Skip to main content
Log in

Conflicting outcomes of an integrated approach to sediment quality assessment in a Sardinian coastal area subjected to mining activities

  • Sediments as a Dynamic Natural Resource – From Catchment to Open Sea
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Multidisciplinary research was carried out to verify the best approach for a reliable assessment of sediment quality in marine areas affected by strong metal enrichment. The study was carried out on Sulcis-Iglesiente marine coastal areas (Sardinia, Italy), where a long-lasting past mining operation strongly contaminated marine sediments with heavy metals (Cd, Pb and Zn).

Materials and methods

Surface sediments were analysed for grain size and mineralogical content, total organic carbon, total metal concentrations and sequential extractions. Additionally, ecotoxicological bioassays were performed using Vibrio fischeri (Microtox®) on the solid phase and elutriate, Dunaliella tertiolecta on elutriate and Brachionus plicatilis on elutriate.

Results and discussion

Analysed sediments were nearly exclusively sand (98.5–100%) with a very low TOC content; their texture and mineralogy indicated a N-S drift affecting the dispersion of mining contributions. The total concentrations of Cd, Pb and Zn, which are positively correlated, exceeded background and Environmental Quality Standards (EQS) values by up to two orders of magnitude, while sequential extractions revealed their high mobility because Cd and Pb were mainly extracted in the first phase (up to 77 and 82%, respectively) and Zn in the second phase (up to 99%). In spite of this, bioassays recorded the absence of toxicity in all the samples.

Conclusions

These apparently conflicting results suggest that ecotoxicological tests cannot replace chemical analyses in sediment quality assessments because they could fail to provide reliable information on the bioavailability of contaminants over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002) A guidance for the assessment and evaluation of sediment quality. A German approach based on ecotoxicological and chemical measurements. J Soils Sediments 2(1):37–42

    CAS  Google Scholar 

  • Antunes SC, de Figueiredo DR, Marques SM, Castro BB, Pereira R, Gonçalves F (2007) Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Sci Total Environ 374(2-3):252–259

    CAS  Google Scholar 

  • APAT-ICRAM (2007) Manual for the handling of marine sediments, 77 pp

  • ASTM international (1998) E 1440-91 - Standard guide for acute toxicity test with the Rotifer Brachionus, pp 806–813

  • Aversa G, Balassone G, Boni M, Amalfitano C (2002) The mineralogy of the “Calamine” Ores in SW Sardinia (Italy): preliminary results. Period Mineral 71:201–218

    Google Scholar 

  • Besser JM, Brumbaugh WG, Ingersoll CG (2015) Characterizing toxicity of metal-contaminated sediments from mining areas. Appl Geochem 57:73–84

    CAS  Google Scholar 

  • Birch G (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcoffe CD, Furness RA (eds) Coastal GIS 2003. Wollongong University Papers in Center for Maritime Policy, Australia

    Google Scholar 

  • Boni M, Iannace A, Bechstädt T, Gasparrini M (2000) Hydrothermal dolomites in SW Sardinia (Italy) and Cantabria (NW Spain): evidence for late- to post-Variscan widespread fluid-flow events. J Geochem Explor 69-70:225–228

    CAS  Google Scholar 

  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecol Indic 5:151–169

    CAS  Google Scholar 

  • Caliani JC, Ruiz Muñoz F, Galán E (1997) Clay mineral and heavy metal distributions in the lower estuary of Huelva and adjacent Atlantic shelf, SW Spain. Sci Total Environ 198:181–200

    CAS  Google Scholar 

  • Campanella L, D’Orazio D, Petronio BM, Pietrantonio E (1995) Proposal for a metal speciation study in sediments. Anal Chim Acta 309(1-3):387–393

    CAS  Google Scholar 

  • Carmignani L, Barca S, Oggiano G, Pertusati PC, Salvadori I, Conti P, Eltrudis A, Funedda A, Pasci S (2001) Note illustrative della Carta Geologica della Sardegna a scala 1:200.000. In: Memorie descrittive Carta Geologica Italiana, Roma

  • Carta Geologica d’Italia (n.d.) Foglio 224-225 “Capo Pecora - Guspini”. Scala 1:100.000

  • Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97-98:815–825

    CAS  Google Scholar 

  • Cidu R (2009) Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor 100:125–132

    CAS  Google Scholar 

  • Cidu R (2011) Mobility of aqueous contaminants at abandoned mining sites: insights from case studies in Sardinia with implications for remediation. Environ Earth Sci 64(2):503–512

    CAS  Google Scholar 

  • Cidu R, Fanfani L (2002) Overview of the environmental geochemistry of mining districts in southwestern Sardinia, Italy. Geochem-Exp Environ Anal 2(3):243–251

    CAS  Google Scholar 

  • Cidu R, Biddau R, Nieddu G (2007) Rebound at Pb-Zn mines hosted in carbonate aquifers: influence on the chemistry of groundwater. Mine Water Environ 26:88–101

    CAS  Google Scholar 

  • Cidu R, Dadea C, Desogus P, Fanfani L, Manca PP, Orrù G (2012) Assessment of environmental hazards at abandoned mining sites: a case study in Sardinia, Italy. Appl Geochem 27:1795–1806

    CAS  Google Scholar 

  • Cillari T, Finoia MG, Onorati F, Pulcini M, Mugnai C, Ausili A, Sunseri G (2011) Integrated physical-chemical and ecotoxicological approach in the management of dredging sediments from Palermo Harbour. Chem Ecol 27(2):25–37

    Google Scholar 

  • De Giudici G, Wanty RB, Podda F, Kimball BA, Verplanck PL, Lattanzi P, Cidu R, Medas D (2014) Quantifying biomineralization of zinc in the rio Naracauli (Sardinia, Italy), using a tracer injection and synoptic sampling. Chem Geol 384:110–119

    Google Scholar 

  • De Giudici G, Pusceddu C, Medas D, Meneghini C, Gianoncelli A, Rimondi V, Podda F, Cidu R, Lattanzi P, Wanty RB, Kimball BA (2017) The role of natural biogeochemical barriers in limiting metal loading to a stream affected by mine drainage. Appl Geochem 76:124–135

    Google Scholar 

  • Doglioni C, Fernandez M, Gueguen E, Sábat F (1999) On the interference between early Apennines Maghrebides back arc extension and Alps Betics orogen in the Neogene Geodynamics of the Western Mediterranean. Boll Soc Geol Ital 118:75–89

    Google Scholar 

  • Dou Y, Li J, Zhao J, Hua B, Yang S (2013) Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Mar Pollut Bull 67:137–145

    CAS  Google Scholar 

  • Frau F, Medas D, Da Pelo S, Wanty RB, Cidu R (2015) Environmental effects on the aquatic system and metal discharge to the Mediterranean sea from a near-neutral zinc-ferrous sulphate mine drainage. Water Air Soil Pollut 226:2339–2356

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistic software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • ICRAM (2001) Metodologie Analitiche di Riferimento. Programma di monitoraggio per il controllo dell’ambiente marino costiero (triennio2001-2003). Cicero AM, Di Girolamo I (eds) Ministero dell’Ambiente e della Tutela del Territorio e del Mare

  • ISPRA (2015) Caratterizzazione ambientale dell’area marino costiera prospiciente il sito di bonifica di interesse nazionale del Sulcis-Iglesiente-Guspinese. Risultati analitici e valutazione dei dati. Technical Report, 120 pp

  • Jain CK (2004) Metal fractionation study on bed sediments of River Yamuna, India. Water Res 38:569–578

    CAS  Google Scholar 

  • Kowalewska G, Belzunce-Segarra MJ, Schubert B, Heininger P, Heise S (2011) The role of sediments in coastal monitoring. In: Quevauviller P, Roose P, Verreet G (eds) Chemical Marine Monitoring: Policy Framework and Analytical Trends. John Wiley & Sons, Ltd, pp 377–395

  • Li YH, Schoonmaker JE (2003) Chemical composition and mineralogy of marine sediments. In: Holland HD, Turekian KK (eds) Sediments, Diagenesis, and Sedimentary Rocks, Treatise on Geochemistry. Elsevier 7:1–35

  • Liu H, Li L, Yin C, Shan B (2008) Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. J Environ Sci 20:390–397

    CAS  Google Scholar 

  • Long ER, Chapman PM (1985) A sediment quality triad: measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar Pollut Bull 16:405–415

    CAS  Google Scholar 

  • Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48:101–115

    Google Scholar 

  • Maggi C, Bianchi J, Dattolo M, Mariotti S, Cozzolino A, Gabellini M (2006) Fractionation studies and bioaccumulation of cadmium, mercury and lead in two harbour areas. Chem Speciat Bioavailab 18(3):95–103

    CAS  Google Scholar 

  • Manca E, Pascucci V, Deluca M, Cossu A, Andreucci S (2013) Shoreline evolution related to coastal development of a managed beach in Alghero, Sardinia, Italy. Ocean Coast Manag 85:65–76

    Google Scholar 

  • Marín-Guirao L, Atucha AM, Lloret Barba J, Martínez López E, García Fernández AJ (2005) Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure. Mar Environ Res 60(3):317–337

    Google Scholar 

  • Mecozzi M, Onorati F, Oteri F, Sarni A (2008) Characterization of a bioassay using the marine alga Dunaliella tertiolecta associated with spectroscopic (visible and infrared) detection. Int J Environ Pollut 32(1):104–120

    CAS  Google Scholar 

  • Medas D, Cidu R, Lattanzi P, Podda F, Wanty RB, De Giudici G (2012) Hydrozincite seasonal precipitation at Naracauli (Sardinia, Italy): hydrochemical factors and morphological features of the biomineralization process. Appl Geochem 27(9):1814–1820

    CAS  Google Scholar 

  • Nieto JM, Sarmiento AM, Olías M, Canovas CR, Riba I, Kalman J, Delvalls T (2007) Angel Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ Int 33:445–455

    Google Scholar 

  • Onorati F, Pellegrini D, Ausili A (1999) Valutazione della tossicità naturale nel saggio Microtox in fase solida. La normalizzazione pelitica. Acqua Aria 6:83–89

    Google Scholar 

  • Parker WC, Arnold AJ (1999) Quantitative methods of data analysis in foraminiferal ecology. In: Sen Gupta BK (ed) Modern Foraminifera. Kluver Publishers, Dordrecht, pp 71–90

    Google Scholar 

  • Riba I, Delvalls TA, Forja JM, Gómez-Parra A (2002) Influence of the Aznalcóllar mining spill on the vertical distribution of heavy metals in sediments from the Guadalquivir estuary (SW Spain). Mar Pollut Bull 44(1):39–47

    CAS  Google Scholar 

  • Romano E, Bergamin L, Ausili A, Pierfranceschi G, Maggi C, Sesta G, Gabellini M (2009) The impact of the Bagnoli industrial site (Naples, Italy) on sea-bottom environment. Chemical and textural features of sediments and the related response of benthic foraminifera. Mar Pollut Bull 59:245–256

    CAS  Google Scholar 

  • Romano E, Bergamin L, Croudace IW, Ausili A, Maggi C, Gabellini M (2015) Establishing geochemical background levels of selected trace elements in areas having geochemical anomalies: the case study of the Orbetello lagoon (Tuscany, Italy). Environ Pollut 202:96–103

    CAS  Google Scholar 

  • Romano E, De Giudici G, Bergamin L, Andreucci S, Maggi C, Pierfranceschi G, Celia Magno M, Ausili A (2017) The marine sedimentary record of natural and anthropogenic contribution from the Sulcis-Iglesiente mining district (Sardinia, Italy). Mar Pollut Bull 122:331–343

    CAS  Google Scholar 

  • Romano E, Celia Magno M, Bergamin L (2018) Grain size of marine sediments in the environmental studies, from sampling to measuring and classifying. A critical review of the most used procedures. Acta Imeko 7(2):10–15

    Google Scholar 

  • Rosado D, Usero J, Morillo J (2016) Assessment of heavy metals bioavailability and toxicity toward Vibrio fisheri in sediment of the Huelva estuary. Chemosphere 153:10–17

    CAS  Google Scholar 

  • Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments - a tributary of the Ganges, India. J Hydrol 312:14–27

    CAS  Google Scholar 

  • Szava-Kovats (2008) Grain-size normalization as a tool to assess contamination in marine sediments: is the <63 μm fraction fine enough? Mar Pollut Bull 56:629–632

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Romano.

Additional information

Responsible editor: Susanne Heise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Sampling stations for environmental characterization carried out in the study area by ISPRA (2015). Red label represents the core used for determination of local backgroud values (Romano et al. 2017) (JPG 1128 kb)

Fig. S2

Principal Component Analysis on the metal and trace element concentrations of the environmental characterization carried out by ISPRA (2015). Component 1 and 2 account for 39.6% and 25.2% of variance, respectively (JPG 162 kb)

Fig. S3

Dendrogram obtained by HCA on grain-size results (JPG 216 kb)

Fig. S4

Particle size distribution curve of samples of cluster A, B1 and B2 (JPG 813 kb)

ESM 1

(XLS 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, E., Bergamin, L., Pierfranceschi, G. et al. Conflicting outcomes of an integrated approach to sediment quality assessment in a Sardinian coastal area subjected to mining activities. J Soils Sediments 20, 2630–2640 (2020). https://doi.org/10.1007/s11368-019-02489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02489-y

Keywords

Navigation