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This paper explores how firms that lack expertise in machine learning (ML) can leverage the so-called AI

Flywheel effect. This effect designates a virtuous cycle by which, as an ML product is adopted and new user

data are fed back to the algorithm, the product improves, enabling further adoptions. However, managing

this feedback loop is difficult, especially when the algorithm is contracted out. Indeed, the additional data

that the AI Flywheel effect generates may change the provider’s incentives to improve the algorithm over

time.

We formalize this problem in a simple two-period moral hazard framework that captures the main dynam-

ics between machine learning, data acquisition, pricing and contracting. We find that the firm’s decisions

crucially depend on how the amount of data on which the machine is trained interacts with the provider’s

effort. If this effort has a more (resp. less) significant impact on accuracy for larger volumes of data, the firm

underprices (resp. overprices) the product. Further, the firm’s starting dataset, as well as the data volume

that its product collects per user, significantly affect its pricing and data collection strategies. The firm

leverages the virtuous cycle less for larger starting datasets and sometimes more for larger data volumes per

user. Interestingly, the presence of incentive issues can induce the firm to leverage the effect less when its

product collects more data per user.
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1. Introduction

To train ML algorithms, companies often deploy their artificial intelligence (AI)-based

products early and collect usage data from their first customers. As new data are fed

back to the algorithm, the technology improves, enabling further adoptions and thus the

acquisition of additional data. This virtuous feedback loop, sometimes referred to as the
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AI Flywheel effect in the popular press (Trautman 2018), compounds the economic effect

by which quality increases demand, according to the statistics principle whereby data

improves accuracy.

The AI Flywheel effect has many applications, from voice recognition systems (Sarikaya

2019) to self-driving vehicles (Miller 2016), and even explains how certain web search

engines ended up dominating the market. Nonetheless, this virtuous cycle is perhaps most

useful for smaller teams or novel and specialized applications for which data is scarce.

The founders of startup Blue River Technology famously established their first dataset

manually to train an AI system that would distinguish weeds from crops, a crucial step

for the optimal spray of pesticides in farming (Ng 2018, Trautman 2018). This yielded an

algorithm with low performance, but with its adoption by early users, the company could

leverage the effects and significantly improve the algorithm. The company was sold in 2017

for more than $300 million (Golden 2017).

However, despite its apparent simplicity, the AI Flywheel effect is difficult to imple-

ment, especially among the small organizations that would most benefit from it. First, a

firm makes choices, and pricing decisions in particular, that affect demand alongside accu-

racy and hence interfere with the virtuous cycle. More specifically, the AI Flywheel effect

introduces an additional tradeoff between improving algorithms’ accuracy and maximizing

revenue, which the firm needs to consider when setting its pricing strategy.

Second, and perhaps more importantly, many firms lack the expertise to develop ML

algorithms. Indeed, the economy has experienced a significant shortage of skilled data

scientists, which particularly affects start-ups and small organizations (Nicolaus Henke

et al. 2016). This shortage has given rise to a striving outsourcing industry (Research

Nester Pvt. Ltd 2019), and many start-ups have been successful by turning to technology

outsourcing (examples include Skype, Opera and Slack, to name a few; see Cengiz 2015).

However, relying on outsourcing gives rise to incentive issues, which may impair accuracy

and thus again interfere with the AI Flywheel effect. For example, a provider may shirk by

applying standard third-party software that may be suboptimal for the task or expose the

firm to threats (Kendra et al. 2019, Bursztein 2018). If these algorithms are not developed

with care, they learn only surface statistical regularities, which affects their ability to

generalize and thus their accuracy (Jo and Bengio 2017). More generally, the provider may

have an incentive to wait for more usage data before exerting any effort to improve the
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algorithm. In fact, incentive issues such as these may not disappear when the firm does

not outsource the algorithm but instead employs an expert. Indeed, the details of ML

algorithms and their outputs suffer notoriously from a lack of explainability (Lipton 2016,

Ribeiro et al. 2016), rendering the expert’s efforts to improve accuracy difficult to observe

and contract on.

Third, the amount of data to which the provider has access for training the algorithm may

exacerbate the incentive issues. For instance, research in AI has suggested that accuracy

depends less on the specifics of the algorithm and more on the data on which it is trained

as data volume increases (Banko and Brill 2001, Halevy et al. 2009). In this case, the

provider’s effort to develop the machine matters more when data are scarce, i.e., in the

early stages of the AI Flywheel effect. Hence, the intensity of the incentive issues may

change over time as the feedback loop between accuracy and usage data unfolds.

The goal of this paper is to shed light on how firms that lack expertise in ML can

leverage and optimize the AI Flywheel effect. In this context, we seek to understand how

the need to mitigate the incentive issues created by outsourcing the algorithm affect the

firm’s pricing and data collection strategies. To that end, we formalize the problem in a

simple two-period moral hazard framework, which captures the previous three features:

the accuracy vs. the revenue tradeoff, the incentive issues, and the impact of data on the

intensity of these issues.

Our analysis reveals that the firm’s decisions crucially depend on how the amount of

data on which the machine is trained interacts with the provider’s effort. Specifically, if

the provider’s effort has a more significant impact on accuracy for larger volumes of data,

the firm underprices the product in order to acquire more data from the market, retrain

the algorithm and generate more revenues in the future. In contrast, the firm overprices

and collects less data if the provider’s effort is most impactful when data are scarce. In

addition, when effort is most impactful for medium amounts of data, the firm’s pricing

strategy depends on the initial dataset on which the algorithm is first trained. The firm

underprices if the initial dataset is small and overprices otherwise.

This last point reveals the importance of the dataset on which the algorithm is first

trained. In particular, firms with different initial datasets may follow radically different

pricing strategies. In addition, we provide sufficient conditions under which increasing the
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size of this initial dataset reduces the inefficiencies due to incentive issues when the firm

underprices but exacerbates them when the firm overprices.

Our analysis also reveals the key role that the data volume per user has on the firm’s

decisions. Indeed, the firm can sometimes increase the amount of data its product collects

per user. For instance, the firm may rely on third-party services in the case of mobile and

web applications (Deshpande 2019) or increase the capacity of embedded sensors in case

of physical products (McGrath and Scanaill 2013). This, in turn, should provide the firm

with more data overall to retrain and improve the algorithm. We find, however, that this

intuition does not always hold when the firm needs to manage the provider’s incentives. If

the provider’s effort is most impactful when data are scarce, the effect is actually reversed

and the firm collects overall less data when the data volume per user is sufficiently high.

Taken together, these results characterize how the starting dataset as well as the amount

of usage data collected by the product significantly affect the firm’s pricing and data

collection strategies. The key driver for this lies in the type of impact that data has on the

provider’s effort when training the algorithm.

More specifically, we consider a firm (the principal) that outsources the development of

an ML algorithm to a provider (the agent). (See Section 2.) The expected accuracy of the

algorithm increases in both the amount of data on which it is trained and the effort of the

provider. At the beginning of the time horizon, the firm starts with a small initial dataset,

which allows the provider to develop a first version of the algorithm. The firm chooses

a pricing strategy and begins to market this product. Demand for the product decreases

with price and increases with accuracy. At the end of this first period, the realized demand

generates revenues for the firm and additional data for the provider. This additional amount

of data corresponds to the realized demand multiplied by the volume rate, which is the

expected amount of data per user that the product collects. The provider retrains the

algorithm based on the augmented dataset, and the firm markets this second version at

a new price. However, exerting effort to improve the algorithm is costly. Because effort is

non-contractable, the firm faces a moral hazard problem in each period when the provider

trains the algorithm. The firm then seeks to design a contract and a pricing strategy that

maximize its total profit over the time horizon.

A crucial feature of our setup is how effort and data interact with one another to deter-

mine the algorithm’s accuracy. We introduce the notion of data impact (in Section 2.2),
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which maps the size of the available dataset to the normalized effect of shirking on the

probability of high accuracy. The data impact characterizes how data interact with effort

to determine the algorithm’s accuracy. When the data impact is constant in the data size,

effort and data independently affect accuracy. However, when the data impact increases

(resp. decreases), exerting effort increases accuracy relatively more (resp. less) with more

data.

Overall, this setup captures the elementary dynamics of the AI Flywheel effect. Indeed,

demand in the first period generates additional data that improve the algorithm’s accuracy

in the second period, which in turn generates more demand. The model also captures

how the firm’s decisions affect the flywheel effect in a simple manner. Specifically, the

firm faces a price/data tradeoff in which decreasing the price generates more data but

less revenues. Further, the initial data size and the volume rate characterize together the

potential strength of the AI Flywheel effect. The initial data size specifies the firm’s starting

point in the virtuous cycle, while the volume rate influences the speed at which this cycle

unfolds. Finally, the data impact captures how the intensity of the moral hazard problem

changes with data and thus as the AI Flywheel effect unfolds.

In this setup, we begin by solving the first-best problem, that is, the existence of the

AI Flywheel effect but without incentive issues (see Section 3). In this case, we find that

the flywheel effect induces the firm to decrease its price. We then characterize the optimal

contract and equilibrium payments to the provider in the presence of moral hazard. Under

this optimal contract, the firm always prices at the first-best price when the data impact

is constant in the size of the dataset, but always prices below (resp. above) the first-best

price to collect more (resp. less) data when the data impact increases (resp. decreases).

(See Section 5.) This situation implies that when the data impact is unimodal, a threshold

exists for the size of the starting dataset such that the firm prices below (resp. above)

first-best when the starting dataset size is below (resp. above) the threshold. Further, the

firm’s price always increases in the initial data size. In this case, and under additional mild

conditions, the firm underprices less as the initial data increase if the data impact also

increases but overprices more when the data impact decreases. (See Section 6.) Finally, we

show that when the data impact is increases, improving the volume rate also increases the

amount of collected data. In contrast, improving the volume rate has a unimodal effect on

the collected data when the data impact decreases (see Section 7).
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1.1. Literature Review

The advent of the digital economy has recently generated new research on data privacy and

markets in both management science and economics. This new stream of research explores

the impact of data leakage in platform business models (Acemoglu et al. 2019), the issue of

selling data (Bimpikis et al. 2019, Mehta et al. 2019), and the effect of collecting data on

privacy and price discrimination (Loertscher and Marx 2019). In contrast, our work focuses

on the outsourcing of ML algorithms that make use of this data, which creates incentive

issues that dynamically interact with the amount of available data. More generally, ours

is the first study in this stream of research to explore the problem of managing the AI

Flywheel effect.

Our work is also related to the large literature on dynamic pricing with learning. Of

particular interest is the recent stream of research on new experience goods and quality

learning. Yu et al. (2015), for instance, study the dynamic pricing of new experience goods

in the presence of two-sided learning (learning about quality via consumer reviews). In

their setting, the pricing decision affects both revenue and the flow of information. They

show that consumer-generated quality information may decrease the firm’s profit and even

consumer surplus. Feldman et al. (2018) also analyze the pricing and quality design of new

experience goods for consumers who are social learners. They characterize the deviation

of the firm’s optimal policy from a setting without social learning. In these setups, quality

is a decision variable that is set ex ante, and learning concerns either the firm learning

about the consumers or the consumers learning about quality. By contrast, accuracy is

dynamically improved in our setting and learning concerns the training of the algorithm,

i.e., the enhancement of quality. In addition, we consider moral hazard issues, which is not

the focus of this stream of research.

From a more technical point of view, our model is a dynamic moral hazard problem with

binary effort choices and binary outcomes. Different versions of this problem have been

studied, especially in the sales force management literature. Schöttner (2016) analyzes a

multi-period setting with different sales probabilities in each period when the firm can

obtain only aggregate information on sales. Despite being different across periods, the sales

probabilities are taken as constant. Kräkel and Schöttner (2016) consider a two-period

model with binary effort choices and analyze the optimal contracts. They also study a case

where the second-period sales opportunity randomly depends on the outcome of the first
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period with exogenous probabilities. Schmitz (2005) explore a similar setting, where the

probability of a favorable outcome in the second period takes a larger value in the case of

a success in the first period.

Although these papers explore various configurations of the uncertainty structure, the

probability of observing a favorable outcome in their models is fixed (Schöttner 2016)

or exogenously depends on the outcome in the first period (Kräkel and Schöttner 2016,

Schmitz 2005). By contrast, the outcomes in the first period endogenously determine the

probability of success in the second period in our setup. This feature is indeed at the core

of the AI Flywheel effect.

In this stream of research, Dai and Jerath (2019) study a slightly more general dynamic

moral hazard problem with binary effort choices and three possible outcomes. A key aspect

of this model, also introduced in de Véricourt and Gromb (2018, 2019) for more general

distributions of outcomes, is that the firm’s capacity decision interacts with the moral

hazard problem. Indeed, in de Véricourt and Gromb (2018), Dai and Jerath (2019) and

de Véricourt and Gromb (2019), a low capacity level may censor high demand realizations,

which exacerbates the incentive issue. Our work considers a different type of interaction

between the firm’s decision (pricing in our case) and the moral hazard problem through a

monotonic property of the data impact ratio, which is more appropriate in the context of

training an algorithm with data.

Finally, our work also contributes to the rich operations management literature in

entrepreneurship, as our setup is particularly relevant for cash-constrained firms with a

lack of technical skills. The points of focus in this literature widely range from investment

timing (Swinney et al. 2011) and financial capabilities (Tanrısever et al. 2012) to comple-

mentary technologies (Anderson Jr and Parker 2013). By contrast, we provide insight on

how cash-constrained firms can leverage a business model based on the AI Flywheel effect.

2. Model Description

We model the problem of managing the AI Flywheel effect in an elementary two-period

moral hazard framework. In our setup, the firm (the principal) outsources the development

and training of the algorithm to a provider (the agent) in the beginning of each period.

The resulting accuracy of the algorithm depends on both the provider’s effort and the size

of the available dataset. Given this accuracy level, the firm markets the product to users

with heterogeneous accuracy and price sensitivities. At the end of each period, demand is

realized, which determines the profit and the additional generated data for that period.
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2.1. Data, Accuracy and Revenue

At the beginning of period t= 1,2, the size of the available dataset to train the algorithm

is equal to dt−1. In particular, d0 denotes the size of the firm’s initial dataset. In each

period t, the provider can either exert effort e = w at cost κ > 0 or shirk e = s at no

cost. We denote by αt, the resulting algorithm’s accuracy, which can be either high or

low with αt ∈ {αh, α`}, where αh > α`. Given data size dt−1 and effort e, the probability

of high accuracy (αt = αh) is equal to πe(dt−1) with πw(dt−1) > πs(dt−1). Probabilities

πe : [dmin, dmax]→ [0,1), e ∈ {s,w}, are twice-differentiable and increasing functions with a

continuous second-order derivative. Moreover, πw is concave. In other words, the accuracy

of ML models increases with data, but the marginal effect of additional data is decreasing

(see Banko and Brill 2001, for instance). The further lower bound dmin > 0 is the minimum

size required for the development of a functioning ML model, and dmax <∞ is the largest

possible total data size on which the algorithm can be trained.

Given accuracy αt, the firm then prices and markets the product. The market in period t

corresponds to a continuum of buyers of total mass normalized to one, a common framework

in the pricing literature (e.g., Aflaki et al. 2019, Feldman et al. 2018, Yu et al. 2015).

Each buyer has a private accuracy sensitivity v that is drawn from the standard uniform

distribution with c.d.f. F , p.d.f. f , support [0,1], and a virtual value function φ(v) =

v− F̄ (v)/f(v), where F̄ (·) = 1−F (·). Hereafter, we use the notation x̄ to denote 1−x for

an arbitrary term x. A buyer with sensitivity v purchases the product with accuracy α and

price p if αv− p≥ 0. Given accuracy-price pair (p,α), demand is equal to F̄ (p/α), which

yields revenue pF̄ (p/α). Equivalently, the firm may choose demand quantity q instead of

price p, with p= αF−1 (q̄) and, hence, pF̄ (p/α) = qαF−1 (q̄), where F−1 is the inverse of

the c.d.f. F .

One key feature of our model is that demand generates data that can be used to improve

the algorithm. We denote by volume rate ν > 0 the average amount of usage data that the

product can collect, i.e., the marginal data generated per user. Given demand q, therefore,

the total amount of collected data δ in the period is equal to δ = νq. Thus, at the end

of period t = 1,2 the size of the available dataset is equal to dt = δt + dt−1. Further, the

firm’s revenue can be expressed in terms of volume rate ν, collected data δ and accuracy

α. Specifically, we define this revenue as Rν(δ,α) with Rν(δ,α), αδ/νF−1 ((1− δ/ν)).
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Thus, decreasing price increases demand and hence the amount of collected data but

may also decrease revenue Rν . In this sense, our model captures the tradeoff associated

with the AI Flywheel effect between maximizing revenue and collecting additional data. In

addition, parameters (d0, ν) characterize the potential strength of the AI Flywheel effect

in our setup. Indeed, we have d1 = νq+ d0; hence, data size d0 specifies the firm’s starting

point in the virtuous cycle, while volume rate ν influences the speed at which the firm can

leverage this cycle.

Figure 1 depicts the timing of the events corresponding to our setup.

Period 1a - Initial Algorithm Development. The firm starts with an initial dataset of size

d0. Based on this dataset, the provider chooses effort e ∈ {s,w} to develop a first version

of an ML algorithm. The algorithm’s accuracy α1 is then realized according to probability

πe(d0).

Period 1b - Pricing and Data Collection. Given accuracy α1, the firm prices and markets

the product. The firm collects δ1 such that the total size of the dataset becomes d1 = d0 +δ1

and generates revenue Rν(δ1, α1).

Period 2a - Algorithm retraining and improvement. If α1 = α`, the provider retrains the algo-

rithm with an augmented dataset of size d1. (Otherwise, the maximum possible accuracy

level αh is achieved and the firm does not need the provider to improve accuracy further.)1

The provider again chooses effort e to retrain the algorithm, which yields accuracy α2

according to probability πe(d1). The probability of achieving high accuracy αh increases in

this period, i.e., πe(d1) > πe(d0), because of the dataset increase d1 ≥ d0, and since more

data improves accuracy, πe(·) for e∈ {s,w} are increasing functions.

Period 2b - Pricing. Finally, given accuracy α2, the firm prices and markets the product,

which determines δ2 and generates revenue Rν(δ2, α2).

At the end of the time horizon, the firm has no further incentive to retrain the algorithm

using additional data δ2, which also means that d1 corresponds to the size of the largest

dataset on which the algorithm is ultimately trained. The maximum possible size of this

dataset is then equal to dmax = ν+d0 (recall that the market size is normalized to one). In

the following, we thus take dmin ≤ d0 ≤ dmax/2 and 0< ν ≤ dmax/2.

1 Our model and results easily extend to the case where accuracy is cumulative, that is, in situations where accuracy
can be further improved when α1 = αh.



de Véricourt and Gurkan: AI Flywheel Effect
10

Figure 1 Sequence of events.
Data: d0

Algorithm Development

(Contract)

Accuracy: α1

Pricing and
Data Collection

Data: d1 = d0 + δ1

Algorithm Retraining

(Contract)

Accuracy: α2

Pricing

Period 1a Period 1b Period 2a Period 2b

2.2. The Data Impact

Thus far, we have ignored the incentive issues that outsourcing the development of the

algorithm creates. In particular, the accuracy level depends on the available data and the

provider’s effort. Thus, the availability of data may interact with the intensity of the moral

hazard problem that the firm faces in each period. To characterize this interaction between

effort and data, we introduce the notion of the data impact, which we denote by ρ(d). The

data impact maps dataset size d to the normalized effect of shirking on the probability of

high accuracy, i.e.,

ρ(d),
πw(d)−πs(d)

πw(d)
. (1)

We further assume that 1/ρ(d) is convex in d, which essentially requires data impact ρ(·)

not to be too convex. This technical restriction is milder than log-concavity, and hence

concavity.

Overall, when data impact ρ(d) is constant in d, the effect of shirking on accuracy is

independent of the data size on which the algorithm is trained. However, when the data

impact increases (resp. decreases) in d, exerting effort increases the probability of high

accuracy more (resp. less) with more data.

Figure 2 depicts different examples corresponding to these three regimes. In all examples,

probability πw(·) (the dotted black curve in Figure 2a) is the same, while probability πs(·)

takes different forms, inducing different properties for data impact ρ. In the first regime

(Case 1 in Figure 2), the effect of shirking πw(d)− πs(d) (when πs(d) is the blue dashed

curve in Figure 2a) is directly proportional to the probability of high accuracy πw(d), which

yields a constant data impact (the straight dashed line in Figure 2b). By contrast, the

data impact increases in the second regime (the red dashed-dotted curve in Figure 2b) but

decreases in the third one (the yellow plain curve in Figure 2b).

The monotonicity of the data impact is related to the monotone likelihood ratio property

(MLRP), which is commonly assumed in the moral hazard literature. In our setup, the
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Figure 2 The different regimes of the data impact.
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Note. In all cases, the probability of high accuracy is πw(d) = 1 − exp(−3d/4). We set πs(d) = πw(d) exp(−cd− y),

and ρ(d) = 1 − exp(−cd− y), where the pair (c, y) is taken as (0, log 4/3) in Case 1 (constant ρ), (1/6,0) in Case 2

(increasing ρ) and (−1/4, log 2) in Case 3 (decreasing ρ).

MLRP property corresponds to πw(d)/πs(d)≥ π̄w(d)/π̄s(d) for a given d and holds for all d

since effort always improves accuracy πw(d)>πs(d) (see Dai and Jerath 2019, for instance).

Loosely speaking, the property guarantees that high accuracy is more indicative of high

effort ex-post. The monotonicity of the data impact determines the magnitude of this effect

ex ante for the amount of available data to train the algorithm.

2.3. Contracts

The firm faces a moral hazard problem in each period but do not have commitment

power across periods. Thus, the firm needs to offer two different contracts, one per period.

These contracts are nonetheless linked since the second contract determines the provider’s

expected payoff in the second period, which affects the provider’s incentives to exert effort

in the first period.

Accuracy realizations αt, t= 1,2 are contractable but effort is not. Thus, the contract

in each period offers payments that depend on the public history and are contingent upon

the accuracy realizations. Specifically, the history in Period 1a reduces to d0 and the first

contract consists of payments x1`(d0) and x1h(d0) that are made if α1 = α` and α1 = αh,

respectively. Given realization α1, the firm collects additional data, which yields size d1 at

the end of the period. The history in Period 2a is then (d1, α1), and the second contract

consists of payments x2`(d1, α1) and x2h(d1, α1), which again correspond to high and low
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accuracy levels, respectively.2 The provider is further protected by its limited liability;

thus, x1`, x1h, x2` and x2h are all non-negative.

2.4. The Firm’s Problem

The firm’s problem is to maximize the total expected profit, which is the expected revenue

net of payments over both periods, subject to incentive compatibility constraints. We

assume that the firm prefers the provider to exert effort in both periods and that the

optimal price neither covers nor excludes the entire market. (These assumptions are made

for the sake of simplicity; see, for instance, Laffont and Martimort 2009 and Feldman

et al. 2018, Choudhary et al. 2005, respectively. We provide formal conditions for these

assumptions in Appendix B).

We formulate this problem via backward induction starting from the second period (see

Figure 1). Denote then by J2b(α2, d1) the firm’s optimal expected profit in Period 2b given

accuracy α2 and data size d1, such that

J2b(α2, d1) = max
δ2∈[0,ν]

Rν(δ2, α2) (2)

The firm chooses the amount of collected data (or equivalently the price) so as to maximize

the expected revenue in the current period. As there is no continuation, we refer to this

problem as the myopic problem. In particular, size d1 does not play any role in this problem,

which corresponds to situations where both the AI Flywheel effect and the moral hazard

problem are absent. We denote by δM the value of δ2 that solves Problem (2).

Similarly, we denote by J2a(α1, d1) the firm’s optimal expected profit in Period 2a, given

accuracy α1 and data size d1, such that

J2a(α`, d1) = max
x2h,x2`≥0

πw(d1)[J2b(αh, d1)−x2h] + π̄w(d1)[J2b(α`, d1)−x2`] (3)

s.t.

πw(d1)x2h + π̄w(d1)x2`−κ≥ πs(d1)x2h + π̄s(d1)x2` (4)

J2a(αh, d1) = J2b(αh, d1). (5)

When α1 = α`, the firm needs to set payments such that the provider has enough incentives

to exert effort, as formalized by incentive constraint (4). These payments are then deduced

2 Recall that these last payments are only meaningful when α1 = α`, as no contract is required in the second period
when α1 = αh.
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from the firm’s expected revenues in Period 2a. Here, data size d1 affects the chance of

improving accuracy in the next period via probabilities πe(·), e ∈ {w,s}. When α1 = αh,

recall that the firm does not need nor pay the provider. We thus refer to x∗2h and x∗2` as

the optimal payments solving Problem (3).

Moving to the first period, we denote by J1b(α1, d0) the firm’s optimal expected profit

in Period 1b given accuracy α1 and data size d0, such that

J1b(α1, d0) = max
δ1∈[0,ν]

Rν(δ1, α1) +J2a
(
α1, d0 + δ1

)
for α1 ∈ {αh, α`}. (6)

In contrast to Problem (2), the firm needs to balance the revenues in the current period

with the expected profit in the next one when the algorithm is of low accuracy. When

α1 = α`, the choice of data δ1 (or equivalently price) affects current revenues directly and

future ones indirectly by increasing the dataset size to d0 +δ1. We refer to δ∗ as the optimal

solution of Problem (6) for α1 = α`, and to p∗ as the price that yields data size δ∗ (see

Section 2). When α1 = αh, no retraining is required and the optimal price is equal to the

myopic price, as we make clear in Section 4.

We are now ready to define the overall firm’s problem. Given initial data size d0, we

denote by J1a(d0) the optimal total expected profit in Period 1a, such that

J1a(d0) = max
x1h,x1`≥0

πw(d0)[J1b(αh, d0)−x1h] + π̄w(d0)[J1b(α`, d0)−x1`] (7)

s.t.

πw(d0)x1h + π̄w(d0) [x1` + Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` + Jp(d0)] (8)

Jp(d0) = πw (d0 + δ∗)x∗2h + π̄w (d0 + δ∗)x∗2`−κ. (9)

The firm faces a similar trade-off as in Period 2a. The difference, however, is in the incentive

compatibility constraint (8). Indeed, the expected payments that the contract of the second

period brings about affect the provider’s incentives in the first period. Specifically, Jp(·)

in (8) corresponds to the provider’s expected continuation profit, which is equal to the

expected optimal payments in the second period net of the effort cost; see (9). A key

aspect of our setup is that the distribution of these future payments, πw(d1), depends on

the choice of δ1 since d1 = d0 + δ1. Thus, the choice of δ1 (or equivalently price) not only

makes the tradeoff between present and future revenues as in (6) but also determines the

intensity of the incentive issue.
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3. First-Best Benchmark

We first consider the first-best setting in which the firm has the capability to develop the

algorithm and does not face any incentive issues. The first-best problem then corresponds

to Problem (7) without incentive constraints (8) and (4), but where the firm directly incurs

cost κ. Again, we solve the first-best problem using backward induction.

Specifically, the firm’s problem in Period 2b still corresponds to the myopic problem

in (2). Straightforward calculations then the following result.

Lemma 1. Given accuracy α2 and dataset size d1, the optimal collected data size δM and

expected profit J2b(α2, d1) are equal to δM = νF̄ (φ−1(0)) and J2b(α2, d1) = α2τ , respectively,

where τ , φ−1(0)F̄ (φ−1(0)) and φ−1(·) is the inverse of virtual value function φ(·).

The proof of Lemma 1 are provided alongside all other proofs in Appendix A. The corre-

sponding myopic price that yields data size δM is then equal to, per Section 2,

pM = α2φ
−1(0),

and quantity τ is equal to pM(δM/ν)/α2, which is the marginal revenue per unit of accuracy

under optimal myopic pricing. Note that data size δM does not depend on accuracy, but

optimal price pM and profit J2b do.

In period 2a, no contract is required at first-best, but the firm incurs the effort cost.

The corresponding expected profit, JFB
2a , is then given by equation (3) without payments

but with cost κ. Given data size d1, expected profit JFB
2a is thus equal to, where the future

expected profit is equal to α2τ per Lemma 1,

JFB
2a(α`, d1) = πw(d1)αhτ + π̄w(d1)α`τ −κ (10)

JFB
2a(αh, d1) = αhτ. (11)

The optimal expected profit JFB
1b in Period 1b then corresponds to (6), where the future

expected value is given by (10), i.e.,

JFB
1b (α1, d0) = max

δ1∈[0,ν]
Rν(δ1, α1) +JFB

2a

(
α1, d0 + δ1

)
for α1 ∈ {αh, α`}. (12)

We denote by δFB the optimal value of δ1 maximizing (12) for α1 = α`. We also refer to pFB

as the corresponding price that yields data size δFB. When α1 = αh, no training is required

and the first-best price is equal to pM, as we show later in this section.
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Finally, no contract is required at first-best in Period 1a. The firm does not need to

specify any payment but nonetheless incurs the effort cost (recall that we assume that

exerting effort is always optimal; see Section 2.4). Given initial dataset size d0, the total

expected profit at first-best is equal to

JFB
1a(d0) = πw(d0)J

FB
1b (αh, d0) + π̄w(d0)J

FB
1b (α`, d0)−κ . (13)

The following proposition characterizes the firm’s optimal decision at first-best.

Proposition 1. The optimal solution to Problem (12) is unique and such that δFB ≥ δM

if α1 = α` and δM if α1 = αh.

If the firms succeeds in developing a first algorithm of high accuracy (α1 = αh), no further

improvement is necessary and the firm charges the optimal myopic price pM, inducing δM

over the remaining time horizon. If this accuracy is low (α1 = α`), however, the firm faces a

tradeoff between maximizing revenues in the current period or acquiring additional data to

leverage the AI Flywheel effect. In this case, the firm underprices with pFB < pM and forfeits

the optimal myopic revenue to collect more data, i.e., δFB > δM, increasing the probability

of high accuracy and hence expected profit in the next period.

This scenario has further implications for the effect of the initial dataset on the firm’s

pricing strategy. Specifically, the firm may put more emphasis on increasing its initial

dataset size before developing the algorithm, for instance, by purchasing or manually col-

lecting additional data (see, e.g., Brown 2015 and Roh et al. 2019). The next proposition

characterizes the ensuing effect on the firm’s decisions.

Proposition 2. The first-best data size δFB is nonincreasing in initial data size d0.

In other words, the first-best price pFB increases with the initial data size d0. Per Proposi-

tion 1, the first-best benchmark δFB is always larger than myopic data size δM. Increasing d0

allows for a higher πw(d0) without affecting the first period revenue, thereby diminishing

the need for deviating the price away from myopic price pM.

Instead of acquiring a larger initial dataset, the firm may also consider designing a

product that collects more data per user. This may be done, for instance, by using third-

party services in the case of mobile and web applications or increasing the capacity of

embedded sensors in the case of physical products (McGrath and Scanaill 2013). In our

setup, collecting more data per user corresponds to increasing volume rate ν, the effect of

which is characterized by the next result.
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Proposition 3. The first-best data size δFB is nondecreasing in data volume rate ν.

In other words, as the volume rate increases, the firm collects even more data (δFB is non-

decreasing). Recall that δ = νq and thus increasing ν provides an opportunity to increase

data size δ to improve the algorithm in the next period while maintaining quantity q and

hence revenues in the current period. Finally, note that parameters d0 and ν have opposite

effects on the firm’s decisions.

4. Optimal Decisions of the Firm with Incentive Issues

We now characterize the optimal decisions of the firm when it needs to outsource the

development of the algorithm. These decisions correspond to the amount of collected data

δ∗ (and the corresponding price p∗) as well as all payments x∗1`, x
∗
1h, x

∗
2`, and x∗2h. As in the

previous sections, we study this problem using backward induction.

The optimization problem of J2a in (3) corresponds to minimizing the expected payment

while motivating the provider to exert effort. The following proposition (based on Laffont

and Martimort 2009, Proposition 4.2) provides the corresponding optimal payments.

Proposition 4. Given dataset size d1, the unique optimal payments for Problem (3)

are x∗2` = 0 and x∗2h = κ/[πw(d1)−πs(d1)]. The firm’s optimal expected profit is then

J2a(α`, d1) = πw(d1)ταh + π̄w(d1)τα`−
κ

ρ(d1)
and J2a(αh, d1) = ταh . (14)

where κ/ρ(d1) is the expected payment to the provider.

MLRP ensures that under the optimal contract, realizations of higher value (αh in our

setup) are more rewarded (x∗2h >x
∗
2l). Thus, MLRP concerns the ex post payments to the

provider. In contrast, Proposition 4 shows that data impact ρ(·) determines the ex ante

provider’s rent κ/ρ(d1).

The optimal expected continuation profit J1b(α1, d0) in Problem (6) is then obtained

by using expected profit J2a(α1, d0 + δ) from (14) in Proposition 4. We show next that

the optimal data size solving Problem (6) and hence the corresponding optimal price are

unique.

Proposition 5. The optimal solution to Problem (6) is unique and equal to δM if α1 =

αh.
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If the first version of the algorithm is already highly accurate (α1 = αh), no further

improvement is necessary and the firm does not need to deviate from the first-best price,

which is also the myopic price (pFB = pM from Proposition 5). In the next section, we explore

in detail the deviations from first-best that a low accuracy (α1 = α`) creates.

Finally, the next result characterizes the optimal payments in Period 1a.

Proposition 6. Given initial data size d0, the unique optimal payments for Problem (7)

are

x∗1` = 0 and x∗1h =
κ

πw(d0)−πs(d0)
+

(
κ

ρ(d0 + δ∗)
−κ
)
.

Contrary to the payments in Period 2, the firm now needs to account for the provider’s

future expected profits. Specifically, optimal payment x∗1h corresponds to i) bonus payment

taken at d0 but augmented by ii) the provider’s rent of the second period net of effort cost

because in our setup, the firm cannot easily replace the provider across periods. In this

sense, the second term of x∗1h captures the cost due to the scarcity of AI service providers

in the market.

5. Overpricing, Underpricing and Optimal Data Collection

To alleviate the moral hazard issue, the firm may need to incur costly deviations away

from first-best decisions. The next result shows that the monotonicity of data impact ρ(·)
is sufficient to determine when the firm overprices and when it underprices.

Theorem 1. We have

1. if ρ(·) is constant, then δ∗ = δFB,

2. if ρ(·) is increasing, then δ∗ ≥ δFB,
3. if ρ(·) is decreasing, then δ∗ ≤ δFB.

In essence, the monotonicity of the data impact defines three distinct regimes. If the relative

impact of shirking is independent of the dataset size (ρ is constant), then no deviation from

first-best is required. By contrast, if this impact intensifies with more data (ρ is increasing),

the firm needs to underprice p∗ ≤ pFB in order to collect more data δ∗ ≥ δFB. Finally, the

firm needs to overprice p∗ ≥ pFB when the relative impact of shirking diminishes with more

data (ρ is decreasing).

Figure 3 depicts examples of these three regimes for different initial dataset sizes (d0).

The data impacts corresponding to these examples are depicted in Figure 2b. The resulting

data sizes δ∗ and optimal prices p∗ are depicted in Figures 3a and 3b, respectively.
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Figure 3 Optimal data and pricing decisions of the firm.
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Note. The data impacts for Case 1, 2, and 3 are given by the corresponding cases in Figure 2b. For Case 1, δFB = δ∗

and pFB = p∗ are in Figure 3a and Figure 3b, respectively.

In the first regime, the data impact is constant and the net effect of shirking πw(d)−πs(d)

is proportional to the probability of high accuracy πw(d) (see Figure 2, Case 1). In this

case, the dataset size does not affect the intensity of the incentive issues. The firm only

faces the tradeoffs that the AI Flywheel effect brings about and thus charges the first-best

price (but still incurs the payments to the provider). This corresponds to the blue dashed

curve in Figure 3, which depicts the firm’s decisions in both the first regime and first-best.

In the second regime, the data impact is increasing and the net effect of shirking increases

faster than the probability of high accuracy (see Figure 2, Case 2). This regime is depicted

by the red dashed-dotted curve in Figure 3. In this case, high accuracy is more indicative

of efforts at higher data volumes, and the rent is decreasing in data size δ. Thus, the firm

underprices with p∗ < pFB (the red dashed-dotted curve is below the blue dashed one in

Figure 3b) in order to collect more data with δ∗ > δFB (the red dashed-dotted curve is above

the blue dashed one in Figure 3a). In this sense, the incentive issues induce the firm to

leverage the AI Flywheel effect even more. In particular, the expected revenue in the first

period is lower than first-best due to incentive issues, but the expected revenues in the

second period are higher since with more data, the probability of high accuracy is higher.

Finally, the data impact is decreasing (see Figure 2, Case 3) in the third regime, which is

depicted by the yellow plain curve in Figure 3. In this case, high accuracy is less indicative

of efforts at higher data levels and the rent is increasing in data size δ. Thus, the firm

overprices with p∗ > pFB so as to collect less data with δ∗ < δFB. The firm’s expected revenues
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Figure 4 Unimodal data impact.
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Note. Probabilities πw(d) =
√
d/3 and πs(d) = πw(d)(1 − 0.2(3 − d)d) are depicted in Figure 4a and induce data

impact ρ(d) = 0.2(3− d)d is depicted in Figure 4b.

in the last period decrease compared to first-best since the probability of high accuracy

is lower. The revenues in the first period, however, might actually increase compare to

first-best. This situation happens, for instance, when pM > p∗ > pFB. Overall, the incentive

issues prevent the firm from fully leveraging the AI Flywheel effect in this regime.

An important consequence of Theorem 1 is that the initial dataset does not determine

whether the firm overprices or underprices, as long as the data impact is monotone. This is

not the case, however, when the data impact is unimodal, as demonstrated by the following

corollary.

Corollary 1. If data impact ρ(·) is unimodal, then threshold d̂ exists such that

1. if d0 = d̂, then δ∗ = δFB,

2. if d0 ≤ d̂, then δ∗ ≥ δFB,

3. if d0 ≥ d̂, then δ∗ ≤ δFB.

Thus, the size of the initial dataset determines whether the firm underprices or overprices

when the data impact is unimodal. Specifically, the firm underprices when the dataset is

small but overprices otherwise. In this sense, the size of the initial dataset may reverse the

firm’s overall pricing strategy.

The data impact is unimodal when the relative effect of shirking is highest for datasets

of medium size. Figure 4 provides an example of probabilities πw and πs (Figure 4a) that

yield a unimodal data impact (Figure 4b), which corresponds to the situation where the
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Figure 5 Effect of the initial dataset on the optimal data collection and pricing decisions when ρ is unimodal.
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Note. The corresponding data impact is depicted in Figure 4b.

sheer volume of data, rather than the algorithm’s refinements, determine the algorithm’s

accuracy for large datasets, while the lack of data limits the effect of any effort levels for

small datasets.

Figures 5a and 5b depict the effect of initial size d0 on the firm’s data collection and

pricing strategies, respectively. The data impact corresponding to this example is depicted

in Figure 4b. The optimal data size δ∗ (resp. price p∗) is above (resp. below) the collected

data size δFB at first-best when d0 is less than threshold d̂u 0.7 and below it otherwise.

6. Impact of the Firm’s Initial Dataset

The previous results show that the data impact’s monotonicity determines the firm’s pric-

ing and data collection strategies. These results also suggest that the size of the initial

dataset sometimes plays a key role in the firm’s decisions. We explore this role further

below.

In our setup, initial dataset size d0 determines the firm’s starting point in the virtuous

cycle of the AI Flywheel effect. The firm can increase this dataset by manually collect-

ing more data or purchasing existing datasets. This scenario, however, affects the firm’s

decisions, as shown in the following result.

Proposition 7. The optimal data size δ∗ is nonincreasing in d0.

Hence, the larger the initial dataset is, the higher the price charged by the firm and thus

the less data are collected across periods. Interestingly, this result does not dependent on

the monotonicity of the data impact, as illustrated by Figures 3 and 5.
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Further, recall that an increase of initial size d0 also increases collected data δ∗ (see

Proposition 2). Thus, whether an increase in the initial dataset exacerbates or reduces

the distortions away from first-best remains unknown in general. Nonetheless, the next

result provides different sufficient conditions, under which absolute distortion |δ∗ − δFB|

may increase or decrease.

Proposition 8. The absolute deviation away from first-best is such that

• |δ∗− δFB| is nonincreasing in d if ρ(·) is increasing and π′′w(·) is nonincreasing.

• |δ∗− δFB| is nondecreasing in d if ρ(·) is decreasing and π′′w(·) is nondecreasing.

Hence, under third-order conditions on probability πw, an increase in the initial data size

reduces the distortions away from first-best (p∗ and δ∗ approaches pFB and δFB, respec-

tively) when the data impact is increasing but exacerbates them when the data impact is

decreasing (p∗ and δ∗ move away from pFB and δFB, respectively). The monotonicity of the

data impact determines whether or not δ∗ is larger than δFB (see Theorem 1). Furthermore,

Propositions 2 and 7 show that both δFB and δ∗ are decreasing in initial size d0. The con-

dition on probability of high accuracy πw then ensures that optimal data size δ∗ decreases

faster than δFB in d0. When the data impact is decreasing (resp. increasing), this condition

states that the probability becomes more (resp. less) concave with data.

7. Impact of the Data Volume Rate

Besides using its initial dataset, the firm may also seek to design a product that collects

more usage data per user. In our setup, this scenario corresponds to improving volume rate

ν. Without incentive issues, a higher volume rate induces the firm to collect even more

data under the AI Flywheel effect per Proposition 3. The need to mitigate incentive issues,

however, sometimes reverses this effect and pushes the firm to collect less data when the

volume rate is higher. The next theorem, one of our main results, formalizes this finding.

Theorem 2. We have the following:

1. If ρ(·) is increasing, δ∗ is nondecreasing in ν.

2. If ρ(·) is decreasing, a unique threshold ν̂ exists such that δ∗ is nondecreasing in ν if

ν ≤ ν̂ and is nonincreasing otherwise.

When the volume rate increases, the firm has an incentive to collect more data to benefit

more from the AI Flywheel effect, as discussed in the first-best benchmark (see Proposition
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Figure 6 Effect of volume rate on the optimal data collection decision.
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Note. Probabilities generating this example are πw(d) = 1 − exp(−2d), πs(d) = πw(d)(1 − 1/(d+ 1)) and the data

impact is ρ(d) = 1/(1 + d).

3). When the data impact is increasing, collecting more data also reduces the intensity

of the moral hazard problem and hence the agency costs in the next period. Both effects

are aligned in this case, and the firm increases δ∗ as a result. By contrast, collecting more

data intensifies the moral hazard problem in the next period when the data impact is

decreasing. The firm then faces a tradeoff between leveraging the AI Flywheel effect or

reducing future agency costs. When the volume rate is small, the amount of collected data

δ= νq remains small for any quantity q, which yields low agency costs. As the volume rate

increases, boosting the AI Flywheel effect dominates the increases in agency costs, and

data size δ∗ increases as a result. When the volume rate becomes large enough (i.e., when

ν > ν̂), however, the agency costs dominates the revenues due to the AI Flywheel effect.

The firm then focuses on reducing these agency costs by decreasing δ∗.

Figure 6 illustrates the second item of Theorem 2 with an example. While the first-best

benchmark δFB (the red dashed curve in Figure 6) increases as suggested in Proposition 3,

the optimal data δ∗ demonstrates a nonmonotone behavior in the volume rate ν. Threshold

ν̂ corresponds to the straight black line in Figure 6), with ν̂ u 4.9.

8. Concluding Remarks

This paper proposes a simple dynamic framework to study how firms that outsource the

development of their ML algorithm can leverage the AI Flywheel effect. Our setup accounts

for the three main features of this problem: i) the tradeoff between improving algorithms’

accuracy and maximizing revenues due to the AI Flywheel effect, ii) the need to manage
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the incentive issues that outsourcing the algorithm brings about, and iii) the interaction

between the amount of data on which the algorithm is trained and the efficacy of the

provider’s effort. We further introduce the notion of data impact as a framework to repre-

sent the interaction between data and effort.

Taken together, our results identify three different regimes, which depend on the nature

of the data impact. These regimes determine whether the firm overprices or underprices

and the impact of both the starting dataset and the volume rate on the firm’s decisions. In

particular, when the data impact decreases, the firm sometimes acquires less data overall

if the firm increases the data volume that its product collects. This effect stems directly

from the need to manage the incentive issues that outsourcing the algorithm creates.

These results further provide predictions that future work can empirically test. In par-

ticular, given that the existing literature points to the importance of collecting a large

amount of data over improving algorithms (Banko and Brill 2001, Halevy et al. 2009), we

expect the data impact to decrease in many practical contexts. Our work thus provides

theoretical support for the hypothesis that firms set higher prices for a new AI product

when the product’s algorithm is outsourced (per Theorem 1). In addition, we predict that

a significant increase in the product’s capacity to generate usage data induces firms to

collect less data to improve the algorithm (per Theorem 2).

More generally, we believe that our work opens up new research directions and questions

for the management of data-driven business models. Specifically, our paper considers a

problem in which the provision of data interacts with incentive issues. Indeed, the key

aspect of our setup is that the principal can regulate the intensity of the moral hazard

problem she faces by controlling (through pricing in our setting) the data to which the

agent has access. We believe that this interaction between data and incentives is present in

many other contexts than the outsourcing of the AI Flywheel effect. Our framework offers

a fruitful starting point to model and study these issues.

To the best of our knowledge, these results provide the first insights on how firms can

leverage the AI Flywheel effect. In addition, ours is the first paper to consider the prob-

lem of contracting ML algorithms. Given the shortage of data scientists and the growing

outsourcing industry in this domain, we expect the issue to gain importance in the coming

years.



de Véricourt and Gurkan: AI Flywheel Effect
24

References

Acemoglu D, Makhdoumi A, Malekian A, Ozdaglar A (2019) Too much data: Prices and inefficiencies in

data markets. Technical report, National Bureau of Economic Research.

Aflaki A, Feldman P, Swinney R (2019) Becoming strategic: Endogenous consumer time preferences and

multiperiod pricing. Forthcoming, Operations Research .

Anderson Jr EG, Parker GG (2013) Integration and cospecialization of emerging complementary technologies

by startups. Production and Operations Management 22(6):1356–1373.

Banko M, Brill E (2001) Scaling to very very large corpora for natural language disambiguation. Proceed-

ings of the 39th annual meeting on association for computational linguistics, 26–33 (Association for

Computational Linguistics).

Bimpikis K, Crapis D, Tahbaz-Salehi A (2019) Information sale and competition. Management Science

65(6):2646–2664.

Brown MS (2015) When and where to buy consumer data (and 12 com-

panies who sell it). https://www.forbes.com/sites/metabrown/2015/09/30/

when-and-where-to-buy-consumer-data-and-12-companies-who-sell-it/#413d4b133285

[Online; accessed 10-March-2020].

Bursztein E (2018) Attacks against machine learning ? an overview. elie.net/blog/ai/

attacks-against-machine-learning-an-overview/ [Online; accessed 27-January-2020].

Cengiz K (2015) 10 startups that have become a success with outsourced development. https:

//perfectial.com/blog/?s=10+Startups+That+Have+Become+A+Success+With+Outsourced+

Development&search-type=normal [Online; accessed 17-January-2020].

Choudhary V, Ghose A, Mukhopadhyay T, Rajan U (2005) Personalized pricing and quality differentiation.

Management Science 51(7):1120–1130.

Dai T, Jerath K (2019) Salesforce contracting under uncertain demand and supply: Double moral hazard

and optimality of smooth contracts. Marketing Science, Forthcoming .

de Véricourt F, Gromb D (2018) Financing capacity investment under demand uncertainty: An optimal

contracting approach. Manufacturing & Service Operations Management 20(1):85–96.

de Véricourt F, Gromb D (2019) Financing capacity with stealing and shirking. Management Science

65(11):5128–5141.

Deshpande I (2019) What is customer data? definition, types, collection, valida-

tion and analysis. https://www.martechadvisor.com/articles/data-management/

customer-data-definition-types-collection-validation-analysis-martech101/ [Online;

accessed 10-March-2020].

Feldman P, Papanastasiou Y, Segev E (2018) Social learning and the design of new experience goods.

Management Science 65(4):1502–1519.



de Véricourt and Gurkan: AI Flywheel Effect
25

Golden K (2017) Deere to advance machine learning capabilities in acquisition of blue river technology.

www.deere.com/en/our-company/news-and-announcements/news-releases/2017/corporate/

2017sep06-blue-river-technology/ [Online; accessed 27-January-2020].

Halevy A, Norvig P, Pereira F (2009) The Unreasonable Effectiveness of Data. IEEE Intelligent Systems

24(2):8–12, ISSN 1541-1672, URL http://dx.doi.org/10.1109/MIS.2009.36.

Jo J, Bengio Y (2017) Measuring the tendency of cnns to learn surface statistical regularities. arXiv preprint

arXiv:1711.11561 .

Kendra A, Kumar S, O’Brien D, Shankar R, Snover J, Viljoen S (2019) Failure modes in machine learning.

https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning [Online;

accessed 17-January-2020].
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Appendix

A. Proof of Results

Proof of Lemma 1. Recall the definition Rν(δ,α) = αδ/νF−1 ((1− δ/ν)) in Section 2, and F is the c.d.f.

of the standard uniform distribution. Therefore, it can be verified that Rν(δ,α) is concave in δ, and the

following first-order condition is sufficient for optimality.

1

ν
F−1

(
1− δ

ν

)
− δ

ν2

1

f
(
F−1

(
1− δ

ν

)) = 0 . (15)

Let ξ = F−1
(
1− δ

ν

)
, hence δ/ν = F̄ (ξ). We first multiply both sides of the equality with ν and then use this

new notation ξ. Using the definition of the virtual value function φ, we have

φ(ξ) = 0 . (16)

Because the virtual value function of the uniform distribution is increasing, and crosses 0 at 1/2, we conclude

that the unique optimal solution δM to Problem (2) is equal to νF̄ (φ−1(0)). Evaluating the objective function

at the optimal solution and using the fact that τ = φ−1(0)F̄ (φ−1(0)), we conclude that

J2b(α2, d1) = α2τ .

Proof of Proposition 1. Using the expected profit J FB
2a in (10), we write Problem (12) as follows.

max
δ1∈[0,ν]

Rν(δ1, α1) + 1{α1 = α`}
[
πw(d0 + δ1)αhτ + π̄w(d0 + δ1)α`τ −κ

]
(17)

where 1{·} is the indicator function.

If α1 = αh, the objective function in (17) becomes Rν(δ1, αh). Lemma 1 implies the unique optimal solution

in this case is δM. Otherwise, the optimal solution δFB solves the following problem

max
δ1∈[0,ν]

Rν(δ1, α`) +πw(d0 + δ1)(αh−α`)τ +α`τ −κ (18)
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Because πw, Rν are concave and d0 + δ1 is a linear function of δ1, the objective function in (18) is concave

in δ1. This implies that the optimal solution δFB is unique.

We next prove δFB > δM. Recall that δM is the unique optimal solution to maxδ1∈[0,ν]Rν(δ1, α`) and Rν(δ1, α`)

is concave (see Lemma 1), and πw(d0 + δ1) is increasing in δ1. Marginal revenue of Rν(δ1, α`) at δ1 = δM is 0

while π′w(d0 + δM) is positive. Therefore, it follows that[∂Rν(δ1, α`)
∂δ1

+
∂πw(d0 + δ1)(αh−α`)τ

∂δ1

]
|δ1=δM > 0

Because the objective function in (18) is concave in δ1, its derivative with respect to δ1 is decreasing and

equal to 0 at δ1 = δFB. (Note that we consider interior solutions for δFB, see Proposition 10 in Appendix B.)

These observations imply that δFB > δM. Q.E.D.

Proof of Proposition 2. Proposition 1 implies that δFB satisfies the following first-order condition.[∂Rν(δ1, α`)
∂δ1

+
∂πw(d0 + δ1)(αh−α`)τ

∂δ1

]
|δ1=δFB = 0 (19)

Note here that the left-hand side of (19) is a continuously differentiable function of δFB because Rν(δ,α`)

and πw(d0 + δ) are twice-differentiable with a continuous second-order derivative w.r.t. δ, thus we can use

the implicit function theorem. Using the implicit function theorem, we know ∂δFB

∂d0
has the same sign with

∂2πw(d0+δ1)

∂d0∂δ1
|δ1=δFB . Because πw is concave and d0 + δFB is linear in d0, it follows that ∂δFB

∂d0
≤ 0. Q.E.D.

Proof of Proposition 3. As in the proof of Proposition 2, we use the same first-order condition and the

implicit function theorem to prove this result. Differently, ∂δFB

∂ν
has the same sign with

∂2Rν(δ1, α`)

∂ν∂δ1

∣∣∣
δ1=δFB

=
α`
ν2

(
−1 +

4δFB

ν

)
because we consider monotonicity with respect to ν. Recall that we know δFB ≥ δM from Proposition 1 and

δM = νF̄ (φ−1(0)) = ν/2 from Lemma 1. Therefore, δFB is nondecreasing in ν.

Proof of Proposition 4. Following Proposition 4.2 in Laffont and Martimort (2009, p. 157), we obtain

the optimal payments for Problem (3) x∗2` = 0 and x∗2h = κ/[πw(d1)−πs(d1)]. Following Lemma 1, we have

J2b(α2, d1) = α2τ . Combining these, we get

J2a(α`, d1) = πw(d1)ταh + π̄w(d1)τα`−
κ

ρ(d1)
.

If α1 = αh, there are no payments so J2a(αh, d1) = J2b(αh, d1) = ταh. Q.E.D.

Proof of Proposition 5. Using the expected profit J2a derived in (14), we write Problem (6) as follows.

max
δ1∈[0,ν]

Rν(δ1, α1) + 1{α1 = α`}
[
πw(d0 + δ1)αhτ + π̄w(d0 + δ1)α`τ −

κ

ρ(d0 + δ1)

]
(20)

If α1 = αh, it is straightforward to see from (20) that the unique optimal solution to Problem (6) is δM.

Otherwise, the optimal solution δ∗ solves the following problem

max
δ1∈[0,ν]

Rν(δ1, α`) +πw(d0 + δ1)(αh−α`)τ −
κ

ρ(d0 + δ1)
+α`τ (21)

Because πw, Rν and −1/ρ are concave, and d0 + δ1 is a linear function of δ1, the objective function in (21)

is concave in δ1. This implies that the optimal solution δ∗ is unique. Note also that we consider interior

solutions for δ∗, see Proposition 10 in Appendix B. Q.E.D.
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Proof of Proposition 6. In Period 1a, the optimization problem of the firm is

J1a(d0) = πw(d0)J1b(αh, d0) + π̄w(d0)J1b(α`, d0)− min
x1h,x1`≥0

πw(d0)x1h + π̄w(d0)x1`

st. (8), (9)

Using the optimal payments x∗2h and x∗2` derived in Proposition 4, we evaluate the expected continuation profit

Jp(d0) of the provider, and Jp(d0) = κ
ρ(d0+δ∗)

−κ. Characterizing Jp(d0), we reduce this problem to a standard

principal-agent model where the cost of effort is κ +
[
πw(d0) − πs(d0)

]
Jp(d0). Therefore, Proposition 4.2

in Laffont and Martimort (2009, p. 157) implies that the optimal solution of the optimization problem in

J1b(d0) is x∗1` = 0 and x∗1h =
κ

πw(d0)−πs(d0)
+

κ

ρ(d0 + δ∗)
−κ. Q.E.D.

Proof of Theorem 1. Note that if ρ(d) is constant, then the objective function in Problem (12) and the

one in Problem (6) for α1 = α` are different from each other by a constant. Therefore, their optimal solutions

are the same, i.e., δFB = δ∗.

Next, assume that ρ(d) is decreasing in d. We prove this item by contradiction. Assume that δ∗ < δFB.

Fix d0 and ν. The following condition is satisfied by δFB because δFB is the unique optimal solution of

maxδ1∈[0,ν]Rν(δ1, α`) + τπw(d0 + δ1)(αh−α`) (see Proposition 1).

Rν(δ
FB, α`) + τπw(d0 + δFB)(αh−α`)≥Rν(δ,α`) + τπw(d0 + δ)(αh−α`) ,∀δ ∈ [0, ν] (22)

Because the data impact ρ(·) is decreasing, the term − κ

ρ(d0 + δ)
is an increasing function of δ. Using the

assumption of contradiction, we obtain

− κ

ρ(d0 + δFB)
>− κ

ρ(d0 + δ∗)
(23)

Inequalities (22) and (23) imply that the objective function Rν(δ1, α`) + τπw(d0 + δ1)(αh−α`)−
κ

ρ(d0 + δ1)
evaluated at δFB is strictly larger than the value obtained by evaluating the same at δ∗. Therefore, the

condition δ∗ < δFB contradicts with the fact that δ∗ is the optimal solution (see Proposition 5). The last item

of the theorem can be proved by following the same steps with δ∗ > δFB. Q.E.D.

Proof of Corollary 1. We prove this result in two steps. Fix α1 and ν. We first prove the following listed

items. In the second step, we prove that m(d0) , d0 + δFB is an increasing function of d0.

Let d̃ be the peak point of ρ(·).

1. if d0 is such that d0 + δFB = d̃, then δ∗ = δFB.

2. if d0 is such that d0 + δFB ≤ d̃, then δ∗ ≥ δFB.

3. if d0 is such that d0 + δFB ≥ d̃, then δ∗ ≤ δFB.

Step 1. In this step, we follow a procedure similar to the proof of Theorem 1 for the second and third

items: proof by contradiction. Assume that d0 + δFB ≤ d̃ and δ∗ < δFB. Then the following inequality holds.

Rν(δ
FB, α`) + τ(αh−α`)πw(d0 + δFB)− κ

ρ(d0 + δFB)
≥Rν(δ∗, α`) + τ(αh−α`)πw(d0 + δ∗)− κ

ρ(d0 + δ∗)

Here the left-hand side is larger because i) the sum of first two terms at the left-hand side is maximized at

δFB, and ii) − κ

ρ(d0 + δFB)
> − κ

ρ(d0 + δ∗)
when d0 + δFB ≤ d̃ and δ∗ < δFB for unimodal ρ with peak point d̃.

This inequality contradicts with the fact that δ∗ is the optimal solution as shown in Proposition 5. Therefore
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it follows that δ∗ ≥ δFB. The third item can be proved by following the same steps with a reversed inequality

at the contradiction assumption. The first item follows because when d0 + δFB = d̃, we know

Rν(δ
FB, α`) + τ(αh−α`)πw(d0 + δFB)− κ

ρ(d0 + δFB)
≥Rν(δ,α`) + τ(αh−α`)πw(d0 + δ)− κ

ρ(d0 + δ)

for any δ ∈ [0, ν] and δ∗ is the unique optimal solution (see Proposition 5).

Step 2. We next show that d0 + δFB is an increasing function of d0. Using Proposition 2, we obtain the

derivative of δFB with respect to d0 as follows.

∂δFB

∂d0

=− π′′w(d0 + δFB)τ(αh−α`)
R′′ν (δFB, α`) +π′′w(d+ δFB)τ(αh−α`)

>−1

The inequality here follows from the fact that Rν(δ,α`) and πw(d0 + δ) are concave functions. Here the term

π′′w in the numerator is actually the partial derivative of πw with respect to δ first then with respect to d0,

and π′′w in the denominator is the second derivative with respect to δ. Because d0 + δ is a linear function,

with some abuse of notation, we use π′′w in both.

If m(dmax/2) ≤ d̃, then d̂ = dmax/2. If m(dmin) ≥ d̃, then d̂ = dmin. If, on the other hand, there exists

ω ∈ [dmin, dmax/2] such that m(ω) = d̃, then d̂= ω. Note that the first two cases are degenerate in the sense

that there is no d0 crossing the threshold d̂. Q.E.D.

Proof of Proposition 7. We prove this result using the first-order condition of Problem (6) for α1 = α`

as in the proof of Proposition 5 and the implicit function theorem. Note also that 1/ρ is twice-differentiable

and with a continuous second-order derivative because πw and πs are so and πw(d) − πs(d) > 0 for all

d∈ [dmin, dmax].

To simplify the notation, define µ(d0 + δ) , τ(αh − α`)πw(d0 + δ) − κ/ρ(d0 + δ). We use prime over a

function (e.g., µ′(·)) to represent the derivative, and double prime to represent second derivative (e.g., µ′′(·)).

Using this new notation, we represent Problem (6) for α1 = α` as follows

max
δ1∈[0,ν]

Rν(δ1, α`) +µ(d0 + δ1)

and the corresponding first-order condition is

∂Rν(δ1, α`)

∂δ1

∣∣∣
δ1=δ∗

+µ′(d0 + δ∗) = 0 (24)

Note here that the left-hand side of (24) is a continuously differentiable function of δ∗ because Rν(δ,α`)

and µ(d0 + δ) are in twice-differentiable with a continuous second-order derivative w.r.t. δ, thus we can use

the implicit function theorem. Using the implicit function theorem, we know
∂δ∗

∂d0

has the same sign with

µ′′(d0 + δ∗) because Rν(δ,α`) +µ(d0 + δ) is concave in δ. Since i) πw(d) is concave in d, ii) 1/ρ(d) is convex,

and iii) d0 + δ is a linear function of δ, it follows that µ(d0 + δ) is concave in δ. Therefore, δ∗ is nonincreasing

in d0:
∂δ∗

∂d0

≤ 0. Q.E.D.

Proof of Proposition 8. When ρ is increasing (decreasing), Theorem 1 implies that |δ∗ − δFB| = δ∗ − δFB

(|δ∗ − δFB|= δFB − δ∗) because δ∗ ≥ δFB (δ∗ ≤ δFB). In order to show that the absolute distortion is i) nonin-

creasing when ρ increasing and ii) nondecreasing when ρ decreasing, we need to prove

∂δ∗

∂d0

≤ ∂δFB

∂d0

. (25)
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This is because, Propositions 2 and 7, we show that δFB and δ∗ are both nonincreasing in d0.

In the proof of this result, we use the fact that Rν(δ,α`) = α`
δ

ν

(
1− δ

ν

)
. Using the implicit function

theorem and defining

i)TERM1 =π′′w(d0 + δFB) and TERM2 =
−2α`
ν2

,

ii)TERMa =π′′w(d0 + δ∗) , TERMb =−κ[ρ′(d0 + δ∗)]2

[ρ(d0 + δ∗)]3
+
κρ′′(d0 + δ∗)

[ρ(d0 + δ∗)]2
and TERMc =

−2α`
ν2

we obtain the following partial derivatives:

∂δFB

∂d0

=− TERM1

TERM1 +TERM2

and
∂δ∗

∂d0

=− TERMa +TERMb

TERMc +TERMa +TERMb

.

Here, we denote by ρ′′ the second derivative of ρ. Note that all terms are less than or equal to zero therefore

the partial derivatives are so. We next consider the difference of partial derivatives

− TERMa +TERMb

TERMc +TERMa +TERMb

+
TERM1

TERM1 +TERM2

=
TERM1TERMc−TERM2[TERMa +TERMb]

[TERM1 +TERM2][TERMc +TERMa +TERMb]
. (26)

Here, the denominator is nonnegative because it is obtained by multiplying two negative terms. To complete

the proof, we need to show that the numerator is nonpositive, i.e., TERM1TERMc ≤ TERM2[TERMa +

TERMb]. This inequality is equivalent to

TERM1

TERMa +TERMb

≤ TERM2

TERMc

.

By definition, TERM2 =TERMc and so TERM2/TERMc = 1.

When δ∗ ≥ δFB (ρ increasing) and π′′w(·) is nonincreasing, we get TERM1 = π′′w(d0 +δFB)≥TERMa = π′′w(d0 +

δ∗). Similarly, δFB ≥ δ∗ (ρ decreasing) and π′′w(·) is nonincreasing TERM1 = π′′w(d0 + δFB)≥TERMa = π′′w(d0 +

δ∗).

TERM1 ≥TERMa +TERMb⇒
TERM1

TERMa +TERMb

≤ 1 (27)

Here, the first inequality follows from the fact that TERMb is nonpositive, and the second inequality holds

because TERMa +TERMb ≤ 0. Combining these, we obtain the following inequality and conclude the proof.

∂δ∗

∂d0

≤ ∂δFB

∂d0

.

Q.E.D.

Proof of Theorem 2. We initially use the first-order condition of Problem (6) for α1 = α` and the implicit

function theorem to prove this result. The first-order condition is

α`
ν

(
1− 2δ∗

ν

)
+π′w(d0 + δ∗)(αh−α`)τ +

κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2
= 0 . (28)

Because the left-hand side of this equation is decreasing in δ∗ (due to concavity), the implicit function

theorem implies that the sign of
∂δ∗

∂ν
is equal to

α`
ν2

(
−1 +

4δ∗

ν

)
.

We know that if ρ is increasing δ∗ ≥ δFB (see Theorem 1), and δFB ≥ δM (see Proposition 1) and δM = ν/2 for

the standard uniform distribution (see Lemma 1). Therefore, it follows that
∂δ∗

∂ν
≥ 0.

If ρ is decreasing, it is possible that δ∗ can take values smaller than ν/4. If δ∗ is smaller than ν/4 for

all ν ∈ (0, dmax/2], it follows that δ∗ is decreasing in ν therefore ν̂ takes the lowest possible ν value. If δ∗ is
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larger than ν/4 for all ν ∈ (0, dmax/2], it follows that δ∗ is increasing in ν therefore ν̂ = dmax/2. These two

cases are degenerate in the sense that the monotonicity of δ∗ does not change in ν.

On the other hand, if δ∗ crosses ν/4 at some point ν̃ ∈ (0, dmax/2], then δ∗ has to be increasing first, i.e.,

δ∗ ≥ ν/4 for all ν ∈ (0, ν̃], and then has to be decreasing, i.e., δ∗ ≤ ν/4 for all ν ∈ [ν̃, dmax/2]. This implies

ν̂ = ν̃. Note that δ∗ can cross ν/4 at most once because δ∗ is decreasing in ν after crossing but ν/4 is

increasing. Q.E.D.

B. Optimal Effort and Price Decisions of the Firm

In this appendix, we first show that if κ is lower than a threshold, then the firm always finds it optimal to

retrain the algorithm after observing a low accuracy in the first period. This also implies that retraining the

algorithm is profitable in the first-best setting, too. Let ∆π, min
d∈[dmin,dmax]

[πw(d)−πs(d)].

Proposition 9. The firm finds it optimal to retrain the algorithm if ∆πτ(αh−α`)>κ.

Proof of Proposition 9. At the time of algorithm retraining decision, the firm has accuracy α` and the

size of the available dataset is d0. Incorporating the choice of not retraining, we have the new version of

Problem (6) as follows:

J1b(α`, d0) = max
[

max
δ1∈[0,ν]

Rν(δ1, α`) +J2b(α`, d0 + δ1)︸ ︷︷ ︸
no retraining

, max
δ1∈[0,ν]

Rν(δ1, α`) +J2a

(
α`, d0 + δ1

)
︸ ︷︷ ︸

retraining

]
(29)

Here, the firm may directly proceed to Period 2b (pricing) with the accuracy on hand, α` in case of no

retraining. The second alternative is collecting data for retraining algorithm as in our model. Using the

expected continuation profit J2b from Lemma 1 and J2a from Proposition 4, we rewrite (29) as follows:

J1b(α`, d0) = max
[
α`τ, max

δ1∈[0,ν]
Rν(δ1, α`) +πw(d0 + δ1)τ(αh−α`)−

κ

ρ(d0 + δ1)

]
+α`τ

We next show that the second term in the square brackets is larger than α`τ when ∆πτ(αh−α`)>κ by finding

a uniform positive lower bound for πw(d)τ(αh−α`)− κ
ρ(d)

for all d∈ [dmin, dmax]. Let ε, ∆πτ(αh−α`)−κ,

thus ε > 0.

πw(d)τ(αh−α`)−
κ

ρ(d)
=πw(d)

(
τ(αh−α`)−

κ

πw(d)−πs(d)

)
≥πw(dmin)

(
τ(αh−α`)−

κ

∆π

)
=
πw(dmin)ε

∆π
> 0

Here, the first equality is obtained using the definition of ρ, the following inequality holds because πw is

increasing and ∆π≤ πw(d)−πs(d) for any d∈ [dmin, dmax]. Using the term πw(dmin)ε

∆π
, we show that

max
δ1∈[0,ν]

Rν(δ1, α`) +πw(d0 + δ1)τ(αh−α`)−
κ

ρ(d0 + δ1)
≥ max
δ1∈[0,ν]

Rν(δ1, α`) +
πw(dmin)ε

∆π
≥ α`τ

The first inequality follows from the fact that πw(dmin)ε

∆π
is a uniform lower bound and the second inequality

holds because πw(dmin)ε

∆π
> 0 and maxδ∈[0,ν]Rν(δ,α`) = α`τ (see Lemma 1). Q.E.D.

We next show that if the probability of high accuracy πw and the data impact ρ do not increase

or decrease too fast, the firm’s optimal price and hence the data size decisions take interior values.

Let Π′max , maxd∈[dmin,dmax] π
′
w(d) and Π′min , mind∈[dmin,dmax] π

′
w(d) and D′max , maxd∈[dmin,dmax] ρ

′(d) and

D′min ,mind∈[dmin,dmax] ρ
′(d). Because πw is concave, in fact Π′max = π′w(dmin) and Π′min = π′w(dmax).



de Véricourt and Gurkan: AI Flywheel Effect
32

Proposition 10. We have that

• If τ(αh−α`)Π′max < 2α`/dmax, then δFB ∈ (0, ν) for ν ∈ (0, dmax/2].

• If τ(αh−α`)Π′max +κD′max/∆π
2 < 2α`/dmax and τ(αh−α`)Π′min +κD′min >−α`/ν, then δ∗ ∈ (0, ν) for

ν ∈ (0, dmax/2].

Proof of Proposition 10. This result follows from the fact that the derivatives of the objective functions

in Problem (12) and Problem (6) for α1 = α` are positive at δ1 = 0 and negative at δ1 = ν when the conditions

in the statement of the proposition are satisfied. (Recall that the objective functions in both problems are

concave in δ1, see the proofs of Propositions 1 and 5.)

Note that Proposition 1 implies that δFB ≥ δM (and recall that δM > 0 from Lemma 1). Thus, we need to

check the derivative for the first-best data size only at δ1 = ν. Using the definition of Rν(δ1, α`), we obtain

the derivative of the objective function in Problem (12) when α1 = α` as follows:

α`

(
1

ν
− 2δ1

ν

)
+ τ(αh−α`)πw(d0 + δ1) . (30)

The condition in the first bullet point of the result implies that the term in (30) is negative when evaluated

at δ1 = ν. Hence, it follows that δFB ∈ (0, ν).

Next, we consider δ∗. Similarly, the derivative of the objective function in Problem (6) for α1 = α` is given

as follows:

α`

(
1

ν
− 2δ1

ν

)
+ τ(αh−α`)π′w(d0 + δ1) +

κρ′(d0 + δ1)

[ρ(d0 + δ1)]2
. (31)

The first condition in the second bullet point guarantees that the term in (31) evaluated at δ1 = ν is negative

for any ν ∈ (0, dmax/2] because π′w(d0 + ν) ≤ Π′max and ρ(d0 + δ) ≥∆π. The second condition in the same

bullet point guarantees that the term in (31) is positive when evaluated at δ1 = 0. Therefore, it follows that

δ∗ ∈ (0, ν). Q.E.D.

Although the conditions in Proposition 10 are sufficient to guarantee that the optimal solutions δ∗ and

δFB are interior, they are in fact loose because we do not assume any parametric form of functions πw and

ρ. For given parametric forms of functions πw and ρ, these conditions can be improved. Alternatively, it is

straightforward to check if the optimal solutions δ∗ and δFB are interior for any given set of parameters as in

the numerical examples provided in the main body of our paper.
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