
Advancing Data Curation
With Metadata and Statistical Relational

Learning

vorgelegt von
Dipl.-Inf (FH) M.Ed.
Larysa Visengeriyeva

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften
-Dr.-Ing.-

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Klaus-Robert Müller
Gutachter: Prof. Dr. Ziawasch Abedjan
Gutachter: Prof. Dr. Ulf Leser
Gutachter: Prof. Dr. Felix Naumann
Tag der wissenschaftlichen Aussprache: 14.Februar 2020

Berlin 2020

Declaration of Authorship

I, Larysa Visengeriyeva, declare that this dissertation entitled: “Advancing Data Curation
With Metadata and Statistical Relational Learning”, and the work presented in it is my
own.

I confirm that:

1. This work was done completely while in candidature for a research degree at
Technische Universität Berlin.

2. Where any part of this dissertation has previously been submitted for a degree or any
other qualification at this university or any other institution, this has been clearly
stated.

3. Where I have used or consulted the published work of others, this is always clearly
attributed.

4. Where I have quoted from the works of others, the source is always given. With the
exception of such quotations, this dissertation is entirely my own work.

5. I have acknowledged all sources used for the purpose of this work.

Date: Signature:

“Our actions may be impeded...but there can no impeding our intentions or dispositions.
Because we can accommodate and adapt. The mind adapts and converts to its own

purposes the obstacle to our acting.

The impediment to action advances action. What stands in the way becomes the way.”

— Marcus Aurelius

Zusammenfassung

Jedes Data Science Projekt hängt von sauberen und stimmigen Daten ab, denn die Qualität
der Daten bestimmt die Qualität der Machine Learning Modelle und dementsprechend
korrekt sind die aus den Daten gewonnenen Erkenntnisse.

In dieser Dissertation gehen wir das Problem der Datenbereinigung an und präsentieren
drei Ansätze, um Datenfehler zu erkennen und zu beheben:

(1) Wir erstellen ein Mapping, das den systematischen Zusammenhang zwischen
Qualitätsproblemen von Daten und den Metadaten widerspiegelt. Wir verwenden dieses
Mapping als eine generische Lösung, um Datenfehler zu erkennen und um den Prozess
des Data Cleaning signifikant zu beschleunigen. (2) Wir präsentieren zwei ganzheitliche
Ansätze zur effektiven Kombination verschiedener Methoden der Fehlererkennung, um die
Effektivität der Fehlererkennung zu erhöhen. Unsere Methoden basieren auf State-of-the-Art
Ensemble-Learning Algorithmen und integrieren die Metadaten, um die Fehlererkennung
zu optimieren. (3) Wir präsentieren eine probabilistische Methode für die Verbesserung der
Datenqualität. Diese Methode basiert auf Statistical Relational Learning und der probabili-
stischen Inferenz. Wir verwenden den Markov Logik Formalismus, um Datenqualitätsregeln
deklarativ als Logiksätze erster Ordnung zu modellieren. Außerdem ermöglicht die Markov
Logik die Verwendung probabilistischer Inferenz über Datenqualitäsregeln, um Datenfehler
zu erkennen und eine wahrscheinliche Lösung vorzuschlagen.

Abstract

The foundation of every data science project depends on clean data because the quality
of the data determines the quality of the insights derived from data by using machine
learning or analytics. In this dissertation, we tackle the problem of data cleaning and
provide three approaches to advance data error detection and repair: (1) We establish a
mapping that reflects the connection between data quality issues and extractable dataset’s
metadata, and propose this mapping as a guideline for rapid prototyping of an error
detection strategy; (2) We introduce two holistic approaches for effectively combining
different error detection strategies to increase the efficacy of error detection. Our methods
are based on state-of-the-art ensemble learning algorithms and incorporate the metadata
of the dataset; and (3) We propose an approach for addressing data quality issues by
formulating a set of data cleaning rules without the manual specification of the rules
execution order. The concepts of statistical relational learning and probabilistic inference
provide the foundation for our method. We use the Markov logic formalism, because it
declaratively models data quality rules as first-order logic sentences. Markov logic allows
the usage of probabilistic joint inference over data cleaning rules to detect data errors and
suggest a repair.

Acknowledgements

This dissertation reveals several years of dedication, commitment and research that gave
me the opportunity to explore many fields of interest to create this work. I could not have
accomplished this dissertation without the number of people that supported me along this
journey.

During my time at TU Berlin, I had the privilege of working with Professor Ziawasch
Abedjan. He took me as his PhD student and allowed me to conduct my research in any
direction. I am thankful to him for establishing a safe research environment for everyone
to ask questions, define ambitious goals, and feel to be a part of a great team. Our
weekly meetings were crucial in generating ideas and shaping my research mindset. I am
indebted for his clear guidance and constructive feedback. His extensive scientific expertise
in data integration, data cleaning, and data profiling gave me enormous support towards
accomplishing my research goals and forced me into a research tempo that speeded up my
dissertation progress.

My research work would never be possible without Professor Felix Naumann, who
encouraged me to keep working in the Data Cleaning research field when it seemed like an
impossible task.

I had a pleasure to meet and work with the incredible researcher Professor Sebastian
Riedel at UCL London. His work and his vision of probabilistic programming languages
inspired me, so I joined him in this research direction. During that time, I was introduced
to a fascinating research environment with the brightest minds of the present time. I
enormously enjoyed our discussions about our work on the MLN parser, continuous
benchmarking for probabilistic programming, and connecting Machine Learning with
Software Engineering. It was an amazing, meaningful and intense time where I learned a
lot and always have been looking forward to it.

I also thank my research comrade Alan Akbik for infecting me with the excitement
for science and for supporting me in all my curios adventures. Everything started with a
question "What is Markov logic?". Alan has become a valuable colleague and a true friend.
I still believe that we should build a start-up because everything we started as a team
resulted in success.

I am indebted Manohar Kaul for serving me as an invaluable mentor, teaching me
scientific methods and injecting the never give up-mindset into my head. I also would like
to thank Alexander Löser for the opportunity to work on the exiting MIA project at the
beginning of my career as a researcher.

It was a pleasure to work with Sebastian Schelter. I am thankful to him for all his
support and teaching me always to ask the why-question. I am really happy to have
Sebastian as a friend.

The awesome research BigDaMa group consisting of Felix Neutatz, Mohammad
Mahdavi Lahijani, Mahdi Esmailoghli, Maximilian Dohlus, Binger Chen, and Milad
Abbaszade exceptionally supported me during my dissertation process. I always enjoyed
our team spirit and our ability to become a collective brain while working on our projects.

My PhD journey would never be so well organized without our organization talent
Claudia Gantzer and our server-wizard Lutz Friedel. Thank you for all your great support.

Most importantly, I would like to thank my husband Stefan, who encouraged me
throughout the whole dissertation process, throughout all the depths and heights, and who
served as the motivator for my work. I would not be here without you and your endless
love. My awesome kids and my whole family, this dissertation is dedicated to you.

xii

Table of Contents

List of Figures xvii

List of Tables xxi

List of Algorithms xxv

1 Introduction 1
1.1 Data Quality Importance in the Data Science Workflow 1
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Outline . 6

2 Preliminaries 9
2.1 Data Quality Management . 10

2.1.1 Dimensions of Data Quality . 10
2.1.2 Data Quality Problems . 11
2.1.3 Data Cleaning . 15

2.1.3.1 Error Detection . 15
2.1.3.2 Error Repair . 16

2.2 Data Profiling . 17
2.2.1 Single-Column Profiling Tasks . 18
2.2.2 Dependencies: Multi-Column Profiling Tasks 20

2.3 Statistical Relational Learning . 22
2.3.1 Markov Logic . 22
2.3.2 Probabilistic Inference . 24

3 Related Work 27
3.1 Rule-Based Approaches . 29
3.2 Statistical Approaches . 30
3.3 Probabilistic and Machine Learning-Based Approaches 31
3.4 Interactive Data Cleaning . 33

xiii

TABLE OF CONTENTS

4 Anatomy of Metadata for Data Quality Management 37
4.1 Mapping Metadata to Data Quality Issues 42
4.2 Metadata Analysis for Data Quality Management 50

4.2.1 A Two-Dimensional Classification of Metadata 50
4.2.2 Metadata Categorization . 53
4.2.3 Formal Description of Metadata Composition 56

4.3 Case Study . 58
4.3.1 Evaluation Metric . 60
4.3.2 Datasets and Known Data Quality Issues 60
4.3.3 Error-Detection Pipeline Implementation 62
4.3.4 Metadata-Based Error Detection Heuristics 63
4.3.5 Usability of Metadata Mapping and EBNF Grammar 71

4.4 Summary . 75

5 Supervised Error Detection with Metadata 77
5.1 Error Detection Framework . 79
5.2 Error Detection as a Classification Task . 81

5.2.1 Error Detection Formalization . 82
5.2.2 Error Classification Algorithms . 82
5.2.3 Combining Error Detection Methods With Ensemble Learning . . . 84
5.2.4 Combining Error Detection Methods With Stacking 85
5.2.5 Combining Error Detection Methods With Bagging 86
5.2.6 Eliminating Redundant Error Detection Strategies 89

5.3 Metadata-Augmented Error Classification 92
5.4 Experiments . 94

5.4.1 Experimental Setup . 94
5.4.2 Performance of Error Detection Systems 96
5.4.3 Classification Algorithms Setup . 98
5.4.4 Baselines . 100
5.4.5 Systems Aggregation Results . 101
5.4.6 Aggregating the Most Effective Error Detection Systems 102

5.5 Summary . 105

6 Probabilistic Data Curation Through Modelling Multi-column Metadata
with Markov Logic 107
6.1 Integrity Constraints as Data Quality Rules 110
6.2 Modelling Data Quality Rules as Markov Logic Programs 111

6.2.1 Mapping Data Cleaning Concepts to Markov Logic Predicates . . . 113
6.2.2 Data Quality Constraints as Markov Logic Program 116

xiv

TABLE OF CONTENTS

6.3 Uncertain Data Cleaning as a Probabilistic Inference Problem 121
6.4 Markov Logic-Based Data Cleaning on Non-Relational Data 126

6.4.1 Data Cleaning Rules for Non-Relational Data 127
6.5 Experiments . 130

6.5.1 Experimental Setup . 130
6.5.2 Holistic Data Cleaning: Uniqueness and Accuracy Data Quality

Dimensions . 132
6.5.3 Impact of Rule Execution Order . 135
6.5.4 Holistic Data Cleaning: Missing Value and Consistency Issues

Interaction . 138
6.5.5 Usability of Modelling Data Cleaning Rules With Markov Logic . . 139
6.5.6 Experiments on Non-Relational Data. 142

6.6 Summary . 143

7 Conclusion and Future Work 145
7.1 Error Detection and Repair as a Multi-Armed Bandit Problem 146
7.2 Reinforcement Learning for Data Cleaning 147
7.3 Effectiveness of Visual Encoding for Data Curation 148

References 149

Appendix A Mapping Between Data Quality Problems and Metadata 165

xv

List of Figures

1.1 Data Science Workflow . 2

2.1 Data errors . 12

4.1 Discovery of formatting rules and error detection. The metadata-
based error detection is performed by (1) analyzing the distribution of value
patterns, which (2) leads to the discovery of the most frequent pattern,
which is then transformed into (3) the formatting rule to (4) indicate all
values that do not match this rule as errors. Source [233]. 40

4.2 An example of mapping between the data error "misfielded value" and the
metadata "z-value". To detect misfielded values in the attribute "US CITY",
we specify the heuristic for error detection that is based on the z-values of the
value length distribution of this attribute. Suspicious values are identified
by setting a threshold for z-value scores. Source [233]. 49

4.3 Metadata quadrants. The granularity of the metadata functions is
augmented by the metadata type level that denotes instance- or schema-
based metadata. 51

4.4 Z-value computation. This figure demonstrates the metadata to compute
z-values on (a) the distribution of numerical values, and (b) the value length
distribution. Source [233]. 54

4.5 Error-Detection Pipeline Implementation. The complete pipeline
includes: (A) The profiling step: an input data is analyzed by running
different profiling tasks, and complete instance- and schema-related metadata
is collected. (B) The rules generation step: gathered metadata is used to
construct error detection heuristics. (C) The validation step: The multiple
error detection results are combined. (D) The data analysis step produces
the aggregated dataset analysis. Source [233] 62

xvii

LIST OF FIGURES

4.6 A flowchart of defining data cleaning strategy. This flowchart shows
how to use the proposed mapping between data errors and metadata,
categorization, and composability rules for new metadata generation.
Source [233]. 72

5.1 Result overlap of four different error detection strategies on the Flights
dataset. Each value represents the number of correctly detected errors by
the set of overlapping systems. Source [232]. 78

5.2 The architecture of the system for aggregation of the error detection
algorithms. Source [232]. 80

5.3 Venn diagram showing joint statistics of three classifiers: Neural Network,
Decision Tree and Naive Bayes algorithms on the same dataset. Source [232]. 84

5.4 Stacking Algorithm. Node notations: NN - Neural Network, DT - Decision
Tree, NB - Naive Bayes and LR - Logistic Regression. Training data is
denoted by the node Train. Source [232]. 86

5.5 Bagging Algorithm. Node notations: DTi - Decision Tree. Training data is
denoted by the node Traini. Source [232]. 88

5.6 Precision scores of the classification model performance for different sizes of
training data. Source [232]. 98

6.1 Overview of the proposed probabilistic data cleaning approach. . 113
6.2 Specification of the observed predicates. A relation tuple is translated

into n atomic sentences. 114
6.3 Specification of data quality rules with predicate-calculus sen-

tences. This Figure shows all stages of the translation of functional
dependencies into the Markov logic formalism. 117

6.4 Data Cleaning Workflow In the context of a data cleaning workflow,
the Markov Logic Network grounding process consists of two phases: I)
MLN definition by (a) fixing MLN schema by defining observed and hidden
predicates (b) domain, which is created from the existing data by considering
the MLN schema, and (c) specification of weighted first-order logic formulae
that represent data cleaning rules; II) MLN instantiation by assigning truth
values to all possible instantiations of the MLN predicates by consideration
of the domain (Random Variables) and using these ground atoms in the
formulae. These ground formulae constitute a Markov Network to compute
the MAP inference and to estimate the most likely data repairs. Source [234].125

xviii

LIST OF FIGURES

6.5 An example of an incomplete knowledge base represented as a matrix. The
rows of the matrix represent facts whose variable X can be replaced with a
value from its columns. If, after replacing X with a value, the fact exists in
the knowledge base, the matrix cell contains the value 1. Otherwise the cell
value is 0. 127

6.6 Evaluation of the data repair method based on Markov logic applied on the
hosp dataset. Source [234]. 133

6.7 Evaluation of the data repair method based on Markov logic applied on the
tpc-h dataset. Source [234]. 133

6.8 Runtime for Markov logic based data cleaning applied on the hosp and tpc-
h datasets. Source [234]. 134

6.9 The evaluation of the different experimental settings of the execution order
of data cleaning rules translated into Markov logic. The experiments are
performed on the real-world Hosp dataset. Source [234]. 135

6.10 The part of the msag dataset with missing organization values. Markov
logic captures the following evidence: if two papers of the same author have
been published in the same year, then they may be published by the author
of the same organization. Nodes notation: A - denotes Author entity; O
- Organization and P - Paper. Missing edges are marked as dashed lines.
Source [234]. 138

6.11 The accuracy of data cleaning on MSAG that depends on the amount of
missing edges. Source [234]. 138

6.12 The distribution of the corrected Author-entities. Source [234]. 139

7.1 VizNet enables data scientists and visualization researchers to aggregate
data and enumerate visual encodings. Figure used with permission [118]. . . 148

xix

List of Tables

2.1 Violations of data quality dimensions. Source [233]. 13

3.1 Summary of related work for different data quality issues and the corre-
sponding type of data cleaning approaches. 35

4.1 Mapping data quality problems to metadata. The mapping between
data quality dimensions and the data quality issues at the top is adopted
from [147]. The mapping between data quality issues and metadata is
established by designing error detection heuristics. To create these heuristics,
two approaches are used: (1) - A qualitative approach, where existing
methods are reviewed; and (2) - A trivial relationship approach, where
the connection between data errors and metadata is trivially established
(marked as •). Source [233]. 45

4.2 Mapping data quality dimensions to metadata. Legend: (1) - A
qualitative approach, where existing methods are reviewed; and (2) - A
trivial relationship approach, where the connection between data errors and
metadata is trivially established (marked as •). Source [233]. 46

4.3 Defining data quality strategy by using metadata. This table is an excerpt
of schematic heuristics used to detect misfielded values. All error detection
rules are provided with references. A trivial relationship approach, where
the connection between data errors and metadata is trivially established, is
marked as •. Source [233]. 47

4.4 An example data set, which contains data issues, such as missing value,
domain violation, and functional dependency violation. 48

xxi

LIST OF TABLES

4.5 Metadata Categorization. Metadata functions are divided into four
categories to reflect the composability aspect of metadata: Group 1: Map
Metadata; Group 2: Fold Metadata; Group 3: Higher-Order Metadata;
Group 4: Descriptive data mining methods. The Data Units column
contains the data without meta-information. Furthermore, in the provided
classification, we distinguish between numeric and alphanumeric data
values and identify those metadata that operate on the above value types.
Source [233]. 52

4.6 Formal demonstration that shows that outlier composition matches the
formal EBNF description, which is provided in Section 4.2.3. Source [233]. . 59

4.7 Experimental datasets summary. This summary shows the structure
of each dataset, e.g. the number of columns and rows, as well as the ground
truth size and the percentage of dirty values, which are contained in each
dataset. Additionally, the bottom part includes the number of integrity
constraints considered in the experiments, memory allocation, and the
runtime in milliseconds for metadata calculation and rules execution on each
dataset. We measured the runtime for the execution of all rules. Source [233]. 61

4.8 Empirical mapping between extracted and generated metadata
and data quality issues. Generating new metadata has been performed
by using EBNF rules. This mapping reflects concrete datasets: MUSEUM,
BEERS, FLIGHTS and ADDRESS. Source [233]. 64

4.9 Experimental heuristics. This table describes the error detection
heuristics. Furthermore, for every heuristic, we provide the involved
metadata and thresholds. The column Mapping approach provides the
method used to design the error detection heuristics, which also explains the
mapping between data quality issues and the particular metadata. To recap,
we used two approaches: the related work approach, where existing methods
are reviewed, and the trivial relationship approach (marked as •), where
the connection between data errors and metadata is trivially established.
Threshold scores, which are taken from the related work, are provided with
references. Source [233]. 66

4.10 Precision, recall, and F1-measure of single heuristics. The evaluation
is performed only on relevant data, meaning that if the attribute is not
covered by the error detection rule, then the values of this attribute are
excluded from the evaluation. The dashes "-" denote that the rule does not
provide any valid results. Source [233]. 67

xxii

LIST OF TABLES

4.11 Error coverage by heuristics in percent. Every issue for the MUSEUM
and BEERS datasets has been distinguished, and we determined how each
of the heuristics covers the particular data error. Please note that in this
study, we consider only datasets, where the categorization of data errors
was possible. "-" dashes denote that the heuristic has no coverage for the
particular error type. Source [233]. 69

4.12 Precision, recall, and F1-score of a combination of error detection
rules. UnionAll is expected to perform best because of the different error
detection rules coverage: each error detection rule is responsible for one
specific irregularity in the data. Source [233]. 71

5.1 Metadata-based features used for enhancing error detection strategies. . . . 95
5.2 Experimental datasets. 96
5.3 Representative for each error detection strategy. Source [232]. 97
5.4 Performance of each constituent system. The evaluation was performed on

the complete dataset. The best results are marked as bold. Source [232]. . 97
5.5 The features importance. Information gain measures for adding various

metadata features on all datasets. The dashes ’-’ denote that the particular
feature is not available in the dataset. Source [232]. 100

5.6 Performance of baselines compared to the results of error detection algorithms
aggregation strategies. Best results are provided in bold. Source [232]. . . . 101

5.7 Error detection systems selection on all datasets. The parameter K denotes
the cluster number, which is the number of selected error detection systems.
Source [232]. 103

5.8 The evaluation results of system aggregation strategies on the sub-set of the
most effective systems. K denotes the number of the selected error detection
systems, and the exact systems selection is shown in Table 5.7. The baseline
is the Precision Based Ordering approach. The sample size to determine the
sequence of error detection systems is the same as above: 1% of the results
of all error detection systems. Source [232]. 103

6.1 customer table (master data) . 107
6.2 transaction table (Erroneous values are marked in bold.) 108
6.3 Mapping five central data quality dimensions to integrity constraints. The

methodology for this mapping is the following: if the integrity constraint
captures the violation of the respective data quality dimension, then the
connection between the dimension and the integrity constraint is established.111

6.4 Mapping Markov logic predicates to data quality concepts Hidden
predicates summary. 115

xxiii

LIST OF TABLES

6.5 MLN declaration process and creation of grounded atoms for Tuple 2 in the
Transactions example table. 119

6.6 Entities Paper , Author and Organization and their attributes that
have been used in experiments for Web data cleaning with Markov logic.
Source [234]. 132

6.7 Comparison to the HoloClean system [202]. The experiments have been
conducted on the Hosp dataset. The pruning threshold is required by the
HoloClean algorithm and ranges from 0.0 to 1.0. The error detection
method is Metadata-Driven Error Detection from Visengeriyeva et al. [232].
Additionally, we performed data repair on HoloClean with ideal error
detection by comparing the dirty data with its ground truth. 136

6.8 F1 measure comparison of the jointly modeled data cleaning rules based on
CFD and MD to the baseline system [62]. The experiments conducted on
the hosp dataset on size 90k and different error percentages ranging from
2% to 10%. Source [234]. 137

6.9 Qualitative comparison of the SRL-based data cleaning to the state-of-the-art
data cleaning systems, such as Nadeef [62] and HoloClean [202]. 137

6.10 Markov logic predicates used in data quality rules. Source [234]. 140
6.11 Modelling data cleaning rules as Markov logic programs (an excerpt). MLN’s

soft rules are specified with the weights wi set to 1.0 and hard rules are
marked with infinite weights: ∞. Source [234]. 141

6.12 The evaluation of inferred data for the non-relational dataset as a series of
true/false questions over inferred common sense facts. The top 5 facts in
this table were annotated as correct by human annotators, while the lower
5 were annotated as incorrect. 142

6.13 User study evaluation. kappa statistics and interuser observed agreement.
kappa interpretation according to Landis J.R and Koch G.G. from [146]:
0.0 . . . 0.2 (slight); 0.2 . . . 0.4 (fair); 0.4 . . . 0.6 (moderate); 0.6 . . .

0.8(substantial); 0.8 . . . 1.0 (perfect). Column AoC denotes the percent of
agreement on correct relations. 143

A.1 Mapping between data quality problems and metadata. 165

xxiv

List of Algorithms

5.1 Algorithm for learning the error classification model that is based on stacking
ensemble learning. 87

5.2 Algorithm for learning the error classification model that is based on bagging
ensemble learning. 87

5.3 Algorithm for eliminating redundant error detection strategies. 90
6.1 Conditional Functional Dependencies Compilation to Markov Logic Rules . 118
6.2 Conditional Matching Dependencies Compilation to Markov Logic Rules . . 120
6.3 Conditional Inclusion Dependencies Compilation to Markov Logic Rules . . 122
6.4 Probabilistic data cleaning approach based on the compilation to Markov

logic and performing the MAP inference. 124

xxv

1
Introduction

In this introductory chapter, we explain the impact of possessing high-quality data for
institutions and enterprises, as well as describe the importance of data quality in data
science workflows. Based on this analysis, we specify the research goals and give an overview
of the contributions made in this dissertation.

1.1 Data Quality Importance in the Data Science Workflow

The two global trends that disrupt the economy and our daily lives are the data-driven world,
due to the exponentially-growing amount of digitally-collected data, and the increasing
importance of data science, which derives insights from this tremendous amount of data [221].
We refer to data science as an umbrella term gathering algorithms and techniques from
several disciplines, such as statistics, software engineering, and machine learning [103, 29,
171, 125, 187].

The growing amount of collected data can be used for several purposes, such as
data-driven discovery and innovation, massive data integration, and enhanced decision
making, thus leading to the adoption of machine learning algorithms to achieve these
goals. Data becomes increasingly ubiquitous to the economy and society because of the
data-driven decisions in the automobile industry, retail, media, health care, agriculture,
and government [200].

Acquiring predictive and prescriptive insights, which are powered by data science,
demands trustworthy data. Generally, practitioners and experts report that they do
not trust in data, regardless of the data source, because, frequently, data has quality
issues [161, 201]. According to the recently published MIT SMR Connections report, "Data,
Analytics, and AI: How Trust Delivers Value", the majority of their respondents do not trust

1

1. INTRODUCTION

80% of time 20% of time

Acquire Data Storage Wrangling

Cleaning

Error Detection

Error Repair

Data Preparation
(iterative phase)Raw Data Analytics

RDBMS Non-relational
Data

Open Data

IoT Data GPS

Device

Analytic Platforms

BI/ML Platforms

Figure 1.1: An overview of a typical data science workflow that includes the three main
stages, namely data acquisition, data preparation, and data analytics.

their data judged by quality dimensions, such as timeliness, accuracy, completeness, and
relevance [161]. Furthermore, poor data quality becomes the reason behind great financial
losses. According to Gartner research [226], "organizations believe poor data quality to be
responsible for an average of $15 million per year in losses." A study conducted by IBM
estimated that poor data quality costs the US economy $3.1 trillion per year [199]. In a
typical enterprise, it is expected that roughly 15% of data is either not available or wrong,
and 2% of the records are getting stale on a monthly basis in a customer database [223].

Consequently, with the growing amount of data, the need for data quality management
increases as well because real-word data is often dirty, meaning that data is inconsistent,
duplicated, stale, incomplete, and/or inaccurate [82, 195, 161, 201, 200]. In order to improve
the quality of data, we first consider the origin of the irregularities in data by studying an
exemplified data science workflow.

The data science workflow refers to a type of "programming activity where the goal is
to obtain insights from data" [103]. Roughly speaking, the typical data science workflow
consists of three main phases: data acquisition, data preparation, and analysis & interpreting
the outputs (e.g. visualization and storytelling) [102]. Figure 1.1 shows the core steps
involved in a typical data science workflow. The initial step in any data science workflow
is to acquire the data to be analyzed. Typically, data is being integrated from various
resources and has different formats. This requires the second step in the data science
workflow – the data preparation, which is "an iterative and agile process for exploring,
combining, cleaning and transforming raw data into curated datasets for data integration,
data science, data discovery and analytics/business intelligence (BI) use cases" [212]. The
core of data science is the analysis phase: writing and executing machine learning algorithms
to obtain insights from data. Notably, even though the preparation phase is an intermediate

2

1.2 Research Questions

phase aimed to prepare data for analysis, this phase is reported to be the most expensive
in respect to resources and time [223, 167, 142]. Data preparation is a critical activity in
the data science workflow because it is paramount to avoid the propagation of data errors
to the next phase, data analysis, as this would result in the derivation of wrong insights
from the data [201, 65].

Taking the discussion above into account, maintaining data quality is a critical aspect in
data management due to the decision-making and analytics demand of accurate, consistent,
complete and timely data, in order to avoid the "garbage in - garbage out" problem [223, 167].
As advanced technologies, such as machine learning, deep learning, topic modeling, text
mining and sentiment analysis becomes pervasive in enterprises, the output of one predictive
model will influence the next stage of data analytics. The risk is that a minor error at the
initial step will propagate, and create even more errors [201, 199].

Evaluating the quality of a dataset is a critical first step in every data preparation
phase of any data science and analytic workflow [186, 229], because data is usually
integrated from different sources with different degrees of reliability. Therefore, the
integrated dataset usually contains data points of low accuracy [153], and reveals errors,
such as outliers, duplicates, missing values, and inconsistencies. The origin of these data
quality problems is tracked back to various reasons, such as (1) Data integration from
heterogeneous data sources of varying reliability [153, 223, 70, 106, 99]; (2) Knowledge-base
construction and information extraction from Web sources [213, 225, 153]; and (3) Manually-
or programmatically-inserted erroneous entries (e.g. into the Web-forms) [28, 89].

The above reasons cause the decline of the overall data quality [161]. Also, the above
reasons motivated the research conducted in this dissertation.

1.2 Research Questions

As a response to the data quality issues mentioned above, research in data quality
management proposed various data cleaning approaches, algorithms, and systems [62,
190, 91, 245, 54, 131].

Usually, these approaches were designed to detect and repair specific error types. Hence,
the typical way to deal with data errors is to apply multiple data cleaning strategies,
such as missing value imputation [245], outlier detection [8], values re-formatting [127],
or deduplication [62]. Nevertheless, utilizing all possible data cleaning strategies
simultaneously produces a large number of detection results. Subsequentially, with the ever-
growing number of data cleaning algorithms and systems [62, 190, 91, 245, 54, 131, 239],
there are emerging requirements for data cleaning systems that maximize the coverage
of existing data quality issues. Moreover, these cleaning systems use miscellaneous types
of metadata, such as value distributions, histograms, or derived integrity constraints, in

3

1. INTRODUCTION

order to solve such problems. Consequentially, as many data cleaning systems incorporate
metadata in their cleaning routines, the principal relationship between metadata and data
quality problems needs to be established.

Furthermore, as data quality issues are interacting [82, 87], this interaction might not
be obvious to the user. As a result, the optimal execution order of data cleaning rules
or approaches is difficult to achieve during automatic data cleaning [62]. Hence, the next
requirement for data cleaning systems emerges – allowing the declarative specification of
data cleaning rules and customization of these rules without having to specify the rules
execution order [62].

Guided by the research problems mentioned above, this dissertation considers three
core research questions:

1. How can we accelerate the data curation process by using the dataset’s metadata?
To address this question, we created a template for practical data quality assessment
based on metadata information, which can be used while establishing the data
preparation tasks from scratch [233].

2. How can we effectively combine different error detection strategies using learning
algorithms? We proposed a methodology for an effective data cleaning strategies
aggregation for data error detection [232, 159].

3. How can we improve data quality through simultaneous treatment of data cleaning
rules? To address this question, we developed a methodology for a declarative data
cleaning approach without specifying the order of rule execution [234].

In the following, we describe the contributions of this dissertation.

1.3 Contributions

According to the research questions defined above, the contributions of this dissertation
are divided into three categories:

Mapping Metadata to Data Quality Issues. Although various data cleaning solu-
tions have been proposed so far, data cleaning remains a manual and iterative task
that requires considerable domain and technical expertise. We study the intrinsic
connection between metadata and data errors by establishing a mapping that reflects
the connection between data quality issues and extractable metadata. We provide a
new metadata classification, which is suitable for data quality management. Finally,
we generalized the taxonomy of metadata by suggesting a closed grammar allowing
the creation of new complex metadata. This research has resulted in the following
publication:

4

1.3 Contributions

• Visengeriyeva, L. and Abedjan, Z. (2019). "Anatomy of Metadata for Data
Curation". Under submission. [233].

Error Detection. Since existing data cleaning solutions are usually adjusted towards one
specific type of data errors, such as rule violations or outliers, it is reasonable to use a
combination of error detection strategies to discover possible data errors in a dataset.
Using all possible cleaning strategies is also misleading, as some data cleaning systems
might perform poorly on a particular dataset by producing a large number of false
positives. However, it is not trivial to assess the effectiveness of each strategy upfront.
We provide two holistic approaches for effectively combining different error detection
strategies. The proposed approaches are based on state-of-the-art ensemble learning
algorithms and incorporate the dataset’s metadata. The above research has resulted
in the following publications:

• Visengeriyeva, L. and Abedjan, Z. (2018). "Metadata-Driven Error Detection".
In Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM) [232]

• Mahdavi, M., Neutatz, F., Visengeriyeva, L., and Abedjan, Z. (2019). "Towards
Automated Data Cleaning Workflows". In Proceedings of the LWDA 2019. [159].

Joint Error Detection and Repair Suggestion. A common approach for addressing
data quality issues is to formulate a set of data cleaning rules, which are intended
to detect and repair incorrect data. To incorporate data cleaning rules within a
single cleaning routine and to automate data curation, data cleaning systems must
be able to treat data quality rules jointly, meaning, without the manual specification
of the rules execution order. Therefore, we propose an approach to data cleaning
based on statistical relational learning (SRL) and probabilistic inference. We argue
that the Markov logic formalism is a natural fit for modelling data quality rules.
This formalism allows the usage of probabilistic joint inference over interleaved data
cleaning rules to detect data errors and suggest a repair. Furthermore, it eliminates
the need to specify the order of rule execution. We demonstrate how data quality
rules expressed as formulas in first-order logic directly translate into the predictive
model in the suggested SRL framework. Moreover, we show that simultaneous rule
execution automatically performed by our system outperforms a manually selected
order. This research has resulted in the following publication:

• Visengeriyeva, L., Akbik, A., and Kaul, M. (2016). "Improving Data Quality
by Leveraging Statistical Relational Learning". In Proceedings of the 21st
International Conference on Information Quality, ICIQ [234].

5

1. INTRODUCTION

1.4 Outline

This dissertation is structured as follows:

• In Chapter 2, we describe three pieces of critical background material for this
dissertation: (1) The foundations of data quality management, such as the
multi-dimensional aspect of data quality, a taxonomy of data quality issues, and the
process of data cleaning, which consists of two phases, namely, error detection
and error repair. (2) A description of data profiling as an initial phase for
data preparation, and particularly in data cleaning, namely single-column and
multi-column (dependencies) profiling tasks. (3) A description of Statistical Relational
Learning, which includes, the concept of Markov logic formalism, and the translation
of Markov logic programs into a probabilistic inference, as the foundation for a
probabilistic data cleaning.

• In Chapter 3, we present a survey on several lines of related work to this dissertation.
In total, we present 25 groups of related work organized along two dimensions: the
first dimension captures common data quality issues and typical data cleaning tasks,
which we found in the literature, and the second dimension reflects various data
cleaning approaches.

• In Chapter 4, we conduct a systematic study of the application of metadata for
detecting data quality problems. We achieve our goal by (1) creating a qualitatively
validated mapping between metadata and data quality issues; (2) establishing a new
taxonomy of profiling tasks that reflects the data quality issues; and (3) generalizing
the notion of the granularity of the metadata in terms of composability.

• In Chapter 5, we develop an approach to error detection based on a combination of
supervised machine learning methods and data profiling. We propose a technique
that (1) effectively combines multiple error detection strategies; (2) considers the
characteristics of the dataset for the error detection; and (3) selects the most effective
data cleaning solutions for the particular dataset.

• In Chapter 6, we develop an approach to data cleaning based on Statistical Relational
Learning (SRL) and probabilistic inference. We propose a method that (1) utilizes
the probabilistic joint inference over interleaved data cleaning rules to improve
data quality; (2) removes the need to specify the order of the rule execution; and
(3) expresses data quality rules as a first-order logic formula, in order to directly
translate into the predictive model in our SRL framework.

6

1.4 Outline

• In Chapter 7, we conclude our contribution as described in this dissertation, and
present an overview of potential further research directions in the field of data quality
management.

7

2
Preliminaries

In this chapter, we describe three areas of critical background knowledge for this dissertation:

1. In Section 2.1, we provide the foundations of data quality management, specifically,
(1) the multi-dimensional aspect of data quality; (2) the taxonomy of data quality
issues; and (3) the process of data cleaning, which consists of two phases, namely,
error detection and error repair.

2. In Section 2.2, we describe data profiling as an initial phase for data preparation and in
particular for data cleaning, namely single-column and multi-column (dependencies)
profiling tasks.

3. A walk-through on what is the statistical relational learning is provided in Section 2.3,
specifically, (1) the concept of Markov Logic programs, and (2) the translation of
Markov Logic programs into probabilistic inference, as the foundation of probabilistic
data cleaning.

The goal of this chapter is to set up the notations and definitions that are used consistently
in the rest of this dissertation.

Please note that we restrict the subject of the research in this dissertation to structured
data usually represented in a relational form. This means that images, video data, and
semi-structured data formats such as XML or linked open data are outside the scope of
this work.

Common notation. We introduce a common notation that is used throughout this
work. We consider a database instance D with a relational schema S. D contains a set of

9

2. PRELIMINARIES

relations (R1, . . . , Rm), where relation Ri ∈ S is defined for the set of attributes attr(Ri).
dom(Ui) denotes the domain of the i-th attribute with Ui ∈ attr(R) and represents the set
of values, which are allowed for the attribute Ui. When referring to relational databases,
we use the terms relation R[U1, . . . , Un], tuple t[u1, . . . , un], attribute Ui, and data value
R.v interchangeably with terms table, row, column, and cell.

2.1 Data Quality Management

As previously motivated in Section 1.1, data quality [82] is an important problem in
data management. In this section, we consider three fundamental aspects of data quality,
namely the multidimensional data quality definitions (Section 2.1.1), data quality issues
(Section 2.1.2) and data cleaning tasks (Section 2.1.3).

2.1.1 Dimensions of Data Quality

In this section, we define the Data Quality by specifying multiple dimensions of this notion.
Data quality can be described with regard to multiple dimensions. The concept of

dimensions describes data quality requirements and provides metrics to quantify the levels
of data quality. These dimensions describe either instances (e.g., data values or tuples) or
dataset schema. [18]. In this work, we focus on the data quality dimensions and metrics
referred to instances. Data quality dimensions are measurable data quality properties that
represent a particular aspect of the data, such as syntactic and semantic correctness of data,
availability of data, the presence of conflicts in data, and the update of data values over
time [18]. Even though the literature suggests several approaches to define data quality
dimensions [147, 236, 172, 18], neither of them is ubiquitous. The contextual nature of the
data quality causes variability in the definition of the data quality dimensions [18]. In this
dissertation, we concentrate on data quality dimensions that have been the focus of existing
data cleaning solutions [62, 91, 228, 55, 144, 127, 245, 193, 145, 202, 112]: Consistency,
Accuracy, Completeness, Uniqueness and Timeliness [82]. In the following, we provide the
definitions for each of these dimensions. Please note that these definitions were aligned
along with the definitions provided by Fan W. et al. [82] and Batini C. et al. [18].

Definition 2.1.1 The Consistency dimension refers to the validity and integrity of
values and tuples with respect to defined inter- and intra-relational constraints that exist
within either single or multiple relations. �

For instance, the violation of the consistency dimension captures integrity constraints such
as functional dependency [82] and other semantic rule [228] violations.

10

2.1 Data Quality Management

Definition 2.1.2 Accuracy is defined as proximity of a data value R.v to the correct
value of the real-world entity R.v′ The accuracy dimension identifies correct and true values
of the entities presented by data.�

Practically, accuracy is "measured as the distance between the value stored in the database
and the correct one" [18].

Definition 2.1.3 The Completeness dimension determines whether the database pro-
vides the complete information to correctly answer the database queries by providing all
required attribute values of an entity’s description. �

An alternative definition is provided by Redman T. et al. [200]: "completeness is a degree
to which values are included in a data collection". Completeness is described with regard
to two aspects: first, the presence and interpretation of null values; second, whether the
relational instance is connected to the open world assumption or closed world assumption
logical model. Computationally, completeness is defined as the ratio of not null attribute
values to the total number of attribute values in the relation R.

Definition 2.1.4 The Uniqueness dimension measures whether the same real-world
entity is represented by multiple data points in one or more relations. �

The uniqueness dimension is reflected by duplicate detection [82], which is also known as
entity resolution, record matching, object identification, record linkage, duplicate detection,
and merge-purge.

In the literature, the time-related dimension is interchangeably referred to as Currency,
Volatility, and Timeliness [18, 82, 172].

Definition 2.1.5 The Timeliness dimension reflects the change and update of data by
identifying the most current value of an entity in a database (usually in the absence of
timestamps). �

The opposite to the current or up-to-date values is the notion of stale values. We define a
value R.v as stale if it is incorrect at the time τ but was in the current state before τ .

2.1.2 Data Quality Problems

In this section, we identify and structure the problems that disturb the data quality.
Given the core data quality dimensions, the violation of Accuracy, Consistency,

Uniqueness, Completeness and Timeliness lead to data quality issues. Please note that we
use the notions of dirty data, data quality problems, or data quality issues interchangeably
throughout this dissertation. To improve data quality, we initially need to understand
the nature of dirty data. An example of dirty data is visualized in Figure 2.1. Errors in

11

2. PRELIMINARIES

ID DEPARTMENT PHONE NUMBER ZIP CITY STATE

1 Fire Department 718-999-FDNY 10004 New York NY

2 Community Affairs 718-999-1438 60611 Chicago IL

3 EMS Command 718-999-2770/1753 60611 Chicago IL

4 Human Resources 718-999-2164 90054 Los Angeles CA

5 HR 718-999-2164 90054 LA CA

6 Intern Program 718-999-2181 SF CA

Formatting Rule Violation

###-###-####

Missing Value
Ambiguous value

Functional Dependency Violation
ZIP -> CITY

Figure 2.1: An example of multiple data errors that are present in the dataset.

the dataset might be introduced throughout any stages of the data’s lifecycle, including
capture, persistence, update, transmission, restore, and deletion [133]. In the following, we
list most frequent reasons for data errors.

1. Data integration is the task of generating a unified view of data originated from
heterogeneous data sources [223, 70, 106, 99]. Practically, the following data quality
problems might emerge during the data integration process: (1) instance-level conflict
resolution, that is, identifying and resolving conflicts among values that point to
the same real-world entity; and (2) quality-driven query processing, which involves
providing query results by considering the quality of the data sources [18];

2. Information extraction, when Web and linguistic data are transposed into the
structured form [213, 225]. Typical data quality issues arising during the process of
data extraction are incorrect values or duplicate entries [153];

3. Erroneous entries that are manually (e.g. filling the Web-forms) or programmatically
inserted [28, 89], which result in inaccurate, missing or disguised values.

In the following, we provide a taxonomy of data quality issues, which are mapped to the
violated data quality dimensions, as shown in Table 2.1. The taxonomy and the mapping
are adopted from Laranjeiro N. et al. [147] and Kim W. et al. [133].

12

2.1 Data Quality Management

Table 2.1: Violations of data quality dimensions. Source [233].

Data Quality Issue Description Data Quality Dimensions

Ac
cu

ra
cy

Co
ns

ist
en

cy

U
ni

qu
en

es
s

Co
m

pl
et

en
es

s

T
im

el
in

es
s

Missing data [133, 170] Refers to both missing tuples and missing values.
Tuple completeness requires that all tuples are
present in the table. Missing value issue consists
of either null-values or disguised values [188].
Value completeness requires that all values are
present in the table, while null-values indicate
that the value is unknown or nonexistent. Addi-
tionally, the disguised values represent default
values that are legitimate values which do not
provide the complete information about the real-
world entity.

� �

Incorrect data [133] Refers to the data that differs from the values
of the real-world entity (e.g., birth year "2010"
instead of "2011")

�

Misspellings [195] Refers to the syntactic violation of the data value
(e.g., entering the last name "Smiht" instead of
"Smith")

�

Ambiguous data [195,
133]

Refers to the data values that might be in-
terpreted in several ways (e.g., abbreviations,
cryptic values such as "NLP" or "A.")

� �

Extraneous data [147] Refers to the presence of additional data in the
attribute value (e.g., the value in the address
column contains a person’s name and address
information).

� �

Outdated temporal
data [133]

Refers to the temporal values that are obsolete,
meaning they do not represent the real state of
the entity.

�

Misfielded values [195,
147]

Refers to values which belong to a different
attribute (e.g., values from the attribute "US
State" are stored in the "US City" field).

� � �

Incorrect references [147] Refers to the entities that contain wrong
information related to the reference relation
(e.g., the employee is associated with a wrong
department).

�

Duplicates [195, 133] Refers to the tuples/values that represent the
same real-world entity.

�

Structural conflicts [195] Refers to the duplicate entities in different
sources.

� �

13

2. PRELIMINARIES

Table 2.1 (cont.) Violations of data quality dimensions.

Data Quality Issue Description Data Quality Dimensions

Ac
cu

ra
cy

Co
ns

ist
en

cy

U
ni

qu
en

es
s

Co
m

pl
et

en
es

s

T
im

el
in

es
s

Different word order-
ings [133]

Refers to the values that violate the expected
pattern such as first name and second name
instead of the reverse ordering.

� �

Different aggregation lev-
els [147]

Refers to the entities in multiple sources that
have been produced by applying different ag-
gregation methods (e.g., entries per quartal vs.
entries per year).

� �

Temporal mis-
match [133]

Refers to the values that point to different time
slots

� �

Different
units/representations

Refers to the values from multiple sources that
represent different units (e.g., the currency
attributes might refer to Dollar or Euro in
multiple sources).

�

Domain violation [195,
133]

Refers to the illegal values [195] that violate
semantic rules defined on the particular attribute

�

FD violation [170, 80] Refers to column values that violate previously
specified functional dependencies

� �

Wrong data type [195] Refers to the values that violate syntactic
specification of the corresponding attribute.
Alternatively, this data problem refers to the
data type constraint violation.

�

Referential integrity vio-
lation [195, 82]

Refers to the tuple values that violate the
referential integrity constraints which are defined
on multiple relations (e.g., one entity has no
reference in the other entity).

� � �

Uniqueness violation [4] Refers to values that are either missing or violate
the uniqueness constraint.

�

Use of synonyms [147] Refers to the values in different sources that
have the same semantic meaning but which
are syntactically different (e.g., "lecturer" and
"professor" are different representation for the
same data).

�

Use of special characters
(space, no space, dash,
parenthesis) [133]

Refers to the different representations of com-
pound data, such as social security number or
phone number

�

Different encoding for-
mats [133, 195]

Refers to values that have been produced by
using a special algorithmic transformation (e.g.,
ASCII or EBCDIC).

�

14

2.1 Data Quality Management

2.1.3 Data Cleaning

Taking the data quality issues into account, in this section, we explain the constituent tasks
of data cleaning. In particular, the data cleaning process consists of the error detection task
(Section 2.1.3.1) as the first step in the data preparation process, and the error correction
task (Section 2.1.3.2) as the second one.

Generally, data cleaning attempts to identify inconsistencies in a dataset and eventually
repair such inconsistencies so that the data consistently, accurately, completely, timely
and uniquely represents the entities to which they refer. Data cleaning can be seen as one
component of the data preparation process in the data science workflow, along with data
profiling and data integration [4].

2.1.3.1 Error Detection

Given that real-life data is dirty [153], the next step is to effectively localize errors in the
dataset by using rules and additional error detection techniques.

Definition 2.1.6 A Data Quality Rule is a data quality constraint, which declaratively
expresses quality conditions that a database instance has to satisfy. �

A typical example of data quality rules are edits [89] or integrity constraints-based data
quality rules [80, 57], such as functional dependencies [83] (see Section 2.2).

Definition 2.1.7 Given a set of data quality rules Λ = (λ1 . . . λn) and a relation R, Error
Detection is the process of detecting the violation of data quality dimensions by analyzing
R to what extend the relation R conforms to the existing data quality rules Λ. Records
that are inconsistent with at least one of the rule λi ∈ Λ are declared erroneous. �

According to Fan W. et al. [82], the error detection process is usually performed by
(1) detecting irregularities in R, i.e., identification of all tuples in R that violate some
rule in Λ; (2) deciding whether R has complete information to answer queries; and
(3) determining whether R has current information.

Generally, we distinguish several error detection techniques, such as rule-based error
detection, outlier detection [8, 190], and pattern violation detection [127].

As we will see later in Section 2.2.2, integrity constraints define the semantics of data,
and all five data quality dimensions can be specified by using these constraints [80]. Hence,
data quality rules can be declared on such integrity constraints that have been discovered
from the data. Another method involves specifying the set of rules that express the
condition to identify an error in the dataset. Such rules originate from statistics and are
called edits [89, 38]. An example of such edit rule might be the following: "there is an error
if marital status is married and age < 14, and the edit that formulates the error condition,

15

2. PRELIMINARIES

is (marital status = married) ∧ (age < 14)" [38]. The set of edits is required to be
consistent and non-redundant. All tuples in R that are inconsistent with at least one of
the edit rule are declared erroneous.

In addition to the rule-based error detection, we also perceive outlier detection [8, 190]
and pattern violation detection [127] as error detection techniques. In particular, the outlier
detection identifies data points that significantly deviate from the distribution or structure
of the remaining values. For example, a negative value in the age attribute would be an
outlier. The pattern violation detection captures errors through validation of syntactic or
semantic patterns. For instance, for the state attribute, one can specify a regex pattern
rule: [A − Z]{2}, which denotes that "the value in the column "US State" should be an
abbreviation represented by two upper case characters".

2.1.3.2 Error Repair

Inconsistent data in the database, meaning that data is contradicting integrity constraints
or certain semantic rules, is an undesirable state of the database instance. Therefore,
after performing the error detection step, the next phase in data quality is to correct the
inconsistencies [13, 24].

To define the error repair, we first define the allowed dataset instances that represent
the corrected or cleaned version of the database by specifying the notion of the distance
between the database instances. One possible way to determine such distances is to use
the partial order [13]:

Definition 2.1.8 Distance between database instances [24]. Let R be a fixed instance
for a relational schema S.

(a) For two instances R1 and R2 for S, we say that R1 is at least as close to R
as R2, denoted as R1 �R R2, iff Δ(R, R1) ⊆ Δ(R, R2). Here, Δ(D1, D2) :=
(D1 \ D2) ⋃(D2 \ D1) is the symmetric set difference between two sets.

(b) R1 ≺R R2 holds iff R1 �R R2, but not R2 �R R1. �

To perform the data repair task, we might need to obtain the �R-minimal instances R,
which are closest to R and consistent with regard to either previously defined data quality
rules or other quality metrics, such as statistical metrics. The elements in the set Δ(R, R′)
can be seen as a result of transformation operations such as deletions of tuples or updates
of tuple values in the R dataset.

Definition 2.1.9 Given a set of data quality metrics Λ = (λ1 . . . λn) and a relation R of
schema S, Error Repair is the process of the transformation of R into R′, so that:

(a) R′ satisfies data quality metrics Λ, i.e., R′ |= Λ .

16

2.2 Data Profiling

(b) R′ is �R-minimal in the class of instances for S that satisfy Λ. �

Generally, the minimality means that R′ is as close to the original dataset R as
possible [52, 136]. Provided with two candidate sets of repairs, the one with fewer
transformation operations is preferred. Hence, the repair R′ is a new instance that
is obtained from R and represents consistent data with respect to the data quality
requirements, which are expressed as data quality rules Λ. In this way, a repair R′

is considered as a "clean" version of the original instance R. Informally, cleaning means
identifying and correcting dataset violations while keeping the cleaned instance as close as
possible to R [33, 24].

The notion of minimality is widely used to restrict the complexity of the search space,
while deciding what R′ instance should be selected as a repair instance for R. However,
recent research increasingly claims the limitation of the minimal data repair [68]. Concretely,
the data cleaning approaches that are based on the minimality principle do not provide the
likelihood of possible repairs [68, 202, 234]. We address the problem of minimality repair
in Chapter 6, where we propose to utilize the probabilistic joint inference over interleaved
data cleaning rules to detect errors and provide possible repairs.

2.2 Data Profiling

To begin the data quality assessment, we must have a good understanding of the data. This
section provides a description of data profiling as a process of metadata discovery [4]. This
process incorporates a set of tasks that creates metadata to deliver, as much as possible,
a full understanding of the underlying dataset. In Section 2.2.1, we describe elementary
profiling tasks performed on individual columns of the dataset. In Section 2.2.2, we provide
an overview of profiling activities executed on multiple columns.

Next, we list the definitions of metadata and data profiling as provided in the literature.

Definition 2.2.1 Metadata is "structured information that describes, explains, locates,
or otherwise makes it easier to retrieve, use, or manage an information resource" [207]. �

Definition 2.2.2 Data Profiling is a process for discovering metadata that includes
"various experimental techniques aimed at examining the data and understanding its actual
structure and dependencies" [163]. �

In data preparation, data profiling usually precedes data cleaning activities. Even
though data profiling has many use cases, including data exploration, database reverse
engineering, data integration, data analysis, and query optimization, we focus on profiling
data for the data quality use case. Data quality assessment literature has identified the
following four types of profiling tasks to obtain metadata [163]:

17

2. PRELIMINARIES

1. Attribute profiling creates distributions and patterns associated with attributes
by using descriptive statistics.

2. Dependency profiling identifies the inter-column relationships, e.g. (conditional)
functional dependencies, matching dependencies etc.

3. Relationship profiling identifies entity keys and various relationships in the data
model, e.g. inclusion dependencies.

4. State-transition model profiling determines the cycle of level- or state-dependent
objects as it appears in the data. For a person’s "status", the level could be "single,"
"married," or "divorced."

Given the set of metadata produced by profiling methods, Abedjan Z. et al. [4]
provide a comprehensive taxonomy of metadata. Their classification comprises single-
column analysis and dataset dependencies. Typical metadata of single columns includes
cardinalities, patterns, data types, value distributions, histograms, domain classifications,
summaries, and sketches. The second category of profiling tasks groups the dependency
related metadata, such as (conditional) functional dependencies, (conditional) inclusion
dependencies [82, 80], and unique column combinations [5]. In the following, we review
single-column analysis and dataset dependencies categories.

2.2.1 Single-Column Profiling Tasks

In this section, we review elementary profiling tasks performed on individual columns of
the dataset.

The essential data profiling activities provide the analysis of single columns of the given
database table. Basically, single-column metadata includes counts, frequent values, basic
aggregate statistics, and value distribution for each attribute. In the following, we will
outline the most relevant profiling tasks that operate on individual columns [4]:
Cardinalities refers to the counts of values. This category includes:

1. Number of rows: the number of entities which are available in the table;

2. Distinctness: the number of distinct values of the single attribute;

3. Uniqueness: the ratio of the number of distinct values to the number of rows.

Value Distribution refers to the distribution of values on the column. This category
includes:

1. Constancy: the ratio between the most frequent value count and the number of rows;

2. Extreme values: minimum and maximum values in numeric columns; shortest and
longest strings in categorical, alphanumeric or text columns;

18

2.2 Data Profiling

3. Histogram: values distribution summary on an attribute, which is constructed
by grouping attribute values V into disjoint buckets (equi-depth or equi-height)
and computing frequencies F for each bucket [122]. Histograms, considered as
mathematical objects, approximate data distribution [123] and technically are pairs
(vi, fvi), where vi ∈ V is i-th value of the value set V and fvi ∈ F denotes the
frequency of the value vi;

4. Quartiles: three points that divide numeric distribution into four equal groups;

5. Inverse distribution: an inverse frequency distribution (a distribution of the frequency
distribution);

6. Various distributions: i.e., a frequency distribution of the value or cell n-gram,
Soundex code, pattern or value length.

Data Types refers to the information about the data type. This category include:

1. Basic type describes the basic data type, such as numeric, alphanumeric, or date/time;

2. Data type includes more specific data type description that is mostly available by
database management systems, for example, integer, float, boolean, varchar etc.

Patterns refers to the syntactic properties on the values of the individual column. This
category includes:

1. Lengths, which specifies the descriptive statistics of the column value lengths, such
as minimum, maximum, median and average lengths;

2. Size, which determines the number of digits in numeric columns;

3. Decimals, which determines the number of decimals in numeric columns;

4. Patterns, which creates the histogram of value patterns (e.g. regular expressions [197]
or syntactic patterns).

Domains refers to the semantic description of the column’s domain. This category
includes:

1. Data class, which describes the generic semantic of the column, such as date or time,
identifier, code or text;

2. Domain, which represents the semantic of the column’s values, such as address
information, geographical locations, phone numbers or personal information [127];

Data Completeness refers to the missing values in the column values. This category
includes:

19

2. PRELIMINARIES

1. Null values, which is the count of absent values within the individual column;

2. Default values, which represent valid values but implicitly denote "missing val-
ues" [188].

The above-described single-column profiling tasks provide syntactic and semantic informa-
tion about each individual column. The second category of profiling tasks comprises the
dependency-related metadata, such as (conditional) functional dependencies, (conditional)
inclusion dependencies [82] and unique column combinations.

2.2.2 Dependencies: Multi-Column Profiling Tasks

In this section, we give an overview of profiling activities executed on multiple columns.
Dependencies are defined as metadata that describe relationships between attributes U

in the relation R [4]. There are many forms of dependencies, which are the goal of the
multi-column data profiling: unique column combinations [5], functional dependencies [57,
82] and their approximate variant conditional functional dependencies [80], inclusion
dependencies [44], matching dependencies [80], and the generalization of multi-column
dependencies - denial constraints [24]. The above-mentioned dependencies are mainly
used in the database design, for example, in to normalize schema, optimize queries, or to
constrain the illegal updates [80]. Our goal is to introduce multi-column dependencies that
are relevant for improving the quality of data.

Definition 2.2.3 A Functional Dependency (FD) is an expression of the form X → Y

where X ⊆ U and Y ⊆ U are subsets of R′s attributes. This FD holds if every pair of
tuples of R that agree in each of the X attributes, also agree in the Y attributes. �

For example, consider the relational schema U = (X, Y, Z); the FD X → Y defined for this
schema determines that for any two tuples t1[x1, y1, z1], t2[x2, y2, z2], if t1[x1] = t2[x2], then
t1[y1] and t2[y2]. In other words, the attribute X uniquely determines the attribute Y [4].

Definition 2.2.4 A Conditional Functional Dependency (CFD) defined on the
relational schema R is a pair R(X → Y, Tp), where

1. X → Y is a standard FD;

2. Tp is a set of constraints holding on the particular subset of tuples. �

For example, consider the following CFD: ([x = AAA, z] → [y]) asserts that for any
tuple in this relation, if the x-attribute value is AAA, then z uniquely determines y. This
CFD uses the traditional FD X, Z → Y that satisfies the pattern x = AAA [82].

20

2.2 Data Profiling

Definition 2.2.5 Denial Constraints (DC) are universally quantified first-order logic
expressions of the form:

∀X1 . . . ∀X|S| ¬(X1 ∧ · · · ∧ X|S| ∧ ξ(X1 . . . X|S|))

where (X1 . . . X|S|) ⊆ U are attributes of the relational schema R, and ξ(X1 . . . X|S|) is a
conjunction of built-in predicates such as <, >, ≤, =, �=. �

Functional dependencies are a special form of denial constraints [24]. For instance, the
functional dependency X → Y on the relational schema R can be written in a different
syntactic form, namely as a denial constraint: ∀x∀y∀z¬(R(x, y) ∧ R(x, z) ∧ y �= z).

Definition 2.2.6 A Matching Dependency (MD) for schemas R1 and R2 is syntacti-
cally defined as:

R1[X1] ≈ R2[X2] → R1[Y1] � R2[Y2]
where X1 and X2 are pairwise compatible sets of attributes in R1 and R2, respectively;
similarly for Y1 and Y2; ≈ indicates similar attributes and � is called the matching
operator. �

In other words, the matching operator � means that for each R1 tuple t1 and each R2

tuple t2: t1[Y1] and t2[Y2] refer to the same real-world entity. Having dynamic semantics,
MDs force the update of t1[Y1] and t2[Y2] so that they have the same values.

For example, consider the FD defined on schema R(A, B, C) fd1 : A → B. Also,
consider two tuples s1(a, b1, c1) and s2(a, b2, c2) of this schema. These tuples obviously
violate the FD fd1. On the other hand, based on fd1, the MD md1 : R[A] = R[A] →
R[B] � R[B] states that for any pair of tuples (s1, s2), if s1[A] = s2[A], then s1[B] and
s2[B] should be identified and have the same value.

To capture errors across multiple relations, we need an interrelation constraint, in the
form of inclusion dependencies [44].

Definition 2.2.7 An Inclusion Dependency (IC) over the relation schemas R1 and
R2 is syntactically defined as:

R1[X] ⊆ R2[Y].
Given two relations r1 and r2 of schemas R1 and R2, respectively, the inclusion dependency
r1[X] ⊆ r2[Y], where X and Y are lists of attributes of R1 and R2, respectively, states
that all values in X also occur in Y . Formally:

∀ti ∈ r1, ∃tj ∈ r2 : ti[X] = tj [Y]. �

For example, consider the following inclusion dependency on two relations: R(x, y) ⊆
D(z, y), which means that for every tuple ti[x, y] ∈ R, there exists a tuple tj [z, y] ∈ D, so
that ti[x, y] = tj [z, y].

21

2. PRELIMINARIES

Identifying potential key columns is an important data profiling activity. A unique
column combination (UCC) describes the key dependencies of a relation [5].

Definition 2.2.8 A Unique Column Combination is a set of attributes X ⊆ U whose
projection contains no duplicate tuples. Formally,

∀t1, t2 ∈ R : t1[X] �= t2[X]. �

Each unique column combination identifies a syntactically valid relation key. Further-
more, functional dependencies are generalizations of unique column combinations, since
X → U \ X.

2.3 Statistical Relational Learning

We also propose using statistical relational learning (SRL) to advance data cleaning. This
section provides the necessary background knowledge about the concepts of SRL. Being an
intersection between machine learning and artificial intelligence, SRL aims to represent,
reason, and learn in domains with relational and uncertain structure [93]. SRL unifies
relational or first-order logic with probabilistic and statistical approaches to inference and
learning [130]. The complex relational domains are represented by either first-order logic or
frame-based formalisms [61]. The probabilistic semantic is usually based on probabilistic
graphical models or stochastic grammars [137]. A large number of SRL approaches have
been proposed, including Markov Logic [73], Relational Markov Models [11], Inductive
Logic Programming [130], and Relational Dependency Networks [176].

In this dissertation, we focus on Markov logic [73] as an SRL formalism for representation
of our data cleaning systems. We describe the syntactic and semantic meaning of Markov
logic in Section 2.3.1. The inference functionality of Markov logic is provided in Section 2.3.2.

2.3.1 Markov Logic

We propose to use Markov logic [73] as our representation language for probabilistic data
cleaning framework (see Chapter 5). Markov logic is a formalism for probabilistic extension
of first-order logic [203]. The advantage of first-order logic lies in the precise specification
of relations among diverse objects. A set of first-order formulae constitute a first-order
knowledge base (KB). The formulae in KB are conjoined. Therefore a KB is a combination
of all defined formulae. Nevertheless, if one first-order logic formula in the knowledge base
is false (unsatisfiable), the complete knowledge base becomes unsatisfiable. This is because
the knowledge base is the conjunction of the first-order logic formulae, and interpreting
at least one formula as false leads to interpreting the whole knowledge base as false [92].
Markov logic formalism overcomes such brittleness by adding weights to first-order logic

22

2.3 Statistical Relational Learning

formulae, such that they compile to a probability distribution as an exponential (log-linear)
model [175]. In the following, we provide some terms used in Markov logic.

Objects in a complex domain are represented by using a term that is a variable or a
constant, such as Bob, x, y, apple. An atomic predicate (atom) is a predicate symbol
applied to a tuple of terms and denotes a relation, such as smoke(Bob), friends(x,y).
First-order logic formulae are specified using atoms connected by logical connectives
¬, ∧, ∨, ⇒, ⇔ and logical universal and existential quantifiers: ∀ and ∃ [92].

The following two formulae [73] are common examples of Markov logic:

∀x smoke(x) ⇒ cancer(x) (2.1)

∀x∀y friends(x, y) ⇒ (smoke(x) ⇔ smoke(y)) (2.2)

The first formula 2.1 denotes that smoking causes cancer. The second formula 2.2 says
that if two people are friends, either both smokes or neither does.

A term containing no variables is called a ground term. An atom or predicate whose
arguments are ground terms is called a ground atom or ground predicate, respectively.
Furthermore, a ground predicate whose state is known (i.e., true or false), is called an
observed predicate. Hidden predicates are ground predicates with unknown states. If a
formula contains only ground atoms, then it is called a ground formula.

Probabilistic graphical models are popular formalisms for probabilistic modelling
because they concisely represent probability distributions by exploiting conditional
independence [137]. A Markov network [187], is an undirected graphical model that
specifies a joint distribution over a set of random variables X = (X1, . . . , Xm). The Markov
network is given by the formula:

P (X = x) = 1
Z

∏
k

φk(x{k}), (2.3)

where x{k} denotes the state of the variables in the k-th clique and φk(x{k}) is a potential
function for the k-th clique. Z is a partition function, so technically, it is a normalization
constant given by Z = ∑

x∈X
∏

k φk(x{k}).
Markov networks are often represented as log-linear models [175] by replacing the

x{k}-clique with an exponentiated weighted sum of features of the state:

P (X = x) = 1
Z

exp

⎛
⎝∑

j

wjfj(x)

⎞
⎠ , (2.4)

where Z is the normalization constant as in Markov networks (see equation 2.3). A feature
f(x) may be any real-valued function. However, in this dissertation, we only focus on
binary functions fj(x) ∈ {0, 1}. The weight wj of a feature fj(x) is the weight of the

23

2. PRELIMINARIES

first-order formula that originated it. Generally, formula 2.4 denotes the probability of a
state x that depends on the specified weights. We have to note that by setting weights to
infinite, the formula becomes a logical constraint. Formally:

Definition 2.3.1 Markov logic network (MLN) [73] L is defined as a set of pairs
(φi, wi), where φi is a formula in first-order logic and wi is a real number. Together with a
finite set of constants C = c1, c2, . . . , c|C|, it defines a Markov network ML, C as follows:

1. ML, C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true, and
0 otherwise.

2. ML, C contains one feature for each possible grounding of each formula φi in L. The
value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight
of the feature is the wi associated with φi in L. �

The syntax of the formulae is the standard syntax of first-order logic. All unquantified
variables are translated as universally quantified. Semantically, an MLN maps each possible
world to a probability score [204]. Generally, an MLN is a template for the construction of
Markov networks if a set of constraints is provided.

2.3.2 Probabilistic Inference

In this section, we lay the foundations of the probabilistic inference, as the engine for
probabilistic data cleaning.

Besides being a compact representation for joint probability distributions, constructing
MLNs also provides an inference functionality that is computing answers to a query (i.e.,
the most probable random variables assignment). In particular, Maximum A Posteriori
(MAP) [76] inference computes the most probable state of the world, given the evidence.
Marginal inference is used to compute the conditional probability for a formula to be true.
Inference in Markov networks is #P -complete [208]. Thus, a common way to perform
inference is to use approximate inference approaches, such as Markov Chain Monte Carlo
(MCMC) [94] for marginal inference. Another popular method for inference is belief
propagation [248] or reducing the MAP problem to a weighted SAT problem, and solving
it with an SAT-solver such as MaxWalkSAT [129]. Recently developed methods to solve
MAP problems actively rely on Integer Linear Programming (ILP) [209], because of IPL’s
declarative nature, exactness and availability of effective ILP solvers. Generally, it is proven
that any Markov Network can be translated into an integer linear program [227, 204].
Markov logic applications solve the MAP problem of determining the most probable state
of hidden predicates H, given some observed ground predicates O, with H = P\O, where
P denotes the set of all predicates:

24

2.3 Statistical Relational Learning

ŷ = arg max
y∈YH,C

p(y|x) = arg max
y∈YH,C

s(y, x), (2.5)

where s(y, x) is a scoring function that evaluates the score of a problem solution pair (y, x)

s(y, x) =
∑

(φ,w)∈M

w
∑

c∈C
nφ

fφ
c (x, y). (2.6)

Each feature fφ
c (x, y) ∈ 0, 1 returns 1 if the contained ground formula φ is true in the

possible world, otherwise it is 0.
The generic mapping from MLN to ILP replaces each feature function fφ

c (x, y) in
equation 2.6 with the binary variable λφ

c , which leads to the formulation of the optimization
problem:

arg max
y∈YH,C

∑
(φ,w)∈M

w
∑

c∈C
nφ

λφ
c

subject to ∀(φ, w) ∈ L, c ∈ Cnφ

λφ
c = fφ

c (x, y)

(2.7)

Given the above optimization problem, the ILP formulation is achieved through the
transformation of each constraint into a set of linear constraints, by adhering to the
following steps [204]:

1. Each constraint is mapped to a logical equivalence of a ground formula.

2. Observed ground atoms are replaced by their respective state value (true or false),
otherwise, they are not observed and are consequently replaced by false.

3. Each first-order formula is replaced by its Conjunctive Normal Form (CNF). For
instance, formula 2.1 is transformed as
smoke(x) ⇒ cancer(x) ≡ smoke(x) ∨ ¬cancer(x).

4. Each disjunction is replaced by a linear constraint [241].

The Cutting Plane Inference algorithm solves the above constrained optimization problem
by searching for feature-weight products in equation 2.6 that do not maximally increase
the overall sum given the current solution [204].

The above described Markov logic formalism is a foundation for our approach to data
cleaning, which we propose in Chapter 6.

In the following chapter, we outline the related work to this dissertation from the area
of error detection and repair. We present a new classification of existing data cleaning

25

2. PRELIMINARIES

solutions, which are categorized along with the two aspects of data cleaning: what to clean
and how to clean.

26

3
Related Work

The related work is organized along two dimensions:

1. What. The first dimension captures common data quality issues and typical data
cleaning tasks, which had been found in the literature.

2. How. The second dimension reflects differently focused data cleaning approaches.

In the following, we briefly explain the methodology behind the structure of the related
work. The first dimension includes standard data cleaning tasks regarding data quality
issues detection, as well as error repair. The what-dimension consists of the following
categories that reflect the five central data quality dimension violations:

Completeness violation. This category describes research conducted in the area of
missing value detection and imputation.

Accuracy violation. This category explains different techniques for the detection and
repair of inaccuracies.

Uniqueness violation. This group of approaches deals with duplicate detection and
resolution.

Consistency violation. This class of methods identifies integrity constraints violation
and provide solutions for data repair.

Timeliness violation. This category depicts research regarding stale data detection and
resolution. Due to a large number of research conducted on timestamp attributes [104],
we restrict our survey on approaches that address timeliness violation with no explicit

27

3. RELATED WORK

timestamps attributes in the dataset under assessment. For instance, when values in
the salaries attribute are constrained to be increasing, for each person, we consider
the highest value in this attribute to be the most current one.

A more granular description of the data quality issues and their violation of data
quality dimensions is provided in Table 2.1. Generally, existing research distinguishes
between two main groups of data cleaning approaches, namely rule-based and statistical
approaches [148, 78, 104, 53]. However, there are complimentary groups of data cleaning
techniques, which are rarely included in the data cleaning surveys. Therefore we present
a comprehensive overview of existing systems. In this chapter, we use the second how-
dimension and classify the related work as follows:

Rule-based approaches are also known as qualitative techniques. This group of data
cleaning methods is characterized by the use of data cleaning rules or integrity
constraints for detection and repair of various error types in the dataset.

Statistical approaches are also referred to as quantitative techniques. This group of
data cleaning systems employs a set of statistical methods to detect data errors and
impute the repair. The main motivation behind using statistics-based techniques is
that for some datasets (IoT, GPS, sensor reading), no integrity constraints could be
declared. For this reason, the rule-based approaches for error detection and repair
are not applicable.

Hybrid approaches. This group includes research prototypes, which combine the
previous two groups, namely qualitative and quantitative data cleaning methods.

Probabilistic and ML-based approaches operate by using various machine learn-
ing [171] or probabilistic algorithms [31] to predict errors in data and determine the
most probable repair.

Interactive Data Cleaning. This group of data cleaning methods distinguishes from
other groups by including the human factor (human-in-the-loop) in the error detection
and cleaning process. We review various methods that use active learning approach,
crowdsourcing, or any interactivity in the data cleaning procedure.

Please note that in this chapter, we do not consider complementary areas of data
cleaning, such as data fusion [30], truth discovery [154], and data diagnosis [244, 240].
Furthermore, despite the availability of numerous data cleaning surveys [148, 78, 104, 53],
we collect all available techniques for data cleaning and create a comprehensive classification
of existing data cleaning solutions, which are categorized along with the two aspects of
data cleaning: what to clean and how to clean.

28

3.1 Rule-Based Approaches

3.1 Rule-Based Approaches

The first group of data cleaning methods is characterized by using data cleaning rules
or integrity constraints to detect and repair various error types in the dataset. Integrity
constraints are generally used as a foundation for data quality rules [82]. These
systems require the specification of denial constraints, as well as functional and matching
dependencies, to formulate data quality rules [54, 91, 62]. In Chapter 6, we provide a
method for defining data quality rules by using integrity constraints.

To impute missing values in the relational data, the Nadeef system and its successor [62,
132] utilize functional and matching dependencies, and enable user-defined logic for data
repair. Another approach [219] employs differential dependencies to explore similarity
neighbours to fill the missing cells in the dataset.

Inaccuracy detection and repair are also tackled with data cleaning rules, because
accuracy violation might be detected with various integrity constraints such as functional
dependencies [91, 62, 132], matching dependencies [62, 132, 54], and denial constraints, as
a generalization form for both former constraints [54, 91].

The problem of duplicate record detection and resolution is pursued by adopting
integrity constraints in several data cleaning approaches. In particular, the matching
dependencies [81] are utilized by Nadeef [62] and used for data cleaning and query
answers by Bertossi et al. [25]. Specially defined identity rules [155] are used to identify
matched tuples from two different datasets.

One of the natural areas of applying integrity constraints [83, 80, 86], is the problem of
integrity constraint violation and its repair. This is the largest group in the category of rule-
based data cleaning approaches. The surveyed systems [54, 91, 62, 132] usually assume the
presence of integrity constraints and do not provide any functionality to discover them. A
new class of fixing rules [238] which are based on integrity constraints acts as a foundation
for an automated approach to repairing data errors. To estimate data repairs for an
inconsistent database with respect to a set of denial constraints, Lopatenko A. et al. [157]
provided an approximation algorithm, which translates the denial constraints into an
optimization problem.

To tackle the problem of timeliness violation and stale values resolution with the
rule-based methods, a special class of Currency Constraints is proposed [82, 85, 84]. These
constraints are extensions of denial constraints with additional currency information, which
is derived from the semantics of data, namely the currency order for attribute Ai. This
constraint determines the condition when the value of the attribute Ai is more current. The
statement above means that the declaration of such rules implies providing the currency
order manually. In contrast, Abedjan Z. et al. [1] studied the inclusion of the temporal
aspect into the functional dependencies, namely the discovery and application of temporal
rules for data cleaning.

29

3. RELATED WORK

In our work, we also leverage integrity constraints to specify data cleaning rules
and to convert them into a probabilistic model of error detection and probable repair
suggestions [234]. Furthermore, we operate on the output of the aforementioned data
cleaning systems and use them as constituent systems for general error detection [232].

3.2 Statistical Approaches

This group of data cleaning prototypes uses statistical methods to detect data errors
and determine the repair of corrupt values. The reason behind utilizing statistic-based
techniques is that the dataset statistics, such as the values distribution, are useful for
detecting errors [190]. Additionally, for some datasets, such as IoT, GPS, sensor reading,
no integrity constraints could be declared. Therefore, the rule-based approaches for error
detection and repair need to be extended.

Some of the ubiquitous data quality problems, when it comes to applying statistical
methods, include missing values detection and imputation. The eracer system [164] tackles
the data imputation problem based on relational learning to determine the characteristics
of the attribute relationships in a relational database. This technique uses knowledge about
the relationships between the dataset attributes to construct a Bayesian network, which
is then used to infer the missing values. The scare system [245] proposes the notions
of the likelihood benefit of an update and maximal likelihood repair – a data repairing
technique – that finds a limited amount of changes, which maximizes the likelihood of the
data, given the underline data distribution. They generate predictions for tuple repairs
with the corresponding prediction probabilities for each dirty tuple. The DEC (Detect-
Explore-Clean) framework [22] uses statistical and other analytical techniques, such as
the Fleiss’ kappa measure, to compute the glitch score, which identifies and scores the
data glitches. This score forms the base for detecting, quantifying, and correcting data
quality problems. Depending on the type of missing data, such as monotone or arbitrary,
regression models, respectively the Markov Chain Monte Carlo method can be applied [249].
The eracer and scare systems address the problem of explicitly missing values, such as
null values. This group together with implicitly missing values (also known as default
values or disguised missing values [189]) violate the Completeness dimension. The Fahes
system [194] collects numerical and categorical value distributions (statistical models) and
uses them for the identification of disguised missing values.

The typical task for quantitative techniques is outlier detection – this is the largest
group of approaches in this category. The dBoost system [190] employs both Gaussian
modelling and histogram-based methods to capture various types of outliers. Similarly,
Subramaniam, S. et al. [224] propose a framework that computes an approximation
of multi-dimensional data distributions, to identify distance- or density-based outliers.

30

3.3 Probabilistic and Machine Learning-Based Approaches

Meanwhile, Chung, Y. et al. [56] provide a means of quantifying the remaining errors,
namely the estimation of the number of all detectable errors in the dataset by using the
Chao92 estimation technique. Zhang, A. [250] proposes the likelihood-based repairing
over sequential data. Hellerstein, J. [114] focused on a statistical properties of the data,
such as histograms and correlation, and their usage for computational procedures to
identify and correct errors in datasets. The Leap framework [41] tackles the problem of
distance-based outliers in streaming environments by leveraging two principles, namely
"minimal probing", which collects the minimally needed evidence to identify outliers, and
"lifespan-aware prioritization", to find the most useful neighbour relationships for outlier
detection. Detecting the inaccuracies in data by using statistical methods has been a target
of many already described data cleaning systems [56, 250, 22, 245].

The problem of outdated materialized views on large databases due to incorrect, missing,
and superfluous rows has been tackled by the Stale View Cleaning framework [143],
which cleans a sample of rows from a stale materialized view and uses the clean sample to
estimate aggregate query results by means of a hashing-based technique that generates an up-
to-date sample view. Already mentioned data cleaning prototypes [22, 245] use statistical
methods to solve multiple data cleaning problems related to missing values, outliers,
inaccuracies, and integrity constraint violation. Some scientific prototypes mostly address
the problems of inaccuracy detection and repair, as well as the related data cleaning issue,
such as integrity constraint violation. Other systems employ metric functional dependencies
to generate a minimal repair [193], or use constraints as evidence and propose a repair
classifier that predicts the type of repair to resolve the inconsistency. This classifier learns
from previous user repair interactions to recommend accurate repairs in the future [235].

In our work, we leverage the output of the above-described data cleaning systems. Since
we consider such systems as "black boxes", these approaches can be utilized as constituent
systems [232].

3.3 Probabilistic and Machine Learning-Based Approaches

Recently, there is an increasing trend of applying machine learning, artificial intelligence,
and probabilistic approaches for data integration and curation tasks. An advantage of
probabilistic modelling for data quality has been investigated by Naus, J. et al. [174] and
Chen, K. et al. [46]. For example, the Bellman system [66] uses data mining techniques on
the database structure to examine the database content, e.g., discover similar values, identify
join paths, estimate potential join attributes and join sizes, and identify structures in the
database. Probabilistic inference has been used in a number of tasks, including natural
language processing [206], ontology alignment, data integration [179] and co-reference

31

3. RELATED WORK

resolution [192]. These research results demonstrate the advantage of joint modelling for
various tasks.

The BoostClean system [141] addresses the domain value violations while cleaning
training data for predictive models. They provide a library of data cleaning operations,
which rely on deterministic rules (error detectors) and statistical criteria. To detect errors
in categorical attributes, their framework includes an error detector based on the word
embedding model – Word2Vec [168] – and implements a neural network architecture.
BoostClean employs the classification algorithm AdaBoost for error detection in
training data. In our work, we also generate error detectors based on datasets metadata.
Furthermore, unlike to their techniques, we employ stacking ensemble learning to combine
various error detection strategies [232].

Commonly, to detect and repair data outliers, various data cleaning systems use
clustering algorithms. For instance, Song S. et al. [218] proposed to repair inaccurate
data during the clustering process. ActiveClean [145] is an iterative model training
framework for data cleaning that suggests a sample of data to clean based on the data’s
value to the model and the likelihood that the data is dirty.

To overcome the shortcomings of the CFDs- and AFDs-based data cleaning, the
BayesWipe framework learns the generative model from the data and views the data
cleaning problem as a statistical inference over Bayesian Networks problem. In our work,
contrary to BayesWipe, we utilize undirected graphical models to generate possible
repairs [234]. Although the DataXRay system [240] is a data diagnosis system, they also
employ Bayesian analysis to derive the best possible error diagnosis. The HoloDetect
system proposes to build a neural networks-based error detection model that requires
minimal human involvement [112]. The HoloClean system [202] considers error detection
as a black-box component and expects the specification of integrity constraints-aligned
data quality rules to make probabilistic suggestions on how to repair erroneous data values.

Machine learning approaches have been intensively applied to address the problem of
duplicate detection [12, 27, 242, 144, 222]. For instance, the Data Tamer system [222]
uses a Naive Bayes classifier to obtain the probabilities for two tuples to be duplicates and
then applies clustering to detect duplicates.

Often, data cleaning is viewed as a probabilistic process that produces various probable
repairs. The concept of probabilistic data cleaning has been applied in the context of
violations of functional dependencies [26].

In this dissertation, we applied both supervised and unsupervised machine learning
approaches to achieve aggregation of various data cleaning solutions, respectively, to identify
idempotent systems that provide nearly similar results [232].

32

3.4 Interactive Data Cleaning

3.4 Interactive Data Cleaning

Traditionally, in relational data cleaning, it is almost impossible to quantify the accuracy
of an automatic data cleaning process without the ground truth. The need to include
human experts into the data cleaning process is usually motivated by the unreliability of
the automatic data repair [2]. Furthermore, data cleaning is considered a hard problem, a
large number of approaches, which include humans for error detection and error correction.
Especially with the development of crowdsourcing platforms, such as Amazon Mechanical
Turk [10], humans are intensively being included into various labour tasks related to data
cleaning.

The problem of missing values imputation, as well as inaccuracy detection and repair,
is addressed by a number of interactive data cleaning solutions. For instance, the
Wrangler system [127] introduced a programming-by-example concept that implies
interactive data transformations by integrating a mixed-initiative user interface with an
underlying declarative transformation language. The crowd of experts (oracles), besides
the ubiquitous platforms, is used to decide what tuples are missing in the dataset [20].
The Potter’s Wheel [197] proposed an interactive system, which uses a transformation
language for data formatting and outlier detection based on extracted value patterns. The
recently proposed Icarus system [196] employs a heuristic algorithm, which provides the
user with small subsets of the database, as well as a set of suggested rules, to guide the
human in the task of data completion.

To identify erroneous data, the Falcon framework [110] is bootstrapped with user
input about the dirty data. Then, Falcon generates a set of declarative queries, which
are also verified by the user. Based on user verification, the system generates data repair
on the complete dataset. The Katara data cleaning system [55] is based on both the
knowledge base and crowdsourcing. For a provided relational dataset, a knowledge base,
and a crowd, Katara understands the table semantics, determines incorrect data, and
generates top-k possible repairs for data errors.

Numerous data cleaning systems use crowdsourcing for duplicate detection and
resolution [138, 222, 96, 210, 105, 237]. The task of duplicate detection is also known as
entity resolution. The crowdsourcing mode of the Data Tamer system [222] allows entity
resolution, which entails deciding if two entities are duplicates or not, by using experts
associated with the task domain. Similarly, the interactive Magellan system [138] assists
users to understand the entity matching scenario and create duplicate detection pipelines
by using blocking and matching techniques. The Corleone system [96] minimizes the
developer’s effort to generate the entire entity resolution workflow by using crowdsourcing
to accomplish a task.

The recent Dance system [16] creates a suspicious tuples graph, which enables domain
experts to detect and resolve integrity constraint violations. However, they assume that

33

3. RELATED WORK

the provided integrity constraints are correct and reflect the ground truth. Similarly, the
Guided Data Repair framework presumes the availability of data cleaning rules to
identify the erroneous tuples in the dataset. The framework incorporates a user to verify
generated updates.

Fan W. et al. [84] address the problem of determining the most current tuple, given a
set of tuples related to the same entity. They studied how the currency and consistency
dimensions are interleaving to resolve the timeliness violation. Their framework assumes
the availability of various integrity constraints, such as common CFDs, as well as specialized
currency constraints. The proposed framework for conflict resolution considers the
mentioned integrity constraints and involves a user for confirming the truth values, which
were deducted according to the provided data quality rules.

In our work, we do not directly assume any human involvement. However, the labelling
effort necessary to train data cleaning systems aggregation has to be performed by a
user [232].

The summary of all the discussed data cleaning approaches is provided in Table 3.1.
We outline the related work along two dimensions:

1. What-dimension, which captures common data quality issues and typical data
cleaning tasks, which we found in the literature, and

2. How-dimension, which reflects different methods adopted by data cleaning
approaches.

34

3.4 Interactive Data Cleaning

D
at

a
Q

ua
lit

y
Iss

ue
s

Ru
le-

Ba
se

d
ap

pr
oa

ch
es

(Q
ua

lit
at

iv
e

te
ch

ni
qu

es
)

St
at

ist
ica

la
pp

ro
ac

he
s

(Q
ua

nt
ita

tiv
e

te
ch

ni
qu

es
)

Pr
ob

ab
ili

st
ic

an
d

M
L-

Ba
se

d
ap

pr
oa

ch
es

In
te

ra
ct

iv
e,

Ac
tiv

e
Le

ar
ni

ng
,

an
d

cr
ow

ds
ou

rc
in

g

Ap
pr

oa
ch

es
us

in
g

pr
ofi

lin
g

an
d

m
et

ad
at

a

Co
m

pl
et

en
es

s
vi

ol
at

io
n

[6
2,

21
9,

13
2]

[1
94

,2
49

,2
2,

24
5,

16
4]

[1
41

]
[1

27
,1

85
,2

0,
19

7,
19

6]
[1

28
,1

27
,1

41
,3

0]
Ac

cu
ra

cy
vi

ol
at

io
n

[5
4,

91
,6

2,
13

2]
[1

90
,5

6,
25

0,
22

,2
45

,1
14

,2
24

,4
1]

[2
02

,2
18

,1
44

,1
41

,6
7,

24
0,

14
5]

[1
27

,1
45

,5
5,

20
,1

97
,1

10
]

[1
28

,1
27

,1
41

,3
0,

19
0,

23
9]

Un
iq

ue
ne

ss
vi

ol
at

io
n

[6
2,

15
5,

25
]

[2
2,

11
3,

24
5]

[1
2,

27
,2

42
,1

44
,2

22
]

[1
38

,2
22

,9
6,

21
0,

10
5,

23
7]

[2
39

]
Co

ns
ist

en
cy

vi
ol

at
io

n
[8

3,
80

,8
6,

54
,5

0,
15

7,
91

,6
2,

13
2,

23
8]

[2
2,

19
3,

23
5]

[2
02

,2
6,

11
0]

[1
6,

24
6]

[2
39

]
Ti

m
eli

ne
ss

vi
ol

at
io

n
[8

2,
85

,1
,8

4]
[1

43
]

tim
es

ta
m

p
[1

04
]

[8
4]

[1
28

]

T
ab

le
3.

1:
Su

m
m

ar
y

of
re

la
te

d
w

or
k

fo
r

di
ffe

re
nt

da
ta

qu
al

ity
iss

ue
s

an
d

th
e

co
rr

es
po

nd
in

g
ty

pe
of

da
ta

cl
ea

ni
ng

ap
pr

oa
ch

es
.

35

4
Anatomy of Metadata for Data

Quality Management

Real-world datasets often suffer from data quality problems [161, 201, 195]. Therefore,
guaranteeing high-quality data is crucial for all data-driven enterprises and applications [167,
109, 223], as decision-making and analytics demand consistent, accurate, complete and
timely data, to avoid the "garbage in - garbage out" problem [201]. As elaborated in
Chapter 2, we consider data quality as a compound notion that unifies the following five
dimensions: Consistency, Uniqueness, Accuracy, Completeness, and Currency [82, 18].
Real-world datasets are often dirty, meaning that they reveal data quality problems, which
are a violation of at least one of the mentioned five dimensions [82, 201, 126, 142].

Data quality problems have been studied in previous research, which categorized
and systematized these issues [147, 152, 195, 133]. The taxonomy, suggested by Kim
W. et al. [133], consists of 33 atomic dirty data types. These errors are a hierarchical
decomposition of three classes, namely "missing data", "not missing but wrong data", and
"not missing and not wrong but unusable". Kim W. et al. [133] focus on “primitive” types
of dirty data and exclude dirty data that is a combination of more than one type of dirty
data. Rahm E. et al. [195] classify data quality issues regarding the source of information:
single or multiple with further distinctions into schema- and instance-related data quality
problems. Rahm E. et al. [195] define multi-source problems as such that appear when
multiple sources should be integrated, otherwise, the dirty data relates to the single-source
problems. The four classes categorization for types of errors was proposed by Abedjan Z.
et al. [2]. They group data quality issues into four classes, namely outliers, duplicates, rule

37

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

violations, and pattern violation. The authors also emphasize that their categorization is
not exhaustive because some errors might be assigned to more than one category.

In this work, we focus on a flat hierarchy of data errors and focus on “primitive” types
of dirty data that are described in the literature [147, 152, 195, 133].

Existing research already provided the measures of quality of a given dataset by
mapping data quality dimensions to data quality problems [152, 18]. This research showed
that each of the data quality issues violates at least one dimension. For instance, the
existence of duplicates violates the uniqueness dimension [147]. Referential integrity
violations or misfielded values disrupt four dimensions: accuracy, consistency, uniqueness,
and completeness. The missing values problem violates two dimensions: accuracy and
completeness.

At the same time, a large body of research already proposed various data cleaning
approaches that try to address some of these data quality problems [62, 54, 202, 55, 222, 190,
91]. These systems leverage miscellaneous types of metadata, such as value distributions,
histograms, or derived integrity constraints. Generally, data profiling plays an essential
role in data management. In particular, data preparation intensively uses profiling results
for cleaning, wrangling, integrating and maintaining data. Although single-column or
structural metadata is actively used in the field of schema matching [72], the usefulness
of this category of metadata for data cleaning is less well studied. In fact, data cleaning
systems are partially built on metadata, by including profiling capabilities in their engines.

Depending on the metadata category, which is primarily used by the particular data
cleaning system, we divide existing data cleaning systems into three groups:

Dependencies or Integrity Constraints are used as a foundation for data quality
rules [82]. Integrity constraints, such as functional dependencies, inclusion dependen-
cies, or denial constraints, form the base for rules, and data that violates these rules
is potentially considered erroneous. The group of systems, mainly described as "rule-
based" systems, leverages different integrity constraints to enable error detection and
correction. These systems expect the specification of denial constraints, functional
dependencies, and matching dependencies to specify data quality rules [54, 91, 62].
The dataAuditor [97] system discovers data semantic on the provided integrity
constraints to analyze the data quality. Another type of systems, mainly related to
as machine learning-based systems, also employ dependencies, such as functional
and matching dependencies. For instance, the HoloClean [202] system expects the
specification of integrity constraints-aligned data quality rules to make probabilistic
suggestions on how to repair erroneous data values. Another group of systems employs
metric functional dependencies to detect data errors and use statistical approaches to
generate a minimal repair [193]. The UniDetect is a perturbation-based framework
with the "what-if" analysis and is focused on the four types of errors: numeric outliers,

38

misspellings, uniqueness violations, and FD violations. UniDetect utilizes FDs for
the FD-compliance metric.

Dataset statistics, such as value distributions or values frequencies, are included by
another group of error detection techniques. The dBoost system [190] employs outlier
detection methods based on value distributions and histograms. The Fahes [194]
system gathers numerical and categorical value frequencies and utilizes them for
the identification of disguised missing values. Other systems, such as Eracer [164]
and Scare [245], produce value distributions and leverage probabilistic models to
repair data. The UniDetect framework uses metadata, such as edit distance matrix,
statistical dispersion (standard deviation, MAD, and median), and distinctness.

Dataset semantics, such as data types or semantic roles, are used for dataset summary
visualizations to support the user in validating and cleaning data. Basically,
these visualizations include histograms, area charts, and scatter plots [128]. The
Wrangler [127] system uses semantic data types (e.g., zip and state codes,
dates, classification codes) to clean and structure (wrangle) data. The Potter’s
Wheel [197] introduced a transformation language for data formatting and outlier
detection based on extracted value patterns.

While some metadata has been incorporated in many data cleaning systems, a
comprehensive discussion on the relationship between metadata and data quality problems
is still due. To motivate the connection between metadata and dirty data, we now
demonstrate how metadata is used in data quality management, by providing the following
examples of heuristics and data quality rules, which is aligned to the approach suggested
by Rahm E. et al. [195]:

Example 4.0.1 A trivial relationship can be directly established between the data quality
dimension completeness and the number of null values. If the percentage of null values is
greater than zero, then it might be an indicator of missing or not applicable values. �

Example 4.0.2 Metadata such as value pattern distributions can be transformed into a
formatting rule [173]. Applying these discovered rules would expose all values that do not
match this rule as errors, and therefore indicate the existence of either illegal values or
domain violation issues. Some typical examples of error detection methods with formatting
rules include assessing whether the values conform to an e-mail, US zip code, or a phone
number pattern [127]. Figure 4.1 shows how metadata is compiled into rule discovery and
error detection. �

Example 4.0.3 The disguised missing values are also known as implicit default values [189,
120, 194]. Practically, disguised missing values are often values with strings of repeated

39

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

Department Phone Number
Fire Department 718-999-FDNY
Community 718-999-1438
EMS Command 718-999-2770/17
Human 718-999-2164
Intern Program 718-999-2181
Fire Cadet 718-999-1468

\d
{3

}-\
d{

3}
-\d

{4
}Value Patterns

Distribution

most frequent pattern

Formatting Rule

###-###-####

Error Detection

Phone�Number = {
clean, if�matching�###-###-####
error, otherwise

Metadata

1

2

3

4

Figure 4.1: Discovery of formatting rules and error detection. The metadata-based
error detection is performed by (1) analyzing the distribution of value patterns, which (2)
leads to the discovery of the most frequent pattern, which is then transformed into (3) the
formatting rule to (4) indicate all values that do not match this rule as errors. Source [233].

characters (e.g., "sdsdsdsd") or digits (e.g., 555−555−5555). Using metadata that describes
the distinctness of values in a dataset, it is possible to come up with a rule that captures
this type of errors. The Fahes system [194] leverages distinctness to compute the repeated
pattern score for each value and to output the cells with the highest score as disguised
missing values. �

The examples above show that the metadata is crucial in detecting data quality
problems [4, 147, 152, 195, 133]. Moreover, these examples above expose that when using
metadata for data quality rules, one typically composes simple metadata into more complex
ones. In particular, metadata, such as count of rows, count of nulls, count of value v,
and count of value pattern are used as an integral part of more complex metadata such
as completeness, distinctness, and value pattern distribution. Therefore, to systematically
analyze the metadata, we propose to establish a metadata categorization, which is based
on the composability notion.

Provided the motivation and examples above, we now define three challenges in this
chapter:

Mapping metadata to data quality issues. As data cleaning approaches tend to focus
on only one or few error types, new techniques for the coverage of data errors by using
metadata need to be developed. This requires knowing what metadata addresses
which data error, as well as how to combine the results of such error detection process.

40

Metadata Taxonomy. Given a comprehensive list of data profiling, it is necessary to
perform a thorough analysis of metadata regarding its usage for each particular task
in data cleaning.

Metadata Composability. From the examples above, we found that using metadata
for data quality rules requires some simpler metadata functions to represent the
final metadata. In order to systematically analyze metadata, we must establish the
concept of metadata composability.

In this chapter, we (1) create a qualitatively validated mapping between metadata and
data quality issues; (2) establish a novel metadata taxonomy based on the complexity of
metadata that is suited for data quality management; and (3) generalize the composability
of metadata by introducing a formal description of metadata composition.

Furthermore, we conduct a systematic study of the application of metadata for detecting
data quality problems. In the following, we refer to the metadata profiling task as a metadata
function. Initially, we establish a new qualitative mapping between our new metadata
taxonomy and data quality issues. Next, we organize metadata functions by establishing
a new two-dimensional metadata classification matrix that reflects the different degrees
of granularity. We specify how metadata is composable and formulate a closed grammar
based on the Extended Backus-Naur Form [135], which offers a description for all types of
metadata functions and enables generating new metadata. Finally, we demonstrate the
practical application of our mapping by first, designing a case study where we address the
problem of error detection on real-world data, second, conducting a user study to evaluate
the support of our mapping for the definition of the data cleaning strategy.

This chapter is organized as follows:

1. In Section 4.1, we establish the new mapping between metadata and data quality
issues.

2. In Section 4.2, we analyze metadata in the context of data quality management and
provide a new two-dimensional metadata classification that reflects different degrees
of metadata granularity.

3. The formalization for metadata composition is provided in Section 4.2.2.

4. Finally, we conclude this chapter with a qualitative case study to demonstrate the
effectiveness of our mapping and usability study of applying our method for error
detection in Section 4.3. We conducted a user study to evaluate the support of our
mapping for the definition of the data cleaning strategy in Section 4.3.5

41

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

4.1 Mapping Metadata to Data Quality Issues

In this section, we establish a new mapping between the metadata taxonomy and
well-known data quality issues. As previously motivated, metadata is essential for initial
data quality analysis [195]. We consider the practical usefulness of particular types of
the metadata for solving particular data quality issues. The methodology to create such
mapping involves the connection of the Data Errors and Metadata taxonomies (see
Chapter 2). In the following, we explain each of these components, as well as the connection
between them in the form of a Heuristic statement.

Data Errors. Understanding the roots of dirty data is the most crucial aspect of
data quality management. As previously mentioned, data errors are violations of data
quality dimensions [82]. We use the taxonomy of dirty data, which is already established in
the research and has been previously explained in Table 2.1 in Chapter 2. To connect data
quality dimensions and data quality issues systematically, Laranjeiro N. et al. [147] used the
categorization proposed by Rahm et al. [195] and mapped various data quality problems
identified by the research community to the five central data quality dimensions [82], as
shown in Table 2.1. This Table contains a detailed description of data quality issues as
proposed by Laranjeiro N. et al. [147], Oliveira P. et al. [180] and Kim W. et al. [133].

Metadata. In the previous Section 2.2, we reviewed the metadata taxonomy, which is
known in the literature [3]. For establishing the mapping, we include all metadata that is
captured in that taxonomy.

Heuristics. One way to build a new mapping between metadata and data quality
issues is to combine the taxonomies on Data Errors and Metadata by using the weak
supervision approach. The idea of weak supervision or distant supervision originates in
the Information Extraction field, and uses facts from existing knowledge bases or expert
knowledge to generate annotations for extracted entities [169]. In the field error detection,
we use weak supervision as a technique that heuristically matches data errors to the
metadata which is used to detect these errors [198]. Thus, we define Heuristics as error
detection rules that are declared by using metadata. Analogously to the formulation of
edit rules [89], heuristics use metadata to specify the error localization logic. Concretely,
we formulate first-order logic predicates by using metadata statements. The intuition
behind the mapping between Data Errors and Metadata taxonomies is that, since
metadata describes and explains the information resource [207], then metadata should also
describe the data quality issues. Mainly, we achieve the mapping between Data Errors
and Metadata taxonomies by specifying a heuristic that determines:

42

4.1 Mapping Metadata to Data Quality Issues

1. what data error should be identified; and

2. how the data error is described by metadata, and therefore how it can be detected;

Formally, we consider any heuristic as an indicator function H : M → [0; 1]n that maps
the set M of metadata to the binary values [0; 1]:

h = � {φ is true} ,

where the result 1 denotes that the respective dataset value is erroneous. Otherwise it
is 0, meaning "clean". The φ represents an error condition that is an either universally-
or existentially-quantified logical sentence (predicate) that states how the data error is
identified. Each of these logical sentences is created by using one of the metadata functions
M, a set of mathematical operators (=, ≈, <, >, ≤, ≥, ∈, ⊂, ⊃, ⊆, ⊇) or user-defined
operators (e.g., match), and possible thresholds.

Because each heuristic captures at least one type of data errors, we would need to
combine all heuristic results to obtain the overall error detection results e for the whole
dataset D:

e =
⋃

hi∈H
hi

In terms of methodology, we utilize the following two approaches to identify or specify
error detection heuristics:

The qualitative approach: Provided with the existing body of research, we already
studied diverse methods which detect data quality violations. We identified such
methods that utilize metadata to detect errors by reviewing the literature and
gathering the developed heuristics. For instance, error detection can be done using
formatting rules to verify values on an e-mail address, a US zip code, or a phone
number column [127]. Many of these approaches are built based on the frequency and
extreme-values statistics [114, 116], application-specific requirements [18], domain
and schema knowledge [55], and outlier detection [8].

The trivial relationship approach: Often, metadata is a direct indicator of a data
error. For example, the number of null values inside a column explicitly identifies
the degree of completeness of a column. Another logically derivable relationship is
between the number of distinct values and the number of uniqueness violations [5].

Provided with both taxonomies – data quality issues [147, 180, 133] and metadata [4] –
we pursue to design an error detection heuristic that addresses exactly a particular data
quality issue by using some particular metadata. We specified these heuristics by applying
one of the above-described approaches. Importantly, each time we were able to create an

43

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

error detection heuristic rule by using the metadata, we established a mapping between
the corresponding data quality issue and metadata.

The complete mapping of the data quality issues to the metadata is shown in Table 4.1.
This table includes mapping of 30 metadata categories to 23 types of errors. In this research,
we identified 160 heuristics from 690 possible variants. For each data quality issue from
Table 2.1 and each metadata from Section 2.2, we attempted to design an error detection
heuristic that addresses exactly that particular type of data error by using that particular
metadata. In Table 4.1, we visualize the mapping accordingly either with the reference of
the piece of literature that contains such a heuristic or with a dot (•) that represents a
trivial mapping. At the top of Table 4.1, we list the data quality dimensions and represent
the link between quality issues and their dimensions with ticks. Some heuristics are based
on multiple references. For example, the mapping between the Misspellings error type
and the histogram metadatum is supported by three references [3, 114, 190]. Although,
to formulate a heuristic, one reference is sufficient, and for the sake of completeness, we
provided all references that were identified during the research. Some metadata, such
as the number of rows, min, max, mean, and count/similarity matrix, are not explicitly
used in the mapping, because these functions are utilized by higher-order metadata. As
provided in Section 4.2.3, according to the composability of the metadata, the number
of rows is used to compute other metadata, such as distinct or constancy. The following
metadata functions, such as min, max, and mean, are used as thresholds in the error
detection rules [195].

We provide an additional Table 4.2 that visualizes the mapping of metadata to the
data quality dimensions without the intermediate mapping to the data quality issues.

This mapping reveals the tendency that several error types are supported by many
metadata categories, while other error types require fewer metadata. For example, the
following data quality issues are mapped to 15 metadata categories on average: missing data,
incorrect values, misspelling, ambiguous values, extraneous data, misfielded values, and
domain violation. Furthermore, the above mapping reveals that schema-level data errors
mostly require schema-related metadata to be captured. For instance, the FD violation issue
is identified by heuristics, which requires an integrity constraint specification [82, 54, 62];
or an alternative to functional dependencies, such as association rules [17]. We observe
the similar trend for the wrong data type error – the heuristics imply the specification of
the data type, data class, and domain metadata [3, 128, 127]. Even though the domain
violation error is a schema-level issue [147], this error depends on the data type, namely
numeric, categorical, or temporary data. Therefore, the domain violation issue is backed
by 14 types of metadata reflecting various data type of the attribute.

44

4.1 Mapping Metadata to Data Quality Issues
Dimensions

Ac
cu

ra
cy

�
�

�
�

�
�

�
�

�
�

Co
ns

ist
en

cy
�

�
�

�
�

�
�

�
�

�
�

�
Un

iq
ue

ne
ss

�
�

�
�

�
�

�
Co

m
pl

et
en

es
s

�
�

�
Cu

rre
nc

y
�

�
D

at
a

Q
ua

lit
y

Is
su

es
In

st
an

ce
-L

ev
el

Iss
ue

s
Sc

he
m

a-
Le

ve
lI

ss
ue

s

Missingdata

Incorrectdata

Misspellings

Ambiguousdata

Extraneousdata

Outdatedtempdata

Misfieldedvalues

Incorrectreferences

Duplicates

Structuralconflicts

Wrongwordorderings

Wrongaggregationlevel

Temporalmismatch

Wrongrepresentations

Domainviolation

FDviolation

Wrongdatatype

Integrityviolation

Uniquenessviolation

Useofsynonyms

Useofhomonyms

Useofspecialcharacters

Differentencodingformats

Metadata

nu
m

be
ro

fr
ow

s
nu

ll
va

lu
es

•
•

[3
]

va
lu

e
len

gt
h

•
[1

95
]

[1
95

]
[1

95
]

fir
st

di
gi

t
[3

]
[3

]
siz

e
(n

um
er

ic)
•

[1
95

]
[1

95
]

•
[1

95
]

de
cim

al
[3

,1
95

]
pa

tt
er

n
[3

,1
14

]
[3

]
[1

14
]

[1
04

,4
9]

[3
,1

14
,1

16
]

[3
,1

95
]

•
[1

04
,4

9]
[3

]
[3

,1
14

]
so

un
de

x
[3

]
[1

14
,1

16
]

[3
,1

95
]

[3
,1

28
]

n-
gr

am
s

[1
14

]
[3

,1
14

]
[1

14
,1

16
]

[1
14

,1
16

]
[3

,1
95

]
[5

1]
[5

1]
ha

sh
co

de
[3

]
[1

14
,1

16
]

[3
,1

95
]

m
in

/m
ax

/m
ea

n
st

d.
de

vi
at

io
n

[1
7]

[1
7]

[1
7]

[1
7]

di
st

in
ct

•
•

[1
95

]
[1

95
]

[3
]

z-
va

lu
e

[1
28

]
[1

28
]

[1
28

]
qu

ar
til

e
[1

14
,1

16
,1

7]
[1

7]
[1

7]
[1

7]
[1

14
,1

16
]

co
un

t/
sim

.
m

at
rix

[1
16

]
[2

39
]

[1
95

]
[3

,1
95

]
[1

95
]

[3
,1

28
]

[1
28

]
[8

2,
10

4]
[1

95
]

[1
95

]
[1

28
]

wo
rd

em
be

dd
in

gs
[1

41
]

[1
41

]
[4

,1
41

]
[1

41
]

[1
41

]
[1

41
]

co
ns

ta
nc

y
[1

14
]

[1
14

]
co

rre
la

tio
n

[5
1]

[5
1]

[5
1]

[5
1]

[5
1]

clu
st

er
in

g
[1

16
]

[1
28

]
[8

2,
10

4]
[1

95
]

[3
,1

95
]

[1
95

]
[3

,1
28

]
[1

28
]

[8
2,

10
4]

[1
95

]
[1

95
]

[1
28

]
hi

st
og

ra
m

[3
]

[3
]

[3
,1

14
,1

90
]

[1
14

]
[1

14
,1

16
]

[1
14

,1
16

]
[3

,1
14

]
•

[1
14

,1
28

]
su

m
m

ar
ies

[3
]

[2
15

]
[2

15
]

ou
tli

er
s

[1
14

,1
90

,1
89

,1
7]

[8
,1

14
,1

16
,1

90
]

[1
90

]
[1

14
,1

16
]

[1
14

,1
16

,1
90

]
[1

28
]

[1
14

,1
16

]
[1

14
,1

16
]

•
[1

16
,1

90
]

as
so

cia
tio

n
ru

les
[1

7]
[1

7]
[1

7]
[1

7]
[1

7]
[3

]
[1

7]
[1

7]
[1

7]
[1

7]
da

ta
ty

pe
[3

]
[3

]
[3

]
[3

]
[1

95
]

[3
,1

95
]

[3
]

[3
]

da
ta

cla
ss

[3
]

[3
,1

28
]

[3
]

[3
]

do
m

ai
n

[2
28

,1
89

]
[2

28
]

[2
28

]
[2

28
]

[2
28

]
[2

28
]

[2
28

]
[2

28
]

[2
28

]
[2

28
]

UC
C

•
•

[2
39

]
[3

]
•

FD
/C

FD
[3

,6
2,

82
]

[8
2]

[2
02

,9
1]

[2
02

,9
1]

[1
]

[8
2]

[8
2]

[8
2]

M
D

[1
24

]
[8

2,
54

,6
2]

IN
D

/C
IN

D
[3

,8
2]

T
ab

le
4.

1:
M

ap
pi

ng
da

ta
qu

al
it

y
pr

ob
le

m
s

to
m

et
ad

at
a.

T
he

m
ap

pi
ng

be
tw

ee
n

da
ta

qu
al

ity
di

m
en

sio
ns

an
d

th
e

da
ta

qu
al

ity
iss

ue
s

at
th

e
to

p
is

ad
op

te
d

fr
om

[1
47

].
T

he
m

ap
pi

ng
be

tw
ee

n
da

ta
qu

al
ity

iss
ue

s
an

d
m

et
ad

at
a

is
es

ta
bl

ish
ed

by
de

sig
ni

ng
er

ro
r

de
te

ct
io

n
he

ur
ist

ic
s.

To
cr

ea
te

th
es

e
he

ur
ist

ic
s,

tw
o

ap
pr

oa
ch

es
ar

e
us

ed
:

(1
)

-A
qu

al
ita

tiv
e

ap
pr

oa
ch

,w
he

re
ex

ist
in

g
m

et
ho

ds
ar

e
re

vi
ew

ed
;a

nd
(2

)
-A

tr
iv

ia
l

re
la

tio
ns

hi
p

ap
pr

oa
ch

,w
he

re
th

e
co

nn
ec

tio
n

be
tw

ee
n

da
ta

er
ro

rs
an

d
m

et
ad

at
a

is
tr

iv
ia

lly
es

ta
bl

ish
ed

(m
ar

ke
d

as
•

).
So

ur
ce

[2
33

].

45

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT
D

at
a

Q
ua

lit
y

D
im

en
sio

ns
Ac

cu
ra

cy
Co

ns
ist

en
cy

U
ni

qu
en

es
s

Co
m

pl
et

en
es

s
T

im
el

in
es

s
Metadata

nu
m

be
r

of
ro

w
s

nu
ll

va
lu

es
•

e.
g.

,m
iss

in
g

va
l.

•
e.

g.
,m

isfi
el

de
d

va
l.

[3
]

•
e.

g.
,m

iss
in

g
va

l.
va

lu
e

le
ng

th
[1

95
]

[1
95

]
[1

95
]

[1
95

]
fir

st
di

gi
t

[3
]

[3
]

siz
e

(n
um

er
ic

)
[1

95
]

[1
95

]
•

e.
g.

,v
al

ue
siz

e
>

0
de

ci
m

al
[3

,1
95

]
pa

tt
er

n
[3

,1
14

,1
16

,1
89

]
[3

,1
14

,1
16

]
[1

14
]

[3
,1

14
,1

16
,1

89
]

[1
04

,4
9]

so
un

de
x

[3
,1

14
,1

90
]

[3
,1

14
,1

16
,1

28
]

[3
,1

14
,1

16
,1

28
]

n-
gr

am
s

[3
,1

90
,5

1]
[1

16
,5

1]
[3

,5
1]

[1
16

]
ha

sh
co

de
[1

14
,1

16
]

[1
14

,1
16

]
m

in
/m

ax
/m

ea
n

[1
7]

[1
7]

[1
7]

st
d.

de
vi

at
io

n
[1

7]
[1

7]
[1

7]
di

st
in

ct
[1

95
]

[1
95

]
[3

]
z-

va
lu

e
[1

28
]

[1
28

]
[1

28
]

qu
ar

til
e

[1
7]

[1
7]

[1
7]

[1
7]

co
un

t/
sim

.
m

at
rix

[1
16

,1
95

,1
28

]
[3

,1
95

,1
28

]
[3

,1
95

,1
28

]
[1

16
,1

95
]

w
or

d
em

be
dd

in
gs

[4
,1

41
]

[4
,1

41
]

[1
41

]
[4

,1
41

]
co

ns
ta

nc
y

[1
14

]
co

rr
el

at
io

n
[5

1]
[5

1]
[5

1]
cl

us
te

rin
g

[1
16

,1
95

,1
28

]
[3

,1
95

,1
28

]
[3

,1
95

,1
28

]
[1

16
,1

95
]

[8
2,

10
4]

hi
st

og
ra

m
[3

,1
14

,1
16

,1
90

]
[1

14
,1

16
]

[1
14

,1
16

]
[3

,1
14

,1
16

]
su

m
m

ar
ie

s/
sk

et
ch

es
[3

]
[2

15
]

[2
15

]
ou

tli
er

s
[8

,1
14

,1
16

,1
90

,1
89

]
[1

14
,1

16
,1

90
]

[1
14

,1
16

,1
90

]
[1

14
,1

16
,1

90
,1

89
]

[1
28

]
as

so
ci

at
io

n
ru

le
s

[3
,1

7,
6]

[1
7]

[1
7]

[1
7,

6]
da

ta
ty

pe
[3

,1
95

,1
28

]
[3

,8
2,

12
8]

[3
,1

28
]

da
ta

cl
as

s
[1

89
]

[3
,1

28
]

[3
,1

28
]

[1
89

]
do

m
ai

n/
se

m
an

tic
ro

le
[2

28
,1

89
]

[2
28

]
[2

28
]

[2
28

]
un

iq
ue

co
lu

m
n

co
m

bi
na

tio
n

•
e.

g.
,m

iss
pe

lli
ng

[3
]

FD
/C

FD
[8

2,
54

,9
1,

62
]

[8
2]

[8
2,

54
,9

1,
62

,2
02

]
[8

2]
[1

24
,1

],
te

m
po

ra
lF

D
s

IN
D

/C
IN

D
[3

,8
2]

[3
,8

2]
[3

,8
2]

T
ab

le
4.

2:
M

ap
pi

ng
da

ta
qu

al
it

y
di

m
en

si
on

s
to

m
et

ad
at

a.
Le

ge
nd

:
(1

)
-A

qu
al

ita
tiv

e
ap

pr
oa

ch
,w

he
re

ex
ist

in
g

m
et

ho
ds

ar
e

re
vi

ew
ed

;
an

d
(2

)
-

A
tr

iv
ia

lr
el

at
io

ns
hi

p
ap

pr
oa

ch
,w

he
re

th
e

co
nn

ec
tio

n
be

tw
ee

n
da

ta
er

ro
rs

an
d

m
et

ad
at

a
is

tr
iv

ia
lly

es
ta

bl
ish

ed
(m

ar
ke

d
as

•
).

So
ur

ce
[2

33
].

46

4.1 Mapping Metadata to Data Quality Issues

Next, we identify the most prevalent metadata by analyzing the coverage of data
errors by the particular metadata. We identified two groups of metadata: the first group
covers at least seven data quality issues and consists of pattern, n-gram, count/similarity
matrix, clustering, histogram, association rules, outliers, domain, data type, and FD/CFDs.
Therefore this group of metadata is perceived as the most effective because the above-
described metadata covers seven to twelve errors. For instance, the histogram metadata
is a foundation for heuristics to detect the following data quality issues: missing data,
incorrect data, misspellings, ambiguous data, extraneous data, misfielded values, domain
violation, uniqueness violation, and use of special characters. These heuristics have already
been described in at least five literature references [3, 114, 190, 116, 128]. The second
group, consisting of the remaining metadata functions, covers less than seven data errors.

The complete list of data quality issues and the corresponding heuristics for error
detection based on metadata is provided in Appendix A. As an example, we extracted
one of the error detection strategies for the misfielded values column from Table 4.1
into Table 4.3. This table provides all heuristics, which include metadata, to detect the
misfielded values data errors.

In the following, we provide three representative examples, namely misfielded values
detection, domain violation detection, and functional dependency (FD) violation detection,
to demonstrate how we formulate the heuristics and therefore how we established the
mapping, in full detail.

Metadata Heuristics to identify Misfielded values
null values If “neighbor”-values, attri − 1 or attri + 1 are NULL, then attri is a potential ERROR; •
value length If length(value) >max threshold, then ERROR; [195]
pattern If the value is in the tail of the value pattern distribution, then ERROR; [114, 116]
z-value Check z-value against a threshold; [195, 8]
quartile Use quartiles for all histograms as threshold values;[114, 116]

clustering
Create numerical representations of values from a column range [a_i-1, a_i, a_i+1],(eg.word2vec);
Cluster these vectors;
Tuples with ‘Misfielded values’ should be captured within one cluster; [195]

histogram
If a value is in the tail of the values distribution, then ERROR;
For the alphabetic data: If one of the n-grams of the value is in the tail of the n-grams frequencies
distribution, then ERROR;[114, 116]

outliers Histogram-based outlier detection: Check extreme values in the histogram;
Use quartiles for all histograms as threshold values; [114, 116]

association rule Identify data items that broke the rules and can be considered outliers (potential errors) [17]
data type Check data type format [3]
domain Check semantic role (zip, city, state) with regex; [228]

FD/CFD
FD L → R holds for any two rows u and v.
Suspected violation:
{u|u, v ∈ D, u(L) = v(L), u(R) �= u(R)}; [62, 82, 239]

Table 4.3: Defining data quality strategy by using metadata. This table is an excerpt of
schematic heuristics used to detect misfielded values. All error detection rules are provided
with references. A trivial relationship approach, where the connection between data errors and
metadata is trivially established, is marked as •. Source [233].

47

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

Example 4.1.1 The problem of misfielded values [195, 147] occurs when values of one
attribute are placed inside the wrong column, as shown in Table 4.4. One possible reason for
this error might be the attribute values shift to the left, due to mistakes in the CSV-format.

US City US State

San Diego CA
Minneapolis MN
CA null
Minneapolis NM
Santa Clara C

Table 4.4: An example data set, which contains data issues, such as missing value, domain
violation, and functional dependency violation.

Here, the "US state" value "CA" is incorrectly stored in the "US City" column. The
"US City" and "US state" value distributions contain semantically different information.
Considering the value length distributions of both columns, values of the "US State" attribute
inside the "US City" column will emerge as extreme values in the "US City" value length
distribution because state abbreviations are typically significantly shorter than city names [8].

Now we consider metadata, which might be useful to detect misfielded values. One
way to identify extreme values is to use z-values [8]. Therefore, we employ the qualitative
approach and answer the following question: how are the misfielded values identified by
using the z-value metadata? We formulate the following heuristic: "Flag an attribute value
as misfielded, if the z-value score, computed on the value length distribution, is greater
than or equal to three". That is, we identify extreme values (errors) on the value length
distribution instead of just the value distribution. We define extreme values as string values
that are too long or too short compared to the average value of the attribute. The primary
assumption for designing such heuristic is that by computing the distribution of the length
values of the attribute R.ai, values that are beyond the upper and lower boundaries from the
middle (mean) point will be flagged as potential outliers [8]. Taking the z-value heuristic
into account, the rule for outlier detection to identify misfielded values is specified as follows:

hz−value = � {z − value(length(R.ai)) ≥ 3} =
{

error, if z − value ≥ 3
clean, otherwise

�

Figure 4.2 also shows all components needed to design a misfielded values error detection
heuristic by using the z-value metadatum.

Example 4.1.2 The second example considers the domain violation data issue [147], also
known as illegal values [195]. We use the relation R with attributes "US City" and "US
State" from the previous example. By applying the qualitative approach, based on the
following research [228, 127, 173], we identified a schema-based metadatum that is related

48

4.1 Mapping Metadata to Data Quality Issues

Heuristic

mean
lengthvalue z-value

std.deviation

Metadata

z =
length − mean

std.dev

result = {error, if�z-value ≥ 3
clean, otherwise

Data Error: Misfielded Value

US CITY US STATE

San Diego CA

CA

Minneapolis MN

Error Detection

US CITY RESULT

San Diego 0 (clean)

CA 1 (error)

Minneapolis 0 (clean)

Figure 4.2: An example of mapping between the data error "misfielded value" and the
metadata "z-value". To detect misfielded values in the attribute "US CITY", we specify the
heuristic for error detection that is based on the z-values of the value length distribution of this
attribute. Suspicious values are identified by setting a threshold for z-value scores. Source [233].

to the problem of domain violation: the domain format [228, 127, 173]. The possible
domain format for the attribute "US State" is defined by using regular expression [228]:

Rule A. Domain format for US State attribute: [A-Z]{2}

The above rule regulates the domain format for values of the particular attribute (i.e.,
US State). Hence, the heuristic for domain violation detection is specified as follows:

hd =
{

error, if vi,j does not match Rule A

clean, otherwise

By applying this error detection rule, we can spot the illegal value in the last tuples: "US
State" attribute value "C". �

Example 4.1.3 Our third example deals with the data error functional dependency (FD)
violation [170, 82]. We use the same relation R with the attributes "US City" and "US State"
from Table 4.4. One natural way to identify the FD violation is to use the FD compliance
metric to identify erroneous rows [239]. Hence, the FD-compliance heuristic requires the
specification of the functional dependency metadatum, such as φ : US City → US State.
The heuristic for domain violation detection is formulated as follows:

hd =
{

error, if for any two rows u and v, {u|u, v ∈ D, u(City) = v(City), u(State) �= u(State)}
clean, otherwise

By applying this error detection rule, we are able to spot the FD violation in two tuples,
where "US State" attribute values are "MN" and "NM". �

49

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

We provided three representative examples, for misfielded values detection, functional
dependency (FD) violation, and domain violation detection, to demonstrate how we
formulated the heuristics and therefore how we established the mapping, provided in
Table 4.1.

In particular, the advantage of using metadata for detecting a violation of a particular
data quality dimension becomes apparent when we map metadata to the core data quality
dimensions, which is shown in Table 4.2. This table includes mapping of all metadata
functions to the five core data quality dimensions, which are described in Section 2.1.
Table 4.2 reveals that nearly all metadata categories are useful to detect at least four data
quality violations, namely accuracy, consistency, uniqueness, and completeness violation.
To detect the timeliness violation, we identified four metadata categories to be used in
heuristics, namely pattern, clustering, outliers, and temporal FDs.

4.2 Metadata Analysis for Data Quality Management

We now establish a new two-dimensional metadata classification matrix that reflects the
different degrees of granularity and types of metadata.

Provided with a set of metadata produced by the profiling methods, Abedjan Z. et al. [3]
established a comprehensive taxonomy of metadata. They classified profiling functions
with regard to single- and multi-column affiliations and dataset dependencies. The single
columns category includes the following metadata: cardinalities, patterns, data types, value
distributions, histograms, and domain classification. The third category of profiling tasks
comprises dependency-related metadata such as (conditional) functional dependencies,
(conditional) inclusion dependencies [82], and unique column combination. Being a general-
purpose data profiling classification, it is applied for a wide-range use – from database
reverse engineering, data exploration, and query optimization [162] to dataset visualization
recommendation [119].

Hence, for data quality management we would need to categorize metadata that is best
suited for improvement of the data quality. For this reason, building on the metadata
taxonomy as described above, we create a new metadata classification for data cleaning.

4.2.1 A Two-Dimensional Classification of Metadata

In order to use metadata for data quality management, we first categorize metadata with
regard to its granularity. We adapt the categorization by Abedjan Z. et al. [3] and reduce
their metadata classification to two broad categories, namely the single- and multi-column
profiling tasks. Since the dependencies category covers multiple columns as well, this
category is subsumed by the multi-column profiling. Concretely, the first single-column
category is assigned the following metadata functions: cardinalities, patterns, data type,

50

4.2 Metadata Analysis for Data Quality Management

row

sizefirst digit decimal

max/min/mean

null

length

frequency

structure (pattern) soundex code

n-grams hash code

word embeddings

uniqueness
distinct

histogram outliers

constancy

clustering

correlation

association rules

data type formatdata class format

FD/CFDIND/CIND

unique column

combination

domain &

semantic role

M
et

ad
at

a
co

m
po

sit
io

n
(d

ist
in

ct
io

n
by

 g
ra

nu
la

rit
y)

Metadata type levels (distinction by the object of analysis)

Single-column Multi-column

Pl
ai

n
Hi

gh
er

-o
rd

er

Hi
gh

er
-o

rd
er

Pl
ai

n

quartiles

value

z-value

std.deviation

column

count

count/sim. matrix

value range

Single-column Multi-column

summaries &

sketches

Figure 4.3: Metadata quadrants. The granularity of the metadata functions is augmented
by the metadata type level that denotes instance- or schema-based metadata.

domain and semantic role, and value distribution. The multi-column metadata contains the
following general groups of metadata: correlations, clusters, outliers, summaries, sketches,
uniqueness, inclusion dependencies and functional dependencies. The second dimension
reflects the granularity of metadata describing its composability that ranges from plain (or
atomic) to more complex higher-order metadata.

We obtain our two-dimensional categorization by combining these two dimensions. The
resulting categorization divides metadata into four quadrants, as illustrated in Figure 4.3.
Next, we explain each quadrant.

The PS-quadrant specifies metadata categories that belong to Plain metadata and
relate to the content of the dataset, namely the Single-column metadata. This group is
populated by different data units, such as column, row, value, null value, or first digit.
This quadrant also includes alternative representations of the raw values, such as n-grams,
hash code, pattern, soundex code, or length of the value. Schema-related information
about the values within one attribute is represented by data class and type format. This

51

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

Values Data Units Map or apply-to-all metadata Fold or aggregate metadata Higher-Order metadata Descriptive data mining

A
lp

ha
nu

m
er

ic Row
Column
Value
Null
Char

Length
N-gram
Numerical representation
of values (word embeddings)
Soundex
Patterns (Structure extraction)
Hash

Count
Covariance
Correlation
Constancy
Data type format
Data class format

Histogram (Frequency statistic)
Count matrix
Similarity matrix
Domain & semantic role
FD (CFD)
IND (CIND)
Uniqueness
Unique column combination

Outliers
Summaries & sketches
Clustering
Association rules
Itemset frequency

N
um

er
ic

Value
Char

Length
Size
Decimal
First digit

Count
Covariance
Correlation
Constancy
Data type / class format
Min
Max
Mean
Median
Standard deviation
Quartiles

Z-Value
Value Intervals
Histogram (Frequency statistic)
Count matrix
Similarity matrix
Domain & semantic role
FD (CFD)
IND (CIND)
Uniqueness
Unique column combination

Outliers
Summaries & sketches
Clustering
Association rules
Itemset frequency

Table 4.5: Metadata Categorization. Metadata functions are divided into four categories
to reflect the composability aspect of metadata: Group 1: Map Metadata; Group 2: Fold
Metadata; Group 3: Higher-Order Metadata; Group 4: Descriptive data mining methods. The
Data Units column contains the data without meta-information. Furthermore, in the provided
classification, we distinguish between numeric and alphanumeric data values and identify those
metadata that operate on the above value types. Source [233].

metadata includes schema type information, such as alphanumeric, numeric, varchar, or
floating-point.

The HS-quadrant includes more complex Higher-order metadata functions, which
are computed on Single columns. Generally, these sophisticated metadata functions require
an element or a set of elements from the PS-quadrant as input. This group of metadata
functions include simple aggregates, such as min, max, mean, standard deviation, z-value,
quartiles, and more complex functions, such as frequencies, counts, distinctness, uniqueness,
constancy, histogram, and value ranges.

The HM-quadrant mainly includes Multi-column and dependencies metadata
functions [3] of a dataset, such as unique column combination, INDs, CINDs, FDs, CFDs.
Similarly, correlation, association rules and outliers are computed on several columns.
This HM-quadrant interleaves with the HS-quadrant, because they include metadata that
relates to both metadata type levels, namely single- and multi-column metadata functions.
The main reason to place clustering, count/similarity matrix, and summaries/sketches to
both quadrants is that these metadata functions can be executed either on multiple or on
single columns.

By leveraging the above-described two-dimensional taxonomy, we analyze the composi-
tion of the metadata functions and make a precise classification regarding the granularity
of these metadata functions.

52

4.2 Metadata Analysis for Data Quality Management

4.2.2 Metadata Categorization

Next, we specify our metadata categorization to show how metadata is composable. As
already mentioned, we consider a profiling task as a function. The intuition for our metadata
categorization is that many complex metadata functions are compositions of other more
basic metadata functions. Hence, the metadata function composition is a mechanism
that combines plain metadata to build more sophisticated ones [162]. Analogously to the
composition of functions in mathematics, the result of each metadata function is passed
as the argument of the next. Refining the two-dimensional categorization as described
above, we identify four metadata categories: Map or Apply-to-All Metadata, Fold or
Aggregate Metadata, Higher-order Metadata, and Descriptive Data Mining Methods. This
categorization separates metadata functions based on their granularity, which ranges from
the most basic to more complex metadata functions. Table 4.5 shows the metadata
categorization, where we distinguish between metadata, which operates on numerical data
only and metadata that is computed on alphanumeric data. In the following, we provide
details about each category.

Our categorization operates on data units without meta-information, including row,
column, value, null value, and character (as an atomic part of the value). We also put null
values in this group because it represents absent values in the column (see also Table 4.5).

Map or Apply-to-All Metadata. Motivated by the map paradigm from functional
programming [165], this group of metadata functions gathers the set of functions that
create more sophisticated metadata when applied on any element of the plain metadata
category. For example, the metadata function length, applied to the plain metadata unit
values V of a column R.ai, computes a vector l = (l1, l2, . . . , ln) where each element of
l is the length of the string representation of the corresponding value: lj = length(vi,j).
The value can be either a numerical or an alphanumerical value. Similarly, the first digit
function is applicable to numerical values of the column R.ai, and produces a vector f,
where each element of f = (f1, f2, . . . , fn) is the first digit of the corresponding numerical
value: fj = first − digit(vi,j).

Alternative representations of the nominal values in a given column, such as n-grams,
numerical vectors representation, (e.g. word2vec [168]), soundex, and hash code are the
transformations of the original column values into a different format (see also Table 4.5
Group 2). The Map Metadata is usually necessary for further processing of data mining
or natural language processing tasks [168]. Because the Map Metadata contains suitable
items to be counted and aggregated by the following group of metadata functions, this
metadata is an intermediate representation of the actual data under assessment.

53

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

mean
numeric

value

z-value
std.deviation

z =
n.value − mean

std.dev

mean
lengthvalue z-value

std.deviation
z =

length − mean
std.dev

(a) (b)

Figure 4.4: Z-value computation. This figure demonstrates the metadata to compute
z-values on (a) the distribution of numerical values, and (b) the value length distribution.
Source [233].

Fold or Aggregate Metadata. This category of metadata functions is inspired by the
fold paradigm [165]. The fold function is used to combine all the elements of a column or
row and produce "aggregate" results from either raw data or the intermediate representation
of the data taken from the Map-group. The fold or aggregate function takes two arguments:
the input sequence and the fold-function, such as min, max, mean, median, quartile,
covariance, correlation, and constancy. The result of the "folding" operation depends on the
applied fold function. For metadata such as min, max, mean, median, quartile, covariance,
correlation, and constancy, the result of the folding function is a single real value number
n ∈ R. For instance, the result of the count metadatum is a natural number n ∈ N. We
also assigned the data type and data class format to the Fold Metadata group, because
they summarize the values in each column.

Higher-Order Metadata. This group of profiling tasks relates to functions that
compute compound metadata by taking the raw data or its intermediate representation
and metadata from either the Map or the Fold categories. The Higher-order Metadata
group includes frequency statistics, histogram, z-values, uniqueness, count matrix, and
similarity matrix. Their results are mathematical objects, such as a set of tuples or
numbers (see also Table 4.5 Group 4). The following examples provide the composability
of the histogram and z-value metadata. While some of the mentioned metadata, such
as histogram, is perceived as a visualization [128], they can also serve as mathematical
objects that approximate data distributions [123]. A histogram on an attribute R.ai is
constructed by grouping its values V into disjoint buckets and counting the frequency for
each bucket [122]. Technically, histograms are pairs (vi, fvi), where vi ∈ V is the i-the value
of the value set V and fvi = count(vi) denotes the frequency of the value vi. Furthermore,
the categorical data is aggregated using a "group by" function [123]. Each of the pair
components belongs to the Plain, Map, respectively Fold metadata categories. For instance,
a histogram might be constructed as one of the following kind of pairs: (value, count),
(value length, count), or (value pattern, count), where the value is the Plain metadata,
value length and value pattern belong to the Map-category, while count is assigned to
the Fold-metadata category.

54

4.2 Metadata Analysis for Data Quality Management

Example 4.2.1 To demonstrate the metadata from the Higher-order Metadata group, we
provide an example of the z-values [8] (see also Figure 4.4 (a)). Statistically, z-value
denotes j-th observation of a given random variable. We compute z-values on the R.ai

attribute values as follows:

zi,j = |lj − μ(length(R.ai))|
σ(length(R.ai))

,

where μ(length(R.ai)) is the mean and σ(length(R.ai)) is the standard deviation of all
observations "length(R.ai)"; where length(R.ai) = (l1 . . . ln), and lj = length(vi,j), j ∈
[1, n] denotes a length of the corresponding value vi,j. Hence, to compute z-values, we
would need to pre-compute metadata from the three former categories: value from the Plain
metadata, length from the Map metadata and mean and standard deviation from the Fold
metadata category. The schematic computation of the z-value metadata is provided in
Figure 4.4 (b). �

Descriptive Data Mining Methods. We also consider the importance of gathering
new insights about the dataset. Therefore, we use unsupervised data mining techniques
for data profiling [195, 3]. To reflect this kind of metadata functions, we selected another
group of methods related to the data mining algorithms. The goal of these methods is to
obtain interesting characteristics of the dataset [3]. The following data mining methods
belong to this group: outlier detection, summaries and sketches generation, clustering,
association rules mining, and itemset frequency computation. Group 5 shows this group of
metadata. The following example aims to demonstrate the composability of the outlier
metadata.

Example 4.2.2 Continuing example 4.2.1 about the composability of the z − value

metadata from the Higher-order Metadata group, one straightforward approach for outlier
detection is based on the z-values. This outlier detection rule is specified as follows:

outlier =
{

yes, if zi,j ≥ 3
no, otherwise

Note that the threshold score is set to 3, which is a simple heuristic [8] to denote the distance
from the distribution mean. Usually, such heuristics are context-specific. Alternatively,
reviewing the frequency of values and identifying values that have unusually high frequencies
provide a mechanism to identify outliers [114]. �

To summarize, we demonstrated the composability of the metadata functions, which
is the foundation for the metadata categorization for data quality management. Next,
we provide a generalization of metadata composability with the aim to construct new
metadata.

55

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

4.2.3 Formal Description of Metadata Composition

In the previous section, we provided a classification of metadata functions according to their
composability. As metadata can be aggregated and categorized, we can formally describe
the metadata functions to provide a generalization for constructing more complex metadata
structures by using simple metadata functions. Technically, the functional decomposition
allows us to determine the most re-usable parts of the metadata functions far earlier in the
development cycle.

We specify a semantic description of metadata composition in Extended Backus-Naur
form (EBNF) [135], by introducing two conceptual groups of rules:

Group 1. Metadata Classification Rules:

〈data-unit〉 |= row | column | value | null-value | char

〈map〉 |= length | n-gram | word embeddings | soundex | patterns | hash code

〈map-numeric〉 |= 〈map〉 | length | size | decimal | first digit

〈fold〉 |= count | covariance | correlation | constancy | data type format |
data class format

〈fold-numeric〉 |= 〈fold〉 | count | min | max | mean | trimmed mean |
winsorized mean | std.deviation | trimmed std.deviation |
winsorized std.deviation | median absolute deviation | quartiles |
covariance | correlation | constancy

〈h〉 |= histogram | frequency stat. | z values | count matrix |
similarity matrix | domain and semantic role | FD | CFD | IND |
CIND | uniqueness | unique column combination

〈h-numeric〉 |= 〈h〉 | z values | value intervals

〈d〉 |= outliers | clustering | summaries-sketches | association rules |
itemset frequency

Group 2. Metadata Composability Rules:

〈separator〉 |= ,

〈f〉 |= 〈map〉 | 〈fold〉
〈f-numeric〉 |= 〈map-numeric〉 | 〈fold-numeric〉

〈arg〉 |= 〈data-unit〉 | 〈f〉(〈arg〉) | 〈f-numeric〉(〈arg〉)
〈args〉 |= 〈arg〉 {〈separator〉 〈arg〉}

〈ext args〉 |= 〈h〉(〈args〉) | 〈h-numeric〉(〈args〉) | 〈f〉(〈args〉) | 〈f-numeric〉(〈args〉)
〈metadata〉 |= 〈data-unit〉 | 〈ext args〉 | 〈d〉(〈ext args〉)

56

4.2 Metadata Analysis for Data Quality Management

The above EBNF-rules describe the metadata composition. We defined two groups: the
first group contains EBNF rules that reflect our metadata classification as provided in
Table 4.5. The 〈data−unit〉 rule is defined as one of the alternative functions, which lists
data units. The 〈map〉 and 〈fold〉 rules are defined to describe metadata functions from
the Map and the Fold metadata categories, respectively. Additionally, the 〈map−numeric〉
and 〈fold−numeric〉 rules are the Map and the Fold rules that operate only on numeric
data. The 〈h〉 rule defines all metadata functions from the Higher-Order metadata group.
Whereas the 〈h−numeric〉 rule defines metadata functions that are exclusively applicable
on numeric data. The 〈d〉 rule comprises all metadata functions belonging to the Descriptive
Data Mining Methods.

The second group consists of the EBNF rules that define the composability of
metadata functions. The 〈metadata〉 rule is specified either as a 〈data−unit〉 rule,
as a 〈ext−args〉 rule, or as the Data Mining Methods 〈d〉 rule with the 〈ext−args〉
arguments. The 〈ext−args〉 rule is formulated either as the sequence of Higher-Order 〈h〉
or 〈h−numeric〉 rules with 〈args〉 arguments. The 〈ext−args〉 rule might be defined as
either 〈f〉 or 〈f −numeric〉 rules with 〈args〉. These arguments 〈args〉 are a sequence of one
or more 〈arg〉 components, while the 〈arg〉 components correspond to either 〈data−unit〉,
〈f〉, or 〈f −numeric〉, which might take 〈arg〉 arguments as well. Semantically, 〈ext−args〉,
〈args〉 and 〈arg〉 describe the metadata’s compound arguments. Finally, the 〈f〉 rule is
specified as one of two alternative rules, either 〈map〉 or 〈fold〉. Similarly, the 〈f −numeric〉
rule is defined as one of two alternative rules, either 〈map−numeric〉 or 〈fold−numeric〉.

For instance, the straightforward metadatum, such as count of rows, is composed by
applying the following sequence of rules:

1. <metadata>
2. <f>(<args>)
3. <fold>(<arg>)
4. count(<plain>)
5. count(row)

To demonstrate the formal composition methodology, we continue on the z-value-based
outlier detection from the Example 4.2.2 and demonstrate four constituents of the z-value
metadatum.

Example 4.2.3 The z-values measure is a compound function with four-valued arguments
and specified as following :

z = z − value(R.ai, length(R.ai), μ(length(R.ai)), σ(length(R.ai))),

where the last three arguments are functions. We specify the second argument as the
function length : V → N that maps the set V of string values of the attribute R.ai to a set
of natural numbers N

n that represents the length of the corresponding element vi,j. The

57

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

last two arguments of the z-value function are mean and standard deviation. They are also
compound functions and operate on the distribution values produced by the length function
length(R.ai) = (l1 . . . ln). For given R.ai attribute values, the computation of the mean
and standard deviation is accomplished as follows:

μ(length(R.ai)) = 1
n

n∑
j=1

length(R.ai)

σ(length(R.ai)) =

√√√√ 1
n − 1

n∑
j=1

(length(R.ai) − μ(length(R.ai)))2 �

The formal demonstration of the composability of the outlier-function, which is based on
the z-value function, is provided in Table 4.6. This table shows that the outlier metadatum
adhered to the formal EBNF rules, which were previously formulated.

To summarize, in this section, we analyzed metadata in the context of data quality
management. Initially, we built a new mapping between metadata and well-known data
quality issues by analyzing error detection methods, which use metadata functions. Based
on our mapping, we categorized the metadata functions with regard to the composability
of each function. Finally, we introduced EBNF rules that describe the metadata functions,
generalize the metadata composability and, more importantly, generate new types of
metadata functions.

In the following section, we evaluate the effectiveness of our mapping between data
quality issues and metadata. We apply the EBNF rules to construct new metadata for
outlier detection heuristics. Finally, we provide a usability study to demonstrate how our
mapping and metadata composability rules can support data scientists in developing data
cleaning strategy.

4.3 Case Study

This section provides an empirical evaluation of the mapping between data errors and
extractable metadata by assessing the accuracy of the metadata-based heuristics. We
demonstrate that the mapping between metadata and data quality issues, as shown
in Table 4.1, is a useful guideline for rapid prototyping of an error detection strategy.
Furthermore, we expose that the generated error detection rules might be used in
conjunction with other data cleaning approaches or to be integrated within a more general
data cleaning or data integration framework.

58

4.3 Case Study

St
at

us
Re

as
on

<
m

et
ad

at
a>

Gi
ve

n
<

d>
(<

ex
t-

ar
gs

>
)

Re
pl

ac
e

<
m

et
ad

at
a>

by
its

RH
S

ou
tli

er
(<

ex
t-

ar
gs

>
)

Re
pl

ac
e

<
d>

by
its

RH
S

in
<

m
et

ad
at

a>
ru

le
ou

tli
er

(z
-v

al
ue

(<
ar

gs
>

))
Re

pl
ac

e
<

ex
t-

ar
gs

>
by

its
RH

S
in

<
ex

t-
ar

gs
>

ru
le

ou
tli

er
(z

-v
al

ue
(<

ar
g>

{<
se

pa
ra

to
r>

<
ar

g>
})

)
Re

pl
ac

e
<

ar
gs

>
by

its
RH

S
in

<
ar

gs
>

ru
le

ou
tli

er
(z

-v
al

ue
(<

pl
ai

n>
{

<
se

pa
ra

to
r>

<
ar

g>
})

)
Re

pl
ac

e
fir

st
<

ar
g>

by
its

RH
S

in
<

ar
g>

ru
le

ou
tli

er
(z

-v
al

ue
(v

al
ue

{<
se

pa
ra

to
r>

<
ar

g>
})

)
Re

pl
ac

e
<

pl
ai

n>
by

its
RH

S
in

<
pl

ai
n>

ru
le

ou
tli

er
(z

-v
al

ue
(v

al
ue

,<
f>

(<
ar

g>
)

{<
se

pa
ra

to
r>

<
ar

g>
}

))
Re

pl
ac

e
<

se
pa

ra
to

r>
<

ar
g>

pa
ir

by
its

RH
S

in
<

se
pa

ra
to

r>
an

d
<

ar
g>

ru
le

s
ou

tli
er

(z
-v

al
ue

(v
al

ue
,<

m
ap

>
(<

pl
ai

n>
){

<
se

pa
ra

to
r>

<
ar

g>
})

)
Re

pl
ac

e
<

f>
by

its
RH

S
<

m
ap

>
re

so
lu

tio
n

an
d

<
ar

g>
by

its
RH

S
in

<
ar

g>
ru

le
ou

tli
er

(z
-v

al
ue

(v
al

ue
,l

en
gt

h(
co

lu
m

n)
{<

se
pa

ra
to

r>
<

ar
g>

})
)

Re
pl

ac
e

<
m

ap
>

by
its

RH
S

in
<

m
ap

>
ru

le
an

d
<

pl
ai

n>
by

its
RH

S
in

<
pl

ai
n>

ru
le

ou
tli

er
(z

-v
al

ue
(v

al
ue

,l
en

gt
h(

co
lu

m
n)

,<
f>

(<
ar

g>
)

{<
se

pa
ra

to
r>

<
ar

g>
})

)
Re

pl
ac

e
<

se
pa

ra
to

r>
<

ar
g>

pa
ir

by
its

RH
S

in
<

se
pa

ra
to

r>
an

d
<

ar
g>

ru
le

s
ou

tli
er

(z
-v

al
ue

(v
al

ue
,l

en
gt

h(
co

lu
m

n)
,<

fo
ld

>
(le

ng
th

(c
ol

um
n)

)
{<

se
pa

ra
to

r>
<

ar
g>

})
)

Re
pl

ac
e

<
f>

by
its

RH
S

in
<

f>
an

d
<

ar
g>

by
le

ng
th

(c
ol

um
n)

ou
tli

er
(z

-v
al

ue
(v

al
ue

,l
en

gt
h(

co
lu

m
n)

,m
ea

n(
le

ng
th

(c
ol

um
n)

)
{<

se
pa

ra
to

r>
<

ar
g>

})
)

Re
pl

ac
e

<
fo

ld
>

by
its

RH
S

in
<

fo
ld

>
ru

le
ou

tli
er

(z
-v

al
ue

(v
al

ue
,l

en
gt

h(
co

lu
m

n)
,m

ea
n(

le
ng

th
(c

ol
um

n)
),

<
f>

(<
ar

g>
))

)
Re

pl
ac

e
<

se
pa

ra
to

r>
<

ar
g>

pa
ir

by
its

RH
S

in
<

se
pa

ra
to

r>
an

d
<

ar
g>

ru
le

s
ou

tli
er

(z
-v

al
ue

(v
al

ue
,l

en
gt

h(
co

lu
m

n)
,m

ea
n(

le
ng

th
(c

ol
um

n)
),

<
fo

ld
>

(le
ng

th
(c

ol
um

n)
))

)
Re

pl
ac

e
<

f>
by

its
RH

S
in

<
f>

an
d

<
ar

g>
by

le
ng

th
(c

ol
um

n)
ou

tli
er

(z
-v

al
ue

(v
al

ue
,l

en
gt

h(
co

lu
m

n)
,m

ea
n(

le
ng

th
(c

ol
um

n)
),

st
d.

de
v(

le
ng

th
(c

ol
um

n)
))

)
Re

pl
ac

e
<

fo
ld

>
by

its
RH

S
in

<
fo

ld
>

ru
le

T
ab

le
4.

6:
Fo

rm
al

de
m

on
st

ra
tio

n
th

at
sh

ow
st

ha
to

ut
lie

rc
om

po
sit

io
n

m
at

ch
es

th
e

fo
rm

al
EB

N
F

de
sc

rip
tio

n,
w

hi
ch

is
pr

ov
id

ed
in

Se
ct

io
n

4.
2.

3.
So

ur
ce

[2
33

].

59

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

We describe the experimental setup in Section 4.3.1. To showcase the mapping between
data quality issues and metadata, we applied the following strategy: for every dataset, we
first determine a set of data quality issues and extractable metadata (Section 4.2), then we
create error detection heuristics based on extracted metadata. The implementation of our
system is provided in Section 4.3.3. Since real-world data contains multiple error types [2],
we evaluate the combination of the error detection heuristics to asses the joint accuracy of
all metadata-based heuristics in Section 4.3.4. The user study to assess the usability of our
mapping and EBNF-rules for developing data cleaning strategy is provided in Section 4.3.5

4.3.1 Evaluation Metric

To assess the accuracy of the metadata-based error detection rules, we use Precision (P),
Recall (R), and F-measure (F1). Precision (P) is the ratio of the correctly identified errors
(tp - true positives) to the total amount of identified errors (tp + fp, where fp denotes false
positives). Recall (R) expresses the ratio of the correctly identified errors (tp) to the total
amount of existing errors (tp + tn, where tn denotes erroneous attribute values which were
not found). The harmonic mean of Precision and Recall is the F1 score, which is calculated
as follows: F1 = 2P R

P +R

Implementation Details. We implemented the error detection pipeline using the
programming languages Scala and Python. The Scala programming language is used
to implement all data pipelines for profiling, heuristics generation, the evaluation methods,
and the two combination algorithms, namely Majority Wins [252] and UnionAll [2]. The
Python programming language is used to implement the eigenvalue-based technique for
heuristic combination [63]. We ran all experiments on a single machine with 2.3 GHz Intel
Core i7 processor and 16 GB RAM.

4.3.2 Datasets and Known Data Quality Issues

In order to conduct the case study, we use four real-world datasets. All datasets are
summarized in Table 4.7.

The MUSEUM [166] dataset includes information on more than 420,000 artworks from
the New York Metropolitan Museum of Art1. This dataset contains 48 columns, and the
content is related to different data types, such as string or date/time. Known issues in
MUSEUM include missing values, inconsistent information (extraneous data), ambiguous
values, and wrong word ordering. To obtain the ground truth, we manually cleaned a
subset of 2189 data points and compared it with the dirty version. The MUSEUM dataset
contains 52.2% erroneous values.

1https://github.com/metmuseum/openaccess

60

4.3 Case Study

museum beers flights address

columns 43 10 9 12
rows 2189 1265 74k 94k
ground truth 2189 1265 74k 94k
real errors 52.2% 9.2% 61.85% 36.9%

FDs 3 4 4 1

Memory (dataset and metadata) 2003 MB 942 MB 5357 MB 5787 MB
Metadata computation runtime 2470 ms 1600 ms 3918 ms 6377 ms
Heuristic rules execution runtime 700 ms 520 ms 645 ms 210 ms

Table 4.7: Experimental datasets summary. This summary shows the structure of each
dataset, e.g. the number of columns and rows, as well as the ground truth size and the
percentage of dirty values, which are contained in each dataset. Additionally, the bottom part
includes the number of integrity constraints considered in the experiments, memory allocation,
and the runtime in milliseconds for metadata calculation and rules execution on each dataset.
We measured the runtime for the execution of all rules. Source [233].

The BEERS [117] dataset was initially taken from the Kaggle platform. It contains
data about 1265 US craft beers and 510 US breweries. The BEERS dataset was provided
in its clean version. We performed "reverse engineering" of the cleaning process based on
the instructions provided by Kaggle. Given these "cleaning" steps, we created BEERS
initial "dirty" version. This dataset contains ten attributes which encode breweries and
beer identifiers and their names, as well as numerical information about beers and the
geographical location of the breweries. Known issues in BEERS include misfielded values,
missing values, wrong data type, and missing disguised values. The BEERS dataset
contains 9.2% erroneous values.

The FLIGHTS dataset was created by integrating 38 web sources with the aid of
fusion techniques [153] and contains mainly the date and time data types, and categorical
attributes that describe information about gates. FLIGHTS is accompanied by gold
standard, also created by the authors [153]. For our case study, we selected a 74k data
points that have corresponding ground truth values. Known issues in FLIGHTS are
missing values and missing disguised values. The FLIGHTS dataset contains 61.85%
erroneous values.

ADDRESS is a proprietary dataset contains anonymized address data. ADDRESS
contains 12 attributes that represent textual and categorical information, such as names,
social security numbers, and addresses. The dirty version of ADDRESS contains several
error types, such as missing values, wrong formatting (domain violation), and misfielded
values. In total, the ADDRESS dataset contains 36.9% erroneous values.

61

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Output

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

External Lookups

min
max
mean

R1
attr1
attr2
attr3

R2
attr1
attr2
attr3

row
column
value distribution

technical
schema
exploration

FDs/CFDs
INDs/CINDs
…

Profiling

Data
Analysis

Validation

B

Instance-based &
schema metadata

R1 …

t1#a

t2#a

t3#a

R1 ERR …

t1#a 1

t2#a 0

t3#a 0

=

Combining Error
Detection Results

Create error detection rules
R1 m1 m2
a1 m11 m12

a2 m21 m22

⋃
hi∈ℋ

hi

ℋ

Execute error detection

hi

A D
Input

Profiling Suite

Rule Generation Suite

C

Generation

Error Detection Suite

Figure 4.5: Error-Detection Pipeline Implementation. The complete pipeline includes:
(A) The profiling step: an input data is analyzed by running different profiling tasks, and
complete instance- and schema-related metadata is collected. (B) The rules generation step:
gathered metadata is used to construct error detection heuristics. (C) The validation step:
The multiple error detection results are combined. (D) The data analysis step produces the
aggregated dataset analysis. Source [233]

4.3.3 Error-Detection Pipeline Implementation

In this section, we describe the implementation of the error detection pipeline2. Its core
architecture consists of two main components, namely (1) the Profiling Suite and (2) the
Error Detection Suite. Figure 4.5 schematically depicts the system implementation details.
In the following, we explain each of the main components:

Profiling Suite. Initially, we extract the dataset metadata by using dataset profiling
functions, such as value length, null values, histogram, and value distributions. The
statistical profiles and schema-based metadata are computed for every attribute. Table 4.8
provides the extracted metadata for all datasets. In our empirical evaluation, we only
describe metadata that will appear in the designed heuristics, which should cover the
dataset errors from the experimental datasets.

The Profiling Suite has been developed by using the combination of the Metanome [182]
framework and custom Spark SQL scripts [14]. We use Metanome as the foundation for
data profiling because it integrates data profiling algorithms for computation of statistical
metadata and integrity constraints into a common framework. Furthermore, we provide
another custom profiling component, based on Spark SQL framework to compute values
distributions and descriptive dataset statistics. As shown in Table 4.7, the runtime of
the metadata computation is directly proportional to the number of cells in the dataset.
Our profiling component computes the following descriptive statistics for each dataset:

2The implementation is provided online http://bit.ly/er-on-metadata

62

4.3 Case Study

number of rows, ten most frequent values and their frequencies, percentage of distinct values,
number of null values, and percentage of null values. Furthermore, several of Metanome’s
pluggable algorithms to discover the dependencies are used to estimate normalized functional
dependencies.

Based on the EBNF rules, we generated the following metadata profiling functions,
such as trimmed/winsorized value length distributions, MAD, mean, and median. This
generated metadata is implemented by using the Spark SQL framework.

In order to apply the distant supervision approach for heuristics creation [198], we use
existing knowledge bases and dictionaries to align with the appropriate attributes. For
instance, by identifying the domain metadata, such as geography-related data types, we
incorporate external master data to verify the corresponding attribute values. We use the
master data for geography-related attributes such as city, zip code, state, country.

The domain/semantic role metadata includes a set of regular expressions describing
attributes such as e-mail, gender, credit card, zip. Moreover, we curate a dictionary of
default values for different data types, such as "Not Available", "-", "–", "N/A", "unknown",
"null", "1970-01-01T00:00:00Z", "January 1st, 1900".

Importantly, in this case study, our focus lies outside integrity constraints, including
FDs, CFDs, and INDs. This is because, firstly, dependencies-based data cleaning solutions
have been already extensively studied by rule-based data cleaning systems, and its
effectiveness has already been shown [54, 91, 62, 202], and secondly, in Chapter 6, we
describe the specification of the data cleaning rules based on integrity constraints and
provide an approach to probabilistic data cleaning by using statistical relational learning.

Rule Generation Suite This component generates error detection rules by using
extracted and new metadata. We leverage the mapping between metadata and data errors
as a template for heuristics generation.

Error Detection Suite This component executes single heuristics on the appropriate
attribute values (see Section 4.3.4). The runtime of the heuristic rule execution is shown
in Table 4.7, which demonstrates that the runtime depends on the amount of attributes
for which the cardinality-based heuristic is performed because it includes the duplicate
values identification sub-routine. Finally, it combines all error detection results. We
use unsupervised techniques to combine error detection rules, which we explain later in
Section 4.3.4.

4.3.4 Metadata-Based Error Detection Heuristics

In the following, we establish a mapping between known data quality issues and extracted
metadata by using the previously-inspected datasets, as shown in Table 4.8. Then, we

63

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT
Ex

tr
ac

te
d

M
et

ad
at

a

Known Data Quality Issues

m
iss

in
g

va
lu

es

m
isfi

el
de

d
va

lu
es

w
ro

ng
da

ta
ty

pe

de
fa

ul
t

va
lu

es

do
m

ai
n

vi
ol

at
io

n

ex
tr

an
eo

us
da

ta

am
bi

gu
ou

s
va

lu
es

w
ro

ng
wo

rd
or

de
rin

g

null values � �
value length distribution � � �
decimal �
pattern �
distinct
constancy
histogram (frequency distribution) � � � � �
data type � � �
data class � � �
domain/semantic role � �
master data � �
unique column combination �
functional dependencies � � � � �

Ge
ne

ra
te

d
M

et
ad

at
a trimmed value length distribution � � �

winsorized value length distribution � � �
min/max/mean/median on value length distribution � � �
median absolute deviation (MAD) on value length distribution � � �
standard deviation on value length distribution � � �
z-value on value length distribution � � � �
quartile on value length distribution � � � �

Table 4.8: Empirical mapping between extracted and generated metadata and
data quality issues. Generating new metadata has been performed by using EBNF rules.
This mapping reflects concrete datasets: MUSEUM, BEERS, FLIGHTS and ADDRESS.
Source [233].

evaluate metadata-based error detection rules and analyze their results for each experimental
dataset.

Error Detection Heuristics Provided the guidelines for designing error detection
heuristics (see Section 4.1), we demonstrate concrete error detection rules, which are
created for all experimental datasets. Table 4.9 provides a summary of the designed
heuristics for all experimental datasets. Generally, each heuristic hi returns a set of error
detection results (r1, . . . , rm), where m is the number of all inspected cells in the dataset.
Informally, ri produces one of the following results: {”error”, ”clean”, ”does not apply”}.
Concretelly, each error detection rule is assigned one value ri ∈ {1, 0, −1}, where 0 indicates
that the particular rule does not cover the respective attribute. For example, if one rule is
formulated to detect irregularities in numerical data, then on the categorical attributes,
this rule produces 0 as a result. The results −1 and 1 denote "clean", respectively "error"

64

4.3 Case Study

for the particular cell vi. We do not consider 0 cells in the analysis, and only evaluate the
error detection heuristics on the cells that are labelled as −1 "clean" and 1 "error".

We distinguish between heuristics based on traditional metadata [3] and heuristics
that incorporate newly generated metadata by applying our EBNF rules for metadata
composition. The first group contains the rule for capturing illegal values/domain
violations, namely the valid-data-type rule, is designed in accordance with the description
in Example 4.1.2. Rules, such as missing-value and default-value are intended to identify
either null values or implicit missing values. One of the common heuristic to detect outliers
is to examine the distribution of values and check whether the value is in the tail of the
distribution [190]. This heuristic is implemented by the top-value rule and it uses the
frequency statistics metadatum. For the sake of completeness, we also include the heuristics
based on integrity constraints, such as functional dependencies. Generally, this metadata
has been extensively studied by rule-based data cleaning systems, and its effectiveness has
already been shown in the related work [54, 91, 62, 202]. The violation of the functional
dependencies might reveal the consistency and accuracy violations, such as missing values,
misfielded values, domain violation, ambiguous values, and wrong word ordering issues.
We designed the fd-compliance heuristic by using the FD compliance metric to identify
values in rows that violate an FD [239]. The fd-compliance rule unites multiple functional
dependencies for each dataset.

Table 4.9 provides a summary of the designed heuristics. It shows the semantics of error
detection rules, along with the applied approach to designing a heuristic, the metadata
that is involved in each rule, and possible thresholds. The second group consists of error
detection rules, which are based on the generated metadata. The composability of metadata
and our proposed EBNF rules will allow designing various heuristics by re-using metadata
of different granularity levels as well as by generating new metadata. In particular, the
value-len-z-test rule is formulated to detect misfielded values. This heuristic is described
in Example 4.1.1, Section 4.1. To capture illegal values/domain violations, we created
the valid-data-type rule. Its full description is shown in Example 4.1.2, Section 4.1. More
importantly, the composability of metadata (see Section 4.2.3) allows us to construct
heuristics by re-using metadata of different granularity levels. It is mostly the lower-level or
more basic metadata, such as Map, or Fold, that is suitable for being re-used. For example,
the value-len-evt rule is created by using the extreme value theory [116]. This rule utilizes
metadata such as value length distribution, std.deviation, and mean. At the same time, the
value-len-z-test rule is created by using the value length distribution and z-value metadata.
According to the composability of metadata, we re-use previously computed std.deviation
and mean to compute the z-value metadata.

65

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT
H

eu
ris

tic
D

es
cr

ip
tio

n
(E

rr
or

Co
nd

iti
on

)
M

ap
pi

ng
ap

pr
oa

ch
M

et
ad

at
a

T
hr

es
ho

ld

m
iss

in
g-

va
lu

e
va

lid
at

in
g

va
lu

e
fo

r
N

U
L

L
•

nu
ll

va
lu

e
-

de
fa

ul
t-

va
lu

e
ch

ec
k

th
at

va
lu

e
is

de
fa

ul
t

[1
94

]
da

ta
ty

pe
-

to
p-

va
lu

e
ch

ec
k

th
at

va
lu

e
is

in
th

e
ta

il
of

th
e

va
lu

e
di

st
rib

ut
io

n
[1

27
,1

90
]

hi
st

og
ra

m
fro

m
th

e
11

-t
h

fre
qu

en
t

va
lu

e
va

lid
-n

um
be

r
ch

ec
k

th
at

th
e

nu
m

er
ic

va
lu

e
do

es
n’

t
m

at
ch

th
e

da
ta

ty
pe

fo
rm

at
[1

27
,2

28
]

da
ta

ty
pe

fo
rm

at
-

ca
rd

in
al

ity
-v

io
ch

ec
k

th
at

th
e

at
tr

ib
ut

e
∈

PK
an

d
un

iq
ue

ne
ss

<
10

0%
•

PK
,u

ni
qu

en
es

s
-

lo
ok

up
-a

tt
r

ch
ec

k
va

lu
e

ag
ai

ns
t

th
e

lo
ok

up
ta

bl
e

[5
5,

2]
at

tr
ib

ut
e

va
lu

es
-

va
lid

-d
at

a-
ty

pe
ch

ec
k

th
at

va
lu

e
do

es
n’

t
m

at
ch

th
e

do
m

ai
n

fo
rm

at
(e

.g
.

SS
N

,z
ip

)
[1

27
,2

28
]

do
m

ai
n

fo
rm

at
-

un
us

ed
-c

ol
um

n
ch

ec
k

th
at

at
tr

ib
ut

e
va

lu
es

ar
e

N
U

L
L

or
ar

e
th

e
sa

m
e

•
co

ns
ta

nc
y,

nu
ll

va
lu

e
-

fd
-c

om
pl

ia
nc

e
ch

ec
k

th
at

th
e

FD
L

→
R

ho
ld

s
fo

r
an

y
tw

o
ro

w
s

u
an

d
v
.

Su
sp

ec
te

d
vi

ol
at

io
n:

{u
|u

,v
∈

D,
u

(L
)=

v
(L

),
u

(R
)�=

u
(R

)}
[2

39
]

fu
nc

tio
na

ld
ep

en
de

ni
es

-

va
lu

e-
le

n
ch

ec
k

th
at

th
e

va
lu

e
le

ng
th

is
ou

ts
id

e
th

e
in

te
r-

qu
ar

til
e

ra
ng

e
[1

90
]

va
lu

e
le

ng
th

di
st

rib
ut

io
n

qu
ar

til
es

1-
st

an
d

3-
rd

qu
ar

til
es

va
lu

e-
le

n-
H

am
pe

lx
84

ch
ec

k
th

at
le

ng
th

va
lu

e
is

an
ou

tli
er

ac
co

rd
in

g
to

H
am

pe
lX

84
[1

14
]

[1
14

,1
50

]
le

ng
th

va
lu

e
di

st
rib

ut
io

n
m

ed
ia

n
M

AD

1.
48

26
[1

14
,1

50
]

(f
or

lo
we

r-
an

d
up

pe
r

bo
un

ds
bo

u
n

d
=

m
ed

ia
n

±
(M

A
D

∗1
.4

82
6)

)

va
lu

e-
le

n-
ev

t
ch

ec
k

va
lu

e
le

ng
th

ag
ai

ns
t

"e
xt

re
m

e
va

lu
es

th
eo

ry
"

[1
16

]
[1

16
]

va
lu

e
le

ng
th

di
st

rib
ut

io
n

m
ea

n
st

d.
de

vi
at

io
n

P
>

t
(w

he
re

t
se

t
by

us
er

)
P

=
ex

p
(−

ex
p
((

−1
)∗

((v
a

l−
m

e
a

n
)

s
td

.d
e

v
))

va
lu

e-
le

n-
1-

5-
IQ

R
ch

ec
k

th
at

va
lu

e
le

ng
th

is
ou

ts
id

e
th

e
1.

5*
in

te
r-

qu
ar

til
e

ra
ng

e
[1

14
]

va
lu

e
le

ng
th

di
st

rib
ut

io
n

qu
ar

til
es

1-
st

an
d

3-
rd

qu
ar

til
es

va
lu

e-
le

n-
z-

te
st

pe
rfo

rm
s

th
e

z-
va

lu
e

te
st

on
va

lu
e

le
ng

th
di

st
rib

ut
io

n
[8

]
le

ng
th

va
lu

e
di

st
rib

ut
io

n
z-

va
lu

es
3,

de
sc

rib
ed

in
[8

]

va
lu

e-
le

n-
tr

im
m

ed
ch

ec
k

th
at

va
lu

e
le

ng
th

is
ou

ts
id

e
th

e
ra

ng
e

[t.
m

ea
n

−
2

∗t
.s

td
D

ev
;t

.m
ea

n
+

2
∗t

.s
td

D
ev

]
[1

14
]

tr
im

m
ed

va
lu

e
le

ng
th

di
st

rib
ut

io
n

tr
im

m
ed

m
ea

n
tr

im
m

ed
st

d.
de

vi
at

io
n

2
[1

14
]

va
lu

e-
le

n-
w

in
so

riz
ed

ch
ec

k
th

at
va

lu
e

le
ng

th
is

ou
ts

id
e

th
e

ra
ng

e
[w

.m
ea

n
−

2
∗w

.s
td

D
ev

;w
.m

ea
n

+
2

∗w
.s

td
D

ev
]

[1
14

]
w

in
so

riz
ed

va
lu

e
le

ng
th

di
st

rib
ut

io
n

w
in

so
riz

ed
m

ea
n

w
in

so
riz

ed
st

d.
de

vi
at

io
n

2
[1

14
]

T
ab

le
4.

9:
E

xp
er

im
en

ta
l

he
ur

is
ti

cs
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

er
ro

r
de

te
ct

io
n

he
ur

ist
ic

s.
Fu

rt
he

rm
or

e,
fo

r
ev

er
y

he
ur

ist
ic

,w
e

pr
ov

id
e

th
e

in
vo

lv
ed

m
et

ad
at

a
an

d
th

re
sh

ol
ds

.
T

he
co

lu
m

n
M

ap
pi

ng
ap

pr
oa

ch
pr

ov
id

es
th

e
m

et
ho

d
us

ed
to

de
sig

n
th

e
er

ro
r

de
te

ct
io

n
he

ur
ist

ic
s,

w
hi

ch
al

so
ex

pl
ai

ns
th

e
m

ap
pi

ng
be

tw
ee

n
da

ta
qu

al
ity

iss
ue

s
an

d
th

e
pa

rt
ic

ul
ar

m
et

ad
at

a.
To

re
ca

p,
we

us
ed

tw
o

ap
pr

oa
ch

es
:

th
e

re
la

te
d

wo
rk

ap
pr

oa
ch

,
w

he
re

ex
ist

in
g

m
et

ho
ds

ar
e

re
vi

ew
ed

,a
nd

th
e

tr
iv

ia
lr

el
at

io
ns

hi
p

ap
pr

oa
ch

(m
ar

ke
d

as
•

),
w

he
re

th
e

co
nn

ec
tio

n
be

tw
ee

n
da

ta
er

ro
rs

an
d

m
et

ad
at

a
is

tr
iv

ia
lly

es
ta

bl
ish

ed
.

T
hr

es
ho

ld
sc

or
es

,w
hi

ch
ar

e
ta

ke
n

fr
om

th
e

re
la

te
d

w
or

k,
ar

e
pr

ov
id

ed
w

ith
re

fe
re

nc
es

.
So

ur
ce

[2
33

].

66

4.3 Case Study

MUSEUM BEERS FLIGHTS ADDRESS

Metadata-based heuristics P R F1 P R F1 P R F1 P R F1

missing-value 0.9982 0.8974 0.9451 0.1261 0.0517 0.0733 0.8704 0.3889 0.5376 0.0029 0.002 0.0023
default-value 1.0 0.0101 0.02 1.0 0.0824 0.1522 0.9514 0.0139 0.0273 - - -
top-value 0.0116 0.0628 0.0196 0.0652 0.5242 0.1159 0.4519 0.9883 0.6202 0.4414 0.8786 0.5876
valid-number 0.1909 1.0 0.3206 1.0 1.0 1.0 - - - - - -
cardinality-vio - - - 0.0986 1.0 0.1795 - - - - - -
lookup-attr - - - 0.7257 1.0 0.8411 - - - 0.9681 0.6817 0.8001
valid-data-type - - - - - - - - - 0.9979 0.8032 0.89
unused-column 0.9156 1.0 0.956 - - - - - - - - -
fd-compliance 0.7257 1.0 0.841 0.2089 1.0 0.3456 0.7899 1.0 0.8826 0.4999 1.0 0.6666

Value length based outlier detection rules

value-len 0.0553 1.0 0.1048 0.1709 1.0 0.292 0.5279 1.0 0.691 0.6193 1.0 0.7649
value-len-Hampelx84 0.0475 1.0 0.0906 0.1247 1.0 0.2218 0.4978 1.0 0.6648 0.6385 1.0 0.7794
value-len-evt 0.2262 1.0 0.3689 0.0485 1.0 0.0926 0.5146 1.0 0.6795 0.7043 1.0 0.8265
value-len-1-5-IQR 0.1161 1.0 0.208 0.068 1.0 0.1273 0.3966 1.0 0.5679 0.3716 1.0 0.5418
value-len-z-test 0.3012 1.0 0.4629 0.0536 1.0 0.1017 0.231 1.0 0.3753 0.6858 1.0 0.8136
value-len-trimmed 0.1821 1.0 0.3081 0.0946 1.0 0.1729 0.3246 1.0 0.4901 0.589 1.0 0.7413
value-len-winsorized 0.1386 1.0 0.2435 0.2506 0.6526 0.3621 0.4615 1.0 0.6316 0.7096 1.0 0.8302

Table 4.10: Precision, recall, and F1-measure of single heuristics. The evaluation is
performed only on relevant data, meaning that if the attribute is not covered by the error
detection rule, then the values of this attribute are excluded from the evaluation. The dashes
"-" denote that the rule does not provide any valid results. Source [233].

Evaluating Error Detection Heuristics. Real-world datasets enclose diverse error
types. Hence, providing different heuristics is essential for capturing as many error types as
possible [2]. We first study heuristics that are designed to capture at least one error type.
Next, we will consider the group of heuristics for identifying outlier because an outlier
might subsume different errors, such as misfielded values, ambiguous and extraneous data,
wrong word order or illegal values. The results of all individual heuristics are shown in
Table 4.10.

First, we study the following heuristic rules: missing-value, default-value, top-value,
valid-number, cardinality-vio, lookup-attr, valid-data-type, unused-column. Each of these
rules is designed to identify at least one error type. Common issues in the MUSEUM
and FLIGHTS datasets are missing values. Hence, the corresponding rules, such as
missing-value and unused-column, mainly use null value metadata. The evaluation of the
above two rules provides the best results compared to the remaining rules, by producing
0.95 as an F1-score for the MUSEUM dataset. To identify outliers, we created a rule that
analyzes the FLIGHTS histogram of values and their frequencies. This rule produced
an F1-score of 0.62 – the highest among all datasets. The primary issue of the BEERS
dataset is the wrong data type, meaning that numeric columns include non-numeric values.
Hence, we formulated the valid-number rule to analyze numeric columns by using the
data type format metadata. The above rule results in a 1.0 F1-score. The second best
result – 0.84 F1-score for capturing errors in a geographical location - is achieved by the
lookup-att rule. This rule employs both data type metadata and the master data, which is
used for comparing values in the corresponding geographic columns. As the ADDRESS
dataset contains information about people and their addresses, two rules, lookup-att and

67

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

the valid-data-type, achieves the best results of all rules. The lookup-att provides a 0.8
F1-score, and the valid-data-type rule achieves a 0.89 F1-score. The fd-compliance rule
identifies multiple data quality issues, such as missing values, misfielded values, domain
violation, ambiguous values, and wrong word ordering. This rule achieves the best result -
0.88 F1-score on the FLIGHTS dataset among all datasets.

Next, we consider heuristics that are formulated to spot outliers. Because outliers are
often an indication of irregularities in our data [17, 8]. We consider the problem of outlier
detection meant to identify exceptions such as misfielded values, ambiguous and extraneous
data, wrong word order or illegal values in our datasets. Therefore, we also created a group
of outlier detection heuristics on value length distributions for all dataset columns. All
of these rules contain the error condition to detect an outlier by producing 1 as a result;
otherwise, every rule produces 0, which means that the rule cannot decide whether the
corresponding cell is an error or not. By analyzing both tails of the distribution, these
rules are intended to flag irregularities in data. To specify the range for the outliers, we
used metadata, such as quartiles, median, MAD, mean, and standard deviation, which
were computed on the numerical representations of the attribute values (e.g. value length).
All outlier detection rules for all experimental datasets show the same behaviour: these
rules produce high recall and low precision. This means that although they are able to
spot all errors, they also falsely select clean values as errors. Outliers are only one type of
errors that appear in the datasets. Hence, even if we execute different outlier detection
rules, we still cannot cover all possible errors in the experimental datasets.

Data Error Coverage. To evaluate the efficacy of each error detection heuristic, we
analyzed two datasets – MUSEUM and BEERS – and studied how heuristics cover each
particular error type. We can distinguish particular data errors and use these labels to
analyze each heuristic because we either manually cleaned or inserted errors in the above
datasets. The coverage numbers in percentage are shown in Table 4.11. These numbers
confirm our hypothesis that whenever a data error can be considered as an extreme value
or outlier, then outlier detection heuristics will capture the majority of such errors.

To capture misfielded values in the BEERS dataset, we implemented heuristics by using
schema-based metadata such as domain/semantic role. These heuristics outperform outlier-
based heuristics. In particular, the misfielded values in BEERS appear on geographic
attributes and therefore are best covered by the lookup-attr rule, which uses the domain
and semantic role metadata.

For example, in the MUSEUM dataset, we consider ambiguous, extraneous data,
misfielded values, and wrong word order as outliers, and the heuristics capture extreme
values in the value length distribution. Missing values are captured mainly by using the
heuristics that include the null values metadata, and the results of the missing-value rule
(precision, recall, F1, as well as errors coverage) are confirming this claim.

68

4.3 Case Study

MUSEUM BEERS

am
bi

gu
ou

s
da

ta

m
isfi

el
de

d
va

lu
es

m
iss

in
g

va
lu

es

ex
tr

an
eo

us
da

ta

de
fa

ul
t

va
lu

es

w
ro

ng
wo

rd
or

de
r

m
isfi

el
de

d
va

l.

w
ro

ng
da

ta
ty

pe

de
fa

ul
t

va
lu

es

ill
eg

al
va

lu
es

missing-value - - 100.0 - - - 50.0 - - -
default-value - - - - 35.71 - - - 100.0 -
top-value 85.23 100.0 - 4.29 35.71 12.9 50.0 90.62 100.0 20.85
valid-number 93.25 - - - 64.29 - - 100.0 100.0 100.0
cardinality-vio - - - - - - 11.02 10.39 5.73 7.13
lookup-attr - - - - - - 100.0 - - -
unused-column - - 85.69 - - - - - - -
fd-compliance 6.33 - 8.96 10.0 - - 97.7 - - -

value-len 100.0 100.0 - 100.0 35.71 100.0 22.05 20.49 100.0 41.24
value-len-Hampelx84 100.0 100.0 - 100.0 35.71 100.0 22.05 20.49 100.0 30.4
value-len-evt 16.46 72.0 - 80.95 - - 3.94 - - -
value-len-1-5-IQR 100.0 72.0 - 100.0 100.0 100.0 21.26 100.0 100.0 30.4
value-len-z-test 10.13 72.0 - 76.19 - - 2.36 - - -
value-len-trimmed-range 100.0 96.0 - 98.1 - 100.0 6.69 17.17 100.0 -
value-len-winsorized-range 16.46 72.0 - 81.9 - 100.0 3.94 - - -

Table 4.11: Error coverage by heuristics in percent. Every issue for the MUSEUM
and BEERS datasets has been distinguished, and we determined how each of the heuristics
covers the particular data error. Please note that in this study, we consider only datasets,
where the categorization of data errors was possible. "-" dashes denote that the heuristic has
no coverage for the particular error type. Source [233].

As the problem of misfielded values is usually caused by shifting attribute values, the
null value metadata might be a reliable indicator for this data quality problem. The
50%-coverage of the missing-value rule is the support for the above claim. To identify the
wrong data type error, either the valid-number rule or the top-value rule can be used. The
former rule uses the data type metadatum, whereas the latter uses the histogram. Both
heuristics deliver good results for the identification of wrong data type errors. Similarly,
the FD-compliance rule with 97.7% reliably covers this type of errors because the RHS
parts of functional dependencies brewery − id− > state, city− > state cover the above
mentioned geographic attributes.

Since default or illegal value data errors appear in numeric attributes in the BEERS
dataset and contain alphanumeric instead of numeric characters, these errors are best
captured by the valid-number rule, which is formulated by using the data type format
metadatum. Because the percentage of such errors is low (less than 2%), they are fully
identified by the outlier-based heuristics.

Generally, the data errors coverage empirically shows that the mapping between
metadata and data quality issues, as shown in Table 4.8, is a useful guideline for rapid
prototyping of an error detection strategy. The proposed EBNF grammar can be used to

69

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

generate any other possible metadata that has not been explicitly mentioned by Abedjan
et al. [3]. In our case study, we applied the proposed EBNF grammar to generate metadata
for outlier detection heuristics. Hence we demonstrated the practical applicability of
the composability concept to generate new metadata. Furthermore, while our heuristics
generate many false positives, they are simple to formulate and can be used in conjunction
with other heuristics and data cleaning approaches.

Aggregating Heuristics Because datasets contain various types of data errors [232,
2, 82], a variety of error detection methods need to be used in conjunction [223, 160] to
support the definition and construction of more general data cleaning frameworks. The
previously-defined heuristics capture a particular type of error in data; therefore, the
results of these rules need to be aggregated to a final output. To embrace all possible data
error types in a dataset, we apply several error detection rules, and then combine their
results in an unsupervised way. We propose using unsupervised combining approaches
because training sets with predefined labels are not always available, and the creation of
the labels is usually an expensive labour process [232, 198]. Please note that combining
error detection strategies by using supervised approaches is provided in Chapter 5.

Every combination approach takes a matrix H as input, where each column hi =
(r1, . . . , rm) contains the error detection results of the respective heuristic hi for all dataset
values. We focus on three representative approaches for the unsupervised combination of
multiple results:

Majority vote. [184, 191] This is the combination method that marks a dataset value as
an "error" if the majority of the values from the tuple (h1 . . . hn) are set to "error".

UnionAll. [2] This method flags a dataset value as an "error" if at least one of the
applied error detection heuristic has indicated the value vi as "error", otherwise the
value is labelled as "clean".

Eigenvalue-based technique. Dalvi N. et al. [63] proposed two approaches based on
spectral analysis algorithm which takes the sparsity of the labeling matrix in both
algorithm design and theoretical analysis into account. This method originates from
the area of crowdsourcing and addresses the problem of how to combine labels from
multiple annotators with various levels of expertise. Our experimental settings are
similar to the aggregating crowdsourced binary labels. Therefore we applied this
method by assuming our error detection heuristics as "crowd workers". In particular,
we re-implemented an algorithm3 that estimates a dataset cell as either erroneous or
clean for an arbitrary heuristic-dataset cell assignment matrix, which is created by

3The implementation is provided as a Jupyter notebook http://bit.ly/eigen-val-aggregation

70

4.3 Case Study

MUSEUM BEERS FLIGHTS ADDRESS

Combined metadata-based heuristics P R F1 P R F1 P R F1 P R F1

UnionAll 0.5344 1.0 0.6965 0.0946 1.0 0.1729 0.525 1.0 0.6885 0.3385 1.0 0.5058
Majority wins 0.1145 9.0E-4 0.0018 0.25 0.0069 0.0135 0.3089 0.0053 0.0103 0.8755 0.0277 0.0537
Eigenvector-based technique: Alg 1 [63] 0.5035 0.9087 0.6480 0.0931 0.9597 0.1698 0.5082 0.9490 0.6619 0.3471 0.9750 0.5119
Eigenvector-based technique: Alg 2 [63] 0.5035 0.9188 0.6506 0.2023 0.3503 0.2564 0.0 0.0 0.0 0.3434 0.9365 0.5025

Table 4.12: Precision, recall, and F1-score of a combination of error detection
rules. UnionAll is expected to perform best because of the different error detection rules
coverage: each error detection rule is responsible for one specific irregularity in the data.
Source [233].

the concatenation of all error detection rules. The "expertise" of each heuristic varies,
hence a heuristic provides a result for a subset of dataset cells.

Results of Heuristic Combinations. Table 4.12 provides the results of all combination
techniques. The UnionAll and both algorithms from the Eigenvalue-based technique deliver
almost identical results, with high recall scores – 1.0 for all datasets. By applying the above
combination techniques, we achieved an F1-score of 0.69 for MUSEUM, 0.17 for BEERS,
0.68 for FLIGHTS and 0.51 for ADDRESS. Despite the high recall, the precision for
some datasets is still low, roughly achieving 0.5%, which causes a decrease in the F1-score.
Because error detection rules are created to capture one type of data error, these rules
reveal their "expertise" only for a subset of the dataset cells. Therefore, the UnionAll
and Eigenvalue-based techniques are appropriate to combine heuristics. Although both
methods deliver similar results, the Eigenvalue-based technique is algorithmically more
complex [63], compared to the UnionAll method. Following the no free lunch theorem [35],
there are no generally best models and the preference should be given to the least complex
models; consequently, we prefer the latest and most straightforward combination technique.
The Majority Vote approach provides insufficient results because it takes the class label
that receives the most significant number of votes as the final result. This functionality
contradicts our setting where just a few heuristics can detect a particular error type.

To conclude, while our heuristics generate many false positives, they are straightforward
and might be rapidly implemented. Furthermore, they can be used in conjunction with
other heuristics and data cleaning approaches, to be integrated within a more general data
cleaning or data integration framework.

4.3.5 Usability of Metadata Mapping and EBNF Grammar

In this dissertation, we also interested in understanding whether our mapping and metadata
composability can help data scientists in developing data cleaning strategy because data
science projects are unique and it is challenging to find one data cleaning system to
"fit-it-all" [142, 223]. Primary, our mapping targets anyone, with little to no expertise,

71

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

YES

NO

Do you know what data errors
are in your data?

Use mapping and
study the listed data
quality issues and

metadata.

Use mapping
and metadata
categorization

YES

NOCan you identify the most
effective metadata what covers the most

of the data errors?

NO

YES

Can you identify
metadata-based heuristics
that you might implement to

detect errors?
Use composability

rules to generate new
metadata

Implement error
detection
strategy

Figure 4.6: A flowchart of defining data cleaning strategy. This flowchart shows
how to use the proposed mapping between data errors and metadata, categorization, and
composability rules for new metadata generation. Source [233].

to perform data quality assessment when provided with a template that based on our
mapping between metadata and data quality issues, and metadata composability rules.

We conducted an interview study4 of 8 data scientists and data engineers. The interview
consists of 14 questions to be completed within 20 minutes. The initial four questions
inspect the expertise of each participant, which revealed that that 7 interviewees are
performing data preparation as their daily task. The next 9 questions are designed as tasks,
where our mapping and composability rules should be used to develop a data cleaning
strategy. We analyzed the correctness of responses, which is an indicator for the usefulness
of the mapping. Finally, we asked a general question about the practical value of our
mapping. Mainly, our interview study results show that:

1. Provided with the mapping between metadata and data errors, data scientists were
able to write a program/function based on one of the heuristics provided in the
mapping to identify particular data errors. Particularly, 5 out of 9 tasks were correctly
solved by all participants and the remaining four tasks were correctly solved by at
least four participants.

2. Provided with the composability rules, data scientists were able to create new
metadata to identify outliers in a given dataset. For example, 7 of 8 responses
constructed an outlier detection method by composing z-values from the distribution
of value length; and

3. Provided with the mapping between metadata and data errors, all data scientists
report a speed up the process of defining the data cleaning strategy, because they
use the above mapping as a template and adapt it for their needs.

Each interview was started with a short tutorial about how to apply our mapping,
categorization, and composability rules to create a data cleaning strategy, as summarized
in Figure 4.6.

Since data cleaning is an ad-hoc process, we designed the interview questions to
observe how data scientists address data quality problems if they are equipped with our

4The interview questions are available online: http://bit.ly/dc-user-study

72

4.3 Case Study

categorization of metadata and the mapping between metadata and data quality issues.
For example, the responses to the question "provided with the mapping between data
quality issues and metadata, what heuristic would you implement as first to detect "domain
violation" data error in the dataset in Table 4.4?" All of the interviewees were able to
identify the data quality issue in our mapping and select one metadata-based heuristic
(domain and semantic role) to implement.

Considering that real data errors might take a different form, it is crucial to identify
a category of the error or at least what data quality dimension such error violates. In
response to the interview question "what data quality issue from the mapping would you
select to design your solution for the "default values detection?" four of 8 of responses have
correctly identified the related error type, such as "missing values". Hence, they would
be able to implement the appropriate errors handling by selecting the "missing values"
column in our mapping (see Table 4.1).

Next, we provided users with a dirty dataset, as shown in Table 4.4, and asked to
specify whether they can write a script for error detection based on one of the heuristics
provided in the mapping to identify "misfielded value" and how many of them can they
implement? As a response, all interviewees were able to implement the above heuristics,
and the amount of the heuristics ranges from one to ten, where 14 error detection rules are
initially specified in the mapping. This result shows that if data scientists are aware of
error types, they were able to implement a data cleaning strategy for this particular error
with the help of our mapping.

Often, data preparation includes processing data of unknown quality [2], and it is crucial
to be able to define data cleaning routine for any datasets. To examine, how users would
proceed in the above setting, we asked them to answer the following question "Provided
with the mapping between data quality issues and metadata, what is your data quality
assessment strategy by using that mapping?" All of the interviewees were able to specify
such a data quality assessment strategy. The responses include the following strategies:

• "Use outliers and clustering to detect most of the issues",

• "Use a histogram to check for outliers", or

• "I will pick metadata that cover more errors first".

More experienced users make use of the mapping data errors to the data quality dimensions
and direct their data cleaning as "applying all strategies noted in relation to data errors
that are related to completeness and consistency".

To get the overall impression about the usability of our mapping, we asked a final
question about "how would the categorization of metadata and the mapping between metadata
and data quality issues help or assist data scientists in their daily job for data quality

73

4. ANATOMY OF METADATA FOR DATA QUALITY MANAGEMENT

assessment?". In the following, we provide all received answers to the above interview
question, except for one participant, who missed this question:

1. "It could help to have better insight about the data and that’s help a lot."

2. "It makes finding the right tool and heuristic much easier for data scientists to clean
the data without struggling much with the data error types and cleaning solutions."

3. "This categorization and the mapping is a great literature survey across all current
data cleaning approaches and a great help to newcomers in the data cleaning field."

4. "It is very useful. It can help in most general problems. But we have to analyse our
specific problem when using the mapping as reference."

5. "It would be very useful and helpful as well as time saving as the mapping provides a
quick and easy way to get strategies for different errors based on the metadata. This
is especially useful for people who are newer to data curation and don’t know the best
test for different cases."

6. "It’s certainly a good overview over current state error detection and what methods
to apply. On a purely theoretical basis, this would be quite helpful, especially for data
scientist not familiar with the intricacies of data cleaning.. . . there are instances
where a high value dataset needs to be imported and cleaned and then a overview as
presented could be extremely helpful to make sure, no aspect is forgotten and to make
sure, the best methods are applied (correctly)."

7. "Technically it would help a lot for having a good data quality in daily job."

Hence, from analyzing the user study responses, we claim that our mapping is a useful
tool for defining the data cleaning strategy. In the following, we outline the usability
aspects of applying our work while writing custom scripts for data quality assessment [142].

As data scientists report, data assessment routine includes the development of ad-hoc
scripts [142]. According to our survey, Python, Scala/Spark, SQL, and R are popular
scripting languages to accomplish the above tasks. As elaborated in Section 4.3.3,
we implemented the data quality assessment pipeline by using Apache Spark SQL
framework [14]. In the beginning, we use our mapping as a template and generate a
set of error detection heuristics as User Defined Functions (UDF). Each UDF takes data
unit and metadata as parameters, and returns {−1, 0, 1} integer values, which semantically
denote {”clean”, ”not applicable”, ”error”} as a result of applying the error detection
heuristic on data. It is important to note that implemented UDFs are generated once and
used multiple times for all datasets. Given the above set of error detection UDFs, we create
an application- and dataset-specific data validation routine. That means, if we aware of

74

4.4 Summary

one kind of errors in the dataset, we target these errors with specific UDFs from the pool
of heuristics.

In this section, we analyzed the usability of design and implementation of metadata-
based tools for assessing data quality.

4.4 Summary

In this chapter, we studied the intrinsic connection between metadata and data errors.
Furthermore, we established a mapping that reflects the connection between data quality
issues and extractable metadata, using qualitative and quantitative techniques. Additionally,
we presented a new metadata classification and taxonomy based on a closed grammar that
can also maintain all complex metadata. We provided a systematic study for using metadata
in data quality management by showing the composition of the metadata functions. We
created a mapping between metadata and data quality issues, such that it can provide
a basis for understanding the connection between dirty data and extractable metadata.
Then, we categorized metadata according to the composability notion. Based on the above
categorization, we generalized the metadata composability as a set of EBNF rules, which
enable data scientists to generate new metadata. Now, provided with our new mapping,
new effective techniques for the coverage of data errors by using metadata can be developed.
Practically, as our usability study demonstrated, these heuristics are straightforward yet
efficient and can be used in conjunction with other error detection strategies for rapid
prototyping of data cleaning solutions. We also provided an empirical study to demonstrate
the effectiveness and usability of our mapping by assessing metadata-based heuristics for
error detection on real-world datasets.

In the following Chapter 5, we use the elaborated connection between data quality issues
and metadata and provide an approach for error detection based on ensemble learning
methods, which are enhanced with data profiling information.

75

5
Supervised Error Detection with

Metadata

Evaluating the quality of a dataset is a critical first step in every data science and analytic
workflow [186, 229]. Data is usually integrated from different sources with different degrees
of reliability [75, 74]. Hence, the final dataset often suffers from low accuracy [153], revealing
errors such as outliers, duplicates, missing values, and inconsistencies. The origin of these
data quality problems might also go back to several reasons, such as:

• Information extraction from Web sources [213, 225, 153];

• Data integration from heterogeneous data sources of varying reliability [153, 223, 70,
106, 99];

• Manually or programmatically inserted erroneous entries (e.g. into the Web-forms) [28,
89].

With an increasing amount of digitally collected data, the above reasons might lead
to the decline of the overall data quality [161]. To address this, in the last two decades,
research in data quality management provided many data cleaning approaches, algorithms,
and systems [62, 190, 91, 245, 54, 131]. These algorithms were designed to detect and
repair specific error types. One possible way to deal with data errors is to apply multiple
data cleaning strategies, such as outlier detection [8], missing value imputation [245], or
formulating data cleaning rules [62, 91]. However, utilizing all possible data cleaning
strategies simultaneously produces a large number of detection results. These results also
include many false positives, because not all error detection strategies are equally suitable
for each dataset. Example 5.0.1 demonstrates the above problem on real-world data.

77

5. SUPERVISED ERROR DETECTION WITH METADATA

outlier detection

(gaussian)

rule violation

duplicate conflicts

patt
ern

 vi
ola

tio
n

outlie
r detection

(histogram)

Figure 5.1: Result overlap of four different error detection strategies on the Flights dataset.
Each value represents the number of correctly detected errors by the set of overlapping systems.
Source [232].

Example 5.0.1 We applied different error detection strategies, implemented by several
systems, on the real-world dataset FLIGHTS [153] and visualized their correct error
detection results in Figure 5.1. Each value represents the number of correctly detected
errors by either each system or the set of overlapping systems. This visualization shows
that these strategies overlap in their results, and none of them fully covers all possible
errors in a dataset. Additionally, as each algorithm contributes to the overall results, it is
not trivial to optimally combine their results. �

Triggered by the motivation and the example above, the research challenges addressed
in this chapter are the following:

Data Quality Issues: Datasets reveal multiple data errors and these data quality issues
influence each other. The problem arising here is how to cover all possible errors in
data.

Error Detection Strategies: Running all available data cleaning solutions might pro-
duce a large number of system errors - false positives.

Optimal Ensemble Methods: Abedjan Z. et al. [2] proposed an approach that states
that "by assessing the overlap of errors detected by the various tools, it is possible to
order the application of these tools to minimize false positives". This approach assumes
human-in-the-loop because ordering strategy must be dataset-specific. Therefore, the
next challenge is to determine the optimal combination method for error detection
that is specific for each dataset.

78

5.1 Error Detection Framework

Augmenting Error Detection with Metadata: The effectiveness of the application
of each error detection technique is dataset-specific [2]. As shown in Chapter 3,
metadata delivers structured information that describes the information resource. To
enable the dataset-specific error detection, we propose to augment the combining
methods with metadata.

To address these challenges, we developed a holistic error detecting framework which
unifies the results of multiple error detection algorithms and uses the dataset’s metadata.
The goal is to combine the set of error detection systems that maximizes the overall recall
and precision, aggregated by the harmonic mean F1. To achieve this goal, we propose two
learning-based methods, built on ensemble learning approaches [252]. Our first approach
combines the results of all existing error detection solutions. As filtering the most effective
combination of such approaches can enhance the overall error detection outcome, the
second method selects relevant error detection approaches before combining them.

In this chapter, we present an approach for error detection based on a combination
of supervised machine learning methods and data profiling. In particular, we propose a
technique that (1) effectively combines multiple error detection strategies; (2) considers the
metadata for the error detection; and (3) selects the most effective data cleaning solutions
for the particular dataset. This chapter is organized as follows:

1. The implementation of our framework for error detection is described in Section 5.1.

2. In Section 5.2, we propose ensemble strategies using state-of-the-art learning
approaches. These dataset-specific strategies aggregate results from different error
detection systems.

3. A methodology to select the most effective systems and the accumulation of their
results by using learning approaches is provided in Section 5.2.6.

4. In Section 5.3, we provide the holistic aggregation of the error detection algorithms
that is enhanced by instance- and schema-based metadata and present the set of
classification features for this purpose.

5. In Section 5.4, we describe experimental results of our aggregation strategies and
demonstrates the efficacy of the accumulated results from the error detection systems.

6. Finally, we summarize our approach to combining error detection strategies in
Section 5.5.

5.1 Error Detection Framework

In this section, we outline the implementation of our approaches. Figure 5.2 illustrates
the overall architecture of our system. The proposed system aggregates constituent error

79

5. SUPERVISED ERROR DETECTION WITH METADATA

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Error Detection
Strategy 1

S1S1S1System1

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Error Detection
Strategy 2

S1S1S1System2

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Error Detection
Strategy 3

S1S1S1System3

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Error Detection
Strategy N

S1S1S1System

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

a1 a2 a3
t1 v1 v2 v3

t2 v4 v5 v6

t3 v7 v8 v9

Single-Column Metadata {
m1: Data Completeness
m2: Data Type Affiliation
m3: Attribute Domain
m4: Frequent Values }

Multi-Column Metadata {
fd1: a1 -> a2
fd2: a2 -> a3
}

S1 S2 S3 … M1 M2 …

t1#a1 1 1 0 1 0

t2#a1 0 0 1 1 0

t3#a1 0 0 0 0 1

t1#a2 0 0 0 1 0

t2#a2 0 1 0 0 0

t3#a2 0 0 0 0 0

t1#a3 0 0 0 1 0

t2#a3 1 0 0 0 0

t3#a3 0 0 0 0 1

Input

Output

Error Detection Suite Aggregation Suite

Metadata Profiler Suite

Binary matrix
Classification
models

…

�1

S1 S2 S3 …

t1#a1 1 1 1

t2#a1 1 1 1

t3#a1 0 0 0

t1#a2 0 1 0

XNOR matrix

Be
st

K
Sy

st
em

s (S1, S2, S3,…, Sk)

Figure 5.2: The architecture of the system for aggregation of the error detection algorithms.
Source [232].

detection systems and consists of three components: 1) an Error Detection Suite, which
includes pluggable error detection systems that function as black boxes to our system.
2) a Metadata Profiler Suite, which extracts various metadata categories, and 3) an
Aggregation Suite, which combines the output of the error detection suite and the
profiler. In the following, we describe each of the components.

Error Detection Suite. The error detection suite includes various error detection
systems that can be independently plugged in. Each of these cleaning systems is considered
a black box to the enclosing aggregation system. The error detection suite assumes data
cleaning algorithms for detecting various data quality issues, such as pattern violation
detection, rules violation detection, duplicate-based error detection, or outliers detection.
Generally, the entire system is designed to accept an arbitrary algorithm.

Specifically, we include the pattern violation detection strategy, which is responsible
for the identification of syntactic pattern violations, misspelled values, formatting rule
violations, wrong semantic data type affiliation, or misfielded values. This component

80

5.2 Error Detection as a Classification Task

focuses on single-source attribute-level error detection [195] and its primary goal is to
discover violations of the syntactic and semantic constraints.

The rule violation detection strategy is responsible for capturing inter-attribute
inconsistencies. Usually, a number of integrity constraints need to be provided to define data
cleaning rules [1, 62, 91]. Hence, the initial step in the rule violation detection component
is the specification of the set of integrity constraints. These constraints are either known to
the data owner or can be extracted by existing metadata profiling systems [183, 182, 23].

The duplicate conflicts resolution detects conflicting attributes in duplicates. In our
framework, we include the duplicate detection algorithm of the Nadeef [62] system. The
duplicate-based system records the exposed data conflicts as potential errors.

The outlier detection strategy captures various data quality issues, which can be
categorized as outliers. For example, data quality issues, such as misspellings, extraneous
data, incorrect data, or wrong word order might be considered as outliers. We utilize the
dBoost system [190], which provides two general outlier detection methods based on
Gaussian distribution and Histograms.

The Metadata Profiler Suite. This auxiliary component acquires general metadata
through a data profiling step [2]. The profiler is applied to each dataset independently to
the error detection suite. We extract the full set of metadata categories, including instance-
and schema-based metadata (see Section 2.2). This suite generates a metadata matrix M

with the tuples, which is used by the Aggregation Suite to augment the error detection
strategies combination.

The Results Aggregation Suite. Finally, we aggregate the results from each error
detection strategy by augmenting it with the metadata information. Concretely, each
cleaning subsystem outputs one binary vector e(j) indicating whether or not a cell is an
error by the particular data cleaning strategy j. All yielded vectors constitute the binary
matrix E, which is then horizontally concatenated with the metadata matrix M , which is
an input for the Result Aggregator Suite. The output of the combination is also a binary
vector eout. This suite implements the aggregation strategies of the data cleaning methods.
The algorithms behind these aggregation methods are presented in the next section.

5.2 Error Detection as a Classification Task

In this section, we present our approach of combining the results of various data cleaning
systems. Initially, we formalize the problem of the error detection combination. Then we
explain error classification algorithms, and propose holistic strategies to combine existing
data cleaning systems. Finally, we develop an approach to select and aggregate the most
effective subset of data cleaning solutions.

81

5. SUPERVISED ERROR DETECTION WITH METADATA

5.2.1 Error Detection Formalization

We begin with the formalization of the problem of combining error detection strategies.
We consider a dataset instance D with a schema S. Let attr(S) be the set of attributes in
S. Each tuple t ∈ D consists of cells. We define the a cell of the tuple t of the attribute
i ∈ attr(S) as t[i]. The value of each cell is vt,i. We specify ṽt,i being the true (or clean)
value of the cell at the t and i coordinates. A cell vt,i in the dataset D is determined as an
error if vt,i �= ṽt,i.

Let T be the set of error detection approaches that are independently applied on D.
The sj ∈ T is the j-th error detection system with j ∈ {1 . . . |T |}. The result of the j-th
error detection system is the set of cells Esj . We define e

(j)
t,i ∈ Esj as the output of the j-th

system on the i-th cell of the tuple t of the attribute i ∈ attr(S). Hence, each cell in D
is linked to an output of each error detection system, and the complete output of error
detection systems is denoted as a tuple (e(1)

t,i , e
(2)
t,i , ...e

(|T |)
t,i). The values of e

(j)
t,i are assigned

as follows:

e
(j)
t,i =

⎧⎨
⎩1 if the j-th system identified (t, i)-th cell as an error

0 otherwise

To holistically combine results of multiple error detection strategies and label each
value of the tuple as “clean” or “error”, we suggest to build a prediction model that is
based on the performance of each data cleaning system. One way to combine the results of
various error detection methods is to perceive this problem as a classification task. The
result of the classification task will be the combination of applied error detection systems.
The general goal is to learn a mapping from the inputs (Es1 , Es2 . . . Es|T |), sj ∈ T to the
output eout ∈ {0, 1}. We suggest to train an error classifier that takes error detection
results from all systems as features, and classifies each cell vt,i in the dataset D into two
classes Y ∈ {0, 1}, where y = 1 denotes an error and y = 0 indicates a "clean" value.

5.2.2 Error Classification Algorithms

In the following, we describe the error classification algorithms, which are used in this
chapter, namely Naive Bayes, Neural Network, and Decision Tree. The first is the
Naive Bayes Classifier, which predicts the probability of an error given the input tuple
from the data cleaning systems. Given the corresponding labels L ∈ {0, 1}, the Naive
Bayes model predicts that e belongs to the class of {0, 1} having the highest posterior

82

5.2 Error Detection as a Classification Task

probability conditioned on E :

enb = arg max
Li∈{0,1}

P (Li|E), where

P (L|E) =
|T |∏
i=1

P (L|e(i))

The predicted label from the given feature vector e is therefore the class enb ∈ {0, 1} for
which the P (L|E) is maximal.

The next classifier is the Neural Network Classifier and consists of K multiple
layers of nodes, where each node in the input layer is a value of the feature vector
e = (e(1), e(2), ...e(|T |)).

finput(wT
inite + binit) = 1

1 + exp(−wT
inite + binit)

The K-1 intermediate layers of the network map inputs to the outputs by applying the
linear function of the inputs, the corresponding node weights wi and bias values bj , j ∈ K,

for each layer, and applying an activation function (see the definition above):

ye = fk(. . . f2(wT finput(wT
inite + binit) + b2) · · · + bk)

The number of nodes of the output layer corresponds to the two classes: enn ∈ {0, 1}
and are computed by using the softmax [29] function:

enn = arg max
Cnn∈{0,1}

P (Cnn|ye), where

P (Cnn = i|ye) = exp(wT
i fk−1 + bk)

exp(wT
0 fk−1 + bk) + exp(wT

1 fk−1 + bk)

where k ∈ K denotes the k-th layer of the network and i ∈ {0, 1}.
The Decision Tree Classifier algorithm requires the following parameters: 1) Dataset

E train and their associated labels Ltrain; and 2) Attribute selection method to partitioning
E train data points into error or clean classes. The Decision Tree is constructed by iteratively
splitting the features vector E train into two branches: errors and non-errors. The splitting
criterion depends on the notion of Information Gain [107] IG(E train, s), which is used
as measure to partition E train into two classes by using the best tree branching split:
s∗ = arg maxs IG(E train, s). Each value of the leaf node represents a class label y for the
predicted error or clean classes.

In the following section, we motivate and explain the combination of error detection
methods by utilizing ensemble learning algorithms.

83

5. SUPERVISED ERROR DETECTION WITH METADATA

Figure 5.3: Venn diagram showing joint statistics of three classifiers: Neural Network,
Decision Tree and Naive Bayes algorithms on the same dataset. Source [232].

5.2.3 Combining Error Detection Methods With Ensemble Learning

The main reason to implement ensemble learning classification models is the fact that every
machine learning algorithm performs differently. We visualized the performance of the three
used learners in Figure 5.3. This figure shows that although the intersection of these models
is 95%, there are still errors which are identified only by one or two classifiers. Therefore,
to train an error classification model, we adopt ensemble learning, which combines single
(base) classifiers. Ensemble methods have been proven to produce better performance
and robustness on classification tasks [71]. The independence between the base learners
leads to the reduction of the overall classification error after the combination of the above
learners [252]. Instead of trying to determine the best single base learner, ensemble methods
utilize a combination of these, to achieve a better generalization ability. The advantage of
this combination is motivated by the following fundamental issues of machine learning, as
formulated by Dietterich T. [71]:

Statistical issue: The learning algorithms generate several different prediction models
giving the same accuracy on the training data. There is a risk that the final prediction
data may offer a slightly inaccurate prognosis of the future data. By averaging the
prediction models, we can achieve a good approximation to the true hypothesis and,
thus, the risk of selecting a wrong model can be reduced.

Computational issue: Given the fact that the majority of learning algorithms use local
search, defining the final model may end up in local optima. For instance, the training
of both neural networks and decision trees is NP-hard [32]. Therefore, the aggregation
might achieve a better approximation to the true unknown hypothesis, by executing
the local search from many different starting points. Hence, the combination of the
different learning models diminishes the risk of choosing a wrong local minimum.

Representational issue: In most applications of machine learning, the optimal hypothe-
sis cannot be represented by any of the hypotheses search space. By establishing a

84

5.2 Error Detection as a Classification Task

weighted sum of hypotheses, it may be feasible to expand the space of hypotheses,
and hence the learning algorithm is able to learn a more accurate approximation to
the true unknown hypothesis function.

These fundamental issues are the most important reasons why existing learning algorithms
sometimes perform poorly [71, 252]. Therefore, ensemble methods are designed to diminish
these three shortcomings of learning algorithms.

According to the no free lunch theorem [35], there are no generally best models, and
the common way to evaluate different classification methods is to empirically assess each of
them [171]. In the following, we present two variants of the ensemble methods: Stacking
and Bagging. While Stacking is arguably the more advanced approach and yields better
results in our experiments, we also include the discussion on Bagging as one of the best
and most straightforward methods according to the empirical comparison of supervised
learning algorithms conducted in [42]. In general, 1) Stacking combines multiple (different)
error detection models into one model, which is trained on the output of these models [243].
The first-layer learners are trained by using the same training data. 2) Bagging combines
learning models of the same machine learning algorithm, while the base learners are trained
on different subsamples of the training dataset [37].

5.2.4 Combining Error Detection Methods With Stacking

Our first approach for error detection strategies aggregation is Stacking. It combines
different base error-detection classifiers into one meta-classifier [243]. All used models,
Neural Network, Decision Tree, and Naive Bayes [29], produce various results for
error classification. The numbers in each area denote the total count of correctly classified
errors of the overlapping models. Therefore, the goal of using the stacking strategy is to
aggregate these results and achieve an improved accuracy compared to a single learned
model. Although the intersection of all three results is 95%, there are still errors which
are identified only by one or two classifiers. Hence, stacking utilizes the combination to
achieve a better generalization of the meta-learner function.

A general flow of stacking is demonstrated in Figure 5.4. The pseudo-code of error
detection that is based on the stacking combination method is summarized in Algorithm 5.1.
The input of this algorithm consists of two parameters. First parameter is the training
dataset E train. The second parameter is the dataset D, where the data cells need to be
classified as "clean" or "error". The output of the Algorithm 5.1 is a vector eout ∈ {0, 1}
that contains the predicted labels for each data value of the dataset D.

Initially, in the Algorithm 5.1 code line 1, we create the feature vector Ftrain, which
is based on the labeled training dataset E train. We follow the ensemble setting provided
by Caruana R. et al., [42] and train three classifiers based on the following algorithms:
Cdt - Decision Tree, Cnb - Naive Bayes and Cnn - Neural Network (Algorithm 5.1 code

85

5. SUPERVISED ERROR DETECTION WITH METADATA

Data

Train

NN NB DT

LR

Error_Prediction

Figure 5.4: Stacking Algorithm. Node notations: NN - Neural Network, DT - Decision Tree,
NB - Naive Bayes and LR - Logistic Regression. Training data is denoted by the node Train.
Source [232].

lines 3-5). The outputs of the base-learner functions are processed by the meta-predictor
- Logistic Regression Classifier [29], those training is shown in the code line 6. This
meta-classifier, takes the output values of three base-classifiers c = (enb, enn, edt) and forms
a linear combination of these values given the corresponding labels L ∈ {0, 1}. The highest
value of combination will be assigned to the particular class eout ∈ {0, 1}. Formally, this
binary classifier can be represented as a Bernoulli distribution of the form:

eout = P (L|c, w) = Ber(L|sigm(wT c)), where

sigm(wT c) = 1
1 + exp(−wT c)

where wT c represents the inner scalar product between the model’s weight vector w and
the feature vector c. Classifying data errors on D by using base classifiers and processing
their outputs by the meta-learner are shown in the Algorithm 5.1 code lines 8-11.

5.2.5 Combining Error Detection Methods With Bagging

The next error prediction technique uses the Bagging [37] ensemble method. We use the
parallel ensemble methods paradigm where the base learners are generated independently
from each other. The main reason for the use of parallel ensemble methods is to expoloit
the independence between the base learners. As the error can be reduced considerably
by combining independent base learners [37, 252]. The essential steps for the bagging
strategy are provided in Algorithm 5.2 and Figure 5.5. The input of this Algorithms are

86

5.2 Error Detection as a Classification Task

Algorithm 5.1 Algorithm for learning the error classification model that is based on
stacking ensemble learning.

1: function ErrorDetectionWithStacking(E train, D)
2: Ftrain ← CreateFeatures(E train)
3: Cnb ← NaiveBayes(Ftrain) � Learning the Naive Bayes base model
4: Cdt ← DecisionTree(Ftrain) � Learning the Decision Tree base model
5: Cnn ← NeuralNetwork(Ftrain) � Learning the Neural Network base model
6: Clr ← LogisticRegression(Cnb, Cdt, Cnn) � Learning the Logistic Regression

meta-model on the outputs of the base models
7: Df ← CreateFeatures(D)
8: enb ← Cnb(Df) � Classifying data errors with the Naive Bayes base model
9: edt ← Cdt(Df) � Classifying data errors with the Decision Tree base model

10: enn ← Cnn(Df) � Classifying data errors with the Neural Network base model
11: eout ← Clr(enb, edt, enn) � Classifying data errors with the Logistic Regression

meta-model on the outputs of the base models
12: return eout

13: end function

Algorithm 5.2 Algorithm for learning the error classification model that is based on
bagging ensemble learning.

1: function ErrorDetectionWithBagging(E train, k, D)
2: DT ← []
3: T ← []
4: Ftrain ← CreateFeatures(E train)
5: for i ← k do
6: Bi ← RandomSample(F train) � use Bi to learn model DTi

7: Cdt
i ← DecisionTree(Bi) � Learning the Decision Tree base model

8: DT ← DT + Cdt
i

9: end for
10: Df ← CreateFeatures(D)
11: for Cdt

i ← DT do
12: ei ← Cdt

i (Df) � Classifying data errors with the Decision Tree model on the
dataset D

13: T ← T + ei

14: end for
15: eout ← MajorityWins(T) � Final classifying data errors with the

MajorityWins meta-combiner
16: return eout

17: end function

87

5. SUPERVISED ERROR DETECTION WITH METADATA

Data

Train_1 Train_2 Train_ Train_K

DT_1 DT_2 _ DT_K

Combiner

Error_Prediction

Figure 5.5: Bagging Algorithm. Node notations: DTi - Decision Tree. Training data is
denoted by the node Traini. Source [232].

three parameters, first, the training dataset E train, second, the parameter k denotes the
number of base-learners, which will be trained on k- different subsets, and the third is
dataset D, where the data cells need to be classified as "clean" or "error". The output of
the Algorithm 5.2 is a vector eout ∈ {0, 1} that contains the predicted labels for each data
value of the dataset D.

Bagging algorithms take advantage of the bootstrap distribution for generating different
base learners. Technically, it uses bootstrap sampling [77] to obtain the data subsets for
training the base learners. Basically, given a training dataset E train containing n training
examples, a sample of mi training examples will be produced by sampling with replacement.
This leads to some original examples appearing more than once, and some examples not
being present in the sample. By repeating the procedure K times, we obtain K samples of
m training examples. Finally, from each sample ti, i ≤ |K| a base learner can be trained
by applying the base learning algorithm (Algorithm 5.2 code lines 5-9). In our approach,
the bagging ensemble learning algorithm utilizes the Decision Tree algorithm as a base
learner. A Decision Tree is a popular and effective classifier [171]. This algorithm is a
greedy method to binary partition the feature space.

Given a training dataset E train, the bagged classifier Cdt collects the output of each
previously trained classifier DTi and returns a final prediction of each cell in D being
erroneous or not.

To predict an instance, Bagging feeds this instance to its base classifiers, collects all of
their outputs (Algorithm 5.2 code lines 11-14), then applies Majority Voting to the labels
and takes the winner label as the output class label of the ensemble (Algorithm 5.2 code line
15). Combining decision trees is a competitive baseline compared to other classifiers [42].

88

5.2 Error Detection as a Classification Task

Therefore we used this ensemble method to compare against other ensemble learning
methods.

5.2.6 Eliminating Redundant Error Detection Strategies

As motivated at the beginning of this chapter, we might run idempotent error detection
strategies, meaning they might follow the same strategy to identify errors. For instance,
sometimes rule- and pattern-based approaches use similar histogram-based heuristics to
find errors [127, 190]. These approaches might detect very similar set of errors. In other
words, these systems are idempotent. As a result, this will skew the error classification
learning approach in favour of these two algorithms, which means that we would need to
identify representative data cleaning systems of such overlapping groups. To address this
problem, we extend the classification strategy with an initial phase to eliminate redundant
error detection systems by selecting the representative solutions from the T approaches.
In the remainder of this section, we refer to this representative subset as a Best-K data
cleaning solutions, where K ≤ |T |.

Our method requires two execution stages:

1) Best-K Strategies Selection, where we determine the subset T ∗ of all T strategies.

2) Best-K Result Aggregation, where we apply the Classification Strategy (described
in Sections 5.2.4 and 5.2.5) to the subset T ∗ to classify the input dataset cells into
error or not error classes.

The general method for the proposed strategy of eliminating idempotent error detection
algorithms is provided in Algorithm 5.3 code lines 19-28. The input of this algorithms are
three parameters, first, the training dataset E train, second, Ltrain labels of the training
data, and third, the parameter k that denotes the size of subset T ∗ of all T strategies.
The output of the Algorithm 5.3 is a set B of non-overlapping systems. In the following,
we describe the 5 steps of our algorithm to select and aggregate T ∗ systems:
Step 1: Execution of Error Detection Approaches. Initially, we run available data
quality approaches independently of each other on the dataset D. The result contains all
errors detected by each system, represented as a matrix E , as described in Section 5.2.1.
Furthermore, by using the training subset E train where the labels Ltrain are available, we
can calculate precision - the percentage of correctly identified errors for each system output.
Step 2: The Truth Matrix Creation. Given a sample E train and the respective labels
Ltrain, which reflect whether a data cell is an error or not, we create a truth matrix C by
applying the XNOR-operator [19] on each column in E train and label vector Ltrain. The

89

5. SUPERVISED ERROR DETECTION WITH METADATA

Algorithm 5.3 Algorithm for eliminating redundant error detection strategies.
1: function createTruthMatrix(E , L) � Encoding labels into the error detection

results
2: T ← XNOR(E , L)
3: return T
4: end function
5: function clusterSystems(T , k)
6: C ← kMeansClustering(T , k) � Applying the k-Means clustering algorithm to

cluster similar data cleaning systems.
7: return C
8: end function
9: function bestSystemInCluster(C) � C is a set of error detection systems in one

cluster
10: P ← []
11: for i ← C do
12: Pi ← getPrecisionOfSystem(i) � Determining the precision score of each

system in cluster
13: P ← P + Pi

14: end for
15: Pmax ← MAX(P)
16: T ← getSystemWithMaxPrecision(Pmax, C) � Determining the system with

the highest precision.
17: return T
18: end function
19: function BestKSystemsSelection(E train, Ltrain, k)
20: B ← []
21: T ← createTruthMatrix(E train, Ltrain)
22: C ← clusterSystems(T, k)
23: for c ← C do
24: Bc ← bestSystemInCluster(c)
25: B ← B + Bc

26: end for
27: return B
28: end function

90

5.2 Error Detection as a Classification Task

values of this matrix are generated as follows:

ct,i = e
(j)
t,i XNOR l

(j)
t,i , that is ct,i =

⎧⎨
⎩1 if e

(j)
t,i = l

(j)
t,i

0 otherwise

The semantics of the XNOR-operator is the following:

E train XNOR Ltrain ≡ ¬(E train XOR Ltrain)

The operation XNOR is also called identity, which means that the result is true if
the values of the operands E train and Ltrain are the same [19]. Hence, by applying the
XNOR-operator, we created a truth matrix C that reflects whether the particular error
detection system delivered a correct result. The above Truth Matrix Creation step is
provided as pseudo-code in Algorithm 5.3 code lines 1-4.
Step 3: Clustering the Error Detection Results. Provided with the truth matrix C
of n = |T | error detection results on D, we partition similar system results into k groups
(k ≤ n). We apply k-means clustering [108], where each partition represents a cluster of
identical systems. We consider two error detection strategies ti and tj , (i �= j) as similar if
they produce similar error detection results on the same dataset. This similarity can be
determined by using proper metrics for measuring the overlap between two finite sets e(i)

and e(j). Suitable similarity metrics are, for example, the Szymkiewicz–Simpson coefficient,
the Euclidean distance, or the Jaccard similarity coefficient [231, 78]. The result of the
clustering is the distribution of the error detection strategies into k clusters, C1, C2, . . . , Ck,
that is, Ci ⊂ T and Ci ∩ Cj ∈ ∅(1 ≤ i, j ≤ k). The above clustering step is provided as
pseudo-code in Algorithm 5.3 code lines 5-8.
Step 4: Precision-Based Best-K Strategies Selection. The output of the clustering
step is a set of system groups. Further, for each cluster, we select the error detection
strategy bj based on the system results with the highest precision score. This step is
provided as pseudo-code in Algorithm 5.3 code lines 9-18.
Step 5: Best-K Strategies Combination. After determining a subset of the k most
effective approaches in our system as a feature vector b = (b1, b2, . . . , bk), we apply the
combination (based on classification) strategy for error detection, which has been presented
in Sections 5.2.4 and 5.2.5.

In Chapter 4, we conducted a systematic study for the intrinsic connection between
metadata and data quality issues and developed effective methods for error detection based
on extracted metadata. In the following, we utilize these findings and augment the feature
vector with metadata to perform the error classification task.

91

5. SUPERVISED ERROR DETECTION WITH METADATA

5.3 Metadata-Augmented Error Classification

Abedjan Z. et al. [2] conducted an empirical evaluation of data cleaning systems on multiple
types of real-world data. This study yielded insights into the differences between datasets
in regard to the distribution of error types. To support the dataset-specific aggregation of
error detection systems, we augment the learning approaches with profiling information.
In this section, we provide an approach of designing features for metadata-augmented error
classification by modelling the instance- and schema-based metadata features.

Metadata has been extensively studied in Chapter 4, where we already provided a
systematic analysis of metadata functions and its connection to data quality management.
We established a mapping between data quality problems and metadata (see Section 4.1).
In this way, we demonstrated that exploiting metadata will address data quality issues [195,
233]. Our goal is to include the characteristics of the dataset into the error classification
method. To design features for metadata-augmented error classification, we suggest
the qualitative categorization of metadata. This taxonomy should reflect the dataset
characteristic and be included in the classification methods.

We propose five broad feature groups which are based on metadata. To support error
detection, we propose to encode instance- and schema-based metadata for each attribute.
For this purpose, we introduce an additional feature vector M that contains all metadata
information for each cell in D. Each attribute value vt,i of t-th tuple and i-th attribute,
i ∈ attr(S), is associated with a metadata tuple (m(1)

t,i , m
(2)
t,i , ...m

(|M|)
t,i), where |M| is the

number of generated metadata features.
In the following, we outline each of the metadata-based features:

Attribute Completeness Features. As provided in Chapter 4, the Completeness data
quality dimension is reflected by the following metadata: number of rows, null values,
size (numeric), outliers (for default values), and attribute type/class/domain defaults. For
example, we use the information about null values, which expresses whether the value in a
particular data cell is absent in the input dataset. Below, we show the metadata-features
modelling: the values of m(completeness) are assigned as follows:

m
(completeness)
t,i =

⎧⎨
⎩1 if the value in the (t, i)-th cell is absent;

0 otherwise;

Alternatively, to reflect the presence of default values in the attribute, we model this feature
as follows:

m
(default)
t,i =

⎧⎨
⎩1 if the value in the (t, i)-th cell belongs to the default values of the data type;

0 otherwise;

92

5.3 Metadata-Augmented Error Classification

Attribute Type Affiliation Features. The generic data types determine whether the
data type on a particular column belongs to one of the following data types and structures:
boolean, date&time, string, integer, or decimal. As we already have shown in Chapter 4,
knowledge about the column type is crucial in the pattern violation detection to identify
non-permissible values for this attribute [229].

Attribute Domain Features. As we already discussed in Chapter 4, the domain and
semantic role metadata is crucial for the identification of data quality issues, such as,
incorrect data, misspellings, ambiguous data, misfielded values, and domain violation.
We model the attribute domain information as a binary variable indicating whether the
attribute value belongs to one of the following domains: IP-Address, URL, HttpCode,
social security number, phone number, e-mail, credit card number, gender, zip, US state, or
geographical data. In this way, we target outlier detection or pattern violation detection
algorithms [229, 190]. Concretely, we model these features as follows:

m
(dom:e−mail)
t,i =

⎧⎨
⎩1 if the value in the (t, i)-th cell matches the format of the e-mail;

0 otherwise;

Attribute Value Frequency Features. This class of metadata represents the distri-
bution of either the attribute values or the alternative representation of attribute values
such as patterns, n-grams, or embeddings of each attribute. As detailed in the previous
Chapter 4, we follow the same hypothesis as extreme values analysis [116] and histogram-
based techniques in outlier detection [190, 8] and use the histogram metadatum to identify
the following data quality issues: incorrect data, misspellings, ambiguous data, misfielded
values, and use of special characters. In particular, the values of m(top−values) are assigned
according to the following rule:

m
(top−values)
t,i =

⎧⎨
⎩1 if the value in the (t, i)-th cell belongs to the top10 attribute values;

0 otherwise;

Multi-attribute Dependency Features. According to our research, conducted in
Chapter 4, dataset dependencies metadata is used to identify the violation of all data
quality dimensions. We encode the relationships between attributes as an additional set of
features. For instance, in our approach to supervised error detection, we use Functional
Dependencies of the form φ : A → B, which expresses that the attribute A functionally
determines another attribute B. Since the error detection systems utilize FDs as rules for
duplicate detection and rule violation detection [62], the FDs mostly include attributes,
which might be relevant in the error detection process. To include more signals about the
relevant attributes A and B, we propose the following straightforward modelling: for each

93

5. SUPERVISED ERROR DETECTION WITH METADATA

available FD, one binary feature vector is generated. Each vector expresses whether the
attribute value vt,i appears in one of the involved columns of the dependency or not. For a
functional dependency φk, the feature vector m(φk) is created as follows:

m
(φk)
t,i =

⎧⎨
⎩1 if the i-attribute is in φk;

0 otherwise;

By generating metadata-based features, the initial feature vector that reflects the results
of the error detection systems etrain = (e(1)

t,i , e
(2)
t,i , ...e

(|T |)
t,i) is extended by the metadata vector

m = (m(1)
t,i , m

(2)
t,i , ...m

(|M|)
t,i). Hence, given the extended feature space F = [En×|T |Mn×|M|],

the error classification method is considered as the learning of the mapping function
y = f(F train) = f(e(1)

t,i , e
(2)
t,i , ...e

(|T |)
t,i , m

(1)
t,i , m

(2)
t,i , ...m

(|M|)
t,i).

Table 5.1 summarizes the complete list of the above described metadata-based features.
To aggregate the newly selected set of error detection systems, both algorithms, either
Stacking or Bagging, can be applied on the enhanced feature space in the same way, as
described in Sections 5.2.4, 5.2.5, and 5.2.6.

5.4 Experiments

In this section, we provide experimental results of supervised and metadata-driven error
detection. We first describe the experimental setup in Section 5.4.1. The performance of
error detection systems is evaluated in Section 5.4.2. Next, we explain the classification
algorithms setup and the optimization steps in Section 5.4.3. All experiments are compared
to multiple baselines, as described in Section 5.4.4. Finally, we provide an evaluation of
our aggregation approach in Section 5.4.5, and the method of combining the most effective
error detection systems is evaluated in Section 5.4.6.

5.4.1 Experimental Setup

Datasets. The experiments are performed on four different datasets, as summarized in
Table 5.2. The HOSP dataset is available on the website of the US Department of Health
and Human Services1. This dataset consists of 10k records with 18 attributes, which are
mainly addresses, ZIP codes, state codes, and hospital names. This dataset is a ground
truth. To produce a dirty version of the HOSP dataset, we applied the Bart system [15].
We configured Bart to insert functional dependency violations by changing values in data
fields. The inserted error percentage is 9.2%.

1http://www.medicare.gov/hospitalcompare/Data/Data-Download.html

94

5.4 Experiments

Fe
at

ur
e

Ca
te

go
ry

D
at

as
et

M
et

ad
at

a
Fe

at
ur

e
D

es
cr

ip
tio

n

At
tr

ib
ut

e
Co

m
pl

et
en

es
s

N
um

be
ro

fr
ow

s
N

ul
lv

al
ue

s
Si

ze
(n

um
er

ic)
O

ut
lie

rs
(f

or
de

fa
ul

t
va

lu
es

)
At

tr
ib

ut
e

ty
pe

/c
la

ss
/d

om
ai

n
de

fa
ul

ts

A
nu

m
er

ic
va

lu
e

re
fle

ct
in

g
th

e
nu

m
be

ro
fr

ow
s

or
th

e
siz

e
of

th
e

nu
m

er
ic

va
lu

e.
A

bi
na

ry
va

lu
e

ex
pr

es
sin

g
wh

et
he

rt
he

va
lu

e
v t

,i
is

ab
se

nt
in

th
e

in
pu

t
da

ta
se

t
D

.
A

bi
na

ry
va

lu
e

ex
pr

es
sin

g
wh

et
he

rt
he

va
lu

e
v t

,i
is

a
de

fa
ul

t
va

lu
e

fo
ra

gi
ve

n
at

tr
ib

ut
e

ty
pe

/c
la

ss
/d

om
ai

n.

At
tr

ib
ut

e
Ty

pe
Affi

lia
tio

n
D

at
a

ty
pe

/c
la

ss
affi

lia
tio

n,
su

ch
as

bo
ol

ea
n,

st
rin

g,
in

te
ge

r,
de

cim
al

,
da

te
/t

im
e

A
bi

na
ry

va
lu

e
ex

pr
es

sin
g

wh
et

he
rt

he
va

lu
e

v t
,i

is
of

th
e

m
en

tio
ne

d
at

tr
ib

ut
e

ty
pe

/c
la

ss
/d

om
ai

n.

At
tr

ib
ut

e
D

om
ai

n
Affi

lia
tio

n

D
om

ai
n/

se
m

an
tic

ro
le

fo
rm

at
,s

uc
h

as
IP

-A
dd

re
ss

,U
RL

,H
tt

pC
od

e,
So

cia
lS

ec
ur

ity
N

um
be

r,
Ph

on
e

N
um

be
r,

E-
M

ai
l,

Cr
ed

it
Ca

rd
N

um
be

r,
Ge

nd
er

,
Zi

p,
US

St
at

es
,G

eo
gr

ap
hi

ca
ld

at
a.

Bi
na

ry
va

ria
bl

es
in

di
ca

tin
g

wh
et

he
rt

he
va

lu
e

v t
,i

be
lo

ng
s

to
on

e
of

th
e

m
en

tio
ne

d
do

m
ai

ns
.

At
tr

ib
ut

e
Va

lu
e

Fr
eq

ue
nc

ies

H
ist

og
ra

m
of

va
lu

es
,

H
ist

og
ra

m
of

nu
m

er
ica

lr
ep

re
se

nt
at

io
ns

,
H

ist
og

ra
m

of
pa

tt
er

ns
,

H
ist

og
ra

m
of

n-
gr

am
s,

Fr
eq

ue
nc

y
di

st
rib

ut
io

ns

A
bi

na
ry

va
ria

bl
e

in
di

ca
tin

g
wh

et
he

rt
he

va
lu

e
v t

,i
be

lo
ng

s
to

th
e

T
op

10
va

lu
es

of
th

e
co

lu
m

n.
A

bi
na

ry
va

ria
bl

e
in

di
ca

tin
g

wh
et

he
rt

he
va

lu
e

v t
,i

be
lo

ng
s

to
th

e
ta

il
of

th
e

di
st

rib
ut

io
n.

M
ul

ti-
at

tr
ib

ut
e

D
ep

en
de

nc
ies

FD
s,

CF
D

s,
Re

la
xe

d
FD

s
[4

3]

Fo
re

ac
h

av
ai

la
bl

e
in

te
gr

ity
co

ns
tr

ai
nt

s
φ

on
e

bi
na

ry
fe

at
ur

e
ve

ct
or

is
cr

ea
te

d
to

en
co

de
wh

et
he

rt
he

va
lu

e
is

in
φ

.

T
ab

le
5.

1:
M

et
ad

at
a-

ba
se

d
fe

at
ur

es
us

ed
fo

r
en

ha
nc

in
g

er
ro

r
de

te
ct

io
n

st
ra

te
gi

es
.

95

5. SUPERVISED ERROR DETECTION WITH METADATA

ADDRESS HOSP SALARIES FLIGHTS

columns 12 18 13 9
rows 94k 10k 75k 74k
ground truth 94k 10k 75k 74k
real errors 36.9 % - - 61.85 %
generated errors - 9.2 % 2.33 % -

Features number

SYSTEM 5 5 5 5
META 13 16 12 13

Table 5.2: Experimental datasets.

Another real-world dataset - SALARIES - contains the names, job titles, and salaries
of San Francisco city employees on an annual basis from 2011 to 20142. This dataset
comprises 75k tuples. The attributes of this dataset are mainly numerical values. To
produce the dirty version of the SALARIES dataset, we used the Bart system and
introduced 2.33% errors. We configured Bart to produce numerical outliers spread on
several numerical attributes, such as base pay, overtime pay, other pay, benefits, total pay,
total pay benefits.

Please note that another two datasets, namely ADDRESSES and FLIGHTS, which
are used in the current experiments have already been described in Chapter 3. To
guarantee reproducibility, our system includes openly available error detection frameworks
and operates on freely available datasets3, and our code-base is provided online4.

Evaluation Metrics. To evaluate the baselines and aggregation methods, we use
Precision (P), Recall (R) and their harmonic mean - F-measure (F1). To compute these
scores, we use the ground truth of each dataset to determine tp - the correctly selected
values as errors; fp - values that are falsely determined as errors and fn - erroneous values
that are not marked as such. The above evaluation scores are computed as follows:

P = tp

tp + fp
; R = tp

tp + fn
; F1 = 2PR

P + R

Implementation Details All experiments were performed on a single machine with 2.3
GHz Intel Core i7 processor and 16 GB RAM. The implementation language is Scala.

5.4.2 Performance of Error Detection Systems

We begin with the performance analysis of the error detection suite. The system contains
four major components for detecting outliers, duplicates, rule violations, and pattern

2https://www.kaggle.com/kaggle/sf-salaries
3http://bit.ly/datasets-for-aggregation
4http://bit.ly/systems-aggregation

96

5.4 Experiments

Data Error Detection Strategy Constituent System Note

Pattern violations detection WRANGLER
Rule violations detection NADEEF (FD)

Outliers detection dBOOST(Hist)
dBOOST(Gauss)

Categorical data
Numerical data

Duplicate Conflicts NADEEF (D)

Table 5.3: Representative for each error detection strategy. Source [232].

ADDRESS HOSP SALARIES FLIGHTS
Constituent System P R F-1 P R F-1 P R F-1 P R F-1

WRANGLER 0.4145 0.1398 0.2091 0.9448 0.2016 0.3322 0.0024 0.0199 0.0043 0.8894 0.3888 0.5411
NADEEF(D) 0.3154 0.1137 0.1672 0.0904 0.8748 0.1638 0.0989 8.0E-4 0.0016 0.6189 0.9916 0.7621
dBOOST(Hist) 0.2843 0.0087 0.017 0.2954 0.2985 0.2969 0.0326 0.1337 0.0524 0.4895 0.066 0.1163
dBOOST(Gauss) 0.3188 0.1778 0.2282 0.2169 0.0263 0.0469 0.1513 0.1073 0.1256 0.8141 0.0131 0.0258
NADEEF(FD) 0.5235 0.1776 0.2652 0.2622 0.9845 0.4141 0.1313 0.0036 0.007 0.6433 0.0719 0.1293

Table 5.4: Performance of each constituent system. The evaluation was performed on the
complete dataset. The best results are marked as bold. Source [232].

violations. For each error type, we identified one representative error detection system, as
shown in Table 5.3. The performance of each data cleaning system is provided in Table 5.4.
Note that due to differences between datasets, the results of each constituent data cleaning
system are different.

The pattern violation discovery is represented by the Wrangler system [127]. This
system covers a wide range of transformations and pattern violations in data. Provided
with pattern rules, Wrangler captures misfielded, mismatched, invalid or empty values.
This component achieves either the highest or the second-highest result on all three
datasets: ADDRESS, HOSP and FLIGHTS. Pattern violation includes missing values
and misspelled values. Since the major error types in the SALARIES dataset is mostly
numerical outliers, Wrangler was not able to capture any such values, except for negative
numbers. The outlier detection component includes the dBOOST [190] framework. For
our experiments, we use two algorithms of the outlier detection method: Gaussian-based -
for detecting outliers in numerical attributes and Histogram-based - to identify outliers in
categorical attributes. The SALARIES dataset contains mostly numerical outliers in the
six payment attributes. Therefore, dBOOST is the only system that is able to capture these
errors in SALARIES. Furthermore, dBOOST also identifies missing values as outliers. To
identify conflicting values in duplicates, we use the NADEEF (D) [62] system with its ability
to integrate data cleaning rules, which are based on matching and functional dependencies.
As the FLIGHTS dataset largely contains duplicates, NADEEF(D) demonstrated to
be the most effective system to capture these errors. The SALARIES dataset contains
almost unique data values for each person. Hence, the duplicate-based approach on this
dataset is the least effective. The rule violation discovery component is also depicted
by the Nadeef(FD) [62] system, which has comparably good performance in terms of

97

5. SUPERVISED ERROR DETECTION WITH METADATA

2 4 6 8 100
0.2
0.4
0.6
0.8

1

data size %

pr
ec

is
io

n

ADDRESS

2 4 6 8 100
0.2
0.4
0.6
0.8

1

data size %

HOSP

2 4 6 8 100

0.5

1

data size %

SALARIES

2 4 6 8 100
0.2
0.4
0.6
0.8

1

data size in %

FLIGHTS

bagging

stacking

Figure 5.6: Precision scores of the classification model performance for different sizes of
training data. Source [232].

F1-measure measure on the HOSP and ADDRESS datasets. However, on SALARIES,
Nadeef(FD) provides low F1-measure and low recall compared to other error detection
systems, as SALARIES-specific outliers cannot be captured by the data quality rules. For
all datasets, the set of rules is provided in the form of functional dependencies. To specify
such dependencies, we used the Metanome [182] framework.

Additionally, running each system in parallel generates a large number of detection
results - including many false positives. To overcome this problem, we suggest combining
error detection strategies that would cover all types of data errors.

5.4.3 Classification Algorithms Setup

Applying machine learning methods requires optimization such as labeling of the training
data, model selection, and using effective features. The most common problem in machine
learning-assisted applications is overfitting, meaning insufficient generalization of trained
classifiers, which will thus perform poor on unseen data. A group of learning models will
prevent overfitting, hence perform better than the best individual model [37], which shaped
our decision to apply ensemble learning.

An important initial question for nearly every supervised machine learning method
is the amount of labelled data for model learning. As this is an expensive process, it
requires either a human annotator or a clean version of data to create labels. [56, 198]. We
have estimated empirically that 1% of the dataset is sufficient to successfully train data
error classifiers. To estimate the sufficient amount of training data, we conducted several
experiments for training classifiers on training data with different sizes ranging from 10%
to 1%. Practically, for each dataset, we randomly sampled 1% of the results of all error
detection systems and used this subset E train to train our error classification models in all
experiments described below. Figure 5.6 shows that for all datasets, a small training data
size, such as 1% of the dataset, is sufficient to train the error classifier. The labeling of

98

5.4 Experiments

the training and testing subsets is performed automatically because we are provided the
ground truth for the complete dataset.

In the training phase of bagging, we train 2k Decision Tree models by using randomly
sampled training subsets with replacement B1, B2 . . . B2k from the initial E train. Please
note that in our experiments k = 6 is an empirically chosen number. The complementary
subset to each sample E train \ Bi is used to test the trained model. After training and
testing all 2k models, the system selects the best k models. Initially, we trained 12 Decision
Tree models by using 12 randomly sampled training subsets with replacement from the
initial E train. The complementary subset to each training set is applied to test the trained
model. After training and testing all models, the system selects 6 models with the top F1

scores. The Decision Tree model was trained with the following hyperparameters: the split
criteria is based on the calculation of the information gain according to the "Gini"-impurity
criteria. The default tree width is equal to the number of combining systems.

In the training phase of stacking, we generate a new dataset from the first-level classifiers.
The risk of overfitting becomes higher if the exact data that is used to train the base-learner
is also used to generate the new dataset for training the meta-learner [252]. In detail, we
use k-fold cross-validation. The original training dataset E train is randomly split into k
parts B1, B2 . . . Bk. We specify a Bi test set and B−i = E train \ Bi training sets for the i-th
fold. Given T learning algorithms, a base-learner h(−i) is obtained by invoking the learning
algorithm on B−i. For each i-th fold test set Bi, we denote b as the output of the learner
h(−i). At the end of the cross-validation procedure, the new dataset is produced from the
T individual learning algorithms as B′ = {(bi,1 . . . bi,n, li)}n

i=1 , on which the meta learning
algorithm will be applied, and the resulting learner h′ is a function of (b1, ..., bT) for the
label y. We provide the setup of each particular algorithm: Decision Tree, Neural Network,
Naive Bayes and Logistic Regression. For the Decision Tree model selection, we randomly
subsampled five training sets from the training data, we trained five models and selected
the most effective one as a base-model. For the Neural Network, we used the multilayer
perceptron classifier based on the feedforward Neural Network. For instance, we used a
single-hidden-layer perceptron network with the sigmoid (logistic) activation function. The
input layer size is set to the sum the number of aggregated systems and the number of
the available metadata features. The output layer size is two, denoting "error" and "clean"
classes. The initial weights are randomly generated by using the seed value. For the Naive
Bayes classifier, we used the Bernoulli model, which reflects the presence or absence of
the error identification by the existing algorithms. The final meta-model selection for the
Logistic Regression classifier is performed by greedy search on the 32 threshold parameters
ranging from 0.01 to 0.6: the model with the largest F1 score is selected. For instance, the
system selects the best threshold value for the Logistic Regression function by assessing the

99

5. SUPERVISED ERROR DETECTION WITH METADATA

Features ADDRESS HOSP SALARIES FLIGHTS

missingValue 0.1329 0.0015 0.0049 0.0672
isFrequentValue 0.0027 0.0168 0.0052 0.0333
isString 0.021 0.0131 0.011 0.2617
isDateTime 0.0439 - 0.0019 0.2617
isZipCode 8.0E-4 0.0043 - -
isBoolean - 0.006 - -
isAddress 0.0015 - - -
isDecimal - - 0.0178 -
isInteger - - 0.0019 -
isPhoneNumber - 0.0208 - -
isSSN 0.0033 - - -

Table 5.5: The features importance. Information gain measures for adding various metadata
features on all datasets. The dashes ’-’ denote that the particular feature is not available in
the dataset. Source [232].

model performance for each possible value in a greed. The above-described classification
algorithm settings are the same for all datasets used in the experiments.

To support our claim that metadata features encode important signals in error detection
(see Chapter 4), we computed the information gain for every applicable metadata feature
for all datasets. Information gain measures in bits how much information each particular
metadata column provides about the error class. Basically, this measure interprets the
importance of the features. Unrelated features should get zero information gain. Table 5.5
shows that metadata features provide relevant information about errors in data.

5.4.4 Baselines

To evaluate our proposed approach to combine data cleaning systems, we compare our
classification strategy to several baselines from the related work: UnionAll [2], Min-k [2],
and Majority wins [252]. UnionAll takes the union of the errors yielded by all error
detection systems. Min-K is a voting strategy, which accounts an error when at least K

systems detected a cell as an error. Since UnionAll and Min-1 are the same baselines, we
restrict K as follows: 2 ≤ K ≤ |T |, where |T | is the number of the constituent systems.
Majority Wins combines error detection systems by deciding what majority of the systems
computed result for a cell vt,i. The value of the system combination on (t, i)-th cell by
using this strategy is estimated as follows:

mt,i =

⎧⎪⎪⎨
⎪⎪⎩

1 if
|T |∑
j=1

e
(j)
t,i ≥ |T |

2

0 otherwise

To evaluate our Best-K system combination approach, we compare it against the Precision
Based Ordering (PBO) method [2], which is an iterative approach to estimate the

100

5.4 Experiments

ADDRESS HOSP SALARIES FLIGHTS
Baselines P R F-1 P R F-1 P R F-1 P R F-1

Majority Wins 0.5878 0.0157 0.0306 0.6554 0.3009 0.4124 0.8244 0.0167 0.0327 0.8166 0.0881 0.159
UnionAll 0.3698 0.4739 0.4154 0.0983 0.9994 0.179 0.0111 0.1399 0.0206 0.6187 0.9949 0.763
Min-2 0.3888 0.1248 0.1889 0.2271 0.8663 0.3599 0.1577 0.108 0.1282 0.763 0.4446 0.5618
Min-3 0.5981 0.0169 0.0328 0.6617 0.2866 0.4 0.7674 0.0148 0.0291 0.823 0.0913 0.1644
Min-4 0.9773 0.0011 0.0022 0.9279 0.1811 0.303 0.0 0.0 0.0 0.9759 0.0077 0.0154
Min-5 0.0 0.0 0.0 0.6458 0.0198 0.0385 0.0 0.0 0.0 0.0 0.0 0.0

Aggregation Strategy
BAGGING 0.5599 0.1295 0.2103 0.9462 0.2023 0.3334 1.0 0.0161 0.0317 0.6434 0.9951 0.7815
STACKING 0.3691 1.0 0.5392 0.2655 0.9908 0.4188 0.1551 0.1081 0.1274 0.6439 0.99 0.7802

BAGGING+META 0.5615 0.886 0.6874 0.7571 0.3886 0.5136 1.0 0.0161 0.0317 0.9176 0.9769 0.9463
STACKING + META 0.5602 0.9127 0.6943 0.4637 0.6846 0.5529 0.1889 0.1114 0.1401 0.917 0.977 0.9463

Table 5.6: Performance of baselines compared to the results of error detection algorithms
aggregation strategies. Best results are provided in bold. Source [232].

performance of error detection systems by assessing their performance on samples [2].
To execute this baseline, we generated a sample by randomly selecting 1% of systems
output. The algorithm greedily picks the system with the highest precision after each
iteration by ignoring other systems whose precision is smaller than a provided threshold
value.

5.4.5 Systems Aggregation Results

In the first series of experiments, we consider the complete set of error detection systems.
The corresponding baselines for this aggregation strategy are UnionAll, Min-K, and
Majority Wins, as described in Section 5.4.4.

Bagging. By comparing bagging to the baselines, we recognize an improvement in F1

only for the FLIGHTS dataset. We explain this improvement through the improved recall.
While analyzing the SALARIES dataset, we see that the Decision Tree classifiers improve
the precision, by decreasing false positives. The reason can be found in the original results
of the error detection systems, which were not able to capture outliers and therefore these
data points cannot act as positive examples during the training classifiers. Table 5.6 shows
the bagging results in row BAGGING.

Stacking. By applying this ensemble method, we observe an improvement of error
classification over the bagging method on SALARIES, HOSP and ADDRESS datasets.
Generally, the stacking method improves the recall measures for all datasets by increasing
error coverage, which is expressed by the true positives score. Table 5.6 shows the results
of the stacking approach in row STACKING.

Bagging with metadata-based features. Using metadata enhanced features results
in a considerable improvement of the error classification. One exception is the SALARIES

101

5. SUPERVISED ERROR DETECTION WITH METADATA

dataset. To understand this behavior, we analyzed the single column metadata on the
payment attributes, which comprises about 6 attributes: base pay, overtime pay, other
pay, benefits, total pay, total pay benefits. We observed that the percentage of distinct
values metadatum for the payment attributes range from 44% to 100% per attribute. The
percentage of nulls for the same attributes is almost zero. This denotes that the metadata
feature matrix is very sparse, and there is very little correlation between core and metadata
features. In contrast to the SALARIES dataset, executing bagging showed an improved
recall on the ADDRESS and HOSP datasets. The precision increases in all three datasets:
ADDRESS, HOSP and FLIGHTS, which influenced the overall improvement on the
F1 score. The dataset with the most missing values is FLIGHTS. Adding the metadata
feature vector increases the F1 score of the bagging strategy by about 18%, which is
achieved by reducing false positives. Table 5.6 shows the result of extending the feature
vector by metadata in row BAGGING + META.

Stacking with metadata-based features. As demonstrated in Table 5.6, row
STACKING + META, adding the metadata-based feature vector achieves the most
significant improvement in the F1 measures, compared to all previous approaches and each
individual system result. Importantly, the stacking approach on the SALARIES dataset
achieves 14% F1 score, which is the best result among all single systems, baselines and the
bagging method. The reason for this increase is that the meta-model Logistic Regression
balances between the precision score 98% from two models, Decision Tree and Neural
Network, and the recall score 9, 3% from the third model Naive Bayes. In conclusion, using
the stacking ensemble learning algorithm on the metadata-based features matrix achieves
better results compared to the bagging approach with the same features. Basically, ensemble
learning approaches perform clearly better than the baselines in Table 5.6 and every single
system in Table 5.4. In particular, Stacking with Metadata delivers the best result on
all datasets compared to the best scores from the baselines. The F1-score increased as
follows: 28% on ADDRESS, 14% on HOSP, 1% on SALARIES and 19% on FLIGHTS.
Comparison with the single approaches provided in Table 5.4 showed an increase in error
detecting, such as 43% on ADDRESS, 14% on HOSP, 2% on SALARIES and 18%
on FLIGHTS. Although the F1 scores might still be low, this strongly depends on the
performance of the error detection constituent systems. Our approach is still able to
provide significantly higher quality in the system aggregation process.

5.4.6 Aggregating the Most Effective Error Detection Systems

Influenced by the fact that many data cleaning systems subsume the error detection results
of others (see Figure 5.1) and that they also produce false positives, we apply our Best-K
strategy to select the most effective combination of the error detection systems. In the

102

5.4 Experiments

K ADDRESS HOSP SALARIES FLIGHTS

2 dBOOST(Gauss)
NADEEF(FD)

WRANGLER
NADEEF(D)

dBOOST(Gauss)
dBOOST(Hist)

WRANGLER
dBOOST(Gauss)

3
WRANGLER
BOOST(Gauss)
NADEEF(FD)

WRANGLER
NADEEF(FD)
NADEEF(D)

dBOOST (Gauss)
dBOOST(Hist)
NADEEF(FD)

WRANGLER
dBOOST(Gauss)
NADEEF(FD)

4

WRANGLER
dBOOST(Gauss)
NADEEF(FD)
NADEEF (D)

WRANGLER
dBOOST(Hist)
NADEEF(FD)
NADEEF(D)

WRANGLER
dBOOST(Gauss)
dBOOST(Hist)
NADEEF(FD)

WRANGLER
dBOOST(Gauss)
NADEEF(FD)
NADEEF(D)

Table 5.7: Error detection systems selection on all datasets. The parameter K denotes the
cluster number, which is the number of selected error detection systems. Source [232].

ADDRESS HOSP SALARIES FLIGHTS
P R F-1 P R F-1 P R F-1 P R F-1

Baseline
PBO δ=0.1 0.3626 0.4582 0.4049 0.2548 0.9866 0.405 0.1479 0.1093 0.1257 0.6124 0.9945 0.7581
PBO δ=0.3 0.463 0.2657 0.3376 0.963 0.1745 0.2955 0.0 0.0 0.0 0.6124 0.9945 0.7581
PBO δ=0.5 0.5177 0.1696 0.2555 0.963 0.1745 0.2955 0.0 0.0 0.0 0.6125 0.9942 0.7581

K Aggregation Strategy

2

BAGGING 0.523 0.1773 0.2648 0.9462 0.2023 0.3334 0.0 0.0 0.0 0.6186 1.0 0.7643
BAGGING + META 0.5615 0.8857 0.6873 0.7938 0.2693 0.4022 0.0 0.0 0.0 0.9157 0.977 0.9454
STACKING 0.3691 1.0 0.5392 0.9436 0.1982 0.3276 0.1658 0.1076 0.1305 0.6191 1.0 0.7647
STACKING + META 0.5615 0.8857 0.6873 0.7944 0.2702 0.4033 0.1894 0.1071 0.1368 0.9157 0.977 0.9454

3

BAGGING 0.5479 0.1403 0.2234 0.9462 0.2023 0.3334 0.0 0.0 0.0 0.6186 1.0 0.7643
BAGGING + META 0.5606 0.8794 0.6847 1.0 0.2017 0.3357 0.0 0.0 0.0 0.9157 0.977 0.9454
STACKING 0.3695 1.0 0.5396 0.2623 0.9932 0.415 0.1518 0.1103 0.1278 0.6192 1.0 0.7648
STACKING + META 0.5602 0.9103 0.6936 0.8743 0.2695 0.412 0.1875 0.1084 0.1373 0.9157 0.977 0.9454

4

BAGGING 0.5589 0.1279 0.2082 0.7708 0.301 0.4329 1.0 0.0161 0.0317 0.6193 0.9948 0.7634
BAGGING + META 0.5606 0.8794 0.6847 0.7951 0.354 0.4899 1.0 0.0161 0.0317 0.9157 0.977 0.9454
STACKING 0.3691 1.0 0.5392 0.7767 0.3022 0.4351 0.1538 0.1083 0.1271 0.619 1.0 0.7647
STACKING + META 0.5606 0.9108 0.694 0.7951 0.354 0.4899 0.1881 0.1088 0.1379 0.9157 0.977 0.9454

Table 5.8: The evaluation results of system aggregation strategies on the sub-set of the most
effective systems. K denotes the number of the selected error detection systems, and the exact
systems selection is shown in Table 5.7. The baseline is the Precision Based Ordering approach.
The sample size to determine the sequence of error detection systems is the same as above: 1%
of the results of all error detection systems. Source [232].

second series of experiments, we show that: there is a sub-selection of constituents which is
similarly effective as the complete set of error detection approaches. The corresponding
baseline is the Precision Based Ordering (PBO), which was developed to select the most
effective combination of error detection methods. The PBO results are shown in Table 5.8.

Selecting the most effective systems. We ran our experiments for different group
sizes K ranging from 2 to N − 1, where N is the total number of the participating error
detection systems. The details of the selection of systems for each K is provided in Table 5.7.
There is a clear selection preference for the outliers detection system dBOOST for the
SALARIES dataset. For the setting K = 2, the K-means clustering algorithm created

103

5. SUPERVISED ERROR DETECTION WITH METADATA

two clusters: (1) NADEEF(D), dBOOST(Gauss), NADEEF(FD) and (2) WRANGLER
+ dBOOST(Hist). The precision values from Table 5.4 motivate the preference for the
two dBOOST approaches. Setting K to 4 yields the following systems distribution: 1st
cluster: dBOOST(Hist); 2nd cluster: NADEEF(D), NADEEF(FD); 3rd cluster: systems
per 3 cluster: dBOOST(Gauss); 4th cluster: WRANGLER. Hence, we observe that
NADEEF(FD) overlaps the NADEEF(D) system results, which supports the fact that the
SALARIES dataset does not reveal duplicates, and therefore NADEEF(D) is the least
effective system.

The most effective systems result combination. Given the selected sub-set of error
detection systems as described above, we now apply our classification approach to combine
results from these systems. This line of experiments is also proving the robustness of
the ensemble learning approaches. The stacking approach appears to be robust for the
settings K = 2 and K = 3 on the SALARIES dataset, whereas the bagging method was
not able to train any effective classifier for K = 2 and K = 3. We explain such behaviour
by the small error rate in this dataset - 2.33% - and the characteristics of the data errors.
The SALARIES dataset mainly contains non-detectable numerical outliers on basepay,
overtime pay, other pay, benefits, total pay, total pay benefits columns. For these reasons,
the training data for K = 2 and K = 3 was highly sparse and not sufficient to build an
error classification model.

We noticed that for the FLIGHTS and ADDRESS datasets the combination of two,
three, or four error detection systems remains the same in terms of F1 measure. This leads
to the conclusion that adding more error detection systems will have minimal contribution
to the improvement of error detection.

Extending the Best-K system combination with metadata-based features. In
addition to the previous experiments on error classification, we augmented our core feature
vectors of the Best-K systems with the metadata-based features. The results are shown in
Table 5.8. These results support the experimental findings in Section 5.4.5 and state that
augmenting feature vectors with metadata information will improve the overall performance
of error classification. Therefore, by comparison to the combination methods without
the metadata-based features, we are able to increase the F1 by 16% on the ADDRESS
dataset, by 5% on the HOSP dataset, by 1% on the SALARIES, and by 18% on the
FLIGHTS dataset. Furthermore, we achieved significant improvement in error detection
compared to the baseline PBO F1-scores, namely 29% on ADDRESS, 8% on HOSP, 1%
on SALARIES, and 19% on FLIGHTS.

104

5.5 Summary

5.5 Summary

As the experiments in Section 5.4 showed, using ensemble learning-based methods for
aggregating data cleaning systems is an effective technique to improve overall error detection.
Provided with several overlapping systems, we suggest leveraging the clustering-based
method to specify the most useful combination of error detection systems. This will
also reduce the complexity of the overall combination method, as fewer systems need to
be integrated. Importantly, adding a metadata-based feature vector to the aggregation
methods will provide significant improvement in error detection compared to the single
error detection methods, since in this way the metadata can be incorporated into the
aggregation process. The experimental results in this chapter support our findings from
the previous Chapter 4 where we established the principal connection between metadata
and data quality issues.

Basically, when labeling erroneous data is impossible, the only solution to aggregate error
detection algorithms is to use unsupervised combination strategies, such as Voting [252],
Min-K [2], or methods based on spectral analysis [63], as shown in Section 4.3.4. Generally,
by applying ensemble learning, our methods capture considerably more errors than each
error detection system individually. Following the augmentation of the feature vector
with metadata-based features, the aggregation approach produces better error detection,
as metadata reflects the characteristics of the dataset. Selecting the most effective error
detection systems can produce similar performance as the complete set of all data cleaning
systems. We showed that our method of combining error-detecting strategies achieves a
higher F1 score than single error detection approaches.

Modelling instance-based metadata features is a straightforward yet effective and intu-
itive process. However, incorporating schema-based metadata into the error classification
feature vector remains challenging. Inter-column dependencies, such as functional or
matching dependencies, are challenging to translate into a feature matrix M. One way
to encode functional dependencies is to use the notion of a partition of the functional
dependency φ : X → A. Given that a dependency φ holds, then all dataset tuples that
agree on X should also agree on A [82]. Therefore, assessing whether φ holds or not is
performed by testing whether the dataset values of the attribute A agree on the right-hand
side whenever they agree on the left-hand side X. The above assessment can be done by
partitioning dataset tuples into disjoint sets (also called equivalence classes), such that
each set has a unique value for the attribute set X [121].

The concept of partitions is similar to the concept of clustering, where each cluster
represents one partition with respect to φ. Hence, functional dependencies might be
featurized by using the cluster membership featurization technique [251]. However, we
could run into another problem with the number of features. By encoding the functional
dependency with the cluster membership technique, we might blow out the feature space.

105

5. SUPERVISED ERROR DETECTION WITH METADATA

For example, given that the LHS of φ is the primary key and its uniqueness ratio is one,
then the number of acquired features is equal to N, where N=|D|, the number of rows
in the dataset D. As a result, such feature space explosion might negatively impact the
training process and the model’s performance [251].

In the following chapter, we address this challenge by using a different approach. We
apply statistical relational learning to precise modelling integrity constraints.

106

6
Probabilistic Data Curation Through

Modelling Multi-column Metadata
with Markov Logic

In this dissertation, we distinguish between five broad types of data cleaning techniques:
rule-based, statistical, hybrid, probabilistic & machine learning-based, and interactive
approaches. As introduced in Section 3.1, the ubiquitous rule-based data cleaning
systems [80, 83, 87, 62, 91, 54] leverage miscellaneous integrity constraints to enable error
detection and correction [223, 2]. This means that these systems require the specification
of denial constraints, functional dependencies, and matching dependencies to specify data
quality rules [54, 91, 62, 132, 202]. However, there are several limitations of rule-based data
cleaning and to outline these limitations, we introduce an illustrative data cleaning scenario.
Please note that in Section 2.2.2, we provided an overview of dependencies profiling, which
is a foundation for our approach, as presented this chapter.

id firstname lastname street city zipcode phone

c1 Ron Howard 1 Sun Dr. Los Angeles 90001 12345
c2 Max Miller 12 Hay St. Napa 94558 11234

Table 6.1: customer table (master data)

Example 6.0.1 We first consider two relations: the customer relation (Table 6.1),
records the address and contact details of each customer. The transaction table
(Table 6.2), lists each purchased item, together with the personal details entered by the
customer during the purchase. The example data in the transaction table reveals at least
three quality issues:

107

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

id item price type firstname lastname street city zipcode phone

t1 iPhone6 500 phone R. Howard 1 Sun Dr. L.A. null null
t2 Galaxy5 600 phone null Miller 12 Hay St. null 94558 11234
t3 Nexus7 359 tablet Howard Ron null null 90001 12345

Table 6.2: transaction table (Erroneous values are marked in bold.)

1. Missing values, indicated by null values;

2. Wrong word order, e.g., the customer “Ron Howard” is involved in transaction t3,
but his name is falsely recorded as “Howard Ron”; and

3. Ambiguous values, which are values that represent the same concept, e.g., the city
of “Los Angeles” is sometimes entered into the table as “L.A.” and the first name
“Ron” is once abbreviated as “R.”. �

Hence, the data values presented in the transaction Table 6.2 are corrupted. To
correct these issues, we need to identify the corrupted entries for each transaction. Then we
need to use master data from the customer table to automatically clean the transaction
data by applying data cleaning rules (see Section 2.1.3). Defining automatic cleaning
rules to accomplish this task is not trivial. For instance, a rule, which states that the city
attribute values "L.A." and "Los Angeles" always denote the same, intuitively makes sense.
However, for the firstname values "R." and "Ron", we would rather need a soft rule that
indicates that both strings possibly refer to the same entity.

To capture errors in attributes of the transaction relation, we might use functional
dependencies [7]. The following data cleaning rule, which is based on a functional
dependency, declares that the two fields city and phone in the transaction table together
uniquely determine the two fields street and zipcode:

fd : transaction([city, phone] → [street, zipcode])

Although two instances of the customer "Ron Howard" are recorded in Table 6.2, one is
missing the value of the attribute phone. In this case, the rule only applies when combined
with additional data cleaning rules that impute missing values.

The next rule is specified by using conditional functional dependency (CFD) [82]:

cfd : transaction([zipcode] → [city], T1 = (90001 || Los Angeles))

The above rule states that every tuple in which the value for zipcode equals 90001 must
have its city attribute set to "Los Angeles". In our example, in Table 6.2, this rule imputes
the null value in the transaction tuple t3. Provided the rule, which states that the city

108

attribute values "L.A." and "Los Angeles" are always the same, it would correct the city
attribute to "Los Angeles" in the tuple t1.

We might also use master data from the customer relation to correct "ambiguous
values". In the context of data cleaning, matching dependencies have been exploited to
detect tuples referring to the same real-world entities [81]. To identify matching entities,
for the firstname attribute in transaction t1 in Table 6.2, we could define a rule indicating
that the values "R." and "Ron" refer to the same name, but cannot always be certain
whether this is the case. To match transaction tuple t1 to the customer tuple c1, the above
rule might be formulated as the following matching dependency (MD) [82, 81]:

md : transaction[lastname, city, street] = customer[lastname, city, street]

∧transaction[firstname] ≈ customer[firstname]

→ transaction[firstname] � customer[firstname]

This rule shows how the notion of similarity may be included in matching rules, but
only within first-order logic, i.e., the similarity condition is either true or false. In reality,
we might need to determine a more fine-grained similarity, i.e., some types of similarity
that we deem to be more probable ("L.A." and "Los Angeles"), and others that are less
probable ("R." and "Ron"). Moreover, we may have different levels of confidence regarding
the functional dependencies or matching dependencies that we define.

Triggered by the examples above, the research challenges, which are addressed in this
chapter, are the following:

Interleaved Rules. Each data quality issue is addressed by at least one data quality rule.
However, these data quality rules typically interact with each other because the data
quality issues are interacting [82, 87]. During automatic data cleaning, the optimal
execution order of data cleaning rules is difficult to achieve [62, 21]. This problem
contradicts the automation principle of data curation systems [222]. Hence, we are
confronted with the challenge of the optimal order execution of data cleaning rules
that maximizes error detection and error correction.

Usability and Domain Knowledge Integration. Previous research in data quality
management resulted in several data cleaning approaches, algorithms, and systems [62,
190, 91, 245, 54, 131]. These approaches typically address the detection and repair
of specific error types. However, we are facing the challenges of data cleaning system
revealing that (1) data cleaning systems should maximally cover the spectrum of
data quality issues, and (2) these systems should cover the maximum spectrum of
customized rules without having to specify user-defined functions [62].

109

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Probabilistic Data Cleaning Most data cleaning systems produce a single clean
database instance by following the minimality repair principle [52, 136, 156] (see
Section 2.1.3). However, the principle of minimality does not consider the likelihood
of the repair [68]. Therefore, the challenge is how to define the most probable data
repair [27, 26].

To address these challenges, we suggest to model data quality rules jointly, rather than
as separate tasks. Additionally, data quality rules might need to be specified approximately,
meaning be declared as "soft" or "hard" rules. We present our approach to data cleaning
based on the Statistical Relational Learning (SRL) formalism called Markov logic [73] and
probabilistic inference [204]. In this chapter, we propose a method that (1) utilizes the
probabilistic joint inference over interleaved data cleaning rules to improve data quality;
(2) remove the need to specify the order of rule execution; and (3) expresses data quality
rules as a first-order logic formula to directly translate into the predictive model in our
SRL framework.

Please note that the preliminary material, which is relevant for this chapter is provided
in Sections 2.2 and 2.3. This chapter is organized as follows:

1. In Section 6.1, we describe the specification of the data cleaning rules based on
integrity constraints.

2. In Section 6.2, we propose a data cleaning approach based on Markov Logic formalism.

3. In Section 6.3, we define data cleaning as the probabilistic inference problem.

4. In Section 6.4, we extend our data cleaning approach to non-relational data.

5. The experimental results are provided in Section 6.5.

6. Finally, we summarize our SRL-based data cleaning approach in Section 6.6.

6.1 Integrity Constraints as Data Quality Rules

One of the most essential questions in data cleaning is how to specify that the data is clean.
Measuring data quality requires the specification of data quality constraints [34]. In this
section, we make a connection between data quality rules and integrity constraints.

As already discussed in Chapter 2, integrity constraints define the semantics of data
in a declarative way. The violation of data quality dimensions is often expressed in the
violation of the integrity constraints [80]. Furthermore, all five data quality dimensions
(see Chapter 2.1.1) can be defined in terms of data dependencies [82]. Therefore, data
quality rules can be naturally declared on such integrity constraints that have been
discovered from the data [182, 23]. Practically, canonical integrity constraints, such as

110

6.2 Modelling Data Quality Rules as Markov Logic Programs

Data Quality
Dimension

Integrity Constraint
(captures the DQ dimension violation)

Relaxation Criteria
or Operator

Accuracy

CFD [83] Conditional Functional Dependency
eCFD [34] Extended CFD
CFDp [47] CFD with built-in predicates
MFD [139] Metric Functional Dependency

Pattern tableau
Constraint (logical) operator

Consistency MFD [139] Metric Functional Dependency
CIND [47] Conditional Inclusion Dependency

Pattern tableau
Constraint (logical) operator

Uniqueness
MD [81] Matching Dependency
CMD [217] Conditional Matching Dependency
DD [216] Differential Dependency

Matching operator
Similarity function
Closeness function
Difference function

Completeness CFD [83] Conditional Functional Dependency
CIND [47] Conditional Inclusion Dependency Pattern tableau

Timelines CC [82] Currency constraint Order operator

Table 6.3: Mapping five central data quality dimensions to integrity constraints. The
methodology for this mapping is the following: if the integrity constraint captures the violation
of the respective data quality dimension, then the connection between the dimension and the
integrity constraint is established.

functional dependencies, are insufficient to improve data quality [83, 43] because they
target improving the quality of the database schema [7] and are not able to capture data
quality requirements for particular data values [24]. For this reason, to improve data
quality, we consider a broad spectrum of dependencies [43], which declaratively address
the corresponding data quality dimension. Table 6.3 summarizes canonical and relaxed
integrity constraints, which are relevant for data quality management, as outlined by
Caruccio L. et al. [43]. Moreover, this table shows the integrity constraints to capture
the violation of the respective data quality dimension, such as accuracy, consistency,
uniqueness, completeness, or timelines [82]. For instance, to capture the violation of the
accuracy dimension, we identified the following group of integrity constraints: CFD, eCFD,
CFDp, and MFD [43]. These integrity constraints target data errors, such as incorrect data,
misspellings, misfielded values, missing data, different aggregation level, or FD violation.
For a detailed overview of the mapping between the data quality dimensions and data
errors that violate those dimensions, please refer to Table 2.1.

6.2 Modelling Data Quality Rules as Markov Logic Pro-
grams

After specifying dependency constraints for data quality rules, we deal with the next
question regarding the effective use of data quality rules to improve the data quality along

111

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

the five central data quality dimensions. In the following, we explain how to convert them
into a logical framework [79], to address challenges related to the rule-based data cleaning
approaches.

To address the challenges of this chapter, such as interleaved rules formulation,
automation of rules execution, domain knowledge integration, and probabilistic data cleaning,
we need a formalism, which unites declarativity and uncertainty for data cleaning rules
formulation, and probabilistic inference for deriving probable repair.

One of the possible solutions to these challenges is to apply Statistical Relational
Learning (SRL) to solve the above-mentioned challenges. SRL combines (1) statistical
learning, which addresses uncertainty in data by applying statistical methods, and (2)
relational learning, which describes complex relational structures between data attributes in
a general manner (e.g by using first-order logic) [93]. Currently, the research community has
proposed different SRL models, such as Markov Logic [73], Relational Markov Models [11],
Inductive Logic Programming [130], and Relational Dependency Networks [176]. Please
refer to Section 2.3 for the introduction and preliminaries of SRL.

We propose to use Markov logic [73] as our representation language for data
cleaning [234]. We argue that Markov logic is a natural fit for modelling interacting
data quality rules in a flexible and extensible way. The Markov logic formalism satisfies a
number of prerequisites, which address the data cleaning challenges as mentioned at the
beginning of this chapter.

1. Markov logic incorporates both first-order logic and probabilistic graphical models to
perform the probabilistic inference [93], which addresses the interleaved rules and
probabilistic data cleaning challenges.

2. Markov logic enables a clear and straightforward representation of the SRL problem
and facilitates the use of domain knowledge [93], which addresses the usability and
domain knowledge integration problem.

The core of our approach is compiling data quality rules into the Markov logic
formalism [73, 93], which interprets arbitrary first-order logic formulae in a probabilistic
way. The high-level overview of our approach is shown in Figure 6.1. Our method includes
three main components:

1. An Evidence and Query component that includes a number of data sources, including
relational and semi-structured data, as well as auxiliary information, such as similarity
lexica, gazetteers or dictionaries. The Query component consists of queries about
potential errors and probable correction of corrupted data.

2. A Model and Inference component includes a Model that expresses general knowledge
about correct data, which is based on the data quality constraints and domain-specific

112

6.2 Modelling Data Quality Rules as Markov Logic Programs

Probabilistic
Data Cleaning
probability: result

e.g. 0.8 t1 matches t2

Evidence
• data
• similarity values

Query
• potential errors
• potential duplicates
• potential correction

Model
(expressing general

knowledge
about correct data)

• integrity constraints
• domain knowledge
• expert-specific knowledge

Inference
(uses the Model to answer

Queries given the Evidence)

Figure 6.1: Overview of the proposed probabilistic data cleaning approach.

knowledge to address different data quality issues. The Inference component uses the
previously specified Model and runs the inference algorithm. This component answers
queries about potential errors and probable repairs of dirty data given the evidence
from the Evidence and Query component. The Model and Inference component is
based on probabilistic inference performed by the Markov logic framework.

3. A Probabilistic Data Cleaning component is an error detection and repair prediction
component that is based on probabilistic inference results performed by the Model
and Inference component.

Generally, we regard the "dirty" dataset as evidence and as a "dirty" version of a hidden
clean dataset [125, 68]. We also consider multiple signals, such as external master data, as
evidence.

In this chapter, we show that data quality rules, which are expressed as integrity
constraints, can be translated into first-order logic sentences [79]. After that, we compile
acquired data cleaning rules and domain-specific information into the Markov logic program.
We reason about the irregularities in the data and possible repair by running a probabilistic
inference on the created model given the evidence. In the following, we describe each
component of our approach in more detail.

6.2.1 Mapping Data Cleaning Concepts to Markov Logic Predicates

As already mentioned in Section 2.3.1, the Markov logic interface consists of first-order
logic sentences. To formulate data cleaning routine as a Markov logic program, we need

113

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

ℛ(x1, x2, …, xn)

attr−X1(id, v1) attr−X2(id, v2) attr−Xn(id, vn)…

tid[v1, v2, …, vn]

Relation
Tuple

Observed
predicates

Figure 6.2: Specification of the observed predicates. A relation tuple is translated into
n atomic sentences.

to compile data cleaning rules as the Markov logic formulae. To create these formulae,
we would need to define predicates initially. These predicates then construct the above
first-order logic sentences. In addition to the Markov logic preliminaries that have been
explained in Section 2.3.1, we define a concrete vocabulary for the compilation of data
quality rules into the Markov logic formalism.

The basis of the Markov logic programs is the predicate calculus [92], which is later used
to build the data quality rules. We distinguish between hidden and observed predicates
to designate the concepts used in data quality rules. First, we define our dataset as
observed predicates and then we propose the formulation of data quality concepts as hidden
predicates.

A ground predicate whose state is known (i.e., true or false), is called an observed
predicate. To express a tuple in the relation R(x1, x2, . . . , xn) as observed predicates, we
define n atomic sentences, such as attr-X1(id, v1), . . . , attr-Xn(id, vn), where attr-Xi(id, vi)
denotes the attributes value vi of the i-th column in the id-th row in relation R, as shown
in Figure 6.2. Generally, all predicates that are specified for the relation tuples and all
data defined in the Evidence component of our approach are observed.

Hidden predicates are ground predicates with unknown states. Besides the representation
of the tuple values, we formulate concepts, such as similarity, equality, or matching, as
hidden predicates to reason about them during the inference phase. These concepts are an
integral part of canonical and approximate integrity constraints, as highlighted in Table 6.3.
The set of Markov logic predicates as a representation of data cleaning concepts, relaxation
criteria and operators is summarized in Table 6.4. Importantly, all these predicates are
defined in the Query component of our approach. In the following, we list the above
concepts and the corresponding Markov logic predicates:

• Similarity. The similar-X(idi, idj) predicate denotes the similarity of two values of
the idi-th and idj-th tuples of the attribute X. The similarity is calculated according
to some particular similarity metric, such as cosine, Jaccard, or euclidean [78].
The similarity predicate represents a similarity relation and therefore is symmetric,
reflexive and domain-specific.

114

6.2 Modelling Data Quality Rules as Markov Logic Programs

Concept Operator Markov Logic Predicate
Similarity ti[y] ≈ tj [y] similar-Y(idi, idj)
Equality ti[y] = tj [y] equal-Y(idi, idj)
Non-equality vi < vj e.g. lessThan(vi, vj)
Matching R1[y] � R2[y] R1/match-Y/R2(idi, idj)
Pattern tableau ti[X] = ”100” tableau-X(i, 100)
Currency [82] ti ≺X tj moreCurrent-X(idi, idj)

Table 6.4: Mapping Markov logic predicates to data quality concepts Hidden
predicates summary.

• Equality. The equal-X(idi, idj) predicate denotes that, given two tuples with ids
idi and idj , the values of the attribute X are equal.

• Non-equality. Data cleaning rules might use a set of non-equality operators.
This set includes {<, ≤, >, ≥} and the corresponding predicates are the following:
lessThan(vi, vj), lessThanEq(vi, vj), greaterThan(vi, vj), greaterThanEq(vi, vj).

• Matching. The match-X(idi, idj) predicate is defined on a single relation R and
determines two tuples, idi and idj of the attribute X, which are identified to
match. If the matching operator is specified on two relations, such as master
data relation M and the dataset R, then the Markov logic predicate is designated as
M/match-Y/R(idi, idj). Please note that the matching operator is used in matching
dependencies. The respective definitions can be found in Section 2.2.2.

• Pattern tableau. The tableau-X(id, v) predicate encodes the constraint value v on
the attribute X. As shown in Table 6.4, the constraint on the attribute X, such as
t1[X] = ”100”, is translated into the following predicate tableau-X(1, 100). Please
note that the concept of pattern tableau is similar to the equality concept. The
distinction is that the right-hand side (RHS) of the pattern tableau operator is a
constant value.

• Order operator. This operator is used for assessing the currency quality dimension
and specifying the currency order. The predicate moreCurrent-X(idi, idj) formulates
that for the given attribute X, the value of the idj-th tuple is more current than the
value of the idi-th tuple.

• Custom predicate. This predicate encodes auxiliary constraints or domain
knowledge that should be incorporated into the Markov logic program for data
cleaning. For example, the synonyms(vi, vj) predicate tests whether two values vi

and vj are synonyms.

115

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

To conclude, we now have a predicate calculus to express data cleaning rules. These
predicates will be used in the Markov logic programs for data quality, as provided in the
next section.

6.2.2 Data Quality Constraints as Markov Logic Program

In this section, we formulate the data cleaning problem as an SRL problem and provide
an algorithm to translate data quality rules into the Markov logic by using the predicate
calculus for data cleaning. To detect inconsistencies in data, we usually define data cleaning
rules in the form of integrity constraints, such as functional, matching, and inclusion
dependencies, as specified in Table 6.3. To define data cleaning workflow as Markov logic
program, we first examine how to translate each individual integrity constraint, such as
CFDs/FDs, CMDs/MDs, and CINDs/INDs into Markov logic formulae.

Translating Functional Dependency as a Markov Logic Formula: Given a
functional dependency φ : X → Y , we use the methodology provided by Fagin R. [79] and
Nicolas J. [177] and express φ as a first-order logic sentence [79, 40, 177] in the following
way:

∀ x, y1, y2, z1, z2 R(x, y1, z1) ∧ R(x, y2, z2) ⇒ y1 = y2 (6.1)

Given this representation and the predicate calculus provided in the previous Section 6.2.1,
we describe our conceptualization of the data quality rules with predicate-calculus sentences.
In general, we propose Algorithm 6.1, to convert data cleaning rules based on CFDs/FDs
into the Markov logic formulae. This algorithms takes a set of CFDs/FDs as input and
returns a set of corresponding Markov logic formulae. After formulating the integrity
constraint as first-order logic formula, we translate it into the Markov logic syntax by
applying the following convention:

• Every tuple of the relation R(x1, x2, . . . , xn) in the RHS of φ is translated into n

observed predicates, such as attr-X1(id, v1), . . . , attr-Xn(id, vn) (Algorithm 6.1 code
lines 11-14, and Figure 6.2).

• Every data quality concept in the left-hand side (LHS) of φ is translated as hidden
predicates according to Table 6.4 (Algorithm 6.1 code lines 15-17). For example,
y1 = y2 is expressed as equal-Y(id1, id2).

Now, we use the predicate calculus provided in Section 6.2.1 to compile the above functional
dependency φ : X → Y and the corresponding first-order logic sentence in Formula 6.1 to
the Markov logic formula in the following way:

attr-X(id1, x) ∧ attr-X(id2, x) ⇒ equal-Y(id1, id2)

116

6.2 Modelling Data Quality Rules as Markov Logic Programs

ϕ : X → Y

∀x, y1, y2, z1, z2ℛ(x, y1, z1) ∧ ℛ(x, y2, z2) ⇒ y1 = y2

attr−X(id1, x) ∧ attr−X(id2, x) ⇒ equal−Y(id1, id2)

Functional

dependency

First-order logic

equivalent of ϕ

Markov logic

formula

Observed
predicates

Hidden
predicates

Figure 6.3: Specification of data quality rules with predicate-calculus sentences.
This Figure shows all stages of the translation of functional dependencies into the Markov logic
formalism.

See also Algorithm 6.1 code lines 18-19 for FD rule compilation into the Markov logic
formula. Additionally, the above translation is also shown in Figure 6.3.

For example, to demonstrate the compilation of FD to the Markov logic formula, we
consider the FD-rule from the motivation of Example 6.0.1, which states that if any two
tuples agree on attribute values for city and phone, then the attribute values in street and
zip should agree as well:

φ : transaction([city, phone] → [street, zipcode])

To enable straightforward translation into the first-order logic, we assume that FDs
are provided in the normal form [82]. This means that if the FD is formulated as
ψ : (X → Y1, Y2, . . . , Tp), then ψ will be decomposed into several FDs, where RHS(ψ)
(right hand side of ψ) becomes a single attribute: ψ1 : (X → Y1, Tp), ψ2 : (X → Y2, Tp)
Following the normalization principle for functional dependencies, we split the φ rule into
two rules and write them as a CFDs, because canonical FDs are a special case of CFDs, in
which the pattern tableau are empty and contain "_" [82]:

cfd1 : transaction([city, phone] → [street], t1 = (_, _ ‖ _))

cfd2 : transaction([city, phone] → [zipcode], t2 = (_, _ ‖ _))

117

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Algorithm 6.1 Conditional Functional Dependencies Compilation to Markov Logic Rules
1: function TranslateCFDsToMarkovLogic(F)� F is a set of normalized (C)FDs
2: T ← []
3: A ← []
4: e ← ∅
5: R ← []
6: for f ← F do
7: for i ← attributes in tableau in f of the form ′attr = const′ do
8: T ← T +′ attr-i(id1, const)′

9: T ← T +′ attr-i(id2, const)′

10: end for
11: for j ← attributes in LHS of f do
12: A ← A +′ attr-j(id1, v)′

13: A ← A +′ attr-j(id2, v)′

14: end for
15: for l ← attribute in RHS of f do
16: e ←′ equal-l(id1, id2)′

17: end for
18: rulef ← ∧t∈T t ∧a∈A a ⇒ e
19: R ← R + rulef

20: end for
21: return R � The set of Markov logic formulae
22: end function

Following the conversion rules formulated by Fagin R. [79] and Nicolas J. [177], we represent
cfd1 and cfd2 as two first-order logic formulae:

1) ∀ city, phone, street1, street2 transaction(city, phone, street1) ∧
transaction(city, phone, street2) ⇒ street1 = street2

2) ∀ city, phone, zip1, zip2 transaction(city, phone, zip1)∧
transaction(city, phone, zip2) ⇒ zip1 = zip2

Provided that every attribute from the schema transaction can be expressed as a first-
order logic predicate, we formulate two predicates, namely city(id, city) and phone(id, phone)
to encode the LHS of φ. They indicate the values for the fields city and phone for each tuple
(Table 6.5 shows the full example of observed predicate definition and data presentation as
grounded atoms). Furthermore, we define two additional predicates for our data quality
rule, namely equal-street(id, id) and equal-zip(id, id). These predicates model the equality
of two values of the attribute street, respectively zip (as denoted by the φ rule above). The

118

6.2 Modelling Data Quality Rules as Markov Logic Programs

Phase Example

1) Schema definition t2(item, firstname, lastname, street,
city, zipcode, phone)

2) Observed predicates
MLN declaration

firstname(id, firstname)
lastname(id, lastname)
street(id, street)
city(id, city)
zip(id, code)
phone(id, num)

3) Data t2(Galaxy 5, NULL, Miller,
12 Hay St., NULL, 818, 11234)

4) Grounded (evidence) atoms

item(2, Galaxy5)
lastname(2, Miller)
street(2, 12HaySt.)
zip(2, 818)
phone(2, 11234)

Table 6.5: MLN declaration process and creation of grounded atoms for Tuple 2 in the
Transactions example table.

first-order logic formulae above are now expressed in the predicate calculus as follows:

1)city(id1, city) ∧ city(id2, city) ∧ phone(id1, phone)∧phone(id2, phone) ⇒ equal-street(id1, id2)

2)city(id1, city) ∧ city(id2, city) ∧ phone(id1, phone)∧phone(id2, phone) ⇒ equal-zip(id1, id2)

The two different tuples are distinguished by providing their identifiers, such as id1

and id2. Having declared the data quality rules, we infer potential predicates, such
as equal-street(id, id). This is a hidden predicate and holds the information about possible
repairs on the attribute street in the transactions table. Reasoning about such hidden
predicates gives us a probabilistic value of attributes that need a particular repair.

Translating Matching Dependency as a Markov Logic Formula. To capture
duplicate entities in the dataset, we formulate data quality rules by using matching
dependencies (MDs) [81]:

μ : S1[x1] ≈ S2[x2] → S1[y1] � S2[y2]

MDs are defined in terms of the matching operator � and similarity predicates, such as
S1[x1] ≈ S2[x2]. Correspondingly to the compilation steps for functional dependencies, we
use the predicate calculus provided in Section 6.2.1 and Table 6.4 and translate a matching
dependency μ on a database instance D, with two relational schemas S1 and S2, into the

119

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Markov logic formula as follows:

attr-X/S1(id1, x1) ∧ attr-X/S2(id2, x2) ∧ similar(x1, x2) ⇒ S1/match-Y/S2(id1, id2)

The general procedure of matching dependencies compilation to Markov logic formulae is
shown in Algorithm 6.2. This Algorithm takes a set of CMDs/MDs as input and returns
a set of corresponding Markov logic formulae. The translation of each CMD’ LHS into
the predicate calculus is provided in code lines 7-18, where every tuple of the relation
S(x1, x2, . . . , xn) in the RHS of an CMD is translated into n observed predicates, such as
attr-X1(id, v1), . . . , attr-Xn(id, vn). The similarity predicate S1[x1] ≈ S2[x2] is resolved as
similar(x1, x2) in code lines 14-18.

Algorithm 6.2 Conditional Matching Dependencies Compilation to Markov Logic Rules
1: function TranslateCMDsToMarkovLogic(M)
2: E ← []
3: S ← []
4: m ← ∅
5: R ← [] � R is set of Markov logic formulae
6: for f ← M do
7: for i ← tableau attributes in LHS(f) such as ′S1[x] = const′ do
8: T ← T +′ attr-i/S1(id1, const)′

9: end for
10: for j ← equalityfunctions in LHS(f) such as S1[x] = S2[x] do
11: E ← E +′ attr-j(id1, v)′

12: E ← E +′ attr-j(id2, v)′

13: end for
14: for l ← similarity functions in LHS(f) such as S1[y] ≈ S2[y] do
15: S ← S +′ attr-l(id1, v1)′

16: S ← S +′ attr-l(id2, v2)′

17: S ← S +′ similar(v1, v2)′

18: end for
19: for k ← matching operator in RHS(f) such as S1[y] � S2[y] do
20: m ←′ S1/match-Y/S2(id1, id2)′

21: end for
22: rulef ← ∧t∈T t ∧e∈E e ∧s∈S s ⇒ m
23: R ← R + rulef

24: end for
25: return R � The set of Markov logic formulae
26: end function

The RHS of the matching dependency μ contains the matching operator S1[y1] � S2[y2],
which is translated into the hidden predicate S1/match-Y/S2(id1, id2). It denotes dynamic
semantic [82, 24] of the matching dependency and indicates the values of the tuples id1

and id2 of the attribute Y that must be made equal (Algorithm 6.2 code lines 19-21).

120

6.3 Uncertain Data Cleaning as a Probabilistic Inference Problem

Translating Conditional Inclusion Dependency as a Markov Logic Formula.
To capture the inconsistencies between tuples across different relations, we formulate
data cleaning rules based on interrelational dependencies, namely (conditional) inclusion
dependencies (CINDs/INDs). To demonstrate how we translate CINDs/INDs into Markov
logic formulae, first, consider the following example of CIND:

γ : Transaction[item, price, type =′ phone′] ⊆ Phone[item, price]

The γ means that the attribute type is ’phone’ for each transaction entry, so there should
be a corresponding entry in the Phone relation. According to Bertossi L. [24], the above
CIND γ can be rewritten in first-order logic, as follows:

∀i, p, t Transaction(i, p, t) ∧ t =′ phone′ ⇒ Phone(i, p)

Similarly to the previous compilation procedures, we use the predicate calculus provided
in Section 6.2.1 and Table 6.4 and translate the above CIND γ into the Markov logic
formulae:

attr-I/T(id1, i) ∧ attr-P/T(id1, p) ∧ attr-T/T(id1, ”phone”) ⇒ attr-I/P(id2, i) ∧ attr-P/P(id2, p)

Although the Markov logic formula above does not contain any hidden predicates,
the whole formula must be satisfiable for the corresponding CIND to hold on the data.
The general procedure of CINDs compilation into Markov logic program is provided in
Algorithm 6.3. This Algorithms takes a set of CINDs/INDs as input and returns a set
of corresponding Markov logic formulae. The translation of the γ LHS into the predicate
calculus is provided in lines 7-13. The translation of the γ RHS is performed in lines 14-17.

From the previously described examples and algorithms, we see that, since integrity
constraints can be seen as a set of sentences written in first-order logic [79, 177, 24], they
can be transferred into the Markov logic formalism. Generally, a particular advantage of
Markov logic is its modularity while modelling data cleaning operations. We consider each
declared data quality rule (represented as CFDs/FDs, CMDs/MDs, or CINDs/INDs) as a
single-unit probabilistic model that can be combined to a "compound" model [234].

In the next section, we present the mechanism behind the inference of the hidden
predicates.

6.3 Uncertain Data Cleaning as a Probabilistic Inference
Problem

In this section, we make a connection between data cleaning and probabilistic inference.

121

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Algorithm 6.3 Conditional Inclusion Dependencies Compilation to Markov Logic Rules
1: function TranslateCINDsToMarkovLogic(C)
2: T ← []
3: A ← []
4: D ← []
5: R ← [] � R is set of Markov logic formulae
6: for f ← C do
7: for i ← tableau attributes in LHS(f) such as ′S1[x] = const′ do
8: T ← T +′ attr-i/S1(id1, const)′

9: end for
10: for j ← attributes in LHS(f) do
11: A ← A +′ attr-j/S1(id1, v)′

12: A ← A +′ attr-j/S1(id2, v)′

13: end for
14: for l ← attributes in RHS(f) do
15: D ← D +′ attr-l/S2(id1, v)′

16: D ← D +′ attr-l/S2(id2, v)′

17: end for
18: rulef ← ∧t∈T t ∧a∈A a ⇒ ∧d∈D d
19: R ← R + rulef

20: end for
21: return R � The set of Markov logic formulae
22: end function

By assuming that real-world data is usually dirty [201, 199, 223], we specify data
errors as a violation of integrity constraints. We view data cleaning as a probabilistic
inference, which results in multiple possible repairs [27, 26]. This is because the data
cleaning principle of minimality (see Section 2.1.3) does not consider the likelihood of the
possible repair [68], and the minimal repair is not necessarily the correct repair [202, 68].
We follow the idea of the most-probable database (MPD) that denotes a database instance,
which satisfies a number of data quality constraints [101]. Hence, we define data cleaning
as a probabilistic inference problem that infers the most probable clean database given the
initial database and attribute correlations, which are expressed as integrity constraints.
We use the notion of the Most Probable Explanation (MPE) task from statistical relational
learning [227, 93] and adapt it to data cleaning to derive the most probable repair, which is
a repaired dataset, given a set of integrity constraints and domain-specific knowledge.

Definition 6.3.1 Given a database R that represents a probability distribution P (·) and a
set of integrity constraints I, which are formulated in first-order logic sentences, the Most
Probable Repair (MPR) R′ is defined as

MPR(I) = arg max
R′|=I

P (R′|R) �

122

6.3 Uncertain Data Cleaning as a Probabilistic Inference Problem

Given a dirty dataset, we can compute a most probable repair that adheres to the
provided data constraints I in first-order logic form [79, 177]. Most Probable Explanation
thus provides a principled probabilistic framework for data cleaning.

Formally, we reduce the MPR to MPE that can be adopted to solve the MPR problems
by applying existing algorithms for probabilistic inference. For any MPR problem, we can
formulate a Markov logic program as proposed in Section 6.2.2 and compute the MPR as a
most probable state of the MLN model [101]. Semantically, a MLN is a log-linear model [73],
which defines the probability distribution over possible repairs in the database. The general
procedure of the MLN formulation and MPR inference is provided in Algorithm 6.4. The
algorithm takes as input two arguments: a dataset R and the set of data cleaning rules
expressed as integrity constraints. As a result, the algorithm returns a set of grounded
hidden predicates, which are candidates for data repair.

We formulate MLNs by specifying a set of first-order logic sentences with weights by
using predicates that represent relations between attribute values. To specify soft and hard
rules, we set the weight of soft rules to 1.0 [100], whereas hard rules are assigned infinite
weights. As mentioned earlier, we distinguish between observed and hidden predicates.
Observed predicates define relations between objects which exist in a given dataset, such as
attr-X1(id, v1) . . . attr-Xn(id, vn). Furthermore, we define a number of hidden predicates,
which present data cleaning concepts and are not present in the evidence. The specification
of observed and hidden predicates is provided in Algorithm 6.4 code lines 6-11. These
hidden predicates will be inferred through the probabilistic inference. Concretely, all
Markov logic predicates defined in Table 6.4 are hidden. Given the initial dataset R, we
can compute the most probable database repair that adheres to the data constraints IC,
which were defined as data quality rules. In other words, we perform an inference task on
hidden predicates as a prediction for data cleaning. The probabilistic inference consists of
grounding and search steps [178]. For the grounding, we take the content of the database
(a set of tuples) and produce a set of grounded predicates by replacing predicate variables
with domain constants as shown in Figure 6.4. These groundings are then used in the
search step, which is joint inference of the most probable state for data cleaning.

While modelling data quality constraints as MLN, as provided in Algorithm 6.4 code
lines 13-24, we denote h ∈ Hn as a hidden predicate with n literals (random variables)
H1, ..., Hn, where each literal Hi has 2 discrete states, Hi = {0, 1} (0 denotes false and
1 - true). We similarly define o ∈ Om as an observed predicate with m literals (random
variables) O1, ..., Om. In this way, the specified MLN represents a joint distribution on
H1, ..., Hn, O1, ..., On random variables that is specified by a vector φ(h, o) of d integer
values, where each element represents the number of true groundings of the corresponding
literal in the formula. We specify a weight/parameter vector as θ ∈ Rd:

123

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Algorithm 6.4 Probabilistic data cleaning approach based on the compilation to Markov
logic and performing the MAP inference.

1: procedure ProbDataCleaning(R, IC) � R is a dataset; IC is a set of data
cleaning rules;

2: P ← []
3: H ← []
4: F ← []
5: MLF ← [] � Markov logic formulae
6: A ← attr(R) � Set of attributes in R
7: for a ← A do
8: P ← P + getObservedPredicate(a)
9: end for

10: for i ← IC do
11: H ← H + getHiddenPredicate(i)
12: end for
13: for f ← IC do
14: if isCFD(f) then � Evaluates f constraints for being an CFD
15: MLF ← MLF + TranslateCFDsToMarkovLogic(f)
16: end if
17: if isCMD(f) then � Evaluates f constraints for being an CMD
18: MLF ← MLF + TranslateCMDsToMarkovLogic(f)
19: end if
20: if isCIND(f) then � Evaluates f constraints for being an CIND
21: MLF ← MLF + TranslateCINDsToMarkovLogic(f)
22: end if
23: end for
24: MLN ← P ∪ H ∪ MLF � Formulates an MLN for data cleaning
25: E ← getEvidenceAtoms(R) � Transforms the R dataset into the evidence

grounded atoms form
26: P (H|E) ← runMAPInference(MLN, E) � Performs MAP inference on MLN

given grounded evidence predicate atoms E
27: return H � Candidate repair: grounded hidden predicates with maximal

probability
28: end procedure

124

6.3 Uncertain Data Cleaning as a Probabilistic Inference Problem

Figure 6.4: Data Cleaning Workflow In the context of a data cleaning workflow, the
Markov Logic Network grounding process consists of two phases: I) MLN definition by (a)
fixing MLN schema by defining observed and hidden predicates (b) domain, which is created
from the existing data by considering the MLN schema, and (c) specification of weighted
first-order logic formulae that represent data cleaning rules; II) MLN instantiation by assigning
truth values to all possible instantiations of the MLN predicates by consideration of the domain
(Random Variables) and using these ground atoms in the formulae. These ground formulae
constitute a Markov Network to compute the MAP inference and to estimate the most likely
data repairs. Source [234].

P (h|o, θ) = 1
Z(o, θ) exp (〈θ, φ(h, o)〉) , where Z(o, θ) =

∑
h∈Hn,o∈On

exp (〈θ, φ(h, o)〉) ,

where 〈θ, φ(h, o)〉 denotes a dot product. Z(o, θ) is the normalization constant to
obtain valid probabilities. Since the partition function is a constant and the exponential is
monotonic, finding the MAP assignment in our data cleaning problem is equivalent to finding
all of the assignments φ(hi, oi) that maximizes the probability P (h|o, θ). Probabilistic
models, such as Markov logic networks [73], can be reduced to a weighted first-order model
counting representation, meaning to compute the sum of the weights of all satisfying
assignments of the formulae in MLNs [230, 95].

A data repair operation is the probabilistic output of the inference process, which
is described above. For instance, the inferred hidden predicate equal-street from the
Example 6.0.1 may have the following possible value: equal-street(1, 3). It points out that
the street attribute for transaction 3 should have the same value as the street attribute of
transaction 1. Consequently, the data repair operation should therefore replace the null
value in transaction 3 with the address “1 Sun Dr.”.

125

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Generally, the inference computes the most likely state of the entire Markov logic
network with regard to all integrity constraints. It finds the most likely data error (an
irregularity according to the data quality dimensions violation) and its possible repair
given the evidence (noisy data, auxiliary master data, etc.) By running the inference over
the entire database, we predict the most likely data repairs for our dataset by determining
the most likely grounding of the hidden predicates (Algorithm 6.4 code line 26). We
utilize the Cutting Plane Inference (CPI) method that performs exact MAP inference and
is guaranteed to converge in a finite number of steps [205]. The MPE thus provides a
principled probabilistic framework for data cleaning by reducing the MPR to the most
probable state of the MLN model.

Complexity of the approach. The inference of the most probable repair in Markov
logic is either in PTIME [101] or #P complete [73]. A sharp dichotomy theorem [64] states
that the probability of any hidden grounded atoms (or conjunctive queries) can either be
computed in PTIME in the size of the database or is #P.

The biggest challenge for MAP inference arises when developing an efficient method
to reason about the large number of groundings. To address this challenge, the MAP
inference is casted to an integer linear program (ILP)[220]. Another alternative algorithm
called message passing performs belief propagation along the edges of the graphical model.
Despite being straightforward to implement, message passing might not converge [211, 90],
and might return more inadequate results than ILP [179].

6.4 Markov Logic-Based Data Cleaning on Non-Relational
Data

Our approach should work on non-relational data, which is often encountered in data
analysis over unstructured data and, in particular, in information discovery methods that
do not pre-specify a fixed schema of information [125]. To understand the problem of data
cleaning for non-relational data, we start with the following example.

In Figure 6.5, we illustrate two issues identified in knowledge base induction, namely
the problems of incomplete information and the existence of duplicates. We represent the
knowledge base as a matrix. The rows of the matrix represent facts whose variable X can
be replaced with a value from its columns. If, after replacing X with a value, the fact exists
in the knowledge base, the matrix cell contains a 1. Otherwise, the cell value is 0. For
example, the fact "student may acquire degree" does not exist in the knowledge base
while "pupil may acquire degree" exists. The terms pupil and student are synonyms
and therefore, the first fact can also be true. At the same time, according to the Wordnet

126

6.4 Markov Logic-Based Data Cleaning on Non-Relational Data

⎛
⎜⎜⎝

X : degree X : knowledge X : answer

student may acquire X 0 1 0
pupil may acquire X 1 0 0
someone may summarize X 0 0 1
someone may summarise X 0 0 0

⎞
⎟⎟⎠

Figure 6.5: An example of an incomplete knowledge base represented as a matrix. The rows
of the matrix represent facts whose variable X can be replaced with a value from its columns.
If, after replacing X with a value, the fact exists in the knowledge base, the matrix cell contains
the value 1. Otherwise the cell value is 0.

lexicon database [88], summarize and summarise are two possible spellings of the same
word. Therefore, the answer can be a possible value for both facts that contain these verbs.

We consider missing facts in a knowledge base similar to what missing values are
for a relational database. The difference, and the main challenge at the same time is
that databases have a fixed set of attributes in the schema, while we consider textual
data modeled according to the Universal Schema [247]. This schema unifies all extracted
relations (from all sources), which means that an arbitrary number of distinct facts may be
present in the database and the schema is dynamic. We adapt all data quality rules defined
previously to the Universal Schema by considering meta-information about facts (e.g.,
similarity, synonymy) instead of the semantics of the relations itself. This means, we do
not examine the meaning of the relations "may summarize", "may acquire", etc. Instead,
we model whether two entities are synonymous and share the same relation, in which case
two relations are similar. For example, we consider the relations "may summarize" and
"may summarise" to be similar.

6.4.1 Data Cleaning Rules for Non-Relational Data

We now develop a solution to represent data cleaning rules for non-relational datasets. The
main challenge here is that we are operating on schema-less data and, therefore, should
create the appropriate dependency language to declare the data quality rules. We will
describe how to define an MLN and how such rules are formalized to express missing
facts imputation, using first-order logic. Assuming an existing common-sense knowledge
base, our goal is to predict correct facts in the triple form (s, R, o), where s and o are
nouns and represent subject and object respectively. The relation between them is R. This
triple structure is also known as Resource Description Framework (RDF) data model [111].
Additionally, we assume that S(n) is the set of synonyms of a particular noun n. We
denote two nouns n1 and n2 as synonymous if n2 ∈ S(n1).

Consider two triples (s1, R, o1) and (s2, R, o2) from the knowledge base. For each pair
(o1, o2) of synonymous nouns, we define a rule, which extends the conditional functional
dependency [6]. Similarly to the definition in Section 6.2, we define a synonymy predicate

127

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

as ≈, denoting the pair (o1, o2) as similar nouns. Then, in first-order logic we write:

∀R, o1, s1, o2, s2((s1, R, o1) ∧ (s2, R, o2) ∧ o1 �= o2 ∧ o1 ≈ o2 ⇒ (s1, R, o2))

∀R, o1, s1, o2, s2((s1, R, o1) ∧ (s2, R, o2) ∧ o1 �= o2 ∧ o2 ≈ o1 ⇒ (s2, R, o1)),

where o1 �= o2 ∧ o1 ≈ o2 denotes not equal but synonyms. In other words, for every two
synonyms on the left-hand side of the triples (s1, R, o1) and (s2, R, o2), if they share the same
relation and the entities on the right-hand side are not identical, then the following triple
can be a potential fact (s1, R, o2). Taking into account that the synonymy is a symmetric
relation, the analogous rule is true for the potential relation (s2, R, o1). In the following, we
will walk through all the phases of the MLN creation for inducing potential relationships
in the incomplete knowledge base, by considering the fact (Person, may be, Smoker):

Observed predicates definition. Initially, we consider triples of the form (s, R, o),
where s and o are nouns and represent subject and object respectively. R is the relationship
between subject and object. We also model statements (expressions where only one part,
subject or object, is present) and facts. To model similarity, we create a synonyms

predicate between two concepts (nouns). The similarity calculation is performed by using
an external lexicon, such as WordNet [88]. The missing facts imputation requires the
definition of the MLN predicates. In the following, we specify the observed predicates:

1. subject(concept) - denotes that the variable concept is a subject of the triple (s, R, o).

2. object(concept) - denotes that variable concept is an object of the triple (s, R, o).

3. inRelation(concept, relation) - denotes that the concept belongs to the relation R in a
given triple (s, R, o).

4. hasFact(concept, relation, concept, fact) - encodes the mapping between the tuple
(concept, relation, concept) and the fact-expression. For example, the fact "person
may be smoker)" corresponds to the tuple (Person, person may be X, Smoker). Where
Person and Smoker are concepts representing object and subject respectively. X is a
placeholder in relations for either object of subject.

5. synonyms(concept, concept) - whenever two concepts are synonyms, they are encoded
as the arguments in the synonyms-predicate. For example, two concepts, such
as Student and Pupil are synonyms. Therefore they are encoded as the observed
predicate synonyms.

Ground atoms creation. We consider the fact (Person, may be, Smoker) as
an example of the grounded observed predicates (discussed above), which are gen-
erated from this fact. The domain of the variable concept includes the following

128

6.4 Markov Logic-Based Data Cleaning on Non-Relational Data

constants {Person, Smoker, Individual}. The domain of the variable relation contains
{person may be X}. By using these domains, the ground predicates for the fact
(Person, may be, Smoker) are specified as follows:

1. subject(Person)

2. object(Smoker)

3. inRelation(Person, person may be X)

4. inRelation(Smoker, person may be X)

5. synonyms(Individual, Person)

6. hasFact(Person, person may be X, Smoker, person may be smoker)

Please note that two concepts subject(Person) and object(Smoker) are sharing the same
relation person may be X. Therefore we have created two grounded atoms, such as
inRelation(Person, person may be X) and inRelation(Smoker, person may be X). According
to the WordNet lexicon, one possible synonym for the Person concept is the Individual
concept. Therefore, the observed predicate synonyms(concept, concept) is grounded as
synonyms(Individual, Person). We include all synonyms of the provided concepts for either
subject or object in all observed tuples.

Hidden Predicates Specification. Hidden predicates (also, query predicates) are pred-
icates that we reason about. To infer whether a concept belongs to some relation, we specify
the following hidden predicate: potentialRelation(concept, relation), which indicates that the
defined concept potentially belongs to the provided relation. We also define a set of auxiliary
hidden predicates to compute the final predicate potentialRelation(concept, relation),
namely, allowedSubjConcepts(concept1, concept2) to specify similar concepts, which are
subjects in triple (s, R, o). The predicate allowedSubjRelation(concept, relation) is specified
to reason when the concept is connected to the relation. The auxiliary hidden predicates
will not be evaluated because they are used to reason about the query predicate
potentialRelation(concept, relation).

Markov Logic Program Definition. Missing value imputation for non-relational data
is presented below by the Markov logic program snippet below. The symbols wi denote
real-numbered weights assigned to each Markov logic formula.

1. w1 subject(c1) ∧ subject(c2) ∧ synonyms(c1, c2) ⇒ allowedSubjConcepts(c1, c2)

2. w2 allowedSubjConcepts(c1, c2) ∧ inRelation(c1, r1) ⇒ allowedSubjRelation(c1, r1)

129

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

3. w3 allowedSubjConcepts(c1, c2) ∧ allowedSubjRelation(c1, r1) ∧ allowedSubjRelation(c2, r2)
⇒ potentialRelation(c1, r2)

The code snippet above considers the inference of the potential relationship (fact) between
an concept and relation, which is not present in the knowledge base. The concepts are
represented as predicates subject(c1) and subject(c1). The relations are encoded as r1

the r2 variables in all Markov logic predicates. Both the first and second formulas are
intended to infer the intermediate hidden predicates allowedSubjConcepts(c1, c2) and
allowedSubjRelation(c1, r1). These predicates are used to infer the final hidden predicate
potentialRelation(c1, r2), which denotes that the concept c1 potentially relates to the
relation r2 as either (c1, r2, ca) or (ca, r2, c1) (ca denotes any concepts). The potential
object of the above relation r2 is inferred in the similar way as above.

Inference result We derive missing relations (facts) in the KB by using the MAP
inference. For instance, one of the potential relations is expressed in the inferred hidden
predicates as follows: potentialRelation(Individual, X may be smoker), which represents a
triple (Individual, may be, Smoker).

In this section, we extended our approach to work on non-relational data and developed
a compilation workflow for data cleaning rules into the Markov logic formalism. We
primarily focus on the information completeness issue, which deals with missing values
imputation in existing knowledge bases. In the following we present experimental results
for cleaning relational and non-relational data.

6.5 Experiments

In this section, we provide results of probabilistic data cleaning experiments, which were
performed on relational and non-relational data. We first, conduct experiments on capturing
the data issue interaction in Sections 6.5.2 and 6.5.4. Next, we provide experiments on the
effect of a different order of data cleaning rules execution in Section 6.5.3. We study how
Markov logic capabilities cover the requirements of data cleaning systems in Section 6.5.5.
Finally, we conduct experiments on Markov logic for data cleaning on non-relational data
in Section 6.5.6.

The code base for the experiments that are presented in this chapter is available online1.
Next, we describe our experimental settings, such as datasets and the evaluation metric.

6.5.1 Experimental Setup

The experiments are conducted on the following four real-life and synthetic datasets.
1The Markov logic programs are provided online: http://bit.ly/mln-for-dq

130

6.5 Experiments

HOSP. The hosp dataset has been published by the US Department of Health & Human
Services2. This dataset comprises 9 attributes: addr, city, cond, country, hospname,
measure, phone, state, zip. We use 6 CDFs and one MD, which have been manually
designed by Dallachiesa M. et al. [62]. They specified an MD that makes use of master
data, namely US ZIP codes: ZIPCode3. The dataset contains 43k tuples with two fields:
zip and state. The above MD states that if two tuples from hosp and ZIPCode possess
the same zip code values, and the state values are distinct, then the state value from the
ZIPCode table should be adopted.

TPC-H. To conduct experiments on synthetic data, we use the tpc-h4 dataset. For
our purposes, we selected two tables - Customer and Orders - which we joined to
introduce duplications on the Customer relations data. The final dataset contains 17
attributes, such as c_custkey, c_name, c_address, c_nationkey, c_phone, c_acctbal,
c_mtksegment, c_comment, o_orderkey, o_custkey, o_orderstatus, o_totalprice,
o_orderdate, o_orderpriority, o_clerk, o_shippriority, o_comment.

HOSP and TPC-H: Ground truth and dirty data. We randomly injected errors
into the relational datasets hosp and tpc-h to produce dirty data. We introduced several
kinds of errors, such as missing values, domain violation, and illegal values (accuracy
violation). The initial data is considered clean and acts as ground truth. Furthermore,
we ensured that the ground truth is consistent with respect to the given CFDs and MDs.
We performed error injection with different rates ranging from 2% to 10%. Moreover, we
introduced errors into different dataset sizes ranging from one thousand to one hundred
thousand data points. The error rate depicts the ratio of the number of erroneous values
to the total number of values in the dataset. Data errors are injected only into attributes
that are included in the data cleaning rules.

To conduct experiments on cleaning non-relational data, we have chosen two datasets:
microsoft academic graph (Msag) [214] and Weltmodell [9].

MSAG. Due to the integration of data from different sources, web data is suffering from
various data quality issues [153]. Thus we include another dataset - microsoft academic
graph (Msag)5 [214] - to evaluate our approach on the web data cleaning. Msag is a
heterogeneous entity graph comprised of six types of entities that models real-life academic
relationships, such as field of study, author, institution, paper, venue, and conference
instances. The raw data has been obtained from different deep web sources, such as
academic publishers and web-pages indexed by the Bing search engine. This dataset is

2http://www.medicare.gov/hospitalcompare/Data/Data-Download.html
3http://databases.about.com/od/access/a/zipcodedatabase.htm
4http://www.tpc.org/tpch/
5http://research.microsoft.com/en-us/projects/mag/

131

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Paper Author Organization
paper_id author_id affiliation_id

publish_year origin_name
normalized_name

Table 6.6: Entities Paper , Author and Organization and their attributes that have been
used in experiments for Web data cleaning with Markov logic. Source [234].

provided in the form of a connected entities graph. For our experiments, we chose three
entities from the whole graph, namely author, organization, and paper. This sub-graph
of MSAG demonstrates typical errors of the extracted web data, such as missing and
inconsistent values. For instance, we found out that there are inconsistencies in organization
names for the same author. A number of author entries have a missing affiliation. Table 6.6
shows the attributes of the selected entities in MSAG, which we use to model and run
data cleaning on this dataset.

WELTMODELL. This dataset is a knowledge base of common sense statements and
related concepts, automatically derived from the text of 3.5 million Google Books [98]. The
knowledge base contains over 6 million distinct statements applied to 3 million distinct
concepts. Both its schema, in the form of statements, as well as its content, in the form of
concepts to which statements may apply, are induced and therefore may be erroneous or
incomplete. Besides count statistics for every concept-statement pair, the knowledge base
provides similarity measures that indicate the similarity of two concepts, as well as the
similarity of two statements.

Please note that the integrity constraints for all datasets are specified in Section 6.5.5.

Technical Details. All experiments were performed on a Linux machine with 256 GB
RAM and 2 CPUs with 12 Cores each 2.3 GHz. For Markov logic modelling and performing
statistical inference we use the inference engine for Markov logic RockIt, developed by
Noessner J. et al. [179].

6.5.2 Holistic Data Cleaning: Uniqueness and Accuracy Data Quality
Dimensions

Following the idea that capturing the data issue interaction increases the overall accuracy
in data cleaning [82], we created an experiment to show the connection between uniqueness
and data accuracy interaction. The evaluation is performed on different noise rates and
different dataset sizes. Figure 6.6 illustrates the results of using Markov logic programs for
data cleaning on the hosp dataset, while plots for the results for the tpc-h dataset are
shown in Figure 6.7.

132

6.5 Experiments

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

noise

F1

(a) hosp Data Cleaning for 90k

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

data size in k
F1

(b) hosp Data Cleaning for noise 10%

cfd

md

cfd + md

Figure 6.6: Evaluation of the data repair method based on Markov logic applied on the hosp
dataset. Source [234].

2 4 6 8 10

0.9

0.95

1

noise

F1

(a) tpc-h Data Cleaning for 20k

0 20 40 60 80 100
0.85

0.9

0.95

1

data size

F1

(b) tpc-h Data Cleaning for noise 2%

cfd

md

cfd + md

Figure 6.7: Evaluation of the data repair method based on Markov logic applied on the
tpc-h dataset. Source [234].

We run several experiments, and in the first series, we fix the size for the hosp and
tpc-h datasets to 90k respectively 20k tuples, while varying the error rate from 2% to 10%.
First, we compare the results of the execution of CDFs and MDs, which were performed in
parallel and independently of each other.

This experiment includes the execution of the combined CFDs and MDs. The provided
results in Figures 6.6 and 6.7 clearly demonstrate that jointly modelling CFDs and MDs
improves the overall result because joint execution involves two processes simultaneously:
matching (for duplicates) and erroneous values detection. When CFDs and MDs are
specified together in a single Markov logic program for identifying dirty data, hidden
predicates are inferred simultaneously, and hence, our method automatically picks the order
of the data quality rules execution. We observe the low F1 score of MDs in Figures 6.6
and 6.7, which results from low precision and high recall. However, by extending the
data cleaning routine with CFDs, the overall F1 score improves. The upward trend of

133

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

0 20 40 60 80 100
0

500

1,000

1,500

data size in k

se
co

nd
s

Runtime for hosp Data Cleaning

0 0.2 0.4 0.6 0.8 1
·105

0

2,000

4,000

6,000

data size
se

co
nd

s

Runtime for TPCH Data Cleaning

noise2
noise4
noise6
noise8
noise10

Figure 6.8: Runtime for Markov logic based data cleaning applied on the hosp and tpc-h
datasets. Source [234].

the F1 values while increasing error rate in the datasets in Figure 6.6 (a) and Figure 6.7
(a) is explained by the algorithmic behaviour of the cutting plane inference (CPI) [205].
We employ the CPI algorithm, which leverages optimization techniques such as integer
linear programming (ILP) [205, 179]. ILP maximizes the objective function under a set
of constraints, such as all formulae in MLN, which are converted into an ILP constraint.
For datasets with a low percentage of errors, the algorithm requires only a few iterations
to converge. Technically, it means that the ILP approximately determines the maximum
objective score. Looking at the runtime in Figure 6.8, we observed that, with increasing
noise, the underlying solver determines an objective score until the maximum number of
iterations is reached. Therefore, more data errors are identified.

We performed the next series of experiments with varying size of data and a fixed error
rate to 10% on hosp and to 2% on the synthetic tpc-h (see Figure 6.6 (b) and Figure 6.7
(b)). We ran three variations of data cleaning rules on all dataset sizes ranging from
one thousand to one hundred thousand tuples. The results show that our data cleaning
method delivers robust results regardless of the data size despite the increasing runtime
of the algorithm (see Figure 6.8) by increasing the size of the dataset. The reason for
this behaviour is that the convergence of CPI is guaranteed [204]. Moreover, Figure 6.8
shows detailed runtime values for the hosp and tpc-h datasets. While we increase the
data size, we observed that the average runtime growth rate is 1.9, which demonstrates a
characteristic of the underlying MAP inference algorithm [205]: fewer errors in the dataset
lets the algorithm converge faster. Therefore the runtime values are lower for data with
fewer errors.

To summarize, the modelling of data cleaning problems with Markov logic improves
the accuracy compared to single data quality rules. While using joint inference, its runtime

134

6.5 Experiments

2% 4% 6% 8% 10%

0

0.2

0.4

0.6

0.8

1

error percentage

F
1

md+cfd
cfd+md

joint cfd md

Figure 6.9: The evaluation of the different experimental settings of the execution order
of data cleaning rules translated into Markov logic. The experiments are performed on the
real-world Hosp dataset. Source [234].

performance will depend on the underlying inference engine: the larger the dataset and
the more noise it contains, the longer it takes to clean it using joint inference.

6.5.3 Impact of Rule Execution Order

In the next line of experiments we intend to demonstrate the effects of different orders of
data cleaning rule execution. We will show that it is difficult to achieve the optimal order
of rules manually [62]. We leverage probabilistic inference for simultaneous rule execution
instead of a manual specification of the order in which the data cleaning rules should be
executed. Our results are shown in Figure 6.9. We created the Markov logic program on
the attributes state and zip of the real-world Hosp dataset because they both are included
in CFD and MD data cleaning rules. To conduct the experiment, we use the dataset with
90k tuples, and errors are varying from 2% to 10%. The methodology for this experiment
is the following:

1. Execute MD rules and then execute CFD rules;

2. Execute CFD rules and then execute MD rules;

3. Execute MD and CFD rules jointly;

The first results confirm the previous experiment about the joint modelling data cleaning
rules (see Figures 6.6 and 6.7). The MD rules showed poor performance. The model in the
first case achieved the overall F1 score between 0.01 and 0.02. We explain such result by
low precision and recall values due to error propagation after the MD-rules execution to
CFDs execution. By changing the sequence of execution to running CFD rules before MD
rules in the second scenario, we observe a slight improvement in the F1 scores. The second

135

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Method Pruning Threshold Precision Recall F-1

HoloClean with
Metadata-Driven Error Detection approach from [232]

0.0 0.9164 0.4154 0.5716
0.1 0.9161 0.4161 0.5722
0.2 0.9174 0.4140 0.5706
0.3 0.9231 0.4067 0.5646
0.4 0.9295 0.4033 0.5626
0.5 0.9297 0.4040 0.5633
0.6 0.9367 0.4147 0.5749
0.7 0.9384 0.4241 0.5842
0.8 0.9383 0.4241 0.5841
0.9 0.9383 0.4241 0.5841
1.0 0.9383 0.4241 0.5841

HoloClean with ideal error detection - 0.8431 0.8294 0.8362

SRL based approach [234] - 0.7523 0.916 0.8361

Table 6.7: Comparison to the HoloClean system [202]. The experiments have been
conducted on the Hosp dataset. The pruning threshold is required by the HoloClean
algorithm and ranges from 0.0 to 1.0. The error detection method is Metadata-Driven
Error Detection from Visengeriyeva et al. [232]. Additionally, we performed data repair on
HoloClean with ideal error detection by comparing the dirty data with its ground truth.

model achieves 0.1 to 0.3 F1 scores for different noise values. We explain this with the fact
that CFDs detect more violations and less errors are propagated to the MD-rules execution.
Nevertheless, as in the previous part, error propagation leads to a low F1 score. In the last
part of this experiment, we perform the joint execution of CFD and MD rules, where we
model duplicate detection and accuracy violation detection. Compared to the sequential
execution of data cleaning rules, we observe an increase of all F1 scores from 0.86 for 2% of
errors to 0.96 for 10% of errors. The results described above confirm our hypothesis that
the joint execution of multiple data cleaning rules by running the probabilistic inference
eliminates the need to provide the order for these rules.

Comparison to state-of-the-art. To make a comparison to the state-of-the-art data
cleaning systems, we also examine our approach against the HoloClean [202]6 and
Nadeef [62] systems.

The HoloClean system provides holistic data repairing by using probabilistic inference,
which is similar to our method. The experiments have been conducted on the Hosp dataset
with a fixed size, 90k tuples and 10% of errors. We run different configurations of the
pruning threshold, which is required by the HoloClean algorithm as an optimization
technique. To see the effect of this optimization, the pruning score ranges from 0.0 to
1.0. Since HoloClean is designed for data repair and considers the error detection step
as a black box, we adopted the metadata-driven error detection method [232], which
we described in Chapter 5. Our error detection method based on stacking has achieved

6Our re-implementation of the HoloClean data repair approach uses the DeepDive language and inference
engine [69]. The re-implementation is available online: http://bit.ly/ed-holoclean-hosp

136

6.5 Experiments

System 2% 4% 6% 8% 10%

Baseline Nadeef system [62] 0.83 0.85 0.91 0.95 0.95
SRL-based approach [234] 0.86 0.89 0.90 0.91 0.96

Table 6.8: F1 measure comparison of the jointly modeled data cleaning rules based on CFD
and MD to the baseline system [62]. The experiments conducted on the hosp dataset on size
90k and different error percentages ranging from 2% to 10%. Source [234].

Functionality Nadeef [62] HoloClean [202] SRL Method [234]

Error detection + - +
Error repair + + +

Data cleaning rules
FD
MD
UDF

Denial constraints

FD
MD
IND
Relaxed FD

Reasoning SAT Solver MAP inference (SQL impl.) MAP inference (ILP impl.)
Representation (declaring rules) Domain specific language DDlog rules/queries [69] First-order logic

Optimization Partitioning
Compression

Domain pruning
Tuple partitioning
Rules relaxation

Tuple partitioning

Table 6.9: Qualitative comparison of the SRL-based data cleaning to the state-of-the-art
data cleaning systems, such as Nadeef [62] and HoloClean [202].

the following results: a precision score of 0.46, a recall score of 0.68, and an F1 score as
0.55. Additionally, we performed data repair on HoloClean with ideal error detection by
comparing the dirty data with its ground truth. The results are provided in Table 6.7. Since
the HoloClean’s recall is limited by the error detection method, we achieved different
recall scores for error repair on the datasets with different error detection results, such as
comparison to the ground truth and the stacking-based error detection [232]. Our Markov
logic-based data cleaning approach achieves similar precision scores; however, by producing
a higher recall score, we are able to outperform the HoloClean approach.

The Nadeef system also treats the integrity constraints holistically and achieves an
average F1-measure of 0.89 on the HOSP dataset, as shown in Table 6.8. Although their
system demonstrates better performance than ours in regard to MD rules, we achieve better
F1-score values for the joint execution of the duplicate detection and accuracy violation
detection rules: we demonstrate an average performance of F1 0.90 on hosp.

We also performed the qualitative evaluation of all three systems by comparing the
functionality of our SRL-based approach against the HoloClean and Nadeef systems, as
shown in Table 6.9. In contrast to these systems, our method relies on the ILP-based MAP
inference [179]. While using the Markov logic formalism, we model our data cleaning rules
in the ubiquitous first-order logic language. Similarly to Nadeef, our method performs
error detection and repair in a joint manner, whereas HoloClean treats error detection
as a black box.

137

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Figure 6.10: The part of the msag dataset with missing organization values. Markov logic
captures the following evidence: if two papers of the same author have been published in the
same year, then they may be published by the author of the same organization. Nodes notation:
A - denotes Author entity; O - Organization and P - Paper. Missing edges are marked as
dashed lines. Source [234].

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Recall

F1

1 − 2 missing edges
3 − 4 missing edges

more than 5

Figure 6.11: The accuracy of data cleaning on MSAG that depends on the amount of missing
edges. Source [234].

6.5.4 Holistic Data Cleaning: Missing Value and Consistency Issues
Interaction

The next series of experiments are conducted on web data, and we provide initial results on
cleaning the highly imperfect graph-structured MSAG dataset. We study the connection
between completeness and data consistency by providing the Markov logic data cleaning
solution on web data. The completeness and consistency dimensions interact with each
other in the following manner: missing values imputation helps to fix inconsistencies, and

138

6.5 Experiments

<10
10

-20
20

-30
30

-40
40

-50
50

-60
60

-70
70

-80
80

-90
90

-10
0

0

20

40

60

80

100

120

F1-score (in %)

A
ut

ho
r

en
tit

ie
s

Figure 6.12: The distribution of the corrected Author-entities. Source [234].

by correcting values, we might identify further missing entities. We run this experiment
on the randomly selected 600 Author-entities, for each Author-entity with at least 10
Paper-Author edges. The example of the MSAG graph is shown in Figure 6.10. The
performance of our method on the MSAG dataset is provided in Figure 6.11. Depending on
the number of missing edges, we distinguish between three kinds of Author-nodes (marked
separately): nodes with one to two missing Author-Organization edges, nodes with three
to four missing values for the Author-Organization connection, and nodes with more than
5 missing edges.

Furthermore, Figure 6.12 shows another perspective on this experiment by demon-
strating the exact distribution of corrected Author-entities (x-axis) by F1-score (y-axis).
Our approach achieves overall F1 score higher than 50% and recall higher than 78% for
Author-entities with maximal two missing edges. The precision scores drop when repairing
entities with more than three missing edges. However, we still achieve a recall ranging
from 0.8 to 1.0. The reason is that our approach is producing more false positives with
an increasing number of missing values. This experiment shows that the SRL-based data
cleaning method produces reasonable results on web data with a small number of errors
(e.g., missing values).

6.5.5 Usability of Modelling Data Cleaning Rules With Markov Logic

In this section, we discuss the usability of modelling data cleaning rules by using Markov
logic on three datasets such as hosp, tpc-h, and msag. This part of our experimental
study is designed to show how the expressiveness of Markov logic facilitates modelling
the data cleaning rules. To examine the usability of our method, we follow the research
methodology from umux-lite [149] by postulating the umux-lite questionnaire item:

139

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

hosp tpc-h msag

observed
predicates

providerNr/hosp(hid, pn)
hospitalName/hosp(hid, n)
address/hosp(hid, add)
city/hosp(hid, c)
state/hosp(hid, st)
zipCode/hosp(hid, code)
phoneNumber/hosp(hid, numb)
condition/hosp(hid, cond)
measureCode/hosp(hid, mcode)
score/hosp(hid, score)
zip/zipcode(zid, code)
state/zipcode(zid, st)

custKey(id, key)
name(id, n)
addr(id, add)
natKey(id, nkey)
phone(id, ph)
acc(id, a)
mrkt(id, m)
orderKey(id, okey)
totalPrice(id, p)
orderDate(id, d)
orderPriority(id, pr)
clerk(id, c)

publishYear(paperid, pubyear)
author(paperid, authorid)
affiliation(paperid, affilid)
inRange(pubyear, pubyear)
originAffiliationName(affilid, oname)
normalAffiliationName(affilid, nname)

hidden
predicates

equal-HospitalName/hosp(hid, hid)
equal-Address/hosp(hid, hid)
equal-City/hosp(hid, hid)
equal-State/hosp(hid, hid)
equal-ZipCode/hosp(hid, hid)
equal-PhoneNumber/hosp(hid, hid)
equal-Condition/hosp(hid, hid)
hosp/match-State/ZipCode(hid, zid)
hosp/match-ZipCode/ZipCode(hid, code)

equal-Names(id, id)
equal-Addr(id, id)
equal-Natkey(id, id)
equal-Phone(id, id)
equal-Acc(id, id)
equal-Mrkt(id, id)
match-Phone(id, id)
match-Addr(id, id)

equal-Affiliation(paperid, paperid)
equal-OriginNames(oname, oname)
equal-OriginNamesByPaperId(paperid, paperid)
equal-NormalNames(nname, nname)
equal-NormalNamesByPaperId(paperid, paperid)
missingOriginName(paperid, oname)

Table 6.10: Markov logic predicates used in data quality rules. Source [234].

"Markov logic capabilities meet the requirements of data cleaning systems". As already
mentioned in Section 6.2, Markov logic meets the main requirements of data cleaning
systems, such as holistic data quality rules treatment [87, 62], automation [222, 223], and
heterogeneous rules incorporation [54].

Modelling HOSP Quality Rules. For the hosp dataset, we use 6 manually-designed
CDFs, which result in 15 normalized CFDs. One MD rule is also normalized into 2 formulae.
Markov logic predicates used for data quality formulae are shown in Table 6.10. The final
data cleaning model consists of 21 Markov logic formulae. In Table 6.11, we provide an
excerpt of these data quality rules. The MD rule is specified on two relations, such as
the Hosp dataset and master data. After transforming the 100k hosp tuples into Markov
logic grounded atoms, the resulting data comprises 1.3M evidence atoms, which are used
for inference.

Modelling TPC-H Quality Rules. We formulated 9 CFDs and 3 MDs for this dataset.
One example of the rules is a CFD which states that two tuples match on c_custkey, then
they should match on the c_name and c_address attributes. MDs are specified on the
same schema. These MDs state that if the LHS is similar for any pair of tuples (t1, t2),
then the attribute values on the RHS should be identified. The example of the data quality
rules is provided in Table 6.11. Furthermore, Table 6.10 shows the Markov logic predicates,
which are used to formulate data quality rules. After transforming the 100k tpc-h tuples
into Markov logic grounded atoms, the resulting data comprises 1M evidence atoms.

140

6.5 Experiments

Dataset Data Cleaning Rules Markov Logic Formulae
H

os
p cfd1 : hosp([zip] → [state, city], t1 = (_ ‖ _, _))

w1 : zip/hosp(id1, code) ∧ zip/hosp(id2, code) ∧
state/hosp(id1, s1) ∧ state/hosp(id2, s2) ∧
!state/hosp(id1, s2) ∧ !state/hosp(id2, s1)
⇒ equal-state/hosp(id1, id2)

w2 : zip/hosp(id1, code) ∧ zip/hosp(id2, code) ∧
city/hosp(id1, c1) ∧ city/hosp(id2, c2) ∧
!city/hosp(id1, c2) ∧ !city/hosp(id2, c1)
⇒ equal-city/hosp(id1, id2)

md1 : hosp[zip] = zipcode[zip] ∧ hosp[state] �= zipcode[state]
→ hosp[state] � zipcode[state]

w3 : zip/hosp(id1, code) ∧ zip/ZipCode(id2, code) ∧
state/hosp(id1, s1) ∧ state/ZipCode(id2, s2)
⇒ hosp/match-State/ZipCode(id1, id2)

T
pc

-h cfd1 : t([c_custkey] → [c_name,c_address], t1 = (_ ‖ _, _))

w1 : custKey(id1, key) ∧ custKey(id2, key)∧
name(id1, n1) ∧ name(id2, n2)∧
!name(id1, n2)∧ !name(id2, n1) ⇒ equal-Names(id1, id2)

w2 : custKey(id1, key) ∧ custKey(id2, key)∧
addr(id1, addr1) ∧ addr(id2, addr2)∧
!addr(id1, addr2)∧ !addr(id2, addr1) ⇒ equal-Names(id1, id2)

md1 : t[c_address] = t[c_address] → t[c_phone] � t[c_phone]
w3 : addr(id1, addr) ∧ addr(id2, addr)∧

phone(id1, phone1) ∧ phone(id2, phone2)∧
⇒ match-Phone(id1, id2)

M
sa

g cfd1 : m([author_id, year] → [affiliation_id], t1 = (_, _ ‖ _))
w1 : author(pid1, aid1) ∧ author(pid2, aid2)∧

publishYear(pid1, y) ∧ publishYear(pid2, y)
⇒ equal-Affiliation(pid1, pid2)

eCfd1 : m([author_id, year] → [affiliation_id],
t1 = (_, diff(_) ≤ 2 ‖ _))

w2 : author(pid1, aid1) ∧ author(pid2, aid2)∧
publishYear(pid1, y1) ∧ publishYear(pid2, y2)∧
inRange(y1, y2) ⇒ equal-Affiliation(pid1, pid2)

symmetry :
∞ : equal-Affiliation(pid1, pid2) ⇒ equal-Affiliation(pid2, pid1)
transitivity :
∞ : equal-Affiliation(pid1, pid2) ∧ equal-Affiliation(pid2, pid3)

⇒ equal-Affiliation(pid1, pid3)

Table 6.11: Modelling data cleaning rules as Markov logic programs (an excerpt). MLN’s
soft rules are specified with the weights wi set to 1.0 and hard rules are marked with infinite
weights: ∞. Source [234].

Modelling MSAG Quality Rules. For the msag dataset, we develop data quality
rules based on extended CFDs [48], and equality axioms, such as symmetry and transitivity
(see Figure 6.10). For the Paper-Author-Organization entities, we specify two CFDs, one
extended CFD and 8 additional rules that express the equality axioms for hidden predicates.
Considering the semantical meaning of the data, we use the ability to incorporate domain
knowledge into the data cleaning process. For example, the CFD
m([author_id, year]→ [affiliation_id], t1 = (_, _ ‖ _))
captures missing affiliations by the same author, which were published in the same year.
Practically, we assume that in academia, an average contract lasts around 2-3 years.
Therefore, we will extend our search range by augmenting this knowledge in the form
of a predicate inRange(year, year). Additionally, we spot more missing values by adding
equality axioms. For example, the hard rule
equal-Affiliation(id1, id2) ∧ equal-Affiliation (id2, id3) ⇒ equal-Affiliation(id1, id3)
specifies a transitive relationship between three different Organization entities. Thus, our
final Markov logic program contains 21 lines of code (an example is shown in Table 6.11).

141

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

Inferred fact True False
Person may stop Smoking �
Individual may recall Person �
Director may have Office �
Corporation may have Office �
Head may contain Idea �
Member may be Brain �
Brain may be Description �
Challenge may be Organization �
Organization may be Device �
Article may give Office �

Table 6.12: The evaluation of inferred data for the non-relational dataset as a series of
true/false questions over inferred common sense facts. The top 5 facts in this table were
annotated as correct by human annotators, while the lower 5 were annotated as incorrect.

6.5.6 Experiments on Non-Relational Data.

To conduct experiments on cleaning non-relational data, we use the Weltmodell [9]
dataset. In the experiment, we face two challenges: (1) the absence of the master data,
and (2) Weltmodell misses factual information (attributes), and we still do not know
whether it misses statements (Open world assumption).

Please note that the MLN formulation for the Weltmodell dataset is provided in
Section 6.4.1. For this dataset, the inference by using our MLN model resulted in a total
of 21k potential facts as missing values. We evaluated the imputation of missing data by
conducting a user study. This is made possible through the fact that the knowledge base
consists of common sense facts that are easily evaluated as a series of true/false questions
by a set of evaluators. To evaluate these inferred facts, we randomly sampled 230 facts
each from three clusters of facts that concern the concepts "Human", "Organization"
and "Brain". These 690 facts were passed to 6 human annotators, and each of them was
asked to decide whether an inferred common sense fact was true or not. Examples of this
task are given in Table 6.12.

To measure to what extent evaluators agree on the evaluation task, we calculate the
commonly-used kappa-coefficient [58], which gives a quantitative measure of the magnitude
of agreement between annotators. In the following, we provide a calculation for kappa.

Let Ao be the observed agreement that is the number of judgments on which the
annotators agree divided by the total number of relations. Furthermore, let Ae be the
number reflecting the fact that annotators agree on any category. In our case, we refer to
"correct" and "incorrect" as a set of labels {1, 0} respectively. Then

Ae =
∑

k∈{1,0}
P (userA|k) · P (userB|k)

142

6.6 Summary

Settings Organiz. AoC Brain AoC Human AoC
User 1 and 2 0.8438 66.07% 0.7456 55.26% 0.7512 65.07%
User 1 and 3 0.8348 64.29% 0.8158 51.32% 0.7512 57.89%
User 1 and 4 0.7991 61.61% 0.6535 32.89% 0.7033 52.15%
User 1 and 5 0.8571 62.95% 0.6667 43.42% 0.7943 59.33%
User 1 and 6 0.7813 62.95% 0.6579 42.54% 0.7321 54.07%
User 2 and 3 0.7946 61.61% 0.7193 50.88% 0.7321 63.64%
User 2 and 4 0.8214 62.05% 0.5658 32.89% 0.6746 57.42%
User 2 and 5 0.7902 58.93% 0.6491 46.93% 0.7273 62.68%
User 2 and 6 0.7768 62.05% 0.6667 47.37% 0.6746 57.89%
User 3 and 4 0.8393 61.61% 0.6799 31.14% 0.7223 52.63%
User 3 and 5 0.7813 57.14% 0.6140 37.72% 0.7368 55.98%
User 3 and 6 0.7321 58.48% 0.6842 40.79% 0.7033 52.15%
User 4 and 5 0.7813 56.25% 0.6096 27.19% 0.7273 52.15%
User 4 and 6 0.7589 58.93% 0.6447 28.51% 0.6938 48.33%
User 5 and 6 0.7366 56.25% 0.6491 38.6% 0.7273 52.63%
Kappa Value 0.5030 - 0.3309 - 0.3403 -

Table 6.13: User study evaluation. kappa statistics and interuser observed agreement. kappa
interpretation according to Landis J.R and Koch G.G. from [146]: 0.0 . . . 0.2 (slight); 0.2 . . .
0.4 (fair); 0.4 . . . 0.6 (moderate); 0.6 . . . 0.8(substantial); 0.8 . . . 1.0 (perfect). Column AoC
denotes the percent of agreement on correct relations.

is the expected agreement by chance. Finally, we calculate the kappa coefficient as:

k = Ao − Ae

1 − Ae

In other words, kappa is a ratio between the number of agreements that were found beyond
chance, to the total number of attainable agreements beyond chance.

Table 6.13 presents all the observed agreements between all combination pairs of 6
annotators and the percent of agreement on correct relations. We observe an overall kappa
of 0.5030 for the "Organization"-cluster, 0.3309 for the "Brain"-cluster and 0.3403 for the
"Human"-cluster. According to Landis, J. and Koch, G. from [146], the first result can
be interpreted as moderate and the last two as fair. The results of the experiments on
the Weltmodell dataset support our claim that using SRL approach by adopting the
integrity constraints rules is a promising direction for data cleaning on non-relational data.

6.6 Summary

The usual way to deal with data errors is to apply multiple data cleaning solutions [223],
such as outlier detection [8], missing value imputation [245], or formulating data cleaning
rules [62, 91]. Since "one size does not fit all" [223, 167], there is a need for domain-
and application-specific cleaning solutions. In this section, we provided an approach of a

143

6. PROBABILISTIC DATA CURATION THROUGH MODELLING
MULTI-COLUMN METADATA WITH MARKOV LOGIC

mapping data cleaning problem to probabilistic inference through a statistical relational
learning formalism such as Markov logic. We developed a method to translate integrity
constraints into a probabilistic logical language. This allows to reason over data quality
dimensions violation in a probabilistic way. By applying the probabilistic joint inference, our
method eliminates the need for the manual specification of the data cleaning rules execution
order. We use the SRL formalism - Markov logic, which allows us to incorporate semantic
constraints and to extend traditional data quality rules with domain- and application-
specific knowledge. By means of probabilistic data cleaning, we obtained a method that
(1) utilizes the probabilistic joint inference over interleaved data cleaning rules, and provides
probabilistic repair; (2) takes the interleaved data quality issues into account and eliminates
the need to specify the order of rule execution; and (3) expresses data quality rules
(e.g. canonical and approximate integrity constraints) as a first-order logic formula to
directly translate into the predictive model defined with the Markov logic formalism. The
experimental results on relational and non-relational data showed that using the Markov
logic formalism is a promising direction for probabilistic data cleaning.

144

7
Conclusion and Future Work

In this dissertation, we introduced data curation methods to make the data preparation
process easier and more effective. We provided a systematic study for using metadata
in data quality management, by creating a comprehensive mapping between metadata
and data quality issues, such that it establishes the connection between dirty data and
extractable metadata. Next, we categorized metadata by taking the composability of
metadata into account. Based on the above categorization, we generalized the metadata
composability as a set of EBNF rules, which enables data scientists to compose new
metadata. Therefore, we provided an approach for exploiting canonical or newly generated
metadata in error detection heuristics to create data cleaning strategies [233].

Furthermore, we have explained the problem of error detection as a classification task.
We holistically combine several error detection strategies by using state-of-the-art ensemble
learning algorithms [252], while taking the dataset’s metadata into account [232, 159].

Finally, we proposed a declarative data cleaning approach based on statistical relational
learning and probabilistic inference. We demonstrated how integrity constraints, expressed
as first-order logic formulas, are translated into probabilistic logical languages, allowing
us to reason over inaccuracies, inconsistencies or duplicates in a probabilistic way. Our
approach allows the usage of probabilistic joint inference over interleaved data cleaning
rules for the improvement of data quality. By using a declarative probabilistic-logical
formalism such as Markov logic, we are able to incorporate more semantic constraints and,
therefore, extend traditional data quality rules [234].

In this dissertation, we focus on effective data quality management by providing methods
for data error detection and correction. We addressed several research questions of data
quality management:

145

7. CONCLUSION AND FUTURE WORK

• How can we use the characteristics of the data in order to improve the error detection
process?

• How can we effectively combine different data cleaning strategies to provide an
effective and dataset-specific error detection method?

• How can we overcome the shortcomings of the minimal repair by the simultaneous
treatment of error detection and correction, and using probabilistic inference for data
cleaning?

The assertion of this dissertation is that it is feasible to build effective error detection
methods that incorporate dataset characteristics, aggregate various data cleaning strategies,
and employ the probabilistic repair operational semantic. Hence, we proposed (1) an
approach for effective data quality assessment based on metadata information [233]; (2) a
methodology for effective data cleaning strategies aggregation for data error detection [232,
159]; and (3) a concept for a declarative data cleaning approach based on statistical
relational learning and probabilistic inference [234].

Our ultimate goal is to support data scientists to minimize the time and effort spent
on data preparation in the data science workflow, by declaratively specifying probabilistic
data cleaning rules and building agile and goal-oriented error detection routines, with the
aid of the datasets metadata and machine learning approaches.

In future work, we continue to focus on data preparation and seek ways to advance them.
With this goal in mind, we now describe three possible directions for the improvement of
data preparation.

7.1 Error Detection and Repair as a Multi-Armed Bandit
Problem

Error Detection. As the number of newly developed data cleaning systems in-
creases [112, 36, 239], it becomes more important to experiment with the combination of
all available systems and select the most useful data cleaning strategies upfront. Hence,
fast experimentation has become increasingly relevant as systems become more complex
and require more computational resources [234, 202]. Additionally to the Best-K Systems
Selection approach suggested in Section 5.2.6, selecting the best m data cleaning strategies
can also be formulated as a multi-armed bandit problem [39], where we face K unknown
distributions, which denote K different data cleaning strategies. After performing n
evaluations, our goal is to identify a subset of m distributions (m ≤ K), also referred to as
arms, corresponding to some specified criterion, such as the maximization of the reward
(or the number of detected errors in our setting). Thus, applying the multi-armed bandit

146

7.2 Reinforcement Learning for Data Cleaning

algorithms is a promising direction to select the set of the most effective data cleaning
systems.

Error Repair. In data cleaning, one of the most challenging tasks is how to determine
what is the best repair value for a given data error. Optimization is commonly employed to
determine the repair value if a set of potential repairs is available [202, 62, 234]. Being
inherently a resource allocation technique, the bandit algorithms specify a strategy to select
the most rewarding arm (error repair) in each turn. Considering the data correction system
as an "arm", we could apply this theory on selecting the best possible "treatment" (system
allocation or value assignment for repair) in each data point. The bandit algorithms offer
the advantage of rapid experimentation because they test variants that have the greatest
potential reward, meaning the correct error repair. The reward function might be expressed
in terms of the data quality rules and integrity constraints (functional dependencies).
Since bandit methods have demonstrated notable empirical performance [45, 151], these
algorithms are suitable candidates for future research aimed at discovering the optimal
assignment of the erroneous values corrections.

7.2 Reinforcement Learning for Data Cleaning

Considering the recent advances in machine learning and reinforcement learning [140,
158, 181], the current trend in database research is to learn various heuristics instead of
specifying them by hand. Encouraged by these results, we are interested in addressing
the problem of how do we measure the quality of data cleaning in a given data science
workflow upfront? This challenge reveals a set of combinatorial issues if we consider the
combinations of all possible data cleaning strategies, each with many parameters, the order
of data cleaning steps, and various iterations of specific data cleaning tasks.

Generally, reinforcement learning models are able to map scenarios (suspicious data
values) to appropriate actions (rules for detecting data errors), with the goal of maximizing
a cumulative reward (overall error detection). Initially, the learner is not shown which
action is best. Instead, the learner must discover the best error detection rules (heuristic)
and their order through trial and error, by either exploiting current knowledge or exploring
unknown variants of rules. We argue that by using our mapping between metadata and
data quality issues (see Chapter 3) as an initial feature space, the specialized heuristics
(e.g., learning thresholds) can be learned to minimize the false positives rate produced by
all possible heuristics. Therefore one of the potential future directions is to develop an error
detection workflow generator that takes the heuristics training set as input (as described
in Chapter 3) and returns a set of predicates that identify dirty candidate records.

147

7. CONCLUSION AND FUTURE WORK

Figure 7.1: VizNet enables data scientists and visualization researchers to aggregate data
and enumerate visual encodings. Figure used with permission [118].

7.3 Effectiveness of Visual Encoding for Data Curation

Driven by the requirement to integrate ever more resources, recent scientific and enterprise
applications increasingly face the problem of data variety1 [60]. Now, data has a variety
of shapes, including textual content, IoT data, time series, NoSQL and SQL stores, and
event streams [59]. Considering the increasing number of data types, the inspection of
the data requires effective profiling [115] and visualization to characterize these datasets
and make a decision whether the datasets have an acceptable quality [128]. On the other
hand, data visualization is a combinatorial design problem: a dataset can be differently
visualized, and a single visualization can be used for various analytic tasks [118, 134]. The
recently proposed VizNet corpus is a large-scale visualization learning and benchmarking
repository. This corpus provides a set of triplets consisting of (data, visual encoding, data
analytic task) (see Figure 7.1). Hu K. et al. [118] trained a machine learning model to
predict the effectiveness of the visualization for the particular task, such as find maximum,
compare averages, read value, compare values, cluster and find outlier. This model could
be used to provide a visualization recommendation system for data cleaning. We could
leverage VizNet to study and develop effective visualizations for data preparation and data
cleaning since data cleaning is a set of tasks comprising error detection and error correction.
In future work we will therefore answer the question: what visual encodings are efficient to
perform tasks for data curation?

1http://bit.ly/big-data-3v

148

References

[1] Abedjan, Z., Akcora, C. G., Ouzzani, M., Papotti, P., and Stonebraker, M. (2015a). Temporal rules
discovery for web data cleaning. Proceedings of the VLDB Endowment (PVLDB), 9:336–347.

[2] Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M.,
and Tang, N. (2016). Detecting data errors: Where are we and what needs to be done? In Proceedings
of the VLDB Endowment (PVLDB).

[3] Abedjan, Z., Golab, L., and Naumann, F. (2015b). Profiling relational data: a survey. In VLDB Journal,
volume 24, pages 557–581.

[4] Abedjan, Z., Golab, L., Naumann, F., and Papenbrock, T. (2018). Data profiling. Synthesis Lectures
on Data Management.

[5] Abedjan, Z. and Naumann, F. (2011). Advancing the discovery of unique column combinations. In
Proceedings of the International Conference on Data Engineering (ICDE).

[6] Abedjan, Z. and Naumann, F. (2014). Amending rdf entities with new facts. In European Semantic
Web Conference, pages 131–143.

[7] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

[8] Aggarwal, C. C. (2015). Outlier analysis. In Data mining. Springer.

[9] Akbik, A. and Michael, T. (2014). The weltmodell: A data-driven commonsense knowledge base. In
9th Edition of the Language Resources and Evaluation Conference, LREC 2014.

[10] Amazon (2019). "amazon mechanical turk". online. https://https://www.mturk.com/, Accessed:
2019-07-24.

[11] Anderson, C. R., Domingos, P., and Weld, D. S. (2002). Relational markov models and their application
to adaptive web navigation. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (SIGKDD).

[12] Arasu, A., Ré, C., and Suciu, D. (2009). Large-scale deduplication with constraints using dedupalog.
In Proceedings of the International Conference on Data Engineering (ICDE).

[13] Arenas, M., Bertossi, L., and Chomicki, J. (1999). Consistent query answers in inconsistent databases.
In Proceedings of the 18-th symposium on Principles of database systems.

[14] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T., Franklin,
M. J., Ghodsi, A., et al. (2015). Spark sql: Relational data processing in spark. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages 1383–1394.

149

REFERENCES

[15] Arocena, P. C., Glavic, B., Mecca, G., Miller, R. J., Papotti, P., and Santoro, D. (2015). Messing up
with bart: error generation for evaluating data-cleaning algorithms. In Proceedings of the International
Conference on Very Large Databases (VLDB), volume 9, pages 36–47.

[16] Assadi, A., Milo, T., and Novgorodov, S. (2017). Dance: Data cleaning with constraints and experts.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 1409–1410.

[17] Barnett, V. and T., L. (1995). Outliers in Statistical Data. Wiley Online Library.

[18] Batini, C., Scannapieco, M., et al. (2016). Data and information quality. Springer.

[19] Bergé, J.-M., Fonkoua, A., Maginot, S., and Rouillard, J. (1993). Xnor operator. In VHDL’92, pages
81–83. Springer.

[20] Bergman, M., Milo, T., Novgorodov, S., and Tan, W.-C. (2015). Query-oriented data cleaning with
oracles. In Proceedings of the International Conference on Management of Data (SIGMOD), pages
1199–1214.

[21] Berti-Equille, L. (2019). Learn2clean: Optimizing the sequence of tasks for web data preparation. In
The World Wide Web Conference, pages 2580–2586. ACM.

[22] Berti-Equille, L., Dasu, T., and Srivastava, D. (2011). Discovery of complex glitch patterns: A
novel approach to quantitative data cleaning. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 733–744.

[23] Berti-Equille, L., Harmouch, H., Naumann, F., Novelli, N., and Thirumuruganathan, S. (2018).
Discovery of genuine functional dependencies from relational data with missing values. In Proceedings of
the VLDB Endowment (PVLDB), volume 11, pages 880–892.

[24] Bertossi, L. (2011). Database repairing and consistent query answering. Synthesis Lectures on Data
Management.

[25] Bertossi, L., Kolahi, S., and Lakshmanan, L. V. (2013). Data cleaning and query answering with
matching dependencies and matching functions. Theory of Computing Systems, 52(3):441–482.

[26] Beskales, G., Ilyas, I. F., and Golab, L. (2010). Sampling the repairs of functional dependency violations
under hard constraints. In Proceedings of the International Conference on Very Large Databases (VLDB).

[27] Beskales, G., Soliman, M. A., Ilyas, I. F., and Ben-David, S. (2009). Modeling and querying possible
repairs in duplicate detection. In Proceedings of the International Conference on Very Large Databases
(VLDB).

[28] Biemer, P. P. and Lyberg, L. E. (2003). Introduction to survey quality. John Wiley & Sons.

[29] Bishop, C. M. (2006). Pattern recognition. Machine Learning.

[30] Bleiholder, J. and Naumann, F. (2006). Conflict handling strategies in an integrated information
system. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät.

[31] Blitzstein, J. K. and Hwang, J. (2014). Introduction to probability. Chapman and Hall/CRC.

[32] Blum, A. L. and Rivest, R. L. (1993). Training a 3-node neural network is np-complete. In Machine
learning: From theory to applications, pages 9–28.

150

REFERENCES

[33] Bohannon, P., Fan, W., Flaster, M., and Rastogi, R. (2005). A cost-based model and effective heuristic
for repairing constraints by value modification. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 143–154.

[34] Bohannon, P., Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. (2007). Conditional functional
dependencies for data cleaning. In Proceedings of the International Conference on Data Engineering
(ICDE).

[35] Box, G. E. and Draper, N. R. (1987). Empirical model-building and response surfaces. John Wiley &
Sons.

[36] Breck, E., Polyzotis, N., Roy, S., Whang, S., and Zinkevich, M. (2019). Data validation for machine
learning. In Conference on Systems and Machine Learning (SysML).

[37] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

[38] Bruni, R. and Sassano, A. (2001). Errors detection and correction in large scale data collecting. In
International Symposium on Intelligent Data Analysis.

[39] Bubeck, S., Wang, T., and Viswanathan, N. (2013). Multiple identifications in multi-armed bandits.
In International Conference on Machine Learning, pages 258–265.

[40] Burdick, D., Fagin, R., Kolaitis, P. G., Popa, L., and Tan, W.-C. (2015). A declarative framework for
linking entities. In Proceedings of the International Conference on Database Theory (ICDT).

[41] Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., and Rundensteiner, E. A. (2014). Scalable distance-
based outlier detection over high-volume data streams. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 76–87.

[42] Caruana, R. and Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms.
In Proceedings of the International Conference on Machine learning.

[43] Caruccio, L., Deufemia, V., and Polese, G. (2016). Relaxed functional dependencies—a survey of
approaches. IEEE Transactions on Knowledge and Data Engineering.

[44] Casanova, M. A., Fagin, R., and Papadimitriou, C. H. (1984). Inclusion dependencies and their
interaction with functional dependencies. Journal of Computer and System Sciences.

[45] Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. In Advances in neural
information processing systems, pages 2249–2257.

[46] Chen, K., Chen, H., Conway, N., Hellerstein, J. M., and Parikh, T. S. (2011). Usher: Improving data
quality with dynamic forms. IEEE Transactions on Knowledge and Data Engineering, 23:1138–1153.

[47] Chen, W., Fan, W., and Ma, S. (2009a). Analyses and validation of conditional dependencies with
built-in predicates. In International Conference on Database and Expert Systems Applications.

[48] Chen, W., Fan, W., and Ma, S. (2009b). Incorporating cardinality constraints and synonym rules into
conditional functional dependencies. Information Processing Letters, 109(14).

[49] Chen, X.-y. and Zhan, Y.-y. (2008). Multi-scale anomaly detection algorithm based on infrequent
pattern of time series. Journal of Computational and Applied Mathematics.

151

REFERENCES

[50] Chiang, F. and Miller, R. J. (2011). A unified model for data and constraint repair. In Proceedings of
the International Conference on Data Engineering (ICDE), pages 446–457.

[51] Chodorow, M. and Leacock, C. (2000). An unsupervised method for detecting grammatical errors.
In Proceedings of the 1st North American chapter of the Association for Computational Linguistics
conference.

[52] Chomicki, J. and Marcinkowski, J. (2005). Minimal-change integrity maintenance using tuple deletions.
Information and Computation, 197.

[53] Chu, X., Ilyas, I. F., Krishnan, S., and Wang, J. (2016). Data cleaning: Overview and emerging
challenges. In Proceedings of the 2016 International Conference on Management of Data, pages 2201–2206.

[54] Chu, X., Ilyas, I. F., and Papotti, P. (2013). Holistic data cleaning: Putting violations into context. In
Proceedings of the International Conference on Data Engineering (ICDE).

[55] Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P., Tang, N., and Ye, Y. (2015). Katara: A
data cleaning system powered by knowledge bases and crowdsourcing. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[56] Chung, Y., Krishnan, S., and Kraska, T. (2017). A data quality metric (dqm): how to estimate the
number of undetected errors in data sets. In Proceedings of the International Conference on Very Large
Databases (VLDB), volume 10, pages 1094–1105.

[57] Codd, E. F. (1972). Further normalization of the database relational model. Data Base Systems.

[58] Cohen, J. (1960). Introduces kappa as a way of calculating inter rater agreement between two raters.
Educational and Psychological Measurement.

[59] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghemawat, S., Gubarev,
A., Heiser, C., Hochschild, P., et al. (2013). Spanner: Google’s globally distributed database. ACM
Transactions on Computer Systems, 31(3).

[60] Council, U. N. R. (2013). Frontiers in Massive Data Analysis. The National Academies Press.

[61] Cussens, J. (2007). Logic-based formalisms for statistical relational learning. Introduction to Statistical
Relational Learning, Chapter 9.

[62] Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas, I. F., Ouzzani, M., and Tang, N.
(2013). Nadeef: A commodity data cleaning system. In Proceedings of the International Conference on
Management of Data (SIGMOD).

[63] Dalvi, N., Dasgupta, A., Kumar, R., and Rastogi, V. (2013). Aggregating crowdsourced binary ratings.
In Proceedings of the International World Wide Web Conference (WWW).

[64] Dalvi, N. and Suciu, D. (2013). The dichotomy of probabilistic inference for unions of conjunctive
queries. Journal of the ACM, 59(6).

[65] Dasu, T. and Johnson, T. (2003). Exploratory data mining and data cleaning, volume 479. John Wiley
& Sons.

[66] Dasu, T., Johnson, T., Muthukrishnan, S., and Shkapenyuk, V. (2002). Mining database structure; or,
how to build a data quality browser. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 240–251.

152

REFERENCES

[67] De, S., Hu, Y., Meduri, V. V., Chen, Y., and Kambhampati, S. (2016). Bayeswipe: A scalable
probabilistic framework for improving data quality. Journal of Data and Information Quality (JDIQ),
8(1):5.

[68] De Sa, C., Ilyas, I. F., Kimelfeld, B., Re, C., and Rekatsinas, T. (2019). A formal framework for
probabilistic unclean databases. In Proceedings of the International Conference on Database Theory
(ICDT).

[69] De Sa, C., Ratner, A., Ré, C., Shin, J., Wang, F., Wu, S., and Zhang, C. (2016). Deepdive: Declarative
knowledge base construction. In Proceedings of the International Conference on Management of Data
(SIGMOD), volume 45, pages 60–67.

[70] Deng, D., Fernandez, R. C., Abedjan, Z., Wang, S., Stonebraker, M., Elmagarmid, A., Ilyasl, I. F.,
Madden, S., Ouzzani, M., and Tang, N. (2017). The data civilizer system. In Proceedings of the
Conference on Innovative Data Systems Research (CIDR).

[71] Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pages 1–15.

[72] Do, H.-H. and Rahm, E. (2002). Coma: a system for flexible combination of schema matching
approaches. In Proceedings of the 28th international conference on Very Large Data Bases, pages
610–621.

[73] Domingos, P. and Lowd, D. (2009). Markov logic: An interface layer for artificial intelligence. Morgan
& Claypool Publishers.

[74] Dong, X. L. (2015). Big Data Integration. Synthesis Lectures on Data Management, Morgan &
Claypool.

[75] Dong, X. L. and Rekatsinas, T. (2018). Data integration and machine learning: A natural synergy. In
Proceedings of the 2018 International Conference on Management of Data.

[76] Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern classification. John Wiley & Sons.

[77] Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall.

[78] Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate record detection: A survey.
IEEE Transactions on knowledge and data engineering, 19(1):1–16.

[79] Fagin, R. (1980). Horn clauses and database dependencies. In Proceedings of the twelfth annual ACM
symposium on Theory of computing.

[80] Fan, W. (2008). Dependencies revisited for improving data quality. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[81] Fan, W., Gao, H., Jia, X., Li, J., and Ma, S. (2011). Dynamic constraints for record matching. In
Proceedings of the International Conference on Very Large Databases (VLDB).

[82] Fan, W. and Geerts, F. (2012). Foundations of data quality management. Morgan & Claypool
Publishers.

[83] Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. (2008). Conditional functional dependencies for
capturing data inconsistencies. In ACM Transactions on Database Systems (TODS).

153

REFERENCES

[84] Fan, W., Geerts, F., Tang, N., and Yu, W. (2013). Inferring data currency and consistency for conflict
resolution. In Proceedings of the International Conference on Data Engineering (ICDE), pages 470–481.

[85] Fan, W., Geerts, F., and Wijsen, J. (2012). Determining the currency of data. In ACM Transactions
on Database Systems (TODS), volume 37, page 25.

[86] Fan, W., Li, J., Ma, S., Tang, N., and Yu, W. (2010). Towards certain fixes with editing rules and
master data. In Proceedings of the International Conference on Very Large Databases (VLDB), volume 3,
pages 173–184.

[87] Fan, W., Ma, S., Tang, N., and Yu, W. (2014). Interaction between record matching and data repairing.
Journal of Data and Information Quality.

[88] Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Language, speech, and communication.
MIT Press.

[89] Fellegi, I. P. and Holt, D. (1976). A systematic approach to automatic edit and imputation. Journal
of the American Statistical Association.

[90] Felzenszwalb, P. F. and Huttenlocher, D. P. (2006). Efficient belief propagation for early vision.
International journal of computer vision, 70(1):41–54.

[91] Geerts, F., Giansalvatore, M., Papotti, P., and Santore, D. (2013). The llunatic data cleaning
framework. In Proceedings of the VLDB Endowment (PVLDB).

[92] Genesereth, M. R. and Nilsson, N. J. (1987). Logical foundations of artificial intelligence. Intelligence.
Morgan Kaufmann.

[93] Getoor, L. and Taskar, B. (2007). Introduction to statistical relational learning. MIT press.

[94] Gilks, W. R., Richardson, S., and Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice.
Chapman and Hall/CRC.

[95] Gogate, V. and Domingos, P. (2016). Probabilistic theorem proving. Communications of the ACM,
59:107–115.

[96] Gokhale, C., Das, S., Doan, A., Naughton, J. F., Rampalli, N., Shavlik, J., and Zhu, X. (2014).
Corleone: hands-off crowdsourcing for entity matching. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 601–612. ACM.

[97] Golab, L., Karloff, H., Korn, F., and Srivastava, D. (2010). Data auditor: Exploring data quality and
semantics using pattern tableaux. Proceedings of the VLDB Endowment (PVLDB), 3(1-2):1641–1644.

[98] Goldberg, Y. and Orwant, J. (2013). A dataset of syntactic-ngrams over time from a very large corpus
of english books. In Second Joint Conference on Lexical and Computational Semantics, Association for
Computational Linguistics.

[99] Golshan, B., Halevy, A., Mihaila, G., and Tan, W.-C. (2017). Data integration: After the teenage
years. In Proceedings of the 36th Symposium on Principles of Database Systems.

[100] Gribkoff, E., Suciu, D., and Van den Broeck, G. (2014a). Lifted probabilistic inference: A guide for
the database researcher. IEEE Data Eng. Bull.

154

REFERENCES

[101] Gribkoff, E., Van den Broeck, G., and Suciu, D. (2014b). The most probable database problem. In
Proceedings of the First International Workshop on Big Uncertain Data.

[102] Guo, P. (2013). Data science workflow: Overview and challenges. Communications of the ACM.

[103] Guo, P. J. (2012). Software tools to facilitate research programming. PhD thesis, Stanford University
Stanford, CA.

[104] Gupta, M., Gao, J., Aggarwal, C. C., and Han, J. (2014). Outlier detection for temporal data: A
survey. IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(9):2250–2267.

[105] Haas, D., Krishnan, S., Wang, J., Franklin, M. J., and Wu, E. (2015). Wisteria: Nurturing scalable
data cleaning infrastructure. In Proceedings of the International Conference on Very Large Databases
(VLDB), volume 8, pages 2004–2007.

[106] Halevy, A., Doan, A., and Ives, Z. (2012). Principles of data integration. Morgan Kaufmann.

[107] Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

[108] Hartigan, J. (1975). Clustering algorithms. Wiley.

[109] Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy, M., Jia, B.,
Jia, Y., Kalro, A., et al. (2018). Applied machine learning at facebook: A datacenter infrastructure
perspective. In High Performance Computer Architecture (HPCA), pages 620–629.

[110] He, J., Veltri, E., Santoro, D., Li, G., Mecca, G., Papotti, P., and Tang, N. (2016). Interactive and
deterministic data cleaning. In Proceedings of the 2016 International Conference on Management of
Data, pages 893–907. ACM.

[111] Heath, T. and Bizer, C. (2011). Linked data: Evolving the web into a global data space. Synthesis
Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers.

[112] Heidari, A., McGrath, J., Ilyas, I. F., and Rekatsinas, T. (2019). Holodetect: Few-shot learning for
error detection. In Proceedings of the International Conference on Management of Data (SIGMOD).

[113] Heise, A., Kasneci, G., and Naumann, F. (2014). Estimating the number and sizes of fuzzy-duplicate
clusters. In Proceedings of the International Conference on Information and Knowledge Management
(CIKM), pages 959–968.

[114] Hellerstein, J. M. (2008). Quantitative data cleaning for large databases. United Nations Economic
Commission for Europe (UNECE).

[115] Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton, J., Dey, A., Nag, S., Ramachandran, K.,
Arora, S., Bhattacharyya, A., Das, S., et al. (2017). Ground: A data context service. In Proceedings of
the Conference on Innovative Data Systems Research (CIDR).

[116] Hodge, V. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence
review, 22(2):85–126.

[117] Hould, J.-N. (2017). Craft beers dataset. Version 1.

[118] Hu, K., Gaikwad, N., Bakker, M., Hulsebos, M., Zgraggen, E., Hidalgo, C., Kraska, T., Li, G., and
Demiralp, Ç. (2019a). Viznet: Towards a large-scale visualization learning and benchmarking repository.
In ACM Human Factors in Computing Systems (CHI).

155

REFERENCES

[119] Hu, K. Z., Bakker, M. A., Li, S., Kraska, T., and Hidalgo, C. A. (2019b). Vizml: A machine learning
approach to visualization recommendation. In CHI.

[120] Hua, M. and Pei, J. (2007). Cleaning disguised missing data: a heuristic approach. In Proceedings of
the International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 950–958.

[121] Huhtala, Y., Kärkkäinen, J., Porkka, P., and Toivonen, H. (1999). Tane: An efficient algorithm for
discovering functional and approximate dependencies. The computer journal, 42(2):100–111.

[122] Ioannidis, Y. (2003). The history of histograms (abridged). In Proceedings of the VLDB Endowment
(PVLDB).

[123] Ioannidis, Y. and Poosala, V. (1995). Histogram-based solutions to diverse database estimation
problems. IEEE Data Eng. Bull.

[124] Jensen, C. S., Snodgrass, R. T., and Soo, M. D. (1996). Extending existing dependency theory to
temporal databases. IEEE Transactions on Knowledge and Data Engineering (TKDE).

[125] Jurafsky, D. and Martin, J. H. (2008). Speech and language processing (prentice hall series in artificial
intelligence). Prentice Hall.

[126] Kaggle (2019). "the state of machine learning and data science 2017". Kaggle. https://bit.ly/2KopcwB
Accessed: 2019-02-11.

[127] Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. (2011). Wrangler: Interactive visual specification
of data transformation scripts. In ACM CHI Conference on Human Factors in Computing Systems.

[128] Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J. M., and Heer, J. (2012). Profiler: Integrated
statistical analysis and visualization for data quality assessment. In Proceedings of the International
Working Conference on Advanced Visual Interfaces, pages 547–554.

[129] Kautz, H. A., Selman, B., and Jiang, Y. (1996). A general stochastic approach to solving problems
with hard and soft constraints. Satisfiability Problem: Theory and Applications.

[130] Kersting, K. (2005). An inductive logic programming approach to statistical relational learning. In
Proceedings of the 2005 Conference on an Inductive Logic Programming Approach to Statistical Relational
Learning.

[131] Khayyat, Z., Ilyas, I. F., Jindal, A., Madden, S., Ouzzani, M., Papotti, P., Quiané-Ruiz, J.-A., Tang,
N., and Yin, S. (2015a). Bigdansing: A system for big data cleansing. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[132] Khayyat, Z., Ilyas, I. F., Jindal, A., Madden, S., Ouzzani, M., Papotti, P., Quiané-Ruiz, J.-A., Tang,
N., and Yin, S. (2015b). Bigdansing: A system for big data cleansing. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 1215–1230.

[133] Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., and Lee, D. (2003). A taxonomy of dirty data. Data
mining and knowledge discovery.

[134] Kim, Y. and Heer, J. (2018). Assessing effects of task and data distribution on the effectiveness of
visual encodings. In Computer Graphics Forum, volume 37, pages 157–167.

[135] Knuth, D. E. (1964). Backus normal form vs. backus naur form. Communications of the ACM.

156

REFERENCES

[136] Kolahi, S. and Lakshmanan, L. V. (2009). On approximating optimum repairs for functional
dependency violations. In Proceedings of the International Conference on Database Theory (ICDT).

[137] Koller, D., Friedman, N., and Bach, F. (2009). Probabilistic graphical models: principles and techniques.
MIT press.

[138] Konda, P., Das, S., Suganthan GC, P., Doan, A., Ardalan, A., Ballard, J. R., Li, H., Panahi, F.,
Zhang, H., Naughton, J., et al. (2016). Magellan: Toward building entity matching management systems.
In Proceedings of the International Conference on Very Large Databases (VLDB), volume 9, pages
1197–1208.

[139] Koudas, N., Saha, A., Srivastava, D., and Venkatasubramanian, S. (2009). Metric functional
dependencies. In Proceedings of the International Conference on Data Engineering (ICDE).

[140] Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N. (2018). The case for learned index
structures. In Proceedings of the International Conference on Management of Data (SIGMOD).

[141] Krishnan, S., Franklin, M. J., Goldberg, K., and Wu, E. (2017). Boostclean: Automated error
detection and repair for machine learning. arXiv preprint arXiv:1711.01299.

[142] Krishnan, S., Haas, D., Franklin, M. J., and Wu, E. (2016a). Towards reliable interactive data
cleaning: A user survey and recommendations. In Proceedings of the Workshop on Human-In-the-Loop
Data Analytics.

[143] Krishnan, S., Wang, J., Franklin, M. J., Goldberg, K., and Kraska, T. (2015a). Stale view cleaning:
Getting fresh answers from stale materialized views. In Proceedings of the International Conference on
Very Large Databases (VLDB), volume 8, pages 1370–1381.

[144] Krishnan, S., Wang, J., Franklin, M. J., Goldberg, K., Kraska, T., Milo, T., and Wu, E. (2015b).
Sampleclean: Fast and reliable analytics on dirty data. IEEE Data Eng. Bull., 38(3):59–75.

[145] Krishnan, S., Wang, J., Wu, E., Franklin, M. J., and Goldberg, K. (2016b). ActiveClean: interactive
data cleaning for statistical modeling. Proceedings of the VLDB Endowment (PVLDB), 9(12):948–959.

[146] Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data.
Biometrics.

[147] Laranjeiro, N., Soydemir, S. N., and Bernardino, J. (2015). A survey on data quality: classifying
poor data. In Dependable Computing (PRDC).

[148] Laure, B.-E., Angela, B., and Tova, M. (2018). Machine learning to data management: A round trip.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 1735–1738.

[149] Lewis, J. R., Utesch, B. S., and Maher, D. E. (2013). Umux-lite: When there’s no time for the sus.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

[150] Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013). Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation around the median. Journal of Experimental
Social Psychology, 49(4):764–766.

[151] Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web,
pages 661–670.

157

REFERENCES

[152] Li, L., Peng, T., and Kennedy, J. (2011). A rule based taxonomy of dirty data. GSTF Journal on
Computing (JoC), 1(2).

[153] Li, X., Dong, X. L., Lyons, K., Meng, W., and Srivastava, D. (2012). Truth finding on the deep web:
Is the problem solved? In Proceedings of the International Conference on Very Large Databases (VLDB).

[154] Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., and Han, J. (2016). A survey on truth
discovery. SIGKDD Explor. Newsl., 17(2):1–16.

[155] LIM, E. P. and Srivastava, J. (1993). Entity identification in database integration: an evidential
reasoning approach. In Proceedings of the International Conference on Data Engineering (ICDE), pages
294–301. NDA.

[156] Livshits, E., Kimelfeld, B., and Roy, S. (2018). Computing optimal repairs for functional dependencies.
In Proceedings of the International Conference on Management of Data (SIGMOD).

[157] Lopatenko, A. and Bravo, L. (2007). Efficient approximation algorithms for repairing inconsistent
databases. In Proceedings of the International Conference on Data Engineering (ICDE), pages 216–225.

[158] Ma, L., Van Aken, D., Hefny, A., Mezerhane, G., Pavlo, A., and Gordon, G. J. (2018). Query-
based workload forecasting for self-driving database management systems. In Proceedings of the 2018
International Conference on Management of Data, pages 631–645.

[159] Mahdavi, M., Neutatz, F., Visengeriyeva, L., and Abedjan, Z. (2019). Towards automated data
cleaning workflows. In Proceedings of the LWDA 2019.

[160] Maletic, J. I. and Marcus, A. (2000). Data cleansing: Beyond integrity analysis. In Information
Quality, pages 200–209.

[161] Management, M. S. (2019). “data, analytics, and ai: How trust delivers value”. MIT Sloan Management
Review. http://bit.ly/mit-data-quality, Accessed: 20.03.2019.

[162] Mannino, M. V., Chu, P., and Sager, T. (1988). Statistical profile estimation in database systems.
ACM Computing Surveys (CSUR), 20(3):191–221.

[163] Maydanchik, A. (2007). Data quality assessment. Technics publications.

[164] Mayfield, C., Neville, J., and Prabhakar, S. (2010). Eracer: a database approach for statistical
inference and data cleaning. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 75–86.

[165] McCarthy, J. and Levin, M. I. (1965). LISP 1.5 programmer’s manual. MIT press.

[166] Metmuseum (2018). The metropolitan museum of art open access.
https://github.com/metmuseum/openaccess Accessed:2019-03-28.

[167] Michael, S., Nik, B.-H., Liam, C., Larry, S., and Andy, P. (2018). Getting Data Operations Right.
OReilly Media.

[168] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations
in vector space. arXiv.

158

REFERENCES

[169] Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 1003–1011.

[170] Müller, H. and Freytag, J. (2003). Problems, methods and challenges in comprehensive data cleansing.
Technical Report HUB-IB-164, Humboldt-Universität zu Berlin, Institut für Informatik.

[171] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

[172] Naumann, F. (2003). Quality-driven query answering for integrated information systems, volume
2261. Springer.

[173] Naumann, F. (2014). Data profiling revisited. In Proceedings of the International Conference on
Management of Data (SIGMOD), volume 42, pages 40–49.

[174] Naus, J. I., Johnson, T. G., and Montalvo, R. (1972). A probabilistic model for identifying errors in
data editing. Journal of the American Statistical Association, 67:943–950.

[175] Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal
Statistical Society.

[176] Neville, J. and Jensen, D. (2003). Collective classification with relational dependency networks. In
Proceedings of the Second International Workshop on Multi-Relational Data Mining.

[177] Nicolas, J.-M. (1978). First order logic formalization for functional, multivalued and mutual
dependencies. In Proceedings of the International Conference on Management of Data (SIGMOD).

[178] Niu, F., Ré, C., Doan, A., and Shavlik, J. (2011). Tuffy: Scaling up statistical inference in markov
logic networks using an rdbms. In Proceedings of the International Conference on Very Large Databases
(VLDB), volume 4, pages 373–384.

[179] Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013). Rockit: Exploiting parallelism and
symmetry for map inference in statistical relational models. In Proceedings of the National Conference
on Artificial Intelligence (AAAI).

[180] Oliveira, P., Rodrigues, F., Henriques, P., and Galhardas, H. (2005). A taxonomy of data quality
problems. In 2nd Int. Workshop on Data and Information Quality, pages 219–233.

[181] Ortiz, J., Balazinska, M., Gehrke, J., and Keerthi, S. S. (2018). Learning state representations for
query optimization with deep reinforcement learning. In Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning, page 4.

[182] Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., and Naumann, F. (2015). Data profiling with
metanome. In Proceedings of the VLDB Endowment (PVLDB).

[183] Papenbrock, T. and Naumann, F. (2016). A hybrid approach to functional dependency discovery. In
Proceedings of the 2016 International Conference on Management of Data, pages 821–833.

[184] Parisi, F., Strino, F., Nadler, B., and Kluger, Y. (2014). Ranking and combining multiple predictors
without labeled data. Proceedings of the National Academy of Sciences.

[185] Park, H. and Widom, J. (2014). Crowdfill: collecting structured data from the crowd. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data, pages 577–588. ACM.

159

REFERENCES

[186] Patil, D. (2012). Data Jujitsu. OReilly Media, Inc.

[187] Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier.

[188] Pearson, R. K. (2005). Mining imperfect data: Dealing with contamination and incomplete records.
Siam.

[189] Pearson, R. K. (2006). The problem of disguised missing data. ACM SIGKDD Explorations Newsletter,
8(1):83–92.

[190] Pit Claudel, C., Mariet, Z., Harding, R., and Madden, S. (2016). Outlier detection in heterogeneous
datasets using automatic tuple expansion. Technical Report, MIT.

[191] Platanios, E., Poon, H., Mitchell, T. M., and Horvitz, E. J. (2017). Estimating accuracy from
unlabeled data: A probabilistic logic approach. Advances in Neural Information Processing Systems.

[192] Poon, H. and Domingos, P. (2008). Joint unsupervised coreference resolution with markov logic. In
Conference on Empirical Methods in Natural Language Processing (EMNLP).

[193] Prokoshyna, N., Szlichta, J., Chiang, F., Miller, R. J., and Srivastava, D. (2015). Combining
quantitative and logical data cleaning. volume 9, pages 300–311.

[194] Qahtan, A. A., Elmagarmid, A., Castro Fernandez, R., Ouzzani, M., and Tang, N. (2018). Fahes: A
robust disguised missing values detector. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (SIGKDD).

[195] Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current approaches.

[196] Rahman, P., Hebert, C., and Nandi, A. (2018). Icarus: minimizing human effort in iterative data
completion. In Proceedings of the International Conference on Very Large Databases (VLDB), volume 11,
pages 2263–2276.

[197] Raman, V. and Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning system. In
Proceedings of the International Conference on Very Large Databases (VLDB).

[198] Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and Ré, C. (2017). Snorkel: Rapid training
data creation with weak supervision. In Proceedings of the International Conference on Very Large
Databases (VLDB), volume 11, pages 269–282.

[199] Redman, T. C. (2016a). "bad data costs the u.s. $3 trillion per year". Harvard Business Review.
http://bit.ly/bad-data-costs, Accessed: 2019-02-11.

[200] Redman, T. C. (2016b). Getting in front on data: who does what. Technics Publications.

[201] Redman, T. C. (2018). "if your data is bad, your machine learning tools are useless". Harvard
Business Review. https://bit.ly/2InCpnA, Accessed: 2019-02-11.

[202] Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. (2017). Holoclean: Holistic data repairs with
probabilistic inference. In Proceedings of the VLDB Endowment (PVLDB).

[203] Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine learning.

160

REFERENCES

[204] Riedel, S. (2008a). Improving the accuracy and efficiency of map inference for markov logic. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI).

[205] Riedel, S. (2008b). Improving the accuracy and efficiency of map inference for markov logic. In
Proceedings of the UAI 2018, pages 468–475.

[206] Riedel, S. and Meza-Ruiz, I. (2008). Collective semantic role labelling with markov logic. In The
SIGNLL Conference on Computational Natural Language Learning (CoNLL).

[207] Riley, J. (2017). Understanding metadata. what is metadata, and what is it for? Groups.niso.org.
http://bit.ly/niso-metadata Accessed: 2019-02-11.

[208] Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence.

[209] Roth, D. and Yih, W.-t. (2005). Integer linear programming inference for conditional random fields.
In Proceedings of the International Conference on Machine learning.

[210] Sarawagi, S. and Bhamidipaty, A. (2002). Interactive deduplication using active learning. In
Conference on Knowledge Discovery and Data Mining (KDD), pages 269–278.

[211] Schwing, A., Hazan, T., Pollefeys, M., and Urtasun, R. (2011). Distributed message passing for large
scale graphical models. In Proceedings of the Conference on Computer Vision and Pattern Recognition
2011, pages 1833–1840.

[212] Sharat Menon, E. Z. (2019). "market guide for data preparation tools". online.
https://www.gartner.com/en/documents/3906957/market-guide-for-data-preparation-tools, Accessed:
2019-07-24.

[213] Shen, W., Wang, J., and Han, J. (2015). Entity linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and Data Engineering.

[214] Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.-j. P., and Wang, K. (2015). An overview of
microsoft academic service (mas) and applications. In Proceedings of the International World Wide Web
Conference (WWW), pages 243–246.

[215] Slaney, M. and Casey, M. (2008). Locality-sensitive hashing for finding nearest neighbors. IEEE
Signal processing magazine, 25(2):128–131.

[216] Song, S. and Chen, L. (2011). Differential dependencies: Reasoning and discovery. In ACM
Transactions on Database Systems (TODS).

[217] Song, S., Chen, L., and Yu, J. X. (2010). Extending matching rules with conditions. In Proceedings
of the 8th International Workshop on Quality in Databases.

[218] Song, S., Li, C., and Zhang, X. (2015a). Turn waste into wealth: On simultaneous clustering and
cleaning over dirty data. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (SIGKDD), pages 1115–1124.

[219] Song, S., Zhang, A., Chen, L., and Wang, J. (2015b). Enriching data imputation with extensive
similarity neighbors. In Proceedings of the International Conference on Very Large Databases (VLDB),
volume 8, pages 1286–1297.

[220] Sontag, D. A. (2010). Approximate inference in graphical models using LP relaxations. PhD thesis,
Massachusetts Institute of Technology.

161

REFERENCES

[221] Statista (2019). "digital economy compass 2019". The Statistics Portal.
https://www.statista.com/page/compass, Accessed: 2019-04-20.

[222] Stonebraker, M., Beskales, G., Pagan, A., Bruckner, D., Cherniack, M., Xu, S., Analytics, V., Ilyas,
I. F., and Zdonik, S. (2013). Data curation at scale: The data tamer system. In Proceedings of the
Conference on Innovative Data Systems Research (CIDR).

[223] Stonebraker, M. and Ilyas, I. F. (2018). Data integration: The current status and the way forward.
IEEE Data Eng. Bull.

[224] Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., and Gunopulos, D. (2006). Online
outlier detection in sensor data using non-parametric models. In Proceedings of the International
Conference on Very Large Databases (VLDB), pages 187–198.

[225] Suchanek, F. M., Sozio, M., and Weikum, G. (2009). Sofie: a self-organizing framework for information
extraction. In Proceedings of the International World Wide Web Conference (WWW).

[226] Susan Moore, G. I. (2018). "how to create a business case for data quality improvement".
online. https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-
improvement/, Accessed: 2019-04-11.

[227] Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. (2005). Learning structured prediction
models: A large margin approach. In Proceedings of the International Conference on Machine learning.

[228] Trifacta (2019). Supported data types - trifacta wrangler. Trifacta Documentation.
https://docs.trifacta.com/display/PE/Supported Data Types, Accessed: 2019-02-11.

[229] Tye, R., Joseph M., H., Jeffrey, H., Sean, K., and Connor, C. (2017). Principles of Data Wrangling:
Practical Techniques for Data Preparation. OReilly Media, Inc.

[230] Van den Broeck, G., Meert, W., and Darwiche, A. (2014). Skolemization for weighted first-order
model counting. In Fourteenth International Conference on the Principles of Knowledge Representation
and Reasoning.

[231] Vijaymeena, M. and Kavitha, K. (2016). A survey on similarity measures in text mining. Machine
Learning and Applications: An International Journal, 3(2):19–28.

[232] Visengeriyeva, L. and Abedjan, Z. (2018). Metadata-driven error detection. In Proceedings of the
International Conference on Scientific and Statistical Database Management (SSDBM), pages 1:1–1:12.

[233] Visengeriyeva, L. and Abedjan, Z. (2020). Anatomy of metadata for data curation. ACM Journal of
Data and Information Quality (JDIQ).

[234] Visengeriyeva, L., Akbik, A., and Kaul, M. (2016). Improving data quality by leveraging statistical
relational learning. In Proceedings of the 21st International Conference on Information Quality, ICIQ
2016, Ciudad Real, Spain, June 22-23.

[235] Volkovs, M., Chiang, F., Szlichta, J., and Miller, R. J. (2014). Continuous data cleaning. In 2014
IEEE 30th International Conference on Data Engineering, pages 244–255.

[236] Wand, Y. and Wang, R. Y. (1996). Anchoring data quality dimensions in ontological foundations.
Communications of the ACM, 39(11):86–95.

162

REFERENCES

[237] Wang, J., Kraska, T., Franklin, M. J., and Feng, J. (2012). Crowder: Crowdsourcing entity resolution.
In Proceedings of the International Conference on Very Large Databases (VLDB), volume 5, pages
1483–1494.

[238] Wang, J. and Tang, N. (2014). Towards dependable data repairing with fixing rules. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages 457–468.

[239] Wang, P. and He, Y. (2019). Uni-detect: A unified approach to automated error detection in tables.
In Proceedings of the International Conference on Management of Data (SIGMOD).

[240] Wang, X., Dong, X. L., and Meliou, A. (2015). Data x-ray: A diagnostic tool for data errors. In
Proceedings of the International Conference on Management of Data (SIGMOD).

[241] Williams, H. P. (2013). Model building in mathematical programming. John Wiley & Sons.

[242] Winkler, W. E. (2002). Methods for record linkage and bayesian networks. Technical report, Statistical
Research Division, US Census Bureau.

[243] Wolpert, D. H. (1992). Stacked generalization. Neural networks.

[244] Wu, E. and Madden, S. (2013). Scorpion: Explaining away outliers in aggregate queries. In Proceedings
of the International Conference on Very Large Databases (VLDB), volume 6, pages 553–564.

[245] Yakout, M., Berti-Équille, L., and Elmagarmid, A. K. (2013). Don’t be scared: use scalable automatic
repairing with maximal likelihood and bounded changes. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 553–564.

[246] Yakout, M., Elmagarmid, A. K., Neville, J., Ouzzani, M., and Ilyas, I. F. (2011). Guided data
repair. In Proceedings of the International Conference on Very Large Databases (VLDB), volume 4,
pages 279–289.

[247] Yao, L., Riedel, S., and McCallum, A. (2012). Probabilistic databases of universal schema. In
Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge
Extraction.

[248] Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2001). Generalized belief propagation. In Advances in
neural information processing systems.

[249] Yuan, Y. C. (2000). Multiple imputation for missing data: Concepts and new development. In
Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference, volume 267.

[250] Zhang, A., Song, S., and Wang, J. (2016). Sequential data cleaning: a statistical approach. In
Proceedings of the International Conference on Management of Data (SIGMOD), pages 909–924.

[251] Zheng, A. and Casari, A. (2018). Feature engineering for machine learning: principles and techniques
for data scientists. O’Reilly Media, Inc.

[252] Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. Chapman and Hall/CRC.

163

A
Mapping Between Data Quality

Problems and Metadata

Table A.1 provides a mapping between data quality problems and metadata. The set of
data quality issues is compiled from the literature, such as Laranjeiro et al. [147], Oliveira
et al. [180], and Kim et al. [133]. The mapping between data quality issues and metadata
is established by designing error detection heuristics. Two approaches are used to create
these heuristics: (1) - A qualitative approach, where existing methods are reviewed; and (2)
- A trivial relationship approach, where the connection between data errors and metadata
is trivially established (marked as •).

Table A.1: Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Missing data
(explicit
and implicit
- default
values)

Value length If min(value length)==0, then ERROR; •
Null values Cells with null values indicate ERROR; •
Histogram Check extreme values in the histogram: Disguise

missing values with the very large or very small
value; [3]

165

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Constancy Check the most frequent value; Can be an
ERROR [189]

Quartiles Use quartiles for all histograms [17]
First digit If first digit == 9, then probably ERROR; (e.g.,

phone num: 9999-999-999) [3]
Basic type Check contradictions for the data type: Presence

of strings in the numeric column might indicate
some default values like "N/A" [3]

Data type Check contradictions for the data type: Presence
of strings in the numeric column might indicate
some default values like "N/A" [3]

Size If the size is 0, then ERROR; •
Patterns
(histogram)

Availability of the following patterns indicates dis-
guised values: Strings with repeated substrings
(123123123); Strings with repeated characters
(e.g. "9999999999") [189]

Data class Check against common default values for the
given data class (date/time: 1 January) [189]

Domain Check against common default values for the
given semantic role (state:Alabama) [228, 189]

Association
rules

Identify attribute that violate the rule [6]

Clustering Disguised values: Detect values that are far from
the rest of the values in the Euclidean space.
[116]

Outliers Histogram-based outlier detection: Check ex-
treme values in the histogram: Disguise missing
values with the very large or very small value; Use
quartiles for all histograms as threshold values;
[114, 190, 189, 17]

Incorrect Data
(value does
not conform
to the real
entity)

166

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Histogram If a value is in the tail of the values distribution,
then ERROR; For the alphabetic data: If one
of the n-grams of the value is in the tail of the
n-grams frequencies distribution, then ERROR;
[114]

Constancy If frequency(value) < min(frequency(top 10
values)), then ERROR [114]

Quartiles Compute quartiles for histogram + outliers,
meaning that quartiles act as a threshold [114,
116, 17]

First digit Following Benford’s law: P(d)= log(1+1/d); For
int data type: if P(d) « P(1), then ERROR [3]

Basic type Check generic data type format [3]
Data type Check concrete data type format (varchar, int,

text) [3]
Domain Check the domain values: If the value is out

of the domain values, then ERROR; Check the
semantic roles (zip code, state): If the value
doesn’t fit the semantic role, then ERROR; [228]

Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Outliers Histogram-based outlier detection: Check ex-
treme values in the histogram: Use quartiles for
all histograms as threshold values; [8, 114, 116,
190]

FD/CFD
FD L → R holds for any two rows u and v.
suspected violation:
{u|u, v ∈ D, u(L) = v(L), u(R) �= u(R)}; [62, 82, 239]

Misspellings
Distinct If the attribute is non-PK, the high number of

distinct values can be an indication for ERRORS
is the column; •

Uniqueness If the attribute is non-PK, the higher is the
number the more probable that the column
contains ERRORS; •

167

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Histogram If the value is in the tail of the values distribution,
then ERROR; For the alphabetic data: If one
of the n-grams of the value is in the tail of the
n-grams frequencies distribution, then ERROR;
For names: Check soundex code distribution;
[3, 114, 190]

Constancy If frequency(value) < min(frequency(top 10
values)), then ERROR [114]

Quartiles If the value is not in “middle fifty: 3Q-1Q”, then
ERROR [17]

Size If size(value) > max, then ERROR; [195]
Patterns
(histogram)

If the value is in the tail of the value patterns
distribution, then ERROR; [3, 114]

Domain Check the semantic role (e.g., zip, state) [228]
Correlations Ungrammatical/incorrect strings should produce

n-gram probabilities that are much smaller than
the product of the unigram probabilities (the
value of mutual information MI will be negative)
and indicate errors [51]

Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Clustering Clustering with Levenshtein distance [128]
Outliers Histogram-based outlier detection: Check ex-

treme values in the histogram: Use quartiles for
all histograms as threshold values; [190]

Summaries and
sketches

For the particular attribute - Each row is con-
sidered as a set of values (create n-grams set
of each value in the cell). Apply LSH (Locality
sensitive hashing) on these sets. One of the
two attribute values with the Jaccard similarity
> threshold can be considered as misspellings
(ERROR) [3]

Functional De-
pendencies

FD L → R holds for any two rows u and v.
suspected violation:
{u|u, v ∈ D, u(L) = v(L), u(R) �= u(R)}; [62, 82, 239]

168

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Ambiguous
data (non-
interpretable
data,
abbreviations)

Value length If length(value) < min threshold, then ERROR;
[195]

Histogram If the value is in the tail of the values distribution,
then ERROR; [114]

Quartiles If the value is not in “middle fifty: 3Q-1Q”, then
ERROR [17]

Basic type Check data type format: Abbreviations are
commonly used in alphabetic data types; [3]

Size If size(value) < min threshold, then ERROR;
[195]

Patterns
(histogram)

If the value is in the tail of the value pattern
distribution, then ERROR; [3]

Domain Check the semantic role (zip, state) [228]
Correlations Ungrammatical/incorrect strings should produce

n-gram probabilities that are much smaller than
the product of the unigram probabilities (the
value of mutual information MI will be negative)
and indicate errors [51]

Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Outliers Histogram-based outlier detection: Check ex-
treme values in the histogram: Use quartiles for
all histograms as threshold values; [114, 116]

Extraneous
data
(additional
data
represented,
e.g.
title+name)

169

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Value length If length(value) > max threshold, then ERROR;
[195]

Histogram Create a histogram of values (or its representa-
tion like n-grams, hash codes, soundex code) for
outlier detection [114, 116]

Quartiles Use as thresholds [17]
Patterns
(histogram)

If the value is in the tail of the value pattern
distribution, then ERROR; [114]

Data class Check the class format; [3, 128]
Domain Check the attribute semantic role (e.g not

permitted values) [228]
Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Outliers Histogram-based outlier detection: Check ex-
treme values in the histogram: Use quartiles for
all histograms as threshold values; [114, 116,
190]

Outdated tem-
poral values

Patterns
(histogram)

For time series, a pattern is defined as a sub-
sequence of two consecutive points. A pattern
p is called an anomaly, if there are very few
other patterns with the same slope and the same
length. [104, 49]

Clustering Clustering data rows according their entity id;
Each cluster should be checked against currency
order for the specified attribute Ai; (see [82]
Ch.6 Example 6.2) [82, 104]

Outliers Residuals vs. moving average then HampelX84
[128]

Functional De-
pendencies

Using temporal functional dependencies [124]

Misfielded val-
ues

170

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

null values If "neighbor"-values, attri−1 or attri+1 are
NULL, then attri is a potential ERROR;•

value length If length(value) >max threshold, then ERROR;
[195]

pattern If the value is in the tail of the value pattern
distribution, then ERROR; [114, 116]

z-value Check z-value against a threshold; [195, 8]
quartile Use quartiles for all histograms as threshold

values;[114, 116]
clustering Create numerical representations of values from a

colum range [a_i-1, a_i, a_i+1],(eg.word2vec);
Cluster these vectors; Tuples with "Misfielded
values" should be captured within one cluster;
[195]

histogram If a value is in the tail of the values distribution,
then ERROR; For the alphabetic data: If one
of the n-grams of the value is in the tail
of the n-grams frequencies distribution, then
ERROR;[114, 116]

outliers Histogram-based outlier detection: Check ex-
treme values in the histogram; Use quartiles for
all histograms as threshold values; [114, 116]

association rule Identify data items that broke the rules and can
be considered outliers (potential errors) [17]

data type Check data type format [3]
domain Check semantic role (zip, city, state) with regex;

[228]

FD/CFD
FD L → R holds for any two rows u and v.
suspected violation:
{u|u, v ∈ D, u(L) = v(L), u(R) �= u(R)}; [62, 82, 239]

171

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Incorrect
reference (e.g.
an employee
is associated
with the
wrong dep.)

Correlation Incorrect values should produce n-gram (chunk
is one value) probabilities that are much smaller
than the product of the unigram probabilities (the
value of mutual information MI will be negative)
and indicate errors [51]

Association rule Check the association rules; Find the frequent
itemsets; If not in the frequent itemset, then
ERROR; [3]

Duplicates
(when the
same data
appears
multiple
times (e.g.,
two entries
for the same
client))

Distinct If distinct values < 100% then potential dupli-
cates •

Uniqueness If uniqueness < 1 then potential duplicates •
Clustering Clustering based on the attribute values and

requires similarity matrix calculation; Clustering
based on n-grams, patterns and soundex; Using
different similarity measures; [3, 195]

Unique column
combinations

•

FD/CFD FD acting as MD; [82]
Matching
Dependencies

If the attribute is in the MD and MD compliance
violation, then ERROR; [82]

172

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Structural
conflicts
(duplicate
records in
different
sources)

Clustering Clustering synonyms; [195]
Summaries and
sketches

Each column represents one set. Apply LSH
(Locality sensitive hashing) on these sets. One
of the two values with the Jaccard similarity >
threshold can be considered as near-duplicates
(ERROR) [215]

Matching
Dependencies

If MD violation, then ERROR [82]

Wrong word
ordering
(e.g second
name + first
name instead
first+second)

Correlations Ungrammatical/incorrect strings should produce
n-gram probabilities that are much smaller than
the product of the unigram probabilities (the
value of mutual information MI will be negative)
and indicate errors [51]

Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Clustering Soundex code clustering -> same code should
be in the same cluster; [3, 128]

173

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Summaries and
sketches

For the particular attribute - Each row is con-
sidered as a set of values (create n-grams set
of each value in the cell). Apply LSH (Locality
sensitive hashing) on these sets. One of the
two attribute values with the Jaccard similarity
> threshold can be considered as misspellings
(ERROR) [215]

Wrong
aggregation
levels (week vs
month. Also
relates to diff
representation
units)

Size Value patterns do not match; E.g. Aggrega-
tion over week produces smaller numbers than
aggregation over months. •

Patterns
(histogram)

Value patterns do not match; E.g. Aggrega-
tion over week produces smaller numbers than
aggregation over months.•

Clustering Clustering with euclidean distance (requires com-
putation of similarity matrix) [128]

Temporal mis-
match

Patterns
(histogram)

For time series, a pattern is defined as a sub-
sequence of two consecutive points. A pattern
p is called an anomaly, if there are very few
other patterns with the same slope and the same
length. [104, 49]

Clustering Clustering data rows according their entity id;
Each cluster should be checked against currency
order for the specified attribute Ai; (see [82]
Ch.6 Example 6.2) [82, 104]

Functional De-
pendencies

Using temporal functional dependencies [124]

174

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Wrong rep-
resentations
(abbreviations,
alia names,
encodings)

Distinct Check distinct values for different representation
for the same data, for example "Male/Female"
-> "M/F" or true/false -> 1/0 [195]

Patterns
(histogram)

Compare distinct patterns to detect ERROR; [3]

Domain Check semantic role (zip, city, state, gender)
with regex; [228]

Domain
violation
(illegal values)

Distinct The cardinality of the values should be within
the threshold; [195]

Histogram If the value is in the tail of the values distribution,
then ERROR; For the alphabetic data: If one
of the n-grams of the value is in the tail of the
n-grams frequencies distribution, then ERROR;
[3, 114, 116]

Data type Check the concrete data type constraints [195]
Size The min/max number of digits in numeric values

should be within the datatype range; [195]
Decimals Check roundings; [3, 195]
Patterns
(histogram)

If the value is in the tail of the value patterns
distribution, then ERROR; [3, 114]

Data class Check the data type format; [3]
Domain Check the attribute semantic role (e.g not

permitted values) [228]

175

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Correlations Ungrammatical/incorrect/illegal strings should
produce n-gram probabilities that are much
smaller than the product of the unigram proba-
bilities (the value of mutual information MI will
be negative) and indicate errors [51]

Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Outliers Histogram-based outlier detection: Check ex-
treme values in the histogram; Use quartiles for
all histograms as threshold values; [114, 116]

FD Violation
Association rule FD are defined as association rule. Identify data

items that broke the rules and can be considered
as potential errors [17]

FD/CFD
FD L → R holds for any two rows u and v.
suspected violation:
{u|u, v ∈ D, u(L) = v(L), u(R) �= u(R)}; [62, 82, 239]

Wrong data
type (syntax
violation;
data type
constraint
violation)

Data type Check the data type constraint (e.g. int ->
contains non-digit characters) [3, 195]

Data class Check generic data type constraint; [3]
Domain Check the semantic role constraint; [228]

Referential
integrity
violation
(e.g. bank
account has
no associated
client)

176

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Inclusion depen-
dencies

Inclusion constraint violation; [3, 82]

Uniqueness
violation (the
attribute eg.
pass id should
be unique and
not null)

Null values Null values are not permitted; 0% [3]
Distinct Distinct values should be 100% [3]
Uniqueness Uniqueness of the attribute should be 1; [3]
Histogram Uniform •
Unique column
combinations

If violating UCC dependency, then ERROR; [3]

Use of
synonyms
(two
identifiers
are mapped
to the same
concept) e.g.
Professor and
Teacher

Clustering Clustering data points (rows) will place values
with different identifiers into the same cluster
(requires computation of the similarity matrix
according to the synonymity criteria.) [195]

Use of special
characters
(e.g.space, no
space, dash,
parenthesis)

Histogram Create a histogram of used characters: Does
long tail contains special characters? [114, 128]

Data type Data type format compliance (with regex); [3]

177

A. MAPPING BETWEEN DATA QUALITY PROBLEMS AND
METADATA

Table A.1 (cont.) Mapping between data quality problems and metadata.

Data Errors Metadata Heuristics to detect data quality issues

Association
rules

Identify data items that broke the rules and can
be considered outliers (potential errors). [17]

Clustering Clustering on structure extraction (patterns)
[128]

Outliers Histogram-based outlier detection: Check ex-
treme values in the histogram; [114, 116, 190]

Different
encoding
formats

Data type Data type format compliance [3]
Domain Check domain compliance with regex [228]

178

	Titlepage
	Zusammenfassung
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1. Introduction
	1.1 Data Quality Importance in the Data Science Workflow
	1.2 Research Questions
	1.3 Contributions
	1.4 Outline

	2. Preliminaries
	2.1 Data Quality Management
	2.2 Data Profiling
	2.3 Statistical Relational Learning

	3. Related Work
	3.1 Rule-Based Approaches
	3.2 Statistical Approaches
	3.3 Probabilistic and Machine Learning-Based Approaches
	3.4 Interactive Data Cleaning

	4. Anatomy of Metadata for Data Quality Management
	4.1 Mapping Metadata to Data Quality Issues
	4.2 Metadata Analysis for Data Quality Management
	4.3 Case Study
	4.4 Summary

	5. Supervised Error Detection with Metadata
	5.1 Error Detection Framework
	5.2 Error Detection as a Classification Task
	5.3 Metadata-Augmented Error Classification
	5.4 Experiments
	5.5 Summary

	6. Probabilistic Data Curation Through Modelling Multi-column Metadata with Markov Logic
	6.1 Integrity Constraints as Data Quality Rules
	6.2 Modelling Data Quality Rules as Markov Logic Programs
	6.3 Uncertain Data Cleaning as a Probabilistic Inference Problem
	6.4 Markov Logic-Based Data Cleaning on Non-Relational Data
	6.5 Experiments
	6.6 Summary

	7. Conclusion and Future Work
	7.1 Error Detection and Repair as a Multi-Armed Bandit Problem
	7.2 Reinforcement Learning for Data Cleaning
	7.3 Effectiveness of Visual Encoding for Data Curation

	References
	Appendix
	Mapping Between Data Quality Problems and Metadata

