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Abstract

Orientation&Mobility (O&M) encompasses a range of techniques for people with
visual impairments that teach them how to roam around in everyday situations.
However, they have to undergo extensive and laborious personal training sessions
with O&M specialists, to ingrain these techniques into their daily routines. While
some techniques rely on assistive devices, such as the popular White Cane, Points of
Interest databases or compass-based orientation systems, there is an inconspicuous
communication disconnect between available guidance and navigation techniques.

Within recent years, truly mobile computing platforms—smartphones—have become
ubiquitous. This potentially allows modern computer vision techniques to assist the
human visual system on issues that arise when everyday objects and situations are
not designed with proper accessibility in mind. However, special care has to be taken
in order to not conflict with specific individually learned behaviors or even contradict
O&M techniques in these situations.

In this thesis we identify a spatial and systemic gap between guidance and navigation
aids for people with visual impairments. This spatial gap exists largely because
assistive guidance devices, i.e., the White Cane, can only perceive the surroundings
within a certain range, while navigation information only provides instructions on a
very broad scale. Additionally, it is partly caused by the systemic gap between these
two components— the White Cane never considers routing, while a navigation system
does not know about nearby obstacles or O&M techniques. Therefore, we try to
diminish this disconnect and propose several approaches to increase interconnectivity
between guidance and navigation information, approaching the issue from both
directions. To ultimately provide always relevant and beneficial information only,
we first identify the major requirements of assistive systems and create some key
concepts that guide all of our algorithmic approaches and prototype implementations.
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Current orientation assistance is mostly based on Global Navigation Satellite System
applications. We try to improve these by proposing an approach that is capable of
performing an individualized, impairment aware, and shoreline level-based routing.
Generated routes are, while exhibiting a slightly increased travel distance, much
safer according to our pre-defined objective factors created in accordance with O&M
trainers. Furthermore, we improve the availability of relevant geospatial data required
for such an impairment aware routing. To this end, we propose a state of the art
data driven algorithm to detect zebra crossings in aerial imagery, which also works
reliably across country borders.

To increase the usefulness of mobility assistance that is provided by computer vision
methods, we propose approaches that are closely modeled after O&M techniques, in
order to increase spatial awareness of the immediate surroundings. First, we detect
the accessible section in front of the user and also inform about possible obstacles.
Then, we create a novel approach to detect and precisely locate shorelines in the
immediate vicinity and are able to create virtual segments that bridge shoreline
discontinuities, providing relevant information about the next segment’s location in
advance. Finally, we improve the accessibility of pedestrian crossing situations, i.e.,
zebra crossings and pedestrian traffic lights, using a deep learning-based approach.

To analyze whether our proposed approaches and algorithms truly benefit people with
visual impairments, we perform a small—nonetheless very encouraging—Wizard
of Oz experiment about our shoreline level routing. Furthermore, we conduct a
much larger user study that combines different components, focused on pedestrian
crossing scenarios. While our statistical measures show only little improvements so
far, mostly due to initial prototype issues and little training time for participants to
get sufficiently accustomed to it, we receive very encouraging comments by almost
all study participants. Although much further work is required, this suggests that
we have created an important first step towards diminishing the identified gap and
already improved Orientation&Mobility for people with visual impairments.



Kurzzusammenfassung

Orientierung&Mobilität (O&M) umfasst eine Reihe von Techniken für Menschen mit
Sehschädigungen, die ihnen helfen, sich im Alltag zurechtzufinden. Dennoch benötigen
sie einen umfangreichen und sehr aufwendigen Einzelunterricht mit O&M Lehrern,
um diese Techniken in ihre täglichen Abläufe zu integrieren. Während einige dieser
Techniken assistive Technologien benutzen, wie zum Beispiel den Blinden-Langstock,
Points of Interest Datenbanken oder ein Kompass gestütztes Orientierungssystem,
existiert eine unscheinbare Kommunikationslücke zwischen verfügbaren Hilfsmitteln
und Navigationssystemen.

In den letzten Jahren sind mobile Rechensysteme, insbesondere Smartphones, allge-
genwärtig geworden. Dies eröffnet modernen Techniken des maschinellen Sehens die
Möglichkeit, den menschlichen Sehsinn bei Problemen im Alltag zu unterstützen, die
durch ein nicht barrierefreies Design entstanden sind. Dennoch muss mit besonderer
Sorgfalt vorgegangen werden, um dabei nicht mit den speziellen persönlichen Kom-
petenzen und antrainierten Verhaltensweisen zu kollidieren, oder schlimmstenfalls
O&M Techniken sogar zu widersprechen.

In dieser Dissertation identifizieren wir eine räumliche und systembedingte Lücke
zwischen Orientierungshilfen und Navigationssystemen für Menschen mit Sehschädi-
gung. Die räumliche Lücke existiert hauptsächlich, da assistive Orientierungshilfen,
wie zum Beispiel der Blinden-Langstock, nur dabei helfen können, die Umgebung in
einem limitierten Bereich wahrzunehmen, während Navigationsinformationen nur
sehr weitläufig gehalten sind. Zusätzlich entsteht diese Lücke auch systembedingt
zwischen diesen beiden Komponenten—der Blinden-Langstock kennt die Route nicht,
während ein Navigationssystem nahegelegene Hindernisse oder O&M Techniken nicht
weiter betrachtet. Daher schlagen wir verschiedene Ansätze zum Schließen dieser
Lücke vor, um die Verbindung und Kommunikation zwischen Orientierungshilfen



iv Kurzzusammenfassung

und Navigationsinformationen zu verbessern und betrachten das Problem dabei aus
beiden Richtungen. Um nützliche relevante Informationen bereitzustellen, identifizie-
ren wir zuerst die bedeutendsten Anforderungen an assistive Systeme und erstellen
einige Schlüsselkonzepte, die wir bei unseren Algorithmen und Prototypen beachten.

Existierende assistive Systeme zur Orientierung basieren hauptsächlich auf globalen
Navigationssatellitensystemen. Wir versuchen, diese zu verbessern, indem wir einen
auf Leitlinien basierenden Routing Algorithmus erstellen, der auf individuelle Bedürf-
nisse anpassbar ist und diese berücksichtigt. Generierte Routen sind zwar unmerklich
länger, aber auch viel sicherer, gemäß den in Zusammenarbeit mit O&M Lehrern
erstellten objektiven Kriterien. Außerdem verbessern wir die Verfügbarkeit von rele-
vanten georeferenzierten Datenbanken, die für ein derartiges bedarfsgerechtes Routing
benötigt werden. Zu diesem Zweck erstellen wir einen maschinellen Lernansatz, mit
dem wir Zebrastreifen in Luftbildern erkennen, was auch über Ländergrenzen hinweg
funktioniert, und verbessern dabei den Stand der Technik.

Um den Nutzen von Mobilitätsassistenz durch maschinelles Sehen zu optimieren,
erstellen wir O&M Techniken nachempfundene Ansätze, um die räumliche Wahr-
nehmung der unmittelbaren Umgebung zu erhöhen. Zuerst betrachten wir dazu die
verfügbare Freifläche und informieren auch über mögliche Hindernisse. Weiterhin
erstellen wir einen neuartigen Ansatz, um die verfügbaren Leitlinien zu erkennen
und genau zu lokalisieren, und erzeugen virtuelle Leitlinien, welche Unterbrechungen
überbrücken und bereits frühzeitig Informationen über die nächste Leitlinie bereit-
stellen. Abschließend verbessern wir die Zugänglichkeit von Fußgängerübergängen,
insbesondere Zebrastreifen und Fußgängerampeln, mit einem Deep Learning Ansatz.

Um zu analysieren, ob unsere erstellten Ansätze und Algorithmen einen tatsächli-
chen Mehrwert für Menschen mit Sehschädigung erzeugen, vollziehen wir ein kleines
Wizard-of-Oz-Experiment zu unserem bedarfsgerechten Routing—mit einem sehr
ermutigendem Ergebnis. Weiterhin führen wir eine umfangreichere Studie mit verschie-
denen Komponenten und dem Fokus auf Fußgängerübergänge durch. Obwohl unsere
statistischen Auswertungen nur eine geringfügige Verbesserung aufzeigen, beeinflußt
durch technische Probleme mit dem ersten Prototypen und einer zu geringen Ein-
gewöhnungszeit der Probanden an das System, bekommen wir viel versprechende
Kommentare von fast allen Studienteilnehmern. Dies zeigt, daß wir bereits einen
wichtigen ersten Schritt zum Schließen der identifizierten Lücke geleistet haben und
Orientierung&Mobilität für Menschen mit Sehschädigung damit verbessern konnten.
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Chapter 1

Introduction

“The only thing worse than being blind is having sight but no vision.”

– Helen Keller

The concept of Orientation&Mobility (O&M) was developed by Richard Hoover and
Russel Williams in 1944, latter being blinded by enemy action in France, who were
then later joined by Warren Bledsoe in 1947, at the Valley Forge Army General
Hospital. Their original intention was to aid veterans that suffered visual impairments
from World War II in their daily guidance and navigation tasks (Wiener et al., 2010).
Through blindfolded trial and error, Hoover came up first with the original idea to
move a very lightweight cane in an arc in front of the body, always touching the
ground on the side opposite of the forward foot, a style that is still dominant and
practiced by professional O&M trainers.

Orientation&Mobility today has become a set of de facto training techniques that
allow people with visual impairments to develop an autonomous and self-sufficient
mobility—Orientation denotes the knowledge of where you are and want to go
next, while Mobility implies the ability to roam around safely and efficiently. Its
main tools in use today are the “White Cane”, specially trained “Guide Dogs” as a
companion, and Echolocation, i.e., the creation of clicking noises that are reflected by
one’s surroundings, a skill that is much harder to acquire than “White Cane” usage.
The cane itself has also been referred to as “Long Cane” or “Probing Cane,” but was
originally named after its inventor, the “Hoover Cane.”
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In 1974, O&M was brought to Germany by Béatrice and Jochen Fischer as well
as Pamela and Dennis Cory, all working for “blista” (“Hochschulbücherei, Studien-
anstalt und Beratungsstelle für blinde Akademiker e.V.,” founded 1916 in Marburg),
becoming one of the first O&M professional trainers in Germany. To this day, blista re-
mains the sole accredited institution involved in educating professional rehabilitation
trainers for people with visual impairments.

Recently released data by the World Health Organization1 (WHO) shows that a large
number of people worldwide are affected by severe visual impairments and blindness
today. It is approximated that 1.3 billion people are influenced by some form of vision
impairment, of which 80% is considered avoidable, e.g., refractive errors using glasses
and cataracts requiring surgery. This leaves 36 million blind people and 217 million
with moderate to severe visual impairments, with the majority of affected people
being over the age of 50 (Bourne et al., 2017). This has become a major problem for
low-income as well as high-income countries and while the specific reasons are not
fully discovered yet, diseases were recently identified as a contributing factor. As
some countries do not provide any government benefits, people there are neglected
the most, adding to the fact that visual impairments and blindness are legally defined
differently everywhere. While the number of people with visual impairments has
stagnated since 20102, due to the increase in over-aging of the population in various
countries, age-related eye diseases are currently expected to rise again.

The German Federation of the Blind and Partially Sighted (“Deutscher Blinden- und
Sehbehindertenverband,” DBSV) estimated there were 150.000 blind and 500.000
visually impaired people in Germany in 19903. However, these are estimates based
on historical numbers taken from the “German Democratic Republic” (GDR), ex-
trapolated to all of Germany. Newer statistics are not available, due to not being
collected in Germany. Resnikoff et al. (2004) examined Denmark, Finland, Great
Britain, Ireland, Iceland, Italy, and the Netherlands and found an increase of 80%
between 1990 and 2002, mostly due to an ageing population. This suggests there
were circa 1.2 Million affected people in Germany in 2002. Only Bavaria, a German
federal state, published numbers for people that applied for government benefits in
2013 (14655 persons): 64.2% were over age 65, 42.1% over age 80 and 58,3% were
female (higher life expectancy in Germany), supporting the ageing population theory.

1https://www.who.int/blindness
2https://www.who.int/blindness/publications/globaldata/
3https://www.dbsv.org/zahlen-fakten.html

https://www.who.int/blindness
https://www.who.int/blindness/publications/globaldata/
https://www.dbsv.org/zahlen-fakten.html


1.1 Daily Challenges for People with Visual Impairments 3

1.1 Daily Challenges for People with Visual Impairments

Being affected by severe visual impairments can create a high mental burden and
cognitive load for everyday tasks, often in ways hard to notice and comprehend by
sighted persons. Especially small daily living issues can easily become cumbersome,
e.g., tracking and finding objects or moving around at home. All activities and
decisions related to color are also much harder or even impossible for affected persons,
e.g., to select which clothes to wear in the morning, whether these are dirty, spilled,
stained, or can simply be worn again, sorting them for washing, as well as many
more simple day to day tasks (cf . Bigham et al. (2010)).

Eating food is often considered a mentally draining activity as it requires fine motoric
skills, e.g., slicing, cutting and picking up of small pieces, as well as tracking pieces
of food around the plate. Drinking beverages can easily become just as straining,
and sometimes entertaining, if they have to be poured from the bottle: First the
correct bottle needs to be located on the table, shelf or the fridge, and then one must
carefully pour the beverage in order to not spill it.

Shopping for articles of many different flavors is just as cumbersome: People with
visual impairments can hardly differentiate products of similar shape, e.g., different
drinking bottles or different flavors of potato chips, nor can they get an overview of
what is available at the store in the first place, e.g., standing in front of the fruit and
vegetables section. In many contexts it would generally not be considered acceptable
to touch everything until the desired food object was found.

Whilst there exist some highly specialized assistive devices to alleviate some of
these issues, e.g., the “EinkaufsFuchs”4 or specialized barcode scanner smartphone
applications like “Digit-Eyes”5, these still require the user to first locate the barcode,
which can be cumbersome for items of different shape and structure, as well as the
device or application to have the barcode in its database of known products. However,
even using such an easily indispensable everyday aid, users will not be informed
about special offers, new in store offers, and expired or spoiled items. It also remains
completely infeasible to just rummage around through a section of items and look
for items of interest, neither potato chips, clothing, collectables, nor LP records, a
behavior that is otherwise an essential part of the shopper’s experience.

4http://www.synphon.de
5https://www.digit-eyes.com

http://www.synphon.de
https://www.digit-eyes.com
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Finally, social consequences can also become an issue. It is impossible to pick up on
important social cues in conversations, like eye-rolling or mouth-twisting, or even just
knowing— in a group of people—when it is one’s turn to speak up or whether one
was the addressee of a question, a situation that is for example often encountered in
work interviews or meetings. Furthermore, participation in social activities becomes
much harder, it often only starts with getting to a meeting point self-determined
and independently, as such seemingly simple tasks require more time and careful
planning—often help by others is needed.

Today’s navigation is becoming increasingly complex, as road network density in-
creased due to packed city layouts. On the other hand, modern navigation systems
have become ubiquitous—almost any modern smartphone can run the Google Maps
application, open it in a browser6, or run other navigation software—so everybody
can literally carry this capability around within their own pockets. However, only the
last years have seen an improvement in routing for systems available to the public:
Google Maps added a pedestrian routing mode in 2015, providing an improvement
over road-based routing that was already commonly found in cars and provided the
base for all existing routing approaches so far. Some other routing providers have
followed suit in the meantime. Sadly, none of these existing systems address special
requirements, e.g., cerebral palsy, walking aids, or people with visual impairments.

However, navigation for these persons only starts with finding their own home or work
address, it is a general issue. While most navigation systems will route towards the
desired street, and increasingly up to the specific address, for example the roadside to
choose for walking on is rarely considered. Moreover, provided navigation information
is usually rather coarse: “Turn right in 200 meters.” or “Follow this road for 100
meters.” is missing essential information to people with visual impairments. Not only
dynamic obstacles, i.e., people, cars, or bicycles, are completely ignored, but also
static objects like trash cans, lamp posts, overhanging branches, low road-signs, a
truck’s loading ramp or construction sites are also not considered at all.

This is where Orientation&Mobility training provides great assistance, as it teaches
specially designed techniques that deal with such situations and also exercises often
taken routes. It allows trainees to get used to actually roam around independently
and self-sufficiently—and increase their level of confidence while doing so. One-on-

6https://google.com/maps

https://google.com/maps
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Figure 1.1: An exemplary urban navigation scenario that shows a (silhouetted) pedestrian
use a White Cane, shorelining along a tactile paving surface alongside a building. Additional
relevant information about the surroundings—of the kind that our assistive system provides,
such as accessible section, obstacles or shorelines—helps in improving spatial awareness.

one sessions with O&M trainers are necessary to develop essential skills and properly
perceive and understand the surroundings. However, while personal O&M training
provides the greatest benefits, it is also very costly and time consuming, and a very
high level of autonomy is required to safely navigate unknown areas in the end.

Rarely, tactile pavings, invented by Seiichi Miyake in 1965 to assist a blind friend,
provide an as easy and safe path to follow along as in figure 1.1. Usually, people
with visual impairments rely on O&M’s shorelining technique, i.e., the White Cane
trails a physically distinctive object, e.g., a building’s facade (the inner shoreline)
or the junction between the sidewalk and curblines (the outer shoreline). However,
these shorelines are often discontinuous, e.g., when crossing a street or a driveway.
Also, most pedestrian crossings provide low accessibility by make and design, and
are, if possible, avoided by people with visual impairments (Matthews et al., 2014).

In summary, provided navigation information must not contradict or counteract the
intricate Orientation&Mobility techniques learned and memorized by people with
visual impairments, but instead consider and integrate these special requirements.
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1.2 Computer Vision: A Potential Savior

Computer vision presents itself as a suitable and somewhat obvious candidate to
alleviate the effects of visual impairments, due to its core value of “Teaching computers
to see!”—a phrase often used to describe it to outsiders. However, computer vision
itself is not enough in order to be truly useful, as it needs further understanding of
user requirements, their specific needs and capabilities. While modern approaches are
capable of identifying, locating, segmenting—marking pixel-wise in an image—and
tracking all kinds of objects, they cannot understand what would be considered useful
by people with visual impairments in the first place. Thus there exists a very high
potential to overload the user with unnecessary details, instead of only providing
situation aware relevant information.

Classical computer vision approaches involve hand-crafted features and decision
systems, e.g., Scale Invariant Feature Transform (SIFT) (Lowe, 1999), Histograms of
Oriented Gradients (HOG) (Dalal and Triggs, 2005), Local Binary Patterns (LBP)
(Ojala et al., 2002) or Support Vector Machines (SVM) (Cortes and Vapnik, 1995).
These were usually single class object detectors, fine tuned for a specific use case—a
specialized creation, often cumbersome and time-consuming. One major benefit is
that they do not require much training data, as the developer provides part of the
reasoning and integrates assumptions based on external knowledge. Furthermore,
it is feasible to reason about their limitations, while failures can be expected and
counteracted beforehand.

Recently, deep learning has significantly changed all of this, as it allows end-to-
end training of Neural Networks, i.e., systems learn the necessary features and
classifications fully automatic, all based on data alone (Krizhevsky et al., 2012). It
is heavily Graphical Processing Unit (GPU)-based, a computing unit that is capable
of running a single instruction on multiple data (SIMD), e.g., to run an addition
or multiplication on a large vector or matrix, on all their elements at once. It is
widely used nowadays and often beats classical approaches in almost all scenarios it
has been tried for, e.g., multi object detectors, segmentation, depth estimation, and
many others. One of the major drawbacks is that it requires lots of data in order
to be useful, because it needs to properly generalize from its training data to yet
unseen instances—a task that had been offloaded to the developer before. This is
due to the fact that machine learning usually fits itself to known data as closely as



1.2 Computer Vision: A Potential Savior 7

possible: Interpolation becomes easy, while correct extrapolation to unknown data is
much harder to achieve. Furthermore, guarantees about functionality under certain
circumstances are hardly possible—an especially important fact when human lives
depend on it. Thus, a better understanding of its inner workings and its major
reliability factors is still required. However, deep learning has recently proven itself
to be especially relevant for driver assistance systems and autonomous driving, both
important research fields that can, albeit to a limited extent, greatly benefit people
with visual impairments as well.

Traditional systems were often limited in their mobility and thus also in their usability
for people with visual impairments as navigation and guidance aids. However, with the
advent of smartphones and tablets, ever more processing power as well as connectivity
is now available— that is also highly mobile. Today, we additionally have much longer
lasting batteries due to improvements in power consumption and battery technology,
but also further technologies available as well, e.g., bone-induction headphones,
Global Navigation Satellite System (GNSS), and many more. Furthermore, mobile
GPUs are recently coming to smartphones and tablets as well, allowing the use
of deep learning approaches, even in mobile scenarios. There is a general increase
in the number and the availability of “off-the-shelf” hardware, making systems
much more affordable and easier to develop on. Still, personalized mobility so far
is limited to GNSS-based routing systems, while it could be digitally enhanced by
relevant—user-centric— information about the immediate surroundings.

Especially today’s ubiquitous smartphones are becoming relevant in everybody’s
daily lives, for sighted as well as for people with visual impairments. Nevertheless,
smartphones present their own, very unique, challenges for people with visual im-
pairments, due to their lack of tangible feedback when using the touchscreen. Thus,
many affected people, i.e., people with visual or motor disabilities, carry various
types of specific use case devices, as observed by Kane et al. (2009). These devices
also present accessibility challenges or consider only a very specific scenario and thus
provide only limited assistance or require heavy user customization to become truly
useful. Meanwhile, accessibility has much improved: Apple iOS’ “Voice-Over” and
Google Android’s “TalkBack” have gained much popularity (Csapó et al., 2015), as
well as few specialized applications, e.g., “BlindSquare”7.

7https://www.blindsquare.com

https://www.blindsquare.com
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1.3 Contributions & Outline

The main objective of this thesis is to reduce the currently existing spatial and
systemic gap between Orientation&Mobility’s “White Cane,” as well as navigation
and routing approaches based on GNSS:

Spatial Gap There exists a huge void and complete disconnect between the close-up
range that can be perceived using the White Cane and high-level routing
information provided by a navigation system.

Systemic Gap This void has systemic origins, as the GNSS does not consider
dynamic, i.e., moving, obstacles and is thus not capable to fully assess the
local conditions, while O&M’s White Cane techniques are disconnected from
the additional high-level information about the surroundings and upcoming
route that a navigation system provides.

Such gaps largely exist because of essential missing information about routing in the
immediate vicinity of the user. We use body mounted cameras and computer vision
approaches to close these gaps, e.g., how to actually get to the “Right turn in 200
meters!” without walking into dangerous obstacles, while still walking the shortest
and most direct route towards the desired destination. Furthermore, already acquired
Orientation&Mobility skills, i.e., White Cane techniques, must be accounted for and
our provided information must not contradict such skills, but instead work hand in
hand to provide a safer route and less stressful experience. Generally speaking, we
virtually elongate the White Cane, significantly increase its working range and allow
an early notification about upcoming obstacles. This allows the user to improve
spatial awareness for the immediate surroundings, especially in unknown areas.

This thesis is structured as follows:

Chapter 2: Background & Related Work. This chapter first presents an over-
view of related literature for general navigation and guidance advice as well as general
issues and misconceptions about assistive systems for people with visual impairments
in section 2.1. It is followed by orientation related literature examined in section 2.2
and separated by their distinctive technological features, as well as related works
for relevant aerial imagery processing (Section 2.2.1) and impairment aware routing
(Section 2.2.2). Afterwards, mobility related works are discussed in section 2.3
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and especially relevant literature for our accessible section detection (Section 2.3.1),
shoreline detection and tracking (Section 2.3.2), as well as specific works for pedestrian
crossings (Section 2.3.3). We then present a small—very selective—overview of
user studies in section 2.4 that have influenced our own designs and conclude this
chapter in section 2.5 by listing our identified key concepts and takeaways.

Chapter 3: Orientation. In this chapter we take an in-depth look at relevant high-
level information needed for special requirement centered navigation and routing. We
propose situation specific assistive systems and improve available data for impairment
aware routing processes. Our contributions in this area are:

• We analyze aerial imagery to improve the availability of relevant geospatial
databases that are required for impairment aware routing algorithms by search-
ing for zebra crossings in urban areas (Koester et al., 2016). (Section 3.1)

• Furthermore, we propose an impairment aware routing approach for people with
visual impairments (Koester et al., 2017), which integrates a shoreline level of
detail into generated routes. Through this requirement aware routing, dangerous
situations, e.g., unsafe road crossings and especially uncontrolled crossings, are
prevented if possible or made safer by integrating nearby available accessible
crossing locations instead. Additionally, such fine-grained routing—shorelines
are a major contributor to safety and orientation—up to the next GNSS-based
navigation point potentially improves spatial awareness of one’s surroundings,
as shorelines and Accessible Pedestrian Signals (APS) are incorporated into the
routing process and relevant information about next steps are made available
in advance, which we analyze in a Wizard of Oz experiment. (Section 3.2)

Chapter 4: Mobility. We first analyze basic mobility requirements, identify issues
and provide three situation-based assistive systems to alleviate identified shortcomings
and assist in these specific mobility tasks. Our guidance contributions are:

• We propose real time mobile accessible section, and thus also obstacle aware,
detection to assist in safe and self-dependent mobility in known and unknown
terrain. This prevents bumping into obstacles that cannot be perceived using
the White Cane and virtually elongates the cane, so that obstacles can be
better noticed from afar. (Section 4.1)
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• We also propose a real time capable approach to detect and precisely locate
inner shorelines, i.e., the junction of an accessible section and a vertical surface
such as natural features that are used for shorelining with the White Cane
(Koester et al., 2018). This system is especially useful in urban areas, where
the shoreline, e.g., a building’s facade, is interrupted by a driveway or an
intersection, as the next relevant shoreline can be presented to the user in
advance. (Section 4.2)

• Finally, to assist in pedestrian crossings, we provide additional precise location
information, i.e., zebra crossings, pedestrian walk lights, pushbuttons, and
pavement markings. Furthermore, the state of a traffic light is detected and
communicated to the user. We use a deep learning approach, optimize, and
evaluate it, and test it as part of the “TERRAIN” project in a user study
(Koester et al., 2019). (Section 4.3)

Chapter 5: User Studies. Aside from quantitatively evaluating our already men-
tioned contributions individually, we also test our assistive system qualitatively, i.e.,
in isolation as well as in useful combinations, as part of a larger user study alongside
other aspects. Therefore, we integrate our computer vision algorithms into a real
time capable mobile prototype (Section 5.1) used by study participants that had to
provide sufficient processing power and battery lifetime, enabling the feasibility of
these user studies in the first place. Finally, we discuss the results of the TERRAIN
user study in section 5.2.

Chapter 6: Conclusion. We summarize the thesis and outline our main contri-
butions made in the field of Orientation&Mobility assistance for people with visual
impairments in section 6.1. We then conclude our thesis suggesting future research
directions—proposing open questions in section 6.2 that have the potential to fur-
ther improve our created assistive systems as well as systems for people with visual
impairments in general.

A full list of made publications can be found within the appendix, including contri-
butions to works not further discussed in this thesis.



Chapter 2

Background & Related Work

“If I have seen further it is by standing on ye sholders of Giants.”

– Isaac Newton

No research effort is conducted in a vacuum, as the above quote by Isaac Newton im-
plies. While there exists an exuberance of proposed systems for Orientation&Mobility,
we try to provide a possibly complete overview of those created within the last two
decades, but might have still missed a few, so this chapter provides an overview of
relevant background and related works. It also discusses the state of the art for the
various fields necessary to fully understand this work and its specific motivations.
Furthermore, it hints at works that were highly influential to our own ideas and
specific designs, as well as differentiates our own work from those mentioned here.

Although created systems often incorporate more than a single aspect, we have tried
to categorize them by their most important contribution and sensory capabilities.
The two major objectives lie within this thesis’ focus of orientation and mobility. But
first, we start with an explanation of some common issues and misconceptions when it
comes to O&M for people with visual impairments in section 2.1. We then provide an
overview of proposed orientation and navigation approaches in section 2.2, and refine
these for aerial imagery processing (Section 2.2.1) and impairment aware routing
(Section 2.2.2). Afterwards, we discuss several systems for mobility and guidance
in section 2.3, especially those related to accessible section and obstacle detection
(Section 2.3.1), shoreline detection (Section 2.3.2), as well as two different kinds of
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pedestrian crossings (Section 2.3.3). We further separate these Orientation&Mobility
systems first into works that have provided us with general insights and then based
on their used sensors, i.e., into sonar, Time-of-Flight (TOF), computer vision,
GNSS/Inertial Measurement Unit (IMU) and wireless technology-based systems,
where applicable. We proceed to discuss selected user studies, conducted as part of
the described Orientation&Mobility related works in section 2.4, specifically those
that have somehow inspired or influenced our own decisions. To conclude this chapter,
we present our key concepts and takeaways in section 2.5.

Own Contributions. At the end of every section that is closely related to some of
our own work, we included a short paragraph that provides a gist of our contribution
and references the relevant detail chapters. Such paragraphs exist for: aerial imagery
mining in section 2.2.1 (page 18), impairment-aware routing in section 2.2.2 (page 21),
accessible section and obstacle detection in section 2.3.1 (page 26), shoreline location
and tracking in section 2.3.2 (page 27), and finally, pedestrian crossing assistance in
section 2.3.3 (page 33).

2.1 Common Issues & Misconceptions

This section lists some research works that point us to important issues often forgotten
when designing assistive systems. It also describes a few misconceptions about people
with visual impairments that we identified as very relevant to our own work.

Surprisingly, it is very hard for most, if not all, humans to walk in a straight line or
follow a straight direction for a prolonged period of time if there are no fixed reference
points available, e.g., the sun or distant objects. Sooner or later, blindfolded people
will start to veer of their path and walk in rather small circles, with diameters of
less than 20 meters (Souman et al., 2009), with no preference of a specific direction.
People with visual impairments are no exception to this, as the authors state, since
such veering is most likely the result of noise accumulating in the sensorimotor system,
similar to an IMU, when there is no external reference to periodically recalibrate it.

Brady et al. (2013) suggested that most challenges faced day to day by people with
visual impairments are not well understood. They developed the “VizWiz Social”
application for iOS, based on “VizWiz” (Bigham et al., 2010), where 5.329 users
asked 40.728 questions about images they took with their mobile phones, which were
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then answered by Amazon Mechanical Turk workers. Question types ranged from
identification of objects by name or type to read image text of any kind, description
of visual or physical properties of various objects as well as other questions, that
sometimes could not be answered properly. While there were no questions about
Orientation&Mobility—this is possibly due to its minimum latency selectable by
users of “Within a minute”—this work still provides a good sense of the daily
challenges faced by people with visual impairments (cf . Section 1.1), which are often
different than what would be assumed by sighted people.

Williams et al. (2013) analyzed how people with visual impairments integrate tech-
nology into Orientation&Mobility techniques to support navigation and the complex
as well as personal choices they make when using such tools. They also reported
that most users rely heavily on O&M training, rate it as excellent and very helpful
and use the techniques exactly as they were taught. Only a few have modified
or abandoned some learned techniques due to highly individual reasons, e.g., only
moderate vision impairment. It was also stated that guide dogs and White Cane
users behave significantly different in navigation tasks—a guide dog immediately
walks towards a target whereas a cane user seeks outs a shoreline first. This and
many more differences have to be accounted for by an O&M assistance system. They
then further investigated the misconceptions of sighted people when acting as a
sighted guide w.r.t. providing feedback to people with visual impairments, as well as
the misunderstandings and frustrations this often causes for the latter group and
provided specific guidelines on how to improve these in the future (Williams et al.,
2014). One of many observations was that the inclusion of shorelines as well as
their differentiation to actual obstacles should be made clear to the sighted guide
beforehand. It was also observed that relevant hazards were not considered, due
to their obvious nature to sighted persons, which eventually caused the provided
assistance to be incorrect and also to interfere with O&M techniques.

Finally, a recent survey by Elmannai and Elleithy (2017) gives a comprehensive
overview of assistive devices for people with visual impairments and discusses their
benefits and limitations in great detail. It notes that while there already exist some
specialized systems, none of these were 100% satisfactory w.r.t. to essential features
identified by the authors. It concludes with a set of essential aspects to be considered
for future assistive systems: performance, wireless connectivity, reliability, simplicity,
wearability and economical availability.
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2.2 Orientation—Navigation

Similar to other surveys in this area, Csapó et al. (2015) notice about assistive
navigation applications on mobile platforms that these applications are largely
inaccessible and fail to adapt to special needs, or often require expensive specialized
hardware as well. While there exist many applications for navigation, e.g., Garmin’s
On the Road, Google Maps, TomTom’s GO Mobile or Waze, to only name a few of
them, as well as of course their dedicated units that do nothing but navigation, almost
none of these are accessible to people with visual impairments, which thus have had
to rely on specialized devices in the past, i.e., the Trekker Breeze. Therefore, this
section does not include such applications, but instead focusses on research systems
that have been proposed in the past.

GPS/Compass/IMU-Based Systems

Poor Global Positioning System (GPS) quality (cf . Section 2.2.2) was a huge issue
for the first prototype systems, such as the one proposed by Loomis et al. (1994).
They had to select specific times of the day where satellite availability was especially
high, i.e., 6 or 8 satellites were within reach, and also ensure that shadowing due
to buildings or dense foliage were not an issue. Even under optimal conditions they
had to use a Differential Global Positioning System (DGPS)—a system where an
additional, fixed position, receiver propagates its own GPS error to other nearby
devices.

Ross and Blasch (2000) analyzed three different navigation interfaces, a stereophonic
sonic guide, speech output and a shoulder-tapping system, i.e., a small array of small
contact speakers that each produced a light thump on the person’s back. They use
it to prevent veering off during a large crossing and found that the tapping interface
provided the best results, and would produce even better results if complemented by
a speech system for general navigation instructions.

Almost at the same time, Helal et al. (2001) proposed a similar system that also
uses DGPS for outdoor positioning and in addition ultrasound for indoor navigation.
They generate step-by-step walking guidance information for indoor environments,
however, this has to be done manually beforehand using a specially created Geographic
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Information System (GIS) database. Furthermore, a wireless connection is used to
serve the GIS database to the user, which severely limits the system’s working range.

GPS and dead reckoning-based on a compass are proposed by Pressl andWieser (2006)
in order to create their PONTES system, consisting of a navigational environment
model, fast routing algorithms to generate lists of maneuvers, positioning tools, map
matching algorithms and adequate guidance instructions. In a follow-up project,
Mayerhofer et al. (2008) created ODILIA to solve the remaining problems of their
first system, e.g., include the use of public transport systems and to optimize the
generation of the path network used for their navigation algorithms, as well as a sonar-
based aerial obstacle detection. While they provided a rather complete prototype
system, they note that the integration and overall size need to be improved as well
as large maps created that contain the additional data they rely on for their routing.

Sánchez and de la Torre (2010) utilize a Microsoft pocketPC with external GPS
sensors and create an audio only navigation app for it. They note that important
information to truly allow autonomous navigation of people with visual impairments
is still missing, e.g., obstacles in the path, curbs, roadwork construction sites or
storefronts. Finally, Katz et al. (2012) propose a different interface, i.e., spatial 3D
audio, to communicate navigation information to the user in their NAVIG system
(cf . Kammoun et al. (2010)).

While we also use GNSS for impairment aware routing, we identify the requirement
to combine it with computer vision, e.g., to detect obstacles or integrate shorelines.
We also decided to use a combination of haptic and acoustic output for our own
systems, as we learned from above examples that this seems to be the best option.

BLE/RFID/Wi-Fi-Based Systems

Ross and Lightman (2005) proposed to distribute “digital crumbs” around buildings
and indoor public spaces. Tiny, solar-powered signs that include their own data,
processing chips and a speaker are activated through a body-worn badge that identifies
to the system using infrared as well as the Zigbee protocol, a low power alternative
to early Bluetooth versions.

Meanwhile, Tatsumi et al. (2006) suggested to create a network of Radio-Frequency
Identification (RFID) tags to communicate landmarks in the immediate environment,
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by simply attaching unobtrusive, though not cheap, active RFID tags on demand,
not just to static landmarks, but also to moving obstacles. The authors then analyzed
various location and tracking of objects scenarios using small mobile robots, in an
attempt to create and also continuously update a map that could later be used for
people with visual impairments. Na (2006) also suggested a RFID-based system for
indoor positioning. Their proposal goes even further than those of other RFID-based
systems: they intended to put a unique passive RFID tag under each floor tile, thus
creating a very dense network of tags that allow very precise positioning within
equipped buildings.

Instead of pure RFID connections, Bohonos et al. (2008) also proposed to rely on
other wireless communication technologies, i.e., Bluetooth. They intended to use it
for pedestrian crossings, by fitting such technologies onto traffic lights as well as city
buses in order to communicate up-to-date information to pedestrians and passengers.
Fernandes et al. (2011) suggest a very similar system, integrated into a White Cane in
combination with a smartphone, that relies on active RFID tags as well, in order to
communicate traffic light state, and passive RFID tags integrated into the pedestrian
crossing pavement itself. Finally, Mehigan and Pitt (2012) used Bluetooth and a
wireless IMU unit to improve spatial orientation and “Dead Reckoning” on their
campus and tested this system on a specific route with some success.

Of all proposed research systems, NavCog has probably become the most noticeable of
these efforts in recent years (Sato et al., 2017). Its authors also aspire to significantly
improve indoor navigation and use similar technologies, e.g., Bluetooth Low Energy
(BLE) and IMUs to provide precise indoor localization. After a building has been
equipped with a sufficient amount of active BLE beacons and a digital model created,
they can provide very fine-grained guidance information to a user in their smartphone-
based application. Additionally, depending on the created level of information in
their spatial map, they can also provide a huge amount of Points of Interest (POI)
related information, based on the user’s desires and preferences. They tested their
system in a 21.000 m2 shopping mall with very convincing and promising results.

While all of the above mentioned wireless technologies have the potential to provide
fast, mostly exact and up-to-date information of many different kinds, e.g., pedes-
trian walk light states, incoming buses or tram lines, intersection layouts, shopping
store locations, low-level guidance, etc., without much room for errors due to the
stability of the chosen technologies, they require a quite laborious and often expensive
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infrastructure to be installed on every location that should become more accessible
and are thus not feasible for widespread distribution. This is exactly why computer
vision provides strong benefits for these and similar use cases, as it does not rely on
prior installment of dedicated infrastructure, but instead tries to accumulate the
same level of information using methods that are applicable everywhere.

Computer Vision-Based Systems

For tasks that focus on general navigation of people with visual impairments, computer
vision-based techniques have only been recently proposed. Devices like Google Glass
were used by Altwaijry et al. (2014) to localize the user based on GPS first and in
a second step perform an image analysis in the cloud to recognize buildings in the
image and provide a description from online services.

Leung and Medioni (2014) use a Vuzix Wrap system, i.e. a pair of glasses with a
built-in stereo camera and an IMU, in order to localize the ground plane and create
a trajectory to better track and locate a user in a navigation scenario.

Another vision-based technique is door localization, an often occurring problem
for people with visual impairments when using navigation systems, as the last few
meters towards the precise location of a door are never accounted for. Tian et al.
(2010) detect these using a camera integrated into a pair of sunglasses or a cap with
geometric modeling and show a very nice performance, but lack an interface and a
user study.

Later, Fiannaca et al. (2014) also used door localization as one of many features
to help users traverse large open spaces, to prevent veering off and compare the
effectiveness of sonification and text-to-speech output.

Computer vision seems rather unsuited for high level navigation tasks when compared
to GNSS or wireless technologies, as the general lack of systems in this domain
suggests. Nonetheless, there is still great potential for computer vision systems
for orientation issues that do not necessarily require such a high level knowledge.
In the rest of this section we provide an overview of systems built towards a few
specific scenarios where computer vision is successfully used to provide such low-level
orientation.
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2.2.1 Aerial Imagery

Aerial imagery has been under investigation for quite some time, often to detect
and monitor roads in satellite imagery (Quam, 1978). Special interests such as city
planning require a precise segmentation and classification of this kind of imagery in
order to provide correct geospatial data (Hinz and Baumgartner, 2003). Máttyus
et al. (2015) much later propose a data driven approach from OpenStreetMap (OSM)
data and aerial imagery for road surface detection and segmentation that requires
comparatively little amount of data and generalizes well.

Section 2.3.3 provides an overview of systems created to detect zebra crossings from
street-level positions. While none of these algorithmic approaches have been created
for detection in aerial imagery, some of them could eventually be made to work after
some tweaking, since a zebra crossing has such unique and clearly visible features
from a street level perspective as well as in aerial imagery.

However, it has not been until very recently that zebra crossing detection from aerial
imagery was first proposed by Ahmetovic et al. (2015). They suggest to download
aerial imagery from Google Maps, limited to partitions that contain road surface,
which is calculated using the distance of a partition’s center and the next road,
information provided by the Google Maps Javascript API. After processing these
partitions, they generate a list of zebra crossing candidates that are then verified
against Google Street View panoramas in a second step. This two-stage approach
depends purely on a line search algorithm, for both the initial detection stage in
aerial imagery, as well as the candidate verification stage in the panoramas. The
authors evaluate their system on a 1.6km2 rectangle in an urban San Francisco area
and achieve very good results.

Our Contribution. We improve the state of the art for zebra crossing detection
in aerial imagery using a purely data driven approach (cf . Section 3.1) compared
to other proposed methods that were all hand-engineered and hand-tuned as well.
Furthermore, we are able to do so with less data, i.e., we do not require to verify our
candidates using Google Street View and rely only on aerial imagery. Finally, we
improve available geospatial databases and also show that our approach can even be
used across countries, comparing it to state of the art.
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2.2.2 Routing

In 2007 an explosion of interest in geographic information created new communities
dedicated to Volunteered Geographical Information (VGI), a term coined by Good-
child (2007), who first noticed this particular phenomenon and attributed it to various
factors. The author considered self-promotion and personal satisfaction as driving
factors for people that contribute to projects such as OSM or Wikimapia1, but also
the wish to have an assertible data source for geospatial data that is not controlled
by a private entity, i.e., Google Maps. Haklay and Weber (2008) also noted that
volunteer engagement increases when spotted errors can easily be corrected. However,
they have also observed an increasing inequality in the amount of contributions by
individual participants as well the greatly differing quality of data in various regions.

Especially for people with visual impairments a huge range of relevant information
can be gained from such VGI and ideally be integrated into routing systems. Hara
et al. (2013a,b) rely on crowdsourced data in order to identify street level accessibility
issues as well as to improve bus stop accessibility. They use Google Street View
images and untrained Amazon Mechanical Turk workers to asses sidewalk accessibility
issues and achieve very good results, demonstrating the scalability of their work.
Sadly, the authors state that created labels do not provide sufficient quality for the
development of computer vision algorithms, much less for the training of modern
deep learning approaches.

Impairment Aware Routing

Before May 1st, 2000, selective availability of Global Positioning System (GPS) signals
was only available for the United States military. The general public could resolve
a GPS receiver’s positions only within 100 meters. After the change introduced
by then President Bill Clinton, acquisition accuracy increased to between 6 and 10
meters under normal conditions (Haklay and Weber, 2008). Before, it was practically
impossible to create routing systems for urban areas. It did not take long after this
switch and very early prototypes for GPS-based navigation system for people with
visual impairments were suggested, e.g., Guillet et al. (2002).

1https://wikimapia.org

https://wikimapia.org
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Völkel and Weber (2008) developed a collaborative system that generates routes not
just for people with visual impairments, but for a multitude of mobility impairments.
They allow such user groups to share their created routes as well as to adapt them
to their individual needs, even keeping user’s privacy in mind while still benefitting
from the sharing process.

Another adapted routing algorithm was proposed by Kammoun et al. (2010). Using
a manually created geospatial database, developed after interviews of people with
visual impairments and O&M instructors, they search for a highly adaptable route
according to a user’s specific needs. The resulting system was then integrated into
NAVIG, where the computer vision part was used to improve user localization using
visual landmarks.

A different approach was offered by Rice et al. (2012). Like many other routing
systems, the authors rely on VGI to update a database of messages regarding the
local area, the gazetteer—a geographical dictionary. Key aspect of their work is the
gazetteer’s update process that semi-automatically matches geographically referenced
VGI updates with local place names. Using open source technology, they publish
automatic alerts and map updates to their users, allowing these to adapt their routes
before leaving for their destination.

While Guy and Truong (2012) used annotated Google Street View images to provide
users with relevant information at pedestrian crossings, Carrasco et al. (2014) have
developed a navigation system that also covers pre-planning and binaural audio-based
guiding techniques on a mobile device. Using GNSS and an IMU, the authors provide
very detailed heading instructions of planned tracks over open bone conduction
headphones and demonstrated the binaural guiding functionality with four end users.

Andreev et al. (2015) proposed realistic pedestrian route planning by analyzing specific
requirements and differences of pedestrians compared to other routing entities, i.e.,
cars. First, pedestrians can utilize large traversable areas more freely, usually in
order to minimize their walking distance, since they are not bound to pre-defined
road networks. Second, pedestrians prefer longer but safer routes and preferably
utilize pedestrian bridges and underground connections. Although it is currently
infeasible for people with visual impairments to traverse large open spaces, due to
missing reference points, their routing approach still provides a great value, since it
allows a high level of personalization.
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Schmitz and Ertl (2014) instead generated extended routing networks using map
content transformations. Given additional parameters of roads, e.g., the number
of traffic lanes, the width of road surface or— ideally—the existence of sidewalks,
they create very precise pedestrian walkway networks (cf . Schmitz (2015)). However,
these transformed maps merely represent a specific’s model view of the world and
often do not precisely match with underlying conditions found in the real world.
Thus, although they exhibit the benefit to provide very fine-grained routing, i.e., if
existing GNSS accuracy allowed this, they have to be used with much care.

Spatial awareness, i.e., having a spatial map of one’s surroundings or a planned route
available beforehand, has been identified by multiple works as a contributing factor
for a safe and natural navigation, e.g., Schneider and Strothotte (2000) that used
constructive exploration where a force feedback system is used to interactively discover
and learn a route in virtual reality, or Yatani et al. (2012), who also investigated
tactile feedback for map discovery, but on a mobile device equipped with multiple
vibration motors.

Other approaches have dealt with POIs and how to transfer such information to a
person with visual impairments, e.g., Yang et al. (2011) and Blum et al. (2013). Both
found in their conducted user studies that such POI-based systems have the potential
to aid in spatial awareness, if the provided information is relevant for the desired
navigation context, i.e., objects that are in a user’s immediate vicinity and read out
as sorted by user defined categories. However, Guerreiro et al. (2017) also suggested
that route pre-planning and usage of POI are most useful in different interaction
contexts, e.g., known versus unknown areas, and therefore further research into these
specific scenarios is required.

Our Contribution. In our work we address the specific needs of people with visual
impairments and propose an original— shoreline level of detail-based—routing
approach (cf . Section 3.2). We base our routing on a specific O&M technique, i.e.,
shorelining, and integrate available shorelines that we extract from relevant OSM
data. Additionally, our routing algorithm has the capability to create the safest route
based on user preferences, e.g., to avoid certain crossing types if possible. Finally,
our approach helps in the creation of a spatial map— it potentially improves spatial
awareness of the surrounding’s POIs that are relevant for O&M techniques.
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2.3 Mobility—Guidance

First computer vision-based systems to assist in mobility used very simple vision
techniques, due to the limited available processing power on mobile devices, such as
simple color markers (Chan et al., 2007). Manduchi et al. (2008) use such markers
for indoor navigation and analyze various search strategies as well as discuss their
general usability for this task (Manduchi et al., 2010). While such systems work
nicely when a building has already been outfitted with such markers, they do not
scale well to all the places people with visual impairments might want to rely on
such a marker-based technique.

Manduchi (2012) also analyzed whether computer vision techniques are a feasible
technology for people with visual impairments in the first place. He identifies several
key issues in such technologies, e.g., the limited field of view of mobile phone cameras
requires the user to actively explore the environment, while several participants at
the same would have preferred for the camera to be attached to their garments,
which would hinder active exploration even more. Furthermore, the exact locations
of targets that users should scan for have to be chosen very carefully in order to yield
acceptable results.

However, Manduchi and Coughlan (2014) later acknowledge that just increasing the
field of view might hurt performance as well, due to providing less precise location
information when the field of view grows beyond a certain point. Nonetheless, a
higher frame rate generally improves performance. The authors conclude that a wide
field of view is preferable to a narrower one when spatial resolution as well as precise
camera pin-pointing are not required.

A totally different and non-computer vision-based approach was proposed by Shiose
et al. (2004). The authors propose to teach the perception of crossability using
acoustic 3D environments, a way that would allow people with visual impairments
to improve their hearing perception without the dangers of actual urban traffic.
Similarly, Sánchez et al. (2010) suggested to use video games as another teaching tool
to improve O&M skills. Finally, inspired by recent advances in autonomous driving,
Sucu and Folmer (2014) suggest to improve self-determined O&M of people with
visual impairments by allowing them to drive a car independently. In a simulator,
users were required to complete a test track while they receive haptic cues on the
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steering wheel about the direction of the road relative to their car’s movement.
However, while such efforts show only limited use on real roads, they still allow
people with visual impairments to participate in competitive computer game sessions
with their friends.

A very modern technology-based approach to guidance has also been proposed
by Avila Soto et al. (2017). The authors analyze the feasibility of using small
drones—unmanned aerial vehicles, i.e., quadcopters— to guide people with visual
impairments, either with or without a leash and observe an improvement over pure
audio-based navigation. However, they also note some issues w.r.t. social acceptability
of using drones as assistive mobility systems (Avila Soto and Funk, 2018), especially
with regards to the safety of other passengers by cited bystanders as well as concerns
about the personal image by people with visual impairments themselves.

2.3.1 Accessible Section & Obstacle Detection

Dakopoulos and Bourbakis (2010) provide an overview of developed and proposed
assistive systems for people with visual impairments between the years 2000 and 2010.
While there exist three major categories—Electronic Travel Aids (ETAs), Electronic
Orientation Aids (EOAs) and Position Locator Devices (PLDs)— the authors focus
on mobile and wearable obstacle detection and avoidance systems. Their results
indicate that while most systems provide great value for limited scenarios, they all
lack in at least one important aspect. Such major aspects are: free-hands, i.e., the
ability to use the system in addition to the White Cane, free-ears, i.e., environmental
awareness should not be limited, wearable, i.e., systems can only be useful when they
can be actually worn in mobility scenarios, and simple, i.e., easy and intuitive to use,
as in not requiring any special training. These key aspects have also influenced our
own research efforts and are a major design concern for our developed components
as well as the overall system.

Sonar-Based Systems

One of the mentioned devices is “CyARM”, proposed by Okamoto et al. (2004) as
another interactive device to increase a White Cane’s sensing capabilities. Here, an
ultrasonic sensor gathers distance information and controls the user’s arm position,
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i.e., the distance from its own body through a wire connected to the hip region, to
communicate the perceived obstacle distance for the direction the user is pointing
towards. Ono et al. (2006) later expand this concept with a flashlight-like attention
pointer to be used by a sighted person, that can guide the attention of a person using
the system when observing the same object.

Gallo et al. (2010) also enhance the White Cane itself with ultrasonic sensors, to be
used as distance measurement and obstacle detection, as well as for aerial obstacles,
and use haptic feedback to inform the user about potential issues.

A third sonar-based system, this one specifically for pedestrian crossings, was sug-
gested by Hashino and Yamada (2010). However, it requires prior installation of
ultrasonic receivers at the other end of a pedestrian crossings in order to be useful,
as the user carries the emitter and is positioned via triangulation, thus does not scale
easily.

TOF-Based Systems

Many first systems to replace the White Cane were TOF-based, such as the “Teletact”
proposed by Bellik and Farcy (2002). Its purpose was to enhance the White Cane’s
reach, using a laser emitting device, where obstacles would reflect the laser and the
device would register this reflection, calculating a distance to the obstacle. Obtained
ranges were communicated using musical tones, for different intervals between ten
centimeters and thirty meters. Jacquet et al. (2004) then analyzed how to define
context-awareness formalism of such a device, in order to model the structure of
buildings or name objects.

Zeng et al. (2012) propose a TOF camera and planar tactile display to also enhance
the White Cane’s capabilities and later improve its design and user interface (Zeng
et al., 2017).

Bhowmick et al. (2014) use a Microsoft Kinect camera (infrared-based for depth data)
and machine learning, i.e., a Support Vector Machine (SVM), to create a wearable,
although indoor only device that also uses image features to detect a priori trained
objects. Another indoor assistance system by Jafri and Khan (2016) detects obstacles
using an infrared sensor as well, built into a Google Tango tablet, and can also use
its built-in display to provide details for people with moderate visual impairments.
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While these TOF-based systems have the potential to provide great benefits, as
they are computationally rather inexpensive due to their sensor types, usability is
strictly limited to indoor scenarios. Outdoors, unless at night or on very cloudy days,
infrared light transported by sunshine will sadly render these systems mostly useless.

Computer Vision-Based Systems

Possibly the first work to propose only computer vision algorithms for indoor naviga-
tion and object identification for people with impairments was Hub et al. (2003). The
authors develop a flashlight-like approach that integrates a stereo camera, keyboard
control and acoustical output, where the stereo camera is used to recognize an object’s
color, distance and rough size.

Martínez and Ruiz (2008) used a stereo camera mounted onto a user’s shoulder via
a messenger bag, but detect aerial obstacles only, such as low hanging branches by
simply informing the user whenever there was an object detected within a specific
range. Pradeep et al. (2010) presented a head mounted stereo vision camera system
that uses visual odometry and feature-based Simultaneous Location and Mapping
(SLAM) to build a vicinity map of the environment and to detect ground level
obstacles.

The “EYECane,” a White Cane enhancement, was proposed by Ju et al. (2009).
The authors use a monocular camera attached to a cane that segments the ground.
However, this system requires the user to hold the cane still in front of the body
while the system is working and thus contradicts the techniques learned in Orienta-
tion&Mobility. Similarly, José et al. (2011) proposed to center the user on a path,
again an approach that contradicts O&M techniques, but have created an extensive
computer vision-based navigation aid that assists in multiple scenarios: detect the
path in front of a user and implicitly static obstacles (no path found), zebra crossings,
as well as moving obstacles through optical flow, but they use a single earphone or
small speaker to communicate this wealth of information.

Another mobile and in this case truly wearable prototype was also proposed by
Mattoccia and Macrı’ (2015). The system integrates a stereo vision-based obstacle
map algorithm integrated into a pair of head worn glasses. A modified Random Sample
Consensus (RANSAC) algorithm tries to detect the ground plane in the v-disparity
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domain and sufficiently large deviations in 3 defined Region of Interests (ROIs) are
communicated to the user. Schwarze et al. (2015) also suggest a head mounted
system. They use a stereo vision camera setup integrated into a bicycle helmet
and provide information about obstacles as well as additional scene understanding
through acoustic feedback. Owczarek et al. (2016) also use a glasses mounted stereo
camera, but do not try to detect obstacles, and instead focus on an intuitive acoustic
feedback about reconstructed distances (U-V disparity-based) that allows users to
create their own melody when walking around.

While such head mounted systems seem to allow a user to scan for obstacles using
their head movements, this is a technique rarely performed by people with visual
impairments, especially rare for those that have been blind since birth, which often
also exhibit involuntary head movements as well (Gottlob et al., 1996). Usually, these
will turn their head completely independent of their walking direction, for example
when they want to improve their attention using their hearing senses towards a
specific direction (Wiener et al., 2010). So head worn approaches might as well
contradict the actual behaviors exhibited by some people with visual impairments.

A rather recent trend is obstacle detection using smartphones. Sáez et al. (2015)
detect aerial obstacles from consumer smartphones with a 3D camera, worn around
the neck or hold up in front of the body. Originally, these cameras were put into
smartphones to allow people to record videos for their 3D content capable TVs.
However, as they can also be used for other purposes, it is praiseworthy that such
an active hardware development exists, which improves the integration of mobile
components, increases battery lifetime and reduces weight. Thus, it might very soon
be feasible to own enough processing power, battery lifetime, sensory capabilities and
connectivity in mobile systems to create truly mobile and helpful assistive systems.

Our Contribution. While there already exists an abundance of obstacle detection
systems, we propose a depth-based, real time capable, highly efficient and parallelized,
as well as highly precise, algorithm to detect the free space in front of a pedestrian
(cf . Section 4.1). Our approach is based on depth data, because other works have
shown that it is the most reliable sensor input, as pure 2D image processing is often
not capable to reliably detect deviations from the ground plane. Furthermore, we
use a body worn camera, as head mounted systems have also shown some issues
with people that are blind since birth and can thus also deal with outdoor scenarios,
which TOF-based systems cannot.
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2.3.2 Shorelines

An important Orientation&Mobility technique when using the White Cane is shore-
lining—to follow along shorelines, i.e., walls, curbs, hedges or other salient objects,
keeping constant contact with the cane or using the arcing left-right touch method
(Zimring and Templer, 1983). However, this technique is not considered by any
navigational assistance system to date, except for our own method proposed in
Koester et al. (2017). It is the first routing approach to acknowledge such special
requirements by people with visual impairments using this specific O&M technique
and the low level routing considerations that have to be included (cf . Section 2.2.2).

Furthermore, computer vision-based shoreline detection for people with visual im-
pairments from a first person’s viewpoint has also not been considered at all so far,
neither for inner nor for outer shorelines. To the best of our knowledge, the only
works that have pursued a similar goal are Coughlan and Shen (2007); Coughlan et al.
(2006), who first use a modified v-disparity algorithm and later edge-discontinuities
in depth maps to detect drop-offs, i.e., curbs, for wheelchair assistance systems.

Ivanchenko et al. (2008a) propose to not detect such drop-offs or obstacles directly
for people with visual impairments in a wheelchair. They instead use a stereo vision
camera in order to constantly track the used White Cane and the direction it is
pointing towards. An alerting sound is then used to inform users about significant
deviations from the ground plane within a certain range. Such changes are easy to
spot as the stereo vision camera is mounted to the wheelchair and under normal
circumstances, the relative position of the ground plane is fixed. As people with
visual impairments that not rely on a wheelchair do not provide such a stable, yet
moving along, camera position, this technique cannot be directly adapted.

Our Contribution. We propose the first computer vision-based inner shoreline
detection for people with visual impairments (cf . Section 4.2). Our highly accurate
detection and tracking approach allows us to provide additional knowledge to the user:
how long is the shoreline, where and when does it end, does it continue further afar
after a gap as well as which direction and distance will it continue in. In combination
with shoreline-based routing this knowledge really improves O&M in general, but
especially in unknown terrain. Furthermore, we show that such knowledge improves
spatial awareness of the surroundings in a small Wizard of Oz experiment.
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Figure 2.1: Zebra crossings as used in the city of Pompeii more than 2000 years ago. Raised
blocks prevented crossing pedestrians from stepping onto the road, often also sewage and
drainage system, while space in-between allowed horse-drawn carriages to pass along. cz2

2.3.3 Pedestrian Crossings

Pedestrian crossings, i.e., locations with specific facilities that allow pedestrians to
cross a street, date back to more than 2000 years ago. Originally, these were raised
blocks— the spacing in-between allowed horse-drawn carriages to pass— in order to
prevent pedestrians from stepping onto the road itself, which was often also used as a
city’s sewage and drainage system, a common practice in these days (cf . Figure 2.1).
Today’s importance of crossings and the issues these create for people with visual
impairments were studied by Matthews et al. (2014).

While there exist many different types of such crossings, we focus our contributions
on the two most commonly found variations: zebra crossings, i.e., a type of crossing
that has no (pedestrian) traffic lights but distinctive white markings on the road
pavement, as well as pedestrian traffic lights, a crossing type where the pavement
markings often differ from country to country, but which always exhibit traffic lights
for cars and pedestrians to regulate traffic flow and prevent accidents.

2Creative Commons licensing symbols, e.g., c, are used throughout this work to indicate their
usage, here cz for CC∅ 1.0 https://creativecommons.org/publicdomain/zero/1.0/

https://creativecommons.org/publicdomain/zero/1.0/
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Figure 2.2: Different marking variants for crosswalk pavements as the defined by the United
States Federal Highway Administration. Each country uses their own marking style, often
contradicting each other, e.g., Germany uses the Continental style for zebra crossings. cp

Zebra Crossings

Zebra crossings are a specific type of pedestrian crossing and are defined slightly
different in each country. While in the United States white diagonal patterns
including stripes as a border on both sides denote this type of crossing, Germany’s
zebra crossing resembles their Continental style (cf . Figure 2.2), i.e., parallel white
lines of a certain width. Nevertheless, all zebra crossing types provide no guidance
information by themselves and can hardly be recognized using a White Cane, due to
them being only flat road pavement markings.

In 1998, Utcke (1998) proposed a grouping algorithm suitable for zebra crossing
detection, due to their repetitive appearance. He modeled image feature uncertainties
and propagated detection errors to create a robust system that worked well for
cluttered real-world images. This approach inspired Se (2000) to improve on it and
include it as part of another system, TAPS (Molton et al., 1998a,b). Both approaches
were using techniques to group subsequently detected objects, i.e., edges, to recognize
zebra crossings from a pedestrian’s perspective, but their computationally expensive
processing requirements did not allow the creation and testing of any real time
prototypes.

Almost at the same time, Shioyama et al. (2002) proposed a system to measure
the travel distance of a pedestrian crossing across the road. Their approach was
based on the specific width of the crosswalk’s ground stripes and their geometric
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appearance in the image as well as the detection size of a pedestrian light on the
other roadside. A few years later their approach was found to be too slow and
also required too much manual tuning, so Uddin and Shioyama (2004) proposed
an improved version. This very similar system also assumes the specific width of
the stripes to be known in advance, i.e., 45cm in Japan, and both approaches only
deliver satisfactory results with a very good image quality and marking condition.
However, both of these approaches were only focused on the to be expected travel
distance of a pedestrian crossing and neither provided any guidance information for
the actual crossing, causing Uddin and Shioyama (2005) to suggest another system.
This proposed system uses image bipolarity and projective invariants to detect and
verify zebra crossings in an image, yielding very good results. Sadly, none of these
three developed systems were tested by their authors with visually impaired users in
real-world scenarios.

Coughlan and Shen (2006) later used a graphical model, which required much less
processing power compared to some of the earlier approaches, to assign stripelets
and group individual edges of repeatedly detected patterns. This approach was later
improved and integrated into the Crosswatch system, implemented on a smartphone
and an user interface was added as well (Ivanchenko et al., 2008b,c).

Ahmetovic et al. (2011) found existing systems were all lacking information with
respect to detected zebra crossings’ relative location to the user, and proposed the
Zebralocalizer system (iOS application), as well as their later improved ZebraRecog-
nizer library (Ahmetovic et al., 2014), the underlying system used for zebra crossing
detections. Thus, their approach not just locates zebra crossings in an image taken
from the user’s phone, but was the first to provide guidance information, as it also
communicates the relative location, i.e., distance and direction, with the intent of
aiding the user in reaching it safely in the first place.

Shangguan et al. (2014) suggested CrossNavi, a system that detects zebra crossings
using computer vision as well, but limits its detection capabilities to actual crossing
moments in order to save battery and processing power. However, they found GNSS
information to be too imprecise to activate the visual detection, and rely on audio
signal processing instead. Problematic is their use of a phone that is mounted to the
White Cane, a position that induces blur and limits the cane’s mobility, but take
pictures only when they assume the cane is not moving at the end of each cane arc.
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Their system is able to provide guidance information towards the crossing as well as
anti-veering support during the crossing itself.

Lately, Nishikiri et al. (2016) introduced an integrated navigation system that
also detects zebra crossings as well as pedestrian crossings. Its novelty is that
is was completely implemented on a mobile device, i.e., an Android smartphone,
including its computer vision algorithms. Due to the limited processing power and the
therefore chosen processing algorithms, their detection accuracy could be considered
of moderate performance, however, in the future, with ever improving hardware, it
should be possible to achieve much better accuracies.

While many systems to detect zebra crossings from a street level perspective have
been proposed already, these usually fail at least one or more of the guidelines laid
out in section 2.1, e.g., they do not provide relevant location information to the user
or do not work in real time. Finally, zebra crossings have only very recently become
an area of interest in remote sensing applications, as their exhibited features can also
be detected in aerial imagery using the same, or at least very similar, algorithms.
An overview of existing approaches for this similar task is provided in section 2.2.1.

Pedestrian Traffic Lights

As shown in figure 2.2, crosswalks can exhibit different pavement marking variants,
even within one country alone. Thus computer vision approaches often ignore them
and try to detect pedestrian traffic lights directly or using other available information,
but these also often differ between countries (cf . Figure 2.3). Lately, the detection
of traffic lights and their state (red/green) has seen a surge in interest, but mostly
for autonomous driving and driver assistance systems, e.g., Weber et al. (2016).

Aranda and Mares (2004) use a color histogram and simple appearance model-based
approach to detect pedestrian traffic lights and report on their state and relative
position to the camera using acoustic signals. While their system shows promising
results, they sadly neither conduct a user study nor report on the quantitative
detection qualities of their algorithmic system parts.

Le et al. (2012, 2014) detect a crosswalk’s boundary by searching for the white
lines that surround it, using normalized cross-correlation template matching. This
is sufficiently stable with respect to illumination changes and the authors detect
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(a) cba3 (b) cb4 (Brett Caven)

Figure 2.3: (a) Pedestrian traffic light symbols often seen in Germany, first used in the
German Democratic Republic. (b) Common walk light signal found in the United States.

patches that exhibit a near vertical or diagonal black and white border. In a next step,
candidates are grouped along straight lines using RANSAC, limited to a sufficient
amount of detections along these lines and the detected crossing section is returned. In
a follow-up work, they add a vanishing point detection and apply similar approaches
to lane boundary detection in unstructured environments, e.g., walkways that contain
a sufficiently different textured border. However, none of these approaches were able
to run in real time on mobile prototypes, so no user studies were conducted.

Coughlan and Shen (2012) planned to extend their Crosswatch system used for zebra
crossing detection (cf . Section 2.3.3) to also provide assistance to people with visual
impairments on road intersections. To this end, Murali and Coughlan (2013) proposed
an approach that requires a user to take a 360 degree panoramic image from their
current location. Using this panoramic image, they calculate an inverse projection
to acquire a composite image, similar to aerial imagery of that intersection, and
match it to a template generated from real aerial imagery obtained via Google Maps.
Their overall location error is much less compared to pure GPS-based positioning.
Furthermore they gain the ability to estimate the direction of traffic lights and the
walking direction across the two adjacent roads and in combination with the phone’s
built-in IMU can orientate the user accordingly (Fusco et al., 2014a,b). However, such
functionality was, to the best of our knowledge, never integrated into Crosswatch.

3https://de.wikipedia.org/wiki/Ampelmännchen
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/

4https://en.wikipedia.org/wiki/Pedestrian_crossing
CC BY 4.0 https://creativecommons.org/licenses/by/4.0

https://de.wikipedia.org/wiki/Ampelm%C3%A4nnchen
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Pedestrian_crossing
https://creativecommons.org/licenses/by/4.0
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Mascetti et al. (2016a,b) also integrated a pedestrian traffic light detection into a
cell phone. In order to deal with different illumination during day and night time,
they fix the exposure settings using a small set of pre-determined values supposed to
optimize the colorful light emitted by pedestrian traffic lights. As a second step they
try to match bundled regions of specific colors to templates of light emitting figure
contours and prune not matching candidates. Finally, they use the contour’s size
and position in the image to remove impossible locations, e.g., under the horizon,
and notify the user about the detected traffic light’s distance, direction and state.

Roters et al. (2011) developed the first real time capable traffic light detection systems
in real world conditions on a Nokia N95, in 2011 a phone used by many people with
visual impairments due to the available accessible applications. They search for red
and green spots in the image using color filters as well as shape and classify their
specific state, both refined and made as easy as possible to compute, so that their
algorithms could run on the phone in almost real time.

At the same time Ivanchenko et al. (2010) also proposed their system, developed on
a Nokia N95 as well. They search for traffic lights that are close above the horizon,
requiring the phone’s camera to be held near a horizontal angle, a process they assist
the user in, and identify the pedestrian traffic light’s state at close to one frame per
second.

Very recently Cheng et al. (2018) proposed to train an SVM on Red-Green-Blue-
Depth (RGB-D) data to detect crosswalks, traffic lights and pedestrians. A first
system test with a single subject shows promising results at six different intersections.

Our Contribution. All existing works in this section focus on a single crossing
aspect and for the most part on its detection only. To the best of our knowledge, we
created the first system that combines these two very distinct crossing aspects—zebra
crossings and crossings with pedestrian traffic lights— in a real time capable system
(cf . Section 4.3). Furthermore, we not only detect these, but also lead up to and
actively assist during their crossing. Finally, our approach is the first one integrated
into a navigation and routing system. This is especially important in order to provide
a blind user with exact, complete and sufficiently detailed instructions on how to
get from one point to another, providing improved GNSS navigation information
about turns and crossings and additionally fine-grained information required during
pedestrian crossings as well as before and after the crossing itself.
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2.4 Influential User Studies

In order to thoroughly test the usefulness of a proposed assistive system, after the
required quantitative numerical evaluation of its individual parts has been performed,
it often becomes necessary to conduct a qualitative analysis as well. Not all, but many
of the discussed works have conducted such user studies to prove their contribution to
specific Orientation&Mobility issues. Here we present a selected overview of especially
those user studies— further information on these can be found in this chapter’s other
sections—that have influenced us in the selection of assistive situations to provide
assistance for, as well as our overall design decisions and included integration details.
In section 2.5, we list key concepts and our most important takeaways that guided
us throughout this thesis and influenced all of our designs and implementations.

The generation of custom directions for people with cognitive impairments was
analyzed by Liu et al. (2009). Although the authors did not focus on people
with visual impairments, their study suggests that navigation is a highly personal
experience, not just due to personal impairments, but also due to personal mobility
and risk averseness, all highly personal capabilities. They suggest a few considerations
when designing O&M systems, where the most important ones to us are: consider
individual preferences w.r.t. direction types, leverage a user’s familiarity with the
surroundings, provide sufficient detail in a single direction, consider personal abilities
and conditions, detect errors made and try to intervene, as well as always customize
for safety first.

Personal abilities were also found to be a key factor when designing assistive devices
for people with visual impairments by Manduchi et al. (2010). While a camera’s field
of view was identified as a major design choice for computer vision-based assistive
systems, it was also noticed that personal ability should be considered in all design
stages and technologies used as well. In a follow-up user study, Manduchi (2012)
further investigate these issues and report that while computer vision was found to
be a viable tool for assistive systems, much care has to be taken w.r.t. to its specific
design and implementation choices, i.e., where exactly to place the camera, how to
ensure proper alignment, what field of view to choose for a specific application and
where to place visual targets in the first place.
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Guy and Truong (2012) noted in their user study that people especially wished for
assistance in unknown areas or when unexpected events caused them to leave their
memorized route, but also note the positive effects that a rich set of information can
make in these situations. Moreover, they noticed the internal creation of a perceived
mental map by the participants and that some even felt more included into the
sighted community. Most interesting was also their usage of cardinal directions, as
the city’s grid where the study was performed, i.e., Toronto, is laid out at an angle
and “north” is really “north-east”, a fact which confused people with local knowledge.

Around the same time Zeng et al. (2012) studied a different mobility approach, i.e., a
TOF camera and a tactile display. They focused on communicating a spatial layout,
so that routing decisions could be made as early as possible, and noticed that while
using their systems increased the time taken when training was done in a short
amount of time, it also considerably improves safety. Furthermore, they discuss the
limitations of TOF systems, as some materials absorb near infrared and some objects
might be too small or fast to be detected.

Fiannaca et al. (2014) analyzed how to improve the traversal of large open spaces
and prevent veering off. They specifically compared sonification to text-to-speech
output and found that for veering both worked similarly efficient, possibly due to the
fact that a sonification had to be learned, while text-to-speech seems more natural
in the beginning. Moreover, study participants noted the lack of obstacle detection
and that (for now) only doors could be used as a reference point.

The fact that the White Cane will be almost impossible to replace was, similar to
many others working in this domain, stated by Bhowmick et al. (2014), when they
analyzed their IntelliNavi system. They, too, decide on complementing the White
Cane, instead of trying to replace it, as many other research prototypes have aspired
to, without long-term success. Additionally, they noticed usability issues when a
prototype is not fully real time capable.

A different approach to O&M was proposed by Guerreiro et al. (2017), who used
route pre-planning as a first step for navigation issues. They concluded that such
pre-planning—they refer to it as virtual navigation—aids in the creation of an a
priori mental representation that sequentially lists navigation steps, and is especially
helpful when making errors and having to restart from a different point. They also
suggested that user perception of distances had improved using virtual navigation.
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The prominent NavCog3 system was also examined in great detail by Sato et al. (2017).
They reported many factors that are important for a successful O&M assistive system:
sufficient accuracy, where sufficient strongly depends on the chosen objective, spatial
awareness, as in providing personally relevant landmarks and POIs, augmentation of
and integration into existing navigation skills, so “users can keep their routine,” to
support large-scale environments to be widely useful, and familiarity with a system.

Very recently, Avila Soto and Funk (2018) further analyzed public acceptability of
their proposed drone-based guidance system. They found that while the general
public often accepts such technologies, i.e., if they clearly understand its assistive
value, they also raise some issues with respect to passenger safety and the overall
perception of people with visual impairments, a major acceptability issue for these
themselves, as they would probably not take it around all the time.

Furthermore, the insights provided in section 2.1 as well as many discussions with
other researchers and especially Orientation&Mobility trainers5 have also influenced
our own decisions and implementations, as well as provided us with some initial
motivations and the necessary awareness in order to create most of our assistive
systems in the first place.

2.5 Key Concepts & Takeaways

In this final section we describe our identified key concepts and important takeaways
that we relied on and tried to adhere to when developing our own approaches. These
are kept short and to the point on purpose, also their ordering is largely irrelevant6

as we do not value one over the others, they are all considered equally important.
The reasoning for most of these can be gained by looking at the preceding sections
of this chapter, but especially section 2.1 and section 2.4. Of course, we could not
always follow through on all of them in our own proposed assistive systems and
their implementations, but had to eventually sacrifice some in order to fulfill others,
i.e., our user study prototype required a mobile laptop with a sufficiently powerful
GPU to work in real time, which is neither easy to carry around, limits mobility, not

5Many thanks to Christoph Erbach and Ottmar Kappen from the “Sehwerk” team for all their
shared insights. https://www.sehwerk.com

6Just note that the first letters, in the provided order, conveniently create the very catchy acronym
DIIPLOMAATS.

https://www.sehwerk.com
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readily available everywhere, nor unobtrusive. Please also note that although these
concepts are mostly orthogonal to each other, some cannot be clearly separated, as
they are heavily intertwined or interdependent, and sometimes even contradict each
other as well, e.g., Prototypes are limited by existing Technologies, which in turn
might not be cheap enough for general Availability, not unobtrusive enough for wide
Acceptance, or even create Safety issues due to unrealistic user expectations.

Demand Start to identify actual demands first to provide relevant assistance. Do not
find solutions for otherwise easily solvable problems, e.g., changes in legislation.

Individual Consider individual abilities. Present options for customization. Provide
sufficient details, i.e., only as many details as necessary.

Interface Prefer simple intuitive interfaces. Do not confuse the user. Possibly reuse
familiar interfaces. Prevent mental exhaustion.

Prototypes Do not limit a user’s mobility and work in real time. Consider wearability
to keep the hands free. Use wireless technologies. Apply the KISS7 principle.

Location Improve spatial awareness whenever possible. Present only reliable infor-
mation. Combine high-level and low-level information.

Orientation&Mobility Deeply integrate O&M techniques. Improve guidance and
orientation, never contradict any O&M methods, i.e., consider the White Cane.

Availability Use off-the-shelf components. Use economically available components.
Allow as many people as possible to benefit from developed assistive systems.

Acceptance Prefer unobtrusive technologies. Broad acceptance in the community is
required to someday become a useful tool.

Technologies Carefully consider technologies with respect to reliability, working
conditions, weight, battery lifetime, unobtrusiveness, and other functionalities.

Safety Use safe defaults. Clearly communicate accuracy and limitations. Create
reliable and versatile systems. Deal with individual errors, e.g., veering.

7“keep it simple, stupid”, a design principle coined by the United States Navy in the 1960s.





Chapter 3

Orientation

“I may not have gone where I intended to go,
but I think I have ended up where I needed to be.”

– Douglas Adams

Orientation&Mobility are always considered in tandem by O&M trainers when
they educate people with visual impairments about its techniques (cf . Chapter 4).
Ultimately, while the mobility aspect allows to “roam around”, the orientation aspect
of O&M teaches spatial awareness about the current place, i.e., “Where am I?” and
“Where do I want to go?”, as well as “What should I be aware of?” General awareness
of one’s own position within the environment helps to understand relationships
between the own body, the surrounding space, and the time it takes to cross it.
Spatial awareness provides such important cues about the place one is currently
traversing, while knowledge about the position and a sought out destination is equally
important for an assistive system in order to provide useful information.

However, even latest generation navigation systems only provide high-level infor-
mation, e.g.: “Follow this road,” “Turn left in 100 meters,” or eventually “You
have reached your destination!” Requirements of people with visual impairments are
mostly ignored, as these systems do not provide more detailed information about
relevant aspects, e.g., large pedestrian crossings of multiple lanes or strange inter-
section layouts, and do not consider personal preferences, i.e., to prefer alternative
pedestrian crossings (Matthews et al., 2014). Finally, commercially available systems
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Figure 3.1: Bronze sculptures allow people with visual impairments to “finger their town
for the first time.”1This historical city center map for the city of Stralsund is only one of
many such sculptures now found in European cities. It displays houses, churches, markets,
parks, ponds, the city’s harbour, and other places, to be touched and experienced in an
entirely new dimension for sighted as well as people with visual impairments alike. It also
exhibits braille encoded information about street names, churches, important sights, and
many other places and provides a better understanding of distances and spatial relations.

exhibit a very challenging user interface, as accessibility is rarely considered, forcing
people with visual impairments to rely on other alternatives instead (e.g. Figure 3.1).

This chapter’s focus is on orientation assistance, i.e., we closely look at some high-level
information that is relevant to impairment aware navigation and routing in section 3.1.
We further investigate how to integrate such high-level navigation information with
guidance aspects. By enriching the routing process with relevant low-level aspects in
section 3.2, we decrease the identified existing gap (cf . Section 1.3).

Our Contributions. To improve the availability of relevant geospatial data, we
analyze aerial imagery and localize zebra crossings (Koester et al., 2016) in sec-
tion 3.1.2. We then integrate this data into a novel, truly impairment aware, routing
algorithm (Koester et al., 2017) in section 3.2.2, capable of combining high-level rout-
ing information with low-level guidance aspects, i.e., it integrates available shorelines
into the routing process and prefers to use the safest pedestrian crossing available.

1https://www.blinden-stadtmodelle.de/en

https://www.blinden-stadtmodelle.de/en
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Figure 3.2: Aerial imagery and zebra crossing labels for a roundabout in Karlsruhe, Germany.
The road’s center lines (bright blue) from OSM metadata often do not perfectly match
the imagery, while cars, trees or shadows might partially occlude zebra crossings (dark
green circles). Also visible is an example detection window (bright orange rectangle) that
searches along center lines for zebra crossing candidates. Aerial imagery © Google Maps.

3.1 Aerial Imagery

In the last decade, aerial imagery has become widely available for the general public
to investigate online. Efforts such as “Google Maps,” which started its public service
in 2005, have been providing ever better resolutions and coverage on top of routing
capabilities for road-based driving. Only a few years later, a vibrant community had
developed, in order to use this newly found availability—before Google Maps, satellite
data and aerial imagery was mostly kept private within mapping companies— in order
to create geospatial databases for research and public purposes (cf . Section 2.2.2).
Computer vision can be a great benevolent factor in such efforts, as many ground
level features are clearly visible in such aerial imagery, given a sufficient resolution.
Figure 3.2 shows an example of such combined aerial imagery with labeled metadata
for road center lines and zebra crossings.

Manual creation of such databases is quite cumbersome and error prone, as volunteers
have to look at aerial imagery and label object instances by hand, which often
happens only in their own neighborhood, thus data quality greatly varies (Haklay
and Weber, 2008). To guarantee a certain quality, distribution and precision requires
lots of organisation and manual verification from involved communities. Using
semiautomatic, e.g., computer vision-based, approaches to improve the precision and
detect relevant objects in the first place, has thus been a long standing research topic,
e.g., Quam (1978). This has lead to an improved availability of geospatial databases,
which starts at small municipalities and usually ends at a nation wide level. However,
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each country either creates or requires its own databases, which are often not publicly
available, uses non-uniform data storage formats, which prevent an easy exchange,
and might even be out of date. Thus, efforts like OpenStreetMap (OSM) provide a
great benefit, not just to the general public, as they do not limit themselves to any
country’s borders and provide unlimited access to all of their user generated data.

Yet, very few geospatial information databases exist for the requirements of pedestri-
ans, especially few for those of people with visual impairments, or such databases
are missing relevant features. Even where they are available, they are often not
integrated into existing O&M solutions and devices. While, for example, pedestrian
crossings are only rarely equipped with accessibility aspects, having such information
readily available for routing systems could lead to an automatic generation of safer
routes. We believe that an increased availability and visibility will over time lead to
better routing algorithms and improved integration into created assistive systems,
as well as improve routing for pedestrians in general. Maybe such efforts can even
raise awareness with city planners, to become aware of and include more specialized
requirements into their designs. Such knowledge will also become indispensable for
autonomous driving efforts, as it provides great safety benefits for pedestrians.

3.1.1 Pedestrian Crossings

There exist many different ways of crossing a busy street that have become an essential
aspect of today’s traffic flow. These exhibit a varying degree of accessibility, ideally
built-in by design or additionally added afterwards: marked crossings, i.e., crosswalks
with or without Accessible Pedestrian Signals (APS) and also zebra crossings, or
unmarked crossings, i.e., just crossing the street in any given place (also referred to
as jaywalking). Zebra crossings themselves only provide very basic accessibility, as
they exhibit only limited tactile feedback to people with visual impairments. Ideally,
they are encompassed by tactile pavements as shown in figure 3.3. While their
accessibility level is far from perfect, they are still a much preferred alternative to
informal crossings (Matthews et al., 2014). Thus, having reliable information about
zebra crossings—and of course other controlled crossing types as well—within one’s
vicinity allows for safer mobility. An overview of the related work most relevant to
our own approach is provided in section 2.2.1.
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Figure 3.3: Schematic examples of zebra crossings and their encompassing tactile pavements,
as part of the pedestrian walkway on both sides of the street. These inform people with
visual impairments about the zebra crossing’s location (dotted areas) and provide a direction
as well (ruled areas), to align before crossing the street. cbe (Dipl. Ing. Wendelin Mühr2)

3.1.2 Zebra Crossing Detection

Zebra crossing detection in aerial imagery has so far only been proposed by Ahmetovic
et al. (2015) (cf . Section 2.2.1). We propose to use a purely data driven appearance-
based machine learning approach, in comparison to handcrafted features, and to rely
on available geospatial data as a weakly annotated data source (Koester et al., 2016).

We rely on available geospatial from the OpenStreetMap (OSM) project. For some
areas, coverage is already quite excellent, e.g., the City of Karlsruhe is not only home
to the Karlsruhe Institute of Technology, but also to a vibrant OSM community that
has not just labeled relevant crossings, but also park benches, trash cans and even
individual plants and trees. Based on this weakly labeled data—as it often contains
errors or imperfections—we generate a first training corpus of a selected region. We
use the OSM “Overpass API”3 to retrieve a list of already known zebra crossings,
using a simple query language (cf . Listing 3.1), which is also very similar for roads
and their connections, and receive an Extensible Markup Language (XML) file with
a list of individual nodes, as well as some meta data along with it (cf . Listing 3.2).

In a next step, we use “Google Static Maps”—but this would be possible with any
other aerial imagery provider as well— to download the imagery for our received

2https://www.barrierefreie-mobilitaet.de
3https://overpass-api.de

https://www.barrierefreie-mobilitaet.de
https://overpass-api.de
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Listing 3.1: OSM Overpass API example query
[ out:xml ];
area[name=" Karlsruhe "];
node(area )[ crossing = uncontrolled ];
out;

Listing 3.2: OSM Overpass API example result
<?xml version="1.0" encoding ="UTF -8"?>
<osm version="0.6" generator =" Overpass API ...">
...
<node id=" 14796420 " lat=" 48.9985602 " lon=" 8.3881125 ">

<tag k=" crossing " v=" uncontrolled "/>
<tag k=" crossing_ref " v="zebra"/>
<tag k=" highway " v=" crossing "/>

</node >
...

zebra crossing candidates’ locations. The data could be cleaned for parking areas,
factory sites and other uninteresting properties, but this is not required— it just
saves downloading bandwidth and computational time. Furthermore, we request
roughly the same amount of other crossing types or just general road connection
points, usually without zebra crossings, to be used as negative examples, and if their
amount is found to be insufficient, we also request linearly interpolated locations,
i.e., the road surface between two of these connection points. While an actual zebra
crossing can usually be found within the center of the zebra crossing candidate image,
the OSM-based meta data’s locations are not always perfectly aligned or absolutely
precise, so our features should compensate for these slight misalignments and also be
able to cope with a few mislabeled instances as well.

It is also beneficial to gain knowledge about the road’s direction, in order to automat-
ically align the zebra crossing in this stage and reduce rotational variance, allowing
us to require far less data. This can be done using linear geometric calculations that
are using the neighboring road’s connection points. This in turn allows a sliding
window approach to be used later on that explicitly follows the road structure and
reduces the required processing time by a large amount, as we do not have to scan
all possible locations within a specific region for zebra crossing candidates and can
focus on actual road surface instead, again saving on bandwidth and processing time.
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(a) (b) (c)

Figure 3.4: Example aerial imagery with (a) a zebra crossing and its feature visualizations:
(b) HOG’s blockwise computed gradients at a coarse block size for better visibility, and (c)
LBPs, where the binary vectors are grouped and visualized by distinct colors, showing the
feasibility of these features for this classification task. Aerial imagery © Google Maps.

Features & Classifier

After much consideration, we decided to use Histograms of Oriented Gradients (HOG)
(Dalal and Triggs, 2005), i.e., the implementation provided by Felzenszwalb et al.
(2010), as well as the Local Binary Pattern (LBP) descriptor (Ojala et al., 2002) as
our main features. Especially LBPs can be made computationally inexpensive when
using pre-calculated lookups for the different pixel offsets in the image based on its
selected parameters, i.e., diameter and neighborhood size. While HOG’s processing
details, i.e., its block normalization, partly helps to compensate for shadows or
general illumination differences, LBPs are also capable to deal with these issues by
using relative difference relationships in their neighborhood compared to their center
point, and not absolute differences. Furthermore, HOGs describe local intensity
gradients and their direction, i.e., implicitly perform an edge detection, which the
mostly grey and white, also very regularly striped from an aerial viewpoint, zebra
crossing texture exhibits plenty of. LBPs are very suitable for this regular texture as
well, as their final feature also consists of a normalized feature vector, but require a
sufficiently large size, i.e., a radius larger than ten for this task. Due to its rotational
invariance, the LBP’s histogram is oriented with respect to its maximum histogram
bin, LBPs can also deal with rotational variations should our center line alignment
be imprecise. Finally, we investigated a combination of HOG and LBP features,
but their mostly negligible improvements came at an increased computational cost.
Figure 3.4 shows an example of an aerial imagery zebra crossing and its features.



46 Orientation 3

Using the provided, often slightly inaccurate, zebra crossing location in combination
with our interpolated road direction, we can align the zebra crossing to appear within a
pre-defined selection window. We then process this window by calculating our features
on it, and also use data augmentation techniques, i.e., slight rotations, shifting and
mirroring, to increase our training corpus size. All calculated feature vectors are
gathered for our entire training corpus and then a Support Vector Machine (SVM)
(Cortes and Vapnik, 1995) is trained as a binary classification problem, i.e., the
selection window contains a zebra crossing or not. We investigate simple linear
kernels, simple dot products which are much faster to train, as well as Radial Basis
Function (RBF) kernels—a popular kernel function for various learning algorithms,
which is defined as:

K(x, x′) = exp
(
−‖x− x

′‖2

2σ2

)
, (3.1)

where σ is a choosable parameter that affects the kernel’s decision region and ‖·‖2 the
squared Euclidean distance between training corpus points, which places an increased
weight on further apart entries. The RBF kernel is more expensive to calculate, but
provides better classification results, as it has a better chance of (almost) clearly
separating the individual classes. For now, we just want our SVM to separate these
two classes as well as possible, while still allowing for sufficient input variations.

3.1.3 Evaluation

In order to properly evaluate our proposed zebra crossing detection approach, we have
prepared a dataset of ∼3100 zebra crossings, collected from various urban and rural
regions in Germany, without taking any possible defects into account, e.g., misplaced
labels, occlusion, marking deterioration, partly shadowed areas, illumination issues,
etc., in order to preserve the variances and individualities that zebra crossings exhibit
in aerial imagery. It is based on ortho-imagery, i.e., a format that allows us to
calculate per pixel latitude and longitude locations, as it is already rectified in a way
such that a single pixel of a tile always covers the same amount of real world space.
Referencing latitude and longitude locations is therefore not influenced by the pixel’s
position in the image, but only by the imagery’s zoom level.

We then rely on the same sliding window approach as applied during training. This
considers only actual road surface and greatly reduces false positives, as other regular



3.1.3 Evaluation 47

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.89
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

Data Split: Training between 0% and 5%, Holdout 95%

Training Data Percentage

Av
er
ag
e
Pr

ec
isi
on

(A
P)

Figure 3.5: Average precision curve for our zebra crossing classification approach when
using very little data. We randomly split our dataset (∼3100 positive and ∼3100 negative
instances) into a training and a holdout test split. We then train SVMs using between 0%

and 5% of all available data, increasing the amount of used data in steps of 0.05%.

structures in aerial imagery with a similar appearance, e.g., rooftops or staircases,
are automatically not considered. Furthermore, we can decide to rescan the same
region for yet unlabeled zebra crossings, also improving the labels of our own training
corpus, or apply the resulting classifier to complete disjunct regions.

In a next step, zebra crossing candidates are clustered using either non-maximum
suppression (Canny, 1986) or straightforward linear interpolation between the highest
scoring pair of two successive zebra crossing candidates along a road surface center
line. The latter clustering approach yields a slightly improved location accuracy,
although it requires sufficiently small detection windows and sliding window steps,
which significantly increases the amount of selection windows that have to be classified.
However, even a step size of half the selection window’s width, i.e., a 50% overlap
between sliding windows, was already found as sufficiently small for our task.

Required Amount of Training Data. We first analyze how much data our
approach really requires for a successful classification (cf . Figure 3.5). To this end,
we randomly split the data into a training set (5%) and a holdout test set (95%).
We then train our classification pipeline between 0 and a maximum of 5% of all the
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Table 3.1: Zebra crossing classification results for our own dataset. “{HOG,LBP}-LINEAR”
uses a linear, “. . . -RBF” a RBF kernel. “HOG30x30” refers to the used block size, while

“LBP17/10” refers to radius/neighbor variations. All results are listed in %.

Method Precision Recall Accuracy Avg.-Prec.
HOG30x30-LINEAR 74.8 93.1 92.4 94.43
HOG20x20-RBF 95.2 96.2 98.9 97.99
LBP17/10-LINEAR 99.4 97.4 98.4 99.56
LBP17/10-RBF 99.7 97.0 98.3 99.56
HOG25x25-LBP17/10-RBF 98.1 98.8 99.4 99.59

available data (0% to 100% of the training split), increasing the amount of used
data in 0.05% steps. Figure 3.5 shows that even when using very little data, i.e.,
only 0.05% of our dataset, we already yield an average precision of almost 90%.
Moreover, at 0.5% our classifier already performs almost at its best overall average
precision. Further increasing the data yields different behaviors, as sometimes this
might already include a mislabeled instance in our automatically created dataset,
or confuse the classifier by training on rather rarely occurring instances (outliers).
However, this process already stabilizes at around 2.5% and adding further data to
the training process does not significantly change the average precision anymore.

k-Fold Cross-Validation

As it is far easier to create negative samples than to collect more actual zebra
crossings, we further analyze our classifier in a k-fold cross-validation, where we
train on all folds except for one and use that for testing. We also use classical data
augmentation techniques, i.e., minor rotations, mirroring and subtle translational
shifts. Our k-fold cross-validation (k = 5) thus contains an almost equal amount of
randomly chosen positive and negative samples. We also considered hard negative
mining, where incorrectly classified samples are included in the training process as
well, but our already very high precision does not require it. We test a number of
parameter configurations, e.g., HOG block size, LBP neighborhood and radius, as
well as different SVM parameters. A first overview of classification results can be seen
in table 3.1 and figure 3.6 for different parameter combinations. These results show
that our algorithm is capable to achieve an almost perfect performance, considering
our weak labels. Also notable is the effect of parameter tuning: While the chosen
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Linear RBF

Figure 3.6: Receiver Operating Characteristic (ROC) curves for our zebra crossing detection.
We perform a 5-fold cross-validation on our own data, comparing linear kernels, where the
HOG feature performs much worse than LBP, and RBF kernels, where the selected feature

and its specific parameters make less of a difference.

feature(s), i.e., HOG vs. LBP, show a large performance difference, similar to as the
SVM kernel type largely influences the performance, the differences between specific
parameter combinations for each feature is almost negligible (cf . Figure 3.6).

Comparison to State of the Art

The only other proposal for zebra crossing detection in aerial imagery was by Ahme-
tovic et al. (2015), who suggested their approach just shortly before us. Similar to
our proposed algorithm, the authors rely on Google Static Maps aerial imagery, but
additionally use Google Street View panoramaa, yet also— like us—download only
map tiles that contain road surface. They then use a cascaded classifier with two
stages: first extract candidate crossings from aerial imagery, second validate these
in nearby street view panoramas (cf . Figure 3.7). For their reported numbers, the
authors manually fine-tuned their algorithms for maximum recall to minimize the
amount of missed zebra crossings, at the cost of a slightly lower precision.

For the first stage, they download map tiles that contain road surface, then they use
a line segment detection algorithm, EDLines (Akinlar and Topal, 2011), and group
detected segments into sets of stripes based on their horizontal and vertical distance
as well as a parallelism criteria, which ensure the detection of parallel groups of
segments within an immediate vicinity. They then validate these line segment groups
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Figure 3.7: Overview of Ahmetovic et al. ZebraSpotter’s two-stage approach that relies on
aerial imagery as well as street view panoramas and uses a line detection algorithm-based
on their ZebraLocalizer library for both steps. Figure taken from Ahmetovic et al. (2015).

based on their number of stripes and a color intensity feature, as such markings
usually exhibit a stark color contrast to the normal road pavement. In this stage’s
final step, they merge these line segment groups into candidate crossings, based on
the segment group’s coordinates and direction, with existing candidates, i.e., if a
nearby candidate was previously found. They adapted this technique from their
previous work on ZebraLocalizer (Ahmetovic et al., 2011).

Their second stage verifies these candidates in street view panoramas. For each
candidate, they request nearby panoramas within a fixed distance limit to deal
with occlusions by cars or other objects, and use a fixed camera pitch and field of
view settings to reduce the amount of downloaded panorama pieces as well as to
simplify a following image rectification step. They again use ZebraLocalizer to detect
crossings in these street view panoramas, until the candidate is verified or all nearby
panoramas were processed. Detections in the panoramas are again matched to the
candidate’s coordinates, but might have some inaccuracies due to GPS imprecisions,
so they consider a fixed distance tolerance when comparing coordinates and angular
deviations of possible candidates. This second stage either validates a zebra crossing
candidate, when a panorama contains a close enough match, or, after all nearby
panoramas were processed, discards this candidate and proceeds with the next one.

Comparison. In order to present a fair comparison between our approaches, we have
downloaded the exact same San Francisco neighborhood from Google Maps using our
already discussed approach, limited to actual road surface. However, the individual
grid cells of the city pattern where often so tiny that a merging of all acquired tiles
would lead to an almost complete aerial image as well. We also manually searched for



3.1.3 Evaluation 51

Table 3.2: Zebra crossing detection across countries results, where Ahmetovic et al. provide
numbers for 141 zebra crossings they found in a San Francisco area. We compare ourselves to
both of their stages, i.e., aerial imagery (AerImg) and street-view (StView) based detections,
as well as their combined results, once based on surrounding data (OursSanFrancisco) and on
our own dataset only (OursGermany). All results are provided in percentages and optimized

for highest recall, as Ahmetovic et al. did.

AerImg StView Precision Recall
Ahmetovic et al. 3 7 68.8 97.2
Ahmetovic et al. 7 3 97.2 97.8
Ahmetovic et al. 3 3 97.2 95.0
OursSanFrancisco 3 7 96.2 95.7
OursGermany 3 7 98.9 38.4

∼250 zebra crossings within a disjunct San Francisco neighborhood as well as some
other cities in the San Francisco Bay Area to prevent an accidental data overlap.
OSM zebra crossing metadata sadly was not available for the San Francisco area,
which is exactly one of the main motivations for our approach. Also, the authors did
not publish their used ground truth, but instead included only a figure. Thus, we had
to manually label the selected San Francisco rectangle’s zebra crossings: We counted
184 zebra crossings overall, where 122 are continental crossings, i.e., a typical crossing
type found in the United States very similar in appearance to the German zebra
crossing, as well as 62 crossings that also contain transverse markings, i.e., two white
lines oriented perpendicular to the stripes, which create a ladder-like appearance
(cf . Ahmetovic et al. (2015)). The numbers and locations we base our evaluation on
differ slightly from Ahmetovic et al., due to us considering ladder style crossings also
as zebra crossings. Furthermore, we also ignore the 110 plain transverse crossings as
Ahmetovic et al. did (cf . Figure 2.2 “Standard” variant), which are found on many
other street intersections and only consist of two parallel lines that mark the region
to be used by pedestrians while crossing the street.

We compare our two approaches in table 3.2, i.e., an across countries pre-trained
classifier based on German data alone, as well as a classifier trained only on nearby
San Francisco data, that had to be collected manually. It must be noted that we can
only compare to their published results, i.e., their recall optimized results for both
stages of their detection pipeline. However, for aerial imagery alone, we achieve a
much better performance (OursSanFrancisco), i.e., a precision of 96% vs. their 69%,
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Figure 3.8: Our own classification result for the same San Francisco rectangle as compared to
Ahmetovic et al.’s performance. We used their original figure, included our own (discretized)

data and slightly modified it for an improved readability.

while exhibiting almost the same recall. Furthermore, our across countries classifier
trained on German aerial imagery alone (OursGermany) already performs reasonably
well, yielding the best precision of all compared approaches at almost 99%. Even at
a comparatively low recall of only 38%, it supports our intention that this classifier
would be capable to assist in the creation of a large training corpus for an unseen
region, with a high accuracy and thus only a few weak labels, which could even be
reduced in numbers by using only the top scoring detections for further training.

Figure 3.8 presents an additional comparison of both approaches. We further compare
our own purely data-driven classifier, trained only on ∼250 nearby zebra crossings
from the San Francisco Bay Area, to their two detection stages. We show that
our aerial imagery-based approach (red line) already achieves much better results
compared to their first detection stage (dark blue line). Additionally, we almost
perform as well as after their second stage (bright blue line), where they detect
candidates in aerial imagery and additionally validate these in street view panoramas.
We therefore require much less data for a very similar final performance, especially
without the use of street view panoramas, which are also often not available for all
regions. Furthermore, the combination with our across countries classifier allows us
to first search for zebra crossings in an unseen region, fully automatically and with
a very high precision, and then use that data to train an improved classifier in a
second step, creating a final classifier that almost beats their hand engineered one
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for this specific region fine-tuned approach. A classifier built out of both these steps
would prevent much labour intensive manual search and labeling work.

3.1.4 Conclusion

We have proposed an appearance-based machine learning approach for zebra crossing
detection in aerial imagery. We compare ourself to the only other available related
work (Ahmetovic et al., 2015), a line-based search approach, and achieve state of
the art results on aerial imagery alone compared to their two-stage algorithm. Our
algorithms are widely usable and automatically learn the region specific appearance
of a zebra crossing. This is especially important, as different regulations for zebra
crossings in different countries (cf . Figure 2.2) would require the manual creation of
large datasets as a training corpus for automatic systems. However, our algorithm
requires comparatively little data to begin with, already delivering a very promising
accuracy, which is why we do not use a deep learning approach for this task, as
requiring more data defeats one of our main objectives.

Additionally, our algorithm is capable of detecting yet uncharted zebra crossings and
further allows us to integrate these into existing databases, which can then finally
be used for specialized routing algorithms. It also enables the creation of classifiers
to be used across countries, in order to examine completely new regions, where no
efforts so far have been undertaken. Therefore, it allows for a process that could
significantly speed up such attempts by providing a base training corpus, where errors
could easily be corrected by a human or an automatic system—an approach that is
much faster to implement than to have to start searching for zebra crossings in aerial
imagery from scratch. We believe that an improved availability and accuracy of such
geospatial databases will strengthen their usage in general routing applications in
the long term, especially in guidance systems for people with visual impairments,
and thus also improve overall pedestrian safety.

Finally, we also investigated further relevant ground level features, i.e. tactile pavings,
but the resolution was found insufficient and it was impossible to retrieve any
geospatial data about their precise locations for weak labels, although they are
starting to become included in OSM data as a metadata key for pedestrian walkways,
and efforts4 are underway to include them as a precisely located object as well.

4https://wiki.openstreetmap.org/wiki/OSM_for_the_blind

https://wiki.openstreetmap.org/wiki/OSM_for_the_blind
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3.2 Routing

The most common algorithm to identify the shortest path in a graph network is the
“Dijkstra-Algorithm”, named after its inventor Edsger Wybe Dijkstra (Dijkstra, 1959).
Even today, it is still used in various applications, e.g., packet switching to find fastest
connections between telecommunication nodes, or less prominently, the shortest path
to a given destination for traffic navigation. Although such routing systems have been
available to car drivers for decades now, they only became available to pedestrians
within the last ten years, especially with the growing ubiquity of smartphones, i.e.,
pedestrian routing was first integrated into the Google Maps application in 2015.

Outdoor as well as indoor navigation creates great challenges for people with visual
impairments. Urban surroundings are getting ever more complex in order to ac-
commodate the many different forms of mobility. Meanwhile, urban element design
only rarely accounts for specific needs, which might also contradict each other, e.g.,
having a lowered curbline at an intersection to allow people with physical disabilities
to cross the street contradicts the requirements for people with visual impairments,
who might use a raised curbline as an outer shoreline, and additionally to position
themselves for the crossing. It is common for pedestrian walkways to not exhibit
any tactile pavings, except for very few locations, e.g., around zebra crossings or on
tram stations. Furthermore, urban elements such as trash cans, lamp poles or safety
posts are usually placed where they provide the greatest convenience and benefit for
the general public. However, this might contradict Orientation&Mobility techniques
as well, especially when they are placed close to shorelines or at crossings. Such
obstacles often impede the process of mobility for people with visual impairments
and furthermore provide a major source of confusion as well as safety issues.

Pedestrian crossings also only rarely exhibit advanced accessibility features, i.e.,
pilot tones, acoustic and haptic walk light phase notifications, or relief symbols that
precisely describe what to expect and look out for during the crossing (cf . APS).
Furthermore, just navigating the general street layout, e.g., round-abouts, or their
even rarer counterparts, through-abouts, construction sites, or busy places, already
presents a very demanding challenge. While GNSSs have greatly improved the overall
confidence in urban navigation settings, the increase in mobility is at the same time
limited to very high level information only— they do not provide obstacle information
and guidance on a fine level suitable for people with visual impairments.
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New GNSS technology, i.e., “Galileo,”5 promises an average accuracy of less than a
meter, compared to ten meters for current systems. Such a precision would allow for
more fine-grained applications that could rely on very precise positioning, even in
narrow city street canyons. Nonetheless, mostly POI-based, commercially available
assistance systems have been created already, for example those by “Humanware,”6

the hugely popular “Trekker Breeze,” more recent “Victor Reader” series devices, or
“BrailleNote GPS” devices and applications, which can navigate along pre-recorded
routes. Also, “BlindSquare”7 has become a highly popular application within the
community, as it reads out POIs, pedestrian crossing information including street
names, as well as personal favourite locations. It provides a specialized interface
to “Foursquare”8 and also relies on its database, an ever growing corpus of crowd
sourced information about businesses, POIs, sights and other user supplied content,
thus improvements made there also benefit people with visual impairments as well.

3.2.1 Impairment Aware Routing

What people with visual impairments—as well as people with other forms of disabil-
ities— really require is a routing process that is better suited towards their specific
needs, which integrates these needs into its decision process. For people with visual
impairments, one possible adaptation could be routing on a shoreline level of detail,
modeled after Orientation&Mobility (O&M), i.e., White Cane techniques.

Such an adapted routing could provide measurable safety benefits, as it relies on less
unmarked crossings and favors more accessible alternatives instead. This improves the
user’s safety, the individually perceived as well as the actual physical one (Matthews
et al., 2014). Furthermore, upcoming route issues can be communicated early on and
might cause the user to prefer a completely different route altogether, preventing
dangerous situations before they even arise. Finally, with such an improved routing
people with visual impairments can acquire a better understanding of their immediate
environment, as it increases their spatial awareness of their surroundings.

Schmitz and Ertl (2014) have already proposed map-based transformations to generate
a pedestrian walkway network out of roads and allow routing along hypothetical

5https://galileognss.eu
6https://www.humanware.com
7https://www.blindsquare.com
8https://foursquare.com

https://galileognss.eu
https://www.humanware.com
https://www.blindsquare.com
https://foursquare.com
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Figure 3.9: A routing accessibility heatmap for the City of Karlsruhe in Germany, with
semi-randomly generated routes: Public transit stations (black dots) are used as start points
with targets within their immediate neighborhoods. This represents a common mobility
scenario, not just for people with visual impairments. Stronger colored segments imply that
these were integrated into our generated routes more frequently, signaling that they are
considered more accessible than alternatives. Map data © OpenStreetMap contributors.

pedestrian walkway locations, and a further in-depth discussion of related work
relevant for our approach is presented in section 2.2.2. Inspired by our prior work on
aerial imagery zebra crossing detection (cf . Section 3.1.2, Koester et al. (2016)), we
instead propose to use available geospatial databases of important O&M components,
e.g., building facades and others, to be integrated into the routing process (Koester
et al., 2017). To this end, we utilize publicly available data sources, i.e., OSM, to
gather information about roads, building facades, or pedestrian crossing locations.
We then present a customized routing algorithm w.r.t. our identified restrictions and
main criteria, developed in accordance with O&M trainers:

• Avoid informal crossings as long as possible;

• Prefer Accessible Pedestrian Signals (APS) over inaccessible pedestrian signals;

• Follow along shorelines whenever they are available;

• Consider distance trade-off for an increase in perceived and physical safety.

Our approach generates safer routes, while a minor increase in distance is negligible
compared to the perceived and physical safety gains. A heatmap showing preferable
routes in an urban area, generated with our novel routing approach, is presented in
figure 3.9. We first evaluate different routing algorithm prioritizations that focus on
different objectives, as well as a combined version. Furthermore, we perform a small
Wizard of Oz experiment (Dahlbäck et al., 1993; Kelley, 1983, 1984), i.e., a blind
person follows along pre-generated routing instructions along two unknown routes.
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3.2.2 Generating Specialized Routes

We propose to generate fine-grained routes that integrate the O&M shorelining
technique and prefer accessible controlled crossings, based on available OSM meta
data about relevant crossings. OSM provides such data, albeit with a varying degree
of completeness and precision (Haklay and Weber, 2008), due to its collaborative
nature. However, its quality has steadily improved since its creation in 2004.

A project that uses OSM data for routing purposes is the Open Source Routing
Machine (OSRM). It provides a public user configurable routing engine, used for
example by a mobile application created by Luxen and Vetter (2011). In our
experiments, we exclusively rely on OSM data and the OSRM system, but our
approach of course also transfers to other data sources and other routing systems.
Especially having highly reliable data available, such as the data used by land registry
offices around the country, would allow for even further improvements to be made.

First, the OSRM engine calculates a road network-based route that is very coarse,
i.e., consists mostly of road intersections. However, this process defines a search
window on the map for our next stages and reduces computational complexity. While
we consider urban areas exclusively, OSRM routes still often contain deficiencies,
e.g., road-based routing, a change of roadsides is not considered at all, very large
intersections are easily crossed within a single routing step, and many others that
cause such routes to become inappropriate for pedestrian navigation. In a next step,
additional details are considered by our specialized routing algorithm. This two-stage
approach significantly speeds up route searching, especially for larger distances, as it
first looks at the route from a high level perspective and then refines it into smaller
segments suitable for navigation of people with visual impairments.

Directed & Edge Expanded Graphs. Meta data acquired from OSM usually
consists of a list of (XML) nodes, i.e., points with longitude, latitude and other
information, such as connections to other nodes or object type specifications (cf .
Listing 3.2). Such nodes and their connections can be easily transformed into Directed
Graphs—a graph with directed edges that usually have weights or costs associated
to them—and stored as large matrices, a much more suitable presentation and
storage format for routing algorithms to work on. While this models the connections
between points, its edges can only contain information about the edge itself, i.e., in
our case the type of road, its distance or its speed limit. However, it does not store
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Figure 3.10: An example Directed Graph (a) transformed into its dual Edge Expanded
Graph (b). The Directed Graph does not allow us to restrict specific turns, i.e., let’s assume
we want to use route v4 → v3 → v5, but the turn e43 y v3 y e35 poses a safety issue and
should be avoided. In this graph, we would have to remove edge e35 alltogether, whereas in
(b) we can remove the highlighted edge v∗3→5 to disallow this specific turn, leaving the other
turn v3→5 intact, as well as remain the possibility to use route v4 → v1 → v2 → v3 → v5.

any information about (im-)possible turns, to prevent certain transitions between
its nodes or differently weighted intersections based on their level of difficulty, and
accessibility, when using a specific path to cross it. The OSRM engine lets us
transform our existing Directed Graph (Figure 3.10a) into an Edge Expanded Graph
(Figure 3.10b)—a dual graph that switches nodes and edges and thus allows us to
model such turn-based restrictions (Caldwell, 1961; Winter, 2002).

A k-d Tree. Searching by position for a specific instance in a very large point set,
or for the nearest one of these points, is a task that has seen lots of research, as it
appears in many computer related research domains, especially computer vision and
computer graphics. In order to accelerate our route generation process, we integrate
a k-d tree. This is a space partitioning (binary) tree and in our case d is two (cf .
Figure 3.11). The k-d tree splits space in an alternating manner, i.e., into north-south
and east-west hyperplanes for each inserted point (cf . Figure 3.11a), where adding a
single point into a balanced tree takes O(log n) and building a complete tree takes
O(n log 2n), if an O(n log n) sorting algorithm was used to find the median at each
level during construction, which also could be improved using other (pre-)sorting
strategies. Once created, the k-d tree (cf . Figure 3.11b) supports very efficient range
search and nearest neighbor acquisition, due to the fact that a balanced k-d tree will
divide the search range of each domain, i.e., longitude or latitude, into half at each
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Figure 3.11: A two-dimensional space partitioning k-d tree (a) of example points and its
binary k-d tree (b) that allows for very efficient range searches in a large sets of points.

level, where the considered space gets smaller with each tree level. When inserting
N points into the tree, the resulting upper bound for the range search is:

TRangeSearch = O(k ∗N1− 1
k ) . (3.2)

Our Routing Approach. While a long street segment, as used by OSRM, might
contain only very few points, the same distance, when using our shoreline level of
detail approach, will already contain a ten-fold or more increase in points that have to
be considered. As this will significantly increase the amount of points to be processed
in each step of the routing algorithm, making it computationally very expensive,
we use the k-d tree as our main data structure, in order to alleviate these issues
using its very efficient range search. It allows us to effectively select and consider
only pedestrian walkways and shorelines within a route segment’s immediate vicinity.
Based on a route from OSRM, we can calculate relevant pedestrian walkways and
shorelines, i.e., building facades, that we must consider for our shoreline level routing.
We then connect these shorelines on each pedestrian walkway side, joining adjacent
facades and bridging small gaps, i.e., driveways or road crossings. This roadside
aware route generation process prevents unnecessary roadside changes in dangerous
places, as shoreline candidates on the other side of the street will usually be much
further away than those found on the same side. Moreover, we also include a penalty
for crossing the street, i.e., changing pedestrian walkway sides, at an uncontrolled
crossing, while Accessible Pedestrian Signals (APS) are preferred.
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Pedestrian Walkway Prioritization (RWalkway). OSRM mostly considers road
networks, but will also route along pedestrian walkways, if available. However, these
are only rarely integrated, due to their limited availability and interconnection with
the road. Furthermore, as OSRM considers a segment’s travel speed, pedestrian
walkways are used much less frequently. We therefore decrease the maximum speed
on all roads when we transform map data into the edge expanded graph and modify
their weights accordingly (WR), leaving the pedestrian walkways unchanged (WW).
We similarly modify bicycle lanes to discourage their usage, however we have to
differentiate between separated and combined cyclist lanes, since we would prefer a
combined pedestrian/cyclist lane over using road surface.

Accessible Pedestrian Signal (APS) Prioritization (RAPS). Another impor-
tant aspect to consider for a safe routing is pedestrian crossings. These vary from
uncontrolled crossings to traffic lights that have been made accessible using acoustic
and haptic signals, as well as pilot tones—Accessible Pedestrian Signal (APS). Ide-
ally, APSs also include relief symbols and exhibit long walk light phases that allow
for a safe crossing. Naturally, accessible controlled crossings are to be preferred over
uncontrolled ones (Matthews et al., 2014). Our preferred usage is therefore weighted
as follows: APS with acoustic pilot tones (WPAPS), APS with haptic signals only
(WHAPS), inaccessible pedestrian signals (WPS), zebra crossings (WZ) and finally
uncontrolled crossings (WC)— the latter are to be avoided at all costs. The final
route always depends on the specific chosen parameters, i.e., weight penalties for
less accessible crossing types, and might thus change dramatically (cf . Figure 3.12).
While this sometimes seems unintuitive to the observer, the safety benefits gained are
always clearly measurable. It is important to note that this second aspect can only
be considered in combination with the pedestrian walkway-based routing, as it is
impossible to include pedestrian crossings into the route when we are routing on the
road surface in the first place, i.e., pedestrian crossings would never be considered.

Shoreline Prioritization (RShoreline). One of our major motivations were the
Orientation&Mobility White Cane techniques for close range guidance, as well as
their complete neglect by navigation systems. This leads to problematic situations,
e.g., a pedestrian navigation system might ask to cross a street not far away from
a controlled crossing, or to transverse an open space where there are no shorelines
available at all, which conflicts with O&M techniques. We noticed in discussions
with O&M trainers and during accompanied training sessions that shorelining, i.e.,
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Figure 3.12: Different routing prioritizations on a challenging throughabout. We compare
our walkway prioritization (blue), our APS prioritization (green), our shoreline prioriti-
zation (gray), and our final route (red/orange), which consists of real (red) and virtual
(orange) shorelines and walkways. Please note that the lowermost and uppermost streets
do not provide a controlled pedestrian crossing. Map Data © OpenStreetMap contributors.

the process of following along a shoreline for an extended period of time, was always
considered an intuitive and adequate approach by all participating parties. Especially
inner shorelines, i.e., those that are further away from street traffic, e.g., building
facades or fences, were regarded as very safe and easily distinguishable when relying on
the White Cane. In urban areas, such facades are directly adjacent to the pedestrian
walkway and are also considered the safer alternative compared to outer shorelines,
i.e., curblines. Thus we also integrate available shoreline information into our routing
process (WS), but have to distinguish between real shorelines, i.e., natural features
such as curblines or building facades, and virtual shorelines, i.e., when we create a
virtual link between two natural features (cf . Figure 3.12). It allows us to generate
very fine-grained routing instructions, based on shorelines as the preferred connection
between two points, and to closely integrate this O&M technique into our system.



62 Orientation 3

Algorithm 1: Dijkstra Algorithm – Final Route Generation
1: d := {0,∞, . . . ,∞} . initialize cumulative distance to nodes
2: prev := {0,−1, . . . ,−1} . track shortest path predecessor for each node
3: q := {(PS , 0)} . priority queue by distance
4: while q 6= ∅ do
5: Pu := q.pop()
6: for all Li ∈ {S ∪ G} do . consider Shorelines and General segments
7: Pv := fnearest(Pu,Li) . get closest point for Pu w.r.t. Li
8: if d[u] + ∆(Pu,Pv,Li) < d[v] then . check cost (3.3) for next point
9: d[v] := d[u] + ∆(Pu,Pv,Li) . update data structures

10: prev[v] := u
11: q.push(Pv, d[v])
12: end if
13: end for
14: end while

Final Route Generation Algorithm (RFinal). Our final proposed algorithm has
to deal with situations where no building facades or pedestrian walkways are available,
and thus fall back onto road-based routing, a process we would like to defer as long
as possible, but that is sometimes necessary in order to generate a complete and
reasonable route without any gaps or major defects in it. Figure 3.12 shows such
a fine-grained route, as well as the intermediate routes created by the individual
prioritizations described in the last paragraphs. Also visible is the issue that a
pure shoreline routing approach exhibits a behavior that strongly contradicts O&M
techniques, i.e., it ignores pedestrian crossings and directly connects building facades.
To create such a final route, we merge all three specialized prioritizations into a single
algorithm: the pedestrian walkway (RWalkway), APS-based (RAPS), and shoreline
level routing (RShoreline), and modify the Dijkstra algorithm (cf . Algorithm 1) in lines
6 and 7. Lines 1–3 initialize required data structures, i.e., the cumulative distance
to each node, the preceding node that is part of the shortest route towards each
encountered node, and a distance sorted priority queue with our start point. Lines
4–5 then check this queue, as long as it is not empty, and always process the closest
node, i.e., Pu. Line 6 was modified to consider Shorelines and General segments
and nodes (G = {W ∪R∪O}), i.e., Walkways, Roads, and Others, e.g., pedestrian
traffic light nodes. We added line 7 to retrieve the nearest point Pv of a given segment,
i.e., it could be a road start, a piece of a building facade, or a walkway section. Lines
8–11 then update the internal data structures, iff we have found a shorter connection
between our current position and the node we are currently processing.
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We also use a customized cost function ∆(Pu,Pv,Li) in lines 8 and 9, that determines
the cost to integrate a given segment into our route, based on the graph’s weights
W∗, and also depends on the specific type of each individual segment:

∆(Pu,Pv,Li) :=


δ(Pu,Pv,Li), δ(Pu,Pv,Li) 6= 0

WS · ‖Pu − Pv‖2 , δ(Pu,Pv,Li) = 0 ∧ Li ∈ S
WG(Li) · ‖Pu − Pv‖2 , δ(Pu,Pv,Li) = 0 ∧ Li ∈ G

. (3.3)

This cost function first calculates the cost to reach the next segment as:

δ(Pu,Pv,Li) := ‖PuLi‖2 · (1 + |CPuPv | · WR) , (3.4)

where it checks, whether our currently processed node Pu is already a part of, and
thus lies on, the inspected segment, i.e., ‖PuLi‖2 = 0. If it is not, it furthermore
determines the number of streets that have to be crossed (|CPuPv |) in order to reach
Pv, i.e., it penalizes street crossings. If there are any found, their number is multiplied
with the graph’s weight WR of the segment between Pu and Pv. This yields the final
cost to reach the currently processed segment. The second case of the cost function
in equation (3.3) handles instances, where our currently processed node Pu is already
part of a shoreline, i.e. its distance is 0 and Li ∈ S. Then we can simply multiply the
distance between Pu and Pv with the shoreline segment’s travel weight. Please note
that in our case, real shorelines, i.e., building facades, should never cross any roads,
unless there exists an issue with the mapping data. For our final route, we consider
all route segments that are not real shorelines or other OSM segments to become
virtual shorelines (cf . Figure 3.12). The last case of equation (3.3) deals with all
other remaining cases, i.e., general segments that are made up of roads or walkways
and any other type of node found in the map data. This includes pedestrian crossings,
and the final cost for these nodes depends on their specific type:

WG(Li) :=



WC, InformalCrossing(Li)
WZ · WG, ZebraCrossing(Li)
WPS · WG, PedestrianSignal(Li)
WHAPS · WG, HapticSignalAPS(Li)
WPAPS · WG, PilotToneAPS(Li)
WG, otherwise

, (3.5)
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where the W∗ ∈ R+ are the corresponding penalties for each type of crossing, as
defined by the APS prioritization, and WG is the segment’s or node’s general travel
weight from the routing graph. We multiply these individual penalty weights—except
for the informal crossing, as it is not contained in the routing graph and thus does
not have a weight associated to it—with their general routing graph weights to
additionally account for contained segment information. Otherwise we might lose
relevant information, e.g., the possible speed on a segment, as OSM data often
contains the pavement conditions, i.e., (fine) gravel, pebblestones, cobblestones, mud,
sand, concrete, or others. Also, segments that are marked as temporarily inaccessible,
e.g., due to ongoing construction or other issues, would be misused in this case.

Choosing Weights. Finally, we integrate our assumptions about previously ana-
lyzed crossing preferences into our model, ensuring for all relevant pedestrian crossing
penalty weights W∗:

WC �WZ >WPS >WHAPS >WPAPS � 1 . (3.6)

Furthermore, for our routing algorithm to prefer available shorelines over general
road or walkway segments as well as any other encountered types, we also ensure:

WG >WR >WW >WS . (3.7)

For our performed evaluations, we use the following penalty values for pedestrian
crossings: WC = 600, WZ = 30, WPS = 20, WHAPS = 10, and WPAPS = 5.
Additionally, when constructing the Edge Expanded Graph (cf . Figure 3.10), we
modify the road network speeds as follows: The general walking speed on pedestrian
walkways and any other traversable segments is set to 5 km/h, and is multiplied
with 0.5 for roads, 0.9 for combined bicycle lane segments, 0.95 for separated bicycle
lane segments, and 1.5 for building facades, i.e., inner shorelines. We mostly ignore
highways, railways, segments that are marked as under construction, dedicated
bicycle lanes, and other segment types that should similarly be discouraged, setting
their speed to zero. These speeds are then implicitly used by the routing algorithm,
as a segment’s length divided by its corresponding speed yields the travel time for
that segment, i.e., its weight used for the cost function. This allows the routing
algorithm to prefer sufficiently shorter segments, even if less accessible, but for the
same length it will prefer the most accessible one according to the pre-defined criteria.
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3.2.3 Evaluation

As we have previously identified concrete criteria to evaluate our algorithmic ap-
proaches against, we separate this process into three steps: First, use purely random
routes of varying length, second, rely on public transit stations as start/end points,
and finally, perform a small Wizard of Oz experiment with a single blind participant,
as there was no GNSS receiver available to us with a sufficient positioning precision.
Therefore, we prepare our map data as previously described, which is computationally
very expensive due to the huge amount of map nodes that require processing when
we consider individual shoreline segments. However, it has to be performed only
once for each area, the succeeding route generation costs much less per route due to
us using the k-d tree data structure, and largely depends on its overall length.

Randomly Generated Routes

Our different route prioritizations are initially evaluated against an OSRM routing
algorithm that already integrates pedestrian walkways, on 1000 randomly created,
mostly shorter routes, i.e., less than 1000 meters. We conducted this first experi-
ment to check what kind of route changes the individual routing prioritizations (cf .
Section 3.2.2) would introduce and whether these were individually feasible. We did
this to detect if they would possibly create completely unreasonable routes or route
against their intended purpose, e.g., due to incorrectly chosen weights or penalties.

The random evaluation took place in a large municipality, which includes multiple
cities as well as rural communities, where OSM data was rather scarce, but we
included it in order to see whether our proposed prioritizations could also be applied
in such areas, not just in urban city centers, where OSM data availability is usually
much higher. We use 1000 almost random points in this area as start points. Their
only constraint is that they must lie within two meters of a random road or walkway
segment, as this models real world usage, where people would almost never manage
to start a routing request exactly on an OSM node’s location, as well as from within
a building. The end points of these random routes must be on a road that is up to
700 meters away—straight beeline distance, where on a typical regularly squared
city grid a diagonal distance of 700 meters yields an average travel distance of almost
1000 meters, according to the Pythagorean theorem—at least 100 meters away,
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Table 3.3: We compare ROSRM (includes pedestrian walkways) with our RWalkway, RAPS,
andRShoreline prioritizations, as well as ourRFinal route. D̄travel is the average travel distance
in meters, Wwalkway the route’s percentage of pedestrian walkways, Psignal the percentage
of used pedestrian signals and Cinformal of informal crossings, and finally Sreal/Svirtual the
percentages of real/virtual shorelines. We also include relative changes to ROSRM (+

-%),
“—” not considered routing aspects, and “(. . . )” denotes absolute numbers that cannot be
compared to ROSRM (please refer to route discussions for further details on these issues).

D̄travel Wwalkway Psignal Cinformal Sreal Svirtual

ROSRM 458 12.8 71.0 29.0 — —
RWalkway 466 +1.7% 16.4+28.1% 83.9+18.2% 16.1-44.5% — —
RAPS 464+1.3% 16.4+28.1% 92.5+30.3% 7.5 -74.1% — —
RShoreline (139) — 43.7 -38.5% 56.3 +94.1% 24.5 12.3

RFinal (162) 17.6+37.5% 57.3 -19.3% 42.7 +47.3% 20.9-14.7% 11.0-10.6%

and, similarly to the start point, within two meters of a road or walkway segment.
Due to technical limitations, i.e., memory and processing time for the significantly
increased number of points when considering shorelines, we could only evaluate our
shoreline and final routing approach, which integrates shorelines as well, on 400 of
the aforementioned 1000 routes, i.e., mostly shorter ones. Thus, absolute numbers,
i.e., travel distances, are not directly comparable, whereas all relative percentages on
included walkways, pedestrian signals, informal crossings, and shorelines, remain so.
Finally, we evaluate our different prioritizations according to our pre-defined criteria,
i.e., average travel distance (D̄travel), percentage of pedestrian walkways (Wwalkway),
percentage of pedestrian signals (Psignal), percentage of informal pedestrian crossings
(Cinformal), and shoreline integration (Sreal/Svirtual), where applicable.

Pedestrian Walkway Prioritization (RWalkway). Our first random evaluation
results in table 3.3 indicate that our walkway prioritization only slightly increases the
average travel distance— less than 2%—making the routes comparable per se, as
they are of very similar length. This prioritization is able to increase the percentage
of taken walkways (+28%), even as ROSRM already considers these, they are just
not preferred over roads. We investigated this issue and found that OSM does not
contain sufficient walkway data, or we could possibly have seen an even greater
improvement. Nonetheless, it already integrates more pedestrian signals (+18%), and
reduces the amount of informal crossings. As shorelines are never considered in this
prioritization, we cannot provide any numbers about their usage, same as for ROSRM.
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Accessible Pedestrian Signal (APS) Prioritization (RAPS). Table 3.3 fur-
thermore indicates that RAPS can improve over RWalkway, as it also has to integrate
walkways in the same way (cf . Section 3.2.1), but prefers accessible pedestrian cross-
ings whenever possible. Its main difference to RWalkway is to ensure that required
pedestrian crossings follow our accessibility criteria, i.e., prefer APS over informal
crossings, which is already supported by our first evaluation, as it more than halves
the amount of informal crossings, i.e., from 16.1% to 7.5%, and also manages to
increase the amount of included APS, i.e., +30.3% vs. +18.2% for RWalkway. While it
also manages to only insignificantly increase the travel distance, it too does not yet
consider shorelines, similar to RWalkway and ROSRM.

Shoreline Prioritization (RShoreline). Our RShoreline prioritization generates its
routes quite differently, as show in table 3.3. It does not consider pedestrian walkways
(Wwalkway), as it integrates the additional features of real and virtual shorelines, which
none of the other prioritizations support. However, it only uses pedestrian walk light
signals (-39% Psignal) when there are no shorelines around, i.e., it’s often routing on
roads or walkways in rural areas. Then, it instead prefers to use informal crossings
(+94% Cinformal), i.e., it directly connects available real shorelines by creating virtual
ones, even when crossing a street, although such behavior is not realistic for real
world usage anyway (cf . the gray line in Figure 3.12). Due to technical limitations,
we could only compare RShoreline on 400 of the 1000 routes, mostly shorter ones, thus
the average distance has decreased significantly and is not directly comparable.

Final Route (RFinal). AsRFinal also integrates shorelines (cf .RShoreline), its average
distance is reduced in the same way and thus not comparable. Please also note that
here the relative changes for real and virtual shoreline usage are not based on ROSRM,
but are instead compared to RShoreline’s values. Regarding shoreline integration, both
approaches only differ by up to 15%, which shows us that the shoreline prioritization
provides a real measurable benefit, as the proposed sections are almost completely
considered in the final route generation process. Similarly, RWalkway’s suggested
improvements for walkway integration (+28%) are not only nicely integrated, but
even improved upon by RFinal, i.e., the final route contains +37% more walkways
than ROSRM. Only the amount of Psignal (APS) decreases significantly, i.e., -20%,
however trade-offs between individual routing prioritizations were to be expected.
Nonetheless, any perceived trade-offs should be further investigated and might be
mitigated in the future, using carefully adapted weights and penalty values.



68 Orientation 3

Table 3.4: Public transit station-based results for 1870 routes, i.e., ten semi-random routes
for each of the 187 public transit stations available in the city of Karlsruhe. Please refer to

table 3.3 for further details about compared Routes as well as the evaluated aspects.

D̄travel Wwalkway Psignal Cinformal Sreal Svirtual

ROSRM 621 26.4 76.8 23.2 — —
RWalkway 654+5.3% 46.4+75.8% 76.3 -0.7% 23.7 +2.2% — —
RAPS 655 +5.5% 45.5+72.3% 86.4+12.5% 13.6-50.0% — —
RShoreline (178) — 44.2 -42.4% 55.8 +141% 31.4 7.9

RFinal (198) 22.0 -16.7% 64.6 -15.9% 35.4 +52.6% 26.0-17.2% 8.2+3.8%

Public Transit Station-Based Routes

The random routes were used to investigate the suitability of each prioritization and
their effects on the overall route. However, these routes do not represent the actual
movement patterns of people living in urban areas at all. The most interesting routes
to be improved for people with visual impairments would also be their most common
ones, e.g., towards home or the workplace, visiting friends, meeting at specific sights,
businesses or public places. Furthermore, large distances are only rarely covered by
foot, but usually by means of public transport, i.e., buses and tram lines.

Therefore, after consulting with people with visual impairments as well as O&M
trainers, we investigate public transit station-based routes, i.e., to start or end at
such a public transit station. Luckily, these are also part of the OSM data and
create a semi-random distribution over a city’s area, as such stations are usually
placed neither to close to each other, nor to far away. It should thus be considered
that this evaluation takes place in an urban area only (cf . Figure 3.9), where OSM
data availability and quality is much higher than in most areas of the random route
evaluation, as there is a quite active volunteer community in the city of Karlsruhe.
There are 187 available public transit station locations and we calculate ten semi-
random routes per instance, where we use the same limitations as for the random
route evaluation, i.e., we route towards a random point, within two meters of a road or
walkway that is at most 700 meters away. However, we also have the same limitations
for shorelines as with the random route evaluation, i.e., we cannot compare the
average distances, as we had to reduce the maximum distance of 700 meters down to
250 meters, but are able to compare all other evaluated aspects, where applicable.
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Pedestrian Walkway Prioritization (RWalkway). Similar to the random route-
based evaluation, the overall travel distance does not change significantly, i.e. +5%
(cf . Table 3.4), however, here the amount of integrated walkways is significantly
increased at +76%. Moreover, the amount of utilized APSs and informal crossings
is almost unchanged. This is in line with our previous observation of an increased
pedestrian walkway data availability in urban areas—RWalkway is very similar to
ROSRM in all other aspects, but much better integrates walkways, if they are available.
As for the random route evaluation, shorelines are not considered by RWalkway.

Accessible Pedestrian Signal (APS) Prioritization (RAPS). Table 3.4 also
indicates that while the APS prioritization exhibits the largest travel distance (+5.5%),
it’s only minor compared to the next best one, i.e., RWalkway at +5.3%, and still
insignificant compared to ROSRM. The amount of Wwalkway also stays almost the
same. Most importantly, Psignal increases by +12.5% from ROSRM, and even a tiny
bit more for RWalkway. This shows that RAPS performs as intended, as it leaves
the Wwalkway almost unchanged, while significantly increasing the integration of
pedestrian walk light signals. Finally, the two prioritizations show that they can
already contribute individually significant improvements when compared to ROSRM.

Shorelines Prioritization (RShoreline). Again, RShoreline does not consider pedes-
trian walkways, significantly increases Cinformal (+52.6%), and benefits from a better
shoreline availability, i.e., Sreal is 31.4% (for random routes it was only 24.5%).
Also, the amount of required virtual shorelines is lower for this setting, i.e., 7.9%
vs. 12.3% for the random route evaluation, mostly due to a significant increase in
available pedestrian walkways, which requires less, and also shorter, virtual segments
to connect these. We had to limit the maximum route length to 250 meters in this
evaluation, for similar reasons as before, rendering the average distance incomparable.

Final Route (RFinal). We again compare RFinal’s differences to ROSRM as well
as our shoreline-based prioritization in table 3.4. Similar to the random route
evaluation, integrated shorelines proposed by RShoreline are mostly kept in the final
routing process, while Psignal is reduced by a similar amount, i.e., -16%. Interestingly,
the amount of integrated pedestrian walkway has decreased by -16.7%, but this is
easily explained by the much better OSM data availability, as in urban areas, there
are not only much more pedestrian walkway instances labeled, but building facade
nodes next to these as well. Thus, RFinal integrates more available shorelines at the
cost of using less pedestrian walkways, again a trade-off that was to be expected.
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Figure 3.13: These example directions are constructed from our generated route and exhibit
a great level of detail as well as especially relevant information for Orientation&Mobility’s
shorelining: (0) “Please turn north until you reach a building.”, (1) “Follow the facade to
the left for 6 meters.”, (2) “Continue at 1 o’clock for 14 meters to cross a driveway.”, (3)
“Follow the facade for 13m.”, . . . , (11) ‘Continue at 10 o’clock for 5 meters.”, (12) “You

have reached your destination.” Map data © OpenStreetMap contributors.

Directions

Our final algorithm allows us to generate very fine-grained route segments, i.e., down
to an individual shoreline level (cf . Figure 3.13) as we had originally anticipated. To
generate directions of this low-level granularity, we compare an upcoming segment’s
relative location to the last considered position, in order to provide relative directions
as well as the travel distance towards the next location. Furthermore, we utilize
available relevant OSM data, i.e., a segments specific type, e.g., whether it is a real
or virtual shoreline, a walkway, or a road. Finally, we integrate information about
upcoming nodes, e.g., an APS, an informal pedestrian crossing or a driveway crossing
between building facades, to provide relevant spatial information of the route ahead.

Wizard of Oz

Due to the unavailability of GNSS receivers that provide sufficiently precise position-
ing information, i.e., less than 1m in urban areas, we could not test our proposed
shoreline level of routing approach under real conditions. Instead we had to rely
on a Wizard of Oz type of user experiment (Dahlbäck et al., 1993; Kelley, 1983,
1984), where we created the navigation instructions for two 400m long routes before-
hand—generated by our impairment aware routing algorithm—and manually read
these out to the single participant, who had been blind since birth.9

9Many thanks to Gerhard Jaworek for participating in this experiment and his valuable feedback.
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(a) (b)

Figure 3.14: The routes for the Wizard of Oz experiment. We tested our proposed shoreline-
based routing on two routes in an urban neighborhood that contained many building facades,

driveways and pedestrian crossings. Map data © OpenStreetMap contributors.

Similar to our public transit-based evaluation, both routes start or end at a public
transit station. They contain an informal pedestrian crossing, a zebra crossing,
and multiple driveways that interrupt natural shorelines, i.e., building facades (cf .
Figure 3.14). Since one of our main motivations was to understand how shoreline
aware routing could improve general navigation information in urban scenarios,
the two routes mostly consist of such real and virtual shorelines. Furthermore, we
investigated in a questionnaire, whether our fine-grained navigation instructions would
improve the participant’s spatial awareness, asking specific questions, amongst others,
about his confidence during the experiment, whether he appreciates the knowledge
being presented in advance, how detailed these instructions should be, how reliable
he considers the instructions, whether the information increased his spatial awareness
and whether he had any further suggestions to improve this approach.

The participant neither knew the two routes beforehand, nor were they in an area the
participant was familiar with, to simulate a completely unknown area, usually a very
stressful experience for people with visual impairments and thus preferably avoided.
A supervisor would follow closely to ensure the participant’s safety, interactively read
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the generated directions out loud at predefined points, while moving along the route,
simulating the usage of purely GNSS-based routing.

Results & Suggestions. The participant greatly appreciated information about
the precise location, relative direction, e.g., when rounding a corner, and remaining
length of a natural shoreline. Information about the next shoreline as the current
one ended was found invaluable, especially the specific direction in which to continue
and how far until the next shoreline would be reached. Receiving knowledge about
the type of gap to cross between shorelines in advance, e.g., whether it is just a
driveway or a much larger road, was also very much appreciated. Furthermore, the
participant liked the clock system to communicate relative directions very much (cf .
Sánchez and de la Torre (2010)) and even mentioned that it felt very familiar due to
it also being used to describe food piece locations on a plate, a happenstance we had
not been made aware of before integrating it into this experiment.

All in all, the participant very much valued our provided shoreline level information,
and would like to continue using it, especially for unknown terrain, but also in daily
navigation scenarios on common errands. Most importantly, the participant noted a
much better ability to deal with upcoming issues, i.e., shoreline gaps or road crossings,
due to information on how to proceed being provided in advance, increasing the
spatial awareness of the following route steps. Furthermore, the participant wished
for the possibility to interactively ask the navigation system about even farther away
shoreline segments, when there was time for it, e.g., while following a long segment,
as well as additional information about an intersection’s layout. The participant also
suggested to create a pilot tone for virtual shoreline segments, or even use tactile
feedback on the cane itself, in order to better locate the next real shoreline segment,
and continue towards it in a straight line without veering of. Finally, the participant
insisted that the interface must be highly configurable, especially the verbosity level
and repetitiveness, but also the type of direction announcement, as some users might
prefer relative degrees or north/south instructions instead of the clock system.

Although this Wizard of Oz experiment was of very limited scope, i.e., a single
participant on two short routes in an unknown area, it provided us with an in-
valuable amount of insight w.r.t. the potential usefulness of our proposed approach
and additionally desired features that should be investigated further in the future.
Furthermore, it partly inspired us to start working on our visual shoreline detection
from a street level perspective, which we discuss in detail in section 4.2.
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3.2.4 Conclusion

We have proposed a routing approach that provides measurable benefits for people
with visual impairments w.r.t. accessible and impairment aware routing generation.
We rely on publicly available geospatial information, however, more precise informa-
tion exists within municipalities that should be integrated as well, a process which
would allow us to also integrate other natural features, i.e., curblines. To the best
of our knowledge, our proposed approach is the first of its kind, i.e., to integrate
and route on such a fine-grained level of detail that is closely modeled after the
specific requirements of people with visual impairments has not been done before.
The statistical evaluation shows an improvement in the amount of used pedestrian
walkways and accessible pedestrian crossings, while there is only a marginal increase
in travel distance. Our proposed approach also yields safer routes w.r.t. our pre-
defined criteria: it prevents uncontrolled crossings, prefers as accessible as possible
pedestrian signals, and most importantly, integrates shorelines whenever possible.
Finally, we have also tested two generated routes in a small Wizard of Oz experiment.

While this first experiment has shown promising results, a further, large-scale user
study is still required. Generated routes still show some room for improvement:
They should rely on verified geospatial information, in contrast to volunteered one
that is often erroneous or incomplete, and include other types of shorelines as well,
e.g., curblines, tactile pavements integrated into pedestrian walkways, and ideally
walkway borders in general. Finally, as is always the case when dealing with very
individual disabilities, personal preferences and abilities have to be accounted for.

A general feasibility study should be performed, to examine the localization precision
of latest generation GNSS systems, once they are publicly available, a feature we
lacked for our own evaluation. However, even a promised average accuracy of only one
meter would be insufficient to communicate the exact location of the next shoreline
segment’s beginning, or the precise location of a pedestrian signal’s pushbutton, as
GNSS-based positioning is usually much worse in urban city street canyons. This
inspired us to further investigate computer vision techniques, to detect such shorelines
(cf . Section 4.2) as well as assist in pedestrian crossings (cf . Section 4.3) in real
time from a pedestrians viewpoint, without relying on GNSS information. All these
systems, when taken together, assist in self-sufficient Orientation&Mobility for people
with visual impairments and are potentially especially useful in unknown areas.





Chapter 4

Mobility

“The first principle is that you must not fool yourself
—and you are the easiest person to fool.”

– Richard P. Feynman

To this day, the White Cane remains the most widely upon relied device for outdoor
mobility of people with visual impairments. Its specific techniques, which make it such
an effective tool, have to be learned in an elaborate process—Orientation&Mobility
(O&M) training. O&M specialists, in many countries an accredited job title and
often supported from the government, instruct people with visual impairments in
these techniques: sensory development, indoor and outdoor cane usage, shorelining,
landmark and compass usage, squaring off (a technique for crossing open spaces), using
pedestrian crossings safely, analyzing traffic patterns, relying on a guide dog, using
public transport, dealing with disorientation, as well as self-protective techniques,
i.e., trailing, and finally techniques for family and relatives, i.e., being a sighted
guide and voice guiding. They provide the necessary training to people with visual
impairments of all ages, often in one-on-one sessions, to learn and further develop
the necessary skills and concepts, whether they are infants, children or adults. Such
training sessions might have to be performed across the entire life span, as sometimes
already known techniques have to be relearned or people move to a different place
and have to get accustomed to it. Primarily, O&M supports people with visual
impairments to maneuver around safely, independently, effectively and efficiently,
but O&M specialists might consult with families or (physical) therapists as well.
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(a) (b)

Figure 4.1: (a) A long cane, primary mobility tool for people with visual impairments,
foldable for easier storage. (b) Different cane tips: (A) Pencil (B) Bundu Basher (C) Ball
Race Overfit (D) Rubber Support Cane (E) Pear (F) Rural (G) Jumbo Roller. These cane
tips allow for customization depending on user preference and situation. cb1 (Sarah Chester)

Orientation&Mobility are two highly interconnected concepts, where orientation
is mostly focused on high-level information about the place we are currently in
(cf . Chapter 3). Mobility, as its complementary counterpart, considers low-level
information about the immediate surroundings, e.g., the accessible section in front,
whether there are any obstacles, or the availability of shorelines, in order to teach
people with visual impairments how to roam a place without tripping, falling, or
bumping into obstacles. Furthermore, specific situations are considered and trained,
such as how to cross a street— this might well be a very specific pedestrian crossing
on the daily way to the workplace—or how to effectively use shorelines in dense
urban areas. O&M specialists instruct the usage of observable cues to improve
location awareness. These are often very specialized and have to be individualized
for each trainee, depending on the urban or rural settings, personal abilities, and
used assistive devices as well as their personalizations (cf . Figure 4.1).

Specifically in cases where O&M techniques rely on features that exhibit a distinctive
visual appearance, computer vision-based techniques can provide relevant assistance
(cf . Section 1.2). For example, Accessible Pedestrian Signals (APSs)— if traffic
lights have been made accessible by communities at all—are first and foremost a
visual semaphore intended for traffic flow management. This visual feature, i.e., a
red or green light, also walk or don’t walk signals (cf . Figure 2.3), can be located

1https://en.wikipedia.org/wiki/White_cane
CC BY 3.0 https://creativecommons.org/licenses/by/3.0/

https://en.wikipedia.org/wiki/White_cane
https://creativecommons.org/licenses/by/3.0/
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and classified using computer vision algorithms and then communicated to the
user. Similarly, zebra crossings are also relying on a distinctive visual feature, i.e.,
clearly visible white stripes as pavement markings, that provide only an almost
imperceptible haptic feedback to the White Cane. While these two specific traffic
related objects are rather easy to detect, due to their very unique appearance, other
relevant obstructions or features are much harder to identify visually. For example,
the accessible section will change its appearance based on whether we are in an
urban or rural area. Additionally, there exists a multitude of different pavements for
pedestrian crosswalks, road surfaces or general walkways, e.g., cobblestones, small
and large paving tiles, concrete, or tar with or without additives like crushed rocks
or synthetic materials, to just name a few of the possible patterns and combinations,
where a sufficient amount of training data would be required for all of these when
using an appearance-based approach. Furthermore, obstacles come in numerous
different forms in urban areas alone, e.g., trash cans, lamp posts, other pedestrians,
bicycles, cars, trucks, plants, construction sites and many more. All of these issues
make it very hard for computer vision techniques to provide sufficient and adequate
certainty. This is especially relevant, since we always have to consider safety issues.
While we try to provide additional information of the kind that cannot be perceived
using a White Cane or GNSS device, we primarily want to inform users as early as
possible about upcoming issues, so they can include it into their decision process.

Therefore, this chapter’s focus is the creation of assistive systems to support mobility,
while the orientation aspects of O&M were already investigated further in chapter 3,
in order to decrease the identified gap between these two (cf . Section 1.3). We
investigate methods to assist in free roaming, i.e., accessible section and obstacle
detection in section 4.1. Moreover, in section 4.2 we focus our efforts on natural
features that are used for O&M techniques, i.e., shorelining. Finally, we investigate
how to improve the accessibility of pedestrian crossings in section 4.3.

Our Contributions. We present an accessible section detection algorithm in sec-
tion 4.1.2, based on depth data, to deal with the issues of varying pavement appearance.
In section 4.2.2, we then propose a novel approach to precisely localize inner shorelines
(Koester et al., 2018), investigate their availability, direction and length, upcoming
gaps, and possible continuations. Finally, we use a deep learning approach to detect
zebra crossings, traffic lights, and other relevant objects, to assist before and during
the crossing process of pedestrian crossings in section 4.3.2 (Koester et al., 2019).
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4.1 Accessible Section & Obstacle Detection

We consider the duality of obstacle detection and accessible section detection, as
both issues pose similar problems. While it is definitely possible to detect many
different obstacle classes with modern approaches, i.e., deep learning, it is absolutely
impossible to detect all of those obstacle classes one might eventually encounter. For
traditional approaches, a specific feature and classifier would be required per obstacle,
for deep learning the difficulty of manually creating features is instead offloaded to
the elaborate process of creating a sufficient amount of training data. Furthermore,
it is much harder to reason about safety aspects for the learned networks that result
from deep learning approaches, than it is for hand-crafted features. We therefore
only consider the problem of detecting accessible section, which implicitly allows us
to detect obstacles as well—a lack of accessible section in a specific location. Our
approach is based on depth data that allows us to provide certain guarantees about
its reliability and working conditions. As detecting the accessible section, and this
includes overhead obstacles as well, is a critical safety technique in O&M training,
we have to value the user’s safety as an important factor, in accordance with our
own key concepts identified in section 2.5.

4.1.1 The White Cane

One of the most relied on accessibility devices for O&M training is by far the White
Cane, an integral part of mobility. It is mainly used to perceive one’s immediate
surroundings, especially the ground plane one is currently walking on, to detect
low obstacles, find small corridors or openings, follow along tactile paving, warn
before drop-offs such as stairs, and many more. However, due to its physical size
limit—people with visual impairments often prefer the lightest version they can
find in order to prevent early exhaustion from the constant arcing motion— it has
a very limited range, i.e., its length is usually only up to 1.5 meters. While this is
absolutely sufficient for most O&M techniques, it would be interesting to significantly
enhance this range. We propose to do this using computer vision and detect the
accessible section in front of the user. We already suggested an earlier approach in
Koester et al. (2013), which was based on the depth reconstruction from Geiger et al.
(2010). However, it was very susceptible to noise in the depth data and not real time
capable. Other relevant related work is further discussed in section 2.3.1.
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Figure 4.2: Accessible section detection example. Right of the accessible section (blue) is
a building’s facade, while the blob on the left is a parked car. Also shown is a detected
shoreline (Section 4.2), as both approaches rely on depth data and share the same techniques.

4.1.2 Detecting the Accessible Section

We propose a more robust approach as compared to Koester et al. (2013), that utilizes
RANSAC, but redefine the problem itself for improved computational efficiency and
robustness. Our algorithm relies on depth data instead of disparity data used in our
prior approach, i.e., here we analyze point cloud data. This allows our algorithm to
also be used with other sensors that provide such depth data, not just the stereo
cameras we used, but also potentially computationally inexpensive Light Detection
and Ranging (LIDAR) sensors that might someday become small and low powered
enough, to be as usable for people with visual impairments as they are for today’s
autonomous driving. In order to deal with some of the issues we have identified in our
previous work (Koester et al., 2013), we propose an entirely new approach of handling
depth data for accessible section detection. Our new approach separates depth data
into distinctive slices and processes them individually, aggregating the results in a
later step. Furthermore, we rely on some basic assumptions, i.e., the White Cane
operator is standing on the accessible section, while the camera is somewhat aligned
to the horizon, i.e., upright. We can therefore assume that accessible section segments
have their normals point upwards and aggregate segments accordingly per slice, and
later over all slices, yielding the accessible section in front of the user.
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Figure 4.3: Our proposed Slice&Dice approach separates depth data into individual depth
slices, based on each point’s z-value, i.e., its distance to the camera (colored point groups).
For further processing, these can be either quantized (Pquantized), mapping the points onto
a plane, or left unchanged (Pbinned), if a binning approach is preferred to not lose any depth
information, largely depending on further processing steps and required depth precision.

Slice&Dice

We propose to separate depth data into individual slices, dice them into further
pieces if found necessary, process them individually, i.e., parallelized, and merge
their results in later processing steps. We refer to this as Slice&Dice, an idiom
meaning “to divide something into many small parts especially to use the result
for one’s own purposes.”2 We thus separate the depth data, i.e., the points of the
point cloud, into thin slices of constant width, separated only by their z-values (cf .
Figure 4.3). Although possible values for the slice width range from a few centimeters
up to meters, it should be largely based on the task and the objects one intends to
detect. Furthermore, each slice can be processed individually, allowing for a high
parallelization. This creates a trade-off between parallelism and detectable object
sizes or boundaries. For our specific use case, we have decided to use ten centimeters
for the width, as it allows us to detect rather small structures, i.e., accessible section
in front of the user, using incremental ten centimeter wide steps, or the beginning or
end of a shoreline segment with a maximum accuracy of ten centimeters as well, as
considered shorelines should be perpendicular to our slices (cf . Section 4.2.2).

Figure 4.4 shows how our slicing approach would separate real world depth data.
Please note how the noise in the depth data increases with the z-value due to
anisotropic noise in the depth reconstruction, i.e., small appearance-based reconstruc-
tion errors have a larger effect for far away points. At the same time, the amount

2https://www.merriam-webster.com/dictionary/slice and dice

https://www.merriam-webster.com/dictionary/slice%20and%20dice
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Figure 4.4: Real world data, sliced and color coded. Please note how the noise level increases
significantly for very far away slices. Also, when setting all slices to a constant width, the
number of points per slice decreases for further away slices due to optical constraints.

of points per slice is decreased with an increasing distance to the camera due to
optical constraints, i.e., further away objects map to fewer pixels on the imaging
chip. While it would be possible to mitigate the second observed effect using slices
of increasing width for increasing distances, we did not further investigate this idea,
although it would also be a feasible possibility for our accessible section detection, as
we require less precision for far greater distances compared to near-range segments.

Our slicing allows model fitting algorithms (the “dice” step), i.e., RANSAC, to
not only fit data to an easier model, i.e., a two-dimensional line or curve vs. a
three-dimensional plane or surface, but also considers much less data in the first
place. Furthermore, this improves noise resistance, as noisy depth data gets either
quantized onto a very discrete set of planes, partly reducing the noise in at least one
dimension, or when using binning, the effects of noise is reduced as well, as usually a
different dimension is considered in our following processing steps.

However, one has to choose the direction in which to slice very carefully, so as not
to lose relevant depth information. For us, this usually means to slice along the
camera’s z-axis, as we are mostly interested in structures that are perpendicular to
our camera’s optical axis, i.e., the accessible section, or objects that are somewhat
parallel to it, i.e., shorelines. Slicing at a large angle to this optical axis would
complicate our next processing steps, as well as render our previously mentioned
assumptions about the accessible section’s relative position invalid.
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Algorithm 2: Slice&Dice-Based Accessible Section Detection
1: SP ← {P1, . . . ,Pn} . slicing, i.e., separate points by depth
2: for all si ∈ SP do . iterate over all slices
3: C := agglomerativeClustering(si) . Cluster points by their normals
4: for all cj ∈ C do . iterate over all clusters
5: rj := RANSAC (cj) . fit line to cluster
6: end for
7: R ← {r1, . . . , rn} . store lines
8: for all rj ∈ R do . iterate over all fitted lines (and points)
9: rj := shorten(rj, cj) . shorten line w.r.t. cluster points

10: end for
11: si := {r1, . . . , rn} . store all segments in slice
12: end for
13: SL ← {L1, . . . ,Ln} . slices with line segments
14: AS := {∅} . initialize accessible segments
15: for all si ∈ SL do . iterate over all slices
16: for all lj ∈ Li do . iterate over all line segments
17: if horizontal(lj) then . consider only (almost) horizontal segments
18: if AS = {∅} then . initialize if empty
19: Ai := {lj}
20: else if height(lj) - height(A) then . if height similar or less
21: AS := {. . . , {Ai, lj}, . . .} . add to accessible segments
22: end if
23: end if
24: end for
25: end for
26: for all AS i ∈ AS do . connect segments to enclosed section
27: connectSegmentsEndsToNextSlice(Ai,Ai+1)
28: end for

Accessible Section Detection

We start by processing acquired depth data with our proposed Slice&Dice approach:
The data is sliced into ten centimeter wide slices for further processing, allowing a
maximum accuracy of ten centimeters in the camera’s z-axis. We chose this specific
slice width as a trade-off between possible parallelism and detection accuracy, as a
distance wise quantization into ten centimeter wide steps was found to be sufficiently
precise in our prior experiments for accessible section detection, e.g., noise prevents
further precision for increasing depths. We use a “Stereolabs ZED”3 camera to

3https://www.stereolabs.com/

https://www.stereolabs.com/
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acquire the depth data, which has a vertical field of view of 60 degrees (90 degrees
horizontal) and provides depth data between 0.5 and 20 meters. This provides us with
∼200 slices per frame that we have to process further, i.e., cluster and agglomerate.
It must be noted that due to optical constraints of any camera, i.e., a limited field of
view, this first slice is usually at a distance of one to two meters from the camera,
assuming an average camera height of ∼1.4 meters, when carried at chest level, a
vertical field of view of 60 degrees, and a horizon aligned camera—and often contains
the first pieces of accessible section visible in the data. However, as the White Cane
usually already considers ranges of up to almost 1.5 meters (cf . Section 4.1.1), any
arising gap to our accessible section detection is non-existent most of the time.

Slice Wise Clustering After slicing (cf . Algorithm 2), the points in each slice are
pre-clustered using their surface normals, which are also generated from the depth
data, i.e., the ZED already provides these, but it is also possible to generate them
from the points in each slice using their neighbors. Line 3 uses an agglomerative
clustering approach that processes each slice along the its x-axis, i.e., perpendicular
to the camera’s optical axis, and if we assume an upright camera, from left to right.
It creates a new cluster whenever it encounters a point normal that significantly
deviates from the currently created clusters, i.e., more than 25 degrees, as we use the
Manhattan World Assumption (Coughlan and Yuille, 2000), i.e., urban areas exhibit
mostly horizontal or vertical surfaces. Line 5 then uses RANSAC to efficiently fit
a line to each generated point cluster. Line 9 afterwards shortens these RANSAC
matched lines to line segments, based on each clusters points (cf . Figure 4.5a).

Segment Agglomeration In an agglomerative approach, similar to Koester et al.
(2013), we start with the first slice, i.e., the one closest to the camera (cf . Algo-
rithm 2). Lines 15–16 then (slice-wise) process each line segment: Line 17 performs a
horizontal(. . .) check for each line, which in two dimensions only has to consider the
slope of the line, again assuming a somewhat upright camera. Lines 18–22 then collect
all horizontal line segments: We agglomerate only the lowest one—or multiple ones
if they share the same relative height. We then proceed to the next slice, where we
again search for horizontal line segments that match the relative height of our already
collected segments. Lines 26–28 create our final detection from the segments in A,
i.e., an actual enclosed section and not just individual line segments, by connecting
the ends of each segment to the nearest segment ends of an overlapping next slice, if
there are any available (cf . Figure 4.5b).
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Figure 4.5: We cluster each slice’s points and use RANSAC to detect line segments (a).
These are then pruned using their slope, only keeping horizontal segments. Our final
agglomeration step, starting with the closest slice, iteratively collects these line segments
and connects them into an enclosed section, i.e., the final accessible section detection (b).

4.1.3 Evaluation

Although we recorded a dataset using the ZED camera (cf . Section 4.2.3), we cannot
evaluate on this dataset, as there are no accessible section labels available for it
and manually creating these is extremely time consuming, as we know from prior
work. Table 4.1 therefore compares our Slice&Dice approach to our previously
proposed algorithm that is also based on depth data (Koester et al., 2013), i.e., on
the FlowerBox4 dataset we had created for its evaluation. Interestingly, our proposed
algorithm, based on the Slice&Dice technique discussed previously, achieves very
similar results, it performs only slightly better on average. This is mostly due to it
using a very similar approach to gather the accessible section in its final processing
step, i.e., it agglomerates horizontal plane-stripes between the line segments of two
neighboring slices, whereas in Koester et al. (2013) we collected ground plane patches
whose plane normal was pointed upright for a camera aligned to the horizon, but also
did this starting on the lower image border, iteratively considering the next patch
from bottom to top, for each vertical column of ground plane patches. Therefore, it

4https://cvhci.anthropomatik.kit.edu/people_dkoester.php#FlowerBox

https://cvhci.anthropomatik.kit.edu/people_dkoester.php#FlowerBox
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Table 4.1: Accessible section detection results compared to Koester et al. (2013) on the
FlowerBox dataset. We compare: Area under the curve (AUC) for

∫ROC and precision vs.
recall (

∫PR), as well Fβ-scores for β = 0.5 and β = 1, and finally the accuracy (ACC).

Koester et al. Slice&Dice∫ROC ∫PR F0.5 F1 ACC ∫ROC ∫PR F0.5 F1 ACC
Alley .928 .882 .937 .916 .901 .947 .901 .949 .922 .913

Alley L. .892 .856 .941 .911 .862 .935 .896 .959 .924 .894
Bicycle .753 .629 .843 .869 .676 .780 .653 .857 .874 .685

Car .850 .679 .763 .739 .851 .867 .690 .774 .745 .871
Corridor .819 .665 .816 .750 .796 .866 .674 .822 .764 .804

Fence .855 .750 .878 .834 .815 .871 .772 .885 .848 .832
Flower-box .783 .607 .838 .789 .724 .838 .651 .869 .813 .783

Hedge .836 .827 .882 .872 .814 .862 .853 .899 .880 .828
Ladder .836 .629 .757 .736 .868 .798 .682 .814 .802 .823
Narrow .958 .924 .922 .928 .929 .969 .941 .947 .936 .953

Pan .759 .548 .843 .861 .650 .788 .632 .883 .870 .677
Passage .850 .733 .889 .821 .805 .863 .745 .897 .827 .824
Railing .760 .626 .842 .852 .696 .728 .606 .851 .855 .650
Ramp .803 .680 .870 .839 .731 .815 .701 .889 .855 .755
Ridge .854 .622 .230 .304 .199 .837 .603 .209 .270 .277

Sidewalk .929 .945 .943 .947 .913 .945 .956 .958 .962 .937
Sidewalk 2 .947 .914 .913 .912 .904 .969 .938 .927 .919 .913
Sidewalk L. .889 .942 .954 .950 .912 .913 .968 .971 .964 .925

Sign .890 .835 .933 .899 .854 .922 .849 .945 .919 .869
Street .940 .885 .919 .904 .917 .964 .912 .934 .925 .926

∅ .857 .759 .846 .832 .791 .874 .781 .862 .844 .807

also suffers from similar inaccuracies when assembling the individual parts in the
entire accessible section and loses a lot of precision in the border regions.

While the area under the ROC curve (
∫ROC) as well as the precision vs. recall curve

(
∫PR) only improves by a few percent, the accuracy (ACC) is almost unchanged.
However, the differences between the two F-scores are more interesting to us, i.e.,
the improvement is slightly larger for F0.5 (+1.6%) when compared to F1 (+1.2%), at
least suggesting that while still an insignificant change in both cases, our current
approach detects the accessible section at a slightly higher precision, which we prefer
over having a higher recall, since we consider this a safety critical feature.
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4.1.4 Conclusion

We propose an approach for accessible section detection based on depth data, that
implicitly also considers its dual problem—obstacle detection. Therefore we introduce
our Slice&Dice technique, which allows us to separate depth data into individual
slices and further process these separately. This has the added benefit of allowing
us to highly parallelize this computation and also simplify some computational
steps, i.e., we can now focus on the detection of horizontal point clusters within two
dimensional planes, instead of having to detect a plane in three-dimensional data.

For our evaluation, we compare our current approach to a previously proposed
technique (Koester et al., 2013) on an accessible section detection dataset, i.e.,
FlowerBox, and achieve slightly better results. The evaluation also suggests a slightly
higher precision, which fits with our previously defined key concepts (cf . Section 2.5),
as detecting the accessible section in front of a user is a safety critical feature,
and therefore precision should be valued higher than recall in such a scenario. If
we detect accessible section in front of the user, it’s better to err on the side of
caution, i.e., we would rather miss a part of accessible section than to provide a
false positive detection, potentially causing harm to the user that trusts and relies
on our information. Consequently, we must further investigate this approach’s issues,
in order to improve the overall accuracy of our algorithms, not just with respect
to precision— for recall as well—and create a highly reliable accessible section
detection system in the near future, as part of a complete Orientation&Mobility
system. Figure 4.2 shows an example of our generated accessible section on a
pedestrian walkway, where the accessible section extends forwards between a parked
car on the left and a building’s facade on the right.

It must be noted that, although accessible section detection techniques increase the
perceivable range of the White Cane, it is not straightforward to communicate this
information to the cane operator. This is a field that also requires further research,
as providing this information to the operator must be performed in a way that is not
overwhelming to the user, but still increases spatial awareness for the immediately
available accessible section. Ideally, we would integrate this technique with other
detection methods, such as the shoreline detection technique presented in section 4.2
and also integrate high-level information from O&M’s orientation aspect.
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4.2 Shorelines

Shorelines are an important aspect of Orientation&Mobility White Cane techniques,
as they provide people with visual impairments with a physical object to follow along
for a prolonged period of time. O&M roughly differentiates inner shorelines—the
junction of accessible section and walls—and outer shorelines—the junction of
pavement and curblines— in a pedestrian walkway scenario. However, generally
speaking, each haptic edge can become a natural shoreline, as long as it is sufficiently
perceivable with the White Cane, e.g., walkway borders towards grass or a small
path of cobble stones. In addition to natural shorelines, there are also some artificial
ones being used, e.g., tactile paving that is installed in ever more locations like on
train platforms, tram stations, or around zebra crossings (cf . Figure 3.3).

An inherent problem between shorelines and the White Cane is that shorelines are
imperceptible from a distance. We therefore propose to help locate shoreline from
afar and notify about their existence, so that we can provide guidance for people
with visual impairments in locating those in the first place. Such an enhancement
of the White Cane is especially useful after pedestrian crossings, passing driveways,
going around corners, and many other situations—every time a shoreline exhibits a
discontinuity due to its physical nature. This is particularly beneficial in unknown
locations, as it is almost impossible for people with visual impairments to already
have a decent spatial awareness of their surroundings in these situations.

4.2.1 The Shorelining Technique

Shorelining is an essential part of O&M. Therefore, we investigate its usage and try
to provide additional assistance, enhancing the White Cane’s abilities with computer
vision, as this important O&M technique is used for indoor, as well as outdoor
scenarios. While shorelining requires the operator to swing the cane in an arcing
motion in front of the body and to touch the ground shortly on the opposite side
of the forward facing foot, there also exist other techniques such as trailing, where
the cane is merely held as a protection while the back of the hand is used to follow
along a wall—our proposed approach can provide assistance in both cases. The
cane should always be on the opposite side of the forward foot in order to protect,
and constantly check the accessible section in front of, the cane operator, before the
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Figure 4.6: Four natural shoreline examples in urban areas, mostly building facades and
fences. The green dotted line is our detected shoreline location, while the yellow dashed
line represents the reference label: (a) a building’s facade, (b) a stone-fence, (c) a driveway
creates a gap in the shoreline, and (d) another stone fence, where (b-d) are zoomed in
cutouts for improved visibility. In all four cases our algorithm very accurately locates the
shoreline’s position and direction, even when it has large gaps or continues further away.

backward foot is going to move forward. A natural shoreline is merely touched from
time to time in this process, while the cane operator follows along its direction.

We therefore detect, locate, and track inner shorelines, to inform the user about
their existence, relative location, endings, and possible discontinuities beforehand.
We also provide a straight path between two natural shoreline segments. This
process increases spatial awareness and allows to more comfortably explore terrain
self-sufficiently. Since this assistive approach was partly inspired by our prior work
on shoreline level routing (cf . Section 3.2), we reuse the real and virtual shoreline
definitions from section 3.2.2 (cf . Figure 3.12). Relevant related work to this approach
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is discussed in section 2.3.2, although it has to be noted that, to the best of our
knowledge, so far there exist no other work that tries to assist in shoreline related
issues from a body worn camera. Only Coughlan and Shen (2007); Coughlan et al.
(2006) and Ivanchenko et al. (2008a) proposed curb and shoreline detection systems,
however, these were intended for blind and partially sighted wheelchair users, a
specific application which provides a very stable camera platform and also mostly
detect drop-offs, but do not track shorelines and assist in maneuvering their gaps.

4.2.2 Shoreline Localization

We propose a novel shoreline detection approach that tries to visually detect and
track shoreline segments from a first person view, i.e., a body worn camera that
provides depth data to us. We focus on a mostly urban scenario, as our focus lies
on inner shorelines, i.e., the junction between the pedestrian walkway and building
facades or walls. Gaps or discontinuities in shorelines are also considered, as we
track individual segments and virtually fill these (cf . Figure 4.6). We furthermore
can inform about reachable shorelines in unknown locations. Ideally, this kind of
information can benefit from, as well as integrate itself into, routing approaches, such
as our impairment aware routing presented in section 3.2.1.

Our shoreline detection and localization algorithm is based on the Manhattan World
Assumption—where cities that are build on a cartesian grid lead to prominent edges
in taken images (Coughlan and Yuille, 2000). This lets us assume that in urban
areas a White Cane operator will often follow along a natural shoreline, which most
likely points at a vanishing point. We localize this vanishing point using image-based
approaches and track its position in real world coordinates over time. This allows us
to determine a ROI for our shoreline detection, as shorelines are normally located
below the vanishing point to the left or right side, which could be retrieved from
shoreline level routing information. We also track shorelines and their individual
segments over multiple image frames, which greatly stabilizes the detection over time,
as can be seen in the evaluation. Our only other assumption is the existence of a
vertical segment adjacent to the ground plane, which is mostly true for urban areas,
but we also consider not completely flat or absolutely vertically surfaces, i.e., hedges
or even cars parking in a row.
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Figure 4.7: We project the frame wise detected vanishing points from image coordinates
into spherical coordinates, add these into an accumulator array, and use a frame wise decay
to finally report the cell with the maximum value as our tracked vanishing point over time.

Visual Odometry. In this work, we rely on the “Stereolabs ZED” camera that
provides depth data and visual odometry as well. When we cannot use the ZED or
don’t have an odometry available, we also rely on “LIBVISO2”5 (Geiger et al., 2011).
With a visual odometry, we can simply estimate our general direction of movement
by averaging the location differences of our last ten camera frames—the user’s last
locations. We rely on this estimated direction to detect and score possible shoreline
candidates located in front of the White Cane operator, since a shoreline that is
being followed should be aligned with our walking direction, or not be relevant to us.
Furthermore, in a Manhattan World, the shoreline should also be aligned with the
most dominant vanishing point. If a detected shoreline meets both these assumptions,
it significantly increases its likelihood of being a relevant shoreline candidate to us.

Vanishing Points. We use an image-based—not depth-based—technique to detect
vanishing points in each frame. Our approach is similar to Wu et al. (2016), where one
first difference is that we use another line detection approach, proposed by Akinlar
and Topal (2011). Their EDLines system is a very fast straight line search algorithm.
We use these line segments and immediately discard any almost horizontal or vertical
segments, as they can’t point towards our vanishing point— in a Manhattan World
only diagonal and similar edges point to the vanishing point we are interested in. We
then weight our remaining line segments based on their diagonality, i.e., they should

5http://www.cvlibs.net/software/libviso/

http://www.cvlibs.net/software/libviso/
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be at an angle close to 45◦, and length, i.e., longer segments are weighted higher as
well:

ωi = |Si|
Idiag

∗ exp
(

(abs(θSi
− 90)− 45)2

−2 · (45)2

)
, (4.1)

where Si is the current line segment, Idiag the maximum line length (image diagonal)
to normalize the segments lengths, and θSi

the segments angle (between 0 and 90),
where the angular weight is normalized as well. Finally, we formalize a RANSAC
model (Fischler and Bolles, 1981) to determine the vanishing point candidate-based on
our remaining segments. This point is the projection from the image into real world
coordinates and tracked over multiple frames. The vanishing point detection could
also be performed in depth data, but we did not investigate it further. The frame-
based vanishing point is tracked over time using spherical coordinates, implemented
as a two-dimensional accumulator array with built-in decay, i.e., we represent the
spherical surface in an array, where the maximum value over all cells yields our
averaged vanishing point coordinates (cf . Figure 4.7). This process stabilizes the
vanishing point over time in our real world coordinate system, complicated by our
constantly moving camera. Thus, when we maneuver around a corner or perform a
turn in general, the old vanishing point eventually disappears, as it simply decays
over time, while a new candidate will be acquired over time in the same manner.

Shoreline Detection

After having calculated the vanishing point in real world coordinates, we can use it
to score shoreline candidates. We detect these candidates in each individual frame,
but also agglomerate them over time, always in real world coordinates. Finally, we
always only report the shoreline with the highest confidence level in this scenario.

We base our shoreline detection on the same Slice&Dice approach as described in
section 4.1.2 (cf . Figure 4.8). The ZED stereo camera not only provides depth data
as a point cloud, but also calculates surface normals per point. We use these surface
normals to distinguish points between ground (an ideally upright normal) and walls
(an ideally horizontal normal) and cluster accordingly, i.e., we first collect all normals
in an accumulator array (cf . Figure 4.7), and then identify the two largest clusters
that are ideally separated by exactly 90 degrees (horizontal ground plane vs. vertical
building facade). This approach allows us to not require a horizon aligned camera
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Figure 4.8: Our Slice&Dice-based clustering (cf . Section 4.1.2). We cluster points slice-wise
according to their surface normals, use a weighted RANSAC to detect almost horizontal
as well as sufficiently differing line segments, and determine their 2D-intersections in the
slice’s main plane (a). We then generate a shoreline candidate from these intersections (b).

and is thus much robuster to inadvertent camera rotations. Finally, we again rely
on RANSAC, however here we use “Optimal Randomized RANSAC” by Chum and
Matas (2008), and an implementation provided by Raguram et al. (2013), where our
weight is the normalized angular difference for each point’s surface normal and an
assumed ideal normal, i.e. the one we identified for our two largest clusters.

This provides us with one line per cluster and by calculating their intersections,
where we assume all slice’s points to be within a plane, we gather shoreline segment
candidates per slice, which we compute in a highly parallel manner. The actual
shoreline candidate itself is then determined, again based on a weighted RANSAC,
which tries to fit all shoreline segments onto a single line in our real world coordinates.

Shoreline (Segment) Tracking

We use slices of roughly ten centimeters in depth, thus our shoreline segment length is
ten centimeters as well. We track these frame wise generated segments in real world
coordinates over time, as well as the whole shoreline itself, to increase robustness.

We accumulate individual shoreline hypotheses, constantly merging sufficiently close
ones, where their score is added as well, similar to the accumulator array used to
track vanishing points. We only receive a single shoreline candidate per frame, this
step is therefore not computationally expensive, as we usually only have to track a
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few hypotheses over time, often merged into a single hypotheses after a few more
frames, due to the robustness to noise of the entire detection pipeline. We also use
a decay over time, similar to the vanishing point detection, to slowly fade out old
hypotheses and report only the highest scoring hypothesis of our hypotheses pool.

To track shoreline segments, we use the same approach as for shoreline hypotheses,
however, here we do so per slice. This requires the additional step of having to match
slice-based segment hypotheses in our current frame to the ones we already have. We
do this by simply calculating the slice offset in real world coordinates, using the next
best match. In this process, similar to whole shoreline hypotheses tracking, we create
many of such hypotheses for each shoreline segment and also for each real-world
coordinate slice. While this might seem to be much more expensive processing-wise,
it is actually not so, since after the initial matching is done, each slice is updated
independently of the other slices, allowing for a parallelized process here as well.

Shoreline Discontinuities. We furthermore deal with the issue of shoreline dis-
continuities, or gaps. Luckily, our shoreline segment hypotheses tracking already
contains this information. When we cannot find a segment for a particular real
world location, a gap develops over time, as no hypotheses can be generated for
that real world slice. This could either mean that a shoreline ends or that there is a
discontinuity. We can now use our tracked shoreline candidate, project it through all
the segment hypotheses of each slice, and check whether there exists a segment in
each slice with a sufficiently high segment score. That way we can find out, whether
the shoreline has ended or just exhibits a gap, which means we can virtually close the
gap and assume the shoreline continues in the future. Again, very precise shoreline
level routing information would be very helpful in these cases.

4.2.3 Evaluation

We evaluate our proposed shoreline detection and tracking algorithm by recording
sixteen sequences in an urban area (cf . Figure 4.6), along multiple street sections
with building facades and gaps in-between, where available shoreline segments where
labeled afterwards. We analyze the three-dimensional angular deviation, i.e., the
angle between two vectors from the same origin, here ignoring the distance offset.
Furthermore, we report the minimal distance offset, i.e., the three-dimensional
averaged distance of a proposed shoreline candidate to each point on our labeled
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Table 4.2: Results for our Slice&Dice-based shoreline tracking approach, comparing frame
wise and tracked detections, where angular errors are given in degrees as mean (θ̄), median
(θ̃), and standard deviation (δθ), and similarly for distance errors in centimeters (d̄, d̃, δd).

frame wise tracked
θ̄ θ̃ δθ d̄ d̃ δd θ̄ θ̃ δθ d̄ d̃ δd

1 1.16 0.86 1.37 2.66 2.41 2.14 0.87 0.71 0.84 2.29 1.57 2.01
2 1.49 0.91 1.85 5.39 2.90 14.69 1.34 0.74 1.76 9.33 2.06 27.41
3 1.62 1.12 1.57 5.26 3.92 9.76 1.08 0.70 1.06 4.23 3.74 3.76
4 1.18 0.85 1.23 4.09 3.63 3.38 1.14 0.65 1.89 3.84 2.67 5.62
5 1.23 0.71 3.50 11.06 4.20 56.90 1.15 0.52 2.19 6.37 4.20 32.94
6 1.61 0.90 2.60 7.35 2.63 22.57 1.42 1.06 1.21 3.30 2.59 9.70
7 1.48 0.97 4.01 3.62 2.33 5.99 1.24 0.90 1.79 2.70 1.96 2.55
8 1.42 0.85 3.00 16.21 2.87 125.79 1.18 0.79 1.06 3.87 2.69 10.57
9 1.58 0.95 2.84 8.12 3.51 17.00 1.30 0.96 1.73 4.33 1.97 12.54
10 1.60 1.06 1.50 4.51 2.47 8.26 1.57 1.02 1.62 2.78 1.93 7.74
11 1.74 0.98 2.37 3.56 2.45 4.05 1.23 0.78 1.55 4.68 2.36 6.05
12 1.18 0.85 1.06 3.46 2.81 2.82 1.15 0.83 1.06 3.92 2.86 3.16
13 1.85 0.97 6.23 3.82 2.30 15.60 1.16 0.76 4.17 5.01 2.49 6.57
14 1.76 1.03 5.40 3.60 2.74 10.18 1.29 0.97 1.06 2.80 2.20 2.74
15 1.36 0.95 1.95 11.72 3.20 38.62 1.26 0.88 1.67 4.16 2.60 15.70
16 1.46 0.99 1.50 4.44 3.26 5.90 1.19 0.74 1.36 6.20 2.32 22.70

∅ 1.48 0.93 2.62 6.18 2.98 21.48 1.22 0.81 1.63 4.36 2.51 10.74
∆ -18% -13% -38% -29% -16% -50%

groundtruth segment, as shoreline candidate and label are usually a set of skewed
lines that do not intersect each other. Table 4.2 shows that our proposed hypotheses
tracking and merging algorithms significantly reduce angular and distance errors
(compared to frame wise). While the distance error’s standard deviation is halved,
mean and median errors are reduced up to almost one third. We also evaluate
our shoreline detection algorithm on a per segment basis. Here, the slice depth for
the Slice&Dice approach is 10 centimeters, which also sets the individual shoreline
segment length to be 10 centimeters. We choose this specific size, as it represents a
good compromise between speed and spatial resolution, where for example half a
meter would have been way to coarse for our intended fine-grained guidance assistance.
Furthermore, it would be very labour intensive and error prone to create labels with
a much higher precision, i.e., less than a few centimeters. Figure 4.9 shows that,
although depth data usually degrades with increasing distance due to a significant
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Figure 4.9: Shoreline segment-based evaluation, where we compare individual segment
Fβ-scores for all encountered segment distances from the camera up to 23 meters.

increase in noise levels, our F-scores drop, between three and twenty meters, by
∼0.4 for β = 2, by ∼0.35 for β = 1, and finally, only by ∼0.2 for β = 0.5. We thus
conclude that if we detect a segment, we do so with a very high confidence, as the
comparison between the different F-curves shows. This is an especially important
factor of our system, as we are again, similar to the accessible section detection,
providing safety critical information to the user that should be as reliable as possible.

4.2.4 Conclusion

We proposed a novel algorithm to detect shorelines from a first person viewpoint,
i.e., from a White Cane operator’s perspective. Our approach relies on the detection
of vanishing points and visual odometry and detects and tracks natural shorelines, in
segments of varying size. It shows very promising results, as it detects shorelines very
accurately and reliably. Furthermore, the included segment-based information allows
our approach to provide information to the operator when a shoreline ends or to
bridge discontinuities, i.e., to guide the operator towards the next shoreline. It would
be very beneficial to integrate this approach with our shoreline level routing system
proposed in section 3.2.1, as a combination of both systems could provide great
assistance in shorelining. Moreover, an adaptation to less visible natural shorelines
is needed, i.e., curblines or low border stones. Finally, the actual usefulness of our
proposed approach should be further investigated in a follow-up user study.
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4.3 Pedestrian Crossings

Pedestrian crossings provide an important aspect in urban areas—a means to safely
cross the street, even in dense traffic. However, for people with visual impairments,
available crossings are often a major concern and cause of insecurity (Matthews
et al., 2014). While specific crossing installations, such as pedestrian traffic lights at
intersections and zebra crossings, usually located a roundabouts or in the middle of
a street, are commonplace, these provide little to no accessibility features by default.

4.3.1 Crossing Accessibility

Zebra crossings are rarely encompassed by tactile paving on the sidewalk, so people
with visual impairments might just as well walk straight by—without taking notice
of their existence. Pedestrian traffic lights, while much safer to use—when they are
accessible—present multiple challenges. First, the correct signal request pushbutton
has to be located and pressed. Ideally, it would contain relief symbols that describe
not only the crossing direction, but also information about the number of lanes and
other obstacles. Then, the current walk light state must be known, i.e., whether it is
time to start the crossing process or continue to wait for the walk signal.

While there are visual markers, e.g., thin white lines perpendicular to car traffic,
that separate the pedestrian crossing surface from the general road surface, these
are also hardly perceptible with a White Cane. This often causes people with visual
impairments to veer off outside this specific area, especially on busy intersections,
where lots of people and cyclists are all crossing at once and might bump into each
other. Also, there might be additional noise from nearby cars in other traffic lanes,
and they might walk straight into waiting cars, leading to further disorientation and,
worst case, injuries (cf . Figure 4.10a). Finally, common issues are also crossing the
street too early, too late, or simply too slow before traffic starts again.

Currently, only few accessibility features are widely deployed, although recently
legislation in some countries is forcing communities to include APSs when creating
new infrastructure. However, different regulations might contradict each other, e.g.,
lowered curblines for people with physical disabilities, that allow them to cross a street
with a wheelchair, conflicts with the interests of people with visual impairments,
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(a) cp (b) cba6 (Eliseo Velázquez Rivero)

Figure 4.10: Common accessibility issues that also affect sighted persons: (a) a car invades
a zebra crossing where a pedestrian might possibly walk into it, (b) a very confusing and

complex traffic light for cars, bicycles and buses, as often found in Germany.

that rely on the same curbline to orient themselves before the crossing. While
O&M training tries to compensate such issues for often traveled areas, e.g., from
home to work, it cannot provide these benefits when maneuvering unfamiliar terrain.
Furthermore, intersection layouts can be very confusing, e.g., throughabouts or
complicated Y-junctions with multiple traffic lanes and participants (cf . Figure 4.10b).

We propose to improve this situation with an assistive system that provides low-level,
turn-by-turn style, guidance information, similar to shoreline-based routing (cf .
Section 3.2), but for pedestrian crossings. More precisely, before even reaching the
crossing—given we know from routing data that the user wishes to cross here—we
inform the user about direction and distance of a signal request pushbutton. Next,
we not only communicate the traffic light’s walking state in real time, but also the
distance and direction of the traffic light before and during the crossing process, where
in combination with the crossing area’s borders, we can prevent the user from veering
of into traffic, constantly providing updates about the crossing direction and distance
until the pedestrian walkway is reached. We also provide similar information for
zebra crossings, i.e., location, direction and distance. Finally, we seamlessly integrate
our low-level pedestrian crossing guidance into our high-level routing information.
This information improves spatial awareness before and during the crossing and
assists in general crossing layout understanding. We present related work relevant to
pedestrian crossings in section 2.3.3 and discuss a user study in section 5.2.

6https://commons.wikimedia.org/wiki/File:Invading_pedestrian_crossing.jpg
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/

https://commons.wikimedia.org/wiki/File:Invading_pedestrian_crossing.jpg
https://creativecommons.org/licenses/by-sa/4.0/
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4.3.2 Pedestrian Traffic Light & (Zebra) Crossing Detection

Recently, deep learning methods have completely revolutionized computer vision
(cf . Section 1.2). While, before this paradigm switch, features were created in an
involved manual hand-engineered process, deep learning allows to train these, as
well as the classifier, fully automatically (Krizhevsky et al., 2012). Furthermore, it
achieves better accuracy in almost all domains it has been tried so far and allows us
to tackle problems that were very hard before, however it always requires a sufficient
amount of annotated training data. Especially important in our case is the fact that
a combined object detector, i.e., a detector that tries to detect and locate multiple
classes, has a significant advantage over a system of detectors that are separated
from each other. The successful detection of any given object class can provide
further hints for other object locations, as especially in our case, the relative physical
location between relevant objects, e.g., pedestrian traffic lights and the poles they
are mounted on, are rather fixed.

Although deep learning promises great advantages, we also have to carefully evaluate
its usage. While a hand-engineered feature or classifier might require more manual
labor, it also allows us to explicitly reason about its expected boundaries, failure
cases and general working conditions. Deep learning does not yet provide the same
level of reasoning about such issues, however much work is currently being done to
achieve a better understanding and reasoning about the created networks and their
limitations.

Implementation Details. Nonetheless, we decided to use a deep learning approach
to detect pedestrian crossings. We use different versions of the widely popular You
Only Look Once (YOLO) framework (Redmon and Farhadi, 2017; Redmon et al.,
2016). YOLO is based on the “Darknet” (Redmon, 2013–2016) deep learning library
written in the rather low-level programming language C. We decided to use YOLO
as its implementation details allow us to easily integrate it into our already existing
software framework. Furthermore, YOLO is a quite fast object detector network,
compared to other available options (cf . Figure 4.11), especially important to later
create a real time capable prototype to be used in further user studies, therefore
we based our system on YOLOv3 (Redmon and Farhadi, 2018). After evaluating
different hyper parameters, we settled on a grid size of 13x13, with 5 anchor boxes
each. This setup provided us with the best performance for our specific use case,
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Figure 4.11: YOLO’s speed vs. detection precision on the VOC challenge. YOLOv2
provides a great speedup when compared to other available deep learning architectures

and even YOLOv1. © Redmon and Farhadi

regarding the relevant number of classes we want to detect as well as their averaged
bounding box aspects. We rely on a pre-trained network provided by the YOLO
authors, where the “COCO” (Lin et al., 2014) and “PASCAL VOC” (Everingham
et al., 2010) datasets were used. We then refine the network on our own data, where
we keep the pre-trained feature layers, and only re-train the last eight, i.e., the final
convolution layers and the detection layer, of the 107 layers that YOLOv3 uses.

Data Requirements. In addition to pre-training on COCO and PASCAL VOC,
which YOLO already supports training on, we have created our own dataset. This
was necessary, as no existing dataset contained all the labels we require to truly assist
in pedestrian crossings. While there exists a multitude of autonomous driving related
datasets today, e.g., “KITTI”7 (Geiger et al., 2013) or “Cityscapes”8 (Cordts et al.,
2016), these were found infeasible due to the greatly differing use case. Relevant
objects are perceived from a completely different angle, i.e., the road, not from a
pedestrian walkway. Furthermore, marking strips, pedestrian signals or signal request
pushbuttons are not contained within the labeled objects. Finally, the camera in
these kinds of dataset usually moves very stable and predictable, being fixed to a
car, which allows for nice tracking and reasoning, while for our use case neither is
possible.

7http://www.cvlibs.net/datasets/kitti
8https://www.cityscapes-dataset.com/

http://www.cvlibs.net/datasets/kitti
https://www.cityscapes-dataset.com/
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Table 4.3: Details for our pedestrian detection dataset, used to train and evaluate our
YOLO-based networks. Further details about the classes are provided in the text.

∑ training validation testing
zebracrossing 1406 784 531 91
zebrasign 1559 1203 232 124
bluesign 213 173 6 34
button 3734 2891 206 637
pole 6820 5130 627 1063
strip_left 4890 3556 456 878
strip_right 4781 3512 397 872
crosswalk 5461 3985 512 964
tramlight 1012 742 7 263
walklight 3114 2333 170 611
walklight_active 1459 1099 188 172

We therefore recorded 94 videos and randomly split these the following way: 69
videos for training, 15 videos for validation, and 10 videos for testing. Our videos
include roughly 1400 instances of labeled zebra crossings (frame wise), 1600 zebra
crossing signs, almost 4000 pushbuttons, 10000 crossing boundary stripes (left and
right markers), and 4800 pedestrian traffic lights including their state, as well as
labels for some other classes not immediately relevant for this use case, more details
about the individual classes and their precise split can be found in table 4.3. The
class names are provided as they are used internally in YOLO for training and
evaluation, i.e., “zebracrossing” refers to zebra crossings, “zebrasign” refers to blue
traffic signs that indicate an upcoming zebra crossing to drivers, “bluesign” are
other signs in the data to prevent confusions, i.e., with street name signs, “button”
refers to the yellow signal request pushbuttons, “pole” is the pole that a traffic
light is mounted onto, “strip_left” and “strip_right” are the crossing area pavement
markings, while “crosswalk” is their combination, “tramlight” is a specific type of
pedestrian walk light that is only active to warn of an oncoming tram, and finally
“walklight” and “walklight_active” refer to red and green pedestrian walk lights.
Since we also use common data augmentation techniques, i.e., mirroring (horizontal
only), adding translational jitter, slight rotations, minor shearing, and scaling along
a single image axis, these numbers grow significantly. An example of our data and its
labels, generated by our in-house labeling GUI “sloth”9 are presented in figure 4.12.

9https://github.com/cvhciKIT/sloth

https://github.com/cvhciKIT/sloth
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(a) (b)

Figure 4.12: Examples from our own dataset for pedestrian crossing detection that were
labeled using our lab’s labeling tool “sloth.”

4.3.3 Evaluation

We evaluate our approach on a test split of our own dataset, containing separate
videos that were labeled as well. After testing many different hyperparameters, e.g.,
the input image size, number of layers, grid size, or number of anchor boxes, we report
results for our YOLOv3-based network, trained as mentioned in the previous section.
Our final model size is ∼250 MB for the default 107 layers of YOLOv3, and while
training on our own dataset takes a few days, the system is capable of running at 11
frames per second for an input image size of 416x416 pixels, using a grid size of 13x13
and 5 anchor boxes. For this evaluation, as well as for the user study prototype (cf .
Section 5.2) we use the following YOLO parameters: Our “objectness” threshold is
0.4, i.e., YOLO internally uses a measure to decide for each region proposal whether
there actually is an object contained at all. Furthermore, we use a hierarchical
threshold of 0.5, a value that is used by YOLO when traversing class hierarchies, in
order to determine how deep these trees should be followed, i.e., how hierarchically
specific a detection should be. As we don’t yet rely on such a hierarchy for our very
few classes, this parameter only affects us on our single level and thus degrades to
our detection threshold, i.e., all object candidates with a class probability higher
than 0.5 are considered as a proper object detection. Finally, we use an Intersection
over Union (IOU) value of 0.4, i.e., when YOLO detects overlapping bounding boxes,
this value is used in a non-maximum suppression step to remove the least confident
object detections that overlap each other by more than this third parameter.
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Figure 4.13: ROC results for relevant pedestrian crossing classes (a) as well as additional
ones (b). All relevant classes are detected with high accuracy, while decreased accuracy for

other classes is mostly due to them being underrepresented in our training data.

Figure 4.13 shows our results for the most relevant pedestrian crossings classes, as well
as some additional classes that, depending on a possible prototype implementation,
could prove useful as well. For the main object classes, achieved accuracies are
(mAP is the mean average precision): 98%mAP for zebra crossings, 83%mAP for
traffic lights, 81%mAP for signal request pushbuttons, and 85%mAP overall— the
overall score also includes the additional classes. We generally generate very accurate
bounding boxes for almost all classes and detect relevant objects with a very high
accuracy, especially zebra crossings, as these are sufficiently represented in our
training data (∼1400 instances), given their rather straight forward appearance, a
circumstance we also noticed in section 3.1.3 when detecting zebra crossings in aerial
imagery.

Also very well detected, and classified, are the pedestrian traffic lights, slightly
better for the don’t walk phase light, i.e., red, which is most likely also based on
the simple fact that the data contains roughly twice as many of these, compared to
the walking phase (∼3200 vs. ∼1600). A similar detection accuracy can be observed
for the crosswalk section, i.e., in our case this is a combination of the left and right
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(a) (b)

Figure 4.14: Two example zebra crossing detections, one from further afar (a) and one
close very up, short before crossing it (b). These are further discussed in the text.

pavement markings that indicate the crossing region for pedestrians. However, this
accuracy is slightly skewed, as the crosswalk labels where generated by combining
the left and right pavement markings, if either of both was available. Since a single
marking, either left or right pavement, is already enough for the crosswalk section to
be detected, its accuracy can potentially be much higher than those of the individual
left and right pavement markings, which it actually is. The signal request buttons,
blue zebra crossing signs (as found in Germany, these look completely different in
other countries) and the traffic light poles are all detected adequately well. Only
the tram line light, a red light that warns about an oncoming tram, and the street
name signs, included only to improve the detection score of the zebra crossing signs,
perform significantly worse, but this is most likely again caused by being insufficiently
represented in our own dataset (cf . Table 4.3), and thus were not used for any further
purposes or evaluations—although it very likely still helps discriminate other classes.

Qualitative Results

In addition to the presented numerical evaluation, we also want to discuss a few
qualitative examples presented in figure 4.14 and figure 4.15 in a bit more detail.

Figure 4.14a shows that our approach, as suggested already by the numerical evalua-
tion, is capable to detects zebra crossings even from afar. We also have included the
German zebra crossing notification signs in our data, which are originally intended
for drivers to slow down in case somebody wants to use the crossing as they have to
as per German law, are nicely detected as well, albeit with a lower certainty than the
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zebra crossing itself. The main reason for also including this data is that very often
these signs, although quite small, are long visible before the zebra crossing itself,
often due to obstructions by other traffic participants. As we wanted to inform the
user, and guide him towards, such zebra crossings as early as possible, we found these
signs to be a reliable early indicator for an upcoming crossing, and can therefore
notify a user about it at a very early stage.

Figure 4.14b presents a different zebra crossing, this time shortly before actually
crossing it. While such a case is the one most relevant to people with visual
impairments, as zebra crossings are approached this way, we found that when training
our deep learning-based approach on other car-centric datasets, the detection score
dropped significantly when this viewpoint was reached, up to a point where the zebra
crossing was eventually not identified at all. This is clearly due to this particular
perspective being highly underrepresented in those datasets. Interestingly, the zebra
crossing indication sign is still detected, with almost the same score as before. We
found out that this is only the case when training on the augmented data, where
scaling along a single image axis could produce data instances similar to this one.

Figure 4.15a displays a pedestrian traffic light at a complicated throughabout, taken
during our user study. This and the next image’s locations where not part of our own
training data, they had not been seen before by the network. The crosswalk region,
a combination of left and right pavement markings, is almost correctly identified.
Our approach is capable to detect most pedestrian traffic light related objects with
high accuracy, while the provided distances represent: distance to closest point of
object, median distance to bounding box, and maximum distance to object. We
include these three separate distance measurements in our detections, because when
we use these in a prototype, we often want to report different distances. For example,
when approaching an object, such as a zebra crossing or pedestrian traffic light, it
is important to know how far it is away. Once actually on the crossing itself, the
minimal distance would always be the closest piece of ground perceived by the camera,
while we are actually interested in the maximum distance, i.e., the distance we are
still required to travel until reaching the safe pedestrian walkway again. Please not
that while this approach works reasonably well for ground markings, here it fails
for the pedestrian traffic light and its pole, possibly due to a high noise level in the
depth data, a case where we prefer to report the distance as zero, i.e., the distance
will be communicated to the user as “currently unknown.”
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(a) (b)

Figure 4.15: Two example pedestrian signal detections. These are further discussed in the
text.

Figure 4.15b also shows a similar situation at the same throughabout, albeit on
a pedestrian crossing prior to the first image. In this case, the distances for the
opposing pedestrian are provided by the system, however for objects like traffic lights
these three values should ideally be the same, if noise was not an issue. However, we
found that even when parts of the background were included in the bounding box,
causing its distance to be considered as well, relying on the median value provides
sufficient accuracy for this and similar objects. Also visible in this specific image is,
as mentioned elsewhere, that during the user study a user might partly cover the
camera with its hand and the White Cane while waiting for a traffic light. As can
be seen in this image, this does merely cause any issues. While the minimal distance
for the signal request button is skewed from the hand, the median distance given is
still accurate. The pedestrian traffic light, signal request pushbutton and both poles
are detected with a score of 100%, the crosswalk almost as well, and even the small
pushbutton on the other side of the crossing is already detected. In such a situation
we can provide anti-veering guidance relying on many different objects, causing it to
be highly robust during the entire crossing process.

Further qualitative evaluation of our proposed approach for pedestrian crossing
assistance was conducted as part a larger user study (cf . Section 5.2), where the
images in figure 4.15 were taken from as well, i.e., they contain the actual detections
by our system during the user study.



106 Mobility 4

4.3.4 Conclusion

We have proposed a deep learning-based pedestrian crossing assistance system,
specifically for pedestrian traffic lights and zebra crossings. As there is no comparable
work available, also due to the unavailability of benchmark datasets, we can only
present our own results. However, we already achieve a sufficient detection and
classification accuracy, using an end-to-end trained network, that not only detects
relevant objects for zebra crossings, but also for pedestrian traffic light crossings. We
correctly detect and classify the most relevant objects, i.e., signal request pushbuttons,
pavement markings, and traffic lights. As it is a fully end-to-end trained system, it
can also be used for other locations, where the appearance of zebra crossings (cf .
Figure 2.2) or pedestrian traffic lights (cf . Figure 2.3) might differ significantly (cf .
Section 2.3.3), of course only iff sufficient training data is available.

Our trained network is capable of running at 11 frames per second, but a further
speedup could potentially save on precious battery time, as the GPU would be less
busy and allow for longer testing times of our prototypes. While our network model
size is currently only ∼250 MB, an even smaller network could significantly improve
the usability of our proposed approach for mobile prototypes, as the latter allows us
to use it on other integrated hardware platforms that might only contain a much
smaller GPU memory, i.e., smart phones or specialized mobile computing platforms.
Moreover, detection of additional objects, i.e., cars, pedestrians, cyclists or selected
obstacle classes, might significantly increase the usefulness of such a system. Finally,
class hierarchies should be considered, to improve the detection results for similar
classes, i.e., left and right pavement markings, or different types of traffic lights as
well as their state.

In addition to our numerical evaluation, we also integrated this approach into a
mobile prototype and further analyzed its usefulness as part of a user study with
fifteen participants, presented in section 5.2.



Chapter 5

User Studies

“Testing shows the presence, not the absence of bugs.”

– Edsger W. Dijkstra

One of this thesis’ major motivations has always been to create assistive systems
that provide a measurable benefit to people with visual impairments. Therefore,
after individually evaluating the computer vision algorithms of our proposed systems
using quantitative measures, we have also conducted a few qualitative user studies
to analyze whether our proposed approaches provide real benefits and where they
require further investigation and improvements, similar to the user studies analyzed
in section 2.4, which we have drawn our key concepts from, provided in section 2.5.

Another important aspect to consider is that we never intended to command or
instruct people when relying on our systems, but limit ourselves to inform and
provide assistance where possible and required. People with visual impairments
have to undergo extensive training with Orientation&Mobility specialists to acquire
the necessary skills and the confidence for self-sufficient, truly independent mobility.
We have to not only be careful not to contradict these acquired O&M techniques,
but also to not limit their self-sufficiency by conveying that they must follow along
a robot-like pre-planned path, unless, of course, they desire to do so, because the
situation might require this. Therefore, a major implementation aspect in order to
conduct user studies in the first place is the availability of a truly mobile prototype.
It should always be as small and lightweight as possible, ideally hands-free, real time
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capable, have a long-lasting battery life, be unobtrusive to not raise suspicion by
others, work reliably and not increase safety risks.

We have built a prototype to fulfill these constraints and discuss its hardware details in
section 5.1. Finally, we present the conducted user study of our computer vision-based
assistive systems in section 5.2 and finally discuss its results in section 5.2.3.

Our Contributions. We implement our proposed pedestrian crossing approach
(Koester et al., 2019) presented in section 4.3 into a mobile prototype. Afterwards,
we evaluate its assistive capabilities before and during the crossing period in a user
study as part of the TERRAIN project in section 5.2.

Acknowledgements. This chapter contains joint work with Angela Constantinescu,
who was essential in the organization and conduction of the TERRAIN project’s
user studies, in charge of the interface ideas and implementations, and thankfully
always willing to discuss our crazy ideas for some of the proposed assistive systems.

5.1 Terrain Prototype

After trying out various hardware form factors, we settled on using an off-the-shelf
laptop with an integrated GPU, capable to run deep learning methods. For this
specific prototype, we used a “Gigabyte P35” laptop with a “NVIDIA GTX 1070”
GPU built into it (cf . Figure 5.1). As laptops, and mobile units in general, only
provide very limited processing power and battery time, especially when using the
GPU, we limit the frame rate to five frames per second, adding a delay of roughly
200 milliseconds. To further reduce the battery consumption, the deep learning
network’s inference is only executed when requested by the user or the GNSS-based
navigation, e.g., when approaching a pedestrian crossing, causing the prototype to
only idle around when not actively used. We use “Stereolabs1 ZED” and “ZED Mini”
cameras—both cameras provide a different depth range at a different size and weight
factor.

We rely on the ZED’s depth estimation to provide distance information required
for recognized objects. This distance is especially important, as usually the most
relevant object for immediate guidance, i.e., considered pedestrian crossing aspect,

1https://www.stereolabs.com

https://www.stereolabs.com
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Figure 5.1: The first TERRAIN prototype. It consists of the following components: (A) a
modified backpack to allow for an improved airflow for the laptop inside, (B) an iPhone
inside a sports armband for hands-free usage, (C) a ZED stereo camera mounted to the
backpack’s front straps, making it very easy to put on and take off, and (D) bone conduction
headphones (Bluetooth). Furthermore, not labeled, but in the center of the image, an
additional GPS receiver for logging purposes and a Bluetooth splitter to allow usage of
both headphones at the same time (one for the participant and one for the supervisor).

is also located closest to the user. Therefore, in a post-processing step, we always
consider only the nearest detected object of each class, i.e., we discard other detections
when there already exists a closer one. We must assume that this instance is much
more relevant to the current situation faced by the user— it is only very rarely
that this is not the case for our specific tested situations. The remaining object
detections are sent to the main communication device of the system via Bluetooth
Low Energy (BLE), i.e., the iPhone, which then also relies on BLE to communicate
with the user’s preferred interface devices. We are currently investigating a second-
generation prototype that uses much smaller processing components and hope to
increase the battery lifetime significantly by further improving our algorithms, to
create a less obtrusive system.
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5.2 Terrain Project

As part of the three-year project “Selbständige Mobilität blinder und sehbehinderter
Menschen im urbanen Raum durch audio-taktile Navigation (TERRAIN),” funded
by the “Bundesministerium für Bildung und Forschung”2 (BMBF) between 2016 and
2019, we evaluate our computer vision-based assistance approach in combination with
other O&M aspects. Originally, we intended to evaluate all of our approaches in a
single user study, however, this plan had to be postponed, as it became clear in early
experiments that a combination of all systems would overwhelm the participants and
therefore only evaluate the pedestrian crossing system, while a combination of all
modalities will be evaluated towards the very end of this project. The TERRAIN
consortium consists of multiple partners, i.e., the KIT’s “Computer Vision for Human
Computer Interaction Lab (CV:HCI)”3, the KIT’s “Study Center for the Visually
Impaired (SZS)”4 and the KIT’s “Institute for Technology Assessment and Systems
Analysis (ITAS)”5, as well as the two involved companies iXpoint6, and Papenmeier7.

5.2.1 User Study

iXpoint developed the modular iOS-based smartphone application (cf . Figure 5.2),
used as the navigation interface and central unit that connects all aspects, e.g.,
Bluetooth Low Energy (BLE) bone conduction headphones, a mobile Braille unit,
GNSS information and computer vision input. It provides encapsulated module
environments, which are programmed in a domain specific language (Ritterbusch
et al., 2018) and allows a concurrent development of all its aspects, e.g., the rout-
ing, computer vision, and human-computer interaction model can all be improved
separately and independently. The application furthermore allows a very detailed
configuration of all connected devices and individual parts, where all aspects of the
system can be individualized to personal requirements and preferences.

iXpoint also integrated a roadside aware routing approach based on OSM data (Rit-
terbusch and Kucharek, 2018) that focusses on roadside aware routes and pedestrian

2https://www.bmbf.de/
3https://cvhci.anthropomatik.kit.edu
4https://www.szs.kit.edu
5https://www.itas.kit.edu
6https://www.ixpoint.de
7https://www.papenmeier.de

https://www.bmbf.de/
https://cvhci.anthropomatik.kit.edu
https://www.szs.kit.edu
https://www.itas.kit.edu
https://www.ixpoint.de
https://www.papenmeier.de
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(a) (b) (c)

Figure 5.2: iXpoint’s iOS application, developed for TERRAIN as the main user interface:
(a) the startup screen, a main menu and map area with an activated route, (b) a list of
Points of Interest in the user’s vicinity, (c) the settings dialog for the computer vision unit
and other modules that were used during the user study. cbed8 (iXpoint Informationssysteme)

sidewalk generation, but also searches for the safest possible path and used pedestrian
crossings, similar to our own routing approach (cf . Section 3.2.1). We did not include
our own routing approach, since iXpoint preferred the routing algorithm to rely on
generated sidewalk information over shoreline-level routing, as such detailed data only
has limited availability. However, for this user study, we relied on a fixed GNSS track
that was generated from the algorithm, but making it fixed allows for less differences
between participants and increases reproducibility, although such an approach does
not allow for situation-based re-routing in case of errors.

The speech interface is similar to existing navigation systems, i.e., short, precise
and intuitive, as there was little training time per participant to get accustomed to
these. Similar to the Wizard of Oz experiment (cf . Section 3.2.3), directions are
conveyed using the clock-based system, i.e., “eleven” refers to slightly left, “twelve”
to straight ahead, “one” to slightly right, and so on, including “half” for directions in
between (Sánchez and de la Torre, 2010). A possible sequence of speech instructions

8CC BY-NC-ND 2.0 https://creativecommons.org/licenses/by-nc-nd/2.0/

https://creativecommons.org/licenses/by-nc-nd/2.0/
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(a) (b) (c)

Figure 5.3: A participant during the TERRAIN user study: (a) on a pedestrian walkway,
(b) in front of a zebra crossing, (c) crossing at a pedestrian traffic light. The backpack
contains the prototype’s processing unit, while the camera is mounted onto its front strap.

when approaching a zebra crossing could be: [Nav]: Follow sidewalk 42 meters,
[Nav]: In 20 meters cross Kaiserstraße at zebra crossing, [CV ]: Zebra at twelve
in 7 meters, [CV ]: Zebra at one in 4 meters, [CV ]: Zebra at twelve in 1 meter,
where Nav is the high-level routing information from the navigation system and CV
low-level guidance-based on computer vision. Feedback was communicated using
bone conduction headphones, although ongoing BLE issues forced us to also use a
Bluetooth speaker.

Participants

All study participants exhibited severe visual impairments and were very interested in
our technology. More precisely, the study consisted of fifteen participants with visual
impairments, aged between 21 and 71 years: four blind from birth, two late blind,
nine with severe visual impairments. Eight of them could neither perceive traffic
lights nor zebra crossings, or just barely, while six were not able to distinguish traffic
light phases, just zebra crossings very weakly when already very close. However, all
participants where highly mobile and move around by walking, while eleven also rely
on public transport. Only one participant always walks around alone, thirteen often,
and one only rarely. Thirteen of the participants rely on additional navigation aids,
some of them only in unknown areas and thirteen use the White Cane as well, while
two did not require any aiding devices. The area of the user study was completely
unknown to twelve of them, while three were aware of the neighborhood, but had
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Figure 5.4: The test routes for the TERRAIN user study. Participants were asked to use
our navigation and computer vision prototype to maneuver around in an unknown area.
The selected routes contain multiple pedestrian crossings. © (iXpoint Informationssysteme)

not been in this specific location before. Figure 5.3 shows a participant wearing the
prototype in three typical situations encountered during the user study.

Routes

We studied our system on two routes in a busy urban area, integrating traffic lights
and zebra crossing (cf . Figure 5.4). Additionally, the path up to the first route was
used for a short training session for the participants to get accustomed to the whole
system and try the navigation as well as its computer vision modalities in a controlled
setting. Overall, the participants evaluated the system on three different routes. The
first route, Route T, was the training route leading from our lab to the first start
point and allowed participants to test the computer vision on a zebra crossing as
well as a pedestrian traffic light. These could be crossed as often as desired. Part
of the reason to rely on a fixed track was that it allowed to artificially increase
the number of pedestrian crossings. Then on Route F the evaluation was started
and on Route B—same as Route F but backwards—the other modality evaluated
on two zebra crossings as well as two pedestrian traffic lights, i.e., conducted once



114 User Studies 5

with (Route CV) and once without (Route Nav) computer vision. Although Route F

and Route B are practically equivalent, participants were not made aware of this
fact beforehand. Eight of the participants walked first with the computer vision
assistive system (Route F

CV→Route B
Nav), the other seven used it only on the second

route (Route F
Nav→Route B

CV).

Participants were required to fill out questionnaires before, in-between, and after
each route completion. Also, a sighted escort, i.e., a mobility trainer or specially
instructed volunteer, accompanied the participant for safety reasons, as well as the
test instructor. A crossing procedure was implemented, for safety reason as well:
participants would approach a pedestrian crossing as usual and position themselves for
crossing, then notify the test instructor that they intended to do so, wait for the OK
from the instructor— to assure there was no dangerous situation—and finally cross,
closely followed by the escort and the instructor. Therefore, the participants still had
to decide themselves where to walk, but should rely on the additional information
provided by the computer vision prototype. On the Route CV, the backpack including
the prototype (cf . Figure 5.1) was carried by the user (cf . Figure 5.3), while on
Route Nav it was usually carried by the test instructor to reduce physical exertion and
allow subjects to also consider the added weight of the prototype in their evaluation.
Furthermore, a poor GNSS signal often caused navigation instructions to be missed
by the routing system, so the test instructor then manually read these out loud.

5.2.2 Evaluation

We gathered data from multiple sources, i.e., questionnaires (participant backgrounds,
evaluations, NASA-TLX, System Usability Scores and comments during the study),
log files (by the iOS application, GPS tracks, items detected by computer vision,
crashes, BLE issues), and videos—the prototype also recorded anonymized videos
during its activation periods. We were especially interested, w.r.t. the computer
vision assistive system, whether it provides a better orientation at crossings, increases
perceived spatial awareness, provides sufficient accuracy and how much the perceived
cognitive load had increased.

Computer Vision Prototype. The computer vision’s deep learning methods had
not used any training data from the routes taken during the user study, i.e., it was
all unseen data. Nonetheless, out of 65 encountered zebra crossings, it correctly
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Table 5.1: The object detection performance of our computer vision prototype as observed
in the video recordings during the user study. We report numbers on the total amount
(#), true positives (TP), false negatives (FN), false positives (FP), recall and precision.

# TP FN FP Recall Precision
Zebra Crossings 65 62 3 6 95.4% 91.2%
Pedestrian Traffic Lights 138 127 11 8 92.0% 94.1%

identified 62 without interruptions, while three instances were not identified due to
camera alignment issues— sometimes the camera would be aimed too far up. Also,
only six false positive zebra crossings were detected during the entire study duration,
but mostly for only a single frame and these could get filtered out easily. Furthermore,
out of 138 pedestrian traffic light signals (including their state), 127 were correctly
identified, while eight traffic lights for cars were wrongly detected as false positives,
but for very brief moments only (cf . Table 5.1).

Orientation at Pedestrian Crossing. During the user study, we counted how
well the participant found the crossing and awarded points, i.e., 0 points when the
crossing was not found or the participant did not properly align towards it, 0.5 points
when the participant required a hint or a second attempt to properly align to it,
and 1 point when the crossing was found and used successfully at the first attempt.
The success rate in locating the crossing was not much improved on average, i.e.,
3.6 vs. 3.7 for the computer vision assistance, out of four crossings per participant,
and therefore a maximum of four possible points. All participants were very mobile
and already accustomed to crossing roads by themselves. In three cases participants
even performed worse when using the computer vision prototype and misaligned
themselves on the most difficult pedestrian crossing, due to finding the input from
the system confusing in this specific instance.

Travel Time. Without the computer vision prototype, participants took 11 minutes
on average, and with it 14.5 minutes. Our system made traveling slower, however
we have to take frequent BLE issues into consideration, where the prototype had
to be partly restarted to repair the connection issues (3.6 times per participant on
average). The log files also suggest that the participants sometimes took additional
time to parse the additional guidance input, which they did not require for their
accustomed methods. We also noted a certain level of playfulness, where participants
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would await an extra phase at a pedestrian traffic light to experience the prototype
communicating the current traffic light state in real time once more. Sadly, there
was only a very short time to get accustomed to the system, while such effects likely
wear off once participants have more experience with the prototype. However, as the
most important aspect to be considered should always be safety, not just the travel
time, we still consider this a success.

System Usability. The raw NASA-TLX ratings suggest only an insignificant in-
crease in cognitive load, 23.6% and 24.3%. The System Usability Score was 69
without, and slightly lower at 63.5 when including the computer vision. Participants
mostly complained about the rather heavy hardware (the full prototype weighs in at
around 5 kilograms), and the repeated BLE connection issues. The order in which a
participant evaluated both modalities had no visible effects on the individual scores,
but we noticed that for participants where the system had less connection issues,
the SUS scores were higher compared to those when not using the computer vision
system.

Perceived Usefulness & Comments. Surprisingly, all fifteen participants pre-
ferred walking with the computer vision-based guidance system. Their overall proto-
type rating reflects this, i.e., 1.7 for the computer vision assistance vs. 1.9 without
it—on a one to five scale, with one being “very useful” and five “not at all useful.”
Ten of them were very intrigued by the prototype’s ideas, especially the guidance po-
tentially offered by computer vision-based approach. Furthermore, participants (P#)
commented positively on the following aspects: P9 said “Without the instructions
I might not have found the zebra crossing.” P7 “I loved the way it noticed traffic
lights and zebras! Especially at zebras, one can orient oneself well.” P13 “I felt more
insecure without the [Computer Vision].” P15 “The location of zebras worked very
well, I liked it very much.” P2 “[I liked] that it announced traffic light state, especially
where there’s no push button.” P8 “The traffic light state recognition.” P14 “The
traffic light state announcement.” P12 “When it said: Zebra, push button, traffic
light.” At the same time, they also suggested some issues with our overall system,
i.e., they mostly disliked the GPS inaccuracies and the prototype’s bulky and (for
some participants) heavy hardware, the BLE issues and the time-taking necessary
restarts this caused. The participants also suggested further objects to identify: P3

wished to be informed about obstacles in general, P6 about lampposts, P8,9 poles in
general, P10 puddles, dog excrements and placards, and P13 about flat curbs.
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5.2.3 Conclusion

While our proposed idea to rely on computer vision for additional guidance infor-
mation was much appreciated and considered useful, our prototype needs further
improvements in usability and reliability. First, it is possible to improve the GNSS
accuracy, either by using additional systems, i.e., Galileo, IMUs or even computer
vision-based visual odometry. Second, the BLE connection issues need to be fixed, as
they were a major drawback when relying on guidance information from the computer
vision, which was not always immediately noticeable by the participants and the
escorts. Third, the prototype was considered too heavy, especially by women, and
the camera placement caused for some alignment issues with some participants— this
should be made better adjustable in future systems.

While the computer vision-based object detection algorithm exhibited a very high
accuracy, the distance estimation was often wrong, especially for one very wide
pedestrian crossing that was used during the test route and that confused participants.
Moreover, our prototypes battery only lasted for one hour while the deep learning-
based model was running on its GPU, which was switched on and off manually by the
test instructor when not in use. This should originally have happened GNSS-based,
but the accuracy had always proven as way too unreliable.

While the time and accuracy measurements do not support the benefits of our
approach, according to the participant’s comments, the system did indeed help them
to properly align before and during the crossing process. Even participants with
sufficient vision to barely detect and locate the pedestrian crossings themselves,
preferred to have the system for reassurance, especially for pedestrian traffic light
phases or to locate signal request pushbuttons.

Interestingly, one participant suggested to integrate RTB‘s LOC.id9, a BLE-based
system that communicates traffic light state in real time and guides over the street.
However, this is exactly the requirement we want to avoid, i.e., to provide such
assistance without requiring additional hardware to be installed at every single
pedestrian crossing, but shows again just how much such information is valued.

Future work includes improvements of the computer vision’s accuracy, to integrate
everything on improved hardware with a better battery runtime, to reduce the weight

9https://www.rtb-bl.de/RTB/en/blind-aids/loc-id/technologyapplication/

https://www.rtb-bl.de/RTB/en/blind-aids/loc-id/technologyapplication/
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and size of the entire prototype and to fix the BLE connection issues. Furthermore,
we would like to include the other relevant suggested objects into our routing and
guidance information as well.



Chapter 6

Conclusion

“The future has arrived— it’s just not evenly distributed yet.”

– William Gibson

In this thesis we have identified a spatial and systemic gap between low-level mobility
techniques and high-level orientation instructions and addressed some of its far-
ranging implications for people with visual impairments. We proposed computer
vision-based techniques and approached this gap from both directions to better
interconnect these two essentially different aspects—Orientation&Mobility (O&M).
From a top-down perspective, we narrow this gap by improving high-level orientation
through impairment aware navigation and a shoreline-level routing, as well as increase
the availability of required data, i.e., zebra crossing locations. Approached bottom-up,
we further close this gap by improving low-level mobility through accessible section
detection and inner shoreline guidance, as well as pedestrian crossing assistance.
In accordance with our key concepts, we also suggested to integrate the intricate
O&M techniques learned by people with visual impairment with generally available
navigation systems, to prevent contradicting behavior that currently often occurs.
We separated our contributions into the following major aspects:

• Key concepts used as guidelines for our own research efforts (Chapter 2);

• Impairment aware routing and geospatial data availability (Chapter 3);

• White Cane technique awareness and its integration into guidance (Chapter 4);

• A user study to evaluate actual benefits of one of our systems (Chapter 5).
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6.1 Contributions

Aerial Imagery: detect zebra crossings for geospatial databases.
We presented a data driven approach to detect relevant objects for pedestrian
routing visible in aerial imagery, in our case zebra crossings, in Koester et al. (2016).
Combining OSM data and Google Maps aerial imagery, we automatically created a
large, but imperfect, training corpus for a machine learning-based classifier. To reduce
the amount of downloaded data and prevent spurious detections, we only considered
actual road surface. Our algorithm is capable of detecting zebra crossings with a very
high reliability, i.e., with an error of less than one percent, and better generalize to
new data. Furthermore, while other approaches relied on hand-engineered features,
we can semi-automatically detect and correctly classify zebra crossings even across
country borders, even using a classifier trained in a completely different region.
Finally, we compared ourselves to the state of art and yield an improved precision at
a similar recall, but require much less data compared to other works.

Impairment Aware Routing: shoreline-level navigation.
We suggested a novel impairment aware routing algorithm in Koester et al. (2017),
based on a shoreline-level of detail, again modeled after an O&M technique. Using
OSM data, we combined high-level navigation information, based on traditional
routing approaches, with low-level guidance, based on shorelines. We therefore
modeled the way that people with visual impairments maneuver around a place, e.g.,
using the shorelining technique and avoiding to cross wide-open spaces if possible, and
integrated these into our orientation information. Our routing adaptions furthermore
allowed the creation of routes based on very specific, individually configurable,
preferences w.r.t. to pedestrian crossings. The generated routes satisfied all of
our pre-defined criteria, e.g., they do not significantly increase travel distance, but
increase the number of accessible pedestrian crossings. We tested our approach in a
first Wizard of Oz experiment, due to insufficient GNSS accuracy, and received very
encouraging comments from the test participant, especially w.r.t. to an increased
spatial awareness and the usefulness of knowing about the next segment in advance.

Accessible Section Detection: detect free space and obstacles.
We investigated different methods to retrieve the accessible section using computer
vision techniques. Our approach relies on true depth data, i.e., point clouds, and uses
an approach we named Slice&Dice, i.e., it separates the point cloud into individual
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slices, clusters the remaining points individually and then recombines relevant sections
found into the overall accessible section. This approach transforms the problem of
detecting the ground plane from three dimensions into a two-dimensional approach,
using a few simple assumptions. The technique yields very precise results and allows
for a real time capable accessible section detection. Furthermore, the dual problem
of detecting obstacles is also considered—as a general lack of free space.

Shorelines: detect and precisely localize relevant shorelines.
We proposed a novel computer vision-based shoreline detection in Koester et al.
(2018), based on an actual Orientation&Mobility technique when using the White
Cane, i.e., shorelining. Our algorithm slices depth data similar to the accessible
section detection, acquired by a body worn camera, into individual layers and analyzes
them separately, significantly increasing its robustness to errors and allowing for
increased parallelism. It exhibits a very high precision, with errors of less than two
degrees and a distance of only a few centimeters, for its detected shorelines and
their individual segments. This very high precision allows a reliable forecast when a
natural gap in a shoreline occurs, i.e., a driveway in an urban area. Our approach
is then able to precisely inform the user about the relative location and distance of
the next shoreline segment. Having reliable information about upcoming segments
increases spatial awareness and reduces stress for people with visual impairments,
especially in unknown areas.

Pedestrian Crossing Assistance: increase accessibility and safety.
We created a computer vision-based pedestrian crossing assistance system in Koester
et al. (2019) that detects and locates relevant objects. It is capable to detect signal
request pushbuttons, pedestrian traffic lights and their state, crossing markers and
zebra crossings, all in real time. We used a deep learning approach for the detection
system and trained a network on our own data to locate the aforementioned objects.
Our evaluation shows that the network exhibits a high accuracy for almost all of the
relevant classes, where worse performing classes were simply underrepresented in
our training datasets. While the existing approach already shows promising results,
inclusion of further classes needs to be investigated and the overall accuracy increased.

User Study: evaluate proposed assistive system in real world situations.
We conducted a user study to evaluate the combination of roadside aware routing
and pedestrian crossing assistance in Koester et al. (2019). Fifteen participants
were requested to maneuver around in an unknown neighborhood, once without our
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computer vision-based assistive system, as well as using it when crossing a street.
While our chosen statistical indicators did not suggest any improvements when relying
on additional crossing information provided by the computer vision prototype, the
participant’s comments suggested otherwise. All fifteen participants would prefer to
own such a system, even though they all should be considered highly mobile, and
perceived the provided information as very useful, once they got accustomed to it.
Finally, we received many encouraging remarks to further investigate the development
of this and similar systems that seamlessly combine high-level navigation and low-level
guidance information.

6.2 Future Work & Open Research Questions

Multiple obvious issues and possible improvements have already been identified in the
individual discussion sections: Truly mobile prototypes, to be used while traveling in
unknown locations for a prolonged period of time, require much better integration,
longer lasting batteries and less weight to be actually carried around in the future.
It would also be very beneficial to integrate all systems into an everyday smartphone,
only requiring the phone’s internal processing memory, connectivity, and even already
existing monocular camera with a sufficient battery time.

At the same time, the computer vision algorithms must be improved in all aspects, i.e.,
more reliable detections, more object types, improved accessible section and obstacle
detections, to detect other shoreline types as well, improve pedestrian crossing
assistance, and everything in real time on the least powerful processing hardware
possible— that is also affordable. However, while some of these seem possible within
the next few years, safety considerations should always be of utmost importance,
therefore a monocular camera might, at least for a considerable amount of time, not
be able to provide the same guarantees as a true stereo setup that results in not
perfect, but very reliable, depth data. Truly intuitive interfaces, which are modeled
after real world techniques, also have to be further investigated, such as the White
Cane bumping into the virtual shoreline segment—using haptic feedback— instead
of relying on a pilot tone for the same guidance information. Finally, in order to use
the full potential of computer vision-based techniques, an improved understanding
of the surroundings at a higher level is very important.
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An assistive system must not only know the route its user wishes to take, but should
also understand the user’s physical and mental limitations and constantly adapt
accordingly. These factors are not only very individual, but also change over time, and
even within a single route, i.e., spatial awareness constantly fluctuates, which might
lead to an increase in anxiety, especially when errors are made that cause the user
to deviate from a known or pre-planned path. As each individual copes differently
with these situations, limited by personal ability and experience, a truly helpful and
widely applicable assistive system also has to account for such individualities.

To provide better guidance, an improved model of the environment is required, e.g.,
street intersection layouts, available traffic lights, relevant obstacles and a basic
understanding of traffic patterns and human behavior, to name a few, otherwise
safety critical mistakes will continue happening, i.e., to mistakenly report the state
of an irrelevant traffic light. While this is currently being intensively investigated for
autonomous driving and driver assistance, so far it has not really been considered
for the guidance of people with visual impairments.

Ideally, we aspire for our proposed assistive technologies, whether they are based on
computer vision or not, to someday provide the accuracy, reliability and acceptance
to be integrated into Orientation&Mobility training at every possible stage. This
could possibly allow for easier and faster training, greater autonomy and mobility,
and a generally increased safety of people with visual impairments when mastering
the challenges of today’s urban traffic.
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