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Abstract 

 

Strong sustanbility demands that decisions on climate mitigation be guided by a climate target 

and that compliance with the target be the primary concern prior to saving mitigation cost. 

Climate targets have often been formulated as temperature targets and for the case of uncertainty 

about climate sensitivity as probability targets. However, for the realistic case that we learn about 

climate sensitivity over the decision-making period, it is not clear how strong sustainability 

would consistently derive decisions on climate mitigation before and after leraning. We 

systematically structure the normative debate on adequate decision criteria for strong 

sustainability under uncertainty and learning along the lines of the von-Neumann-Morgenstern 

axioms of expected utility theory. We distinguish between a strict and a pragmatic-probabilistic 

interpretation of strong sustainability. We find that both interpretations break with the continuity 

axiom, while the pragmatic-proabilistic interpretation violates, in addition, the independence 

axiom. We discuss different possible decision criteria for strong sustainability under learning 

about climate sensitivity, among them a new time-recursive cost-effectiveness analysis. This 

probabilistic target formulation for the case of learning leads to non-trivial results if a “safe” 

probability level can be reached at zero mitigation cost in at least one learning scenario in which 

climate sensitivity turns out to be sufficiently low. This may occur if learning happens rather late 

and major parts of the low-carbon transformation have been achieved already before learning. 

Overall, our decision-analytic review helps to better understand the position of strong 

sustainaibility and its potential inconsistencies. We would encourage future work to use the 

methods of decision theory for structuring normative positions in the sustainability discourse.  
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Abbreviations 

 

CBA  cost-benefit analysis 

CEA  cost-effectiveness analysis 

CRA  cost-risk analysis 

PP-CEA Posterior-Prior cost-effectiveness analysis 

EU  expected utility 

 

Introduction 

The notion of a climate target is at the heart of global climate policy. The Rio Conference in 

1992 agreed on stabilizing “greenhouse gas concentrations in the atmosphere at a level that 

would prevent dangerous anthropogenic interference with the climate system” (UNFCCC 1992). 

Eighteen years later at the climate conference of Cancún, this level was specified as a warming 

of 2°C global mean temperature relative to preindustrial times and reaffirmed in the legally 

binding Paris agreement of 2015 signed by 196 countries (UNFCCC 2011; UNFCCC 2015). 

A global climate target has often been understood as an implementation of strong sustainability, 

a school of thought who maintains that certain forms of the natural capital at stake cannot be 

substituted by human-made capital (Neumayer 2013). The target level is considered a maximum 

acceptable limit whose transgression cannot be compensated by gains in other areas (WBGU 

2011; WBGU 2014). Contrary to weak sustainability, externalities from climate change are not 

absorbed into a welfare functional but imposed as constraints to welfare maximization.  

Much work has been done on analyzing economic transformation pathways to efficiently reach 

various climate stabilization levels (IPCC 2014, chap. 6). Without uncertainty, a welfare 

functional is typically maximized subject to a constraint on global greenhouse gas concentrations 

or global mean temperature. This is known as a cost-effectiveness analysis (CEA) of the climate 

target. Taking uncertainty about the climate response to emissions into account, a probabilistic 

climate target can be formulated, for instance, as keeping global temperature below 2°C with a 

probability of at least 66%. CEA of probabilistic climate targets has been conducted first by den 

Elzen & Van Vuuren (2007) and Held et al. (2009) and is the common approach to scenario 

analysis of climate stabilization today (IPCC 2018) . 
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But, how can a climate target be formulated under uncertainty and learning, i.e. if future 

mitigation decisions can be adapted in the light of new information about the climate response to 

emissions? Webster et al. (2008) estimate that the uncertainty about climate sensitivity will be 

reduced by 20-40% over the next one to four decades by Bayesian learning from climate 

observations. Moreover, advances in the conceptual understanding as, for example, in cloud 

physics may reduce this uncertainty (IPCC 2013, pp. 593-594). Learning implies that a 

transformation pathway has a different 2°C exceedance probability depending on the state of 

knowledge (probability distribution) about climate sensitivity. So far, there has been no 

formulation of a (probabilistic) climate target for this case. Schmidt et al. (2009; 2011) discard 

different forms of CEA with learning due to consistency problems with probabilistic constraints.   

Instead, they propose cost-risk analysis (CRA) which, as an expected utility (EU) criterion, 

satisfies common consistency principles. CRA has been used to investigate optimal mitigation 

pathways for the case of future learning about climate uncertainty (Neubersch et al. 2014), 

delayed climate policy (Roth et al. 2015) and climate engineering (Roshan et al. 2018). Yet, as 

an EU criterion, this approach is an unconstrained welfare maximization and thus at odds with 

the strong sustainability paradigm.  

The aim of this paper is twofold: Our main question is how a climate target can be formulated for 

the case of climate-related uncertainty and learning. We tackle this question by a systematic 

review of axioms in decision making against the background of the climate problem, linking the 

discourse on sustainability and climate targets to the foundations of decision theory. We are not 

aware of such methodological links in the literature on climate mitigation. A second objective is 

thus to explore this interdisciplinary perspective and demonstrate the usefulness of axiomatic 

methodology for structuring the sustainability debate.  

The analysis is structured as follows: Based on a literature review, the first section introduces 

strong sustainability as the normative reasoning behind climate targets. Second, we present cost-

risk analysis, the criterion used to derive target-based decisions under learning so far, and its 

conflict with strong sustainability. Third, to open and structure the space of possible decision 

criteria, we discuss the necessity of complying with each of the von-Neumann-Morgenstern 

axioms of EU theory in the context of the climate problem. We identify different classes of 

eligible decision criteria conditional on set of axioms a proponent of strong sustainability is 
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willing to accept. Fourth, based on two interpretations of strong sustainability presented in the 

first section, we review different formulations of a CEA under uncertainty and learning proposed 

by Schmidt et al. (2009; 2011) and, moreover, suggest a new time-recursive CEA. Finally, we 

summarize the proposed criteria and discuss advantages and limitations of lexicographic criteria 

relative to EU criteria for making decisions on the climate problem under uncertainty and 

learning.  

1. Strong Sustainability: The Reasoning behind Climate Targets 

 

In the sustainability discourse, there two competing paradigms of how to approach an 

environmental problem: weak and strong sustainability. Neumayer (2013) provides a 

comprehensive review of the broad debate on the two concepts. Fundamentally, they differ on 

whether the natural capital at stake in the environmental problem (e.g. a forest area, natural 

resources, the ozone layer or the state of the global climate) is substitutable by human-made 

capital.   

According to Neumayer (2013), weak sustainability requires that total net investment be positive 

or at least zero, i.e. the aggregate stock of capital, human-made capital and natural capital, should 

be non-declining. Strong sustainability makes the additional requirement on the stock of natural 

capital. There are two versions: Either the aggregate natural capital should be maintained in 

value terms or certain stocks of “critical” natural capital should be maintained in physical terms. 

The key difference between weak and strong sustainability is the substitutability assumption of 

natural capital which generates two fundamentally different perspectives. While the weak 

sustainability is concerned with the adequate pricing of natural capital relative to human-made 

assets, strong sustainability seeks to impose maximum acceptable limits of environmental stress 

that should not be transgressed.  

The body of literature on both paradigms and their specifications is enormous. The foundations 

of weak sustainability were laid by Robert Solow and John Hartwick (Solow 1974; Hartwick 

1977). Their underlying substitutability hypothesis features the standard approach of cost-benefit 

analysis presented in environmental economics textbooks (e.g. Perman et al. 2003, pp. 351). The 

weak sustainability paradigm has been criticized early and fiercely, for instance, by Georgescu-
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Roegen (1975) and Daly (1974; 2007) who maintained that there are physical limits to the size of 

a sustainable economy. Whether as “safe minimum standards” (Ciriacy-Wantrup 1952), “optimal 

scale” (Daly 1992, 2005), “tolerable windows” (Petschel-Held et al. 1999), “planetary 

boundaries” (Rockström et al. 2009) or “planetary guard rails” (WBGU 2011), the idea of 

environmental limits has been very influential especially with respect to global problems. Over 

the last three decades, numerous authors have contributed to the broad debate on weak and 

strong approaches which only step by step let go of universal claims for the insight that, 

depending on the environmental problem, the substitutability assumption may be context-

specific (Neumayer 2013).   

In climate change economics, the very controversy appears between proponents of cost-benefit 

analysis (CBA) and proponents of a cost-effectiveness analysis (CEA) of climate targets. CBA 

weighs climate damages in monetary terms against mitigation cost. Yet, estimations of climate 

damages as provided by Nordhaus (2008; 2013) or Tol (2002; 2009) have been strongly 

criticized mainly on two grounds. First, the manifold impacts of climate change on human well-

being are fundamentally uncertain and hard to quantify and, second, their monetary valuation 

must rely on ethically contestable methods and assumptions (Ackerman et al. 2009; 

Charlesworth & Okereke 2010; Pindyck 2013). Instead, proponents of climate targets have 

argued along the lines of the precautionary principle: As long as our knowledge is as limited, 

they claim, it is best to stay in relatively familiar and safe climatic range. The case for 

approaching the climate problem by maximum acceptable limits instead of internalizing climate 

damages into an economic welfare optimization has been made repeatedly (e.g. WBGU 1995; 

Schellnhuber 1998; Ackerman et al. 2009; Rockström et al. 2009; Neumayer 2013). Although 

reference to the two terms and their long-standing literature have become sparse, weak and 

strong sustainability are very present in the climate change debate.  

The priority of holding the critical limit is key to strong sustainability. The WBGU (2011, p. 32) 

considers the 2°C limit of global warming as one of the  

 “damage thresholds whose transgression either today or in the future 
would have such intolerable consequences that even large-scale benefits in 

other areas could not compensate these.” 
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Introducing the 2°C target to climate policy, the WBGU (1995) argued that a warming within 

2°C relative to preindustrial would leave the planet in a climate state relatively familiar from 

paleo-climatic evidence of the past 800,000 years. Beyond that, we would enter a climatic range 

never experienced by human beings with potentially disastrous large-scale changes on our 

planet. Other authors have argued similarly for a strict limit on the basis of precaution although 

with different emphasis on how much is known about the impacts in case of transgression (see 

Neumayer 2013, pp. 40-46).  

This value system corresponds to lexicographic preferences that follow an order of decision 

criteria. First, a primary criterion (“not transgress the guard rail”) is applied. If the primary 

criterion is not decisive, a secondary criterion (“large-scale benefits in other areas”) is applied, 

and so on. We will consider strong sustainability as demanding lexicographic preferences for, 

first, reaching the climate target and, second, minimizing economic mitigation cost. This 

corresponds to a cost-effectiveness analysis (CEA) of the climate target.  

As a lexicographic criterion, strong sustainability demands attaining the environmental target at 

any cost. However, what if the cost become very large? As Neumayer (2013, pp. 124-126) points 

out, two interpretations of strong sustainability have evolved on this matter: First, ignoring 

opportunity cost is a deliberate decision since transgressing the environmental limit is, in fact, 

the worst that can happen. Second, costs are considered implicitly when the environmental target 

is developed. The precondition is that the target must not incur unacceptably high cost. Here, 

strong sustainability can be understood as recommending a precautionary low-cost-low-risk 

option in the face of fundamental uncertainty, although this option might with more knowledge 

turn out not to be the optimal choice. The WBGU (1995) added that the 2°C target was only 

reasonable because it would not impose “excessive cost” to the global economy. However, other 

publications do not consider mitigation cost for setting a climate target (WBGU 2011; 

Rockström et al. 2009). We will take into account both interpretations by distinguishing between 

a strict target and a pragmatic-probabilistic target where the latter allows for some limited 

exceedance probability to avoid excessive mitigation cost.  

One might argue that the uncertainty about climate sensitivity only adds to the uncertainty about 

climate impacts by which the temperature limit was justified in the first place. We should 

therefore formulate the target not in terms of temperature but of a variable over which we have 
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sufficient control. However, this ignores that the uncertainty about climate impacts is more 

fundamental than, for instance, uncertainty about climate sensitivity which can be reasonably 

quantified by probabilities (IPCC 2013, pp. 921). The temperature limit separates those two 

domains of uncertainty and allows target-based decision analysis to work probabilistically. This 

allows us to model the more realistic case that one type of uncertainty, the uncertainty about 

climate sensitivity, will be reduced over time (learning) by future observations (Webster et al. 

2008), while the other type, the impact uncertainty, prevails longer.  

2. Cost-Risk Analysis: A Target-based Expected Utility Criterion 

 

Cost-risk analysis (CRA) has been suggested and applied as a possible target-based decision 

criterion for learning (Schmidt et al. 2011; Neubersch et al. 2014). To formalize this and the 

following decision criteria we exemplarily consider uncertainty about climate sensitivity 𝜃 

known up to a prior probability density distribution 𝑝(𝜃). In the static case, i.e. without learning, 

we consider cumulative global greenhouse gas emissions 𝐸 as decision variable resulting in a 

maximum global temperature over time 𝑇(𝐸, 𝜃) measured relative to preindustrial temperature. 

This is a common simplification of the problem since maximum temperature is approximately 

proportional to cumulative emissions such that the timing of emissions is less important (Allen et 

al. 2009). Moreover, we consider aggregate economic mitigation cost 𝐶(𝐸) incurred relative to a 

business-as-usual growth scenario without climate damages.  

With learning, the decision problem becomes dynamic, i.e. there are two stages in the decision 

process: a first-period decision before learning and a second-period decision after learning.  We 

consider 𝑛 possible learning scenarios (messages) with posterior distributions 𝒑(𝜃) =(𝑝1(𝜃), … , 𝑝𝑛(𝜃)). The learning scenarios are obtained with prior probabilities 𝝅 = (𝜋1, … , 𝜋𝑛), 

where ∑ 𝜋𝑚 = 1𝑚 .  Together, they form an information structure (𝝅, 𝒑(𝜃)). Bold notation 

denotes vectors over learning scenarios. The decision maker decides on the first-period 

emissions 𝐸0 and the 𝑛 second-period emissions 𝑬𝒎 = (𝐸1, … , 𝐸𝑛) of all learning scenarios. Our 

decision variable is therefore the tuple (𝐸0, 𝑬𝒎).   
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Cost-risk analysis (CRA) finds the optimal (𝐸0, 𝑬𝒎) by minimizing a weighted sum of 

mitigation cost and climate risk: 

 𝑀𝑖𝑛((𝐸0,𝑬𝒎)) 𝜀𝑚𝜀𝜃|𝑝𝑚(𝜃) [𝐶(𝐸0, 𝐸𝑚) + 𝛽 𝑋(𝑇(𝐸0, 𝐸𝑚, 𝜃), 𝑇∗)]. (1) 

Here, 𝑋 is an exceedance measure of the temperature target 𝑇∗ and 𝛽 is a trade-off parameter that 

represents the willingness-to-pay for preventing a unit exceedance. The operators  𝜀𝑚[. ] and 𝜀𝜃|𝑝𝑚(𝜃)[. ] denote the expectation over the learning scenarios and over climate sensitivity given 

the posterior 𝑝𝑚(𝜃). Climate risk is some functional of the distribution of exceedance. The 

difference to CBA is that 𝑋 is not a climate damage function based on aggregating specific 

impact evaluations but a function increasing with temperature overshoot that represents the 

decision maker’s aversion to the exceedance of the critical limit.  

Although a target-based criterion, cost-risk analysis clearly conflicts with the above rationale of 

strong sustainability since it is not a lexicographic criterion and allows for compensating 

exceedance as soon as sufficient mitigation cost can be saved. However, we will see in the 

following section that, as an EU criterion, it aligns with a number of common consistency 

principles.  

3. Explaining and Discussing the von-Neumann-Morgenstern Axioms  

 

Since the foundational work by von Neumann and Morgenstern (1944) expected utility (EU) 

theory has become the standard framework for decision-making under uncertainty. They show 

that, as soon as a decision maker accepts four general consistency principles, the von-Neumann-

Morgenstern axioms, she finds her optimal choice by maximizing an expected utility function. 

We will explain and discuss each of axioms in the context of the climate problem. This serves to 

structure the discussion on possible decision criteria of strong sustainability under uncertainty 

and learning.  

The von-Neumann-Morgenstern framework conceives decision under risk as a choice between 

lotteries. Risk implies that the space of possible states of the world and their probabilities are 

known. As depicted in Figure 1, there are three types of lotteries: simple lotteries, compound 

lotteries and dynamic lotteries (e.g. Machina 1989). Simple lotteries are one-stage bets and 
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correspond to probability distributions over the possible outcomes (Figure 1a). In case of the 

climate problem without learning, by choosing emissions 𝐸 under the probability distribution 𝑝(𝜃) we obtain a simple lottery 𝐿𝐸|𝑝(𝜃) on outcomes which are temperature-cost pairs {𝑇(𝐸, 𝜃), 𝐶(𝐸)}. Compound lotteries are two-stage lotteries on simple lotteries (Figure 1b). The 

compound lottery 𝑝 𝐿1 + (1 − 𝑝)𝐿2 is the lottery to receive the simple lottery 𝐿1 with probability 𝑝 and the simple lottery 𝐿2 with probability (1 − 𝑝). We moreover assume the axiom of 

reduction which implies that any compound lottery can be reduced to a simple lottery by 

multiplying the probabilities along the paths in the decision tree. Finally, a dynamic lottery is a 

two-stage lottery on decisions between simple lotteries (Figure 1c). In the case of learning, the 

first-period decision 𝐸0 is a choice between dynamic lotteries on different second-period 

decision problems. Each of the second-period decisions 𝑬𝒎 is a choice between simple lotteries.  

 

Figure 1: Decision trees of simple, compound and a dynamic lotteries. Circles denote lottery nodes (chance 
decides), squares denote decision nodes (decision maker decides) and black points denote outcomes (payoffs). 

Decision analysis investigates the consistency of a set of preferences a decision maker holds 

when asked about pairwise comparisons of lotteries. The strict relation 𝐿1 ≻ 𝐿2 denotes that she 

prefers the lottery 𝐿1 over the lottery 𝐿2 and 𝐿1~ 𝐿2 implies that she is indifferent between the 

two. The weak relation 𝐿1 ≽ 𝐿2 denotes that she holds either a preference 𝐿1 ≻ 𝐿2 or an 

indifference 𝐿1~ 𝐿2.  

The lottery space of simple lotteries Λ that we consider includes all combinations of emissions 

((𝐸0, 𝐸𝑚) with one of the posterior distributions in 𝒑(𝜃) as well as the reductions of all possible 

compound lotteries with the likelihoods 𝝅 on those first lotteries. The former correspond to the 

second-period option space (after learning). As we will see later in this section, the latter 
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correspond to the first-period option space (before learning) provided that two principles of 

dynamic choice are accepted.  

Moreover, we assume that the posterior distributions in 𝒑(𝜃) have infinite support, i.e. although 

its probability may be low, an arbitrarily high value of climate sensitivity cannot be ruled out. 

This is consistent with the distributions given by the IPCC (2013, pp. 1107). They estimate a 

90% probability for (equilibrium) climate sensitivity to be below 6°C. However, the complexity 

of the climate system with its numerous feedback mechanisms does not allow for constraining 

climate sensitivity to a maximum level. Learning about climate sensitivity in the next decades 

will not find an upper bound either as long as observations come with infinite support. 

After defining the relevant lottery space Λ for the climate problem under uncertainty and 

learning, we present the four von-Neumann-Morgenstern axioms following Gollier (2001, pp. 4-

6): 

(I) Completeness: Preferences ≽ on the lottery space Λ are such that for any two 

lotteries 𝐿1, 𝐿2 ∈ Λ it is either 𝐿1 ≻ 𝐿2, 𝐿1 ≺ 𝐿2 or 𝐿1~ 𝐿2.  

Completeness demands from the decision maker to compare all available lotteries pairwise and 

state a preference. She must either prefer one option over the other or be indifferent between the 

two. There is no third category. While the other axioms deal with consistency between lottery 

preferences, this one ensures that there are well-defined preferences in the first place. 

Completeness over the space of simple lotteries Λ is certainly demanding for a decision problem 

as complex as the climate problem. However, the axiom is necessary for the existence of an 

optimal choice on all subsets of the lottery space 𝑆 ⊆ Λ. An optimum on Λ might also exist for 

incomplete preferences, yet adding empirical constraints to the problem can lead to infeasibility 

on a smaller subset. Past emissions, for instance, prescribe a minimum temperature increase 

regardless of the mitigation decision we make.  

In a normative context of assessing different future scenarios of climate change mitigation, we 

want a reasoned choice (Gilboa 2009, pp. 131-132). Preferences cannot be observed, they need 

to be justified. Yet, already by asking about the preferences between two outcomes, i.e. 

temperature-cost pairs, the decision maker might find it difficult to develop reasoned preferences 
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in the light of high temperatures or “excessive” mitigation cost. The corresponding predictive 

uncertainties and moral trade-offs may be overwhelming such that a pair of outcomes could be 

considered “incomparable”.  

Now, for a proponent of the strict target, a transgression of the critical temperature is 

inacceptable regardless of the mitigation cost, so she has no difficulties in stating complete 

preferences. A proponent of the pragmatic-probabilistic target who makes cost considerations 

prior to defining the target level, though, may seek to avoid “tragic choices”1
 between high 

mitigation cost and high climate risk because of the additional effort required in her decision-

making process. From a perspective of bounded rationality, we argue that climate targets are 

preferable to cost-benefit analyses. Developing preferences over tragic choices requires not only 

a better understanding of a world with high degrees of warming or large mitigation challenges. 

Moreover, unequally distributed global mitigation cost and climate risks will make it even more 

difficult to negotiate tragic choices in international agreements on climate policy. A decision 

maker averse to making tragic choices will aim to circumvent the completeness axiom on the 

whole space of possible temperature-cost combinations.  

The gist of strong sustainability is that if the climate target level can be reached at low cost, a 

“satisficing” solution is already found and preferences between options beyond the target level 

are not necessarily needed. In the light of fundamental uncertainty, the approach does not look 

for an overall optimal pathway, but for a safe pathway which is the essence of the precautionary 

principle at the basis of strong sustainability (IPCC 2014, pp. 172). As long as cost-effectiveness 

analyses of a strict or a probabilistic climate target without learning are feasible, these decision 

criteria have the advantage that they do not require complete preferences.  

However, considering the climate problem with learning, “tragic choices” cannot be ruled out. 

As past emissions have already occurred and the prior distribution of climate sensitivity has 

infinite support, there is always a small chance of ending up in a very “bad” learning scenario 

with the choice between high mitigation cost and high climate risk. Any temperature or 

exceedance probability of that temperature may be transgressed after learning if only we look at 

a case of sufficiently high climate sensitivity. Since, in the case of learning, the decision maker 

                                                 
1
 A term used by Edenhofer and Lessman (2007).  
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needs to anticipate her actions after learning, proponents of strong sustainability must also 

structure the preference space beyond the target level. Completeness on the whole set of 

mitigation cost and climate risk combinations becomes necessary to ensure the existence of an 

optimal choice.    

(II) Transitivity: Preferences ≽ on the lottery space Λ are such that for any 𝐿1, 𝐿2, 𝐿3 ∈Λ: 𝐿1 ≽ 𝐿2 and 𝐿2 ≽ 𝐿3 implies 𝐿1 ≽ 𝐿3.  

Transitivity is consistency over a triple. It is readily compelling as soon as the decision maker 

can clearly tell the lotteries apart
2
. Complete and intransitive decision makers can be exploited 

by “money pumps” (e.g. Mandler 2005): Assume the decision maker prefers 𝐿1 ≽ 𝐿2 and 𝐿2 ≻ 𝐿3, then she would be willing to take some disadvantage (e.g. paying money) to trade 𝐿2 

for 𝐿3. Also, she would not mind exchanging 𝐿1 for  𝐿2. Now, if she preferred 𝐿3 ≻ 𝐿1 she 

would trade 𝐿1 for money to obtain 𝐿3, which is the lottery she held in the beginning. This 

procedure can be used to “pump” an infinite amount of money (disadvantage) out of a complete 

and intransitive decision maker which we see as inacceptable from a social planner perspective.  

For a finite number of options in the lottery space, completeness and transitivity allow to 

pairwise compare all lotteries and arrange them on a scale from “worst” to “best”. This  

constitutes an ordinal utility function, that is, a utility ranking where utility differences do not 

have a meaning except for that an option with higher utility is preferred over an option with 

lower utility. An ordinal utility difference does not give information on how “much more” 

preferred an option is over another (Gilboa 2009, pp. 53-54).  

To construct a utility function for the problem with infinitely many options, we need to accept a 

third axiom:  

(III) Continuity: Preferences ≽ on the lottery space Λ are such that for any 𝐿1, 𝐿2, 𝐿3 ∈ Λ 

with 𝐿3 ≽ 𝐿2 ≽ 𝐿1 there exists a probability 𝑝 ∈ [0,1] such that: 

 𝑝𝐿1 + (1 − 𝑝)𝐿3 ~ 𝐿2.  

                                                 
2
 For measurement problems if the decision maker cannot tell two different options apart and the corresponding 

theory of semiorders, see Gilboa (2009, pp. 65-71).  
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Let us elucidate the definition with an example: Imagine an adventurer on a treasure hunt. She 

arrives at a bridge over a canyon and has to decide whether or not to dare the crossing. There are 

three possible outcomes: First, she manages to cross the bridge and finds the treasure (𝑇). 

Second, she falls off the bridge and dies (𝐷) or, third, she goes back without a treasure (𝐵). Of 

course, she will prefer 𝑇 ≻ 𝐵 ≻ 𝐷 . The decision of whether or not to cross is between the two 

lotteries 𝑝𝑇 + (1 − 𝑝)𝐷 and 𝐵. Here, 𝑝 ∈ [0,1] is the probability that she safely crosses the 

bridge, the stability of the bridge. If 𝑝 is high (a concrete bridge), she would cross, while for a 

low probability (a rope in midair), she would prefer going back. Now, continuity demands that 

there exist some kind of bridge for which her decision of whether or not to cross will be quite 

hard, i.e. an break-even probability 𝑝 ∈ [0,1] at which she is indifferent: 𝑝𝑇 + (1 − 𝑝)𝐷 ~ B.  

The continuity axiom can be understood 

in analogy to mathematical continuity 

(Figure 2): A small change in the 

probabilities underlying two lotteries 

should only make a small change in the 

preferences over them. Abrupt changes, 

where for an arbitrarily small increment in 

probability the decision maker swaps from a 

strict preference to the opposite strict 

preference, are not allowed. Instead, there must be a smooth transition over an indifference 

relation.  

Again, we distinguish between the strict and the pragmatic-probabilistic interpretation. The 

discontinuity induced by the strict target, i.e. the probability threshold at 100%, captures the idea 

of the precautionary principle that the certainty of preventing “intolerable damage” has a 

different quality than a mere arbitrarily high probability. Especially since the climate problem is 

global and intergenerational such that those who induce the risk do not necessarily bear the risk, 

this distinction between no risk and a small risk of “intolerable damage” is valid. However, if 

climate sensitivity cannot be constrained to an upper bound and past emissions have already 

occurred, it is impossible to stay below the temperature limit with certainty.  

Figure 2: Illustration of non-continuity and 
continuity. Continuity demands that a small change 
in the probabilities implies only a small change in 
the evaluation of a lottery.  
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A probabilistic temperature target that specifies a maximum acceptable exceedance probability 

larger than zero may be feasible and economically affordable, yet its justification for breaking 

with the continuity axiom is not clear.  The 17
th

 Conference of the Parties in Durban established 

the notion of holding a “likely chance” to reach the 2°C target (UNFCCC 2012) which has been 

interpreted as a probability of 66% (Neubersch et al. 2014). Unlike the 2°C target, such 

probabilistic target is not based on historic or predictive insight of climate science. It is the result 

of a policy process, not an assessment of critical environmental limits. We find no reason why a 

small probability increase at a specific non-zero exceedance probability should be 

disproportionately more dangerous than an increase at any other probability level.  

Accepting completeness, transitivity and continuity on the lottery space Λ implies the existence 

of a real-valued ordinal utility function (Gollier 2001, pp. 5-6): Completeness and transitivity let 

us find a best lottery 𝐿 and a worst lottery 𝐿 and by continuity we find for any 𝐿 ∈ Λ a unique 

probability 𝑝 ∈ [0,1] such that 𝐿 ~ 𝑝𝐿 + (1 − 𝑝)𝐿. The probability 𝑝 can then be interpreted as 

an ordinal utility representation of the lottery 𝐿. Thus, for the static problem (simple lotteries) by 

complying with the first three axioms, there exists a continuous utility function 𝑉(𝐸 , 𝑝(𝜃)) that 

ranks our options of emissions 𝐸 for a given probability distribution of climate sensitivity 𝑝(𝜃)  

from best to worst. For finding the optimal choice, we perform a utility maximization 

 𝑀𝑎𝑥(𝐸)  𝑉(𝐸 , 𝑝(𝜃)). (2)  

This is the general form of a decision criterion a proponent of strong sustainability would reject. 

Since temperature and mitigation cost are both functions of 𝐸 some trade-off function needs to 

be defined that relates the two to each other. This allows, in principle, for any climate target 

exceedance if mitigation cost are sufficiently high. A proponent of strong sustainability must 

therefore drop either completeness, transitivity or continuity.  

The fourth axiom is 

(IV) Independence: Preferences ≽ on the lottery space Λ are such that for any 𝐿1, 𝐿2, 𝐿3 ∈ Λ and 𝑝 ∈ [0,1]: 𝐿1 ≽ 𝐿2  ⇔ 𝑝𝐿1 + (1 − 𝑝)𝐿3 ≽ 𝑝𝐿2 + (1 − 𝑝)𝐿3.  

Independence demands that the preferences on 𝑝𝐿1 + (1 − 𝑝)𝐿3 and 𝑝𝐿2 + (1 − 𝑝)𝐿3 be 

determined by the preferences over 𝐿1 and 𝐿2 regardless of what 𝑝 and 𝐿3 are. Wakker (1999) 
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decomposes the independence axiom into three principles of dynamic choice, i.e. choice that 

involves dynamic lotteries: consequentialism, time-consistency and context-independence
3
. They 

are illustrated in Figure 3 where each consistency principle implies that the decision maker takes 

the same decision in two neighboring decision trees, i.e. goes for the upper/lower branch in both 

problems.  

 

Figure 3: Relation between independence, consequentialism, time-consistency and context-independence following 
Wakker (1999) and Gollier (2001, p. 12). Each consistency principle implies that the decision maker takes the same 
decision at the decision node (square) in two neighboring decision trees, i.e. goes for the upper/lower branch in 
both problems. 

Consequentialism (“foregone-event independence” for Wakker) implies that the decision should 

not depend on what could have happened in the past but eventually did not occur. Time-

consistency requires that the decision maker can correctly anticipate her future choice. Context-

independence holds that a time-consistent decision maker can frame a dynamic lottery as a 

compound lottery by committing to the anticipated choice before learning. Finally, choosing in 

                                                 
3
 Wakker also includes axiom of reduction which we take for granted at this stage. 
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panel (1) as in panel (4) corresponds to the independence axiom. To reject independence, either 

consequentialism, time-consistency or context-independence must be dropped.   

Sparked by the famous Allais Paradox (Allais 1953), a considerable body of literature exists on 

violations of the independence axiom and corresponding Non-EU theories in descriptive as well 

as normative contexts (e.g. Kahneman & Tversky 1979; Loomes & Sugden 1982; Machina 1989; 

Bradley & Stefansson 2016). Wakker (1999) categorizes the arguments made against 

independence into arguments against consequentialism, time-consistency or context-

independence. We will briefly discuss each of them in the context of the climate problem.  

First, breaking with consequentialism would imply that the decision after learning takes into 

account counterfactual learning scenarios that have not realized. It would matter for the decision 

after learning whether or not we end up with a “good” or “bad” learning scenario relative to the 

other learning scenarios that were possible. As a collective and intergenerational issue, though, 

the climate problem should be tackled forward-looking and consequentialist, we think. It is 

dangerous giving future decisions makers the possibility to justify their mitigation decisions by 

pointing to decisions they would have made in counterfactual learning scenarios which makes 

the discourse somewhat irrational because such statements cannot be disproven.  

Second, time-inconsistency would allow the decision maker’s plans before learning to deviate 

from the actual decision made after learning. In a non-strategic social planer context, this does 

not make sense. Correct anticipation of future choice is indispensable since the purpose of 

learning in time is to adjust choices conditional of different possible learning scenarios.  

Third, context-independence reduces the dynamic decision problem to a static one since it 

maintains that a time-consistent decision maker should consider a dynamic lottery (Figure 3.3, 

bottom right) as a compound lottery (Figure 3.4, top right). It implies that, as the decision maker 

knows all possible posterior distributions and thus also her respective second-period option 

spaces, it does not matter whether she commits to the second-period choice today (compound 

lottery) or only after learning (dynamic lottery). Decision and lottery nodes are interchangeable 

in order.  

The principle ensures that the decision maker does not reject costless learning (Wakker 1988):  

By choosing the same second-period emissions in all learning scenarios 𝑬𝒎 = (𝐸1, … , 𝐸1), she 
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will not be better or worse-off than as if she had chosen 𝐸1 in the static problem without 

learning. The argument is that, if she does not adjust her second-period decisions, her prior 

probability distribution (lottery) over the temperature-cost outcome space is the same as if she 

had chosen the sum of the first-period and second-period cumulative emissions in the no-

learning case. Context-independence disregards the specific posterior exceedance probabilities as 

long as they sum up to the same prior.  

However, a violation of context-independence might be in the sense of strong sustainability. 

Meeting a probabilistic climate target (e.g. a 66% chance to stay below 2°C) under several (also 

more pessimist) probability distributions may be preferred to meeting it under only one 

probability distribution of climate sensitivity. Although the decision maker might be worse-off 

with costless learning in terms of mitigation cost as Schmidt et al. (2009, 2011) point out, she is 

better-off in terms of climate risk as the probabilistic target becomes more ambitious if referred 

to more than one probability distribution. Since two metrics, climate risk and mitigation cost, 

need to be compared, the argument that a proponent of strong sustainability would reject costless 

learning is not valid. Moreover, non-independence allows the decision maker’s ambition level 

(the willingness to pay mitigation cost for reducing climate risk) to increase the more probable 

the exceedance of the critical temperature becomes because utility functions can be non-linear in 

probabilities (Gollier 2001, pp. 10-12). This property is interesting for a proponent of strong 

sustainability since it allows her to spend maximum mitigation cost in worst-case learning 

scenarios, yet without having to go for maximum mitigation already before learning in the 

anticipation of these scenarios. We will come back to this property in the next section when 

discussing Lexicographic EU criteria.  

Let us summarize the result of the von-Neumann-Morgenstern framework: Accepting the 

independence axiom in addition to the first three axioms imposes the utility function 𝑉(𝐸 , 𝑝(𝜃)) 

to have a certain form: it must be linear in the probability distribution 𝑝(𝜃) (Gollier 2001, pp. 

10-12). The axioms (I) to (IV) are the necessary and sufficient conditions for EU maximization 

over the space of simple lotteries which reads: 

 𝑀𝑎𝑥(𝐸)  𝜀𝜃| 𝑝[𝑈(𝐸, 𝜃)]. (3) 
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Here, 𝑈(. ) is a utility function of the temperature-cost outcomes {𝑇(𝐸, 𝜃), 𝐶(𝐸)} obtained from 

emissions 𝐸 and climate sensitivity 𝜃.  

Since EU criteria are time-consistent and context-independent, dynamic lotteries can be reduced 

to simple lotteries. This allows applying EU criteria also to the two-stage decision problem in the 

case of learning: 

 𝑀𝑎𝑥(𝐸0 ,𝑬𝒎)  𝜀𝑚𝜀𝜃| 𝑝𝑚[𝑈(𝐸0, 𝐸𝑚 , 𝜃)]. (4) 

To structure the discussion on alternatives to EU maximization, Table 1 presents classes of 

decision criteria that are compatible with different configurations of continuity and independence 

given that the first two axioms hold. As shown above, continuity implies a utility maximization 

either with linear probabilities (expected utility) or non-linear probabilities (non-expected 

utility). Blume et al. (1991) show that a lexicographic expected utility criterion, where multiple 

expected utility functions are maximized lexicographically, satisfies independence but breaks 

with the continuity axiom
4
. The notation 𝐿𝑒𝑥 𝑀𝑎𝑥 {𝑉1(. ), 𝑉2(. ), … } implies that we maximize 𝑉1(. ) first, and for equal levels of 𝑉1(. ), we maximize 𝑉2(. ) and so on, until we obtain a 

complete ordering. The most general framework, violating both continuity and independence, is  

Table 1: Summary of the classes of decision criteria compatible with different positions on the continuity and 
independence axiom given that completeness and transitivity are satisfied. The brackets state whether this 
combination of axioms is necessary, sufficient or both for the corresponding class of decision criteria.  

                                                 
4
 Note that (I), (II) and (IV) are only necessary but not sufficient for lexicographic EU maximization. The additional 

assumptions are minor though, see Blume et al. (1991).  

 Continuity Non-Continuity 

Independence 𝑀𝑎𝑥 𝜀𝜃|𝑝[𝑈(. |𝜃)] 
expected utility 

(necessary and sufficient) 

𝐿𝑒𝑥. 𝑀𝑎𝑥  {𝜀𝜃|𝑝[𝑈1(. |𝜃)], 𝜀𝜃|𝑝[𝑈2(. |𝜃)], … } 

lexicographic expected utility 

(necessary) 

Non-

Independence 

𝑀𝑎𝑥 𝑉(. |𝑝(𝜃)) 

non-expected utility 

(sufficient) 

𝐿𝑒𝑥. 𝑀𝑎𝑥 {𝑉1(. |𝑝(𝜃)),  𝑉2(. |𝑝(𝜃)), … } 

lexicographic non-expected utility 

(necessary) 
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lexicographic non-expected utility maximization where we allow for utility functions in the 

lexicographic structure that are non-linear in the probabilities. 

4. Strong Sustainability under Uncertainty and Learning 

Strong sustainability implies using a lexicographic criterion where the primary criterion is to 

meet a climate target. Let us now go through specific criteria that we could offer such proponent. 

First, the strict interpretation of a climate target can use a Lexicographic EU criterion as it 

complies with axioms (I), (III) and (IV) but violates continuity. We suggest 

 𝐿𝑒𝑥.  𝑀𝑖𝑛(𝐸0,𝑬𝒎)  {𝜀𝑚[𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚)],𝜀𝑚[𝐶(𝐸0, 𝐸𝑚)] }, 

 

(5) 

where 𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚) is the posterior probability to exceed the critical temperature 𝑇∗. It depends 

on first-period emissions 𝐸0, the second-period emissions 𝐸𝑚 and the posterior distribution of 

climate sensitivity 𝑝𝑚(𝜃). The criterion minimizes the upper function that represents the prior 

exceedance probability first, and the lower function, expected mitigation cost, second. As for all 

criteria that follow, the static case without learning can be obtained by setting all posterior 

distributions to the prior. 

The obvious problem of the strict target approach is that it always suggests maximum emission 

reduction if the prior climate sensitivity distribution is unbounded. Any primary lexicographic 

function that is linear in 𝑝(𝜃) and strictly increasing with excess temperature above the target 

level (as for example the different risk measures used by Neubersch et al.) will result in such 

corner solution that simply ignores mitigation cost.  

An interesting result of our analysis is that the intuition behind pragmatic-probabilistic strong 

sustainability may, in fact, be more intimately linked to the violation of independence than to the 

violation of continuity. Independence requires the willingness to pay for reducing exceedance 

probability (or climate risk in general) by one unit to be constant with exceedance probability, 

while continuity requires it to be continuous. The statement, though, that we should not care too 

much about low exceedance probabilities, but invest everything once exceedance probabilities 

become close to 1 is, above all, a break with the independence axiom. 
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The pragmatic-probabilistic interpretation minimizes mitigation cost as long as the exceedance 

probability is below some acceptable limit 𝑃∗. This is what is known under Chance Constrained 

Programming (Held et al. 2009) or Probabilistic CEA (Schmidt et al. 2009). As learning requires 

complete preferences on the lottery space Λ if the prior 𝑝(𝜃) is unbounded, we define 

preferences beyond the target level following the general framework of strong sustainability 

under uncertainty by Baumgärtner and Quaas (2009). That is, if a transgression of the probability 

limit cannot be avoided, we demand minimizing the overshoot and keep the exceedance 

probability as low as is still possible. The risks beyond the critical level are not traded against 

lower mitigation cost which preserves the key idea of strong sustainability.  

The question arises to what state of knowledge (prior or posterior) the probability limit applies 

when making first-period and second-period decisions. We discuss three suggestions: Posterior-

CEA, Prior-CEA and Posterior-Prior-CEA all of which violate the continuity and independence 

axiom.  

Posterior-CEA: 

Posterior-CEA was already discussed by Schmidt et al. (2009; 2011) and we write it in complete 

form as 

 𝐿𝑒𝑥.  𝑀𝑖𝑛(𝐸0,𝑬𝒎)  { 𝜀𝑚[𝛩[𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚) − 𝑃∗]𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚)],𝜀𝑚[𝐶(𝐸0, 𝐸𝑚)] }. 
 

(6) 

This target formulation places the threshold 𝑃∗ on the posterior exceedance probability. It 

chooses cost-efficient first-period and second-period emissions such that the transgression of the 

probability threshold 𝑃∗ is as small as possible under posterior knowledge in each of the learning 

scenarios. Posterior-CEA violates context-independence since by choosing the same second-

period emissions in all learning scenarios we do not necessarily recover the preference order over 

the emissions implied by the criterion without learning, i.e. if all posteriors correspond to the 

prior. As pointed out above, this is consistent with a position that favors holding the probabilistic 

target also under possible future posteriors. However, the problem with Posterior CEA is its 

extreme anticipation effect: The decision maker would pay any amount of mitigation cost in the 

first-period only to further reduce the exceedance probability in one worst-case learning scenario 
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which may even not be very likely. She ignores the likelihoods of these scenarios and is 

completely fixated on the possible worst-case which, in addition, makes the first-period decision 

very sensitive to the sample of learning scenarios considered.  

Prior-CEA: 

Schmidt et al. (2009; 2011) propose another criterion that reduces to Probabilistic CEA without 

learning: Prior-CEA. We write it in complete form as 

 𝐿𝑒𝑥.  𝑀𝑖𝑛(𝐸0,𝑬𝒎)  { 𝛩[𝜀𝑚[𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚)] − 𝑃∗]𝜀𝑚[𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚)],𝜀𝑚[𝐶(𝐸0, 𝐸𝑚)] }. 
 

(7) 

Prior-CEA places the threshold 𝑃∗ on the prior exceedance probability 𝜀𝑚[𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚)]. As 

long as the exceedance probability before learning is below 𝑃∗, expected mitigation cost over all 

learning scenarios are minimized. Otherwise, the smallest possible prior exceedance probability 

is chosen.    

The major problem of Prior-CEA is that even after learning, the decision maker continues to 

minimize mitigation cost subject to the prior constraint. She can increase the posterior 

exceedance probability as much as she likes as long as this is balanced by low exceedance 

probabilities in counterfactual learning scenarios that could have occurred in the past but 

eventually did not realize. This violation of consequentialism can, ultimately, lead to a “sacrifice 

of the climate” in some bad (high climate sensitivity) learning scenarios (Schmidt et al. 2009).  

In that case, second-period emissions are increased to a business-as-usual level to obtain zero 

mitigation cost and the actual high posterior exceedance probability can be balanced by low 

exceedance probabilities from the counterfactual learning scenarios.  

Posterior-Prior-CEA: 

Posterior-Prior-CEA (PP-CEA) determines first-period decisions according to Prior-CEA and 

second-period emissions according to Posterior-CEA. Unlike the other decision criteria which 

are intertemporal optimizations, this criterion is time-recursive.  First, optimal second-period 

decisions 𝑬𝒎∗ (𝐸0) for a given first-period decision 𝐸0 are determined. Then, the optimal first-

period decision 𝐸0 is determined given the second-period optimum 𝑬𝒎∗ (𝐸0). PP-CEA reads 
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 𝑬𝒎∗ (𝐸0) = 𝐿𝑒𝑥.  𝑎𝑟𝑔𝑚𝑖𝑛𝑬𝒎  {𝜀𝑚[𝛩[𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚) − 𝑃∗] 𝑃(𝐸0, 𝐸𝑚, 𝑝𝑚)],𝜀𝑚[𝐶(𝐸0, 𝐸𝑚)] }, (8) 

 𝐸0∗ = 𝐿𝑒𝑥.  𝑎𝑟𝑔𝑚𝑖𝑛𝐸0  {𝛩[𝜀𝑚[𝑃(𝐸0, 𝐸𝑚∗ (𝐸0), 𝑝𝑚)] − 𝑃∗] 𝜀𝑚[𝑃(𝐸0, 𝐸𝑚∗ (𝐸0), 𝑝𝑚)],𝜀𝑚[𝐶(𝐸0, 𝐸𝑚∗ (𝐸0))] }. (9) 

 

The decision maker of PP-CEA minimizes mitigation cost always up to the allowed level of 

exceedance probability always with respect to her current probability distribution of climate 

sensitivity. However, when calculating the exceedance probability, she correctly anticipates that 

her second-period emissions will be determined in the same way but with respect to the future 

posterior distributions. The decision maker anticipates that in “good” learning scenarios she will 

increase emissions, while in “bad” learning scenarios she will reduce emissions even further.  

The advantage of PP-CEA over Posterior-CEA is that the anticipation effect is not as extreme 

under certain conditions. The expectation over the posterior exceedance probability is the prior 

exceedance probability. This implies that maximum mitigation in the first period is avoided if 

there is at least one good learning scenario in which a business-as-usual continuation stays 

strictly below the posterior threshold. This allows for a bad learning scenario to transgress the 

posterior threshold. Staying below a posterior threshold with zero mitigation cost may occur for 

two reasons: First, the learning scenario is sufficiently “good”, i.e. the bulk of the posterior is 

centered around sufficiently small climate sensitivities.  Second, learning happens rather late 

when a large part of the transition to a low-carbon economy has already been achieved such that 

it would not be cost-minimizing anymore to go beyond the posterior threshold 𝑃∗. 

Posterior-CEA, Prior-CEA and Posterior-Prior-CEA all are possible extensions of Probabilistic 

CEA to learning but each come with more or less severe downsides. Prior-CEA is not acceptable 

since it is non-consequentialist and can, moreover, “sacrifice” of the climate. Posterior-CEA 

disqualifies, too, due to its extreme anticipation effect, forcing first-period to be minimal only 

due to the fact that one learning scenario will transgress the probability threshold. Posterior-

Prior-CEA would be a possible alternative given that there are good learning scenarios where 

transgressing the probability threshold does not reduce mitigation cost any further.  
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Summary and Conclusion: How to formulate a climate target under 

uncertainty and learning? 

 

Our axiomatic review structures the debate on the formulation of climate targets under certainty, 

uncertainty and, eventually, under uncertainty and learning from a decision-theoretic perspective. 

A proponent of strong sustainability who prioritizes compliance with a climate target over saving 

mitigation cost needs to drop either the completeness, transitivity or continuity axiom introduced 

by von-Neumann and Morgenstern. We distinguish between a strict and a pragmatic-

probabilistic interpretation of the climate target. The former requires holding global temperature 

below some critical level with certainty or the highest possible probability regardless of 

mitigation cost. The latter develops a target based also on considerations of economic feasibility 

and minimizes mitigation cost as long as some non-zero exceedance probability limit is not 

transgressed.  

A proponent of the strict target can argue against the continuity axiom by claiming that the 

certainty of avoiding “intolerable damage” is of much greater value than a mere high probability. 

The pragmatic-probabilistic interpretation cannot make this argument since it is not clear why a 

probability increase at a specific non-zero exceedance probability should be disproportionately 

more dangerous than an increase at any other probability level. Moreover, as the pragmatic-

probabilistic interpretation takes mitigation cost into account when setting the target, it may face 

the problem of coming up with reasoned preferences over a “tragic choice”, i.e. to weigh high 

mitigation cost against high climate risk. Unlike the strict proponent, such decision maker has a 

reason to relax the completeness axiom as long as the decision criterion remains feasible because 

she seeks to avoid tragic choices that seem incomparable to her. While for the strict 

interpretation the utility function fails at the continuity axiom, for the pragmatic-probabilistic 

interpretation it fails at the completeness axiom. 

The strict interpretation is quite consistent and can simply go with a lexicographic expected 

utility (EU) criterion (Blume et al. 1991) by minimizing exceedance probability first and 

mitigation cost second. This can be applied under learning as well. The pragmatic-probabilistic 

interpretation can go with Probabilistic CEA in the case of no-learning, i.e. it cost-effectively 

holds a maximum acceptable exceedance probability. However, its violation of continuity, we 



24 

 

think, is not desirable. Rather, it is a downside that goes along the development of reasoned 

preferences by using probabilistic threshold values to separate a “sustainable” from a “non-

sustainable” zone in the option space. In practice, the exact level of the threshold may not be 

important. Sensitivity analysis around the probabilistic threshold with Integrated Assessment 

Models could show that the artificial discontinuity in preferences is empirically not an issue if 

mitigation costs do not decrease drastically beyond the threshold level. Nevertheless, we think 

that future conceptual work on strong sustainability under uncertainty should extend on the 

question why the continuity axiom should be dropped in the first place. 

Our analysis shows moreover that, under learning, the pragmatic-probabilistic interpretation 

which does not accept “excessive” mitigation cost needs to comply with the completeness axiom, 

but has to drop the independence axiom: Completeness is necessary because deciding on tragic 

choices becomes inevitable once we anticipate bad learning scenarios. Moreover, if 

independence was satisfied in addition to completeness and transitivity, we would obtain a 

lexicographic EU criterion. This is compatible with the strict but not with the pragmatic-

probabilistic interpretation since, under unbounded probability distributions, such criterion 

suggests reducing emissions as much as possible regardless of mitigation cost.  

For the case of learning, we suggest the pragmatic-probabilistic position to apply a decision 

criterion that we call Posterior-Prior cost-effectiveness analysis (PP-CEA). The criterion is 

different former criteria (Schmidt et al. 2009; 2011) since it is not an intertemporal, but a time-

recursive optimization. Under each state of knowledge (probability distribution), the decision 

maker applies Probabilistic CEA, i.e. she seeks to stays below the threshold value of exceedance 

probability in a cost-optimal manner. To calculate her exceedance probability, though, she 

anticipates the very behavior also in future learning scenarios with respect to the corresponding 

posterior distributions. Like other formulations of cost-effectiveness analysis under learning, PP-

CEA decisions are transitive but break with continuity and independence.  

Due to non-independence, the gist of PP-CEA is that (unlike CRA) it eventually increases 

mitigation ambition as much as possible once we get close to transgressing the critical 

temperature, yet without demanding this ambition to be as high from the beginning (like 

lexicographic EU). However, if climate sensitivity turns out to be lower than expected, the 

decision maker will invest less into mitigation than in the no-learning case since she is allowed to 
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increase the posterior exceedance probability up to the threshold level. This leads to maximum 

mitigation in the first period (before learning) if not all posterior exceedance probabilities can be 

reduced to threshold level and no low climate sensitivity scenario holds the level at zero 

mitigation cost.  

One can argue that pragmatic-probabilistic strong sustainability is more intimately linked to the 

violation of independence than to the violation of continuity. Let us consider the willingness to 

pay for reducing one unit of exceedance probability (or climate risk in general) of the above 

criteria. The normative intuition of strong sustainability is that this willingness must become 

infinite once we get close or even above the critical temperature, i.e. in bad learning scenarios we 

should invest everything to contain climate change as much as still possible. Unlike the strict 

interpretation, this is not required in lower regimes of exceedance probability. While the 

continuity axiom implies that the willingness to pay is a continuous function of exceedance 

probability, the independence axiom implies that it is constant. Thus, the statement that we 

should not care too much about low exceedance probabilities, but invest everything once 

exceedance probabilities become close to 1 is, above all, a break with the independence axiom.  

Can a climate target be formulated for the case of learning? It can, but our formulation may lead 

to an extreme anticipation effect, i.e. emissions need to be reduced as much as possible before 

learning due to a small chance of ending up in the worst-case learning scenario. Maximum 

mitigation before learning is avoided, though, if learning scenarios stay below the posterior 

probability threshold with a business-as-usual continuation, i.e. at zero mitigation cost. This 

happens if learning occurs late at a point when the energy system has already transformed to a 

low-carbon infrastructure such that it would not be cost-optimal in low climate sensitivity 

scenarios to emit more than the probabilistic target level allows. Under which specific 

assumptions this extreme anticipation effect is avoided is a question to be left to future research 

that implements PP-CEA into an empirically founded Integrated Assessment Model.  

We conducted a comprehensive and systematic but not exhaustive review of possible decision 

criteria for strong sustainability under learning. Other formulations of lexicographic non-

independent decision criteria are possible and translating the demands of strong sustainability 

into further axiomatic restrictions would be necessary to obtain an exhaustive picture. If the 

Posterior-Prior criterion leads to the trivial result of maximum mitigation, either another 
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lexicographic non-independent formulation is found or the axiomatic problems of EU are 

neglected and cost-benefit analysis (CBA) or cost-risk analysis (CRA) are used to analyze 

learning. CBA is based on empirically detailed and comprehensive but less transparent 

assessments of climate damages and may also suggest maximum mitigation in the light of fat-

tailed climate uncertainty (Weitzman 2009). CRA can be calibrated to a probabilistic target and 

is a relatively simple and transparent target-based criterion that may be easily adjusted in the 

decision-making analysis. Held (2019) explains the characteristics of CRA in detail and reviews 

its advantages and disadvantages relative to cost-effectiveness analysis and cost-benefit analysis.  

We find our method of discussing the von-Neumann-Morgenstern axioms against the 

background of the climate problem helpful to structure the debate on strong sustainability under 

uncertainty and learning. However, we also see limitations to this perspective: Not all 

normatively relevant aspects can be covered by axiomatics. For example, neither the differences 

between CBA and CRA nor the question of whether or not bounded rationality should play a role 

in the development of preferences can be captured by the four axioms we discussed. An 

axiomatic discussion is only helpful whenever two normative positions clearly understand and 

disagree on an axiom. It highlights their differences and assigns different classes of compatible 

decision criteria to them. With our contribution, we would like to encourage further research on 

the decision-theoretic consistency of normative positions in the sustainability discourse. 

  



27 

 

References 

 

Ackerman, F. et al., 2009. Limitations of integrated assessment models of climate change. 

Climatic Change, 95(3–4), pp.297–315. 

Allais, A.M., 1953. Le Comportement de l’Homme Rationnel devant le Risque: Critique des 

Postulats et Axiomes de l’Ecole Americaine. Econometrica, 21(4), pp.503–546. 

Allen, M.R. et al., 2009. Warming caused by cumulative carbon emissions towards the trillionth 

tonne. Nature, 458(7242), pp.1163–1166. 

Baumgärtner, S. & Quaas, M.F., 2009. Ecological-economic viability as a criterion of strong 

sustainability under uncertainty. Ecological Economics, 68(7). 

Blume, L., Brandenburger, A. & Dekel, E., 1991. Lexicographic probabilities and choice under 

uncertainty. Econometrica, 59(1), pp.61–79. 

Bradley, R. & Stefansson, H.O., 2016. Counterfactual Desirability. British Journal for the 

Philosophy of Science, 0, pp.1–49. 

Charlesworth, M. & Okereke, C., 2010. Policy responses to rapid climate change: An 

epistemological critique of dominant approaches. Global Environmental Change, 20(1), 

pp.121–129. 

Ciriacy-Wantrup, S., 1952. Resource Conservation. Economics and Policies, Berkley, USA: 

University of California Press. 

Daly, H., 2007. Ecological Economics and Sustainable Development, Selected Essays of Herman 

Daly, Northampton, USA: Edward Elgar. 

Daly, H.E., 1974. The Economics of the Steady State. The American Economic Review, 64(2), 

pp.15–21. 

Edenhofer, O. & Lessmann, K., 2007. Vom Preis des Klimaschutzes und vom Wert der Erde. 

Technischer Fortschritt und das Konzept “starker Nachhaltigkeit.” In Jahrbuch Ökologische 

Ökonomik. Soziale Nachhaltigkeit. Marburg: Metropolis. 



28 

 

den Elzen, M.G.J. & Van Vuuren, D.P., 2007. Peaking profiles for achieving long-term 

temperature targets with more likelihood at lower costs. Proceedings of the National 

Academy of Sciences of the United States of America, 104(46), pp.17931–17936. 

Georgescu-Roegen, N., 1975. Energy and Economic Myths. Southern Economic Journal, 41(3), 

pp.347–381. 

Gilboa, I., 2009. Theory of Decision under Uncertainty, New York: Cambridge University Press. 

Gollier, C., 2001. The Economics of Risk and Time, Massachusetts Institute of Technology. 

Hartwick, J.M., 1977. Intergenerational Equity and the Investing of Rents from Exhaustible 

Resources. The American Economic Review, 67(5), pp.972–974. 

Held, H., 2019. Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate 

Targets. Environmental and Resource Economics, 72(1), pp.247–261. 

Held, H. et al., 2009. Efficient climate policies under technology and climate uncertainty. Energy 

Economics, 31, pp.S50–S61. 

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 

I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. 

F. Stocker et al., eds. Cambridge University Press. 

IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working 

Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change. In O. Edenhofer et al., eds. Cambridge University Press, p. 1454. 

IPCC, 2018. Global warming of 1.5°C. An IPCC Special Report on the impacts of global 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 

pathways, in the context of strengthening the global response to the threat of climate 

change, V. Masson-Delmotte et al., eds., Geneva, Switzerland: World Meteorological 

Organization. 

Kahneman, D. & Tversky, A., 1979. Prospect theory: an analysis of decision under risk. 

Econometrica, 47(2), pp.263–292. 



29 

 

Loomes, G. & Sugden, R., 1982. Regret Theory: an Alternative Theory of Rational Choice 

Under Uncertainty. Economic journal, 92(368), pp.805–824. 

Machina, M.J., 1989. Dynamic Consistency and Non-Expected Utility Models of Choice Under 

Uncertainty. Journal of Economic Literature, 27(4). 

Mandler, M., 2005. Incomplete preferences and rational intransitivity of choice. Games and 

Economic Behavior, 50(2), pp.255–277. 

Neubersch, D., Held, H. & Otto, A., 2014. Operationalizing climate targets under learning: An 

application of cost-risk analysis. Climatic Change, 126(3–4), pp.305–318. 

Von Neumann, J. & Morgenstern, O., 1944. Theory of Games and Economic Behavior. 

Princeton University Press, p.625. 

Neumayer, E., 2013. Weak versus Strong Sustainability. Exploring the Limits of Two Opposing 

Paradigms. 4th ed., Northampton, USA: Edward Elgar. 

Nordhaus, W., 2013. The Climate Casino: Risk, Uncertainty and Economics for a Warming 

World, Yale University Press. 

Nordhaus, W.D., 2008. A Question of Balance: Weighing the Options on Global Warming 

Policies, New Haven, London: Yale University Press. 

Perman, R. et al., 2003. Natural Resource and Environmental Economics 3rd ed., Edinburgh 

Gate, UK: Pearson. 

Petschel-Held, G. et al., 1999. The tolerable windows approach: theoretical and methodological 

foundations. Climatic Change, 41, pp.303–331. 

Pindyck, R.S., 2013. The climate policy dilemma. Review of Environmental Economics and 

Policy, 7(2), pp.219–237. 

Rockström, J. et al., 2009. Planetary Boundaries: Exploring the Safe Operating Space for 

Humanity. Ecology and Society, 14(2). 

Roshan, E., Khabbazan, M.M. & Held, H., 2018. Cost-Risk Trade-Off of Mitigation and Solar 



30 

 

Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity. 

Environmental and Resource Economics, 1–17. 

Roth, R., Neubersch, D. & Held, H., 2015. Evaluating Delayed Climate Policy by Cost-Risk 

Analysis. EAERE Conference Paper. 

Schellnhuber, H.J., 1998. The Scope of the Challenge. In Earth System Analysis. Springer, pp. 3–

195. 

Schmidt, M.G.W. et al., 2009. Climate Targets in an Uncertain World. PIK Working Paper. 

Schmidt, M.G.W. et al., 2011. Climate targets under uncertainty: Challenges and remedies. 

Climatic Change, 104(3–4), pp.783–791. 

Solow, R.M., 1974. Intergenerational Equity and Exhaustable Resources. The Review of 

Economic Studies, 41(1974), pp.29–45. 

Tol, R.S.J., 2002. Estimates of the damage costs of climate change: Part II. Dynamic estimates. 

Environmental and Resource Economics, 21(2), pp.135–160. 

Tol, R.S.J., 2009. The Economie Effects of Climate Change. The Journal of Economic 

Perspectives, 23(2), pp.29–51. 

UNFCCC, 2015. Conference of the Parties. Twenty-first session Paris, 30 November to 11 

December 2015. Adoption of the Paris Agreement, 

UNFCCC, 2012. Report of the Conference of the Parties on its seventeenth session, held in 

Durban from 28 November to 11 December 2011, 

UNFCCC, 2011. Report of the Conference of the Parties on its sixteenth session, held in Cancun 

from 29 November to 10 December 2010. Addendum. Part Two: Action taken by the 

Conference of the Parties at its sixteenth session., 

UNFCCC, 1992. United Nations Framework Convention on Climate Change, 

Wakker, P., 1999. Justifying Bayesianism by Dynamic Decision Principles. Working paper, 

Medical Decision Making Unit, Leiden University Medical Center, The Netherlands. 



31 

 

Wakker, P., 1988. Nonexpected utility as aversion of information. Journal of Behavioral 

Decision Making, I(July 1987), pp.169–175. 

WBGU, 2014. Human Progress Within Planetary Guard Rails. A Contribution to the SDG 

Debate, 

WBGU, 1995. Scenario for the derivation of global CO2 reduction targets and implementation 

strategies. Statement on the occasion of the First Conference of the Parties to the 

Framework Convention on Climate Change in Berlin, 

WBGU, 2011. World in Transition. A Social Contract for Sustainability, 

Webster, M., Jakobovits, L. & Norton, J., 2008. Learning about climate change and implications 

for near-term policy. Climatic Change, 89(1–2), pp.67–85. 

Weitzman, M.L., 2009. Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain 

Discounting. SSRN Electronic Journal, 3, pp.1–24. 

 


