Skip to main content

Advertisement

Log in

Improving the Dissolution of Triclabendazole from Stable Crystalline Solid Dispersions Formulated for Oral Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Triclabendazole belongs to the class II/IV of the Biopharmaceuticals Classification System, and its low aqueous solubility represents a major drawback during the development of effective dosage forms. Therefore, the goal of this study was to elucidate whether polymeric solid dispersions would represent a suitable approach to overcome such disadvantage. Due to the lack of information on triclabendazole release, four different dissolution media were evaluated to analyze drug dissolution rate. The polymeric solid dispersions were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The selected final formulations were further stored for 24 months, and their physical stability was evaluated by means of X-ray diffraction and drug dissolution assays. Drug solubility studies indicated that poloxamer 407 (P407) solubilized a higher amount of drug than polyethylene glycol 6000. Drug-to-carrier ratio, nature of the selected carriers, and the type of dissolution media were important factors for increasing dissolution. By infrared spectroscopy, there were no specific interactions between the drug and polymers. The physicochemical characterization of the systems showed a detectable evidence of drug amorphization by increasing the carrier ratio. Micromeritic studies indicated that raw triclabendazole, physical mixtures, and reference formulation showed poor flow properties, in contrast to the triclabendazole:P407 solid dispersion sample. Both the crystalline properties and dissolution rate of selected samples were very similar after 24 months at room temperature. Thus, considering physical stability and dissolution studies, the development of the solid dispersion is a very suitable methodology to improve triclabendazole dissolution and, potentially, its biopharmaceutical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ashrafi K, Bargues MD, O’Neill S, Mas-Coma S. Fascioliasis: a worldwide parasitic disease of importance in travel medicine. Travel Med Infect Dis. 2014;12(6 Pt A):636–49. https://doi.org/10.1016/j.tmaid.2014.09.006.

    Article  PubMed  Google Scholar 

  2. Mas-Coma S, Bargues MD, Valero MA. Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures. Parasitology. 2018;145(13):1665–99. https://doi.org/10.1017/S0031182018000914.

    Article  CAS  PubMed  Google Scholar 

  3. 20th WHO essential medicines list. 2017. https://www.who.int/medicines/news/2017/20th_essential_med-list/en/.

  4. Keiser J, Engels D, Buscher G, Utzinger J. Triclabendazole for the treatment of fascioliasis and paragonimiasis. Expert Opin Investig Drugs. 2005;14(12):1513–26. https://doi.org/10.1517/13543784.14.12.1513.

    Article  PubMed  Google Scholar 

  5. Fairweather I. Triclabendazole progress report, 2005–2009: an advancement of learning? J Helminthol. 2009;83(2):139–50. https://doi.org/10.1017/S0022149X09321173.

    Article  CAS  PubMed  Google Scholar 

  6. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208711s000lbl.pdf.

  7. Cabada MM, Lopez M, Cruz M, Delgado JR, Hill V, White AC Jr. Treatment failure after multiple courses of triclabendazole among patients with fascioliasis in Cusco, Peru: a case series. PLoS Negl Trop Dis. 2016;10(1):e0004361. https://doi.org/10.1371/journal.pntd.0004361.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mas-Coma S, Bargues MD, Valero MA. Diagnosis of human fascioliasis by stool and blood techniques: update for the present global scenario. Parasitology. 2014;141(14):1918–46. https://doi.org/10.1017/S0031182014000869.

    Article  CAS  PubMed  Google Scholar 

  9. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. 2004;58(2):265–78. https://doi.org/10.1016/j.ejpb.2004.03.001.

  10. Flores-Ramos M, Ibarra-Velarde F, Jung-Cook H, Hernández-Campos A, Vera-Montenegro Y, Castillo R. Novel triclabendazole prodrug: a highly water soluble alternative for the treatment of fasciolosis. Bioorg Med Chem Lett. 2017;27(3):616–9. https://doi.org/10.1016/j.bmcl.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  11. Luzardo-Álvarez A, Martínez-Mazagastos J, Santamarina-Fernández MT, Otero-Espinar FJ, Blanco-Méndez J. Oral pharmacological treatments for ichthyophthiriosis of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2003;220(1-4):15–25. https://doi.org/10.1016/S0044-8486(02)00228-4.

    Article  CAS  Google Scholar 

  12. Real D, Leonardi D, Williams RO III, Repka MA, Salomon CJ. Solving the delivery problems of triclabendazole using cyclodextrins. AAPS PharmSciTech. 2018;19(5):2311–21. https://doi.org/10.1208/s12249-018-1057-5.

    Article  CAS  PubMed  Google Scholar 

  13. Real D, Hoffmann S, Leonardi D, Salomon C, Goycoolea FM. Chitosan based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS One. 2018;13(12):e0207625. https://doi.org/10.1371/journal.pone.0207625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Du J, Wang L, Wang Y. Nanocrystals technology for improving bioavailability of poorly soluble drugs: a mini-review. J Nanosci Nanotechnol. 2017;17(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  15. Seremeta KP, Arrúa EA, Okulik NB, Salomon CJ. Development and characterization of benznidazole nano- and microparticles: a new tool for pediatric treatment of Chagas disease? Colloids Surf B Biointerfaces. 2019;177:169–77. https://doi.org/10.1016/j.colsurfb.2019.01.039.

    Article  CAS  PubMed  Google Scholar 

  16. Bhatnagar P, Dhote V, Mahajan SC, Mishra PK, Mishra DK. Solid dispersion in pharmaceutical drug development: from basics to clinical applications. Curr Drug Deliv. 2014;11(2):155–71.

    Article  CAS  PubMed  Google Scholar 

  17. Chowdhury N, Vhora I, Patel K, Bagde A, Kutlehria S, Singh M. Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS PharmSciTech. 2018;19(7):3287–97. https://doi.org/10.1208/s12249-018-1111-3.

    Article  CAS  PubMed  Google Scholar 

  18. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25. https://doi.org/10.1016/j.apsb.2013.11.001.

    Article  PubMed  Google Scholar 

  19. Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3 Pt B):799–813. https://doi.org/10.1016/j.ejpb.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  20. Winslow CJ, Nichols BLB, Novo DC, Mosquera-Giraldo LI, Taylor LS, Edgar KJ, et al. Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro. Carbohydr Polym. 2018;182:149–58. https://doi.org/10.1016/j.carbpol.2017.11.024.

    Article  CAS  PubMed  Google Scholar 

  21. Costa ED, Priotti J, Orlandi S, Leonardi D, Lamas MC, Nunes TG, et al. Unexpected solvent impact in the crystallinity of praziquantel/poly(vinylpyrrolidone) formulations. A solubility, DSC and solid state NMR study. Int J Pharm. 2016;511(2):983–93. https://doi.org/10.1016/j.ijpharm.2016.08.009.

    Article  CAS  PubMed  Google Scholar 

  22. Simonazzi A, Cid AG, Paredes AJ, Schofs L, Gonzo EE, Palma SD, et al. Development and in vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Ther Deliv. 2018;9(9):623–38. https://doi.org/10.4155/tde-2018-0037.

    Article  CAS  PubMed  Google Scholar 

  23. Song CK, Yoon IS, Kim DD. Poloxamer-based solid dispersions for oral delivery of docetaxel: differential effects of F68 and P85 on oral docetaxel bioavailability. Int J Pharm. 2016;507(1-2):102–8. https://doi.org/10.1016/j.ijpharm.2016.05.002.

    Article  CAS  PubMed  Google Scholar 

  24. Leonardi D, Barrera MG, Lamas MC, Salomon CJ. Development of prednisone:polyethylene glycol 6000 fast-release tablets from solid dispersions: solid-state characterization, dissolution behavior, and formulation parameters. AAPS PharmSciTech. 2007;8(4):221. https://doi.org/10.1208/pt0804108.

    Article  PubMed Central  Google Scholar 

  25. Tajarobi F, Abrahmsén-Alami S, Larsson A. Dissolution rate enhancement of parabens in PEG solid dispersions and its influence on the release from hydrophilic matrix tablets. J Pharm Sci. 2011;100(1):275–83. https://doi.org/10.1002/jps.22248.

    Article  CAS  PubMed  Google Scholar 

  26. Fonseca-Berzal C, Palmeiro-Roldán R, Escario JA, Torrado S, Arán VJ, Torrado-Santiago S, et al. Novel solid dispersions of benznidazole: preparation, dissolution profile and biological evaluation as alternative antichagasic drug delivery system. Exp Parasitol. 2015;149:84–91. https://doi.org/10.1016/j.exppara.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  27. Jiménez de los Santos CJ, Pérez-Martínez JI, Gómez-Pantoja ME, Moyano JR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J Drug Deliv Sci Technol. 2017;42:261–72. https://doi.org/10.1016/j.jddst.2017.03.030.

    Article  CAS  Google Scholar 

  28. García-Rodriguez JJ, de la Torre-Iglesias PM, Vegas-Sánchez MC, Torrado-Durán S, Bolás-Fernández F. Torrado-Santiago. Changed crystallinity of mebendazole solid dispersion: improved anthelmintic activity. Int J Pharm. 2011;403(1-2):23–8. https://doi.org/10.1016/j.ijpharm.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  29. Higuchi T, Connors K. Phase-solubility techniques. Adv Anal Chem Instrum. 1965;4:117–23.

    CAS  Google Scholar 

  30. Reyes-Gasga J, Martinez-Pineiro EL, Rodriguez-Alvarez G, Tiznado-Orozco GE, Garcia-Garcia R, Bres EF. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater Sci Eng C. 2013;33(8):4568–74.

    Article  CAS  Google Scholar 

  31. Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm. 2018;15(2):571–84. https://doi.org/10.1021/acs.molpharmaceut.7b00939.

    Article  CAS  PubMed  Google Scholar 

  32. Suksiriworapong J, Rungvimolsin T, A-gomol A, Junyaprasert VB, Chantasart D. Development and characterization of lyophilized diazepam loaded polymeric micelles. AAPS PharmSciTech. 2014;15(1):52–64. https://doi.org/10.1208/s12249-013-0032-4.

    Article  CAS  PubMed  Google Scholar 

  33. Dos Santos KM, Barbosa RM, Vargas FGA, de Azevedo EP, Lins ACDS, Camara CA, et al. Development of solid dispersions of β-lapachone in PEG and PVP by solvent evaporation method. Drug Dev Ind Pharm. 2018;44(5):750–6. https://doi.org/10.1080/03639045.2017.1411942.

    Article  CAS  PubMed  Google Scholar 

  34. Tothadi S, Bhogala BR, Gorantla AR, Thakur TS, Jetti RK, Desiraju GR. Triclabendazole: an intriguing case of co-existence of conformational and tautomeric polymorphism. Chemistry Asian J. 2012;7(2):330–42. https://doi.org/10.1002/asia.201100638.

    Article  CAS  Google Scholar 

  35. Ali W, Williams AC, Rawlinson CF. Stochiometrically governed molecular interactions in drug: poloxamer solid dispersions. Int J Pharm. 2010;391(1-2):162–8. https://doi.org/10.1016/j.ijpharm.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  36. Xiang TX, Anderson BD. Effects of molecular interactions on miscibility and mobility of ibuprofen in amorphous solid dispersions with various polymers. J Pharm Sci. 2019;108(1):178–86. https://doi.org/10.1016/j.xphs.2018.10.052.

    Article  CAS  PubMed  Google Scholar 

  37. Truong DH, Tran TH, Ramasamy T, Choi JY, Choi H, Yong CS, et al. Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. Powder Technol. 2015;283:260–5. https://doi.org/10.1016/j.powtec.2015.04.044.

    Article  CAS  Google Scholar 

  38. Weuts I, Van Dycke F, Voorspoels J, De Cort S, Stokbroekx S, Leemans R, et al. Physicochemical properties of 720 the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci. 2011;100(1):260–74. https://doi.org/10.1002/jps.22242.

    Article  CAS  PubMed  Google Scholar 

  39. Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends. Int J Pharm. 2010;390(2):165–73. https://doi.org/10.1016/j.ijpharm.2010.01.039.

    Article  CAS  PubMed  Google Scholar 

  40. Anand O, Yu LX, Conner DP, Davit BM. Dissolution testing for generic drugs: an FDA perspective. AAPS J. 2011;13(3):328–35. https://doi.org/10.1208/s12248-011-9272-y.

    Article  PubMed  PubMed Central  Google Scholar 

  41. EMEA. European Medicines Agency. Note for guidance on the investigation of bioavailability and bioequivalence, vol. 1. London: European Medicines Agency; 2001. 18p

    Google Scholar 

  42. FDA. Food and Drug Administration. Guidance for industry: dissolution testing of immediate release solid oral dosage forms, vol. 1. Rockville: Food and Drug Administration; 1997. 11p

    Google Scholar 

  43. Wu C, Liu Y, He Z, Sun J. Insight into the development of dissolution media for BCS class II drugs: a review from quality control and prediction of in vivo performance perspectives. Curr Drug Deliv. 2016;13(7):1004–20.

    Article  CAS  PubMed  Google Scholar 

  44. Bull World Health Organ 96. 2018. pp. 378–385.

  45. Chutimaworapan S, Ritthidej GC, Yonemochi E, Oguchi T, Yamamoto K. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev Ind Pharm. 2000;26(11):1141–50. https://doi.org/10.1081/DDC-100100985.

    Article  CAS  PubMed  Google Scholar 

  46. Guncheva G, Stippler E. Effect of four commonly used dissolution media surfactants on pancreatin proteolytic activity. AAPS PharmSciTech. 2017;18(4):1402–7. https://doi.org/10.1208/s12249-016-0618-8.

    Article  CAS  PubMed  Google Scholar 

  47. von Orelli J, Leuenberger H. Search for technological reasons to develop a capsule or a tablet formulation with respect to wettability and dissolution. Int J Pharm. 2004;287(1-2):135–45. https://doi.org/10.1016/j.ijpharm.2004.09.006.

    Article  CAS  Google Scholar 

  48. Nair R, Vemuri M, Agrawala P, Kim S. Investigation of various factors affecting encapsulation on the in-cap automatic capsule-filling machine. AAPS PharmSciTech. 2004;5(4):46–53. https://doi.org/10.1208/pt050457.

    Article  PubMed Central  Google Scholar 

  49. Leonardi D, Salomon CJ. Unexpected performance of physical mixtures over solid dispersions on the dissolution behavior of benznidazole from tablets. J Pharm Sci. 2013;102(3):1016–23. https://doi.org/10.1002/jps.23448.

    Article  CAS  PubMed  Google Scholar 

  50. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9(1):250–8. https://doi.org/10.1208/s12249-008-9046-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emery E, Oliver J, Pugsley T, Sharma J, Zhou J. Flowability of moist pharmaceutical powders. Powder Technol. 2009;189(3):409–15. https://doi.org/10.1016/j.powtec.2008.06.017.

    Article  CAS  Google Scholar 

  52. The United States Pharmacopeial Convention, Rockville: USP 42 NF 37: United States Pharmacopeia Convention; 2019.

  53. Karataş A, Bekmezci S. Evaluation and enhancement of physical stability of semi-solid dispersions containing piroxicam into hard gelatin capsules. Acta Pol Pharm. 2013;70(5):883–97.

    PubMed  Google Scholar 

  54. Bahl D, Bogner RH. Amorphization of indomethacin by co-grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism. Pharm Res. 2006;23(10):2317–25. https://doi.org/10.1007/s11095-006-9062-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.R. thanks CONICET for a Ph.D. fellowship.

Funding

The authors of this study received financial support from MINCYT (Argentina), CONICET (Argentina), and National University of Rosario (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darío Leonardi or Claudio J. Salomon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real, D., Orzan, L., Leonardi, D. et al. Improving the Dissolution of Triclabendazole from Stable Crystalline Solid Dispersions Formulated for Oral Delivery. AAPS PharmSciTech 21, 16 (2020). https://doi.org/10.1208/s12249-019-1551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1551-4

KEY WORDS

Navigation