentralized
environments. Developers of multiscreen applications can select the appropriate
approach that fits the application scenario based on given criteria and requirements.
We showed that for complex applications with distributed logic and where compo-
nents can be migrated among devices, it is beneficial to use the Data-Driven approach
since the state of any component is preserved after migration and new instances
can access the current state without additional application logic. The Event-Driven
and Message-Driven approaches are recommended for applications where it is not
necessary to share the state between components. The second part of this research
question is about the platform coverage and interoperability between devices. This
thesis introduced a concept for using Web technologies and especially Web Compo-
nents to support the proposed multiscreen application model as the Web has quickly
developed towards a platform for multimedia applications across multiple devices
and platforms.

Research Question 2: How to efficiently distribute and run multiscreen applications,
taking into account available resources such as bandwidth, processing, storage and
battery without affecting the user experience.

This thesis has identified the three approaches Single-Execution Context, Multiple-
Execution Contexts and Cloud-Execution for the multiscreen runtime. All support the
multiscreen application model we discussed in the first research question. It is worth
mentioning that it is not necessary to modify the multiscreen application in order to
support one of the three runtime approaches. These approaches have been evaluated
according to multiple metrics listed in this research question. The results have shown
that the Multiple-Execution Contexts is the preferable approach and outperforms the
other two approaches regarding all metrics. We still need to consider the other two
approaches: The Single-Execution Context must be used if the target device does not
provide an application runtime environment, but only video playback capabilities.
Therefore, the target application needs to be executed in "headless mode" on the
host device, and the user interface will be captured and sent to the target device.
Besides the high processing and battery consumption, this approach is limited to
two devices. The Cloud-Execution approach is similar but offloads the application
runtime to a server running in the cloud and only sends the video stream of each

Chapter 7 Conclusions and Outlook

application component to the corresponding device. This approach is relevant for
specific use cases like gaming and VR or AR applications in case client devices are
not able to perform the complex graphics processing locally. The main limitation
of this approach is the hard limit on the Motion-to-Photon latency of 20ms which
is difficult to achieve in current networks. 5G could enable this kind of use cases
in the future but is not available yet. Another problem with this approach is the
scalability of using server graphics processing resources to deliver 360° videos to the
mass audience and the resulting high operating costs.

Research Question 3: How to efficiently prepare, stream and play multimedia content,
especially 360° videos, across different platforms taking into account available band-
width, content quality, media rendering capabilities and available resources on target
devices.

This research question addresses multimedia content in a multiscreen environment.
There are already existing solutions for adaptive streaming and playback of mul-
timedia content across different devices and platforms such as MPEG-DASH and
HLS which are essential for any multiscreen multimedia application. For example,
if an atomic component that plays a video is migrated from one device to another,
the media playback will adapt automatically to the target device, i.e., by selecting
the stream with the appropriate video and audio codec, resolution, and bitrate. In
contrast, this thesis focused on the open research questions of sharing and syn-
chronization of adaptive media content across devices. For this, the multiscreen
application framework was extended with an API which allows to play and control
media content on remote devices with the ability to synchronize media streams
across devices. The developed approach makes it easy to synchronize videos across
multiple devices just by adding the video elements under consideration into the same
sync group with just a single line of code. The synchronization algorithm presented
in this thesis was implemented and evaluated as proof-of-concept.

Another focus of this research question is the preparation, delivery, and playback
of 360° videos in a multiscreen environment. Most state-of-the-art contributions
in the domain of delivery and playback of 360° videos are focused on HMDs. In a
multiscreen environment, it is important also to consider other device categories like
TVs, for example, to allow broadcasters to deliver 360° videos to the same device
used for traditional channels like HbbTV. However, HbbTV does not offer the APIs
needed for rendering the 360° locally, and even most modern TVs are not capable of
rendering 360° videos due to limited processing resources. To remedy this situation,
we introduced a novel mechanism for the playback of high-quality 360° videos on
low-capability devices based on the pre-rendering of multiple FOV combinations.
The main advantage of this approach is that it does not require any processing
resources neither on the server nor on the client after the content is generated and

7.1 Conclusions

171

172

made available through a CDN. The evaluation of our approach compared to the two
main state-of-the-art approaches CST and SST confirms the benefits of our approach
regarding processing requirements, scalability, bandwidth, and content quality. One
limitation is the high Motion-To-Photon latency, so this approach is limited to devices
that support navigation using arrow keys like TV remote controls but is not suitable
for HMDs.

Research Question 4: How to support the standardization of an interoperable and
flexible model for distributed multiscreen applications and the specification of related
standard APIs and network protocols.

Interoperability is a key requirement for any multiscreen solution since multiscreen
applications can be distributed on devices by different manufacturers and running
different platforms. In this work, we considered this aspect on three different levels:
First, the application runtime which runs application components developed using
technologies supported by the underlying platforms. In this thesis, we focused
on Web standards which offer open technologies to develop interoperable rich
multimedia applications. Since the multiscreen application model introduced in this
thesis is independent of the underlying runtime environment, other technologies
can be considered in a similar way, but these were not in the focus of this work.

The second level of interoperability is a set of standard Web APIs that support key
multiscreen features like discovery, launch, joining, communication, synchronization,
and remote playback from the Web runtime by taking security and privacy aspects
into account. These APIs are being developed in the W3C Second Screen Working
Group [12]. The author of this thesis is a member of this standardization effort
since 2013 and is an active contributor to the Presentation API [13] and Remote
Playback API [14] which are both Candidate Recommendations of the W3C. The
author of this thesis also earned the role of test facilitator to ensure the compatibility
of implementations with the API specifications. The contributions of the author to
the specifications is influenced by the requirements identified and results achieved
in this thesis.

The third level of interoperability is the network protocol layer. Without these
protocols, it is difficult to achieve interoperability across different vendors. For
example, the current implementations of both APIs in the Chrome browser are built
on top of the proprietary Google Cast Protocol [9]. Therefore, the work on a new
protocol called Open Screen Protocol [16] is started in the Second Screen Community
Group [15] to solve this issue. It is expected that a first draft of the protocol will be
published in 2020. Several results of this thesis have contributed to the community
group, especially a proposal to support non-web environments in the protocol.

Chapter 7 Conclusions and Outlook

7.2 Outlook

There are several opportunities for expanding the outcomes of this thesis. First, it
may be worth to investigate the applicability of the multiscreen application model
introduced in this work in a non-web environment and to provide a proof-of-concept
implementation for a specific platform. This can be achieved by using the Open
Screen Protocol as a foundation for the implementation. Therefore, the priority
for future activities is to continue contributing the results of this work to the W3C
Second Screen Community Group to accelerate the development of the Open Screen
Protocol and also to consider its integration with other standards such as HbbTV.
Another outcome of this work, which is also worth further investigation, is the
pre-rendered approach for 360° video streaming and playback. There are different
directions for expanding this research activity: 1) reduce the Motion-to-Photon
latency to support more devices like smartphones and tablets, 2) investigate new
algorithms for the transition between FOV videos based on the bitrates of the
different representations and 3) introducing new features like the pre-rendering of
transition videos along paths that connect points of interest in a 360° video.

7.2 Outlook

173

Bibliography

[1]1Google. The New Multi-Screen World Study. Research Study. Online: https://www.
thinkwithgoogle.com/advertising-channels/mobile/the-new-multi-screen-
world-study/. Google, June 2012 (cit. on p. 1).

[2]Netflix Supported Devices. Electronic Document. Online: https://devices.netflix.
com/ (cit. on p. 1).

[3]Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021. White
paper. Online: http://www.cisco.com/c/dam/en/us/solutions/collateral/
service-provider/visual -networking- index-vni/complete-white- paper-
c11-481360.pdf. Cisco, June 2017 (cit. on p. 1).

[4]YouTube. Electronic Document. Online: https://www.youtube.conm (cit. on pp. 2, 9,
41).

[5]Facebook. Electronic Document. Online: http://www.facebook.com (cit. on pp. 2, 9).

[6]Airplay. Electronic Document. Online: https://developer . apple.com/airplay/
(cit. on pp. 2, 14, 81, 88, 115).

[71Apple TV. Electronic Document. Online: https://www.apple.com/tv/ (cit. on pp. 2,
9.

[8]Miracast - High-definition content sharing on Wi-Fi devices everywhere. Electronic
Document. Online: https://www.wi-fi.org/discover-wi-fi/miracast (cit. on
pp. 2, 15, 81, 88, 115).

[9]1Google Cast. Electronic Document. Online: https://developers.google.com/cast/
(cit. on pp. 2, 80, 172).

[10]Chromecast. Electronic Document. Online: https://google.com/chromecast (cit. on
pp- 2, 9).

[11]World Wide Web Consortium (W3C). Electronic Document. Online: https://wuw.w3.
org (cit. on pp. 4, 56).

[12]W3C. Second Screen Working Group. Tech. rep. Online: https://www.w3.org/2014/
secondscreen/. The World Wide Web Consortium (W3C), 2017 (cit. on pp. 4, 22, 87,
172, 204).

[13]Presentation API, Candidate Recommendation. Technical Report. Online: https://www.
w3.org/TR/presentation-api/. The World Wide Web Consortium (W3C), 2017
(cit. on pp. 4, 22, 87, 172).

175

https://www.thinkwithgoogle.com/advertising-channels/mobile/the-new-multi-screen-world-study/
https://www.thinkwithgoogle.com/advertising-channels/mobile/the-new-multi-screen-world-study/
https://www.thinkwithgoogle.com/advertising-channels/mobile/the-new-multi-screen-world-study/
https://devices.netflix.com/
https://devices.netflix.com/
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.youtube.com
http://www.facebook.com
https://developer.apple.com/airplay/
https://www.apple.com/tv/
https://www.wi-fi.org/discover-wi-fi/miracast
https://developers.google.com/cast/
https://google.com/chromecast
https://www.w3.org
https://www.w3.org
https://www.w3.org/2014/secondscreen/
https://www.w3.org/2014/secondscreen/
https://www.w3.org/TR/presentation-api/
https://www.w3.org/TR/presentation-api/

176

[14]Remote Playback API, Candidate Recommendation. Technical Report. Online: https:
//www .w3.org/TR/remote-playback/. The World Wide Web Consortium (W3C),
2017 (cit. on pp. 4, 22, 87, 172).

[15]W3C. Second Screen Community Group. Tech. rep. Online: https://www.w3.org/
community/webscreens/. The World Wide Web Consortium (W3C), 2017 (cit. on
pp. 4, 172).

[16]Open Screen Protocol. Open Source Specification. Online: https://github. com/
webscreens/openscreenprotocol. The World Wide Web Consortium (W3C), 2017
(cit. on pp. 4, 87, 161, 172, 204).

[17]Louay Bassbouss, Max Tritschler, Stephan Steglich, Kiyoshi Tanaka, and Yasuhiko
Miyazaki. ,,Towards a Multi-screen Application Model for the Web“. In: 2013 IEEE
37th Annual Computer Software and Applications Conference Workshops. Kyoto, Japan,
2013, pp. 528-533 (cit. on pp. 4, 22, 90, 91, 203).

[18]Louay Bassbouss, Gorkem Gliclii, and Stephan Steglich. ,, Towards a wake-up and
synchronization mechanism for Multiscreen applications using iBeacon“. In: 2014
International Conference on Signal Processing and Multimedia Applications (SIGMAP).
Vienna, Austria, 2014, pp. 67-72 (cit. on pp. 4, 104, 108, 202).

[19]Louay Bassbouss, Stephan Steglich, and Martin Lasak. ,,Best Paper Award: High Quality
360° Video Rendering and Streaming®. In: Media and ICT for the Creative Industries.
Porto, Portugal, 2016 (cit. on pp. 5, 127, 202).

[20]Louay Bassbouss, Stephan Steglich, and Sascha Braun. ,, Towards a high efficient 360°
video processing and streaming solution in a multiscreen environment®. In: 2017 IEEE
International Conference on Multimedia Expo Workshops (ICMEW). 2017, pp. 417-422
(cit. on pp. 5, 127, 201).

[21]Louay Bassbouss, Stefan Pham, and Stephan Steglich. ,,Streaming and Playback of 16K
360° Videos on the Web“. In: 2018 IEEE Middle East and North Africa Communications
Conference (MENACOMM) (IEEE MENACOMM’18). Jounieh, Lebanon, 2018 (cit. on
pp. 5, 127, 133, 147, 201).

[22]Leon Cruickshank, Emmanuel Tsekleves, Roger Whitham, Annette Hill, and Kaoruko
Kondo. ,Making interactive TV easier to use: Interface design for a second screen
approach®. In: The Design Journal 10.3 (2007), pp. 41-53 (cit. on p. 7).

[23]M. Mu, W. Knowles, Y. Sani, A. Mauthe, and N. Race. ,Improving Interactive TV
Experience Using Second Screen Mobile Applications®. In: 2015 IEEE International
Symposium on Multimedia (ISM). 2015, pp. 373-376 (cit. on p. 8).

[24]Netflix. Electronic Document. Online: https://www.netflix.com (cit. on pp. 9, 11,
41).

[25]Netflix Hack Day - Spring 2016. Electronic Document. Online: http://techblog.
netflix.com/2016/05/netflix-hack-day-spring-2016.html (cit. on p. 9).

[26]Google Slides. Electronic Document. Online: https: //www . google . com/slides/
about/ (cit. on p. 9).

[27]James Blake. ,,Second screen interaction in the cinema: Experimenting with transme-
dia narratives and commercializing user participation®. In: Participations Journal if
Audience and Reception Studies 14 (2017) (cit. on p. 9).

Bibliography

https://www.w3.org/TR/remote-playback/
https://www.w3.org/TR/remote-playback/
https://www.w3.org/community/webscreens/
https://www.w3.org/community/webscreens/
https://github.com/webscreens/openscreenprotocol
https://github.com/webscreens/openscreenprotocol
https://www.netflix.com
http://techblog.netflix.com/2016/05/netflix-hack-day-spring-2016.html
http://techblog.netflix.com/2016/05/netflix-hack-day-spring-2016.html
https://www.google.com/slides/about/
https://www.google.com/slides/about/

[28]Florian Pfeffel, Peter Kexel, Christoph A. Kexel, and Ratz Maria. ,,Second Screen: User
Behaviour of Spectators while Watching Football“. In: Athens Journal of Sports. Online:
https://www.athensjournals.gr/sports/2016-3-2-2-Pfeffel.pdf. June 2016,
pp. 119-128 (cit. on p. 9).

[29],,How synchronizing TV and online ads helped Nissan to boost brand awareness“. In:
White Paper: Multi-Screen Study — Nissan (Apr. 2015) (cit. on p. 9).

[30]1Shazam - Music Discovery, Charts & Song Lyrics. Electronic Document. Online: https:
//www.shazam.com/ (cit. on p. 9).

[31]1The Walking Dead - Story Sync - AMC. Electronic Document. Online: http://www.amc.
com/shows/the-walking-dead/story-sync/ (cit. on p. 9).

[32]360 Videos | Virtual Reality im ZDF. Electronic Document. Online: http://vr.zdf.de/
(cit. on p. 9).

[33]Arte360 VR. Electronic Document. Online: https://sites.arte.tv/360/en (cit. on
p-9).

[34]Red Bull VR Hub. Electronic Document. Online: https://www . redbull . com/vr
(cit. on p. 9).

[35]Virtual Reality - YouTube. Electronic Document. Online: https://www.youtube.com/
vr (cit. on p. 10).

[36]Andrew Donoho, Bryan Roe, Maarten Bodlaender, et al. UPnP Device Architecture
2.0. Electronic Document. Online: http: //upnp . org/specs/arch/UPnP-arch-
DeviceArchitecture-v2.0.pdf. 2015 (cit. on pp. 10, 87).

[371J. Postel. UPnP Device Architecture 2.0. Electronic Document. Online: http://tools.
ietf.org/html/rfc768. 1980 (cit. on p. 10).

[38]UPnP Forum. UPnP Standards & Architecture. Electronic Document. Online: http:
//upnp.org (cit. on pp. 10, 24, 51).

[39],,DIAL - Discovery and Launch protocol specification 2.1“. In: (Sept. 2017). Online:
http://www.dial-multiscreen. org/dial-protocol-specification (cit. on
pp- 11, 80, 88, 114).

[40]S. Cheshire and M. Krochmal. ,Multicast DNS“. In: (Feb. 2013). Online: http://
tools.ietf.org/html/rfc6762 (cit. on pp. 11, 24, 87).

[41]S. Cheshire and M. Krochmal. ,DNS-Based Service Discovery“. In: (Feb. 2013). Online:
http://tools.ietf.org/html/rfc6763 (cit. on p. 11).

[42]HbbTV 2.0.1 Specification, Companion Screen and Media Synchronization Sections. Tech.
rep. Online: http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.
04.01_60/ts_102796v010401p.pdf. Hybrid broadcast broadband TV (HbbTV), 2016
(cit. on pp. 12, 204).

[43]1. Fette and A. Melnikov. ,, The WebSocket Protocol“. In: (Dec. 2011). Online: https:
//tools.ietf.org/html/rfc6455 (cit. on pp. 13, 16, 88).

[44]Bluetooth Low Energy. Electronic Document. Online: https://www.bluetooth.com
(cit. on pp. 13, 87, 104).

[45]iBeacon. Electronic Document. Online: https://developer .apple.com/ibeacon/
(cit. on p. 13).

Bibliography

177

https://www.athensjournals.gr/sports/2016-3-2-2-Pfeffel.pdf
https://www.shazam.com/
https://www.shazam.com/
http://www.amc.com/shows/the-walking-dead/story-sync/
http://www.amc.com/shows/the-walking-dead/story-sync/
http://vr.zdf.de/
https://sites.arte.tv/360/en
https://www.redbull.com/vr
https://www.youtube.com/vr
https://www.youtube.com/vr
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://upnp.org
http://upnp.org
http://www.dial-multiscreen.org/dial-protocol-specification
http://tools.ietf.org/html/rfc6762
http://tools.ietf.org/html/rfc6762
http://tools.ietf.org/html/rfc6763
http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.04.01_60/ts_102796v010401p.pdf
http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.04.01_60/ts_102796v010401p.pdf
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.bluetooth.com
https://developer.apple.com/ibeacon/

178

[46]The Physical Web. Electronic Document. Online: https : // google . github . io/
physical-web/ (cit. on p. 13).

[47]1Clement Vasseur. ,,Unofficial AirPlay Protocol Specification“. In: (Mar. 2012). Online:
http://nto.github.io/AirPlay.html (cit. on p. 14).

[48]MHL - Expand Your World. Electronic Document. Online: http://www.mhltech.org/
index.aspx (cit. on p. 15).

[49]R. Fielding, UC Irvine, J. Gettys, et al. ,Hypertext Transfer Protocol - HTTP/1.1¢. In:
(Jan. 1997). Online: https://tools.ietf.org/html/rfc2068 (cit. on pp. 16, 88).

[50]J. Iyengar and M. Iyengar. ,,QUIC: A UDP-Based Secure and Reliable Transport for
HTTP/2“. In: (May 2018). Online: https://quicwg .github.io/base-drafts/
draft-ietf-quic-transport.html (cit. on p. 16).

[51],XMLHttpRequest API“. In: (May 2018). Online: https://xhr. spec.whatwg.org/
(cit. on pp. 16, 142).

[52],Fetch API“ In: (May 2018). Online: https://fetch. spec.whatwg.org/ (cit. on
pp. 16, 142).

[53],,HTML - WebSocket API. In: (May 2018). Online: https://html.spec.whatwg.org/
multipage/web-sockets.html (cit. on p. 16).

[54]H. Alvestrand. ,,Overview: Real Time Protocols for Browser-based Applications“. In:
(Nov. 2017). Online: https://www.ietf.org/id/draft-ietf-rtcweb-overview-
19.txt (cit. on pp. 16, 32, 34, 88, 109).

[55]Adam Bergkvist, Daniel Burnett, Cullen Jennings, et al. ,WebRTC 1.0: Real-time
Communication Between Browsers“. In: (Nov. 2017). Online: https://www.w3.org/
TR/webrtc/ (cit. on p. 16).

[56]Wi-Fi Direct. Electronic Document. Online: https://www.wi-fi.org/discover-wi-
fi/wi-fi-direct (cit. on p. 17).

[57]1,,H.264 : Advanced video coding for generic audiovisual services“. In: (Apr. 2017).
Online: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-
201704-1!!PDF-E (cit. on p. 18).

[58],,H.265 : High efficiency video coding®. In: (Feb. 2018). Online: https://www.itu.
int/rec/dologin_pub.asp?lang=e&id=T-REC-H.265-201802-1! !PDF-E (cit. on
pp. 18, 33).

[59]VP9 Video Codec. Electronic Document. Online: https://www.webmproject.org/vp9/
(cit. on p. 18).

[60]A Large-Scale Comparison of x264, x265, and libvpx - a Sneak Peek. Electronic Document.
Online: https://medium. com/netflix-techblog/a-large-scale-comparison-
of-x264-x265-and-1ibvpx-a-sneak-peek-2e81e88£8b0f (cit. on p. 18).

[61]Peter de Rivaz and Jack Haughton. ,,AV1 Bitstream and Decoding Process Specifica-
tion“. In: (June 2018). Online: https://aomediacodec.github.io/avli-spec/avl-
spec.pdf (cit. on p. 18).

[62]ISO/IEC 14496-12:2015 Information technology - Coding of audio-visual objects - Part
12: ISO base media file format. Standard Publication. Online: https://www.iso.org/
standard/68960.html (cit. on pp. 19, 33).

Bibliography

https://google.github.io/physical-web/
https://google.github.io/physical-web/
http://nto.github.io/AirPlay.html
http://www.mhltech.org/index.aspx
http://www.mhltech.org/index.aspx
https://tools.ietf.org/html/rfc2068
https://quicwg.github.io/base-drafts/draft-ietf-quic-transport.html
https://quicwg.github.io/base-drafts/draft-ietf-quic-transport.html
https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/web-sockets.html
https://html.spec.whatwg.org/multipage/web-sockets.html
https://www.ietf.org/id/draft-ietf-rtcweb-overview-19.txt
https://www.ietf.org/id/draft-ietf-rtcweb-overview-19.txt
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201704-I!!PDF-E
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.265-201802-I!!PDF-E
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.265-201802-I!!PDF-E
https://www.webmproject.org/vp9/
https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://www.iso.org/standard/68960.html
https://www.iso.org/standard/68960.html

[63],,Media Source Extensions MSE®. In: (Nov. 2016). Online: https://www.w3.org/TR/
media-source/ (cit. on pp. 19, 23, 32).

[64]ISO/IEC 13818-1:2018 Information technology - Generic coding of moving pictures
and associated audio information - Part 1: Systems. Standard Publication. Online:
https://wuw.iso.org/standard/74427.html (cit. on p. 19).

[65]ISO/IEC 23000-19:2018 Information technology - Multimedia application format (MPEG-
A) - Part 19: Common media application format (CMAF) for segmented media. Standard
Publication. Online: https://www.iso.org/standard/71975.html (cit. on p. 19).

[66]ISO/IEC FDIS 23090-2 Information technology - Coded representation of immersive
media - Part 2: Omnidirectional media format. Standard Publication. Online: https:
//www.iso.org/standard/73310.html (cit. on p. 20).

[671ISO/IEC FDIS 23009-1Information technology - Dynamic adaptive streaming over HTTP
(DASH) - Part 1: Media presentation description and segment formats. Standard Publi-
cation. Online: https://www.iso.org/standard/75485.html (cit. on pp. 20, 119,
146).

[68],HTTP Live Streaming®. In: (Dec. 2011). Online: https://tools.ietf.org/html/
rfc8216 (cit. on pp. 21, 119).

[69],,Nonlinear Projections®. In: Transformations and Projections in Computer Graphics.
London: Springer London, 2006, pp. 145-220 (cit. on p. 21).

[70]Alain Galvan, Francisco Ortega, and Naphtali Rishe. , Procedural celestial rendering
for 3D navigation®. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI). Mar. 2017,
pp. 211-212 (cit. on p. 21).

[71]Evgeny Kuzyakov and David Pio. Under the hood: Building 360 video. Blog. Online:
https://code.fb.com/video-engineering/under-the-hood-building-360-
video/ (cit. on p. 21).

[72]Evgeny Kuzyakov and David Pio. Next-generation video encoding techniques for 360
video and VR. Blog. Online: https://code . fb.com/virtual - reality/next -
generation-video - encoding - techniques - for - 360 - video - and - vr/ (cit. on
p- 22).

[73]Brandon Jones and Nell Waliczek. ,,WebXR Device API“. In: (Aug. 2018). Online:
https://immersive-web.github.io/webxr/ (cit. on pp. 22, 34).

[74]Tatsuya Igarashi and Naoyuki Sato. ,,Expanding the Horizontal of Web“. In: Third
W3C Web and TV Workshop. Online: https://www.w3.0rg/2011/09/webtv/papers/
SONY_Position_Paper_3rdWebTVWorkshp_RO_1.pdf. Hollywood, California, USA,
Sept. 2011 (cit. on pp. 24, 36).

[75]Clarke Stevens. ,,A Multi-protocol Home Networking Implementation for HTML5“. In:
Third W3C Web and TV Workshop. Online: https://www.w3.o0rg/2011/09/webtv/
papers/W3C_HNTF_Position_Paper_Sept_2011.pdf. Hollywood, California, USA,
Sept. 2011 (cit. on pp. 24, 36).

[76]W3C. Network Service Discovery. Technical report. Online: https://www.w3.org/TR/
discovery-api/. W3C, Jan. 2017 (cit. on pp. 24, 36).

Bibliography

179

https://www.w3.org/TR/media-source/
https://www.w3.org/TR/media-source/
https://www.iso.org/standard/74427.html
https://www.iso.org/standard/71975.html
https://www.iso.org/standard/73310.html
https://www.iso.org/standard/73310.html
https://www.iso.org/standard/75485.html
https://tools.ietf.org/html/rfc8216
https://tools.ietf.org/html/rfc8216
https://code.fb.com/video-engineering/under-the-hood-building-360-video/
https://code.fb.com/video-engineering/under-the-hood-building-360-video/
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://immersive-web.github.io/webxr/
https://www.w3.org/2011/09/webtv/papers/SONY_Position_Paper_3rdWebTVWorkshp_R0_1.pdf
https://www.w3.org/2011/09/webtv/papers/SONY_Position_Paper_3rdWebTVWorkshp_R0_1.pdf
https://www.w3.org/2011/09/webtv/papers/W3C_HNTF_Position_Paper_Sept_2011.pdf
https://www.w3.org/2011/09/webtv/papers/W3C_HNTF_Position_Paper_Sept_2011.pdf
https://www.w3.org/TR/discovery-api/
https://www.w3.org/TR/discovery-api/

[77]1Akitsugu Baba, Kinji Matsumura, Sigeaki Mitsuya, et al. ,,Advanced Hybrid Broadcast
and Broadband System for Enhanced Broadcasting Services“. In: NAB Broadcast
Engineering Conference PROCEEDINGS. Las Vegas, USA, Apr. 2011, pp. 343 =350 (cit.
on p. 24).

[78]Maiko Imoto, Yasuhiko Miyazaki, Tetsuro Tokunaga, Kiyoshi Tanaka, and Shinji Miya-
hara. ,,A Framework for Supporting the Development of Multi-Screen Web Appli-
cations®. In: Proceedings of International Conference on Information Integration and
Web-based Applications and Services. ITWAS ’13. Vienna, Austria: ACM, 2013, 629:629—
629:633 (cit. on pp. 24, 25, 36, 37).

[79]Hyojin Song, Soonbo Han, and Dong-Young Lee. ,,PARS - Multiscreen Web App Plat-
form“. In: Fourth W3C Web and TV Workshop. Online: https://wuw.w3.0rg/2013/
10/tv-workshop/papers/webtv4_submission_9.pdf. Munich, Germany, Mar. 2013
(cit. on pp. 25, 37).

[80]Jaejeung Kim, Sangtae Kim, and Howon Lee. ,Partial Service/Application Migration
and Device Adaptive User Interface across Multiple Screens®. In: Third W3C Web and
TV Workshop. Online: https://www.w3.org/2011/09/webtv/papers/W3C_3rd_
WebTV_position_paper KAIST_Final _submit.pdf. Hollywood, California, USA,
Sept. 2011 (cit. on pp. 25, 37).

[81]Jan Thomsen, el Troncy Rapha, and Nixon Lyndon. ,Linking Web Content Seamlessly
with Broadcast Television: Issues and Lessons Learned“. In: Fourth W3C Web and TV
Workshop. Online: https://www.w3.0rg/2013/10/tv-workshop/papers/webtv4_
submission_15.pdf. Munich, Germany, Mar. 2014 (cit. on p. 25).

[82]Raphaél Troncyl, Erik Mannens, Silvia Pfeiffer, and Davy Van Deursen. ,Media Frag-
ments URI 1.0% In: (Sept. 2012). Online: https://www.w3.org/TR/media-frags/
(cit. on p. 26).

[83]Njal Borch, Bin Cheng, Dave Raggett, and Mikel Zorrilla. ,,An architecture for second
screen experiences based upon distributed social networks of people, devices and
programs®. In: Fourth W3C Web and TV Workshop. Online: https://wuw.w3.org/
2013/10/tv-workshop/papers/webtv4_submission_6.pdf. Munich, Germany, Mar.
2014 (cit. on pp. 26, 37).

[84]Geun-Hyung Kim and Sunghwan Kim. , Inter-Device Media Synchronization in Multi-
Screen Environment“. In: Fourth W3C Web and TV Workshop. Online: https://wuw.
w3.org/2013/10/tv-workshop/papers/webtv4_submission_26.pdf. Munich,
Germany, Mar. 2014 (cit. on p. 26).

[85]Victor Klos. ,,Three Challenges for Web&TV*. In: Fourth W3C Web and TV Workshop. On-
line: https://www.w3.0rg/2013/10/tv-workshop/papers/webtv4_submission_
12.pdf. Munich, Germany, Mar. 2014 (cit. on pp. 26, 37).

[86]C. Howson, E. Gautier, P. Gilberton, A. Laurent, and Y. Legallais. ,,Second screen
TV synchronization®. In: 2011 IEEE International Conference on Consumer Electronics
-Berlin (ICCE-Berlin). Sept. 2011, pp. 361-365 (cit. on p. 26).

[87]Paul Tolstoi and Andreas Dippon. ,,Towering Defense: An Augmented Reality Multi-
Device Game*“. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems. CHI EA ’15. Seoul, Republic of Korea: ACM,
2015, pp. 89-92 (cit. on pp. 27, 37).

Bibliography

https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_9.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_9.pdf
https://www.w3.org/2011/09/webtv/papers/W3C_3rd_WebTV_position_paper_KAIST_Final_submit.pdf
https://www.w3.org/2011/09/webtv/papers/W3C_3rd_WebTV_position_paper_KAIST_Final_submit.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_15.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_15.pdf
https://www.w3.org/TR/media-frags/
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_6.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_6.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_26.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_26.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_12.pdf
https://www.w3.org/2013/10/tv-workshop/papers/webtv4_submission_12.pdf

[88]Mira Sarkis, Cyril Concolato, and Jean-Claude Dufourd. ,,A multi-screen refactoring
system for video-centric web applications“. In: Multimedia Tools and Applications (Jan.
2017) (cit. on pp. 27, 37).

[89]Bongjin Oh and Park Jongyoul. ,,A remote user interface framework for collaborative
services using globally internetworked smart appliances®. In: 2015 17th International
Conference on Advanced Communication Technology (ICACT). July 2015, pp. 581-586
(cit. on pp. 27, 37).

[90]Yichao Jin, Tian Xie, Yonggang Wen, and Haiyong Xie. ,Multi-screen Cloud Social TV:
Transforming TV Experience into 21st Century“. In: Proceedings of the 21st ACM Inter-
national Conference on Multimedia. MM ’13. Barcelona, Spain: ACM, 2013, pp. 435-
436 (cit. on pp. 27, 28, 37).

[91]Michael Krug, Fabian Wiedemann, and Martin Gaedke. ,SmartComposition: A Component-

Based Approach for Creating Multi-screen Mashups®. In: Web Engineering: 14th Inter-
national Conference, ICWE 2014, Toulouse, France, July 1-4, 2014. Proceedings. Ed. by
Sven Casteleyn, Gustavo Rossi, and Marco Winckler. Cham: Springer International
Publishing, 2014, pp. 236-253 (cit. on pp. 28, 37).

[92]European Commission : CORDIS : Programmes : Specific Programme "Cooperation":
Information and communication technologies. Open Mashup Enterprise service platform
for LinkEd data in The TElco domain. 2013 (cit. on p. 28).

[93]Francisco Martinez-Pabon, Jaime Caicedo-Guerrero, Jhon Jairo Ibarra-Samboni, Gus-
tavo Ramirez-Gonzalez, and Davinia Hernandez-Leo. ,,Smart TV-Smartphone Multi-
screen Interactive Middleware for Public Displays*“. In: The Scientific World Journal
2015 (Apr. 2015), p. 534949 (cit. on p. 28).

[94]Changwoo Yoon, Taiwon Um, and Hyunwoo Lee. ,Classification of N-Screen Ser-
vices and its standardization®. In: 2012 14th International Conference on Advanced
Communication Technology (ICACT). Feb. 2012, pp. 597-602 (cit. on p. 28).

[95]1Xinfeng Xie, Zhongqing Yu, and Kaixi Wang. , The design and implementation of
the multi-screen interaction service architecture for the Real-Time streaming media“.
In: 2013 Ninth International Conference on Natural Computation (ICNC). July 2013,
pp. 1600-1604 (cit. on pp. 28, 37).

[96]Dong-Hoon Lee, Jung-Hyun Kim, Ho-Youn Kim, and Dong-Young Park. ,,Remote Appli-
cation Control Technology and Implementation of HTML5-based Smart TV Platform“.
In: Proceedings of the 14th International Conference on Advances in Mobile Computing
and Multi Media. MoMM ’16. Singapore, Singapore: ACM, 2016, pp. 208-211 (cit. on
p. 29).

[971Jorge Abreu, Pedro Almeida, and Telmo Silva. ,,Enriching Second-Screen Experiences
with Automatic Content Recognition®. In: VI International Conference on Interactive
Digital TV IV Iberoamerican Conference on Applications and Usability of Interactive TV.
2015, pp. 41-50 (cit. on p. 29).

[98]Ui Nyoung Yoon, Seung Hyun Ko, Kyeong-Jin Oh, and Geun-Sik Jo. ,,Thumbnail-based
interaction method for interactive video in multi-screen environment®. In: 2016 IEEE
International Conference on Consumer Electronics (ICCE). Jan. 2016, pp. 3-4 (cit. on
pp. 29, 37).

Bibliography

181

182

[99]M. Punt. ,Rebooting the TV-centric gaming concept for modern multiscreen Over-
The-Top service®. In: 2016 Zooming Innovation in Consumer Electronics International
Conference (ZINC). June 2016, pp. 50-54 (cit. on pp. 30, 37).

[100]Pedro Centieiro, Teresa Romao, and A. Eduardo Dias. ,Enhancing Remote Spectators’
Experience During Live Sports Broadcasts with Second Screen Applications“. In: More
Playful User Interfaces: Interfaces that Invite Social and Physical Interaction. Ed. by
Anton Nijholt. Singapore: Springer Singapore, 2015, pp. 231-261 (cit. on pp. 30, 37).

[101]David Geerts, Rinze Leenheer, Dirk De Grooff, Joost Negenman, and Susanne Heijs-
traten. ,In Front of and Behind the Second Screen: Viewer and Producer Perspectives
on a Companion App“. In: Proceedings of the ACM International Conference on Inter-
active Experiences for TV and Online Video. TVX ’14. Newcastle Upon Tyne, United
Kingdom: ACM, 2014, pp. 95-102 (cit. on pp. 30, 38).

[102]Vinod Keshav Seetharamu, Joy Bose, Sowmya Sunkara, and Nitesh Tigga. ,, TV remote
control via wearable smart watch device“. In: 2014 Annual IEEE India Conference
(INDICON). Dec. 2014, pp. 1-6 (cit. on p. 31).

[103]Thomas Stockhammer. ,,Dynamic Adaptive Streaming over HTTP —: Standards and
Design Principles®“. In: Proceedings of the Second Annual ACM Conference on Multimedia
Systems. MMSys "11. San Jose, CA, USA: ACM, 2011, pp. 133-144 (cit. on p. 31).

[104]Omar A. Niamut, Emmanuel Thomas, Lucia D’Acunto, et al. ,MPEG DASH SRD:
Spatial Relationship Description®. In: Proceedings of the 7th International Conference
on Multimedia Systems. MMSys ’16. Klagenfurt, Austria: ACM, 2016, 5:1-5:8 (cit. on
pp. 32, 38, 120).

[105]Volker Jung, Stefan Pham, and Stefan Kaiser. ,,A web-based media synchronization
framework for MPEG-DASH". In: 2014 IEEE International Conference on Multimedia
and Expo Workshops (ICMEW). July 2014, pp. 1-2 (cit. on pp. 32, 38).

[106]Mohammad Hosseini and Viswanathan Swaminathan. ,,Adaptive 360 VR Video Stream-
ing Based on MPEG-DASH SRD“. In: 2016 IEEE International Symposium on Multimedia
(ISM). Dec. 2016, pp. 407-408 (cit. on pp. 32, 33, 38).

[107]Cyril Concolato, Jean Le Feuvre, Franck Denoual, et al. ,Adaptive Streaming of HEVC
Tiled Videos using MPEG-DASH". In: IEEE Transactions on Circuits and Systems for
Video Technology PP.99 (2017), pp. 1-1 (cit. on pp. 33, 120).

[108]Ray Van Brandenburg, Omar Niamut, Martin Prins, and Hans Stokking. , Spatial
segmentation for immersive media delivery“. In: 2011 15th International Conference
on Intelligence in Next Generation Networks. Oct. 2011, pp. 151-156 (cit. on pp. 33,
38).

[109]Omar A. Niamut, Axel Kochale, Javier Ruiz Hidalgo, et al. ,Towards a Format-agnostic
Approach for Production, Delivery and Rendering of Immersive Media“. In: Proceedings
of the 4th ACM Multimedia Systems Conference. MMSys ’13. Oslo, Norway: ACM, 2013,
pp. 249-260 (cit. on pp. 33, 38).

[110]Aditya Mavlankar, Jeonghun Noh, Pierpaolo Baccichet, and Bernd Girod. ,Peer-to-peer
multicast live video streaming with interactive virtual pan/tilt/zoom functionality*.
In: 2008 15th IEEE International Conference on Image Processing. Oct. 2008, pp. 2296—
2299 (cit. on p. 33).

Bibliography

[111]Yonggang Wen, Xiaoqing Zhu, Joel J. P. C. Rodrigues, and Chang Wen Chen. ,,Cloud
Mobile Media: Reflections and Outlook®. In: IEEE Transactions on Multimedia 16.4
(June 2014), pp. 885-902 (cit. on p. 34).

[112]Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, and Moncef Gabbouj. ,,HEVC-
compliant Tile-based Streaming of Panoramic Video for Virtual Reality Applications®.
In: Proceedings of the 2016 ACM on Multimedia Conference. MM ’16. Amsterdam, The
Netherlands: ACM, 2016, pp. 601-605 (cit. on pp. 34, 39).

[113]Yichao Jin, Yonggang Wen, Han Hu, and Marie-Jose Montpetit. ,Reducing Operational
Costs in Cloud Social TV: An Opportunity for Cloud Cloning“. In: IEEE Transactions on
Multimedia 16.6 (Oct. 2014), pp. 1739-1751 (cit. on p. 34).

[114]Niklas Carlsson, Derek Eager, Krishnamoorthi Vengatanathan, and Tatiana Polishchuk.
,Optimized Adaptive Streaming of Multi-video Stream Bundles®. In: IEEE Transactions
on Multimedia 19.7 (July 2017), pp. 1637-1653 (cit. on p. 34).

[115]Simon Gunkel, Martin Prins, Hans Stokking, and Omar Niamut. ,,WebVR meets We-
bRTC: Towards 360-degree social VR experiences”. In: 2017 IEEE Virtual Reality (VR).
Mar. 2017, pp. 457-458 (cit. on p. 34).

[116]RG Belleman, B Stolk, R de Vries, et al. ,Immersive Virtual Reality on commodity
hardware“. In: ASCI. 2001 (cit. on p. 35).

[117]Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. ,,Optimizing 360 Video
Delivery over Cellular Networks“. In: Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges. ATC ’16. New York City, New York:
ACM, 2016, pp. 1-6 (cit. on pp. 35, 39).

[118]Luis A. R. Neng and Teresa Chambel. ,,Get Around 360&Deg; Hypervideo“. In: Proceed-
ings of the 14th International Academic MindTrek Conference: Envisioning Future Media
Environments. MindTrek '10. Tampere, Finland: ACM, 2010, pp. 119-122 (cit. on
p- 35).

[119]Derek Pang, Sherif Halawa, Ngai-Man Cheung, and Bernd Girod. ,,Mobile Interactive
Region-of-interest Video Streaming with Crowd-driven Prefetching®. In: Proceedings of
the 2011 International ACM Workshop on Interactive Multimedia on Mobile and Portable
Devices. IMMPD ’11. Scottsdale, Arizona, USA: ACM, 2011, pp. 7-12 (cit. on p. 35).

[120]Daisuke Ochi, Yutaka Kunita, Kensaku Fujii, et al. ,,HMD Viewing Spherical Video
Streaming System“. In: Proceedings of the 22Nd ACM International Conference on
Multimedia. MM ’14. Orlando, Florida, USA: ACM, 2014, pp. 763-764 (cit. on pp. 36,
39).

[121]Rovio Entertainment Corporation. Angry Birds. Electronic Document. Online: http:
//www.rovio.com/games/angry-birds (cit. on p. 43).

[122]DLNA. Electronic Document. Online: https://www.dlna.org (cit. on p. 51).

[123]Arthur Gill et al. ,Introduction to the theory of finite-state machines®. In: (1962)
(cit. on p. 60).

[124]Rajeev Alur and David L Dill. , A theory of timed automata“. In: Theoretical computer
science 126.2 (1994), pp. 183-235 (cit. on p. 60).

Bibliography

183

http://www.rovio.com/games/angry-birds
http://www.rovio.com/games/angry-birds
https://www.dlna.org

184

[125]Heiko Pfeffer, Louay Bassbouss, and Stephan Steglich. ,,Structured Service Composition
Execution for Mobile Web Applications*. In: 2008 12th IEEE International Workshop on
Future Trends of Distributed Computing Systems. Kunming, China, Oct. 2008, pp. 112—
118 (cit. on pp. 60, 203, 204).

[126]N. E. Baughman and B. N. Levine. ,,Cheat-proof playout for centralized and distributed
online games“. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Commu-
nications. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.0O1CH37213). Vol. 1. 2001, 104-113 vol.1 (cit. on pp. 77, 113).

[127]Nir Shavit and Dan Touitou. ,,Software Transactional Memory*“. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing. PODC ’95.
Ottowa, Ontario, Canada: ACM, 1995, pp. 204-213 (cit. on p. 78).

[128]Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. ,Software
Transactional Memory for Dynamic-sized Data Structures“. In: Proceedings of the
Twenty-second Annual Symposium on Principles of Distributed Computing. PODC ’03.
Boston, Massachusetts: ACM, 2003, pp. 92-101 (cit. on p. 78).

[129]L. Gautier, C. Diot, and J. Kurose. ,,End-to-end transmission control mechanisms for
multiparty interactive applications on the Internet“. In: IEEE INFOCOM ’99. Conference
on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).
Vol. 3. 1999, 1470-1479 vol.3 (cit. on pp. 78, 113).

[130]D. L. Mills. ,Internet time synchronization: the network time protocol“. In: IEEE
Transactions on Communications 39.10 (1991), pp. 1482-1493 (cit. on p. 78).

[131]D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto. ,,Time Warp Oper-
ating System“. In: Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles. SOSP ’87. Austin, Texas, USA: ACM, 1987, pp. 77-93 (cit. on p. 78).

[132]Eric Cronin, Burton Filstrup, Anthony R. Kurc, and Sugih Jamin. ,,An Efficient Syn-
chronization Mechanism for Mirrored Game Architectures®. In: Proceedings of the 1st
Workshop on Network and System Support for Games. NetGames ’02. Braunschweig,
Germany: ACM, 2002, pp. 67-73 (cit. on pp. 78, 113).

[133]Cloud Browser Architecture. Technical Report. Online: https://www.w3.org/TR/
cloud - browser - arch/. The World Wide Web Consortium (W3C), 2017 (cit. on
pp. 82, 162).

[134],,Stadia | Build a new generation of games“. In: (2019). Online: https://stadia.dev
(cit. on pp. 82, 158, 167).

[135],,The JSON Data Interchange Syntax“. In: (Dec. 2017). Online: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf (cit. on p. 89).

[136],,Custom elements“. In: (Sept. 2018). Online: https://html . spec . whatwg . org/
multipage/custom-elements.html#custom-elements (cit. on p. 93).

[137]JW3C. Web Platform Working Group. Tech. rep. Online: https: //www . w3 . org/
WebPlatform/WG/. The World Wide Web Consortium (W3C), 2018 (cit. on p. 93).

[138],,Shadow Tree“. In: (Aug. 2018). Online: https://dom. spec.whatwg.org/#shadow-
trees (cit. on p. 93).

Bibliography

https://www.w3.org/TR/cloud-browser-arch/
https://www.w3.org/TR/cloud-browser-arch/
https://stadia.dev
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://www.w3.org/WebPlatform/WG/
https://www.w3.org/WebPlatform/WG/
https://dom.spec.whatwg.org/#shadow-trees
https://dom.spec.whatwg.org/#shadow-trees

[139],,The template element”. In: (Sept. 2018). Online: https://html.spec.whatwg.org/
multipage/scripting.html#the-template-element (cit. on p. 93).

[140]peer-ssdp: Node.js Implementation of the Simple Service Discovery Protocol SSDP. Open
Source Implementation. Online: https://github. com/fraunhoferfokus/peer-
ssdp/. Fraunhofer FOKUS, 2017 (cit. on pp. 103, 206).

[141]cordova-plugin-hbbtv: Cordova Plugin Implemenation of the HbbTV Companion Screen
Specification. Open Source Implementation. Online: https://github.com/fraunhoferfokus/
cordova-plugin-hbbtv. Fraunhofer FOKUS, 2017 (cit. on pp. 103, 207).

[142],,UserNotifications“. In: (2018). Online: https://developer.apple.com/documentation/
usernotifications (cit. on p. 105).

[143]Alberto Montresor. ,,Gossip and epidemic protocols®. In: Wiley Encyclopedia of Electrical
and Electronics Engineering (1999), pp. 1-15 (cit. on p. 111).

[144],WebView | Android Developers®. In: (2019). Online: https://developer.android.
com/reference/android/webkit/WebView (cit. on p. 113).

[145]CEF Open Source Community. Chromium Embedded Framework. Electronic Document.
Online: https://bitbucket.org/chromiumembedded/cef (cit. on pp. 113, 115).

[146]T. Berners-Lee, R. Fielding, and L. Masinter. ,https://tools.ietf.org/html/rfc3986“. In:
(Jan. 2005). Online: https://tools.ietf.org/html/rfc3986 (cit. on p. 113).

[147],,Uniform Resource Identifier (URI) Schemes®. In: (2019). Online: https://www.iana.
org/assignments/uri-schemes/uri-schemes.xhtml (cit. on p. 113).

[148]Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. ,,Overview of
the High Efficiency Video Coding (HEVC) Standard“. In: IEEE Trans. Cir. and Sys. for
Video Technol. 22.12 (Dec. 2012), pp. 1649-1668 (cit. on p. 120).

[149]Flaviu Cristian. ,,Probabilistic clock synchronization®. In: Distributed Computing 3.3
(1989), pp. 146-158 (cit. on p. 125).

[150]David L. Mills. ,,A Brief History of NTP Time: Memoirs of an Internet Timekeeper*. In:
SIGCOMM Comput. Commun. Rev. 33.2 (Apr. 2003), pp. 9-21 (cit. on p. 125).

[151]Louay Bassbouss, Stephan Steglich, and Christian Fuhrhop. ,Smart TV 360“. In:
Broadcast Engineering and Information Technology Conference, Virtual and Augmented
Reality/Immersive Content. Las Vegas, USA, 2017 (cit. on pp. 127, 202).

[152]A Tour of the West (1955). Electronic Document. Online: http://www. imdb . com/
title/tt0048742/ (cit. on p. 127).

[153]FUTURE MATTERS - Circle-Vision 360 - Imagineering Disney -. Electronic Document.
Online: http://www.imagineeringdisney.com/blog/2016/10/6/future-matters-
circle-vision-360.html (cit. on p. 127).

[154]hiow Keng Tan, Rajitha Weerakkody, Marta Mrak, et al. ,Video Quality Evaluation
Methodology and Verification Testing of HEVC Compression Performance®. In: IEEE
Transactions on Circuits and Systems for Video Technology 26.1 (2016), pp. 76-90
(cit. on p. 129).

[155]Recommended upload encoding settings - YouTube Help. Electronic Document. Online:
https://support.google.com/youtube/answer/172217 (cit. on pp. 130, 164).

Bibliography 185

https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://github.com/fraunhoferfokus/peer-ssdp/
https://github.com/fraunhoferfokus/peer-ssdp/
https://github.com/fraunhoferfokus/cordova-plugin-hbbtv
https://github.com/fraunhoferfokus/cordova-plugin-hbbtv
https://developer.apple.com/documentation/usernotifications
https://developer.apple.com/documentation/usernotifications
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://bitbucket.org/chromiumembedded/cef
https://tools.ietf.org/html/rfc3986
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
http://www.imdb.com/title/tt0048742/
http://www.imdb.com/title/tt0048742/
http://www.imagineeringdisney.com/blog/2016/10/6/future-matters-circle-vision-360.html
http://www.imagineeringdisney.com/blog/2016/10/6/future-matters-circle-vision-360.html
https://support.google.com/youtube/answer/172217

186

[156]M. P. Sharabayko and N. G. Markov. ,,Contemporary video compression standards:
H.265/HEVC, VP9, VP10, Daala“. In: 2016 International Siberian Conference on Control
and Communications (SIBCON). 2016, pp. 1-4 (cit. on p. 130).

[157]Miroslav Uhrina, Juraj Bienik, and Martin Vaculik. ,,Coding efficiency of HEVC/H.265
and VP9 compression standards for high resolutions®. In: 2016 26th International Con-
ference Radioelektronika (RADIOELEKTRONIKA). 2016, pp. 419-423 (cit. on p. 130).

[158]Bappaditya Ray, Joel Jung, and Mohamed-Chaker Larabi. ,,A Low-Complexity Video
Encoder for Equirectangular Projected 360 Video Content®. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 1723~
1727 (cit. on p. 131).

[159]Blender Institute. Caminandes VR Demo. Electronic Document. Online: https://
cloud.blender.org/p/caminandes-3/blog/caminandes-1lamigos-vr-demo (cit.
on p. 133).

[160]Blender Institute. Caminandes VR Demo - YouTube. Online: https://www.youtube.
com/watch?v=uvy--E1lpfF8. 2016 (cit. on p. 133).

[161],Biathlon Worldcup live in 360°“. In: (2019). Online: https://www.fokus.fraunhofer.
de/en/fame/biathlon360 (cit. on p. 139).

[162],,Smart TV: Die ZDFmediathek auf Ihrem TV-Gerit - ZDFmediathek®. In: (2019).
Online: https://www.zdf .de/service-und-hilfe/zdf -mediathek/smarttv-
100.html (cit. on p. 139).

[163]Didier Le Gall. ,MPEG: A Video Compression Standard for Multimedia Applications*.
In: Commun. ACM 34.4 (Apr. 1991), pp. 46-58 (cit. on p. 139).

[164]Martin Lasak, Louay Bassbouss, and Stephan Steglich. [DE] Verarbeitungsverfahren
und Verarbeitungssystem fiir Videodaten. Patent. Patent Number: DE 102017125544B3,
Published June 28, 2018, Online: https://depatisnet . dpma . de/DepatisNet /
depatisnet?action=bibdat&docid=DE102017125544B3. June 2018 (cit. on pp. 145,
204).

[165]Martin Lasak, Louay Bassbouss, and Stephan Steglich. Processing Method and Processing
System for Video Data. Patent. Patent Number: W02018210485, Published November
22, 2018, Online: https://patentscope . wipo . int/search/en/detail . jsf?
docId=W02018210485. Nov. 2018 (cit. on pp. 145, 204).

[166]Blender Foundation. Big Buck Bunny. Electronic Document. Online: https://peach.
blender.org/ (cit. on p. 151).

[167]Stephen Perrott. MPEG DASH Test Streams. Electronic Document. Online: http://www.
bbc.co.uk/rd/blog/2013-09-mpeg-dash-test-streams. 2013 (cit. on p. 152).

[168],,How to use Activity Monitor on your Mac®. In: (2019). Online: https://support.
apple.com/en-us/HT201464#energy (cit. on p. 156).

[169],,Biathlon Worldcup live in 360°“. In: (2019). Online: https://www.fokus.fraunhofer.
de/en/fame/biathlon360 (cit. on p. 166).

[170],,Stadia Founder’s Edition“. In: (2019). Online: https : / / store . google . com/
product/stadia_founders_edition (cit. on p. 167).

Bibliography

https://cloud.blender.org/p/caminandes-3/blog/caminandes-llamigos-vr-demo
https://cloud.blender.org/p/caminandes-3/blog/caminandes-llamigos-vr-demo
https://www.youtube.com/watch?v=uvy--ElpfF8
https://www.youtube.com/watch?v=uvy--ElpfF8
https://www.fokus.fraunhofer.de/en/fame/biathlon360
https://www.fokus.fraunhofer.de/en/fame/biathlon360
https://www.zdf.de/service-und-hilfe/zdf-mediathek/smarttv-100.html
https://www.zdf.de/service-und-hilfe/zdf-mediathek/smarttv-100.html
https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102017125544B3
https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102017125544B3
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018210485
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018210485
https://peach.blender.org/
https://peach.blender.org/
http://www.bbc.co.uk/rd/blog/2013-09-mpeg-dash-test-streams
http://www.bbc.co.uk/rd/blog/2013-09-mpeg-dash-test-streams
https://support.apple.com/en-us/HT201464#energy
https://support.apple.com/en-us/HT201464#energy
https://www.fokus.fraunhofer.de/en/fame/biathlon360
https://www.fokus.fraunhofer.de/en/fame/biathlon360
https://store.google.com/product/stadia_founders_edition
https://store.google.com/product/stadia_founders_edition

[171]Avraham Leff and James Rayfield. ,,Web-application development using the Mod-
el/View/Controller design pattern®. In: Proceedings Fifth IEEE International Enterprise
Distributed Object Computing Conference. 2001, pp. 118-127 (cit. on p. 169).

[172]Louay Bassbouss, Stephan Steglich, and Igor Fritzsch. ,Interactive 360° Video and Sto-
rytelling Tool“. In: 2019 IEEE 23rd International Symposium On Consumer Technologies
(IEEE ISCT2019). Ancona, Italy, 2019 (cit. on p. 201).

[173]Louay Bassbouss, Stefan Pham, Stephan Steglich, and Martin Lasak. ,,Content Prepara-
tion and Cross-Device Delivery of 360° Video with 4K Field of View using DASH“. In:
2017 IEEE International Conference on Multimedia Expo Workshops (ICMEW). Hong
Kong, 2017 (cit. on p. 201).

[174]Paul Murdock, Louay Bassbouss, Martin Bauer, et al. Semantic interoperability for the
Web of Things. White Paper. Online: http://dx.doi.org/10.13140/RG.2.2.25758.
13122. IEEE Standards Association, AIOTI, oneM2M and W3C Joint Collaboration,
Aug. 2016 (cit. on p. 202).

[175]Louay Bassbouss and Stephan Steglich. ,Position Paper: High quality 360° Video
Rendering and Streaming on the Web“. In: W3C Workshop on Web and Virtual Reality.
San Jose, CA, USA, 2016 (cit. on p. 202).

[176]Louay Bassbouss. Einfiihrung in das Physical Web. Electronic Document. Online: https:
//heise.de/-2919078. Heise Developer, 2015 (cit. on p. 202).

[177]Louay Bassbouss, Gorkem Giiglii, and Stephan Steglich. ,,Towards a remote launch
mechanism of TV companion applications using iBeacon®. In: 2014 IEEE 3rd Global
Conference on Consumer Electronics (GCCE). Tokyo, Japan, 2014, pp. 538-539 (cit. on
p. 202).

[178]Christopher Krauss, Louay Bassbouss, Stefan Pham, et al. ,Position Paper: Challenges
for enabling targeted multi-screen advertisement for interactive TV services“. In: W3C
Web and TV Workshop. Munich, Germany, 2014 (cit. on p. 202).

[179]Jean-Claude Dufourd, Louay Bassbouss, Max Tritschler, Radhouane Bouazizi, and
Stephan Steglich. ,An Open Platform for Multiscreen Services“. In: EuroITV 2013:
11th European Interactive TV Conference. Como, Italy, 2013 (cit. on p. 203).

[180]Evanela Lapi, Nikolay Tcholtchev, Louay Bassbouss, Florian Marienfeld, and Ina
Schieferdecker. ,Identification and Utilization of Components for a Linked Open Data
Platform®. In: 2012 IEEE 36th Annual Computer Software and Applications Conference
Workshops. Izmir, Turkey, 2012, pp. 112-115 (cit. on p. 203).

[181]Robert Kleinfeld, Louay Bassbouss, losif Alvertis, and George Gionis. ,,Empowering
Civic Participation in the Policy Making Process through Social Media“. In: International
AAAI Conference on Web and Social Media. Dublin, Ireland, 2012 (cit. on p. 203).

[182]George Gionis, Louay Bassbouss, Heiko Desruelle, et al. ,’Do we know each other or
is it just our devices?’: a federated context model for describing social activity across
devices“. eng. In: Federated Social Web Europe 2011, Proceedings. Berlin, Germany:
W3C ; PrimelLife, 2011, p. 6 (cit. on p. 203).

[183]Heiko Pfeffer, Louay Bassbouss, David Linner, et al. ,Mixing Workflows and Compo-
nents to Support Evolving Services“. In: International Journal of Adaptive, Resilient
and Autonomic Systems 1.4 (2010), pp. 60-84 (cit. on p. 203).

Bibliography

187

http://dx.doi.org/10.13140/RG.2.2.25758.13122
http://dx.doi.org/10.13140/RG.2.2.25758.13122
https://heise.de/-2919078
https://heise.de/-2919078

188

[184]Iacopo Carreras, Louay Bassbouss, David Linner, et al. ,,BIONETS: Self Evolving Ser-
vices in Opportunistic Networking Environments“. In: Bioinspired Models of Network,
Information, and Computing Systems: 4th International Conference, BIONETICS 2009,
Avignon, France, December 9-11, 2009. Ed. by Eitan Altman, Iacopo Carrera, Rachid
El-Azouzi, Emma Hart, and Yezekael Hayel. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2010, pp. 88-94 (cit. on p. 203).

[185]W3C. Media and Entertainment Interest Group. Tech. rep. Online: https://www.w3.
org/2011/webtv/. The World Wide Web Consortium (W3C), 2017 (cit. on p. 204).

[186]W3C. Web of Things. Tech. rep. Online: https://www.w3.org/WoT/. The World Wide
Web Consortium (W3C), 2017 (cit. on p. 204).

[187]1gor Fritzsch. ,,360° Storytelling:Mixed Media, Analytics and Interaction Design®. MA
thesis. Technical University of Berlin, June 2019 (cit. on p. 205).

[188]Thomas Fett. ,,Design and Implementation of a Sound Engine for 360° Videos in Web
Browsers and Smart TVs“. MA thesis. Technical University of Berlin, Dec. 2018 (cit. on
p. 205).

[189]Christian Bach. ,,360° Video Streaming for Head-Mounted Displays“. MA thesis. Wildau
Technical University of Applied Science, June 2018 (cit. on p. 205).

[190]Marius Wessel. ,,Assembler on the Web - Evaluation of the WebAssembly Technology*.
MA thesis. Technical University of Berlin, June 2018 (cit. on p. 205).

[191]Lukas Rogner. ,,Cloud-Based Application Rendering for Low-Capability Devices“. MA
thesis. Technical University of Berlin, Oct. 2017 (cit. on p. 205).

[192]Christian Bromann. ,Design and Implementation of a Development and Test Automa-
tion Platform for HbbTV*. MA thesis. Technical University of Berlin, Aug. 2017 (cit. on
p. 205).

[193]Jonas Rook. ,Konzipierung und Entwicklung eines W3C konformen Web of Things
Framework". MA thesis. HTW Berlin, Mar. 2017 (cit. on p. 205).

[194]Akshay Akshay. ,,Analysis and Implementation of Unified Synchronization Framework
for HbbTV2.0 Sync-API and W3C Web-Timing API“. MA thesis. Kiel University of
Applied Sciences, Feb. 2016 (cit. on p. 205).

[195]Tommy Weidt. ,Synchronization Framework for W3C Second Screen Presentation
API“. MA thesis. Technical University of Berlin, June 2015 (cit. on p. 205).

[196]Yi Fan. ,Platform for sharing and synchronization of web content in multiscreen
applications®. MA thesis. Technical University of Berlin, Jan. 2015 (cit. on p. 205).

[197]Kostiantyn Kahanskyi. ,,Dynamic Media Objects“. MA thesis. Technical University of
Berlin, Apr. 2014 (cit. on p. 205).

[198]Anne Haase. ,Design and implementation of a migration framework for multiscreen
applications®. MA thesis. Free University of Berlin, Jan. 2014 (cit. on p. 205).

[199]Lutz Welpelo. ,Plattform zur Verfolgung von Produkt- und Markenpiraterie auf Online-
Marktplatzen“. MA thesis. Technical University of Berlin, July 2013 (cit. on p. 206).

[200]Alexander Futasz. ,,Web Scraping Cloud Platform With Integrated Visual Editor and
Runtime Environment“. MA thesis. Technical University of Berlin, Mar. 2013 (cit. on
p. 206).

Bibliography

https://www.w3.org/2011/webtv/
https://www.w3.org/2011/webtv/
https://www.w3.org/WoT/

[201]Michal Radziwonowicz. ,Development and Cross-domain Runtime Environment for
Distributed Mashups“. MA thesis. Technical University of Berlin, Jan. 2013 (cit. on
p. 206).

[202]Ahmad Abbas. ,,Cloud Platform for Web Connected Sensors and Actuators“. MA thesis.
Beuth University of Applied Sciences Berlin, Dec. 2012 (cit. on p. 206).

[203]Niklas Schmdiicker. ,,Enhancing Web-Based Citizen Reporting Platforms for the Public
Sector through Social Media“. MA thesis. Technical University of Berlin, Feb. 2012
(cit. on p. 206).

[204]Hui Deng. ,,Click-By-Click Mashup Platform for Open Statistical Data“. MA thesis.
Technical University of Berlin, Apr. 2011 (cit. on p. 206).

[205]Alexander Kong. ,,Securing Semi-automatic Data flow Control in Government Mashups*.

MA thesis. Technical University of Berlin, Dec. 2010 (cit. on p. 206).

[206]Jie Lu. ,Towards an End-User Centric Mashup Creation Environment facilitated
through Code Sharing“. MA thesis. Technical University of Berlin, June 2010 (cit.
on p. 206).

[207]peer-upnp: Node.js Implementation of the Universal Plug and Play Protocol UPnP. Open
Source Implementation. Online: https://github. com/fraunhoferfokus/peer-
upnp/. Fraunhofer FOKUS, 2017 (cit. on p. 206).

[208]peer-dial: Node.js Implementation of the Discovery and Launch Protocol DIAL. Open
Source Implementation. Online: https://github. com/fraunhoferfokus/peer-
dial/. Fraunhofer FOKUS, 2017 (cit. on p. 207).

[209]node-hbbtv: Node.js Implementation of the HbbTV Companion Screen Specification. Open
Source Implementation. Online: https://github . com/fraunhoferfokus/node-
hbbtv/. Fraunhofer FOKUS, 2017 (cit. on p. 207).

[210]cordova-plugin-presentation: Cordova Plugin Implemenation of the W3C Second Screen
Presentation API for Airplay and Miracast. Open Source Implementation. Online: https:
//github . com/fraunhoferfokus /cordova-plugin- presentation. Fraunhofer
FOKUS, 2017 (cit. on p. 207).

[211]Concept and Implementation of UPnP/SSDP Support in Physical Web. Open Source
Implementation. Online: https://github . com/ google/physical - web/blob/
master/documentation/ssdp_support.md. Google, 2017 (cit. on p. 207).

[212]Louay Bassbouss and Christopher Krauf3. Personalized Multi-Platform Development.
Guest Lecture. Beuth University of Applied Sciences Berlin, Feb. 2015 (cit. on p. 207).

[213]Louay Bassbouss. Multiscreen Technologies, Standards and Best Practices. Guest Lecture.
Beuth University of Applied Sciences Berlin, May 2015 (cit. on p. 207).

[214]Louay Bassbouss. Multiscreen Technologies and Standards. Guest Lecture. Beuth Uni-
versity of Applied Sciences Berlin, Jan. 2017 (cit. on p. 207).

[215]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauld, and Andre
Paul. Advanced Web Technologies Lecture WS 2015/2016. University Course. Technical
University Berlin, 2015 (cit. on p. 207).

[216]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre Paul.
Advanced Web Technologies Project SS 2016. University Course. Technical University
Berlin, 2016 (cit. on p. 208).

Bibliography

189

https://github.com/fraunhoferfokus/peer-upnp/
https://github.com/fraunhoferfokus/peer-upnp/
https://github.com/fraunhoferfokus/peer-dial/
https://github.com/fraunhoferfokus/peer-dial/
https://github.com/fraunhoferfokus/node-hbbtv/
https://github.com/fraunhoferfokus/node-hbbtv/
https://github.com/fraunhoferfokus/cordova-plugin-presentation
https://github.com/fraunhoferfokus/cordova-plugin-presentation
https://github.com/google/physical-web/blob/master/documentation/ssdp_support.md
https://github.com/google/physical-web/blob/master/documentation/ssdp_support.md

190

[217]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre
Paul. Advanced Web Technologies Lecture WS 2016,/2017. University Course. Technical
University Berlin, 2016/17 (cit. on p. 208).

[218]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre
Paul. Advanced Web Technologies Project WS 2016,/2017. University Course. Technical
University Berlin, 2016/17 (cit. on p. 208).

[219]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre Paul.
Advanced Web Technologies Project SS 2017. University Course. Technical University
Berlin, 2017 (cit. on p. 208).

[220]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre
Paul. Advanced Web Technologies Lecture WS 2017/2018. University Course. Technical
University Berlin, 2017/18 (cit. on p. 208).

[221]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre
Paul. Advanced Web Technologies Project WS 2017,/2018. University Course. Technical
University Berlin, 2017/18 (cit. on p. 208).

[222]Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and Andre Paul.
Advanced Web Technologies Project SS 2018. University Course. Technical University
Berlin, 2018 (cit. on p. 208).

Bibliography

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

UC1: Remote Media Playback 42
UC2: Multiscreen Game v vt e 43
UC3: Personalized Audio Streams 45
UC4: Multiscreen Advertisement 46
UCS5: Tiled Media Playback on Multiple Displays 47
UC6: Multiscreen 360° Video Playback 49

Components of the Multiscreen Multiplayer Game at different Stages . 59

Multiscreen Model Tree Example 61
Multiscreen Model Tree: CAC and AAC Instantiation 62
Multiscreen Model Tree before and after discovery 63
Multiscreen Model Tree before and after launch 64
Multiscreen Model Tree before and after merging 65
Multiscreen Model Tree before and after Migration 67
Multiscreen Model Tree before and after mirroring 68
Multiscreen Model Tree before and after disconnecting 69
Local and Remote Rendering 70
Multiscreen Model Tree of a Multiplayer Game following the Message-

Driven Approach 72
Message-Driven Approach 73
Event-Driven Approach 74
Data-Driven Approach 77
Multiscreen Platform Architecture 79
Multiscreen Application Runtime - Multiple Execution Contexts 81
Multiscreen Application Runtime - Single Execution Context 81
Multiscreen Application Runtime - Cloud Execution 82
Motion-To-Photon Latency for Cloud Execution Mechanism 84
Multiscreen Application Framework 86
Mapping of the Multiscreen Model to Web Technologies 90
Web Components for Multiscreen (UML Class Diagram) 94
Multiscreen Slides L. 96
Context based lookup in a device registry 102
Discover devices in the samenetwork 103
Example with two TV sets and three companion devices 107

191

192

4.27
4.28
4.29
4.30
4.31
4.32
4.33

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9
5.10
5.11

5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

B.1

Creation and Exchange of proximity UUID 107
Launch a Companion Application from a TV Application 108
Direct VS. Indirect Communication 109
Multiple User Agents 114
Single User Agent i i i i i i e e e e 115
Cloud User Agent v i i v i et e e e e e e e 116
Combination of Multiple and Cloud User Agents 116
Spatial Media 120
VideoWall e 121
Video Wall Synchronization Algorithm Sequence Diagram 124
Calculation of slave video playbackrater» 126
Equirectangular 360° Video Frame 128
Calculated FOVs with two settings 128
Projectionon FOV plane 129
Bitrates of 8 360° YouTube videos with varying output resolutions and

Codecso e e e 130
Avg. Bitrates in Mbps for codecs H.264and VP9 130
360° Playout - CSTVvs SST v ittt e e e e 131
(a) FOV created from 4K equirectangular frame vs. (b) FOV created

from 16K equirectangular frame 134
360° Video Pre-rendering Approach 136
FOV with a WxH resolution and aspect ratio 16:9 137
FOVs by varying ¢ and 6 stepwise with A¢ = 30°and A9 =30° 138
Snapshot of a 360° video frame during the Biathlon World Cup 2019 in

Oberhof/Germany 139
360° Streaming Approaches o o 0oL 143
Abrupt transition between FOVs 145
Dynamic transition between FOVs 145
Implementation Technology Stack 146
Video Wall Application Components v v 150
Video Wall Synchronization Accuracy 153
Video Wall Synchronization Accuracy 154
Evaluation of the 3 runtime approaches using a simple application. . . 157
Evaluation of the 3 runtime approaches using a video application . . . 159
Evaluation of server resources for the Cloud-UA approach 161

Bitrate overhead for CSP compared to SSP and pre-rendering approaches163
Evaluation of client resources for the three approaches 164
Motion-To-Photon Latency of 360° Streaming and Rendering Approachesl65

Video Wall Multiscreen Application Tree 213

List of Figures

List of Tables

4.1 Comparison of the Three Runtime Mechanisms 83

5.1 Avg. Bitrates in Mbps for codecs H.264and VP9 130

193

Acronyms

ABR
ACR
API
APN
APNs
AR
AVC
AWS
BLE

CDN
CEF
CG
CMAF
CPU
CS
CSp
CSS
CST
DASH
DDR
DIAL
DLNA
DNS

Atomic Application Component
Adaptive Bitrate

Automatic Content Recognition
Application Programming Interface
Apple Push Notification

Apple Push Notification service
Augmented Reality

Advanced Video Coding

Amazon Web Services

Bluetooth Low Energy

Composite Application Component
Content Distribution Network
Chrome Embedded Framework
Community Group

Common Media Application Format
Central Processing Unit
Companion Screen

Client Side Processing

Cascading Style Sheets

Client Side Transformation
Dynamic Adaptive Streaming over HTTP
Double Data Rate

Discovery and Launch protocol
Digital Living Network Alliance
Domain Name System

DNS-SD DNS Service Discovery

DOM
DRM
EME
EPG
EQR

Document Object Model
Digital Rights Management
Encrypted Media Extensions
Electronic Program Guide
Equirectangular

195

196

FHD
FMC
FOV
FPS

GOP
GPS
GPU

Full High Definition
Fixed-Mobile Convergence
Field Of View

Frames Per Second

Group Of Pictures

Global Positioning System
Graphics Processing Unit

HbbTV Hybrid broadcast broadband TV

HD
HDMI
HEVC
HLS
HMD
HTML
HTTP
IEC
IEEE
I0

IP
ISO

High Definition

High-Definition Multimedia Interface
High-Efficiency Video Coding

HTTP Live Streaming

Head-Mounted Display

Hypertext Markup Language

Hypertext Transfer Protocol

International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Input Output

Internet Protocol

International Organization for Standardization

ISOBMFF ISO Base Media File Format

ITU
JPEG
JSON
MB
mDNS
MHL
MPD
MPEG
MSA
MSC
MSE
MVC
NAB
NAT
NFC
NTP
OMAF
OMDL
oS
OTT
PC

International Telecommunication Union
Joint Photographic Experts Group
JavaScript Object Notation
Megabyte

multicast Domain Name System
Mobile High-Definition Link

Media Presentation Description
Moving Picture Experts Group
Multiscreen Application

Multiscreen Application Component
Media Source Extension

Model View Controller

National Association of Broadcasters
Network Address Translation

Near Field Communication

Network Time Protocol
Omnidirectional MediA Format
Open Mashup Description Language
Operating System

Over The Top

Personal Computer

List of Tables

PNG
PSNR
PTR
PTZ
QR
QUIC
RCP
REQ
REST
ROI

RTC
RTSP
RTT
RUI
SD
SDK
SRD
SRN
SRV
SSDP
SSp
SST
STB
STUN
TCP
TS
TTL
TURN

TXT
UA
UC
UDP
UHD
Ul
UML
UPNP
URI
URL
UUID
VOD

Portable Network Graphics
Peak Signal-to-Noise Ratio
Pointer Record

Pan Tilt Zoom

Quick Response

Quick UDP Internet Connections
Remote Control Protocol
Requirement

Representational State Transfer
Region Of Interest

Remote Procedure Call

Real Time Communication
Real Time Streaming Protocol
Round Trip Time

Remote User Interface
Standard Definition

Software Development Kit
Spacial Relationship Description
Segment Recombination Node
Service Record

Simple Service Discovery Protocol
Service Side Processing

Service Side Transformation
Set Top Box

Session Traversal Utilities for NAT
Transmission Control Protocol
Transport Stream

Time To Live

Traversal Using Relay NAT
Television

Text Record

User Agent

Use Case

User Datagram Protocol

Ultra High Definition

User Interface

Unified Modeling Language
Universal Plug and Play
Uniform Resource Identifier
Uniform Resource Locator
Universally Unique Identifier
Video On Demand

List of Tables

197

198

VR Virtual Reality

W3C World Web Consortium

WAMP Web Application Message Protocol

WG Working Group

WIPO World Intellectual Property Organization
WS WebSockets

XHR XMLHttpRequest

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocol

List of Tables

Appendices

199

Author’s Publications

This chapter summarizes all contributions of the author during this thesis. Section
A.1 lists all accepted and published papers to national and international conferences,
journals and events. Section A.2 lists an accepted patent about a new mechanism
for a smooth transition between different perspectives in videos which is related
to the 360° pre-rendering solution introduced in this work. Section A.3 lists all
contributions to relevant standards and section A.4 lists all diploma, bachelor and
master theses supervised by the author of this work. the author’s open source
contributions related to the topic of this thesis are listed in section A.5. Finally,
author’s contributions to university courses and guest lectures are listed in section
A.6.

A.1 Accepted Papers and Published Articles

1. Louay Bassbouss, Stephan Steglich, and Igor Fritzsch. ,Interactive 360° Video
and Storytelling Tool“. In: 2019 IEEE 23rd International Symposium On Con-
sumer Technologies (IEEE ISCT2019). Ancona, Italy, 2019 [172]

2. Louay Bassbouss, Stefan Pham, and Stephan Steglich. ,,Streaming and Playback
of 16K 360° Videos on the Web“. In: 2018 IEEE Middle East and North Africa
Communications Conference (MENACOMM) (IEEE MENACOMM’18). Jounieh,
Lebanon, 2018 [21]

3. Louay Bassbouss, Stephan Steglich, and Sascha Braun. ,,Towards a high effi-
cient 360° video processing and streaming solution in a multiscreen environ-
ment“. In: 2017 IEEE International Conference on Multimedia Expo Workshops
(ICMEW). 2017, pp. 417-422 [20]

4. Louay Bassbouss, Stefan Pham, Stephan Steglich, and Martin Lasak. ,,Content
Preparation and Cross-Device Delivery of 360° Video with 4K Field of View
using DASH“. in: 2017 IEEE International Conference on Multimedia Expo
Workshops (ICMEW). Hong Kong, 2017 [173]

201

202

5.

10.

11.

12.

Louay Bassbouss, Stephan Steglich, and Christian Fuhrhop. ,,Smart TV 360°.
In: Broadcast Engineering and Information Technology Conference, Virtual and
Augmented Reality/Immersive Content. Las Vegas, USA, 2017 [151]

. Paul Murdock, Louay Bassbouss, Martin Bauer, Mahdi Ben Alaya, Rajdeep

Bhowmik, Rabindra Chakraborty, Mohammed Dadas, John Davies, Wael Diab,
Khalil Drira, Bryant Eastham, Charbel El Kaed, Omar Elloumi, Marc Girod-
Genet, Nathalie Hernandez, Michael Hoffmeister, Jaime Jiménez, Soumya
Kanti Datta, Imran Khan, Dongjoo Kim, Andreas Kraft, Oleg Logvinov, Terry
Longstreth, Patricia Martigne, Catalina Mladin, Thierry Monteil, Paul Murdock,
Philippé Nappey, Dave Raggett, Jasper Roes, Martin Serrano, Nicolas Seydoux,
Eric Simmon, Ravi Subramaniam, Joerg Swetina, Mark Underwood, Chong-
gang Wang, Cliff Whitehead, and Yongjing Zhang. Semantic interoperability for
the Web of Things. White Paper. Online: http://dx.doi.org/10.13140/RG.2.
2.25758.13122. IEEE Standards Association, AIOTI, oneM2M and W3C Joint
Collaboration, Aug. 2016 [174]

. Louay Bassbouss, Stephan Steglich, and Martin Lasak. ,Best Paper Award:

High Quality 360° Video Rendering and Streaming“. In: Media and ICT for the
Creative Industries. Porto, Portugal, 2016 [19]

. Louay Bassbouss and Stephan Steglich. ,Position Paper: High quality 360°

Video Rendering and Streaming on the Web*“. In: W3C Workshop on Web and
Virtual Reality. San Jose, CA, USA, 2016 [175]

. Louay Bassbouss. Einfiihrung in das Physical Web. Electronic Document. Online:

https://heise.de/-2919078. Heise Developer, 2015 [176]

Louay Bassbouss, Gérkem Gticlii, and Stephan Steglich. , Towards a remote
launch mechanism of TV companion applications using iBeacon“. In: 2014
IEEE 3rd Global Conference on Consumer Electronics (GCCE). Tokyo, Japan,
2014, pp. 538-539 [177]

Louay Bassbouss, Gorkem Gticlii, and Stephan Steglich. , Towards a wake-up
and synchronization mechanism for Multiscreen applications using iBeacon®.
In: 2014 International Conference on Signal Processing and Multimedia Applica-
tions (SIGMAP). Vienna, Austria, 2014, pp. 67-72 [18]

Christopher Krauss, Louay Bassbouss, Stefan Pham, Stefan Kaiser, Stefan
Arbanowski, and Stephan Steglich. ,,Position Paper: Challenges for enabling
targeted multi-screen advertisement for interactive TV services®. In: W3C Web
and TV Workshop. Munich, Germany, 2014 [178]

Chapter A Author’s Publications

http://dx.doi.org/10.13140/RG.2.2.25758.13122
http://dx.doi.org/10.13140/RG.2.2.25758.13122
https://heise.de/-2919078

13.

14.

15.

16.

17.

18.

19.

20.

Louay Bassbouss, Max Tritschler, Stephan Steglich, Kiyoshi Tanaka, and Ya-
suhiko Miyazaki. , Towards a Multi-screen Application Model for the Web“.
In: 2013 IEEE 37th Annual Computer Software and Applications Conference
Workshops. Kyoto, Japan, 2013, pp. 528-533 [17]

Jean-Claude Dufourd, Louay Bassbouss, Max Tritschler, Radhouane Bouazizi,
and Stephan Steglich. ,,An Open Platform for Multiscreen Services“. In:
EuroITV 2013: 11th European Interactive TV Conference. Como, Italy, 2013
[179]

Evanela Lapi, Nikolay Tcholtchev, Louay Bassbouss, Florian Marienfeld, and
Ina Schieferdecker. ,Identification and Utilization of Components for a Linked
Open Data Platform®. In: 2012 IEEE 36th Annual Computer Software and
Applications Conference Workshops. Izmir, Turkey, 2012, pp. 112-115 [180]

Robert Kleinfeld, Louay Bassbouss, Iosif Alvertis, and George Gionis. ,,Empow-
ering Civic Participation in the Policy Making Process through Social Media“.
In: International AAAI Conference on Web and Social Media. Dublin, Ireland,
2012 [181]

George Gionis, Louay Bassbouss, Heiko Desruelle, Dieter Blomme, John Lyle,
and Shamal Faily. ,’Do we know each other or is it just our devices?’: a
federated context model for describing social activity across devices®. eng.
In: Federated Social Web Europe 2011, Proceedings. Berlin, Germany: W3C ;
PrimelLife, 2011, p. 6 [182]

Heiko Pfeffer, Louay Bassbouss, David Linner, Francoise Baude, Virginie
Legrand, Ludovic Henrio, and Paul Naoumenko. ,Mixing Workflows and Com-
ponents to Support Evolving Services“. In: International Journal of Adaptive,
Resilient and Autonomic Systems 1.4 (2010), pp. 60-84 [183]

Iacopo Carreras, Louay Bassbouss, David Linner, Heiko Pfeffer, Vilmos Simon,
Endre Varga, Daniel Schreckling, Jyrki Huusko, and Helena Rivas. ,,BIONETS:
Self Evolving Services in Opportunistic Networking Environments®. In: Bioin-
spired Models of Network, Information, and Computing Systems: 4th Interna-
tional Conference, BIONETICS 2009, Avignon, France, December 9-11, 2009. Ed.
by Eitan Altman, Iacopo Carrera, Rachid El-Azouzi, Emma Hart, and Yezekael
Hayel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 88-94 [184]

Heiko Pfeffer, Louay Bassbouss, and Stephan Steglich. ,Structured Service
Composition Execution for Mobile Web Applications®“. In: 2008 12th IEEE

A.1 Accepted Papers and Published Articles

203

204

International Workshop on Future Trends of Distributed Computing Systems.
Kunming, China, Oct. 2008, pp. 112-118 [125]

A.2 Patents

1. Martin Lasak, Louay Bassbouss, and Stephan Steglich. [DE] Verarbeitungsver-
fahren und Verarbeitungssystem fiir Videodaten. Patent. Patent Number: DE
102017125544B3, Published June 28, 2018, Online: https://depatisnet.
dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102017125544B3.
June 2018 [164]

2. Martin Lasak, Louay Bassbouss, and Stephan Steglich. Processing Method and
Processing System for Video Data. Patent. Patent Number: W02018210485,
Published November 22, 2018, Online: https://patentscope.wipo.int/
search/en/detail. jsf?docId=W02018210485. Nov. 2018 [165]

A.3 Contribution to Standards

1. W3C. Second Screen Working Group. Tech. rep. Online: https://www.w3.org/
2014/secondscreen/. The World Wide Web Consortium (W3C), 2017 [12]

2. Open Screen Protocol. Open Source Specification. Online: https://github.
com/webscreens/openscreenprotocol. The World Wide Web Consortium
(W30), 2017 [16]

3. W3C. Media and Entertainment Interest Group. Tech. rep. Online: https:
//www.w3.org/2011/webtv/. The World Wide Web Consortium (W3C), 2017
[185]

4. W3C. Web of Things. Tech. rep. Online: https://www.w3.org/WoT/. The
World Wide Web Consortium (W3C), 2017 [186]

5. HbbTV 2.0.1 Specification, Companion Screen and Media Synchronization Sec-
tions. Tech. rep. Online: http://www.etsi.org/deliver/etsi_ts/102700_
102799/102796/01.04.01_60/ts_102796v010401p . pdf. Hybrid broadcast
broadband TV (HbbTV), 2016 [42]

Chapter A Author’s Publications

https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102017125544B3
https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102017125544B3
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018210485
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018210485
https://www.w3.org/2014/secondscreen/
https://www.w3.org/2014/secondscreen/
https://github.com/webscreens/openscreenprotocol
https://github.com/webscreens/openscreenprotocol
https://www.w3.org/2011/webtv/
https://www.w3.org/2011/webtv/
https://www.w3.org/WoT/
http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.04.01_60/ts_102796v010401p.pdf
http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.04.01_60/ts_102796v010401p.pdf

A.4 Supervision Support of Theses

10.

11.

12.

. Igor Fritzsch. ,,360° Storytelling:Mixed Media, Analytics and Interaction De-

sign“. MA thesis. Technical University of Berlin, June 2019 [187]

Thomas Fett. ,,Design and Implementation of a Sound Engine for 360° Videos
in Web Browsers and Smart TVs“. MA thesis. Technical University of Berlin,
Dec. 2018 [188]

. Christian Bach. ,,360° Video Streaming for Head-Mounted Displays“. MA thesis.

Wildau Technical University of Applied Science, June 2018 [189]

Marius Wessel. , Assembler on the Web - Evaluation of the WebAssembly
Technology“. MA thesis. Technical University of Berlin, June 2018 [190]

Lukas Rogner. ,Cloud-Based Application Rendering for Low-Capability De-
vices“. MA thesis. Technical University of Berlin, Oct. 2017 [191]

Christian Bromann. ,.Design and Implementation of a Development and Test
Automation Platform for HbbTV“. MA thesis. Technical University of Berlin,
Aug. 2017 [192]

. Jonas Rook. ,Konzipierung und Entwicklung eines W3C konformen Web of

Things Framework“. MA thesis. HTW Berlin, Mar. 2017 [193]

. Akshay Akshay. ,Analysis and Implementation of Unified Synchronization

Framework for HbbTV2.0 Sync-API and W3C Web-Timing API“. MA thesis. Kiel
University of Applied Sciences, Feb. 2016 [194]

. Tommy Weidt. ,,Synchronization Framework for W3C Second Screen Presenta-

tion API“. MA thesis. Technical University of Berlin, June 2015 [195]

Yi Fan. ,Platform for sharing and synchronization of web content in multiscreen
applications“. MA thesis. Technical University of Berlin, Jan. 2015 [196]

Kostiantyn Kahanskyi. ,,Dynamic Media Objects“. MA thesis. Technical Univer-
sity of Berlin, Apr. 2014 [197]

Anne Haase. ,Design and implementation of a migration framework for
multiscreen applications“. MA thesis. Free University of Berlin, Jan. 2014
[198]

A.4 Supervision Support of Theses

205

13. Lutz Welpelo. ,Plattform zur Verfolgung von Produkt- und Markenpiraterie
auf Online-Marktplatzen“. MA thesis. Technical University of Berlin, July 2013
[199]

14. Alexander Futasz. ,Web Scraping Cloud Platform With Integrated Visual Editor
and Runtime Environment“. MA thesis. Technical University of Berlin, Mar.
2013 [200]

15. Michal Radziwonowicz. ,,Development and Cross-domain Runtime Environ-
ment for Distributed Mashups“. MA thesis. Technical University of Berlin, Jan.
2013 [201]

16. Ahmad Abbas. ,,Cloud Platform for Web Connected Sensors and Actuators®.
MA thesis. Beuth University of Applied Sciences Berlin, Dec. 2012 [202]

17. Niklas Schmiicker. ,,Enhancing Web-Based Citizen Reporting Platforms for the
Public Sector through Social Media“. MA thesis. Technical University of Berlin,
Feb. 2012 [203]

18. Hui Deng. ,,Click-By-Click Mashup Platform for Open Statistical Data“. MA
thesis. Technical University of Berlin, Apr. 2011 [204]

19. Alexander Kong. ,Securing Semi-automatic Data flow Control in Government
Mashups“. MA thesis. Technical University of Berlin, Dec. 2010 [205]

20. Jie Lu. ,,Towards an End-User Centric Mashup Creation Environment facilitated
through Code Sharing“. MA thesis. Technical University of Berlin, June 2010
[206]

A.5 Open Source Contributions

1. peer-ssdp: Node.js Implementation of the Simple Service Discovery Protocol SSDP.
Open Source Implementation. Online: https://github.com/fraunhoferfokus/
peer-ssdp/. Fraunhofer FOKUS, 2017 [140]

2. peer-upnp: Node.js Implementation of the Universal Plug and Play Protocol UPnP.

Open Source Implementation. Online: https://github.com/fraunhoferfokus/
peer-upnp/. Fraunhofer FOKUS, 2017 [207]

206 Chapter A Author’s Publications

https://github.com/fraunhoferfokus/peer-ssdp/
https://github.com/fraunhoferfokus/peer-ssdp/
https://github.com/fraunhoferfokus/peer-upnp/
https://github.com/fraunhoferfokus/peer-upnp/

3. peer-dial: Node.js Implementation of the Discovery and Launch Protocol DIAL.
Open Source Implementation. Online: https://github.com/fraunhoferfokus/
peer-dial/. Fraunhofer FOKUS, 2017 [208]

4. node-hbbtv: Node.js Implementation of the HbbTV Companion Screen Speci-
fication. Open Source Implementation. Online: https://github. com/
fraunhoferfokus/node-hbbtv/. Fraunhofer FOKUS, 2017 [209]

5. cordova-plugin-hbbtv: Cordova Plugin Implemenation of the HbbTV Companion
Screen Specification. Open Source Implementation. Online: https://github.
com/fraunhoferfokus/cordova-plugin-hbbtv. Fraunhofer FOKUS, 2017
[141]

6. cordova-plugin-presentation: Cordova Plugin Implemenation of the W3C Second
Screen Presentation API for Airplay and Miracast. Open Source Implementa-
tion. Online: https://github.com/fraunhoferfokus/cordova-plugin-
presentation. Fraunhofer FOKUS, 2017 [210]

7. Concept and Implementation of UPnP/SSDP Support in Physical Web. Open
Source Implementation. Online: https://github.com/google/physical-
web/blob/master/documentation/ssdp_support.md. Google, 2017 [211]

A.6 University Courses And Guest Lectures

1. Louay Bassbouss and Christopher Krauls. Personalized Multi-Platform Develop-
ment. Guest Lecture. Beuth University of Applied Sciences Berlin, Feb. 2015
[212]

2. Louay Bassbouss. Multiscreen Technologies, Standards and Best Practices. Guest
Lecture. Beuth University of Applied Sciences Berlin, May 2015 [213]

3. Louay Bassbouss. Multiscreen Technologies and Standards. Guest Lecture. Beuth
University of Applied Sciences Berlin, Jan. 2017 [214]

4. Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and

Andre Paul. Advanced Web Technologies Lecture WS 2015/2016. University
Course. Technical University Berlin, 2015 [215]

A.6 University Courses And Guest Lectures 207

https://github.com/fraunhoferfokus/peer-dial/
https://github.com/fraunhoferfokus/peer-dial/
https://github.com/fraunhoferfokus/node-hbbtv/
https://github.com/fraunhoferfokus/node-hbbtv/
https://github.com/fraunhoferfokus/cordova-plugin-hbbtv
https://github.com/fraunhoferfokus/cordova-plugin-hbbtv
https://github.com/fraunhoferfokus/cordova-plugin-presentation
https://github.com/fraunhoferfokus/cordova-plugin-presentation
https://github.com/google/physical-web/blob/master/documentation/ssdp_support.md
https://github.com/google/physical-web/blob/master/documentation/ssdp_support.md

208

10.

11.

Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Kraul3, and
Andre Paul. Advanced Web Technologies Project SS 2016. University Course.
Technical University Berlin, 2016 [216]

Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Kraul3, and
Andre Paul. Advanced Web Technologies Lecture WS 2016,/2017. University
Course. Technical University Berlin, 2016/17 [217]

Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Kraul3, and
Andre Paul. Advanced Web Technologies Project WS 2016,/2017. University
Course. Technical University Berlin, 2016/17 [218]

Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Kraul3, and
Andre Paul. Advanced Web Technologies Project SS 2017. University Course.
Technical University Berlin, 2017 [219]

. Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Kraul3, and

Andre Paul. Advanced Web Technologies Lecture WS 2017/2018. University
Course. Technical University Berlin, 2017/18 [220]

Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Kraul3, and
Andre Paul. Advanced Web Technologies Project WS 2017,/2018. University
Course. Technical University Berlin, 2017/18 [221]

Stephan Steglich, Louay Bassbouss, Stefan Pham, Christopher Krauf3, and

Andre Paul. Advanced Web Technologies Project SS 2018. University Course.
Technical University Berlin, 2018 [222]

Chapter A Author’s Publications

Multiscreen Web Application
Examples

This chapter provides the source code for two multiscreen applications used as
examples in this thesis. Section B.1 covers the implementation for the components of
the "Multiscreen Slides Application", while Section covers the Multiscreen Application
Tree and the implementation for the component of the "Video Wall Multiscreen

Application".

B.1 Multiscreen Slides Application

1 <template id= >

2 <style>

3 /* styles for the control AAC */
4 </style>

5 <div>

6 <button id= >0pen Slides</button>

7 <button id= >Previous Slide</button>

g <button id= >Next Slide</button>

9 </div>

10</template>

12 <script>
13 class AACControl extends AAC {
14 connectedCallback () {

15 var template = document.querySelector () .content;
16 var shadow = this.attachShadow ({mode: 3

17 shadow.appendChild (document.importNode (template, true));
18 var openBtn = shadow.querySelector ()

19 var prevBtn = shadow.querySelector ()

20 var nextBtn = shadow.querySelector ()

21 var state = this.msa.object(, 1

22 currSlide: O,

23 slides: []

24 b

25 openBtn.onclick = function(){

26 this.loadSlides () .then(function(slides){

27 state.slides = slides;

28 ¥ 8

29 }

30 prevBtn.onclick = function(){

209

31 state.currSlide > 0 && state.currSlide--;

32 }

33 nextBtn.onclick = function(){

34 state.currSlide < slides.length-1 && state.currSlide++;
35 }

36}

37 loadSlides (){

38 /* load slides from somewhere x*/

39}

40 }

41 customElements.define (, AACControl);

42</script>

Listing B.1: Control Atomic Component

1 <template id= >

2 <style>

3 /x styles for the preview AAC x/
4 </style>

5 <div>
6 <p id= ></p>
7 </div>

g </template>

10<script>
11 class AACPreview extends AAC {
12 connectedCallback () {

13 var template = document.querySelector () .content;
14 var shadow = this.attachShadow ({mode: IO

15 shadow.appendChild (document.importNode (template, true));

16 var previewEl = shadow.querySelector () 8

17 var state = this.msa.object(o

18 currSlide: O,

19 slides: []

20 P

21 state.observe (B ,function(path, newVal, oldVal){

22 var slide = state.slides[state.currSlidel];

23 previewEl.innerHTML = slide && slide.content? slide.content:
24 b

25}

26}

27 customElements.define (, AACPreview) ;

N

8 </script>

Listing B.2: Preview Atomic Component

1 <template id= >

2 <style>

3 /* styles for the notes AAC */
4 </style>

5 <div>

6 <p id= ></p>

210 Chapter B Multiscreen Web Application Examples

7 </div>

g </template>

9

10 <script>

11 class AACNotes extends AAC {
12 connectedCallback () {

13 var template = document.querySelector () .content;
14 var shadow = this.attachShadow ({mode: });

15 shadow.appendChild (document.importNode (template, true));

16 var notesEl = shadow.querySelector ()

17 var state = this.msa.object(»{

18 currSlide: O,

19 slides: []

20 ¥ s

21 state.observe (s ,function(path, newVal, oldVal){
22 var slide = state.slides[state.currSlidel];

23 notesEl.innerHTML = slide && slide.notes? slide.notes: ;
24 1) 3

25

26 }

27}

28 customElements.define (, AACNotes);

29</script>

Listing B.3: Notes Atomic Component

1 <template id='"cac-presenter'">

2 <style>

3 /x styles for the presenter CAC x/
4 </style>

5 <div>

6 <button id= >Present</button>
7 ~<aac-preview></aac-preview>

§ <aac-notes></aac-notes>

9 <aac-control></aac-control>

0 </div>

11</template>

12

13 <script>

14 class CACPresenter extends CAC {

15 connectedCallback () {

16 var template = document.querySelector ('#cac-presenter').content;
17 var shadow = this.attachShadow ({mode: });

18 shadow.appendChild (document.importNode (template, true));
19 var presentBtn = shadow.querySelector ()
20 var self = this;

21 presentBtn.onclick = function(){

22 self.discoverFirstDevice () .then(function(device){

23 device.launch ()

24 }) .catch(function(err){

25 /* no device found */

26 »;

B.1 Multiscreen Slides Application

211

212

1

2

6

7

8

9

}
}
discoverFirstDevice () {
var self = this;
return new Promise(function(resolve, reject){
self.ondevicefound = function(evt){
self.stopDiscovery();
resolve (evt.device) ;
}
setTimeout (function () {

self.stopDiscovery () ;

reject (new Error());
},5000) ;
1
}
}
customElements.define ('cac-presenter', CACPresenter);

</script>

Listing B.4: Presenter Composite Component

<template id= >
<style>
/* styles for the display CAC x*/
</style>
<div>

<aac-preview></aac-preview>
</div>

</template>

10<script>

11

12

18

class CACDisplay extends CAC {
connectedCallback () {
var template = document.querySelector () .content;
var shadow = this.attachShadow ({mode: 1N
shadow.appendChild (document.importNode (template, true));

customElements.define (, CACDisplay);

19</script>

Listing B.5: Display Composite Component

Chapter B Multiscreen Web Application Examples

B.2 Video Wall Multiscreen Application

B.2.1 Multiscreen Application Tree

Displayyg

VideoW all VideoW all

Tablet Tablet Display,

CACClient CACClient

AACControl AACPlayer, AACControl AACPlayer,

(a) Initial State (b) After Discovery of Displays
VideoW all
Tablet Display, ... Displayg
CACClient CACDisplayy, CACDisplayy

T | |

AACControl AACPlayer. AACPlayer, AACPlayerg
(c) After Launch of Display CAC

Figure B.1.: Video Wall Multiscreen Application Tree

B.2.2 Implementation

1<template id="aac-control">

2 <style>

3 /* styles for the control AAC */

4 </style>

5 <div>

6 <button id="present-btn">Present</button>
7 <dialog>

8 <ul id="display-list">

9 <button id="launch-btn">Launch</button>
10 <button id="close-btn">Close</button>

11 </dialog>

12 </div>

13</template>

14

15<script>

B.2 Video Wall Multiscreen Application

213

16 class AACControl extends AAC {
17 connectedCallback () {

18 var template = document.querySelector () .content;
19 var shadow = this.attachShadow ({mode: »;

20 shadow.appendChild (document.importNode (template, true));

21 var dialog = shadow.querySelector (DR

22 var presentBtn = shadow.querySelector () 8

23 var launchBtn = shadow.querySelector ()

24 var closeBtn = shadow.querySelector ()

25 var displays = {};

26 var msa = this.msa;

27 var cacClient = this.cac;

28 msa.ondevicefound = function(evt){
20 var display = evt.device;

30 displays[display.id] = display;
31 //update display list in the UI

32 };
34 msa.ondevicelost = function(evt){
35 var display = evt.device;

36 delete displays[display.id];

37 //update display list in the UI
38 };

39

40 dialog.onopen = function(){

41 msa.startDiscovery () ;

42 Irg

43

44 dialog.onclose = function(){

45 msa.stopDiscovery () ;

46 displays = {};
47 // empty display list in the UI

48 g

49

50 presentBtn.onclick = function(){
51 dialog.showModal () ;

52 s

53

54 launchBtn.onclick = function(){

55 displays.forEach(function(display){

56 display.connect().then(function(){

57 return display.addCAC()
58 }).then(function(cacDisplay){

59 return cacDisplay.getAAC()
60 }).then(function(aac){

61 var tileUrl = getVideoUrl(display.name) ;

62 aac.postMessage (tileUrl);

63 });

64 1) ;

65 var videoUrl = getVideoUrl();

66 var aacPlayer = cacClient.getAAC(D8

214 Chapter B Multiscreen Web Application Examples

67

68

69

70

71

72

73

74

75

76

77

78

79

80

aacPlayer.postMessage (videoUrl);
dialog.closeModal () ;

};

closeBtn.onclick = function(){

msa.devices.forEach(function(display){

// only disconnect() will not close the CACDisplay
display.removeCAC("cac-display").then(function () {
display.disconnect ();

B

)

};
}

getVideoUrl (displayName){
// returns video tile URL of corresponding display

// returns video URL for client if no input porovided

}

customElements.define('aac-control', AACControl);

</script>

Listing B.6: Control Atomic Component

<template id="aac-player">
<div>

<video id="video"></video>
</div>
5</template>

<script>
class AACPlayer extends AAC {

connectedCallback () {

var template = document.querySelector ('#aac-player').content;
var shadow = this.attachShadow ({mode: 'open'});
shadow.appendChild (document.importNode (template, true));

var video = shadow.querySelector ("#video");

var syncGroup = this.msa.syncGroup("VideoWall");
syncGroup.addMedia (video) ;

// call syncGroup.removeMedia(video); to end synchronization

}

customElements.define('aac-player', AACPlayer);

</script>

Listing B.7: Preview Atomic Component

<template id="cac-client">
<div>
<aac-player></aac-player>
<aac-control></aac-control>
</div>

B.2 Video Wall Multiscreen Application 215

216

6

6

7

8

9

16

</template>

<script>

class CACClient extends CAC {

connectedCallback () {

var template = document.querySelector (
var shadow = this.attachShadow ({mode:) ;
shadow.appendChild (document.importNode (template,

}

}

customElements.define (, CACClient);
</script>

) .content;

true));

Listing B.8: Control Atomic Component

<template id= >
<div>
<aac-player></aac-player>
</div>

</template>

<script>
class CACDisplay extends CAC {
connectedCallback () {
var template = document.querySelector (
var shadow = this.attachShadow ({mode:) ;
shadow.appendChild (document.importNode (template,
}
}
customElements.define (, CACDisplay);
</script>

) .content;

true)) ;

Listing B.9: Preview Atomic Component

Chapter B Multiscreen Web Application Examples

Declaration

I hereby declare in lieu of an oath that I have produced this work by myself. All used
sources are listed in the bibliography and content taken directly or indirectly from
other sources is marked as such. This work has not been submitted to any other

board of examiners and has not yet been published.

Berlin, September 12, 2019

Dipl.-Ing. Louay Bassbouss

218 Chapter B Multiscreen Web Application Examples

	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement And Research Questions
	1.3 Contributions
	1.4 Structure of the Thesis

	2 State of the Art and Related Work
	2.1 Multiscreen Definition
	2.2 Motivating Real World Scenarios
	2.3 State of the Art Technologies and Standards
	2.3.1 Discovery, Launch and Control
	2.3.2 Screen Sharing and Control
	2.3.3 Application to Application Communication
	2.3.4 Media Delivery and Rendering
	2.3.5 Web APIs

	2.4 Related Work
	2.4.1 Multiscreen Applications
	2.4.2 Multiscreen Multimedia Content

	2.5 Discussion

	3 Use Cases and Requirements Analysis
	3.1 Use Cases
	3.1.1 UC1: Remote Media Playback
	3.1.2 UC2: Multiscreen Game
	3.1.3 UC3: Personalized Audio Streams
	3.1.4 UC4: Multiscreen Advertisement
	3.1.5 UC5: Tiled Media Playback on Multiple Displays
	3.1.6 UC6: Multiscreen 360° Video Playback

	3.2 Requirements Analysis
	3.2.1 Functional Requirements
	3.2.2 Non-Functional Requirements

	3.3 Conclusion

	4 Multiscreen Application Model and Concepts
	4.1 Introduction
	4.2 Multiscreen Model Tree
	4.2.1 Instantiation
	4.2.2 Discovery
	4.2.3 Launching and Terminating of Application Components
	4.2.4 Merging and Splitting
	4.2.5 Migration
	4.2.6 Mirroring
	4.2.7 Joining and Disconnecting
	4.2.8 Rendering

	4.3 Multiscreen Application Concepts and Approaches
	4.3.1 Message-Driven Approach
	4.3.2 Event-Driven Approach
	4.3.3 Data-Driven Approach

	4.4 Multiscreen Platform Architecture
	4.4.1 Multiscreen Application Runtime
	4.4.2 Multiscreen Application Framework
	4.4.3 Multiscreen Network Protocols

	4.5 Multiscreen on the Web
	4.5.1 Web Components Basics
	4.5.2 Web Components for Multiscreen

	4.6 Implementation
	4.6.1 Discovery and Launch
	4.6.2 Communication and Synchronization
	4.6.3 Application Runtime

	5 Multimedia Streaming in a Multiscreen Environment
	5.1 Multimedia Sharing and Remote Playback
	5.2 Spatial Media Rendering for Multiscreen
	5.2.1 Content Preparation
	5.2.2 Seamless, Consistent and Synchronized Playback

	5.3 360° Video for Multiscreen
	5.3.1 Challenges of 360° Video Streaming
	5.3.2 Classification of 360° Streaming Solutions
	5.3.3 16K 360° Content Generation
	5.3.4 360° Video Pre-rendering Approach
	5.3.5 Improvement
	5.3.6 Implementation

	6 Evaluation
	6.1 Multiscreen Application Model and Media Synchronization
	6.2 Multiscreen Application Runtime Approaches
	6.2.1 Evaluation of the Simple Application
	6.2.2 Evaluation of the Video Application
	6.2.3 Evaluation of the Cloud-UA Approach on the Server
	6.2.4 Summary

	6.3 360° Video Rendering and Streaming
	6.3.1 Bitrate Usage
	6.3.2 Client Resources
	6.3.3 Motion-To-Photon Latency
	6.3.4 Server Resources
	6.3.5 Summary

	7 Conclusions and Outlook
	7.1 Conclusions
	7.2 Outlook

	Bibliography
	Appendices
	A Author's Publications
	A.1 Accepted Papers and Published Articles
	A.2 Patents
	A.3 Contribution to Standards
	A.4 Supervision Support of Theses
	A.5 Open Source Contributions
	A.6 University Courses And Guest Lectures

	B Multiscreen Web Application Examples
	B.1 Multiscreen Slides Application
	B.2 Video Wall Multiscreen Application
	B.2.1 Multiscreen Application Tree
	B.2.2 Implementation

	Declaration

