
Fakultät für Elektrotechnik und Informatik
Institut für Softwaretechnik und Theoretische Informatik

Lehrstuhl für Security in Telecommunications

From Threats to Solutions in
Data Center Networks

vorgelegt von
M. Sc.

Kashyap Thimmaraju

von der Fakultät IV - Elektrotechnik und Informatik
der Technische Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingeniuerwissenschaften
- Dr. -Ing. -

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Georgios Smaragdakis, Ph.D., Technische Universität Berlin

Gutachter: Prof. Dr. Jean-Pierre Seifert, Technische Universität Berlin
Gutachter: Prof. Dr. Stefan Schmid, Universität Wien, Österreich
Gutachter: Prof. Arvind Krishnamurthy, Ph.D, University of Washington, Seattle
Gutachter: Prof. Eric Keller, Ph.D, University of Colorado, Boulder

Tag der wissenschaftlichen Aussprache: 17. Januar 2020

Berlin 2020

Ich versichere von Eides statt, dass ich diese Dissertation selbständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

Datum

Abstract
In this dissertation we adopt a threat model where the data center network infrastructure
is potentially malicious. To describe practical threats and solutions related to malicious
switches, we draw our attention to multi-tenant data center networks that i) consolidate
control over the (hardware and software) switches to a logically centralized controller and
ii) use virtualization techniques for multi-tenancy.

Our extensive security analyses and evaluations of the design, specifications and systems of
logically centralized data center network controllers reveals the following. Malicious switches
can covertly bypass network-wide security policies and mechanisms via the controller. We
identify three reasons for the existence of such covert channels: i) malicious switches share
the logical controller, ii) lack of authentication and authorization of switches to the controller
and iii) introduction of automation and programmability of the network. These channels can
be reliable (TCP-based) and fast (10 Mbps). As a result malicious switches can launch several
network-based attacks in the data center, e.g., to circumvent firewalls to access unauthorized
data. Furthermore, our state transition and delay model of the switch-controller handshake
allows us to design, implement and evaluate a covert timing channel that uses a frame-based
transmission scheme for accurate and low bandwidth (20 bps) communication, e.g., to
exfiltrate private keys. We also initiate the discussion of practical countermeasures, e.g.,
coupling TLS with the switch-controller handshake for authentication.

Next, our security analysis of network virtualization architectures that use virtual switches—
a key system for enforcing network isolation in multi-tenant data center networks—sheds
light on the following. Increasing network functionality in the virtual switch coupled with co-
locating it with the hypervisor and the lack of appropriate threat models among other reasons
has resulted in an insecure design. An attacker can escape host and network virtualization
and compromise the entire data center as a worm. By fuzzing the packet parser of a popular
virtual switch (OvS), we discovered 3 exploitable memory corruption vulnerabilities. We
use just one of them in a popular cloud management system (OpenStack) to demonstrate
our point: From a virtual machine (VM) we could take down hundreds of servers in a
few minutes. Our measurements of the impact of software-based countermeasures that
could have prevented the discovered vulnerabilities from being exploited for OvS show
that maximum packet processing throughput is reduced by half in the kernel whereas the
overhead in user-space is minimal (1-15%).

Finally, we continue our previous work by first surveying the security landscape of 23 virtual
switches and conclude that nearly all of them lack security in their design. Hence, we
introduce four secure design principles for virtual switches and accordingly build a scalable
prototype that prevents the virtual switch from being a liability to the (multi-tenant) data
center network. The key insights from our system and performance evaluations are as

v

follows. We can isolate and scale the virtual switches and their respective virtual networks
by placing them in containers in VMs. Using Single-Root I/O Virtualization allows us to
i) reduce the trusted computing base of virtual networking, ii) provide cloud operators an
easy upgrade path and iii) increase the tenants’ network application (e.g., web servers and
key-value stores) performance.

vi

Zusammenfassung

In dieser Dissertation nehmen wir ein Bedrohungsmodell an, bei dem die Netzwerkin-
frastruktur eines Rechenzentrums potentiell bösartig ist. Zur Beschreibung praktischer
Bedrohungen und Lösungen im Zusammenhang mit böswilligen Switches, fokussieren wir
uns auf Multi-Mandanten-Rechenzentrumsnetzwerke, i) bei denen die Kontrolle über die
(Hard- und Software-) Switches einem (logisch) zentralisierten Controller unterliegt und ii)
die Virtualisierungstechniken für Multi-Mandanten-Fähigkeit verwenden.

Unsere umfangreichen Sicherheitsanalysen und Bewertungen des Designs, der Spezifika-
tionen und der Systeme von Controllern für zentralisierte Rechenzentrumsnetzwerke zeigt,
dass bösartige Switches die netzwerkweiten Sicherheitsrichtlinien und -mechanismen über
den Controller verdeckt umgehen können. Wir identifizieren drei Gründe für die Existenz
solcher verdeckten Kanäle. i) Der zentralisierte Controller wird von bösartige Switches
mitbenutzt; ii) Switches benötigen keine Authentifizierung oder Autorisierung gegenüber
dem Controller; sowie iii) die Einführung von Automatisierung und Programmierbarkeit
des Netzwerks. Diese Kanäle können verlässlich (TCP-basiert) und schnell (10 Mbps) sein.
Damit können bösartige Switches verschiedene netzwerkbasierte Angriffe im Rechenzentrum
durchführen und beispielsweise zur Umgehung von Firewalls oder den unberechtigten Zu-
griff auf Daten benutzen. Darüber hinaus können wir mit Hilfe unseres Zustandsübergangs-
und Verzögerungsmodell des Switch-Controller-Handshakes einen verdeckten, Zeit-basierten
Kommunikationskanal entwerfen, implementieren und evaluieren. Dieses Frame-basierte
Übertragungsschema für bandbreitenarme (20 bps) Kommunikation mit niedriger Fehlerrate
erlaubt es uns z.B. private Schlüssel zu exfiltrieren. Als Abwehrmaßnahme diskutieren wir
unter anderem die Kopplung von TLS mit dem Switch-Controller-Handshake zur Authen-
tifizierung.

Eine weitere Schlüsseltechnologie zur Durchsetzung von virtuellen Netzwerk-Architekturen
in Multi-Mandanten-Rechenzentrumsnetzwerken ist die Verwendung von virtuellen Switches.
Unsere Sicherheitsanalyse dieser Architekturen zeigt, dass die Erhöhung der Funktionalität
im virtuellen Switch in Verbindung mit der die Einbettung in den Hypervisor, das Fehlen
geeigneter Bedrohungsmodelle neben anderen Gründen zu einem unsicheren Design geführt
hat. Ein Angreifer kann der Host- und Netzwerkvirtualisierung entkommen und damit das
gesamte Rechenzentrum als Wurm kompromittieren. Durch das Fuzzing des Paketparsers
eines populären virtuellen Switch (OvS) entdeckten wir drei ausnutzbare Schwachstellen.
Eine davon nutzen wir in einem beliebten Cloud-Management-System (OpenStack) um un-
seren Befund nachzuweisen: Von einer virtuellen Maschine (VM) aus könnten wir hunderte
von Servern in wenigen Minuten kompromittieren. Unsere Messungen zeigen, dass die

vii

Auswirkungen von softwarebasierten Gegenmaßnahmen, die hätten verhindern können,
dass die in OvS entdeckten Schwachstellen ausgenutzt werden können, den maximalen
Paketdurchsatz im Kernel um die Hälfte reduzieren, während der Overhead im User Space
minimal ist (1-15%).

Abschließend bemerken wir dass in unserer Studie von 23 virtuellen Switches fast keiner
Sicherheit als Design-Ziel verfolgt. Daher schlagen wir vier sichere Designprinzipien für
virtuelle Switches vor und entwerfen einen skalierbaren Prototyp, der verhindert, dass der
virtuelle Switch eine Gefahr für das Multi-Mandanten-Netzwerk darstellt. Die wichtigsten
Erkenntnisse aus unseren System- und Leistungsbewertungen sind wie folgt. Wir können die
virtuellen Switches und ihre jeweiligen virtuellen Netzwerke durch die Verwendung von VMs
isolieren und skalieren. Die Verwendung von Single-Root-I/O-Virtualisierung ermöglicht es
uns, i) die trusted computing base virtueller Netzwerke zu reduzieren, ii) Cloud-Betreibern
eine einfachen Upgrade-Pfad zu bieten und iii) die Netzwerkdurchsatz der Mandanten-
Maschinen zu erhöhen, beispielsweise für Webserver oder Key-Values-Datenbanken.

viii

Bibliographic Note

Partial results of the work presented in Part I have been published in the following peer-
reviewed proceedings.

1. Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. „Outsmarting Network Security
with SDN Teleportation“. In: Proceedings of the IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE. 2017, pp. 563–578. See Chapter 4/ [224].

2. Robert Krösche, Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. „I DPID It My
Way! A Covert Timing Channel in Software-Defined Networks“. In: Proceedings of the
IFIP Networking Conference (IFIP Networking) and Workshops. IEEE. 2018, pp. 217–225.
See Chapter 5/ [112].

Partial results of the work presented in Part II have been published in the following peer-
reviewed proceedings.

1. Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre
Seifert, Anja Feldmann, and Stefan Schmid. „Taking Control of SDN-based Cloud
Systems via the Data Plane“. In: Proceedings of the Symposium on SDN Research (SOSR).
ACM. 2018, pp. 1–15. See Chapter 6/ [226].

2. Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre
Seifert, Anja Feldmann, and Stefan Schmid. „The vAMP Attack: Taking Control of
Cloud Systems via the Unified Packet Parser“. In: Proceedings of ACM Cloud Computing
Security Workshop (CCSW). ACM. 2017, pp. 11–15. See Chapter 6/ [229].

3. Kashyap Thimmaraju, Gábor Rétvári, and Stefan Schmid. „Virtual Network Isolation:
Are We There Yet?“ In: Proceedings of the Workshop on Security in Softwarized Networks:
Prospects and Challenges (SECSON). ACM. 2018, pp. 1–7. See Chapter 7/ [230].

4. Kashyap Thimmaraju, Saad Hermak, Gábor Rétvári, and Stefan Schmid. „MTS: Bring-
ing Multi-Tenancy to Virtual Networking“. In: Proceedings of the USENIX Annual
Technical Conference (ATC). USENIX. 2019, pp. 521–536. See Chapter 7/ [223].

ix

Acknowledgements
This dissertation would not have been possible without the support from my near and dear
ones. I’d like to express my sincere gratitude to Jean-Pierre Seifert for including me in his
research group, connecting me with Stefan Schmid and supporting me throughout my PhD.
To Stefan Schmid, who has constantly been there for me throughout my PhD experience, so
much of this work is a result of his guidance. To Arvind Krishnamurthy and Eric Keller for
accepting to review and serve on my dissertation and defense committee. To Georgios who
really motivated and advised me towards the end of my PhD. To Claudi who was always
there to help out with purchases, reimbursements, holidays and all the other things that
enabled me to work at the university. I have got to work with and learn from so many
interesting people throughout my time at TU Berlin, and for that I am grateful. I would like
to share some memorable moments rather than list out many people. The many white board
sessions with Stefan in 2015-2016 when you were still in Berlin and also when Liron, Nati
and Nir visited Berlin and we went to the Einstein Kaffee Cafe. The moment JP shared his
advise with me in the corridor on the 16th floor about how to design experiments. When
Liron and I were on Skype and we discovered a new covert channel with ONOS was exciting
and something I want to continue experiencing. Shinjo and Altaf who got me home safely
after the T-Labs Xmas party. Debugging those MPLS parsing bugs in OvS with Bhargava was
really the start of something much bigger. I think we both found our way forward after that
fuzzy(ng) experience. Working with Felicitas on developing and testing the exploit for OvS
was really nice, it was impressive to see how fast she got it working. Working with Robert
on his master thesis and our timing covert channel was a great experience for me. I owe
Tobias Fiebig a big thanks for introducing me to JP and instilling the “Scientific Method” in
me. Anja Feldmann instilled integrity into my research when we met at JPs office and also
motivated me when we met at the SecSoN workshop in Budapest. I’m thankful to Saad for
opening up my mind to Geopolitics with his great book recommendation. His experimental
framework was so cool, I could receive plots of the measurements (for the ATC paper) made
via email. The seminar students were more often than not a great batch to work with, as it
was interactive and we learnt from each other. For me, lunch has always been a social affair
and I enjoyed every one of them with the people I was with. And not to forget the coffee/tea
discussions after that. It was usually around noon. The usual suspects were Bhargava,
Felicitas and Julian, with Robert, Shinjo, Altaf, Dominik and Nils joining frequently. It was
fun to go bouldering and climbing with Robert. I liked the competitiveness we had which
I think was implicit. Dominik’s birthday parties were always a blast with so many people
having a good time! Thilo, Anna, Nils, Robert, Altaf and Saad who helped us move flats. I
owe all the people who designed my awesome defense hat a big thanks! Working with Lukas
towards the end of my PhD was a nice learning experience and also I am grateful to him for
helping me out with the EIT project so that I could concentrate on getting my dissertation
and defense. Gabor, who supported and guided my work on MTS via the many skype calls we
had in 2018 and 2019. My visits to the US (California and Washington) and India to meet

xi

friends and family as well when my friends and family visited me in Berlin were fun and
memorable. Meeting Julia changed my life and she has always been there for me during my
PhD. To her parents and family who were like my family throughout. Dad, Mom and Preeti,
when they visited me in Berlin for my 30th and my 33rd in Ireland, was really memorable
in addition to them visiting us for my defense and to see Lia. To Ruth Wisharth for letting
me participate in her writing without boundaries course and exposing me to the different
styles of creative non-fiction. I sought inspiration from Muhammad Shahbaz’s dissertation
for Figure 2.1 in my dissertation and used the clean-thesis latex template to write this
dissertation. A special thanks to Nils Wisiol for translating the abstract into German.

Parts of the work conducted in this dissertation were financially supported by the following:
Federal Ministry of Education and Research of Germany Grant KIS1DSD032 (Project Enzeva-
los), Software Campus 2.0 project nos. 01IS17052; Helmholtz Research School on Security
Technologies scholarship at the German Aerospace Center and the Technical University
Berlin; and the “API Assistant” activity of EIT Digital.

xii

To my first daughter,
Lia.

xiii

Contents

1 Introduction 1

2 The Multi-Tenant Data Center 5
2.1 Overview . 5
2.2 Software-Defined Centralized Control . 6
2.3 Network Virtualization . 7

3 Threat Model 11

I Covert Channels via the Control Plane 13

4 Outsmarting Network Security with Teleportation 15
4.1 Preliminaries . 16
4.2 Modeling Teleportation . 17
4.3 Teleportation Techniques . 18
4.4 Switch- and Host-based Attacks . 22
4.5 Out-of-Band Forwarding Performance . 32
4.6 Countermeasures . 36
4.7 Related Work . 38
4.8 Conclusions . 39

5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel 41
5.1 A Covert Channel using Teleportation . 42
5.2 Design and Performance Challenges . 49
5.3 Evaluation . 51
5.4 Discussion . 56
5.5 Conclusions . 57

II Network Isolation via the Data Plane 59

6 Reins to the Cloud via the Virtual Switch 61
6.1 Security Analysis . 62
6.2 Case Study: OvS in OpenStack . 66
6.3 Software Countermeasures . 72
6.4 Related Work . 75
6.5 Conclusion . 76

7 Bringing Multi-Tenancy to Network Virtualization 77
7.1 Securing Virtual Switches . 78

xv

7.2 Threat Model . 80
7.3 Design Principles and Security Levels . 80
7.4 The MTS Architecture . 82
7.5 Evaluating Tradeoffs . 86
7.6 Workload-based Evaluation . 91
7.7 Scaling MTS . 94
7.8 Discussion . 96
7.9 Related Work . 97
7.10 Conclusion . 99

8 Future Work 101

9 Conclusion 103

Bibliography 105

xvi

1Introduction

This dissertation describes practical threats and solutions that pertain to an untrusted
or malicious network infrastructure in (multi-tenant) data centers. A plausible scenario:
national security agencies have bugged network equipment [207], networking vendors have
left backdoors open [183, 80, 141, 34] and attackers have repeatedly demonstrated exploits
on switches and routers [227, 222, 215, 121].

This is worrying and problematic for our critical infrastructure [87, 84] (which includes the
Internet) for two reasons. First, several organizations (including governments) are either
designing and building their own data centers [83] or migrating to public (multi-tenant data
center) cloud providers [132, 6]. These data center networks typically outsource the control
of the hardware and software switches (data plane) to a logically centralized controller
(control plane), which could be a single point of failure. Second, these data centers are
meant to host many users/tenants, applications and databases, oftentimes private [31] and
personally identifying [12]. To host multiple tenant workloads and isolate them from each
other, virtualization techniques are used [110], which if not done correctly could leak private
information. Unfortunately, our understanding of the security implications of a malicious
network infrastructure in such data centers is polarized.

Similar to Internet security research [146, 25, 114, 140], a lot of research effort has gone
into studying the security of the centralized control plane (controller) [17, 174, 203, 108,
111]. The data plane has been assumed to be trusted and attacks arise from malicious
end-hosts [76]. As a result, several authors have pointed out the weaknesses of a centralized
controller: denial-of-service [29, 17, 48, 241], topology poisoning [76, 46], timing and
reconnaissance attacks [210, 2, 123], as well as the lack of secure identifier bindings [95].

However, if the data plane is compromised, it has direct access to all traffic passing through
it. Furthermore, its direct access to the centralized control plane, serves as a stepping stone
to compromising the entire network [227]. Therefore, only recently have researchers begun
to study a threat model [108, 46, 94, 224] where the data plane can be malicious. Dhawan
et al. [46] and Hong et al. [76] demonstrated how malicious switches can poison the control
plane’s view of the physical network topology. Sasaki et al. [192] shed light on the lack of
accountability in the data plane and Klöti et al. [108] conceptualized several attacks arising
from a malicious data plane as well.

Given the limited grasp of such a pertinent threat model, we are motivated to cast light
on what else attackers are capable of doing in today’s data center networks and how we
can defend ourselves against such a threat model. Therefore, for a deeper understanding
of designing, building and operating a data center with potentially malicious network
equipment we posit the following hypothesis.

1

Thesis Statement: Network-wide security policies or mechanisms in multi-tenant data
center networks can be circumvented by malicious data plane systems. Hence, appropriate
security measures need to be taken to tolerate compromised data planes in the network.

Methodology: Our approach to prove our hypothesis is to first understand how multi-tenant
data center networks and their systems are designed, e.g., from specifications, designs and
implementations. We then carefully analyze how the design and implementation decisions
introduce vulnerabilities that enable an attacker to bypass security policies or enforcement
mechanisms. Accordingly, we verify if the identified vulnerabilities can be discovered and
demonstrated in real systems by manual, e.g., security analysis, or automated methods, e.g.,
fuzzing. We then address the uncovered security vulnerabilities by recommendation, design
or implementation and evaluate whether the tradeoff between security, performance and
resources is practical.

Contributions: Adopting the above methodology, this dissertation makes several contribu-
tions to i) the specifications, design and implementation of logically centralized controllers
and ii) the design and implementation of multi-tenant network virtualization architectures.
An overview of the scientific contributions are described below.

1. Covert communication via the control plane: Our theoretical and practical secu-
rity analyses of logically centralized controllers and their protocols (e.g., OpenFlow
and P4Runtime) uncovers three reasons why malicious switches can covertly com-
municate via the control plane and therefore bypass network-wide security policies
and mechanisms: i) the malicious switches share the same logical controller ii) lack
of authentication and authorization of switches to the controller in OpenFlow iii)
automation and programmability of the network. We introduce four techniques to
construct storage and timing covert channels and use them to demonstrate several
simple and sophisticated attacks on state-of-the-art controllers, e.g., to circumvent
firewalls or physically disconnected switches. We evaluate the performance and re-
source consumption of our storage channel and find that it can be reliable (using TCP)
and fast (10 Mbps) with a small impact on the controller’s CPU. By constructing a
state transition and delay based model of OpenFlow’s switch-controller handshake,
we design, implement and evaluate a covert timing channel that uses a frame-based
transmission scheme for accurate and low bandwidth communication (20 bps) e.g., to
exfiltrate RSA private keys. Finally, we discuss several practical countermeasures.

2. Improving isolation in the data plane: Our systematic security analysis of multi-
tenant network virtualization architectures that use virtual switches to enforce multi-
tenant network isolation casts light on the following critical security issues. First is
the trend to include increasingly complex network functionality in the virtual switch.
Second, the virtual switch is co-located with the virtualization layer of the Host.
Third, existing threat models for network virtualization do not sufficiently account
for an attacker to compromise the data plane and the data center network. Using
a case study (OpenStack and Open vSwitch), we fuzz the packet parsing logic of
Open vSwitch and discover 3 memory corruption vulnerabilities. By exploiting one
of them, we provably demonstrate how the state-of-the-art design is insecure: an
attacker can not only escape virtualization but also take down an entire cloud in a

2 Chapter 1 Introduction

few minutes by targeting, compromising and propagating via the virtual switch. Our
measurements of the impact of existing memory corruption protection mechanisms on
network forwarding performance makes it clear that user-space forwarding is barely
impacted (1-15% overhead) however, protecting the kernel is not practical for high
performance requirements (reduces the maximum throughput by half).

By surveying the security posture of 23 virtual switches we conclude that nearly all of
them lack security in their design: basic secure design principles such as least common
mechanism, least privilege, small trusted computing base are absent. Therefore, we
introduce four secure design principles that can prevent the virtual switch from being
a liability to virtualization in the data center. To that end, we present MTS, it is
scalable (using virtual machines and container), built from off-the-shelf hardware
(Single-Root I/O Virtualization) and software (QEMU/KVM, Open vSwitch, DPDK)
and incrementally deployable. MTS comes with the following benefits: i) reduces
the trusted computing base of virtual networking, ii) inexpensive upgrade path for
cloud operators and iii) increased security and performance. Our evaluation of the
security, performance and resource tradeoffs on real workloads reveals a noteworthy
improvement (1.5-2x) in throughput compared to the Baseline, with similar or better
latency for an extra CPU.

The code developed to conduct our analyses, scripts to emulate the environments and data
to back our experimental conclusions are available at the following URL:

www.github.com/securedataplane/

Tab. 1.1: List of assigned CVEs presented in this dissertation

Vendor Vulnerability Description CVE ID

ONOS ONOS before 1.5.0 when using the ifwd app allows remote attackers to cause a
denial of service (NULL pointer dereference and switch disconnect) by sending
two Ethernet frames with ether_type Jumbo Frame (0x8870).

CVE-2015-7516

Open vSwitch Buffer overflow in lib/flow.c in ovs-vswitchd in Open vSwitch 2.2.x and 2.3.x
before 2.3.3 and 2.4.x before 2.4.1 allows remote attackers to execute arbi-
trary code via crafted MPLS packets, as demonstrated by a long string in an
ovs-appctl command.

CVE-2016-2074

In Open vSwitch (OvS) 2.5.0, a malformed IP packet can cause the switch to
read past the end of the packet buffer due to an unsigned integer underflow
in ‘lib/flow.c‘ in the function ‘miniflow_extract‘, permitting remote bypass of
the access control list enforced by the switch.

CVE-2016-10037

OpenFlow OpenFlow version 1.0 onwards contains a Denial of Service and Improper au-
thorization vulnerability in OpenFlow handshake: The DPID (DataPath IDen-
tifier) in the features_reply message are inherently trusted by the controller.
that can result in Denial of Service, Unauthorized Access, Network Instability.
This attack appear to be exploitable via Network connectivity: the attacker
must first establish a transport connection with the OpenFlow controller and
then initiate the OpenFlow handshake.

CVE-2018-1000155

Ethical Considerations and Practical Impact: To avoid disrupting production systems
and businesses, all the findings reported in this dissertation have been verified on our own
infrastructure. We also responsibly disclosed all the vulnerabilities we discovered as a result
of this work (see Table 1.1 for the CVEs). The responsible/affected stakeholders have also
acknowledged the severity and relevance of our findings e.g., via security advisories [190,
45] announcements [157, 40, 41] and press releases [149, 148]. Software vendors, e.g.,
RedHat, Citrix, Ubuntu, OpenStack, Mirantis, Suse, Open vSwitch, ONOS, Open DayLight,
RYU and others have acknowledged our findings.

3

Dissertation Structure. The remainder of this dissertation is structured as follows. Chap-
ter 2 describes the architecture and relevant system components of multi-tenant data center
networks that use a logically centralized controller and virtual switches. The threat model
adopted in this dissertation is described in Chapter 3.

We then split the technical work of this dissertation into two major parts. In Part I, which
includes Chapter 4 and Chapter 5, we elaborate on our work that led to our contributions
on covert channels via the control plane. Next, in Part II, which includes Chapter 6 and
Chapter 7, our work on isolation in network virtualization is extensively discussed. We
highlight potential areas for future work in Chapter 8 and draw our final conclusions in
Chapter 9.

4 Chapter 1 Introduction

2The Multi-Tenant Data Center

This chapter begins with a high-level architecture of a typical multi-tenant data center
(MTDC) network, also commonly known as the cloud or cloud networks, followed by key
components that make up and manage the network. We introduce relevant terminology
and limit the scope of this chapter to the networking aspects of such a data center. Further
information on specific topics are provided in the respective chapters of this dissertation.

2.1 Overview

A typical network topology for a multi-tenant data center is depicted in Figure 2.1. It
is composed of hardware and software systems working together to host a variety of
tenant workloads, e.g., MapReduce, Web servers, Key-Value Stores, ML (machine learning)
applications and so on.

There are hardware servers (rectangles at the bottom) and switches (circles and the vswitch)
that form the physical network topology. The switches are typically organized as three
layers of leaf, spine and core switches. Additionally, a border switch provides connectivity
between the internal and external network (e.g., the Internet). As shown in Figure 2.1, the
physical servers connect to the leaf switches, which are in turn connected to the spine and
core switches. For capacity (e.g., high bisection bandwidth) and availability (link failures)
reasons, multiple links exist between the leaf, spine and core switches.

Multi-tenancy in this setting is typically offered via virtualization software (and hardware)
running in the server known as the Hypervisor or Host operating system (OS). Tenants
are allocated virtual machines (VMs) to share the underlying compute, memory and I/O
resources (shown as different coloured boxes in the server). The respective tenant VMs form
a virtual network that are isolated from other tenants via virtual switches that reside in the
hypervisor. The virtual switch is the first and last hop along a tenant’s network path within
the data center network.

The switches (hardware and virtual) and servers are typically managed and configured from a
logically-centralized controller. The centralized controller can be viewed as a software system
that maintains a global view of the (physical and virtual) network and runs applications
(e.g., traffic engineering, authentication, routing, firewalls) that configure the hardware and
software switches according to the network and security policies specified by the operator
and tenants.

In the next two sections we elaborate on centralized control and network virtualization.

5

vswitch

Logically-
centralized
Controller

Border

Internet

Clos
Topology

Core

Spine

Leaf

Hypervisorvswitch vswitch vswitch

Fig. 2.1: Abstract representation of an MTDC network topology and the key components: (i) central-
ized controller to operate the physical and virtual network infrastructure, (ii) vswitch for
network virtualization.

2.2 Software-Defined Centralized Control

Centralized network control and network-wide view are key design goals for state-of-the-art
cloud operating systems such as OpenStack [243] and other commercial cloud providers, e.g.,
Google Cloud Platform [235] and Microsoft Azure [58]. The centralized control is attractive
as it reduces the operational cost and complexity of managing cloud networks [231]. It also
provides flexibility for managing and using cloud services, including VM migration.

This centralized network control is popularly known as Software-Defined Networking (SDN)
and networks built using this design are called Software-Defined Networks. Unlike traditional
networking wherein each switch/router has a data plane and control plane, in SDN, all the
switches now share a logically centralized control plane as illustrated in Figure 2.1.

In SDN, OpenFlow [127, 150] is the de facto protocol used by the controller and switch for
communication and programming e.g., forwarding rules. This interface is also known as
the “south-bound” interface. OpenFlow follows a match-action paradigm: The controllers
install rules on the switches which consist of a match and an action part; the packets (i.e.,
flows) matching a rule are subject to the corresponding action. That is, each switch stores
a set of (flow) tables which are managed by the controllers, and each table consists of a
set of flow entries which specify expressions that need to be matched against the packet
headers, as well as actions that are applied to the packet when a given expression is satisfied.
Possible actions include dropping the packet, sending it to a given egress port, or modifying
its header fields, e.g., adding a tag. The match-action paradigm is attractive as it simplifies
formal reasoning and enables policy verification. Via the OpenFlow API, the controller can
add, remove, update, and monitor flow tables and their flows in the switches across the
network.

6 Chapter 2 The Multi-Tenant Data Center

Flow Table Entries

Broadcast | Multicast
| Unicast | Tunnel

VM
$_

Host OS

VM
$_

VM
$_

Host OS

User
Kernel

VM
$_

Network
Fabric

Fig. 2.2: High-level illustration of network virtualization using virtual switches in an MTDC. The
vswitch isolates the green and orange tenant networks via tenant-specific flow table entries
thereby giving each tenant the illusion of a single network.

While SDNs are logically centralized, the control plane can be physically distributed, e.g.,
for fault-tolerance or performance reasons. Accordingly, OpenFlow supports multiple con-
trollers [150] for a single switch. The controllers and switch exchange Role-request and
Role-reply messages respectively to assert the various roles (Master, Equal and Slave).
There may be only one Master controller for a given switch while multiple Equal and Slave

controllers are permitted. The OpenFlow standard [151] specifies basic security mechanisms.
For example, the transport layer (TCP/UDP) communication between the controller and
switch can be authenticated and encrypted, using TLS.

2.3 Network Virtualization

In a similar vein as compute resources are shared among the different tenants of the cloud,
the physical network, in particular the data plane, is also a resource that is shared by the
tenants. Tunneling protocols, e.g., VXLAN, GENEVE, NVGRE, etc., enable the cloud provider
to create virtual networks (e.g., L2 virtual networks using VXLAN) that are then allocated to
the tenants. The key component to network virtualization that implements the tunneling
protocol, establishes VM connectivity and enforces isolation is the virtual switch, which is
described next.

2.3.1 Virtual Switches

The virtual network’s data plane(s) can either be distributed across virtualized servers or
across physical (hardware) switches. Open vSwitch (OvS), VMware vSwitch, and Cisco
Nexus 1000V are examples of the former and are commonly referred to as virtual switches

2.3 Network Virtualization 7

Tab. 2.1: List of virtual switches surveyed in this dissertation. MTS is introduced in this dissertation.

Name Reference Year Emphasis

OvS [169] 2009 Flexibility
Cisco NexusV [236] 2009 Flexibility
VMware vSwitch [239] 2009 Centralized control
Vale [182] 2012 Performance
Research prototype [98] 2012 Isolation
Hyper-Switch [176] 2013 Performance
MS HyperV-Switch [133] 2013 Centralized control
NetVM [81] 2014 Performance, NFV
sv3 [211] 2014 Security
fd.io [219] 2015 Performance
mSwitch [75] 2015 Performance
BESS [19] 2015 Programmability, NFV
PISCES [198] 2016 Programmability
OvS with DPDK [184] 2016 Performance
ESwitch [137] 2016 Performance
MS VFP [58] 2017 Performance, flexibility
Mellanox BlueField [129] 2017 CPU offload
Liquid IO [163] 2017 CPU offload
Stingray [70] 2017 CPU offload
GPU-based OvS [234] 2017 Acceleration
MS AccelNet [59] 2018 Performance, flexibility
Google Andromeda [44] 2018 Flexibility and performance
Slim [251] 2019 Flexibility, Deployability and Se-

curity

MTS [223] 2019 Performance, Security

(abbreviated as vswitch), and is what we focus on in this dissertation. Cisco VN-Link [35]
and Virtual Ethernet Port Aggregator (VEPA) [101] are examples of the latter.

Multi-tenant virtual networks is typically provided in this design by (i) deploying the
vswitches with the server’s hypervisor (e.g, Open vSwitch aka OvS [171]), (ii) using flow-
table-level isolation: the vswitch’s flow tables are divided into per-tenant logical datapaths that
are populated with sufficient flow table entries to link tenants’ data-center-bound resources
into a common interconnected workspace [110, 91, 168] and (iii) overlay networks using a
tunneling protocol, e.g., VXLAN [237], to connect tenants’ resources into a single virtual
network/workspace. Alternatives to this host-based vswitch model [171], e.g., NIC-based
vswitch solutions [99, 70] and FPGA-based designs [59], share the main trait that the logical
datapaths have a common networking substrate (the vswitch).

The position of the virtual switch in the data center network is undeniably advantageous, it
processes all VM related network traffic. Hence, much effort has gone into enhancing the
performance, functionality and programmability of the virtual switch as illustrated in the
Emphasis column in Table 2.1. For example, firewalling functionality has been introduced
into OvS [89], the performance of OvS has been improved using DPDK [184] and Microsoft
Azure introduced their hardware programmable virtual switch, VFP [58] and AccelNet [59]
that offers high performance and programmability using FPGAs and extensible functionality
in software.

Virtual switches are typically designed for centralized control, e.g., OvS, and support Open-
Flow [147, 235, 44]. This enables management and configuration of the switch, e.g.,
configuring ports, policies, etc. from a logically centralized (OpenFlow) controller. The
packet processing and forwarding functionality of the switch can be spread across the system
running the virtual switch. The virtual switch can, but does not have to be separate processes.
Moreover, it can either fully reside in user- or kernel-space, or be split across them.

8 Chapter 2 The Multi-Tenant Data Center

Logically-centralized Controller

User-
space /
Slow
path

ovs-vswitchd

extract actionmatch

netdev/dpif

ovsdb
(Database)

Datapath kernel module

Network Interface Card (NIC)

Kernel-
space /

Fast
path

OpenFlow ovsdb

Host OS

Fig. 2.3: High-level architecture of Open vSwitch.

Packet forwarding is usually based on a sequential (or circular) packet processing pipeline.
The pipeline starts by parsing the packet’s header to extract the information that is required,
e.g., MAC and IP addresses, for a lookup of the forwarding instructions for that packet. The
lookup is typically a (flow) table lookup—the second stage of the pipeline. The final stage
uses this result to either forward the packet, drop it, or send it back to the first stage. These
three steps are show as part of the components of ovs-vswitchd in Figure 2.3.

2.3.2 Open vSwitch

Open vSwitch [30, 171, 170, 216] is a popular open source SDN and multi-platform
virtual switch. A high-level overview of its architecture is shown in Figure 2.3. The
logically centralized controller can manage OvS using OpenFlow or ovsdb, a protocol
designed for OvS that uses a database to store configuration information that is then used
by ovs-vswitchd to update it’s configuration.

OvS uses two forwarding paths: the slow path—a user-space daemon (ovs-vswitchd) and
the fast path—a datapath kernel module (openvswitch.ko). A dpif (datapath interface) is
used to communicate between the user-space and kernel module as OvS supports multiple
OSes. ovs-vswitchd installs rules and associated actions on how to handle packets in the
fast path, e.g., forward packets to ports or tunnels, modify packet headers, sample packets,
drop packets, etc. When a packet does not match a rule of the fast path, the packet is
sent to ovs-vswitchd, which then determines, in user-space, how to handle the packet.
It then passes the packet back to the datapath kernel module to execute the action. If
ovs-vswitchd does not know how to handle the packet, it can send it to the controller
which will then send OvS instructions on how to handle the packet.

This concludes the necessary background information for us to introduce our threat model
in the next chapter.

2.3 Network Virtualization 9

3Threat Model

Our threat model is in the context of multi-tenant data center networks that use a logically
centralized controller and virtual switches for virtual networking as described in the previous
chapter. The main objective of the attacker is to carry out different attacks based on her
requirements, e.g,. exfiltrate sensitive data, modify network data, launch denial of service
attacks or even backdoor operating system images in data center server networks. We
assume the attacker can be resource constrained however, this is not a strict requirement.
The attacker could also be an insider, i.e., an authorized user who intends to subvert his/her
current organization.

We assume the attacker has managed to compromise one or more switches (hardware/-
software) used in the data center network, e.g., exploiting vulnerabilities in the switch
software or via the supply-chain. In Chapter 6 we concretely describe how a (virtual) switch
can be compromised by an attacker with limited resources by exploiting a buffer-overflow
vulnerability in the MPLS protocol parsing logic. In order to collude, the attacker has
programmed the switches to recognize special data and/or timing patterns to trigger covert
communication. To control the compromised switches and compromise benign switches, we
assume the attacker has network access to the victim switch via a physical or software link.
Note that such connectivity is still via the data plane and not the management plane.

After the switch is compromised by the attacker we do not place any restrictions on what
a malicious switch can and cannot do. For example, a malicious switch can fabricate and
transmit any type of OpenFlow message, it can arbitrarily deviate from the SDN (e.g.,
OpenFlow, P4, P4Runtime) specification, and it can even use multiple identities, all at the
risk of being detected. Similarly, we do not place any restrictions on what a malicious host
can and cannot do. For example, a malicious host may masquerade its Media Access Control
(MAC) and/or Internet Protocol (IP) addresses, use an incorrect gateway, falsify Address
Resolution Protocol (ARP) requests/responses, and so on.

The controller and its applications on the other hand are trusted entities and are available
to the switches: For example, they are based on static and dynamic program analyses, or
developed in-house and run on trusted hardware. The controller-switch transport channel is
reliable and may be encrypted (using TLS), however, authentication in the controller-switch
protocol (e.g., OpenFlow) may not necessarily be specified and/or enforced.

11

Part I

Covert Channels via the Control Plane

In Part I of the dissertation, we demonstrate how malicious switches (and hosts) in a data
center network can secretly communicate with each other via the centralized controller and
bypass important data plane security policies and mechanisms, e.g., firewalls. Such covert
communication is fundamental to networks with centralized controllers.

In Chapter 4, we describe Teleportation, a new vulnerability introduced by centralized
control planes: Malicious switches (and hosts) can covertly communicate with each other by
exchanging messages (e.g., OpenFlow messages) with the logically centralized controller. We
identify four teleportation techniques that enables a broad spectrum of attacks for malicious
switches: Circumventing data plane security mechanisms and isolation, attack coordination,
exfiltration and eavesdropping. Via theoretical and practical analyses we explain how design,
specification (OpenFlow) and implementation weaknesses can be leveraged by malicious
switches for fast (10 Mbps) and reliable (TCP) covert communication using real software
controllers (ONOS, OpenDaylight, RYU) and switches (Open vSwitch). Along the way, we
also report on a denial-of-service attack on ONOS (CVE-2015-7516).

In Chapter 5, we extend work from the previous chapter by theoretically modelling switch
identification teleportation using timing delays to construct a novel covert channel based
on the OpenFlow switch-controller handshake. We then present the details on the design
and implementation of our sender and receiver state transition diagrams, algorithms and
implementations. Additionally, we evaluate the design, performance and accuracy of our
covert channel experimentally. Our prototype implementation using ONOS and Open
vSwitch, validates the feasibility of our channel: even under load at the controller, we can
achieve 20 bits per second with a one-way communication accuracy of 90%. This work led
to CVE-2018-1000155 for the OpenFlow specification and a security patch to the P4Runtime
specification. OpenFlow controller vendors have been alerted on the lack of authentication
and authorization within the OpenFlow handshake and hence, require implementing those
mechanisms with TLS.

4Outsmarting Network Security
with Teleportation

In this chapter we show how a (logically) centralized control plane—as it lies at the heart of
the SDN paradigm, introduces an opportunity for teleportation: Malicious SDN switches may
transmit information via the logically centralized software control plane, completely bypassing
data plane elements (such as other switches, middleboxes, etc.). By violating logical
and even physical separations, teleportation can constitute a serious security threat. For
example, teleportation could be used by one malicious switch to discover (and communicate
information to) other malicious switches, bypassing security checks in the data plane. As we
will show in this chapter, teleportation can also be exploited by malicious hosts, triggering
(benign) switches to teleport information for them.

We argue that teleportation can be seen as a flexible communication channel which consti-
tutes a threat in various situations, for example (see Figure 4.1):

1. Bypassing critical network components: By implicitly communicating information
via the control plane, it is possible to circumvent critical network components, such
as switches, middleboxes or policy enforcers located in the data plane. For example,
teleportation can in principle be used to bypass middleboxes performing security
checks (e.g., network intrusion detection systems (NIDS)), middleboxes in charge of
billing (e.g., a Radius server), or QoS enforcers (e.g., a leaky bucket policer).

2. Rendezvous and attack coordination: While already a single malicious switch, for
example located inside a data center network, may cause significant harm and violate
basic security policies, the situation becomes worse if multiple malicious switches
cooperate [55]. Malicious or Trojan switches (e.g., switches containing a hardware/-
software backdoor) may use teleportation as a rendezvous protocol, to discover each
other, and subsequently coordinate an attack.

3. Exfiltration: Teleportation can also be used to exfiltrate sensitive information between
networks that have no physical data plane connectivity.

4. Eavesdropping and data tampering: Particularly serious threats are introduced if
malicious hosts and switches collude. For instance, in a scenario with collusion,
teleportation can be used for eavesdropping. We show that a malicious switch and
host can carry out a man-in-the-middle attack that serves benign hosts with malicious
web pages.

Teleportation can be difficult to detect: The teleported information follows the normal traffic
pattern of control communication, not between switches directly but indirectly between

15

Controller

Fig. 4.1: Illustration of teleportation: Malicious switches (with red horns) exploit the controller for
hidden communication, possibly bypassing data plane security mechanisms such as a firewall.

any switch and the controller. Moreover, the teleportation channel is inside the (typically
encrypted) OpenFlow channel. Accordingly, it cannot easily be detected with modern NIDSs,
even if they operate in the control plane.

The remainder of this chapter is organized as follows. Section 4.1 introduces the neces-
sary background on OpenFlow and SDN. Section 4.2 characterizes possible teleportation
channels. Section 4.3 describes teleportation techniques; based on these techniques, we
demonstrate and discuss different attacks in Section 4.4. Section 4.5 describes our perfor-
mance evaluation of the out-of-band forwarding channel. Section 4.6 initiates the discussion
of countermeasures. After reviewing related work in Section 4.7, we conclude this chapter
in Section 4.8.

4.1 Preliminaries

This chapter considers networks which outsource and consolidate the control over the
network switches to a logically centralized software controller, e.g., in data center networks
(recall Section 2.2). If a packet arrives at a switch and does not match an existing rule, the
packet (usually without payload if the switch supports packet buffering) is forwarded to the
controller. This event is called a Packet-in. Upon a Packet-in event, the controller can
decide how to react to packets of the corresponding type by issuing Flow-mod messages to
the switch (and maybe to other switches proactively on this occasion as well). For example,
to add a flow rule, a Flow-add type Flow-mod message would be sent, and to delete a flow
rule, a Flow-del type Flow-mod would be sent. The controller can also decide to send out a
packet explicitly from a switch, issuing a so-called Packet-out command to the switch.

An attractive alternative to the hop-by-hop installation of new flows, i.e., reacting to a new
packet repeatedly along the path (multiple Packet-ins), is the so-called pave-path technique:
Once the controller receives a first Packet-in event from some switch, it proactively updates
the other switches along the path. Such an intent-based controller behavior can render the

16 Chapter 4 Outsmarting Network Security with Teleportation

reaction to network events and set up of host-to-host/network connectivity (according to
current policies) more efficient.

Finally, we note that although some of our techniques are generally applicable in networks
separating the control plane and the data plane, while others exploit OpenFlow specific
features, when clear from the context, in this chapter we will treat SDN and OpenFlow as
synonyms.

Threat Model. As described in Section 3, in this chapter we consider a threat model where
OpenFlow switches, hosts (e.g., VMs, servers, PCs), or both, may not behave correctly but
are malicious.

4.2 Modeling Teleportation

With these concepts in mind, we now model and characterize a novel threat called tele-
portation which targets the heart of SDNs: The outsourcing and consolidation of control
over multiple data plane elements. In particular, we argue that we can see an OpenFlow
controller as a “reactor”: It reacts (in a best-effort and timely manner) to events generated
by the network operator, the OpenFlow switches, and timeouts; as a response, the controller
sends OpenFlow messages to switches. Accordingly, we argue that the following 3-stage
functionality is fundamental in the SDN paradigm.

1. Switch to controller: A source switch intentionally or unintentionally sends modu-
lated information to the controller (e.g., by adding specific events, delaying existing
events, etc.).

2. Controller to switches: The controller reacts to the received events, by sending
messages to one or multiple other switches.

3. Destination processing: A destination switch processes incoming messages from the
controller. In case of a malicious switch, the switch may search for some message
properties, temporal patterns, etc., and hence infer the information modulated by the
source, or by simply forwarding the information (to a potentially malicious host).

Based on this controller model, we can identify two kinds of teleportation channels 1:

• Explicit teleportation: Information actually appears in the messages exchanged. The
message may for example contain steganographic contents.

• Implicit teleportation: Relies on modulating information implicitly. For example,
it is based on timing (e.g., message transmissions are delayed according to some
pattern) or it is based on shared resources, whose availability is changed over time
(e.g., leveraging mutual exclusion).

1 We note that our terminology of teleportation can be viewed as analogous to covert channels. Explicit teleportation
is analogous to covert storage channels and implicit teleportation is analogous to covert timing channels.

4.2 Modeling Teleportation 17

4.3 Teleportation Techniques

Having established a conceptual model of teleportation, we next present techniques that can
realize teleportation in today’s SDNs. In particular, we have identified the following three
fundamental SDN functionalities which can be exploited for teleportation:

1. Flow (re-)configurations: A controller needs to react to various data plane events
(such as so-called Packet-ins in OpenFlow or link failures), and configure and recon-
figure flows and paths accordingly. Triggering and exploiting such events can be used
for teleportation.

2. Switch identification: In OpenFlow, switches are responsible for introducing and
uniquely identifying themselves to the controller. This is required as policies are often
specific to the switch. Unique switch identifiers are also necessary to correctly construct
and enforce policies on the switches and in the controller. We will show that such
switch identification mechanisms can be exploited for teleportation.

3. Out-of-band forwarding: An SDN controller must not only be able to receive events
and control packets from switches, but also to instruct switches to forward specific
messages. This basic functionality in SDNs can be exploited by a malicious switch or
host to forward entire packets via the controller.

In the remainder of this section, we will discuss these teleportation techniques in more detail
in turn.

4.3.1 Flow (Re-)Configurations

We distinguish between two types of flow re-configuration events: path update and path
reset.

Path Update. Our first teleportation technique is based on path updates. Path updates are a
fundamental controller functionality, and come in the form of different controller features
such as Mobility, VM Migration or simply MAC Learning. The basic scheme is as follows: A
controller typically maintains some mapping of which hosts (MAC addresses) are connected
to which ports (on the switch). If a host suddenly appears on another switch, the controller
installs new flows for the host on the new switch, and also deletes the corresponding flow
rules on the old switch. We define this programmatic installation and deletion of flows by
the controller on switches as path update. Specifically, a path update involves the use of
Packet-in, Flow-mod and Packet-out messages. Malicious switches can use path update
for implicit teleportation.

For teleportation with path update, a switch triggers the deletion of rules at other switches.
Malicious switches can teleport information between themselves by prompting path updates
for the same host using Packet-ins. Note that during a path update, the Packet-out is
to be sent to the destination reported in the Packet-in which may generate data plane

18 Chapter 4 Outsmarting Network Security with Teleportation

Switch
(s1)

Controller
(c0)

Switch
(s2)

Packet-in (X->k1)

X is on s1

Packet-out

Flow-add (X->k1)

Packet-in (X->k2)

X is now on s2!

Packet-out

Flow-add (X->k2)

Flow-delete (X->k1)

Fig. 4.2: Message sequence pattern for path update teleportation. Switch s2 teleports information
to s1 when s1 receives the Flow-delete message from controller c0.

Algorithm 1: Generalized pseudo-code executed by switch si to teleport information using
path update.

1 process incoming OpenFlow message :

2 on start teleportation :
3 - announce all {Xi,j}j∈[m] and {Xj,i}j∈[m]

4 on received Flow-delete for Xi,j for some j ∈ [m] :
5 - announce Xi,j

6 - add j to Discovered_Switches

traffic. To prevent data plane traffic, the malicious switch can use a destination host that
is connected to itself (so that the Packet-out is sent back to it). The message sequence
pattern for path update teleportation is shown in Figure 4.2.

We can summarize the scheme presented so far with the following abstract steps: A switch s1
announces X, shortly thereafter a switch s2 announces X thereby stealing X from s1, where
stealing is detected by the “victim" (s1). Also note that announcing is possible once some
host which is connected to the malicious switch (e.g., k1 at s1) is learned by the controller.

Based on these basic steps, we can generalize our scheme for m malicious switches. Each
malicious switch, si, with id i ∈ [m], should implement an event handler (see Algorithm 1),
in addition to the normal (non-malicious) behavior. We assume that all switches are
programmed with the same list of m2 special MAC addresses {Xi,j}i,j∈[m] (the pre-shared
secrets). Note that once switch i discovers switch j, it can contact it by sending packets with
source Xi,j and destination address Xj,i.

Path Reset. We next discuss a second flow reconfiguration called path reset. Recall that
at the heart of any SDN controller lies the functionality to set up host-to-host/network

4.3 Teleportation Techniques 19

Switch
(s1)

Controller
(c0)

Switch
(s2)

Switch
(s3)

Packet-in (k1->K2)

k1->k2 flow on s1
broken???

Packet-out (k1->k2)

Flow-add (k1->k2)

Flow-add (k2->k1)

Flow-add (k1->k2)

Flow-add (k2->k1)

Flow-add (k1->k2)

Flow-add (k2->k1)

Fig. 4.3: Message sequence pattern for path reset teleportation. Switch s1 teleports information to s2
and s3 via Flow-add messages sent by the controller c0.

connectivity, according to the network policy (e.g., defining constraints such as bandwidth,
link type and waypoints), which is translated into device level configurations (e.g., flow
rules). The “pave-path technique”, a proactive and programmatic approach to network
configuration is an attractive alternative to the hop-by-hop installation of new flows: Once
the controller receives a first Packet-in event from some switch, it proactively updates the
other switches along the path of the pair of hosts that want to communicate.

For high availability, a controller also monitors the network state and makes necessary
changes, such as rerouting or resetting flows on switches, when needed (e.g., due to a link
failure). For example, triggered by a Packet-in event, a controller may learn that (parts
of) the path may no longer be available, and hence initiates the reconfiguration/repair of
the path. We define the reinstallation of flows by the controller on switches along a path
as path reset. Accordingly, the path reset technique involves Packet-in, Flow-mod and
Packet-out messages.

Malicious switches may use path reset for implicit teleportation: If the controller resets the
complete path between hosts when it receives a Packet-in from a switch that ignores the
flow rule, then information can be communicated. By doing this at multiple and specific
times, a malicious switch can teleport information to other malicious switches along the path.
Figure 4.3 illustrates the message sequence pattern for teleportation using path reset.

4.3.2 Switch Identification

This teleportation type exploits the fact that a switch typically must uniquely identify
itself whenever it connects to the controller. For example, in OpenFlow this is usually
done using the Datapath-ID (DPID) field in the Features-reply message. We define two
switches attempting to use the same DPID to connect to the same logical controller as switch
identification. The outcome can be used for implicit teleportation. In the chapter that follows

20 Chapter 4 Outsmarting Network Security with Teleportation

Algorithm 2: Generalized pseudo-code executed by switch si for switch identification
teleportation when the controller denies the second switch a connection.

1 process connect to OpenFlow controller :

2 on Features-request message from controller :
3 - announce DPID {Xi,j}j∈[m] in Features-reply message

4 on Controller denies connection to announced DPID Xi,j for some j ∈ [m] :
5 - add j to Discovered_Switches

(Chapter 5), we describe how this technique can be used to transfer data between two
switches.

Four basic ways an OpenFlow controller can react to using the same DPID are as follows:

1. The controller denies the second switch a connection.

2. The controller terminates the first switch and connects to the second.

3. The controller accepts both switches.

4. The controller accepts both switches but sends them different Role-request messages.

Only in the first, second and fourth outcomes can the malicious switches infer if the DPID it
used is already in use by another switch. By using a-priori configured single or multiple DPID
values, a pair of malicious switches can establish teleportation. For example, consider the
message sequence pattern in Figure 4.4, and assume that first switch s1 tells controller c0
that its DPID is 1. At a later time, switch s2 tells c0 that its DPID is 1. At this point, c0
does not allow s2 to connect with DPID 1. Since c0 denied s2 to connect with DPID 1, s1
teleported information to s2 via c0. With a similar message sequence pattern, the second
outcome can be used for teleportation as well.

Interestingly, switch identification is not limited to scenarios with a single controller: We
have found additional threats in the presence of distributed control planes. The message
sequence pattern that uses the Role-Request messages for multiple controllers is shown in
Figure. 4.5. Moreover, we can generalize the first switch identification outcome to scenarios
with m malicious switches, see the event-handler algorithm, Algorithm 2. The other two
outcomes discussed can also be seen as event-handler algorithms.

4.3.3 Out-of-band Forwarding

The fourth and potentially most powerful teleportation technique is called out-of-band
forwarding. It is an example of explicit teleportation. Out-of-band forwarding exploits the
fact that an SDN controller is typically connected to multiple switches: Accordingly, a packet
from one switch can potentially reach multiple other switches in the network via the control
plane. Out-of-band forwarding involves a Packet-in from one switch and a Packet-out

message at another switch, with the possible side effect of Flow-mod messages on the

4.3 Teleportation Techniques 21

Switch
(s1)

Controller
(c0)

Switch
(s2)

Hello

Hello

Features-request

Features-reply(DPID=1)

s1 has DPID=1

Hello

Hello

Features-request

Features-reply(DPID=1)

s2 has DPID=1

Terminate connection with s2

Fig. 4.4: Message sequence pattern for switch identification teleportation when the controller denies
the second switch a connection. When s2’s connection is terminated, s1 successfully teleports
information to s2.

Tab. 4.1: Summary of teleportation techniques, types, messages and associated threats.

Technique Type Messages Threat

Flow (Re-)Configuration Implicit Packet-in, Flow-add, Flow-del,
Packet-out

Covert communication and coordi-
nation.

Switch Identification Implicit Hello, Features-request,
Features-reply, TCP FIN,
Role-request, Role-reply

Covert communication and coordi-
nation.

Out-of-band Forwarding Explicit Packet-in, Packet-out Exfiltration, firewall/NIDS bypass
and man-in-the-middle.

switch that sent the Packet-in message. Out-of-band forwarding could for example include
the complete Ethernet frame (typically 1500 bytes), and can even serve as a “multicast
service”. Out-of-band forwarding can be a serious threat to network security, not only
because malicious traffic can bypass critical security functions in the data plane, but also
because it can be exploited by switches and hosts. Figure 4.6, illustrates the message
sequence pattern for teleportation using out-of-band forwarding.

Summary. We summarize the three teleportation techniques we just explained along with
their type, OpenFlow messages and potential threats each of them pose to network security
in Table 4.1.

4.4 Switch- and Host-based Attacks

We now demonstrate how the identified teleportation techniques can be exploited to carry
out specific attacks. In particular, we show how teleportation may be exploited:

22 Chapter 4 Outsmarting Network Security with Teleportation

Switch
(s1)

Controller
(c1)

Controller
(c2)

Switch
(s2)

Features-reply(DPID=1)

s1 has DPID=1

c1 is Master for s1

Role-request=Master

c1 is Master for s1

Role-reply=Master

Features-reply(DPID=1)

s2 has DPID=1

Role decision messages

c2 is Equal for s2

Role-request=Equal

c2 is Equal for s2

Role-reply=Equal

Fig. 4.5: Message sequence pattern for switch identification teleportation when controllers c1 and c2
send different Role-request messages to s1 and s2 respectively. When s1 receives the
Role-request=Master message whereas s2 receives the Role-request=Equal message.
In this manner s1 teleports information to s2 when s2 received the Role-request=Equal
message.

1. To bypass security critical network functions such as firewalls and NIDSs;

2. As a rendezvous protocol for malicious switches;

3. To exfiltrate sensitive data from remote locations;

4. To conduct a man-in-the-middle (mitm) attack.

Along the way, we also present a novel Denial of Service(DoS) attack (published as CVE-2015-7516 [144]).
Before presenting the attacks in more detail, we report on the setup we used to verify the
attacks. Our evaluation environment is available online at the following URL:

www.github.com/securedataplane/teleportation

Setup. We verified all our attacks in a virtual machine, using Mininet-2.2.0 and Open
vSwitch-2.0.1 for the data plane. For the control plane we used ONOS-1.1.0 as it was the
state-of-the-art. At the time of our experimentation Floodlight, OpenDaylight Lithium-SR2,
and RYU v3.27, still did not support the intent based framework. Indeed our experiments
showed that they were only vulnerable to a subset of the attacks (e.g., switch identification,

4.4 Switch- and Host-based Attacks 23

Switch
(s1)

Controller
(c0)

Switch
(s2)

Packet-in (k1\rightarrowk2)

k1 on s1, k2 on s2
Packet-out

Fig. 4.6: Message sequence pattern for out-of-band forwarding teleportation. The controller c0
receives the Packet-in from s1 and accordingly sends a Packet-out to s2, successfully
teleporting packets from s1 to s2.

out-of-band-forwarding2). For packet generation we use ping and nmap-6.40. We use
ebtables v2.0.10-4 (December 2011) as our transparent firewall and Snort version 2.9.6.0
GRE (Build 47) as our NIDS. We modified code developed by austinmarton [197] to set
the Ethertype field in an Ethernet frame. ettercap 0.8.0 was used with a custom HTTP
filter for the mitm attack.

4.4.1 Bypassing Critical Network Functions

We believe that the possibility to bypass network elements is a serious threat in modern
computer networks. For example, many network policies today are defined in terms of
adjacency matrices or big switch abstractions, specifying which traffic is allowed between an
ingress port s and an egress network port t [103]. In order to enforce such a policy, traffic
from s to t needs to traverse a middlebox instance (waypoint) inspecting and classifying the
flows. The location of every middlebox may be optimized, but is subject to the constraint
that the route from s to t should always go via the waypoint.

Firewall and NIDS. In order to demonstrate how a firewall may be circumvented by
hosts (or switches), we set up Mininet and ONOS as shown in Figure 4.7. The switches
do not have flow rules for k1 and k2 to communicate. The firewall fw1 prevents hosts
on the left to communicate with hosts on the right and vice-versa. ONOS has the Intent
Reactive Forwarding (ifwd) application enabled. ifwd uses the reactive “pave-path technique”
(recall Path Reset from Section 4.3.1) to install flows in the switches. By default, the ifwd

application establishes host-to-host connectivity when it receives a Packet-in for which no
flows exist.

We send a ping packet from k1 to k2. Despite the presence of the firewall, k1 receives the
reply from k2 using out-of-band forwarding teleportation. In the absence of out-of-band
forwarding teleportation, the packet would have been dropped by fw1.

Indeed, in this case, out-of-band forwarding teleportation has the side effect of installing
flows on s1 and s2 for k1 and k2 to communicate, preventing further out-of-band forwarding
teleportation. By masquerading its MAC address, k1 can teleport more data to k2 via
out-of-band forwarding teleportation.

2 https://goo.gl/FN9ULQ

24 Chapter 4 Outsmarting Network Security with Teleportation

https://goo.gl/FN9ULQ

s4

k1 k2

Host

OpenFlow switch

ONOS controller

s1 s2

fw1
(k1|k3<->k2|k4)=> DENY

c0

k3 k4

Ethernet link
OpenFlow channel
teleportation traffic

Firewall

Fig. 4.7: An SDN topology with OpenFlow switches s1 and s2 and an OpenFlow controller c0
(ONOS). k1 and k3 are connected to s1 while k2 and k4 are connected to s2. s1 and s2
are separated by a firewall fw1 that denies hosts on s1 to communicate with hosts on s2
and vice-versa. k1 can use out-of-band forwarding teleportation to transfer data to k2,
bypassing fw1.

Similar to the firewall scenario, we can also use out-of-band forwarding teleportation in
the presence of Snort, an NIDS. In particular, we can generate attack traffic using nmap
to conduct TCP flag attacks or even port scans. Indeed, by masquerading the source MAC
address, one can effectively carry out a wide enough port scan without having the scan pass
through the firewall and being detected by the latter.

By replacing the firewall we previously described with Snort, we use nmap from k1 to carry
out a TCP port scan on k2 using out-of-band forwarding teleportation. By inspecting the
alerts in Snort we verified that no alerts were generated for the port scan.

Note that the host-to-host connectivity setup involves a Packet-in and Flow-mod messages
whereas the out-of-band forwarding teleportation only involves Packet-in and Packet-out

messages with the side effect of Flow-mod messages. Therefore, security policy enforcers that
do not inspect and correlate Packet-in with Packet-outs, will miss out-of-band forwarding
teleportation based attacks. Of course, violating Flow-mods may eventually be detected, but
only after the data has been teleported.

As illustrated in Fig. 4.7, it is not always possible for the controller to manage the firewall,
e.g., firewalls can run inside tenant VMs. If the vswitch or the hardware switches (e.g.,
leaf, spine, core) are compromised, they can use such a technique to bypass tenant-specific
security policies and mechanisms.

4.4 Switch- and Host-based Attacks 25

s1

s3

s4

s2

k1 k2

Ethernet link
OpenFlow channel
Host to host traffic

Host

OpenFlow switch

OpenFlow controller

c0

k4k3

Teleportation traffic

Fig. 4.8: An SDN topology of OpenFlow switches s1, s2, s3 and s4, OpenFlow controller c0 (ONOS).
Hosts k1 and k3 are connected to s1 and k2 and k4 are connected to s2. c0 has installed
flows on s1, s3 and s2 so that k1 and k2 can communicate bi-directionally. Teleportation
traffic is via c0.

4.4.2 Rendezvous and Malicious Switch Discovery

We next consider a rendezvous protocol in which malicious switches wish to discover one
another. A rendezvous or discovery protocol can be also seen as a precursor to a much more
damaging attack such as a DoS, man-in-the-middle (mitm) or exfiltration. A rendezvous
protocol can rely on steganography, i.e., embedding patterns in teleported benign information
or modulating patterns in legitimate messages. Without teleportation, by going through
the data plane directly, the malicious switches risk detection. We show how three of our
techniques, namely path update, path reset and switch identification teleportation may be
used as a rendezvous protocol for malicious switches.

4.4.2.1 Path Update

To demonstrate a rendezvous with path update teleportation, we set up Mininet and ONOS
as shown in Figure 4.8. Instead of instrumenting code for the malicious switches, we keep
them as simple Open vSwitches and we defined dedicated Mininet hosts (k3 and k4) for
each of them. We use the dedicated hosts (k3 and k4) to generate the packet that the
malicious switch sends as a Packet-in to the controller. The host mobility and ifwd

applications are enabled on ONOS. The controller has already installed flows for k1 to k2
and vice-versa. Accordingly, we use k4 connected to s2, to send k2 a packet using k1 as
the source MAC address. This triggers the controller to issue Flow-mod commands to s1, s2
and s3. s2 thereby teleported its presence to s1.

26 Chapter 4 Outsmarting Network Security with Teleportation

By inspecting the flows on the switches, we verified the successful path update teleporta-
tion: s2 was able to cause a flow deletion in s1 without exchanging any packets with s1
directly (except for a normal flow in the past).

Note that path update may trigger alerts in systems that keep track of moving MAC addresses
by inspecting Packet-in and Flow-mod messages. In such cases, many moving MAC
addresses may introduce suspicious activity within the network. Also worth noting is that
port-based security (that associates MAC addresses with specific ports) may not be applicable
in the presence of malicious switches (recall our threat model in Chapter 3).

4.4.2.2 Path Reset

To demonstrate that path reset teleportation can be used as a rendezvous protocol, we
consider the same setup as outlined in Section 4.4.2.1. We modulate traffic between k1
and k2 using ping packets with 100 microsecond intervals. Instead of manipulating the
Open vSwitch code for sending a Packet-in for an existing flow from s1, we simply remove
the flow for k1 to k2 on s1, using the ovs-ofctl del-flow command. This causes s1 to
send c0 a Flow-removed message which triggers the controller to add the flow back onto s1.
But due to the high rate of ping traffic, at least one packet triggers a table-miss before s1
adds the flow and a Packet-in is sent to c0.

When c0 receives the Packet-in it sends the packet to s2 directly as a Packet-out, by-
passing s3, and then sends Flow-mods to s1, s2 and s3 resetting the bi-directional path
between k1 and k2. By checking the lifetime of the flow rules on s1, s2 and s3 we verified
that path reset teleportation succeeded. In this manner, s1 teleported its presence to s2 by
having the controller send Flow-mod commands for existing flow rules.

Note that such an attack works in the presence of topology spoofing defenses [46, 77] as the
Packet-in and Flow-mod messages generated do not alter the existing topology. Indeed,
receiving a Packet-in for a flow that exists in the switch is suspicious but we are not aware
of any work that keeps track of such events.

4.4.2.3 Switch Identification

We now demonstrate how two malicious switches may teleport their presence using switch
identification. In the next chapter we describe how this technique can also be used for data
exfiltration. We set up Mininet and ONOS as shown in Figure 4.8 with only s1, s3 and s4
having connected to c0 with DPID 1, 3 and 4 respectively. Also, there are no flows installed
on the switches for hosts to communicate. We modified the Mininet script to configure s2
with the same DPID as s1.

When s2 tries to connect to c0 with DPID 1 after s1 has connected to c0, it is denied a
connection. This way, s1 teleports its presence to s2.

In Floodlight and OpenDaylight, when s2 attempts to connect to c0 with DPID 1 after s1
has connected, Floodlight terminates the connection with s1 and accepts s2’s connection. s2

4.4 Switch- and Host-based Attacks 27

s4

k2

Ethernet link
OpenFlow channel

Host

OpenFlow switch

OpenFlow controller

k1

s1 s2

c1 c2

k3 k4

Controller network

Fig. 4.9: An SDN topology with independent OpenFlow switches controlled by independent OpenFlow
controllers (ONOS). c1 and c2 share and synchronize state information via an independent
controller network. s1 is controlled by c1 and s2 is controlled by c2 respectively.

thereby teleports its presence to s1. Interestingly RYU allowed switches with the same DPID
to co-exist which potentially introduces additional issues.

Switch identification teleportation is also possible when multiple controllers manage in-
dependent switches. We set up Mininet and ONOS as shown in Figure 4.9. Initially s1
connects to c1 with DPID 1. c1 then declares itself as the Master for s1. At a later time, s2
connects to c2 and claims to have DPID 1. c2 then sends s2 the Equal role. In this manner, s1
teleports its presence to s2. By inspecting the OpenFlow channels, we verified the different
Role-request messages sent by the respective controllers to their respective switches.

Here we can see that when using automation and programmability, if the controller is not
aware of global isolation policies then it cannot correctly enforce the desired isolation.

4.4.3 Exfiltration

Our next attack is related to data exfiltration. This is a key concern for many organizations
that own intellectual property, personal data or any kind of sensitive information. Once
an attacker gets into a network, one possible goal of the attacker is to stealthily exfiltrate
sensitive data.

We demonstrate exfiltration by considering a scenario where a small number of hosts are
networked together in a remote location. The data plane isolation is meant to improve
security. However the data plane elements are managed by a controller that handles other
similar remote locations. We show that in such a network, not only malicious switches can
exfiltrate data using out-of-band forwarding teleportation but even malicious hosts.

28 Chapter 4 Outsmarting Network Security with Teleportation

s4

k1 k2

Host

OpenFlow switch

ONOS controller
Ethernet link
OpenFlow channel
teleportation traffic

s1 s2

s3

s4

c0

k4k3

Fig. 4.10: An SDN topology with OpenFlow switches s1, s2, s3 and s4 and an OpenFlow controller c0
(ONOS). k1 and k3 are connected to s1 while k2 and k4 are connected to s2. Note that s2
is not connected to the other switches, and thereby is isolated in the data plane. k2 can
still exfiltrate data to k1 using out-of-band forwarding teleportation circumventing the data
plane isolation.

We set up Mininet and ONOS as shown in Figure 4.10. ONOS has the ifwd application
activated. By showing how k2 can exfiltrate data to k1, we also demonstrate how s2 can
exfiltrate data to k1 or s1.

Given that s1 and s2 do not have flow rules for traffic from k2 to k1 (as they are located in
disconnected data planes), k2 can exfiltrate data to k1 by simply sending a packet (e.g., UDP
packet) to k1 thereby exploiting out-of-band forwarding teleportation. The controller will
receive the packet from s2 and send it to s1 which will then forward the packet to k1.

By inspecting the OpenFlow channels, we can see the out-of-band forwarding teleportation,
first as a Packet-in and then as a Packet-out.

4.4.4 Evading Policy Conflicts

For an attacker, remaining stealthy is key to persistent existence. One of the side effects
of using the out-of-band forwarding teleportation is the Flow-mod messages issued by the
controller. The Flow-mod messages may generate policy conflicts (unauthorized/conflicting
flow rules), alerting the administrator. A stealthier version of using the out-of-band forward-
ing teleportation would be to prevent the Flow-mod side effect. This would not only prevent
policy conflicts, but also leave minimal traces on the source and sink switches.

In order to demonstrate this attack, we set up Mininet and ONOS with ifwd activated as
shown in Figure 4.10. k2 can exfiltrate data to k1 using out-of-band forwarding teleportation
without triggering Flow-mod’s on s2 and s1 by masquerading its source MAC address and
ETHER_TYPE (e.g., Jumbo frame: 0x8870).

4.4 Switch- and Host-based Attacks 29

Switch
(s2)

Controller
(c0)

Switch
(s1)

Packet-in (K2->K1)

K2 unknown, K1@s1

Packet-out (K2->K1)

Fig. 4.11: The message sequence pattern for evading policy conflicts using out-of-band forwarding
teleportation. The side effect of Flow-mod messages are avoided when Jumbo frames are
used from a masqueraded MAC address; only Packet-ins and Packet-outs are used.

If the packet processor and intent framework cannot correctly identify a packet, their
behavior may violate security policies. Note that it is enough if the ETHER_TYPE is set to a
value that ONOS does not recognize, and we are not restricted to Jumbo frames only. The
message sequence pattern for out-of-band forwarding teleportation without the Flow-mod

side effect is shown in Figure 4.11.

By inspecting the OpenFlow channels, we can verify that the packet was indeed teleported
via out-of-band forwarding teleportation first as a Packet-in and then as a Packet-out. By
inspecting the flows on the switches, we can verify that no new flows are present.

Remark on a Denial-of-service Attack. Interestingly, we observed that a side effect of our
out-of-band forwarding teleportation is a novel denial-of-service attack. If in our evading
policy conflicts example, the host sends the same packet (Jumbo frame) again, then ifwd

encounters a null-pointer exception and disconnects the switch that sent it the packet. This
shows how a malicious host can cause the switch it is connected to, to be disconnected from
the controller even when a packet it sends is not corrupted.

We emphasize that this is a side effect of out-of-band forwarding teleportation only, and
not a teleportation issue in itself. Fortunately, the issue has been resolved by the ONOS
community after we contacted them (published as CVE-2015-7516 [144]).

4.4.5 Man-In-The-Middle

While we have so far focused on attacks where either only switches or only hosts are
malicious, we now detail an attack that involves a malicious switch and a malicious host.
The damage of such a collaboration can be severe, for example, the attackers could serve
benign hosts with malicious web pages. In order to exemplify the attack we use HTTP rather
than HTTPS.

For this attack, we set up Mininet and ONOS with ifwd activated as shown in Figure 4.12.
s1 and k2 are both malicious while the others are not. k3 is a benign web server. s1 teleports
specific HTTP traffic towards k2. k2 modifies the HTTP traffic and teleports it back to s1
who then forwards it to k1. In order to emulate the malicious switch, we introduced a
flow rule (shown in Listing 4.1) that rewrites the destination MAC address for TCP traffic

30 Chapter 4 Outsmarting Network Security with Teleportation

s4

k1

Ethernet link
OpenFlow channel

Malicious host

Malicious OpenFlow
switch
ONOS Controller

s1 s2

c0

k2k3

Correct traffic
MITM traffic using
teleportation

fw1
(k1|k3 <-> k2) => DENY

Host

OpenFlow switch

Firewall

Fig. 4.12: An SDN topology with OpenFlow switches s1 and s2 with c0 the OpenFlow controller
(ONOS). k1 and k3 are connected to s1 while k2 is connected to s2. fw1 denies k2 to
communicate with k1 and k3 and vice-versa via the data plane. s1 and k2 being malicious,
exploit the out-of-band forwarding teleportation to eavesdrop and modify communication
data between k1 and k3 bypassing fw1.

with PSH and ACK flags sent from k3 to k1, to k2. This modified packet is then passed
through the flow table lookup again by using the resubmit action in Open vSwitch. k2
runs ettercap to modify the TCP/HTTP payload and forwards the packet to the correct
destination. Specifically, we created an ettercap filter that looks inside HTTP responses
from k3 for the word “good", replaces it with “evil", and sends it to k1. The firewall fw1 is
meant to block traffic between hosts on the right and the left.

When k1 requests the index.html page from k3, based on the flow rule installed on s1, only
HTTP responses from k3 are teleported to s2 and forwarded to k2, through the out-of-band
forwarding teleportation. Subsequently, k2 modifies only the index.html web page and
has s2 teleport it back to s1 via out-of-band forwarding teleportation. Indeed, the side effect
is Flow-mod messages to s1 and s2.

By viewing the index.html file received at k1 we verified that the mitm attack was successful.
The benign and malicious web pages are shown in Listing 4.2 and Listing 4.3 respectively.
By inspecting the flow counters on the switches we verified that necessary packets did not
pass through the data plane.

Note that we did not introduce code into the Open vSwitches to handle the mitm, therefore
once the flows are installed on the switches, the firewall will block all traffic between s1
and s2 and vice-versa.

4.4 Switch- and Host-based Attacks 31

p r i o r i t y =50001, tcp , in_por t =2,
d l _ s r c =00:00:00:00:00:03 ,
d l _d s t =00:00:00:00:00:01 ,
t p _ s r c =80, t c p _ f l a g s=+psh+ack
a c t i o n s=mod_dl_dst :00:00:00:00:00:02 ,
resubmit :0

Listing 4.1: An Open vSwitch flow rule that was introduced into the malicious switch (s1) to
teleport HTTP traffic with the PSH and ACK flags to the benign switch s2. The
matching packets have the destination MAC address modified and resubmitted to
the flow-table lookup which results in Out-of-Band Forwarding teleportation.

root@Mininet−vm:~# c u r l h t t p : / / 1 0 . 0 . 0 . 2
<html>
<head>
<t i t l e >Welcome page</ t i t l e >
<body>
good
</body>
</html>

Listing 4.2: HTML code from the benign web server. Note the word “good” is present in the body
of the HTML code.

4.4.6 Summary

We can summarize the demonstrated attacks using the four teleportation techniques as
follows. Malicious switches can indeed exploit the fundamental design of data center net-
works for covert communication that can result in at least five different attacks. Automation
and programmability (used in intent frameworks) combined with the lack of important
information (network security policies) at the controller also enables malicious switches to
bypass firewalls, coordinate attacks, evade security policies, exfiltrate data and conduct mitm
attacks. Finally, the capability for switches to connect to the controller and spoof their DPIDs
allows them to discover other malicious switches and also be used for covert communication
(as we will see in the next chapter).

4.5 Out-of-Band Forwarding Performance

Having identified and demonstrated the various attacks in this section we describe our
evaluation of the out-of-band forwarding channel. In the following chapter we describe our
evaluation of the switch identification teleportation channel. In particular we measure the
throughput, jitter and packet loss of the channel, and the resource footprint of this channel
in terms of CPU usage and memory consumption at the controller.

4.5.1 Setup

In order to measure the throughput, jitter and packet loss of the out-of-band forwarding
channel, we set up three dedicated systems: one system (64 bit Intel Core i7-3517U CPU @
1.90 GHz with 4GB of RAM) running ONOS-1.5, another system (Intel Core 2 CPU @ 2.13

32 Chapter 4 Outsmarting Network Security with Teleportation

root@Mininet−vm:~# c u r l h t t p : / / 1 0 . 0 . 0 . 2
<html>
<head>
<t i t l e >Welcome page</ t i t l e >
<body>
e v i l
</body>
</html>

Listing 4.3: HTML code modified by the malicious switch s1 and host k2. Note the word “evil” is
present in the body of the HTML code.

GHz with 4GB of RAM) running Mininet for the switches, and a third system (Intel Core
i5-5200U CPU @ 2.20GHz with 16GB of RAM) running OFCProbe [92] for load generation.
Only the three systems are networked together via a Netgear 100Mbps switch. On the
Mininet system, we use a simple line topology consisting of two hosts and two switches,
where, host1 is connected to switch1 which is connected to switch2; switch2 in turn is
connected to host2. The switches accordingly connect to ONOS as their controller.

4.5.2 Methodology

To emulate the malicious switch, we simply install a flow rule on switch1 with the highest
priority so that the out-of-band forwarding applies by default, i.e., Packet-Ins are sent to
ONOS and forwarded accordingly.

We measure the throughput, jitter and packet loss using iPerf3 running on the hosts in
Mininet using UDP packets. We consider UDP packets with a payload of 512 bytes to
be teleported. Note that for the 512 bytes to be teleported, the overhead in bytes for
encapsulation (in the following order: Ethernet, IP, TCP, OpenFlow, Ethernet, IP, UDP) is 110
bytes (for a Packet-in) and 108 bytes (for a Packet-out). Therefore, a 10 Mbps teleportation
channel corresponds to approximately 2009 packets (Packet-ins) per second. For the CPU
and memory usage on the controller, we use taskset to pin ONOS to a single CPU and use
top to measure the CPU and memory usage. For the load generation: OFCProbe, emulates
20 switches that trigger Packet-Ins to the controller following a Poisson distribution (λ=1).
The throughput, jitter, packet-loss, CPU and memory usage is sampled every second for 600
seconds.

4.5.3 Evaluation

We first study the throughput of the UDP-based teleportation channel, then consider the
packet loss and jitter characteristics, and finally examine the resource footprint in terms of
CPU and memory in turn.

4.5 Out-of-Band Forwarding Performance 33

1020304050607010203040506070
Tx Throughput (Mbps)

(a)

0

10

20

30

40

50

60

70

Rx
 T

hr
ou

gh
pu

t (
M

bp
s)

No load With load

1020304050607010203040506070
Tx Throughput (Mbps)

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Jit
te

r (
m

s)

No load With load

1020304050607010203040506070
Tx Throughput (Mbps)

(c)

0

10

20

30

40

50

60

70

Pa
ck

et
 L

os
s (

%
)

No load With load

Fig. 4.13: Out-of-Band Forwarding performance characteristics without and with load on the controller.
(a) Received throughput, (b) Jitter and (c) Packet loss.

0 100 200 300 400 500 600
Time (s)

(a) No Load

10

20

30

40

50

60

70

Rx
 T

hr
ou

gh
pu

t (
M

bp
s)

10Mbps 20Mbps 30Mbps 40Mbps 50Mbps 60Mbps

0 100 200 300 400 500 600
Time (s)

(b) With Load

10

20

30

40

50

60

70
Rx

 T
hr

ou
gh

pu
t (

M
bp

s)

Fig. 4.14: Received throughput using Out-of-Band Forwarding (a) without load (b) with load on the
controller.

4.5.3.1 Throughput

In Fig. 4.13 (a) we visualize the throughput of the teleportation channel as box plots without
and with load on the controller. In Fig. 4.14, we visualize the throughput of the teleportation
channel without and with load resp. as scatter plots.

We first observe that the teleportation channel can indeed sustain very high transmission
rates (Tx), of up to 40Mbps in both scenarios. In the scenario without load, we see that
the channel becomes saturated around rates slightly higher than 60Mbps, after which the
throughput suffers. In the scenario with load the variance of the throughput is naturally
higher, but nevertheless it can only sustain rates upto 50 Mbps.

In conclusion, our results show that the performance of teleportation can go far beyond a
small number of packets per second, which underlines the relevance (and potential threat)
of such channels.

34 Chapter 4 Outsmarting Network Security with Teleportation

4.5.3.2 Jitter and Packet Loss

We plot the jitter without load resp. with load in Fig. 4.13 (b) 3. In terms of this metric, we
can see that the teleportation channel offers a good quality also for high rates. The load on
the controller again introduces some variance to the jitter, however, it does not influence the
median value by much.

Figure 4.13 (c) shows the packet loss for the scenario without load and with load. The
experiments confirm the quality of the considered teleportation channel: Up to 40 Mbps,
the packet loss is small despite some variance, and naturally increases beyond 10% above
50 Mbps. Indeed, we can see a direct correlation between the packet loss and the drop in
throughput.

4.5.3.3 Resource Footprint

To better understand the resource requirements of the teleportation channel, as well as the
reasons behind the throughput drop at high rates, we measured the CPU load and memory
footprint on the controller.

Fig. 4.15 (a) visualizes the CPU usage as a box plot, while Fig. 4.16 visualizes the CPU loads
over time. We observe that for a 10 Mbps channel, the CPU utilization has a median value of
55, which is fairly high, but not alarming. We also observe that at rates around 20 Mbps,
the additional CPU load introduced for an extra 10 Mbps (20 Mbps vs 30 Mbps channels) is
small. The influence of the load on the controller is discernible by the variance introduced
and a slight increase in the utilization. However, again at around 50 Mbps, the effects
become larger: We can clearly see the relationship between the throughput and CPU load,
and when the CPU consumption begins to climb, the throughput begins to drop. Indeed,
for transmission rates beyond 50 Mbps, the CPU utilization is so high that it can easily be
detected. This is also the time around which the jitter tends to increase by a small amount.

Hence, we draw the following conclusions. As the transmission rates increase, the receive
and transmit queues at the controller fill up quickly. Since the controller needs to parse,
decapsulate, make a forwarding decision, encapsulate the packet (as a packet-out) and
then transmit it, packet processing takes longer as the controller CPU is interrupted by the
increasing rate at which packets arrive either from OFCProbe and/or the switch.

With respect to the memory consumption, Fig. 4.15 (b) shows that between 10 and 50 Mbps
the memory consumption is within a close range (13-15 MB) regardless of whether the load
is induced or not. For 60Mbps and above, the memory consumption is higher. Nonetheless,
the impact of teleportation on the memory is negligible.

3 Due to noise in our measurement setup, we obtained some outliers in the jitter experiments. Therefore, we
followed the median absolute deviation [82] method, with a tolerance of 3.5 to remove such outliers.

4.5 Out-of-Band Forwarding Performance 35

10 20 30 40 50 60 70 10 20 30 40 50 60 70
Tx Throughput (Mbps)

(a)

30
40
50
60
70
80
90

100
110

CP
U

us
ag

e
(%

)

No load With load

10 20 30 40 50 60 70 10 20 30 40 50 60 70
Tx Throughput (Mbps)

(b)

12.5

13.0

13.5

14.0

14.5

15.0

M
em

or
y

us
ag

e
(M

B)

No load With load

Fig. 4.15: (a) CPU load using Out-of-Band Forwarding without and with load on the controller. (b)
Memory usage using Out-of-Band Forwarding without and with load on the controller.

0 100 200 300 400 500 600
Time (s)

(a) No Load

30

40

50

60

70

80

90

100

110

CP
U

us
ag

e
(%

)

0 100 200 300 400 500 600
Time (s)

(b) With Load

30

40

50

60

70

80

90

100

110

CP
U

us
ag

e
(%

)

Fig. 4.16: Scatter plot of the CPU usage on the controller for Out-of-Band Forwarding. (a) Without
load on the controller. (b) With load on the controller. Legend as in Fig. 4.13.

4.5.4 Summary

Our first experiments show that teleportation channels in the order of 10 Mbps are feasible,
providing low packet loss and low jitter. Moreover, these channels introduce a moderate
resource overhead in terms of CPU and a low overhead in terms of memory. Hence, such
traffic may go unnoticed given the normal traffic patterns (even if the regular traffic rate is
orders of magnitude smaller). However, we also observe that beyond a certain teleportation
rate, the CPU load will increase and become the bottleneck for teleportation, limiting
the throughput, introducing high packet loss rates, and jitter. Therefore, we expect a
sophisticated attacker to target teleportation rates resulting in resource footprints which are
obfuscated by the regular load.

4.6 Countermeasures

Having showcased a variety of attacks using teleportation, we now start exploring possible
countermeasures. Although we have demonstrated all the attacks using ONOS we believe
that these issues are likely to become more general in nature. They are becoming important

36 Chapter 4 Outsmarting Network Security with Teleportation

with the shift towards automated and intent aware controller frameworks allowing for
simpler and agnostic controller applications. Based on our experiments we have also
seen that the resources required and utilized for teleportation, even at high rates are
moderate. Therefore, it may be difficult to distinguish the attack traffic from the benign
traffic. Accordingly we believe that, with the separation of the control and data plane, it is
now important to monitor and police the communication channel between the separated
planes due to the increased attack surface [228].

4.6.1 Packet-in-Packet-out Watcher

In order to prevent the out-of-band forwarding teleportation, we strongly advise the use of a
Packet-in and Packet-out watcher. It can either exist as a controller application or as an
application that resides between the controller and switches akin to hypervisors. It would
involve tracking and enforcing security policies for Packet-ins and their corresponding
Packet-outs. Existing security enforcement kernels, hypervisors and security applications
must account for Packet-ins and Packet-outs in addition to Flow-mods to detect and
prevent out-of-band forwarding teleportation.

Note that the out-of-band forwarding teleportation could also be used by malicious controller
applications. In a non-adversarial scenario, the order in which a packet’s fate is decided upon
by various applications can inadvertently teleport the packet. Therefore, verifying that the
Packet-out does not reach an undesired switch/host can prevent out-of-band forwarding
teleportation.

4.6.2 Audit-Trails and Accountability

We propose controllers to introduce secure audit-trail capabilities, and accounting, that
enable network administrators to thoroughly investigate events in their networks. For
example, controllers must log and alert sensitive events such as a moving MAC addresses,
or, receiving a Packet-in when a flow has not yet timed out. Such capabilities can aid
detection and prevention mechanisms. It is also useful for investigating security incidents.
We recommend administrators to frequently view controller logs, investigate failed events
and suspicious identities in the network.

4.6.3 Enhanced IDS with Waypoint Enforcement

Network intrusion detection systems are an important means to detect and limit cyber
attacks today, and accordingly intrusion detection systems constitute an integral part of most
networks. We strongly suggest the use of an IDS application on top of or before the controller,
that can inspect Packet-ins and Packet-outs and alert on suspicious traffic. Indeed, some
controllers today already offer basic functionality for waypoint enforcement. In particular,
we suggest waypoint enforcement and coordinating intrusion detection systems from the
control plane with the data plane. This is non-trivial, but vital for network security.

4.6 Countermeasures 37

4.7 Related Work

While researchers have already pointed out several interesting novel challenges in providing
a correct operation of networks with separate data and control planes [159, 178, 249],
it is generally believed that SDN has the potential to render computer networking more
verifiable [105, 107] and even secure [128, 138, 174, 203, 204].

Only recently researchers have started discovering security threats in SDN. Klöti et al. [108]
report on a STRIDE threat analysis of OpenFlow, and demonstrate data plane resource
consumption attacks. Kreutz et al. [111] survey several threat vectors that may enable the
exploitation of SDN vulnerabilities. Benton et al. [18] analyze vulnerabilities in OpenFlow.
In particular they point out the lack of TLS adoption/implementation in OpenFlow switches
and controllers. In addition, they correctly identify the possibility of dos attacks on the
centralized control plane. Another key challenge arising from the separation of the control
and data planes, is the potential loss of network visibility. It has been shown that the network
view of the controller may even be poisoned [46, 77]. Thimmaraju et al. [228], point out that
threat models for the virtualized data plane need to account for a malicious/compromised
data plane in SDNs, and cloud operating systems such as OpenStack.

While much research went into designing more robust and secure control planes [27, 28],
less published work exists on the issue of malicious switches. A notable exception is the
work by Antikainen et al. [8], who consider the possibility of a malicious relay node for a
man-in-the-middle attack. Interestingly, in this chapter, we have shown that the relay node
can be the benign controller itself.

To the best of our knowledge, our work is the first to point out and characterize the
fundamental problem of SDN teleportation. More generally, while most prior studies about
malicious switches focus on (indirect) attacks targeting the controller, we in this chapter
demonstrate new kinds of attacks which merely exploit the controller for directly attacking
(e.g., the confidentiality or availability) of network services.

However, there are a number of interesting approaches proposed in the literature which
have implications for our scenarios as well. For example, the pre- and post-conditions of
TopoGuard [77] can defend against our path update attack. However, if the switches are
malicious, these conditions can be spoofed by the malicious switches. Also, TopoGuard
cannot detect teleportation using path reset, switch identification and out-of-band forwarding
teleportation.

Sphinx [46] can alert on the path update teleportation. However, it cannot detect the
path reset as the flow graph remains the same. Additionally, Sphinx assumes that switches
cannot use the same DPIDs, therefore, we believe that our switch identification teleportation
will not be detected by Sphinx. Also, our out-of-band forwarding relies on Packet-in and
Packet-out messages, while Packet-outs are not considered by Sphinx4. Therefore the
suggested out-of-band forwarding teleportation can evade Sphinx, until topology altering
flows are installed.

4 Unfortunately, the source code of Sphinx is not available.

38 Chapter 4 Outsmarting Network Security with Teleportation

Tab. 4.2: Summary of teleportation attacks and involved entities.

Attack Teleportation tech-
nique

Exploited by

Bypass Firewall Out-of-band forwarding Switch and Host
Bypass NIDS Out-of-band forwarding Switch and Host
Exfiltration Out-of-band forwarding Switch and Host
Evading policy conflicts Out-of-band forwarding Switch and Host
Man-in-the-middle Out-of-band forwarding Switch and Host

Rendezvous
Path update Switch
Path reset Switch
Switch identification Switch

Porras et al. [175] propose a security mediator that comprises of Rule Conflict Analysis,
Role-based Source Authentication, State Table Manager and a Permission Mediator. We
admit that the path update can be detected using this approach, however, our path reset
does not introduce any conflicting rules. The Features-reply messages are not a part of
their solution, therefore, we believe that switch identification teleportation can succeed.
With respect to out-of-band forwarding teleportation, unless the mediator investigates the
destination switch or MAC address in the Packet-out, the teleportation can bypass the
security mediator given sufficient permissions.

SDN Hypervisors such as CoVisor [97], Flowvisor [201], FortNOX [174] depend on policies
maintained in the hypervisor. Therefore, we believe that all our teleportation mechanisms
hold unless a specific policy blocks it. Dover Networks [48] discovered the behavior of
Floodlight with switches using the same DPID, which we exploit for teleportation. While
Security-Mode ONOS [195] can enhance the security in many scenarios, by introducing roles
and permissions, at least today, it does not help against teleportation: Once ifwd has the
permission to write intents and emit packets, our teleportation succeeds. These permissions
are bare necessities for ifwd to function.

4.8 Conclusions

As OpenFlow networks transition from research to production, new levels of reliability
and performance are necessary [117]. This chapter has identified and demonstrated a
novel security threat introduced by software-defined networks separating the control plane
from the data plane. In the presence of an unreliable south-bound interface (containing
malicious switches): We have shown that state-of-the-art controller(s) are vulnerable to
teleportation. Teleportation has numerous applications (cf. the summary in Table 4.2): It
can be exploited to bypass security-critical network elements (e.g., to exfiltrate confidential
information), as a discovery protocol for malicious switches, to evade policy conflicts as
well as for man-in-the-middle attacks. Based on our preliminary evaluation, we can say
that a teleportation channel of over 10 Mbps can easily masquerade inside a loaded control
channel.

Our work can also be seen as a first security analysis of the increasingly popular intent-
based network mechanisms [86]: While intent-based mechanisms are attractive for allowing
(cloud) network operators resp. SDN applications to focus on what to connect rather than

4.8 Conclusions 39

how, we have shown that controller managed intents need to be used with care. Indeed, our
experiments with controllers that are only starting to introduce an intent based mechanism
are not yet vulnerable to all the specific attacks presented in this chapter. Moreover, while
intent mechanism implementations can vary across controllers, we believe that the underly-
ing issues are fundamental, such as switch identification teleportation, the subject of the
next chapter.

40 Chapter 4 Outsmarting Network Security with Teleportation

5Peekaboo! I DPID You: A Novel
OpenFlow Covert Channel

We saw how teleportation is inherent to networks designed with a centralized control plane
in the previous chapter. In this chapter we delve deeper into the switch identification
teleportation technique initially described as a rendezvous protocol. We also explain why
switch identification teleportation is fundamental to OpenFlow networks.

We then describe how it can also be used for covert communication: malicious switches can
transfer a 2048 byte RSA private key file in ∼13 minutes. In particular, we design, develop
and evaluate a time-based covert channel using the switch identification teleportation in this
chapter.

Novelty and Related Work. To the best of our knowledge, this is the first publicly known
covert timing channel in an SDN, and OpenFlow-based network in particular. We are only
aware of one other paper dealing with covert channels in SDN, which is however very
different in nature: Hu et al. [79] proposed to use SDN to improve the detection of storage
covert channels that use the TCP flags for covert communication. More generally, the study
of covert channels dates back to the 80’s when Simmons [205] introduced the “Prisoners
Problem” and the subliminal channel. Network based covert channels in local area networks
were introduced by Girling [68], wherein a covert channel based on the inter frame delay
was proposed. Handel et al. [73] conducted an extensive study on viable covert channels
within the OSI networking model. A covert channel based on sending an IP packet or not
in a time interval was demonstrated by Cabuk et al. [26]. More recently, Tahir et al. [217],
designed and developed Sneak-Peek, a high speed covert channel in data center networks.
Their covert channel also utilizes a delay mechanism wherein the sender’s flow introduces a
delay into the receivers flow over the same network link thereby covertly communicating
information based on the delay measured by the receiver. In 2019, Ovadia et al. [156],
demonstrated how users connected to the same router can covertly communicate with
each other even when they are placed in logically isolated networks, and Xing et al. [245]
proposed to use P4 to detect network covert channels (TCP based) to avoid forwarding
performance loss.

Chapter Organization. In Section 5.1 we briefly recap switch identification teleportation
and then elaborate on our covert channel. We describe the key challenges we encountered
in Section 5.2 followed by our evaluation in Section 5.3. After a discussion is Section 5.4,
we conclude in Section 5.5.

Threat Model. Similar to Chapter 3, in this chapter we consider a threat model where
OpenFlow switches, hosts, or both, may not behave correctly but are malicious.

41

5.1 A Covert Channel using Teleportation

Covert channels are communication channels that were not designed with the intention
for communication [21]. They can be used to bypass security policies, thereby leading
to unauthorized information disclosure [118]. A covert timing channel is one wherein a
sender and receiver “use an ordering or temporal relationship among accesses to a shared
resource” [21] to covertly communicate with each other. In the following we recapitulate
switch identification teleportation and then describe how it can be used as a covert timing
channel in a software-defined network using the OpenFlow protocol.

Switch Identification Teleportation. In an OpenFlow network, the switch typically
initiates a TCP connection with the OpenFlow controller as shown in Fig. 5.1. If TLS/SSL is
configured, the connection is further authenticated and subsequent messages exchanged
are encrypted as well. Once the transport connection is established, the switch sends the
controller an OpenFlow Hello message. The controller responds with a Hello message.
These messages are used to negotiate the OpenFlow version to be used. Next, the controller
sends the switch a Features-Request message. The switch replies with a Features-Reply

message. The Features-Reply message includes a Datapath ID (DPID) field that uniquely
identifies the switch to the controller. After processing the Features-Reply message, the
OpenFlow connection is considered established, and ready for operation [151].

A fundamental requirement of an SDN is for the controller to uniquely identify the switches
in the network which is achieved by the switch providing “identity” information, e.g., DPID
in the Features-Reply message, to the controller. Switch identification teleportation is the
outcome of two switches connecting to the same logical controller using the same DPID
(recall Section 4.3.2). We have identified 4 possible outcomes when this occurs in OpenFlow:
i) The controller denies a connection with the second switch; ii) The controller accepts the
connection with the second switch, and terminates the first switch’s connection; iii) The
controller accepts connections for both switches; iv) The controller accepts connections for
both switches, however, each switch receives a different Role-request message. Only in
outcomes i, ii and iv can the malicious switches infer if the DPID it used is already in use by
another switch. The message sequence pattern for the OpenFlow handshake and outcome i
is shown in Fig. 5.1.

Lack of Authentication and Authorization. We analyzed the security of the OpenFlow
handshake and identified two important security features missing: authentication and autho-
rization. First, the OpenFlow specification does not require the controller to authenticate the
DPID announced by the switch. This lets the switch spoof its DPID during the handshake.
Second, the specification does not require the controller to connect to only an authorized list
of DPIDs. This lets malicious switches use arbitrary DPIDs in the Features-relpy message.
The lack of these two security mechanisms combined with the fact that switches can initiate
the (transport, e.g., TCP) connection to the controller contribute to the possibility of switch
identification teleportation by design in OpenFlow. These findings have been reported in
CVE-2018-1000155. In Section 5.4 we discuss a practical solution to counter this problem in
OpenFlow.

42 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

Switch
(s1)

Controller
(c0)

Switch
(s2)

TCP Handshake

TCP Handshake

OF Hello

OF Hello

OF Features-request

OF Features-request

Features-reply (DPID=x)

s1 has DPID x

Features-reply (DPID=x)

s2 has DPID x?
Disconnect s2!

TCP FIN

TCP FIN,ACK

s2 gets disconnected

Fig. 5.1: Message sequence pattern for the OpenFlow handshake and switch identification teleportation
when the controller denies the second switch a connection. In this way, s2 can infer a bit
value after it gets disconnected.

5.1.1 Single Bit Transfer

From the message sequence pattern in Fig. 5.1, switch s2 can infer a binary value of 1 if it
gets disconnected, and a binary value of 0 if it is able to connect, thereby it receives one
bit of data. We can precisely describe the states and transitions to transfer one bit value as
finite state machines for the sender and receiver resp. Additionally, we can precisely describe
a time-based model to transfer one bit value that can be leveraged to design a channel to
transfer multiple bits. We now turn our attention to describe the state transition model
followed by the time model to transfer one bit. Then, we describe our algorithms to transfer
multiple bits.

5.1.1.1 State Transition Model

The state transition model for switch identification involves a sender and receiver. As the
names imply, the sender sends a binary bit value by either connecting to the controller or
not. Similarly, the receiver receives a binary bit value by detecting whether its OpenFlow
connection to the controller is allowed or denied.

5.1 A Covert Channel using Teleportation 43

Fig. 5.2: State machine for the sender to send one binary value.

In our model, we make the following assumptions. We assume that the sender and receiver
use an a priori agreed upon DPID (one that is not used in the network), a time to connect to
the same OpenFlow controller and a time interval ∆. ∆, is the total time the sender and
receiver use to send and receive resp. a bit value. The sender and receiver have synchronized
their clocks. We discuss synchronization further in Sec. 5.2.1. The receiver in particular, is
always able to connect to the controller a short time δoffset after the sender. The controller,
behaves according to outcome i (see Switch Identification Teleportation). The receiver infers
a binary bit value of 1, if its OpenFlow connection is denied, i.e., the sender connected to
the controller before the receiver. The receiver infers a binary bit value of 0, if its OpenFlow
connection is accepted, i.e., the sender did not connect to the controller.

The sending and receiving of bit information can be described in more detail by defining a
set of states and transitions for the sender and receiver resp., as shown in Fig. 5.2 and 5.3.

Sender. The sender starts data transmission with an agreed upon DPID, by entering into
the Idle state. To send a 0, it simply remains in the Idle state. To send a 1, it transitions to the
OpenFlow-established state via the Set-Controller transition. Set-Controller involves initializing
internal objects, e.g., rconn and vconn data structures in Open vSwitch, in order to initiate
a transport (e.g., TCP) connection to the controller at a specific IP and port address. It
also involves establishing the TCP and OpenFlow connection with the controller. Once the
OpenFlow connection is established, the sender waits for a timeout δws, to move into the
Timeout-reached state. From there, the sender enters into the OpenFlow-disconnected state by
tearing down the TCP and OpenFlow connection, and deleting its controller information.
From thereon, the sender completes a bit transfer by entering back into the Idle state. The
sender’s state diagram is depicted in Fig. 5.2.

44 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

Fig. 5.3: State machine for the receiver to receive one binary value.

Receiver. The receiver also starts with the same DPID to enter into the Idle state. Unlike the
sender, the receiver must always attempt to connect to the controller to receive a 0 or a 1. It
waits for δoffset time to enter the Offset-reached state before it sets the controller to enter into
the OpenFlow-established state, similar to the sender. If the receiver’s OpenFlow connection
is denied, it will enter into the OpenFlow-disconnected state resulting in its OpenFlow and
transport connection being terminated. If the receiver’s OpenFlow connection is accepted,
it will enter into the OpenFlow-accepted state resulting in its OpenFlow connection being
sustained. Regardless of the outcome, the receiver waits δdelay time, thereby transitioning
to the Reached-check-status-timeout state. From there, the receiver checks the OpenFlow
connection status. It enters the Got-1 state if it was disconnected, i.e., it got a 1. It enters the
Got-0 state if it was accepted, i.e., it got a 0. From there on the receiver deletes its controller
information, resulting in the OpenFlow and transport connection being torn down if it is still
present. Depending on the value of ∆, there may still be time left, hence the receiver waits
δwr, till the end of the time interval, to enter the Timeout-reached state. It then completes
the reception by moving back into the Idle state. The state diagram for the receiver is shown
in Fig. 5.3.

5.1.1.2 Transition Delays

To leverage switch identification as a covert timing channel we must first establish the time
it takes for the sender to send a 1—as sending a 0 requires the sender to remain in the Idle
state—and the receiver to receive a bit value. We define a time interval ∆, as the time the
sender and receiver use to send and receive resp. a binary bit value.

∆ comprises of the several state transitions described for the sender and receiver (Sec. 5.1.1.1).
We can construct a time-based model by considering the transitions as delays or timeouts for
the sender and receiver that can be used to analyze the performance of our covert channel.

5.1 A Covert Channel using Teleportation 45

In the following we define the various delays and timeouts for the sender and receiver state
transitions.

1. δs: The time the sender takes to send a binary bit value.

2. δr: The time the receiver takes to receive a binary bit value.

3. δsc: The time to transition from the Idle state to the OpenFlow-established state.

4. δdc: The time to move from the OpenFlow-established state to OpenFlow-disconnected
state.

5. δoffset: A timeout value the receiver waits before it sets the controller.

6. δof -deny: The time to move from OpenFlow-established to OpenFlow-disconnected when
the connection is denied.

7. δdelay: A timeout value the receiver waits before it checks the OpenFlow connection
status.

8. δchk-conn: The time the receiver takes to determine a 0 or 1 by checking the OpenFlow
connection status.

9. δws = ∆ − δs: A timeout value the sender waits before moving from the OpenFlow-
established state to OpenFlow-disconnected.

10. δwr = ∆− δr: A timeout value the receiver waits before moving from the OpenFlow-
disconnected state to the Idle state.

Using the above definitions, we can now compute the time to send and receive a 0 or 1. The
total time to send a 0 or 1 is shown in Eq. 5.1. As we can see, it takes more time to send a
1 (δsc + δdc) compared to a 0. In Eq. 5.2, we can see the time it takes to receive a 0 or a 1.
In particular, the different delay is δof -deny for the 1. For the sender and receiver to operate
correctly, we require the inequality shown in Eq. 5.3 to hold, i.e., the time interval ∆ must
not be less than the total time to send or receive a binary bit value.

Additionally, for the receiver to correctly detect a 0 and 1, we require the inequalities as
shown in Eq. 5.4 and 5.5 to hold. The former equation states that δoffset must be greater
than the time it takes for the sender to enter the OF-established state. This is to ensure that
the receiver does not connect before the sender when the sender wants to send a 1. The
latter equation states that the minimum amount of time it can wait before checking the
OpenFlow connection status is 0, and the maximum time it can wait depends on the time
interval, the time elapsed so far, and the time for the remaining transitions to complete. The
δdelay gives the receiver the flexibility of waiting for some amount of time before checking
the status of the OpenFlow connection. For example, checking the connection status at ∆/2,
i.e., at the middle of the time interval, may be better than checking it at ∆/4. Hence, the

46 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

receiver can set δdelay such that, the OpenFlow connection status is checked at a point where
the connection is determined to be most stable.

δs =

0, to send 0

δsc + δdc, to send 1
(5.1)

δr =

δoffset + δsc + δdelay + δchk-conn + δdc, to get 0

δoffset + δsc + δof -deny + δdelay + δchk-conn + δdc, to get 1
(5.2)

δs ≤ δr ≤ ∆ (5.3)

δoffset ≥ δsc (5.4)

0 ≤ δdelay ≤ ∆− (δoffset + δsc + δof -deny + δchk-conn + δdc) (5.5)

5.1.2 From One Bit to Multiple Bits

Until now, we have described how the sender can transmit only a single bit value to the
receiver. To receive the single bit value, the sender and receiver need to be synchronized, i.e.,
the sender and receiver must know the exact time at which the time interval ∆ begins and
ends. To this end, we assume the sender and receiver synchronize their clocks using the same
network time protocol (NTP) time server. Furthermore, we assume the sender and receiver
a priori agree upon specific times at which they will initiate their covert communication.

In order to be useful, a covert channel should provide a sender with the ability to transmit
several kilobytes of data, e.g., an RSA private key file. Accordingly, in the following, we
extend our discussion from a single bit transmission to multiple bits. First, the sender and
receiver must agree upon an encoding/decoding scheme, e.g., ASCII. Second, they must
also agree upon a method to signal the start and end of a message. To do so, we use a
frame-based transmission method. In particular, the sender encodes a message M into into
frames F , of length Fl, and transmits the frames. The receiver, decodes each frame received
to obtain the sent message.

For simplicity, we consider a frame with at least one SoF (Start of Frame) bit, and at least
seven data bits (e.g., ASCII characters can be represented in 7 bits). The SoF bit is used by
the sender to signal the receiver that a frame transmission begins which is followed by data
bits. We assume that the SoF bit is a binary 1, and if the receiver gets this value at the agreed
upon time and time interval, it will begin receiving data bits. The data bits can be 0 or 1
depending on how the message is encoded. To indicate the end of a message, the sender
sends a frame with all the data bits as 0. When the receiver receives such a frame, it will

5.1 A Covert Channel using Teleportation 47

Algorithm 3: To send binary data as frames.
Input: Message M , Frame-length Fl, Frames F , Time-interval ∆, Start-time t,

Encode-scheme S
1 initialize(sender)
2 encode(M)
3 for frame ∈ F do
4 set-controller . Send SoF bit
5 Wait δws

6 for bit ∈ frame do
7 if (bit==0) then
8 delete-controller . Send 0
9 else

10 set-controller . Send 1
11 end
12 Wait δws

13 end
14 delete-controller
15 end

terminate execution. The above steps are specified as algorithms for the sender and receiver
in Alg. 3 and 4 respectively.

Sender and Receiver. The sender’s algorithm (Alg. 3) requires several inputs. M is the
message to be transmitted, Fl is the frame length, e.g., 8, F is the list of frames that are to
be sent, ∆ is the time interval, t is the transmission start-time and S is the encoding scheme.
The input values for the receiver (Alg. 4) are the same frame length, time interval, start-time
and encoding as the sender.

For every frame to be sent, the sender first sends an SoF bit for that frame by connecting to
the controller. Similarly the receiver waits for δoffset time before attempting to receive the
SoF bit. If its connection is denied, it will begin receiving data bits. After sending the SoF bit,
the sender sends data bits: if sending a 0, it disconnects from the controller, if sending a 1, it
connects to the controller. It then waits till the end of the timing interval before sending the
next data bit. The receiver detects the data bits in a frame by connecting to the controller,
and waiting for δdelay time before checking whether its OpenFlow connection was allowed
or not. If the connection was accepted, it will append a 0 to the data bits received in the
frame, otherwise it will append a 1. The receiver then deletes the controller, and then waits
δwr, i.e., till the end of the time interval before connecting to the controller again.

Once the sender has sent the data bits of a frame, it will wait δws time, i.e., for the next
time interval to send the next frame. The receiver detects the end of a message when it has
received a frame with all the data bits zeroed, thereby terminating the while loop at the
receiver. The receiver can then decode the binary data to reveal the message sent.

48 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

Algorithm 4: To receive binary data as frames.
Input: Frame-length Fl, Time-interval ∆, Start-time t, Decode-scheme S

1 initialize(receiver) while End of message not received do
2 Wait δoffset

3 set-controller . Receive SoF bit
4 Wait δdelay

5 Check OpenFlow connection state
6 if OpenFlow denied then . Got SoF bit
7 Wait δwr

8 for bit ∈ Fl do
9 set-controller . Get data bit

10 Wait δdelay

11 Check OpenFlow connection state
12 if OpenFlow accepted then
13 frame += “0” . Got 0
14 else
15 frame += “1” . Got 1
16 end
17 delete-controller
18 Wait δwr

19 end
20 if frame ==“0000000” then
21 End of message received
22 Break . Terminate reception
23 else
24 M+ = frame . Append frame to message
25 end
26 end
27 decode(M)

5.2 Design and Performance Challenges

Our covert channel design requires us to overcome several non-trivial challenges. Hence,
we discuss the most important challenges that affects our design in this section before
transitioning to our implementation. We also cast light on factors that affect the performance
of our design.

5.2.1 Synchronization

One of the main problems in designing a covert timing channel is synchronization. Lack of
synchronization can lead to the receiver obtaining inaccurate information, thereby reducing
the accuracy of the channel. The sender and receiver must share a reference clock to ensure
that the algorithms start at the same time. To this end, we use NTP (as it is easily available
for today’s popular operating systems) and the same NTP server to synchronize the clocks of
the sender and receiver to achieve at least millisecond accuracy [135]. Since the sender and
receiver clocks can slowly drift apart their clocks must be periodically synchronized with the
same NTP server.

5.2 Design and Performance Challenges 49

When the clocks are synchronized, the SoF bit(s) in each frame sent synchronizes the receiver
with the sender enabling the receiver to obtain the data bits. During the transmission of a
frame, we introduce the δws and δwr times for the sender and receiver resp. at the end of a
time interval for synchronization across time intervals in a frame. Furthermore, between
frames the sender and receiver can synchronize again by waiting, for example for the next
second. This inter frame delay adds another layer of synchronization to enable the sender
and receiver to send and receive resp. the SoF bit(s) accurately.

5.2.2 Determining the Time Interval ∆ and Delays

The time interval in which the sender and receiver send and receive a bit leads to the
achievable throughput of the channel. As the time interval reduces, the probability of
an error occurring increases, e.g., the receiver may check the connection status before
receiving the TCP FIN from the controller. Furthermore, system and network artefacts
can non-deterministically influence the state transitions resulting in errors. Hence, the
challenge here is to determine a time interval as small as possible within an acceptable level
of accuracy (≥ 95%). We empirically identify suitable time intervals in Sec. 5.3 based on our
prototype implementation. However, in the real-world, the channel would have to start with
a programmed value, e.g., 1s, and later be negotiated.

Recall Sec. 5.1.1.2, there are several delays involved in our timing channel. The delays
for one network system, may not be applicable elsewhere. Delays such as δsc, δdc, δof -deny,
and δchk-conn , depend on the system and network conditions. Moreover, they are not under
the control of the sender/receiver. The timeouts δoffset and δdelay although bounded (see
Eq. 5.4 and 5.5 resp.) can be tuned by the receiver. Hence, we evaluate 3 different δdelay

values in Sec. 5.3.

5.2.3 Frame-based Transmission

Our design uses a frame-based method to transfer data from the sender to the receiver. The
smallest frame size we consider is 8 bits long: 1 SoF bit and 7 data bits. The size of this
frame can change, e.g., we can send 14, 28 or more data bits as well. Sending more data
bits in a frame reduces the overhead of sending the SoF bit. We can also increase the number
of SoF bits to ensure the receiver can get the data bits. However, increasing the number of
bits in a frame increases the probability of errors within a frame. We do not consider error
correction in our design although it can be introduced, e.g., using Hamming codes. However,
we do include a minimal set of error detections at the receiver which we describe next.

Receiver misses the start bit of the frame. Several reasons can affect the receiver from
missing the SoF bit of a frame. In such cases the receiver simply remains idle for the
remainder of the time that is necessary to transmit an entire frame.

End of Transmission. For simplicity, the sender indicates the end of transmission via a
special EoM (End of Message) frame. This design choice comes with a couple of challenges
for the receiver to correctly terminate. First, if the receiver misses the SoF bit of the EoM

50 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

frame, then it will continue to expect to receive frames. To address this problem, we define
a threshold number of consecutive frames, e.g., 5, the receiver does not receive beyond
which the receiver terminates reception. Second, the receiver can incorrectly detect a 1 as a
0 due to synchronization issues for example. As a result, the receiver may detect the EoM
prematurely and stop receiving data even though the sender continues to send data. We
cannot address this case as it is a limitation of our design to not include the length of the
message to be received.

5.2.4 Influence of the Controller

The OpenFlow controller that is used to covertly communicate is beyond the control of the
sender and receiver. Hence, the accuracy and performance of our channel is limited by the
controller that operates the OpenFlow network.

Load on the Controller. Typically, there are more switches connected to the controller
than just the sender and the receiver of the covert channel. If the communication between
the benign switches and the controller is frequent and voluminous, the sender and receiver
will experience non-deterministic delays in connecting/disconnecting (δsc, δdc and δof -deny)
to the controller, thereby reducing the performance (throughput and accuracy) of the
channel.

Controller Architecture. The system and software architecture of the controller also
influences our design. For example, the controller could be single threaded or multi-threaded.
The former can lead to long delays, whereas the latter can lead to non-determinism due to
the scheduler.

Path to the Controller. Network paths not under the control of the sender and receiver
can influence the performance of our channel. For example, buffers in switches can be filled
up by other network packets resulting in packet loss and hence errors in the received bits.

5.3 Evaluation

To obtain deeper insights and validate our expectations of our covert channel, we prototyped
our design using Open vSwitch [147] and ONOS [145]. Furthermore, we designed a set of
experiments based on the challenges described in the previous section to characterize the
performance of our channel. We begin with a brief description of our implementation, and
then describe the experiments.

Implementation. We used Open vSwitch (OvS) as our sender and receiver OpenFlow
switches. We only modified the (OpenFlow) connection handling of OvS so that after it
disconnects from the controller, it waits for 4 seconds to reconnect. To set/delete controller
information, and configure the DPID, we used the ovs-vsctl tool that ships with OvS. We
then implemented the sender and receiver algorithms (Alg. 3 and 4) as python scripts. In
doing so, we traded performance for simplicity which we consider acceptable for the sake of
prototyping and evaluation. Our implementation is only meant to demonstrate the feasibility

5.3 Evaluation 51

of our attack. We synchronized the system clocks of the sender and receiver using our
university’s NTP time server. To encode and decode the messages, we used the ASCII scheme.
We implemented an adaptive inter-frame delay synchronization scheme in which the sender
sends a frame only at the start of the next second.

Setup. Our evaluation setup comprised of three (sender, receiver and controller) Dell
PowerEdge 2950 servers with 4 core Intel(R) Xeon(TM) CPU 3.73GHz processors and
16 GB of RAM each. The sender and receiver were directly connected to the controller.
For OpenFlow load generation, we used a fourth server running directly connected to the
controller. All these servers used dedicated ports to connect to a management switch that was
used for orchestration from a fifth server to conduct the evaluation. All systems ran Ubuntu
14.04.5 LTS. For the sender and receiver, we used Open vSwitch 2.7. For the controller, we
used ONOS 1.10.2.

Objectives. Based on our covert timing channel design the objectives of the evaluation
are the following. First, we want to establish time intervals that achieve high accuracy and
throughput (Sec. 5.2.2. Second, we want to determine the influence the frame length has
on the accuracy (Sec. 5.2.3), e.g., do shorter frames have fewer errors than longer frames?
Third, we want to measure the influence of δdelay on the accuracy and throughput of our
channel (Sec. 5.2.2), e.g., is there a δdelay value for which the time interval can be smaller?
Finally, we want to measure the accuracy of our channel when there is load on the controller
(Sec. 5.2.4).

Methodology. The general methodology we undertake is the following. The controller runs
ONOS with the default applications activated. We program the sender and receiver with a
specific start time t, time interval ∆, offset δoffset = 5 ms, check the connection status at
∆/2 ms and frame length Fl. The sender then sends a 64 byte message Ms and the receiver
receives a message Mr. We then restart ONOS and OvS, and clean up the OvS database
before we repeat the measurement. We collect ten such measurements for the configured
values. We measure accuracy as the similarity between Mr and Ms using the edit distance or
Levenshtein distance [67]. For load on the controller, we use OFCProbe [92] as our OpenFlow
topology and packet generator. We configure OFCProbe to emulate 20 switches that trigger
Packet-Ins to the controller following a Poisson distribution (λ=1). After OFCProbe has
started the Packet-in generation, we wait for one minute before we start the sender and
receiver, to avoid any warm-up effects from OFCProbe and ONOS.

5.3.1 Experiments

Following the aforementioned methodology, we now describe the experiments and their
results.

Effect of Timing Interval ∆. We set the frame length Fl = 7, and measure the accuracy
for time intervals from 30 ms up to 100 ms. The results are shown in Fig. 5.4.

The results depict that our channel can achieve nearly 100% accuracy for time intervals
greater than 60 ms when there is no load on the controller. For ∆ = 60 ms, we have a

52 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) No Load

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(b) With Load

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Fig. 5.4: Channel accuracy for time intervals 30-100 ms, and frame lengths 7, 14 and 28 when
δoffset = 5ms, OpenFlow status is checked at ∆/2, with no load and with load on the
controller.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) Miss start bit errors without load

0

20

40

60

80

100

M
iss

 st
ar

t b
it

er
ro

rs
 (%

)

FL=7 FL=14 FL=28

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(b) With Load

0

20

40

60

80

100

M
iss

 st
ar

t b
it

er
ro

rs
 (%

)

FL=7 FL=14 FL=28

Fig. 5.5: Missed start bit errors for time intervals 30-100 ms, and frame lengths 7, 14 and 28 when
δoffset = 5ms, OpenFlow status is checked at ∆/2, and there is no load on the controller.

throughput of approximately 16.67 bps. What we can also see is that as the time interval
increases the accuracy increases, which is what we expected. Another distinct observation is
that for the values configured, our channel cannot operate below 40 ms because the receiver
gets the EoM prematurely, it detects only 0 in the data bits as we can see in Figure 5.5 where
the missed start bit error (MSB) rate is 100% for time intervals 30 and 40 ms.

Effect of Frame Length Fl. To measure the influence of the frame length on the accuracy
we chose the following values: 7, 14 and 28. Note that these values represent the number of
data bits in the frame, i.e., 1, 2, and 4 ASCII characters resp. We use only one SoF bit in the
frame. We repeat the measurements for time intervals from 30-100 ms. The results from
this experiment are also depicted in Fig. 5.4.

Indeed, the frame lengths we used show us that as the frame length increases the accuracy
drops. Longer frame lengths result in fewer frames but more data per frame being sent.
Hence, if the receiver misses the SoF bit for Fl = 14, it misses twice as many characters
compared to Fl = 7. Moreover, the chance of incorrect bit detection (bit-flips) increases
with larger frames. We analyzed the number of missed SoF bits shown in Fig. 5.5 (a) and (b)
and we can see that as the frame length increases the missed start bit rate increases from
roughly 10% to 20% for time interval 50 ms. To address the problem of missing the start bit
we can introduce redundant SoF bits.

5.3 Evaluation 53

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) No Load

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

FL=7 FL=14 FL=28

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(b) With Load

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Fig. 5.6: Channel accuracy for time intervals 30-100 ms, and frame lengths 7, 14 and 28 when
δoffset = 5ms, OpenFlow status is checked at 2∆/3, with no load and with load on the
controller.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) No Load

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Fig. 5.7: Channel accuracy for time intervals 30-100 ms, and frame lengths 7, 14 and 28 when
δoffset = 5ms, OpenFlow status is checked at ∆/3, with no load and with load on the
controller.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) End of message errors without load

0

20

40

60

80

100

En
d

of
 m

es
sa

ge
 e

rro
rs

 (%
)

FL=7 FL=14 FL=28

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) Miss start bit errors without load

0

20

40

60

80

100

M
iss

 st
ar

t b
it

er
ro

rs
 (%

)

FL=7 FL=14 FL=28

Fig. 5.8: End of message errors and Missed start bit errors for time intervals 30-100 ms, and frame
lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow status is checked at ∆/3, with no load.

Effect of δdelay in Checking Connection Status. We now investigate how δdelay influences
the throughput and accuracy of our channel. Recall from Sec. 5.1.1.2 that this value is the
time the receiver waits before it checks the status of the OpenFlow connection. Until now,
we checked the connection status at ∆/2. Hence, in this experiment we check the connection
status at 2∆/3 and ∆/3 for frame lengths 7, 14 and 28, and time intervals 30-100 ms. The
results for 2∆/3 and ∆/3 are shown in Fig. 5.6 and 5.7 resp.

When we check the status at 2∆/3, we are able to achieve a 25% increase in the throughput.
the 40 ms time interval operates at nearly 100 % accuracy. Moreover, the accuracy for this
δdelay value performs better compared to our baseline value of ∆/2. When we check the

54 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

status at ∆/3, we observe a negative influence on the channel, i.e., time intervals 50-70 ms
are not effective. In particular, we note that the 70 ms time interval is the operational edge
when δdelay is at ∆/3. The reason for these marked changes is the following: The time at
which the receiver checks the OpenFlow connection status is crucial. Done too soon, it is
likely to detect a zero, and done too late, it is likely to detect a one.

Based on our design, detecting a 1 as a 0 reduces the accuracy more than detecting a 0 as a
1: detecting zeros for all the data bits results in the EoM (see Fig. 5.8 (a)) and missing the
SoF bit (1) can lead to missing the entire frame (see Fig. 5.8 (b)). The two combined can
drastically bring down the accuracy which is evidenced when we check the status at ∆/3.

Effect of Message Length |M |. To ensure that our channel can sustain longer messages,
we measured the accuracy of sending 512 and 1024 byte messages with and without load.
The accuracy in each case was very close to the 64 byte message as depicted in Figure 5.9.
However, there is slightly more variance when there is load on the controller at the 40 ms
time interval.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(a) No Load

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

M=64 M=512 M=1024

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100
Time Interval (ms)

(b) With Load

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

M=64 M=512 M=1024

Fig. 5.9: Channel accuracy for message lengths 64, 512 and 1024 for time intervals 30− 100 ms, and
frame length 7, when OpenFlow status is checked at 2Delta/3, with no load and with load
on the controller.

Effect of Load on the Controller. Having determined time intervals, frame lengths and
δdelay values with close to 100 % accuracy, we compare them with measurements when
the controller is under load, as real OpenFlow network can operate with more than two
switches. Fig. 5.4, 5.6 and 5.9 illustrate the results from this experiment.

Naturally, load on the controller reduces the accuracy of our channel. Other switches trigger
events at the controller which introduces queuing and processing delays for the sender’s and
receiver’s messages. This introduces errors for time intervals that were previously highly
accurate, e.g., 60 ms and checking the OpenFlow connection at ∆/2 (Fig. 5.4) drops to
roughly 10% when the controller is under load. Although there is a drop in the accuracy
when we check the connection at 2∆/3 (Fig. 5.6), the smaller time intervals, e.g., 50 ms can
still operate at or above 90% accuracy.

5.3 Evaluation 55

5.4 Discussion

Our evaluation demonstrated that switch identification teleportation can be a highly accurate
channel for low throughput covert communication in our setup. We also showed that
it depends on several factors, e.g., ∆, δdelay, and the system and network conditions.
Nonetheless, techniques to detect teleportation in general, and a covert timing channel such
as the one presented in this chapter are crucial for networks with high security demands.
Hence, we briefly discuss detection possibilities. We also describe some limitations and
possible improvements for our design and implementation.

Detection and Mitigation. To the best of our knowledge, firewalls and intrusion detection
systems do not monitor the OpenFlow sessions. Even if they do, detecting teleportation
attacks are non-trivial as they follow the normal pattern of (encrypted) OpenFlow sessions.
Preventing switch identification teleportation is exacerbated by the fundamental requirement
that switches need to uniquely identify themselves to the controller, and that the controller
must allow only a single DPID in the network.

The attack however, can be deterred if OpenFlow connections are secured via the following
hardened authentication scheme: unique TLS certificates for switches, white-list of switch
DPIDs at controllers [71] which also includes the switches’ respective public-key certifi-
cate identifier, and lastly a controller mechanism that verifies the DPID announced in the
OpenFlow handshake is over the TLS connection with the associated (DPID) certificate.

In lieu of our findings, ONOS has patched their controller [60] and other controllers have
also acknowledged the vulnerability: RYU [177] and Redhat’s OpenDaylight [24].

Other SDN Protocols. We have also evaluated switch identification with P4Runtime [158]
as described by Gbur [65] in his Bachelor’s Thesis. We concluded that the attack described
in this chapter is not feasible and valuable with P4Runtime for the following reasons.

• The network connection establishment begins from the controller unlike in OpenFlow
wherein the switch can initiate the network connectivity. In P4Runtime, the handshake
can be viewed as a two step process. First, the controller receives a so-called device
configuration file that specifies the switch ID, IP address, port number, etc. After
processing the file, the second step is taken i.e., the controller initiates the connection to
the switch at the address and port mentioned in the device configuration file.

• The trigger for the connection from the controller to the switch is determined by the
device configuration file. Hence, it is critical to secure this interface. However, if
an attacker has already gained access to this interface, then there is little value in
using switch identification teleportation, as the attacker can directly manipulate the
controller to perform actions at the switches.

• The second observation has been included as a patch to the P4Runtime specification to
emphasize the requirement for securing the interfaces that receive the configuration as
well as between the switch and controller [194].

56 Chapter 5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel

Limitations and Improvements. Indeed, our prototype implementation achieves through-
put rates in the order of tens of bits per second. However, it is reasonable to assume that the
throughput can be increased by, implementing our algorithms in OvS which is programmed
in ‘C’, or using another controller. Consequently, the delays, e.g., δsc, will be reduced as the
response time to events will be faster, e.g., we will not have to rely on vsctl and ovsdb

to set/delete the controller. A novel approach to increase the throughput which we have
not measured is for the sender and receiver to initiate several concurrent connections to
the controller using unique DPIDs for each connection. In this manner, the sender can send
as many bits as connections are made, thereby increasing the throughput by the number
of connections. Our channel also comes with some system and network level limitations
that are difficult to overcome, e.g., time to establish a TCP connection, packet loss along the
path to the controller, etc. Furthermore, our design is for uni-directional communication
and does not include error correction. A channel from the receiver back to the sender where
the receiver acknowledges, e.g., every frame, can boost the accuracy of the channel.

5.5 Conclusions

In this chapter, we described how switch identification is fundamental to SDN not only due
to the requirement for switches to uniquely identify themselves to the controller but also
due to the lack of authentication and authorization of DPIDs in the OpenFlow specification
and controller implementations. We then elaborated on the design, implementation and
evaluation of a novel covert timing channel based on the switch identification teleportation
technique.

Our prototype implementation of our design can achieve throughput rates of up-to 20 bits
per second, with an accuracy of approximately 90% even when there is load at the controller.
This means that a 2048 byte RSA private key file can be transferred in nearly 13 minutes.
Although our proof-of-concept implementation is a low bandwidth channel, we discussed
techniques to increase the throughput and practically mitigate the problem.

This chapter concludes Part I of this dissertation where we saw how the logically centralized
controllers can be used in unintended ways by malicious switches (and hosts) to covertly
bypass data plane security policies and mechanisms.

5.5 Conclusions 57

Part II

Network Isolation via the Data Plane
The previous two chapters highlighted how malicious switches in the data plane can covertly
communicate as well as cause denial of service attacks due to the shared controller, pro-
grammability of the network (e.g., via intent networking) and lack of authentication and
authorization in specifications and implementations. In Part II of the dissertation, we focus
on the design and implementation of data plane systems for virtual networking in the cloud.
This involves i) how attackers can break out of network (and VM) isolation and ii) how we
can maintain network isolation even under attack.

In Chapter 6, we raise the alarm on the security implications of state-of-the-art virtual
switches, a key mechanism for multi-tenant network virtualization in the cloud. In partic-
ular, our security analysis shows that existing designs and implementations for network
virtualization not only increase the attack surface of the cloud, but virtual switch vulner-
abilities can also lead to attacks of much higher impact compared to mere hardware or
software switches. Our findings motivate us to qualitatively analyze existing threat models
for network virtualization architectures, and accordingly introduce a new attacker model
for virtual switches. We demonstrate the accuracy and practical relevance of our analyses
using a case study with Open vSwitch and OpenStack. Our security analysis allowed us to
precisely target the packet processing code of OvS to look for vulnerabilities. By fuzzing that
specific component, we discovered multiple exploitable memory corruption issues (reported
in CVE-2016-2074 and CVE-2016-10377). Using just one vulnerability we were able to
create a worm that can compromise hundreds of servers in a matter of minutes. Finally,
we find that existing software countermeasures for memory corruption may not always be
used by default even though their overhead in user-space has minimal impact (1-15%) on
forwarding throughput and latency. However, the overhead of protecting the kernel, e.g.,
using grsec, is prohibitive, it reduces the maximum throughput by nearly half making it
unlikely to be used in production networks.

Motivated by the above discoveries, in Chapter 7, we dive deeper into the design of virtual
switches. Our qualitative analysis of 23 virtual switches reveals that most virtual switches
are designed for performance and flexibility. They have a large trusted computing base,
co-located with the Host and perform privileged packet processing which essentially violates
basic secure design principles. Hence, we present, implement, and evaluate a scalable

virtual switch architecture, MTS, which brings four secure design principles to the context of
multi-tenant virtual networking: least-privilege vswitch, complete mediation of tenant-Host
communication, extra security boundary between the tenant and Host, and least common
mechanisms. We build MTS from commodity components, providing an incrementally deploy-
able and inexpensive upgrade path to cloud operators using Single-Root I/O Virtualization,
VMs and containers. Our extensive experiments, extending to both micro-benchmarks and
cloud applications, show that, depending on the way it is deployed, MTS may produce 4x
isolation and 1.5-2x the throughput compared to state-of-the-art, with similar or better
latency and modest resource overhead (1 extra CPU).

60

6Reins to the Cloud via the Virtual
Switch

At the heart of an efficiently operating datacenter lies the idea of resource sharing and
multi-tenancy: independent instances (e.g., applications or tenants) can utilize a given
infrastructure concurrently, including the compute, storage, networking, and management
resources deployed at the data center, in a physically integrated but logically isolated
manner [110, 62].

The multi-tenant network architecture (recall Chapter 2.3) enables sharing of the network
resources among the different users/tenants of the data center network. This comprises of a
centralized controller (control plane) and a set of programmable software and hardware
switches (data plane). These components form the underlying network infrastructure that
are then multiplexed to isolate the different tenants’ networks from each other.

Key to network virtualization is the virtual switch, a network component located in the virtu-
alization layer of the (edge) servers that connects tenants’ compute and storage resources
(e.g., VMs, storage volumes, etc.), provisioned at the server, to the rest of the data center
and the public Internet [110, 91, 168].

Virtual switches are typically not limited to provide traditional switching but support an
increasing number of network and middlebox functionality [58, 89], e.g., routing, firewalling,
network address translation and load-balancing. Placing such functionality at the edge of
the network (i.e., the Host OS/Hypervisor) is attractive, as it allows to keep the network
fabric simple and as it supports scalability [170, 58]. A few prominent virtual switches today
are: Open vSwitch [171], Cisco Nexus 1000V [236], VMware vSwitch [239] and Microsoft
VFP [58].

The general tendency to move functionality from the network fabric to the edge also comes
at the price of increased complexity. For example, the number of protocols that need to
be parsed and supported by virtual switches (Open vSwitch and Cisco Nexus 1000v) and
OpenFlow [127] have been growing steadily over the last years [229] (see Fig. 6.1).

The trend towards more complex virtual switches is worrisome as it may increase the attack
surface of the virtual switch. For example, implementing network protocol parsers in the
virtual switch is non-trivial and error-prone [193, 200, 57]. These observations motivate us
to conduct a security study of network virtualization architectures that use virtual switches.

Structure. Section 6.1 introduces and discusses our security analysis of virtual switches and
existing threat models. Based on this analysis we propose a new attacker model. Section 6.2
presents a proof-of-concept case study attack on OvS in OpenStack. Subsequently, we discuss

61

ov
s-0

.90
.4

ov
s-1

.0.
0

ov
s-1

.2.
0

OF 1
.3.

0

ov
s-1

.7.
0

ov
s-1

.11
.0

OF 1
.3.

3

OF 1
.4.

0

ov
s-2

.3.
0

ov
s-2

.4.
0

ov
s-2

.6.
0

ov
s-2

.7.
0

ov
s-2

.8.
0

ov
s-2

.9.
0

ov
s-2

.10
.0

OF 1
.0

OF 1
.1

OF 1
.2

OF 1
.3.

1

OF 1
.3.

2

OF 1
.3.

4
OF 1

.3.
5,

OF 1
.4.

1,

OF 1
.5.

1

OF 1
.5.

0

Ja
n-

20
09

Ju
l-2

00
9

Ja
n-

20
10

Ju
l-2

01
0

Ja
n-

20
11

Ju
l-2

01
1

Ja
n-

20
12

Ju
l-2

01
2

Ja
n-

20
13

Ju
l-2

01
3

Ja
n-

20
14

Ju
l-2

01
4

Ja
n-

20
15

Ju
l-2

01
5

Ja
n-

20
16

Ju
l-2

01
6

Ja
n-

20
17

Ju
l-2

01
7

Ja
n-

20
18

Ju
l-2

01
8

Ja
n-

20
19

Time

0

10

20

30

40

50

Pa
rs

ed
Pr

ot
oc

ol
s

Open vSwitch OpenFlow Nexus 1000V

Fig. 6.1: The total number of parsed network protocols in two popular virtual switches (OvS and
Cisco’s Nexus 1000V) and OpenFlow from 2009-2019.

possible software mitigations and their performance impact in Section 6.3 After discussing
related work in Section 6.4, we conclude in Section 6.5.

6.1 Security Analysis

In this section, we present a systematic security analysis of the network virtualization
architecture introduced in Chapter 2. Based on these insights, we investigate existing threat
models for virtual switches and then construct an attacker model against which virtual
switches must be resilient.

6.1.1 Attack Surface and Vulnerabilities

In the following we characterize the attack surface and vulnerabilities of state-of-the-art
multi-tenant network virtualization architectures which make them feasible, attractive, and
exploitable targets. An overview of the security analysis and the implications are illustrated
in Fig. 6.2.

Attacker Facing Component. From an attacker’s perspective targeting a component that
it can directly communicate with is an excellent choice as it provides control and feedback
over the data sent/received. Recall (Section 2.3.1) that the virtual is the last hop switch for
the VMs. Hence, for an attacker controlled VM, the virtual switch is a highly suitable target
as illustrated in Fig. 6.2 1 .

Centralized Control via Direct Communication. Multi-tenant network virtualization
systems are designed for centralized control over all the assigned data plane elements,
e.g., software and/or hardware switches (recall Section 2.2 and 2.3). Fig. 6.2 depicts this
with the Compute Nodes (OpenStack nomenclature for the hypervisor) connected to the
Controller Node. The centralized controller uses its “southbound interface”, today most often
“OpenFlow”, to exchange messages with all the data plane elements. Following datacenter
best practises [155] this is often implemented using a trusted management network that
is shared by all the data plane elements. This implies that a (compromised) data plane,

62 Chapter 6 Reins to the Cloud via the Virtual Switch

VM
$_

Host OS
Compute Node

Controller
VM
$_

Controller
VM
$_

VM
$_

VM
$_

Controller Node Compute Node

User
Kernel

Network
Protocols

IPv4 TCP

ARP UDP
MPLS ...

ICMPVXLAN

VLAN

IPv6

Unified Packet Parser

2 3

To other
Compute Nodes

1

Fig. 6.2: An overview of the security implications of current multi-tenant network virtualization archi-
tectures that use virtual switches. An attacker can exploit Host OS co-location, centralized
and virtualized control, and complex packet processing (in the Unified packet parser) of
untrusted data to launch an attack from a VM on the virtualization layer (1). From there,
the attacker can propagate to the controller node (2) and then compromise other servers
in the cloud (3).

e.g., virtual switch, can directly send packets to the controller and/or all other data plane
elements. Management networks, containing only trusted components, are commonly
not protected with an additional intrusion detection system. Furthermore, as reported in
CVE-2018-1000155 authentication and authorization are absent in OpenFlow [41].

Virtualized Controllers. The control software for network virtualization and cloud manage-
ment, for high availability run in VMs on one or more servers [238, 152]. These servers also
run and operate a virtual switch that is directly connected to other tenant servers as shown
in the Controller Node in Fig. 6.2. This exposes the virtualized controllers to vulnerabilities
from the virtual switch. Note that the consequence of this is huge because an attacker from a
VM can now exploit a vulnerability in a virtual switch and then compromise the centralized
controller server by exploiting the same vulnerability.

Unified Packet Parser. Once a virtual switch receives a packet it parses its headers to
determine if it already has a matching flow rule. If this is not the case it will forward the
packet to an intermediate data path (slow path) that processes the packet further in order
to request a new flow table entry [171, 58] (also see Section 2.3.1. In this step, the virtual
switch commonly extracts all header information from the packet, e.g., MPLS and transport
layer information, before requesting a flow table entry from the controller. Parsing is the
switch’s responsibility as centralizing this task would not scale. The additional information
from higher-level protocols is used for advanced functionality like load balancing, deep
packet inspection (DPI), and non-standard forwarding [58, 89] to support the growing
workload demands of data centers [58, 89]. However, with protocol parsing in the data plane
the virtual switch is as susceptible to security vulnerabilities as any daemon for the parsed

6.1 Security Analysis 63

Tab. 6.1: Design characteristics of virtual switches surveyed in this dissertation. MTS is presented in
this dissertation.

Name Ref. Year Emphasis Co-
Lo

ca
tio

n

Ke
rn

el

Use
r

OvS [169] 2009 Flexibility X X X
Cisco NexusV [236] 2009 Flexibility X X 7
VMware vSwitch [239] 2009 Centralized control X X 7
Vale [182] 2012 Performance X X 7
Research prototype [98] 2012 Isolation 7 X X
Hyper-Switch [176] 2013 Performance X X X
MS HyperV-Switch [133] 2013 Centralized control X X 7
NetVM [81] 2014 Performance, NFV X 7 X
sv3 [211] 2014 Security X 7 X
fd.io [219] 2015 Performance X 7 X
mSwitch [75] 2015 Performance X X 7
BESS [19] 2015 Programmability, NFV X 7 X
PISCES [198] 2016 Programmability X X X
OvS with DPDK [184] 2016 Performance X 7 X
ESwitch [137] 2016 Performance X 7 X
MS VFP [58] 2017 Performance, flexibility X X 7
Mellanox BlueField [129] 2017 CPU offload 7 X X
Liquid IO [163] 2017 CPU offload 7 X X
Stingray [70] 2017 CPU offload 7 X X
GPU-based OvS [234] 2017 Acceleration X X X
MS AccelNet [59] 2018 Performance, flexibility X X 7
Google Andromeda [44] 2018 Flexibility and performance X 7 X
Slim [251] 2019 Flexibility, Deployability and Se-

curity
X X X

MTS [223] 2019 Security and Performance 7 7|X X

protocol. Thus, the attack surface of the data plane increases with any new protocol that is
included in parsing [193, 14].

Hypervisor Co-Location. The design of virtual switches co-locates them with the hypervisor,
e.g., the Host OS’s user- and kernel-space, see Figure 6.2 and Table 6.1. Components of the
virtual switch often run with elevated privileges in the Host, e.g., using sudo in user-space,
kernel-space or both. From a performance perspective this is a sensible choice. However,
from a security perspective this co-location and elevated privilege puts all VMs of the Host at
risk once an attack against the virtual switch is successful. Recall, such VMs include those
that run critical cloud software, e.g., the VM hosting the network controller.

Summary. In combination, the above observations demonstrate that compromising multi-
tenant data center networks (including the network virtualization architecture) is a feasible
threat via the virtual switch. By renting a VM and exploiting a protocol parsing vulnerability
an attacker can start her attack by taking over a single virtual switch shown in 1 of Fig. 6.2.
Thus, she also takes control of the physical machine on which the virtual switch is running
due to hypervisor co-location. Next (2), she can take control of the Host OS where the VM
running the network virtualization—and in most cases cloud—controller is hosted due to
the direct communication channel. Thus, she now controls the whole data center (network
and servers). From the controller (3), the attacker can leverage the logically centralized
design to rein all other servers, e.g., manipulate flow rules to violate essential network
security policies. Alternatively, the attacker can change other cloud resources, e.g., modify
the identity management service or change a boot image for VMs to contain a backdoor.

64 Chapter 6 Reins to the Cloud via the Virtual Switch

6.1.2 Attacker Models for Virtual Switches

With these vulnerabilities and attack surfaces in mind, we revisit existing threat models.
We particularly focus on work starting from 2009 when virtual switches emerged into the
network virtualization market [170]. We find that virtual switches are not appropriately
accounted for in existing threat models, which motivates us to subsequently introduce a new
attacker model.

Existing Threat Models. Virtual switches intersect with several areas of network security
research: Data plane, network virtualization, SDN, and the cloud. Therefore, we conducted
a qualitative analysis that includes research we identified as relevant to attacker models for
virtual switches in the cloud.

Qubes OS [189] in general assumes that the networking stack can be compromised. Sim-
ilarly, Dhawan et al. [46] assumed that the software-defined network data plane can be
compromised. Jero et al. [94] base their assumption on a malicious data plane in an SDN on
Pickett’s BlackHat briefing [172] on compromising an SDN hardware switch.

A conservative attacker model was assumed by Paladi et al. [161] who employ the Dolev-Yao
model for network virtualization in a multi-tenant cloud. Grobauer et al. [72] observed that
virtual networking can be attacked in the cloud without a specific attacker model.

Jin et al. [98] accurately described two threats to virtual switches: Virtual switches are
co-located with the hypervisor; and guest VMs need to interact with the hypervisor. However,
they stopped short of providing a concrete threat model, and underestimated the impact
of compromising virtual switches. Indeed at the time, cloud systems were burgeoning.
However, only recently Alhebaishi et al. [4] proposed an updated approach to cloud threat
modelling wherein the virtual switch was identified as a component of cloud systems that
needs to be protected. However, in both cases, the authors overlooked the severity, and
multitude of threats that apply to virtual switches.

Motivated by a strong adversary, Gonzales et al. [3], and Karmakar et al. [104] accounted for
virtual switches, and the data plane. Similarly Yu et al. [247], Thimmaraju et al. [224] and
Feldmann et al. [56] assumed a strong adversarial model, with an emphasis on hardware
switches, and the defender having sufficiently large resources.

Hence, we posit that previous work have either assumed a generic adversary model for the
SDN data plane, stopped short of an accurate model for virtual switches, undervalued the
impact of exploiting virtual switches, or assumed strong adversaries. Given the importance
and position of virtual switches in general, and in multi-tenant data center in particular, we
describe an accurate, and suitable attacker model for virtual switches in the following.

A New Attacker Model. Given the shortcomings of the above attacker models, we now
present a new attacker model for virtual switch based cloud network setups that use a
logically centralized (and virtualized) controller. We note here that this attacker model
is a finer version of the one described in Chapter 3. Contrary to prior work we identify
the virtual switch as a critical core component which has to be protected against direct

6.1 Security Analysis 65

attacks, e.g., malformed packets. Furthermore, our attacker does not have to be supported
by a major organization (she is a “Lone Wolf”) nor does she have access to special network
vantage points. The attacker’s knowledge of vulnerability discovery and crafting exploits is
not exceptional, with some effort she can discover and create software exploits. In addition,
the attacker controls a computer that can communicate with the cloud under attack.

The attacker’s target is a cloud infrastructure that uses virtual switches for network virtual-
ization. We assume that our attacker has only limited access to the cloud. Specifically, the
attacker does not have physical access to any of the machines in the cloud. Regardless of the
cloud delivery model and whether the cloud is public or not, we assume the attacker can
either rent a single VM, or has already compromised a VM in the cloud, e.g., by exploiting a
web-application vulnerability [37].

We assume that the cloud provider follows security best-practices [155]. Hence, at least three
isolated networks (physical/virtual) dedicated towards management, tenants/guests, and
external traffic exist. Furthermore, we assume that the same software stack is used across all
servers in the cloud.

We consider our attacker successful, if she obtains full control of the cloud. This means that
the attacker can perform arbitrary computation, create/store arbitrary data, and send/receive
arbitrary data to all nodes including the Internet.

6.2 Case Study: OvS in OpenStack

Based on our analysis, we conjecture that current virtual switch implementations are not
robust to adversaries from our attacker model. To test our hypothesis, we conducted a case
study. We evaluate the virtual switch Open vSwitch in the context of the cloud operating
system OpenStack against our attacker model. We opted for this combination as OpenStack
is one of the most prominent cloud systems, with thousands of production deployments
in large enterprises and small companies alike. Furthermore, according to the OpenStack
Survey 2016 [231], over 60% of OvS deployments are in production use and over one third
of 1000+ core clouds surveyed use OvS.

Attack Methodology. We conduct a four step methodology targeting the attack surface
we previously described. We first validate the attack surface in OvS and OpenStack in
Section 6.2.1, followed by discovering vulnerabilities in OvS’s unified packet parser in
Section 6.2.2. In the third step described in Section 6.2.3, we exploit the vulnerability.
Finally in Section 6.2.4, we demonstrate the potential of a large-scale compromise using
OpenStack and OvS by exploiting the discovered vulnerabilities.

6.2.1 Attack Surface Analysis

The first step in our analysis is validating that OvS processes packets from VMs in OpenStack.
We verify this by looking at the configuration and architecture of OpenStack [154]. It is clear
that if packets pass through the firewall (iptables), OvS will process the packet from the

66 Chapter 6 Reins to the Cloud via the Virtual Switch

VM. However, Linux kernel patches [214], RedHat [64], OpenStack [153] and OvS [166]
introduced support for firewalling in OvS using conntrack which eliminates iptables and
thereby giving attackers direct access to OvS.

Next, we validate that OvS is indeed co-located with the Host OS of the compute and
controller nodes [154]. It is co-located with the host OS’s user- and kernel-space [169].
Additionally, the user-space daemon (ovs-vswitchd) by default runs with root (sudo)
privileges as it requires capabilities to communicate with the network card driver. By
inspecting the packet processing source code of OvS, we confirm that OvS implements a
unified packet parser in its key_extract and flow_extract functions in the fast-path and
slow-path respectively.

Third, OvS supports centralized control via OpenFlow and/or ovsdb. In OpenStack this is
achieved via the Controller node coordinating and communicating with the Neutron agent
and OvS ML2 plugin. Furthermore, we validate that OpenStack control software can run in
VMs with OvS co-located with the Host OS of that server [136].

6.2.2 Vulnerability Discovery

Based on our security analysis, we expect to find vulnerabilities in the unified packet parser
of OvS. A suitable methodology to discover new vulnerabilities in programs that accept
user input is randomized program testing, e.g., fuzzing. Hence, we used an off-the-shelf
coverage-guided fuzz tester, namely American Fuzzy Lop (AFL) [218], on OvS’s unified
packet parser in the slow-path.

Having identified the target functions that represent the unified packet parser in OvS, we
used the test_flows test case that ships with OvS as our program input to AFL. The
test_flows program requires two input files: a pcap file that represents packets in the
pcap format, and a flows file that represents OvS/OpenFlow flow rules. We used the PERL

script [240] that ships with OvS to generate the flows and pcap files that can be given as
input to test_flows. With the inputs available, the pcap that was generated was also used
as a seed to AFL. This aided AFL in randomly generating new packets (in the pcap format)
that would then exercise the flow_extract function.

When this work was conducted, we fuzzed three different versions of OvS: OvS-2.3.2 (Long
Term Support (LTS)), OvS-2.4.0 (latest stable) and OvS-2.5.0 (LTS). For OvS-2.3.2 the AFL
system executed for a little more than 1.5 days, for OvS-2.4.0 AFL executed for about 3
months and for OvS-2.5.0 AFL executed for 3 hours.

AFL reported several thousand crashes which were manually triaged. Upon analysis we
observed thousands of duplicates, hence we developed heuristics to reduce the set of crashes
to only unique ones which we describe next.

CVE-2016-2074. Using the above methodology, we identified 3 unique memory corruption
vulnerabilities in the unified packet parser of OvS (ovs-vswitchd). In this section we focus
on one of the vulnerabilities reported in CVE-2016-2074 [43] we found in the then LTS

6.2 Case Study: OvS in OpenStack 67

Ethernet Shim IP ...

MPLS Label
20

Exp
3

S
1

TTL
8

Fig. 6.3: MPLS label stacks are placed in the Shim header between the Ethernet and IP headers.

stable branch (v2.3.2), as it was the only one that gives an attacker remote control over the
switch. Further vulnerabilities discovered during our study include exploitable parsing errors
leading to denial of service (DoS) also reported in CVE-2016-2074 in OvS-2.4.0 and an ACL
bypass vulnerability in CVE-2016-10377 [42] in the unified packet parser of OvS-2.5.0.

The vulnerability is a stack buffer overflow introduced by the MPLS parsing code of the OvS
slow-path. We acknowledge that stack buffer overflows and how they are exploited are well
understood. However, we fully document it here to: (i) Underline how such vulnerabilities
can occur, especially in software handling network packets, and, (ii) To make our work more
accessible in the context of networking research outside the security community.

To understand the finer details of the vulnerability, we make briefly digress by summarizing
the MPLS protocol. MPLS is often deployed to address the complexity of per packet for-
warding lookups, traffic engineering, and advanced path control. MPLS uses “Forwarding
Equivalence Classes” (FECs) to place a “label” in the shim header between the Ethernet
and the IP header [187] of a packet as shown in Figure 6.3). This label is then used for
forwarding. In addition, labels can be stacked via push and pop operations.

An MPLS label is 20 bits long, followed by the Exp field of 3 bits reserved space. This is
followed by the 1 bit S field, which, if set to 1, indicates that the label is the bottom of the
label stack. It is a critical piece of “control” information that determines how an MPLS node
parses a packet. The TTL field indicates the Time-To-Live of the label. MPLS labels should
be under the providers’ administration, e.g., offering L2/L3 VPNs, and are negotiated using
protocols such as LDP (Label Distribution Protocol) [7]. As per RFC 3032, MPLS labels are
inherently trusted.

Now we return to the vulnerability description. When a packet arrives, the function
flow_extract is eventually called (see Listing 6.1), which creates a local structure m (line
8) that contains a local buffer buf (line 7). Based on the contents of the packets, the buffer
is initialized in line 12, and then filled up accordingly by calling miniflow_extract in line
13. Since the ETHER_TYPE is set to 0x8848 for MPLS packets, the function parse_mpls in
invoked on the packet (shown in the call stack in Listing 6.2). The function parses all the
labels to count the number of labels present in the label stack, and returns the maximum
number between what it counted and a static variable FLOW_MAX_MPLS_LABELS (which is set
to 3). When there are hundreds of labels, e.g., 200, the comparison yields 200, which results
in copying 800 bytes of labels from the packet into the structure m (line 8 from Listing 6.1),
overflowing buf which is supposed to be the size of FLOW_U32S and thereby overwriting the
return address to the function that called flow_extract.

68 Chapter 6 Reins to the Cloud via the Virtual Switch

1 void flow_extract(struct ofpbuf *packet,
2 const struct pkt_metadata *md,
3 struct flow *flow)
4 {
5 struct {
6 struct miniflow mf;
7 uint32_t buf[FLOW_U32S];
8 } m;
9

10 COVERAGE_INC(flow_extract);
11
12 miniflow_initialize(&m.mf, m.buf);
13 miniflow_extract(packet, md, &m.mf);
14 miniflow_expand(&m.mf, flow);
15 }

Listing 6.1: Source code of the function in which the buffer buf (line 7) overflowed.

1 flow_extract(struct ofpbuf *packet,
2 const struct pkt_metadata *md,
3 struct flow *flow)
4 ...
5 miniflow_extract(packet, md, &m.mf)
6 ...
7 count = parse_mpls(&data, &size);
8 miniflow_push_words(mf, mpls_lse, mpls, count);
9 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)

10 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data);

Listing 6.2: The call stack that leads to the buffer overflow

To prevent attackers from exploiting such overflows, Cowan et al [38] introduced stack
canaries (known as StackGuard in their paper). The compiler inserts a random value, the
canary, before the return instruction of a function during compilation. Then at run time,
when the function returns, it first ensures that the canary is as expected, if not, the program
aborts, hence preventing an attacker from controlling the instruction pointer (i.e., by jumping
to another function/address). In the case of OvS-2.3.2 and Ubuntu-14.0.4, gcc-4.8.4 is the
default compiler which by default did not insert a canary before the flow_extract stack
frame. Compiling OvS with gcc-5.4.0 however does insert a canary over flow_extract.
We did not investigate this discrepancy in compiler behavior. However, we did ascertain that
with the -fstack-protector-all option, gcc does insert a canary.

Remark on Parsing MPLS. Indeed, we note that the specification of MPLS, see RFC 3031 [188]
and RFC 3032 [187] does not specify how to parse the whole label stack. Instead, it specifies
that when a packet with a label stack arrives at a forwarding component, only the top label
must be popped to be used to make a forwarding decision. Yet, OvS parses all labels of the
packet even beyond the supported limit and beyond the pre-allocated memory range for that
stack. If MPLS is to handled as per the RFC, only the top label should be popped, which has
a static, defined size. Thus, there would be no opportunity for a buffer overflow.

6.2.3 Exploiting CVE-2016-2074 as a Worm

The pure presence of a vulnerability is not sufficient to state that OvS is not robust against
our threat model. We have to demonstrate that the vulnerability does enable a large-scale

6.2 Case Study: OvS in OpenStack 69

compromise. Thus, we need to turn the vulnerability into an exploit. Here, we use a common
exploit technique, namely Return Oriented Programming (ROP) [185], to realize a worm
that can fully compromise an OpenStack setup within minutes.

We implement the ROP [185] attack in an MPLS packet payload as that it is in the MPLS
label stack processing that the vulnerability exists. By now, ROP attacks are well documented
and can be created by an attacker who has explored the literature on implementing ROP
attacks, e.g., using RopGadget [186]. Nonetheless, we briefly describe ROP here and suggest
the reader to refer to Roemer et al. [185] for further details.

Return Oriented Programming. ROP attacks re-combine instruction sequences (called
gadgets) from a (target) binary to execute (arbitrary) code. A gadget typically consists of
one or more operations followed by a return instruction. After executing each gadget, the
return will pop the address of the next gadget into the instruction pointer. The sequence of
gadgets that facilitate the execution of (desired) code is called a ROP chain. Given a stack
buffer overflow, the attacker overwrites the stack frame with such a ROP chain. Restoration
of the overwritten return instruction pointer diverts the control flow of the target program
to the first gadget. Once control reaches a return instruction, the next attacker controlled
address will be loaded into the instruction pointer.

Exploit. As per RFC 3032 [187] MPLS label processing terminates if the S bit is set to
1. Hence, the gadgets that make up the ROP chain must be selected such that the S bit
is set to 0. This ensures that we can successfully overflow the buffer with the necessary
instructions (that redirects a shell back to the attacker) before terminating the mpls label
stack processing. Hence, we select appropriate gadgets by customizing Ropgadget and modify
the shell command string. To handle change in packet size due to tunneling protocols, our
exploit also implements a NOP sleigh: the initial gadgets don’t do anything meaningful (no
operations).

The ROP chain in our exploit packet starts with the Ethernet header and padding, followed
by the MPLS labels. Our example ROP payload connects a shell on the victim’s system
(the server running ovs-vswitchd) to a listening socket on the remote attacker’s system.
To spawn the shell the payload triggers the execution of the cmd bash -c "bash -i >&

/dev/tcp/<IP>/<PORT> 0>&1" through the execve system call (0x3b). This requires the
following steps:

1. Set-up the shell command (cmd) string in memory;

2. construct the argument vector argv;

3. place the address of the command string in the register %rdi;

4. place the address of argv in %rsi;

5. place the address of envp in %rdx;

6. place the system call number 0x3b in %rax; and finally

7. execute the system call, execve.

70 Chapter 6 Reins to the Cloud via the Virtual Switch

In summary, our exploit could also have been created by an attacker familiar with the tools
and literature with this kind of technique. This is in accordance with our attacker model,
which does not require an uncommonly skilled attacker.

Worm Implementation. To propagate the worm, multiple steps need to be automated.
These are visualized in Figure 6.2. In Step 1 , the worm originates from an attacker-
controlled (guest) VM within the cloud and compromises the host operating system of the
server via the vulnerable packet processor of the virtual switch. Once she controls the server,
she patches ovs-vswitchd on the compromised host, as otherwise the worm packet cannot
be propagated. Instead the packet would trigger the vulnerability in OvS yet again.

With the server under her control the remote attacker, in Step 2 , propagates the worm to
the server running the controller VM and compromises it via the same vulnerability. The
centralized architecture of OpenStack requires the controller to be reachable from all other
servers via the management network and/or guest network. By gaining access to one server
we gain access to these networks and, thus, to the controller. Additionally, the virtualization
of the control software (in VMs) necessitates its Host OS to also have a virtual switch. Hence,
if we compromise the virtual switch on the controller, we compromise the entire controller
server. Network isolation using VLANs and/or tunnels (GRE, VXLAN, etc.) does not prevent
the worm from spreading once the server is compromised.

With the controller’s server also under the control of the remote attacker, the worm again
patches ovs-vswitchd and can then taint the remaining uncompromised server(s) (Step 3).
Thus, finally, after Step 3 , all servers are under the control of the remote attacker. We
automated the above steps using a shell script.

6.2.4 Attack Evaluation

Rather than evaluating the attack in the wild we chose to create a test setup in a lab
environment. More specifically, we use the Mirantis 8.0 distribution that ships OpenStack
“Liberty” with OvS version 2.3.2. On this platform we set up multiple VMs. The test setup
consists of a server (the fuel master node) that can configure and deploy other OpenStack
nodes (servers) including the OpenStack controller, compute, storage, network. Due to
limited resources, we created one controller and one compute node with multiple VMs
in addition to the fuel master node using the default Mirantis 8.0 configuration. Virtual
switching was handled by OvS.

The attacker was given control of one of the VMs on the compute server and could deploy the
worm from there. Since, we are sending MPLS packets, it will bypass iptables and reach
OvS. It took less than 20 seconds until the worm compromised the controller. This means
that the attacker has root shell (ovs-vswitchd runs as root) access to the compute node as
well as the controller. This includes 3 seconds of download time for patching ovs-vswitchd

(OvS user-space daemon), the shell script, and the exploit payload. Moreover, we added 12
seconds of sleep time for restarting the patched ovs-vswitchd on the compute node so that
attack packets could be forwarded.

6.2 Case Study: OvS in OpenStack 71

Next, we added 60 seconds of sleep time to ensure that the network services on the
compromised controller were restored. Since all compute nodes are accessible from the
controller, we could compromise them in parallel. This takes less time than compromising
the controller, i.e., less than 20 seconds. Hence, we conclude that the compromise of a
standard cloud setup can be performed in less than two minutes.

6.2.5 Summary

Our case study demonstrates how easily an amateur attacker can compromise the virtual
switch, and subsequently take control of the entire cloud in a matter of minutes. This can
have serious consequences, e.g., amateur attackers can exploit virtual switches to launch
ransomware attacks in the cloud. This is a result of complex packet parsing in the unified
packet parser, co-locating the virtual switch with the virtualization layer, centralized and
virtualized control, and inadequate attacker models.

6.3 Software Countermeasures

There exist many mitigations for attacks based e.g., on buffer overflows, including Mem-
Guard [38], control flow integrity [1], position independent executables (PIEs) [164], and
Safe (shadow) Stack [116]. Any one of these severely reduces the impact of crucial, fre-
quently occurring vulnerabilities like the one used as an example in this chapter. However,
due to their assumed performance overhead, especially on latency, they are commonly not
deployed for virtualized network components.

Hence, while these mitigations are widely available, we find that they are not enabled by
default for OvS. Furthermore, virtual switch solutions presented in the literature commonly
do not discuss these techniques. One possible downside of these mitigations is their per-
formance overhead. Past work reported that MemGuard imposes a performance overhead
of 3.5–10% [38] while PIEs have a performance impact of 3–26% [164]. Furthermore,
prior evaluations did not focus on the systems’ network performance. Instead, their main
focus was on the systems’ process performance, e.g., kernel context switches and the size of
compiled binaries with the applied mitigations. However, in the context of OvS, network
related metrics are far more relevant: Forwarding latency and forwarding throughput.

In order to investigate the potential performance penalty of such countermeasures, we
showcase two variants of these mitigation techniques that are supported by the Gnu cc
compiler gcc out of the box. Namely, stack protector and position independent executables.
To determine the practical impact of these mitigations, we designed a set of experiments to
evaluate the performance impact on OvS’s forwarding latency and throughput.

Evaluation Setup. The test setup is chosen to ensure accurate one-way delay measurements.
Thus, for our tests, we use three systems, all running Linux kernel (v4.6.5) compiled with
gcc (v4.8). The systems have 16GB RAM, two dual-core AMD x86_64 2.5GHz, and four
Intel Gigabit NICs. The systems are interconnected as follows: One system serves as the
Load Generator (LG) and replays packet traces according to the specific experiments. This

72 Chapter 6 Reins to the Cloud via the Virtual Switch

system is connected to the Device Under Test (DUT), configured according to the different
evaluation parameters. The data is then forwarded by OvS on the DUT to a Load Receiver
(LR), a third system.

The connections between LG and DUT, and, LR and DUT respectively are monitored via a
passive taping device. Both taps are connected to our measurement system. This system has
two dual-core Intel(R) Xeon(TM) CPUs running at 3.73GHz with hyperthreading enabled
and 16GB RAM. We use an ENDACE DAG 10X4-P card to capture data. Each line (RX/TX) of
the tapped connections is connected to one interface of the DAG 10X4-P. Each interface has
its own receive queue with 1GB. This ensures accurate one-way delay measurements with a
high precision, regardless of the utilization of the measurement host.

Evaluation Parameters. We evaluate forwarding latency and throughput for eight different
combinations of traffic composition and software mitigations. We compare a vanilla Linux
kernel (v4.6.5) with the same kernel integrated with grsecurity patches (v3.1), which
protects the in-kernel fast-path by preventing kernel stack overflow attacks using stack
canaries, address space layout randomization and ROP defense. For both kernels, we
evaluate two versions of OvS-2.3.2: The first one compiled with -fstack-protector-all

for unconditional stack canaries and -fPIE for position independent executables; the second
one compiled without these two features. Since gcc, the default compiler for the Linux
kernel, does not support Safestack (safe and unsafe stack) we did not evaluate this feature,
even though it will be available with clang, another compiler, starting with version 3.8.
The selected mitigations increase the total size of ovs-vswitchd from 1.84 MB to 2.09 MB
(+13.59%) and openvswitch.ko from 0.16 MB to 0.21 MB (+31.25%). However, apart
from embedded systems, the size changes are not relevant on modern systems with several
hundred gigabytes of memory.

One important feature in virtual switches, recall Section 2, is, whether traffic is handled by
the slow or the fast path. We decided to focus on the corner cases where traffic is either
handled exclusively by the fast or by the slow path. By isolating the two cases we can assess
if and to what extent the software security options impact each path. Hereby, we follow
current best practices for OvS benchmarking, see Pfaff et al. [171]. To trigger the slow
path for all packets in our experiments, we disable the megaflows cache and replay a packet
trace in which each packet has a new source MAC address (via sequential increments).
For measuring fast path performance, we pre-establish a single flow rule on the DUT, a
wildcard-one, that matches all packets entering from the LG. The rule instructs the virtual
switch to process these packets via the fast path and forward them on the interface connected
to the LR. Therefore, for the sake of consistency, we can replay the same traces as used for
the slow path experiments. Additionally, to reduce the uncertainty in our setup, we pin
ovs-vswitchd to a single core.

Latency Evaluation. For the latency evaluation, we studied the impact of packet size on
OvS forwarding. We selected the following packet sizes from the legacy MTU range: 64B
(minimum IPv4 UDP packet size), 512B (average packet), and 1500B (maximum MTU)
packets. In addition, we also select the following jumbo frames: 2048B packets (small
jumbo frame) and 9000B (maximum jumbo frame). For each experimental run, i.e., packet
size and parameter set, we continuously send 10,500 packets from the LG to the LR via the

6.3 Software Countermeasures 73

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

Compile Mode
(a) Slow path

10 2

10 1

100

La
te

nc
y

in
 m

s

60B 512B 1500B 2048B 9000B

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

Compile Mode
(b) Fast path

10 2

10 1

100

La
te

nc
y

in
 m

s

60B 512B 1500B 2048B 9000B

Fig. 6.4: Forwarding latency of OvS with and without countermeasures on a vanilla kernel and
grsecurity enabled kernel in the slow and fast path.

DUT at a rate of 10 packets per seconds (pps). To eliminate possible build-up or pre-caching
effects, we only evaluate the last 10,000 packets of each experiment.

The results for the latency evaluation are depicted in Figures 6.4 (a) and (b) for the slow
path and fast path resp. We find that grsecurity (grsec default and grsec all) imposes a
minimal increase in latency for all packet sizes in the slow and fast path. We observe that
user-land protection mechanisms (Fig. 6.4 (a).) impose a small overhead (1-5%) in the
slow path for a vanilla and grsecurity enabled kernel. Naturally, there is no impact of the
user-land protection mechanisms in the fast path, see Fig. 6.4 (b).

Throughput Evaluation. For the throughput evaluation we use a constant stream of
packets replayed at a specific rate. We opted for small packets to focus on the packets
per second (pps) throughput rather than the bytes per second throughput. Indeed, pps
throughput indicates performance bottlenecks earlier [90] than bytes per second. As in the
latency experiments, we opted to use packets that are 64B long.

Each experimental run lasts for 1000 seconds and uses a specific replay rate. Then we
reset the system and start with the next replay rate. Our evaluation focuses on the last 900
seconds. For the slow path, the replay rates start from 10k to 40k packets per second, in
steps of 1k pps. For the fast path, the replay rates start from 300k to 900k packets per
second, in steps of 10k pps. For better readability we show the slow path plot from 10k to
35k pps.

An overview of the results for the slow and fast path throughput measurements are depicted
in Figures 6.5 (a) and (b) resp. In the slow path, packet loss for the vanilla kernel first sets in
just after 18k pps, while the experiments on the grsecurity enabled kernel already exhibit
packet loss at 14k pps. In the fast path, grsec exhibits packet loss from 350k pps whereas
the vanilla kernel starts to drop packets at 690k pps. Hence, we note that the grsecurity

kernel patch does have a measurable impact on the forwarding throughput in the slow and
fast path of OvS: it reduces the maximum throughput by half. With respect to the user-land
security features, we observe an overhead only in the slow path of approximately 4-15%.

Key takeaways. Our measurements demonstrate that user-land mitigations do not have
a large impact on OvS’s forwarding performance. However, grsecurity kernel patches
do cause a performance overhead for latency as well as throughput. Given that cloud

74 Chapter 6 Reins to the Cloud via the Virtual Switch

10k 15k 20k 25k 30k 35k
Packets/s Sent
(a) Slow path

1%

10%

20%

30%

40%

Pa
ck

et
 L

os
s (

%
)

vanilla default
vanilla all
grsec default
grsec all

300k 400k 500k 600k 700k 800k 900k
Packets/s Sent
(b) Fast path

1%

10%

20%

30%

40%

Pa
ck

et
 L

os
s (

%
)

Fig. 6.5: Forwarding throughput of OvS with and without countermeasures on a vanilla kernel and
grsecurity enabled kernel in the slow and fast path.

systems support a variety of workloads, e.g., low latency or high throughput, kernel-based
mitigations are unlikely to be used. However, cloud systems such as the one studied by
Pfaff et al. [171] can adopt the user-land and kernel software mitigations described in this
paper.

It is only a question of time until the next wormable vulnerability in a virtual switch is
discovered. As software mitigations can be more easily deployed than a fully re-designed
virtual switch ecosystem, we strongly recommend the adoption of software countermeasures,
until a more securely designed virtual switch platform can be rolled out (the subject of the
next chapter).

6.4 Related Work

Cloud systems. In the past, various attacks on cloud systems have been demonstrated.
Ristenpart et al. [179] showed how an attacker can co-locate her VM with a target VM to
obtain secret information. Costin et al. [37] found vulnerabilities in web-based interfaces
operated by cloud providers. Wu et al. [244] assessed the network security of VMs in
computing clouds. They pointed out what sniffing and spoofing attacks a VM can carry out
in a virtual network. Ristov et al. [180] investigated the security of a default OpenStack
deployment and show that it is vulnerable from the inside rather than the outside. Indeed,
the OpenStack security guide [155] mentions that OpenStack is inherently vulnerable to
insider threats due to bridged domains (Public and Management APIs, Data and Management,
etc.).

SDN security. Several researchers have pointed out security threats for SDN. For example,
Klöti et al. [108] report on STRIDE, a threat analysis of OpenFlow, and Kreutz et al. [111]
survey several threat vectors that may enable the exploitation of SDN vulnerabilities. So far,
work on how to handle malicious switches is sparse. Sonchack et al. describe a framework
for enabling practical software-defined networking security applications [209] and Shin
et al. [204] present a flow management system for handling malicious switches. Work on
compromised data planes is sparse as well. For example, Matsumoto et al. [125] focus
on insider threats. Dhawan et al. [46] investigated methods to detect topology based
attacks from the data plane. Their proposal, SPHINX, aims at detecting attacks on the

6.4 Related Work 75

control and data plane by validating updates to network topology. It relies on a majority of
uncompromised network entities to maintain a valid model of the network topology and
flags divergence from this state based on a set of general as well as custom policies. Hong et
al. [76] focus on how the controller’s view of the network (topology) can be compromised.
They identify topology based attacks in an SDN that allow an attacker to create false links
to perform man-in-the-middle and blackhole attacks. Although they discovered novel SDN
attacks, their threat model does not account for a compromised data plane.

Data plane security. Lee et al. [119] investigated how malicious routers can disrupt data
plane operations, while Kamisinski et al. [102] demonstrate methods to detect malicious
switches in an SDN. In addition, Chasaki et al. [33, 32] uncover buffer overflows in Click a
software switch. To mitigate this, they propose a secure packet processor, which can preserve
its own control flow. In contrast to our work, they do not identify the inherent attack surface
in the conceptual design of virtual switches. Porez-Botero et al. [165] characterize possible
hypervisor vulnerabilities and identify Network/IO as one. In contrast to our work, they omit
a deep analysis on the challenges introduced by co-located data planes. Hence, they did not
find any network based vulnerabilities. Dobrescu et al. [47] develop a data plane verification
tool for the Click software. They prove properties such as crash-freedom, bounded execution,
or filtering correctness for the switch’s data plane. Although software verification can ensure
the correctness and security of greenfield software data plane solutions, they currently fall
short of ensuring this for legacy software. In such a scenario, coverage guided fuzz testing is
a more appropriate approach. More recently, Shin-Yeh et al. [232] described their security
analysis of a popular data plane protocol RDMA and their hardware implementations. They
identified many security issues, e.g., lack of accountability, denial of service and predictable
hardware managed keys. Furthermore, they were able to design and implement side channel
attacks [233] that enables an attacker to decipher access patterns to key-value stores of
victims in the cloud.

6.5 Conclusion

In this chapter we presented our study of the attack surface of today’s virtual switches as
they are the linchpins in multi-tenant network virtualization architectures in data centers.
We demonstrated that the network virtualization architecture is susceptible to attack via the
virtual switch by design. Furthermore, we pointed out that existing threat models for virtual
switches are insufficient. Accordingly, we derived a new attacker model for virtual switches
and underlined this by demonstrating a successful attack against OpenStack. We discovered
multiple vulnerabilities in OvS by fuzzing the packet parsing logic which we could then
exploit to break out of VM and network isolation and spread across the data center.

To counter the memory corruption vulnerabilities we discovered, we evaluated the forward-
ing performance impact of readily available software countermeasures (stack canaries and
PIE). The key takeaway message here is to use such mechanisms in the user-space as the
security-performance tradeoff is pragmatic. To address the deeper issue namely, insecure
vswitch designs, we propose a practical solution next.

76 Chapter 6 Reins to the Cloud via the Virtual Switch

7Bringing Multi-Tenancy to
Network Virtualization

In the previous chapter, we uncovered a serious multi-tenancy problem with a popular virtual
switch (OvS). An adversary could not only break out of the VM and attack all applications on
the Host, but could also manifest as a worm, and compromise an entire datacenter in a few
minutes. Along similar lines, Csikor et al. [39] uncovered a performance isolation violation
also in OvS, resulting in a cross-tenant denial-of-service attack on the virtual networking
system.

Such attacks may exacerbate concerns surrounding the security and adoption of public
clouds (that is already a major worry across cloud users [196]). Hence, we argue that
despite the wide-scale deployment [44, 59, 99], the level of (logical and performance)
isolation provided by vswitches is not well-understood. Indeed, a closer look at the cloud
virtual networking best-practice, whereby per-tenant logical datapaths are deployed on a single
host-based vswitch using flow-table-level isolation [110, 91, 168], reveals that the current
state-of-the-art violates basically all relevant secure system design principles [191, 20].

First, the principle of least privilege would require that any system component should be
given only the minimum set of privileges necessary to complete its task, yet we see that
vswitch code typically is co-located with the Host and executes with administrator, or what
is worse, with full kernel privilege [239, 75], even though this would not be absolutely
necessary (see Sec. 7.4). Second, untrusted user code directly interacts with the vswitch
and hence with the Host OS, e.g., it may send arbitrary packets from VMs, query statistics,
or even install flow table entries through side channels [39], which violates the secure
design principle of complete mediation. But most importantly, the shared vswitch design goes
directly against the principle of the least common mechanism, which would minimize the
amount of resources common to more than one tenant.

These design flaws motivates us to revisit the fundamental design of vswitches. Hence, in
this chapter, we present, implement, and evaluate a scalable multi-tenant (virtual) switch
architecture, MTS, which extends the benefits of multi-tenancy to the vswitch in a secure
manner, without imposing prohibitive resource requirements or jeopardizing performance.

Organization. We dive deeper into designing a secure vswitch in Section 7.1. In Section 7.2
we highlight the nuances in our threat model followed by the design principles and security
levels of MTS in Section 7.3. In Section 7.4 we elaborate on MTS and report on two evaluations
in Sections 7.5 and 7.6. In Section 7.7 we introduce our approach to scaling MTS using
Containers as well as a preliminary evaluation. We enter a discussion of MTS in Section 7.8,
review related work in Section 7.9 and finally draw conclusions in Section 7.10.

77

Tab. 7.1: Design characteristics of surveyed virtual switches in this dissertation. MTS is presented in
this chapter.

Name Ref. Year Emphasis M
on

ol
ith

ic

Co-
Lo

ca
tio

n

Ke
rn

el

Use
r

OvS [169] 2009 Flexibility X X X X
Cisco NexusV [236] 2009 Flexibility X X X 7
VMware vSwitch [239] 2009 Centralized control X X X 7
Vale [182] 2012 Performance X X X 7
Research prototype [98] 2012 Isolation X 7 X X
Hyper-Switch [176] 2013 Performance X X X X
MS HyperV-Switch [133] 2013 Centralized control X X X 7
NetVM [81] 2014 Performance, NFV X X 7 X
sv3 [211] 2014 Security 7 X 7 X
fd.io [219] 2015 Performance X X 7 X
mSwitch [75] 2015 Performance X X X 7
BESS [19] 2015 Programmability, NFV X X 7 X
PISCES [198] 2016 Programmability X X X X
OvS with DPDK [184] 2016 Performance X X 7 X
ESwitch [137] 2016 Performance X X 7 X
MS VFP [58] 2017 Performance, flexibility X X X 7
Mellanox BlueField [129] 2017 CPU offload X 7 X X
Liquid IO [163] 2017 CPU offload X 7 X X
Stingray [70] 2017 CPU offload X 7 X X
GPU-based OvS [234] 2017 Acceleration X X X X
MS AccelNet [59] 2018 Performance, flexibility X X X 7
Google Andromeda [44] 2018 Flexibility and performance X X 7 X
Slim [251] 2019 Flexibility, Deployability and Se-

curity
X X X X

MTS [223] 2019 Performance, Security 7 7 7|X X

7.1 Securing Virtual Switches

As demonstrated in previous work [227, 39], the current state-of-the-art in virtual switch
design can be exploited to not only break network isolation, but also to break out of a virtual
machine. This motivates us to identify requirements and design principles that make virtual
switches a dependable component of the data center.

7.1.1 State-of-the-Art

Virtual networks in cloud systems using virtual switches typically follow a monolithic archi-
tecture, where a single controller programs a single vswitch running in the Host OS with
per-tenant logical datapaths in the vswitch. Isolation between tenants is at the level of
flow-tables [110, 91, 168]: the controller populates the flow tables in each per-tenant logical
datapath with sufficient flow rules to connect the tenant’s Host-based VMs to the rest of the
data center and the public Internet. Those sets of flow rules are complex: with a small error
in one rule potentially having security consequences, e.g., making intra-tenant traffic visible
to other tenants.

As shown in Table 7.1, 95% of the surveyed vswitches are monolithic in nature. A single
vswitch is installed with flow rules for all the tenants hosted on the respective server. This
increases the trusted computing base (TCB) of the single vswitch, as it is responsible for
Layer 2-7 of the virtual networking stack. Next, nearly 80% of the surveyed vswitches are
co-located with the Host virtualization layer. This increases the TCB of the server since a
vswitch is a complex piece of software, consisting of tens of thousands of lines of code. The
complexity of network virtualization is further increased by the fact that packet processing

78 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

B
ef

or
e

A
tta

ck
A

fte
r

A
tta

ck
Tr

ad
e-

of
fs

State-of-the-art
(a)

Single vswitch VM
(b)

Multiple vswitch VM
(c)

Low Low Low

Security Performance Resource

Mid Mid Mid

Security Performance Resource Security Performance Resource

VM A Host vswitch
VMVM B VM A VM B Host vswitch

VM AVM A VM B Hostvswitch
VM B

HighHigh Mid

Fig. 7.1: A high-level view depicting the security-performance-resource tradeoffs for the state-of-the-
art and MTS network virtualization architectures.

for one-third the vswitches is spread across user space and kernel. Close to 70% of the
surveyed virtual switches have implemented their packet processing in kernel only or user
space and kernel (see last two columns in Table 7.1). These concerns are partially addressed
by the current industry trend towards offloading vswitches to smart NICs [99, 163, 70,
129]. Indeed consolidating the vswitch into the NIC can improve the security as it reduces
the TCB of the Host. These burgeoning architectures, however, share the main trait that
the per-tenant logical datapaths are monolithic, often with full privilege and direct access
to the Host OS, which when compromised can break network isolation and be used as a
stepping-stone to the Host.

7.1.2 Secure vswitch Design

Fig. 7.1 illustrates the key idea underlying the MTS design, along with the security-performance-
resource tradeoffs for different architectures. The current vswitch architecture is shown in
Fig. 7.1(a), whereby per-tenant logical datapaths share a common (physical or software)
switch component deployed at the Host hypervisor layer (in the rest of this chapter, we shall
sometimes refer to this design point as the “Baseline”). As we argued at the beginning of this
chapter, this design is fundamentally insecure [227, 39] as it violates basic secure design
principles, like least privilege, complete mediation, or the least common mechanism. In
MTS, we address the least privilege principle by the compartmentalization of the vswitches
(Fig. 7.1(b)): by moving the vswitches into a dedicated vswitch VM, we can prevent an
attacker from compromising the Host via the vswitch [98]. Then, we establish a secure
communication channel between the tenant VMs and the vswitch VM via a trusted hardware
technique, Single Root Input/Output Virtualization, or SR-IOV, a common feature imple-
mented in most modern NICs and motherboards [11, 99]. Thus, all tenant-to-tenant and
tenant-Host networking is completely mediated via the SR-IOV NIC. Adopting Google’s extra
security layer design principle [5] which requires that between any untrusted and trusted
component, there have to be at least two distinct security boundaries [16, 62], we introduce
a second level of isolation by moving the vswitch, deployed into the vswitch VM, to the
user space. Hence, at least two independent security mechanisms need to fail (user-kernel
separation and VM-isolation) for the untrusted tenant code to gain access to the Host.

Interestingly, we are able to show the resultant secure vswitch design, which we call the
single vswitch VM design, does not come at the cost of performance; just the contrary, our

7.1 Securing Virtual Switches 79

evaluations show that we can considerably improve throughput and latency, for a relatively
small price in resources. Finally, we introduce a “hardened” MTS design that we call the
multiple vswitch VMs design (Fig. 7.1(c)), whereby, in line with the principle of the least
common mechanism, we further separate the vswitch by creating multiple separate vswitch
VMs, one for each tenant (or based on security zones/classes). This way, we can maintain
full network isolation for multiple tenants.

7.2 Threat Model

Our threat model in this chapter is a slightly nuanced threat model compared to the one
described in Chapter 3 and Section 6.1.2. In particular, we assume the attacker’s goal here
is to either escape network virtualization by compromising the virtual switch, or to tamper
with other tenant’s network traffic by controlling the virtual switch [227]. She however,
does not have direct control to configure the Host OS and hardware: all configuration access
happens through a dedicated cloud management system.

The defender is a public cloud provider who wants to prevent the attacker from compromising
virtual network isolation; in particular, the cloud provider wants to maintain tenant-isolation
even when the vswitch is compromised. We assume that the cloud provider already supports
SR-IOV NICs [11, 99, 59] and the underlying virtualization infrastructure is trusted, including
the hypervisor layer, NICs, firmware, drivers and so on.

7.3 Design Principles and Security Levels

Our MTS design is based on the application of the secure system design principles, established
by Saltzer et al. [191] (see also Bishop [20] and Colp et al. [36]), to the problem space of
virtual switches.

7.3.1 Least Privilege vswitch

The vswitch should have the minimal privileges sufficient to complete its task, which is to
process packets to and from the tenant VMs. Doing so limits the damage that can result from
a system compromise or mis-configuration. Current best-practice is, however, to run the
vswitch co-located with the Host OS and with elevated privileges; prior work has shown the
types and severity of attacks that can happen when this principle fails [227]. A well-known
means to the principle of least privilege is compartmentalization: execute the vswitch in an
isolated environment with limited privileges and minimal access to the rest of the system. In
the next section, we will show how MTS implements compartmentalization by committing
the vswitches into one or more dedicated vswitch VMs.

80 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

7.3.2 Complete Mediation of Tenant-to-Tenant and
Tenant-to-Host Networking

This principle requires that the network communication between the untrusted tenants and
the trusted Host is completely mediated by a trusted intermediary to prevent undesired
communication. This principle, when systematically applied, may go a long way towards
reducing the vswitch attack surface. By channeling all network communication between
untrusted and trusted components via a trusted intermediary (a so called reference monitor),
the communication can be validated, monitored and logged based on security policies. In
the next section, we show how complete mediation is realized in MTS using a secure SR-IOV
channel between the tenant VMs, vswitches and Host.

7.3.3 Extra Security Boundary Between the Tenant and the
Host

This security principle, widely deployed at Google [5], requires that between any untrusted
and trusted component there has to be at least two distinct security boundaries, so at least
two independent security mechanisms need to fail for the untrusted component to gain
access to the sensitive component [16]. We establish this extra layer of security in MTS by
moving the vswitch to user space. This also contributes to implementing the “least privilege”
principle: the user-space vswitch can drop administrator privileges after initialization.

7.3.4 Least Common Mechanisms

This principle addresses the amount of infrastructure shared between tenants; applied to
the context of vswitches this principle requires that the network resources (code paths,
configuration, caches) common to more than one tenant should be minimized. Indeed,
every shared resource may become a covert channel [20]. Correspondingly, decomposing the
vswitches themselves into multiple compartments could lead to hardened vswitch designs.

7.3.5 Security Levels

From these principles, we can obtain different levels of security:

• Baseline: The per-tenant logical datapaths are consolidated into a single physical or
software vswitch that is co-located with the Host OS.

• Level-1: Placing the vswitch in a dedicated compartment provides a first level of
security by protecting from malicious tenants to compromise the Host OS via the
vswitch (“single vswitch VM” in Fig. 7.1b).

7.3 Design Principles and Security Levels 81

• Level-2: Splitting the vswitches into multiple compartments (based on security zones
or on a per-tenant basis) adds another level of security, by isolating tenants’ vswitches
from each other (“multiple vswitch VMs” in Fig. 7.1c).

• Level-3: Moving the vswitches into user space, combined with Baseline or Level-1 or
-2, reduces the impact of a compromise and further reduces the attack surface.

7.4 The MTS Architecture

We designed MTS to meet the aforementioned secure design principles. We first provide an
overview and then present our architecture in details.

7.4.1 Overview

Compartmentalization. There are many ways in which isolated vswitch compartments can
be implemented: full-blown VMs, OS-level sandboxes (jails, zones, containers, plain-old user-
space processes [62], and exotic combinations of these [221, 220]), hardware-supported
enclaves (Intel’s SGX) [160, 10], or even safe programming language compilers (Rust),
runtimes (eBPF), and instruction sets (Intel MPX). For flexibility, simplicity, and ease of
deployment, MTS relies on conventional VMs as the main unit of compartmentalization.

VMs provide a rather strong level of isolation and are widely supported in hardware, software,
and management systems. This in no way means that VM-based vswitches are mandatory
for MTS, just that this approach offers the highest flexibility for prototyping. For simplicity,
Fig. 7.2 depicts two vswitch compartments (Red and Blue solid boxes) running independent
vswitches in their isolated VMs. The multiple compartments further reduce the common
mechanisms between the vswitch and the connected tenants, achieving security Level-2.
Security Level-1, although not depicted, would involve only a single vswitch VM.

Complete Mediation. To mediate all interactions between untrusted tenant code and the
Host OS through the vswitch, we need a secure and high-performance communication
medium between the corresponding compartments/VMs. In MTS we use Single Root IO
Virtualization (SR-IOV) to inter-connect the vswitch compartments (see Figure 7.2).

SR-IOV is a PCI-SIG standard to make a single PCIe device, e.g., a NIC, appear as multiple
PCIe devices that can then be attached to multiple VMs. An SR-IOV device has one or
more physical functions (PFs) and one or more virtual functions (VFs), where the PFs are
typically attached to the Host and the VFs to the VMs. Only the Host OS driver has privileges
to configure the PFs and VFs. NIC driver in the VMs in turn have restricted access to VF
configuration. Only via the Host, VFs and PFs can be configured with unique MAC addresses
and Vlan tags. Network communication between the PFs and VFs occurs via an L2 switch
implemented in the NIC based on the IEEE Virtual Ethernet Bridging standard [109]. This
enables Ethernet communication not only from and to the respective VMs (vswitch and
tenants) based on the destination VF’s MAC address but also to the external networks.

82 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

Tenant
(TRed)

Host

SR-IOV NIC Switch

PF In/Out
VF

Gw
VF

Gw
VF

T
VF

Tenant
(TBlue)

In/Out
VF

T
VF

VSRed VSBlue

Fig. 7.2: High-level overview of MTS in security Level-2. The Red and Blue vswitch compartments
(VMs) are allocated dedicated virtual functions (VFs) to communicate with external networks
using the In/Out VF, their respective tenants using the Gw VF and T VF. Communication
between the vswitches, tenants and the Host physical function (PF) are mediated via the
SR-IOV NIC switch.

Sharing the NIC SR-IOV VF driver and the Layer 2 network virtualization mechanism
implemented by the SR-IOV NIC is considerably simpler than including the NIC driver and
the entire network virtualization stack (Layer 2-7) in the TCB. Tenants already share SR-IOV
NIC drivers in public clouds [11, 99, 13]. Virtual networks can be built as we will see next,
as per-tenant user-space applications implementing Layer 3-7 of the virtual networking
stack.

Thanks to the use of SR-IOV in MTS, packets to and from tenant VMs completely bypass the
Host OS; instead, all potentially malicious traffic is channeled through the trusted hardware
medium (SR-IOV NIC) to the vswitch VM(s). Furthermore, using SR-IOV reduces CPU
overhead and improves performance (see Section 7.5). Finally, SR-IOV provides an attractive
upgrade path towards fully offloaded, smart-NIC based virtual networking: chip [115] and
OS vendors [248, 213] have been supporting SR-IOV for many years now at a reasonable
price, major cloud providers already have SR-IOV NICs deployed in their data centers [11,
99, 13], and, perhaps most importantly, this design choice liberates us from having to
re-implement low-level and complex network components [98]: we can simply use any
desired vswitch, deploy it into a vswitch VM, configure and attach VFs to route tenants’
traffic through the vswitch, and start processing packets right away.

User-Space Packet Processing. As discussed previously, we may choose to deploy the
vswitches into the vswitch VM user-space to establish an extra security boundary between the
tenant and the Host OS (Level-3 design). Thanks to the advances in kernel bypass techniques,
several high-performance and feature-rich user-space packet processing frameworks are
available today, such as Netmap [181], FD.IO [219], or Intel’s DPDK [85]. Our current design
of MTS leverages OvS with the DPDK datapath for implementing the vswitches [184]. DPDK
is widely supported, it has already been integrated with popular virtual switch products,
and extensive operational experience is available regarding the expected performance and
resource footprint [120]. Note, however, that using DPDK and OvS is not mandatory in
MTS; in fact, thanks to the flexibility provided by our VM-compartments and SR-IOV, we can
deploy essentially any user-space vswitch to support MTS.

7.4 The MTS Architecture 83

VSRed
In VF
VSRed

Dmac: VSRed
Dmac: VSRed

Vlan: 0
Gw VF
VSRed

Dmac: TRed
Vlan: 0

VF
TRed

Dmac: TRed
Vlan: 1 Dmac: TRed

TRed

VF
TRed

Dmac: Gw VFRed
Dmac: Gw VFRed

Vlan: 1

Gw VF
VSRed

Dmac: Gw VFRed
Vlan: 0

Out VF
VSRed

Dmac: TExt
Vlan: 0Dmac: TExt

VSRed

1 2 3 4 5
In

gr
es

s
E

gr
es

s

10 9 8 7 6

a

b

Fig. 7.3: A step-by-step illustration of how packets enter and leave the Red tenant from Figure 7.2
in MTS. a shows how ingress packets reach TenantRed. b shows how TenantRed packets
reach an external system TenantExt.

7.4.2 Detailed Architecture

For the below discussion, we consider the operation of MTS for one vswitch compartment
and its corresponding tenant VMs from the Level-2 design shown in Fig. 7.2. The case when
only a single compartment (Level-1) is used is similar in vein: the flow table entries installed
into the vswitch and the VFs attached to the vswitch compartment need to be modified
somewhat; we call out the differences in-line.

Connectivity. Each vswitch VM is allocated at least one VF (In/Out VF) for external (inter-
server) connectivity and another as a gateway (Gw VF) for vswitch-VM-to-tenant-VM con-
nectivity as shown in Fig. 7.2. For Level-1, all the tenant gateways VFs are allocated to the
single vswitch VM. Furthermore, isolation between the external and the tenant network
(tenant VF shown as T VF in the Figure) is enforced at the NIC-level by configuring the Gw
VF and the tenant VFs with a Vlan tag specific to the tenant. Different Vlan tags are used to
further isolate the multiple vswitch compartments and their resp. tenants on that server.

The packets between VFs/PFs in the NIC are forwarded based on the destination MAC
address and securely isolated using Vlan tags (the same security model as provided by
enterprise Ethernet switches). For all packets to and from the tenant VMs to pass through
the vswitch-VM, the destination MAC address of each packet entering and leaving the NIC
needs to be accurately set, otherwise packets will not reach the correct destination. This can
be addressed by introducing minor configuration changes to the normal operation of the
tenant and the vswitches, detailed below.

Ingress Chain. Fig. 7.3 a illustrates the process by which packets from an external network
reach the tenant VMs. In step 1 a packet enters the server through the NIC fabric port
having the Red vswitch’s In/Out VF MAC address as the destination MAC address (Dmac).
The NIC switch will deliver the packet to the vswitch VM untagged (Vlan 0) in 2 . The Red
vswitch then uses the destination IP address in the packet to identify the correct tenant VM
to send the packet to, changes the destination MAC address to that of the Red tenant’s VF
(VF TRed), and emits the packet to the Gw VF in the NIC in 3 . This ensures accurate packet
delivery to and from tenant VMs and the complete isolation of the tenant-vswitch traffic from
other traffic instances. In 4 and 5 , the NIC tags the packet with the Red tenant’s specific
Vlan tag (Vlan 1 in the figure), uses the built-in switch functionality to make a lookup in the
MAC learning table for the Vlan, pops the Vlan tag and finally forwards the packet to the
Red tenant’s VM. The NIC forwarding process is completely transparent to the vswitch and

84 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

tenant VMs, the only downside is the extra round-trip to the NIC. Later we show that this
round-trip introduces negligible latency overhead.

Egress Chain. The reverse direction shown in Fig. 7.3 b , sending a packet from the tenant
VM through the vswitch to the external network goes in similar vein. In 6 the Red tenant
VM TRed sends a packet through its VF (TRed) with the destination MAC address set to the
MAC address of the Red tenant’s Gw VF; in the next subsection we describe two ways to
achieve this. In 7 the NIC switch tags the packet (Vlan 1), looks-up the destination MAC
address which results in sending the packet to the Gw VF. At the gateway VF 8 , the NIC
switch pops the Vlan tag and delivers the packet to the Red vswitch VM. The vswitch receives
the packet, looks up the destination IP address, rewrites the MAC address to the actual
(external) gateway’s MAC address, and then sends the packet out to the In/Out VF in 9 .

Finally in 10 , the NIC will in turn send the packet out the physical fabric port.

Communication between the two VMs of a single tenant inside the server goes similarly,
with the additional complexity that packets now take two extra round-trips to the NIC: once
on the way from the sender VM to vswitch, and once on the way from the vswitch to the
destination VM. Again, our evaluations in the next sections will show that the induced
latency overhead for such a traffic scenario is low.

System Support. Next, we detail the modifications the cloud operator needs to apply to
the conventional vswitch setup to support MTS. The primary requirement is to modify the
centralized controllers to appropriately configure tenant specific VFs with Vlan tags and
MAC addresses, and insert correct flow rules to ensure the vswitch-tenant connectivity.
Second, advanced multi-tenant cloud systems rely on tunneling protocols to support L2
virtual networks. This is also supported by MTS, by modifying the flow tables to pop/insert
the appropriate headers whenever packets need to be decapsulated/encapsulated. Note
that after decapsulation the tunnel id can be used in conjunction with the destination IP
address to identify the appropriate tenant VM. Third, the ARP entry for the default gateway
must be appropriately set in each tenant VM so that packets from the tenant VM go to
the vswitch VM. To this end, the tenant VMs can be configured with a static ARP entry
pointing to the appropriate Gw VF, or using the centralized controller and vswitch as a
proxy-ARP/ARP-responder [139]. Finally, to prevent malicious tenants from launching an
attack on the system, the cloud operator needs to deploy security filters in the NIC. In
particular, source MAC address spoofing prevention must be enabled on all tenant VMs’
VFs. Furthermore, flow-based wildcard filters can also be applied in the NIC for additional
security, e.g., to drop packets not destined to the vswitch compartment, to prevent the Host
from receiving packets from the tenant VMs, etc. Our MTS implementation, described in
Section 7.5, takes care of removing the manual management burden in applying the above
steps.

Resource Allocation. Additional levels of security usually come with increased resource
requirement, needed to run the security/isolation infrastructure. Below, we describe two
resource sharing strategies and how the VFs are allocated to the vswitch compartments.
However, due to the sheer quantity and diversity in cloud setups, we restrict the discussion
to plain compute and memory resources and the number of SR-IOV VFs for the different MTS
security levels.

7.4 The MTS Architecture 85

We consider two modes for compute and memory resources. A shared mode where tenants’
vswitches share a single physical CPU core, while in the isolated mode each tenant’s vswitch
is pinned to a different core. However, we assume that each vswitch compartment gets
an equal share of main memory (RAM) and this is inexpensive compared to physical CPU
cores. Given the demanding compute and memory workloads in the cloud, allocating
resources for vswitching is not uncommon among cloud operators [59, 44]. Note that the
shared and isolated resource allocations are merely two ends of the resource allocation
spectrum, different sets of vswitch VMs could be allocated resources differently, e.g., based
on application or customer requirements. In the next section we will see that the resource
requirement for multiple vswitch VM compartments, i.e., Level-2 alone, is not resource
prohibitive in the shared mode, however, Level-2 and Level-3 can be.

Regarding the number of SR-IOV VFs needed, the current standard allows each SR-IOV
device to have up to 64 VFs per PF. For Level-1, the total number of VFs for T tenants
(see Equation 7.1) is given by the sum of 1) E, the number of VFs allocated for external
connectivity (In/Out VF); 2) gi, the total number of tenant-specific gateway VFs; and 3)
ti, tenant-specific VM VFs hosted on the server. In a basic Level-1 setup hosting 1 tenant,
with 1 In/Out VF and 1 gateway VF and 1 VF for the tenant VM, the total VFs is 3. Similarly
for 4 tenants, the total VFs is 9. For Level-2, the total number of VFs for T tenants (see
Equation 7.2) is given by the sum of 1) ei, the tenant-specific VFs allocated for external
connectivity; 2) gi, the tenant-specific gateway VFs; and 3) ti, tenant-specific VM VFs hosted
on the server. For a basic Level-2 setup hosting 2 tenants, with 1 In/Out VF, 1 gateway VF
per tenant vswitch and 1 VF for each tenant VM, the total VFs is 6. Similarly for 4 tenants,
the total VFs is 12. Level-3 is the same as Level-1 or Level-2.

E +
T∑

i=1
(gi + ti) (7.1)

T∑
i=1

(ei + gi + ti) (7.2)

7.5 Evaluating Tradeoffs

We designed a set of experiments to empirically evaluate the security-performance-resource
tradeoff of MTS. To this end, we measure MTS’s performance for different security levels
under different resource allocation strategies, in canonical cloud traffic scenarios [52]. The
focus is on throughput and latency performance metrics, and physical cores and memory for
resources. In particular, the experiments serve to verify our expectation that our design does
not introduce a considerable overhead in performance. However, we do expect the amount
of resources consumed to increase; our aim is to quantify this increase in different realistic
setups.

Prototype Framework. We took a programmatic approach to our design and evaluation,
hence, we developed a set of primitives that can be composed to configure MTS to conduct
all the experiments described in this chapter. Hence, as a first step we do not consider

86 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

complex cloud management systems (CMS) such as OpenStack; this way we can conduct
self-contained experiments without the possible interference cause by a CMS. Our framework
is written in Python and currently supports OvS and ovs-DPDK as the base virtual switch,
Mellanox NIC, and the libvirt virtualization framework. Our framework and data are
available on-line at the following URL:

https://www.github.com/securedataplane/mts

Methodology. We chose a set of standard cloud traffic scenarios (see Fig. 7.4) and a fixed
number of tenants (4). For each of those scenarios, we allocated the necessary resources
(Sec. 7.4) and then configured the vswitch either in its default configuration (Baseline) or
one of the three security levels (Sec. 7.3). The system was then connected in a measurement
setup to measure the one-way forwarding performance. Important details on the topology,
resources, security levels and the hardware and software used are described next.

Traffic Scenarios. The three scenarios evaluated are shown in Fig. 7.4. Physical-to-physical
(p2p): Packets are forwarded by the vswitch from the ingress physical port to the egress.
This is meant to shed light on basic vswitch forwarding performance. Physical-to-virtual
(p2v): Packets are forwarded by the vswitch from one physical port to a tenant VM, and
then back from the tenant VM to the other physical port. Compared to the p2p, this will
show the overhead to forward to and from the tenant VM. Virtual-to-virtual (v2v): Similar
to the p2v, however, when the packets return from the tenant to the vswitch, the vswitch
sends the packet to another tenant which then sends it back to the vswitch and then out the
egress port. This scenario emulates service chains in network function virtualization. Since
the path length increases from p2p to p2v to v2v, we expect the latency to increase and the
throughput to decrease when going from p2p to p2v to v2v.

Resources. We allocated compute resources in the following two ways. Shared: All vswitch
compartments share 1 physical CPU core and their associated cache levels. Isolated: Each
vswitch compartment is allocated 1 physical CPU core and their associated cache levels. In
case of the Baseline, we allocated cores proportional to the number of vswitch compartments,
e.g., 2 cores to compare with 2 vswitch VMs. For main memory, each VM (vswitch and
tenant) was allocated 4 GB of which 1 GB is reserved as one 1GB Huge page. Similarly, for
the Baseline, a proportional amount of Huge pages was allocated. When using MTS, each
vswitch VM was allocated 2 In/Out VFs (1 per physical port), and 2 appropriately Vlan
tagged Gw VFs per tenant (1 per physical port). When DPDK was used in Level-3: one
physical core needs to allocated for each ovs-DPDK compartment (including the Baseline),
hence, only the isolated mode was used; all In/Out, gateway and tenant ports connected to
OvS were assigned DPDK ports (in the case of the Baseline, the tenant port type was the
dpdkvhostuserclient). All the tenant VMs got two physical cores and two VFs, 1 per port
(these are VMs the tenant would use to run her application) so that the forwarding app
(l2fwd) could run without being a bottleneck.

Security Levels and Tenants. For each resource allocation mode, we configured our setup
either in Baseline or one of the three MTS security levels (Section 7.3). In the Baseline and
Level-1, there were 4 tenant VMs connected to the vswitch. For Level-2, we configured 2

7.5 Evaluating Tradeoffs 87

NICIN OUT

VM

NICIN OUT

VMVM

NICIN OUT

p2p p2v v2v

Fig. 7.4: Three canonical traffic scenarios evaluated: p2p, p2v and v2v

vswitch VMs and each vswitch had 2 tenant VMs, and then we configured 4 vswitch VMs
where each vswitch VM had 1 tenant VM. We repeated Level-3 with Baseline, Level-1 and
the two Level-2 configurations.

Setup. To accurately measure the one-way forwarding performance (throughput and
latency), we used two servers connected to each other via 10G short range optical links.
The DUT server was an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz with 64 GB of RAM
with the IOMMU enabled but hyper-threading and energy efficiency disabled, and a 2x10G
Mellanox ConnectX4-LN NIC with adaptive interrupt moderation and irq balancing disabled.
The other server was the packet/load generator, sink and monitor, with an Endace Dag
10X4-P card (which gives us accurate and precise hardware timestamps) [53]. The link
between the LG and DUT, and DUT and sink were monitored via a passive optical network
tap connected to the Dag card. Each receive stream of the Dag card was allocated 4 GB to
receive packets. The Host, vswitch VM and tenant VMs used the Linux kernel 4.4.0-116-
generic, Mellanox OFED linux driver 4.3-1.0.1.0, OvS-2.9.0 and DPDK 17.11. Libvirt 1.3.1
was used with QEMU 2.5.0. In the tenant VMs, we adapted the DPDK-17.11 l2fwd app to
rewrite the correct destination MAC address when using MTS, and used the default l2fwd
drain-interval (100 microseconds) and burst size (32) parameters. For the Baseline, we used
the default linux bridge in the tenant VMs as using DPDK in the tenant without being backed
by QEMU and OvS (e.g., dpdkvhostuserclient) is not a recommended configuration [78].
For network performance measurements, we used Endace dag-5.6.0 software tools (dagflood,
dagbits, and dagsnap).

7.5.1 Throughput

Our first performance tradeoff is evaluating the forwarding throughput. This will shed light
on the packets per second processing performance of MTS compared to the Baseline. We
measure the aggregate throughput with a constant stream of 64 B packets replayed at line
rate (14 Mpps) by the LG and collected at the sink. Since we fixed the number of tenants to
4, the stream of packets comprises 4 flows, each to a respective tenant VM identified by the
destination MAC and IP address. At the monitor we collect the packets forwarded to report
the aggregate throughput. Each experimental run lasts for 110 seconds and measurements
are made from the 10-100 second marks.

Results. The throughput measurement data for the shared mode is shown in Fig. 7.5(a).
In Fig. 7.5(d) we can see the data for the isolated mode and in Fig. 7.5(g) the data for
Level-3 in the isolated mode is shown. From Figures 7.5(a) and (d) we can see that nearly

88 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

Fig. 7.5: The security, throughput, latency and resource tradeoff comparison of MTS. The rows indicate
the resource mode. The columns are ordered as throughput, latency and resources. The
security levels used are shown in the legend. Note the bottom row is for security Level-3 in
the isolated resource mode combined with other security levels.

always MTS had either the same or higher aggregate throughput than the Baseline. The
improvement in throughput is most obvious in the p2v and v2v topologies as vswitch-to-
tenant communication is via the PCIe bus and NIC switch, which turns out to be faster
than Baseline’s memory bus and software approach. Sharing the physical core for multiple
compartments (Fig. 7.5(a)) in the p2v and v2v scenarios can offer 4x isolation (Level-2 with
4 compartments) and a 2x increase in throughput (nearly .4 Mpps and .2 Mpps) compared
to the Baseline (nearly .2 Mpps and .1 Mpps).

Fig. 7.5(d) is noteworthy as multiple cores for vswitch VMs and the Baseline functions as a
load-balancer when isolating the CPU cores. In the p2p scenario, the aggregate throughput
increases roughly from 1 Mpps to 2 Mpps to 4 Mpps as the number of cores increase. We
observe that MTS is slightly more than the Baseline in the p2p, however, in the p2v and
v2v scenarios MTS offers higher aggregate throughput. As expected, using DPDK can offer
an order of magnitude better throughput (Fig. 7.5(g)). In the p2p topology, we were able
to nearly reach line rate (14.4 Mpps) with four DPDK compartments as the packets were
load-balanced across the multiple vswitch VMs, while the Baseline was able to saturate
the link with 2 cores. With MTS, the throughput saturates (at around 2.3 Mpps) in the p2v
and v2v topologies because several ports are polled using a single core and packets have

7.5 Evaluating Tradeoffs 89

to bounce off the NIC twice as much compared to the Baseline where we observe nearly
twice the throughput for 2 and 4 cores. Nevertheless, we can see a slight increase in the
throughput of MTS as the vswitch VMs increase, because the number of ports per vswitch VM
decreases as the number of vswitch VMs increase. Due to the limited physical cores on the
DUT, we could not evaluate 4 vswitch VMs in the v2v topology as it required more cores
and RAM than available (as we did not want the tenant workload, e.g., l2fwd, to be the
bottleneck).

Key Findings. The key result here is that MTS offers increasing levels of security with
comparable, if not increasing levels of throughput in the shared and isolated resource modes,
however, the Baseline’s throughput with user-space packet processing (DPDK) is better than
MTS.

7.5.2 Latency

The second performance tradeoff we evaluated was the forwarding latency, in particular,
we studied the impact of packet size on forwarding. We selected 64B (minimum IPv4 UDP
packet size), 512B (average packet), 1500B (maximum MTU) packets and 2048B packets
(small jumbo frame). As in the throughput experiments, we used 4 flows, one to each tenant.
For each experimental run, we continuously sent packets from the LG to the sink via the
DUT at 10 kpps for 30 seconds. Note that is the aggregate throughput sent to the NIC and
not to the vswitch VM. To eliminate possible warm-up effects, we only evaluated the packets
from the 10-20 second mark.

Results. For brevity the latency distribution only for 64 B packets is reported here.
Fig. 7.5(b) shows the data for the shared mode, while Fig. 7.5(e) is for the isolated mode.
Level-3 latency data is shown in Fig. 7.5(h). Although the p2p scenarios shows that MTS
increases the latency (Fig. 7.5(b), (e) and (h)), the p2v and v2v scenarios show that MTS is
slightly faster than the Baseline. This is for two reasons. First, packets between the vswitch
and the tenant VMs pass through the SR-IOV NIC (PCIe bus) rather than a software only
vswitch (memory bus). Second, when using the Baseline the tenant uses the Linux bridge.
The exception to this can be seen with user-space packet processing (Fig. 7.5(h)), where the
Baseline with a single core for dpdk (2 in total) is always faster than MTS. As mentioned in
Section. 7.5.1, due to resource limitations we could not evaluate the 4 vswitch VMs in v2v.

The variance in latency increases as more compartments share the same physical core
(Fig. 7.5(b)). Isolating the vswitch VM cores leads to more predictable latency as seen
in Fig. 7.5(e). When using DPDK (Fig. 7.5(h)) we make two observations: i) MTS takes
longer to forward packets than without using DPDK; ii) the latency for Baseline with 2 and
4 cores for dpdk (3 and 5 in total) is unexpectedly high (around 1 ms). Regarding the
former, we conclude that MTS with OvS and DPDK requires further tuning as we used the
default OvS-DPDK parameters for the drain interval, batch size and huge pages: There is an
inherent tradeoff between high throughput and average per-packet latency when using a
shared memory model where a core is constantly polling [49]. For the latter, we observe
that the throughput of 10 kpps is too low to drain the multiple queues on the DPDK ports.

90 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

At 100 kpps and 1 Mpps, we measured an approximately 2 microsecond latency for the p2p
scenario.

Key Findings. We observe that for the shared mode, and 4x compartmentalization (Level-
2), the latency is comparable to the Baseline (p2v) with a lot of variance whereas when
isolated the latency is more predictable.

7.5.3 Resources

In Fig. 7.5(c), (f) and (i) we see the total CPU and memory consumption for Baseline and
MTS. Note that across all the figures, one core and at least one Huge page is always dedicated
for the Host OS. In the case of the (single core) Baseline, the vswitch (OvS) runs in the
Host OS and hence shares the Host’s core and ram. However, for the single vswitch VM
in the shared, isolated and DPDK modes, the Host OS consumes one core and the vswitch
VM consumes another core making the total CPU cores two. Similarly, the 2 and 4 vswitch
VMs in the shared mode, also consume the same number of cores as the single vswitch VM
but a linear increase in ram. In the isolated mode, MTS consumes only one extra physical
core relative to the Baseline, and in DPDK, MTS and Baseline consume equal number of
cores. With respect to the memory consumption, we note that MTS’s and Baseline’s memory
consumption in the isolated and DPDK modes are the same.

Hence, we conclude that for one extra physical core, MTS offers multiple compartments,
making the shared resource allocation economically attractive. The resource cost goes up
when user-space packet processing is introduced or isolating cores, making it relatively
expensive for multiple vswitch VMs.

Key Findings. (i) High levels (2x/4x) of virtual network isolation per server can be achieved
with an increase in aggregate throughput (2x) in the shared mode; (ii) for applications
that require low and predictable latency, vswitch compartments should use the isolated
mode; (iii) although user-space packet processing using DPDK offers high throughput, it is
expensive (physical CPU and energy costs).

7.6 Workload-based Evaluation

We also conducted experiments with real workloads, to gain insights on how cloud applica-
tions such as web servers and key-value stores will perform as tenant applications are the
end hosts of the virtual networks.

Methodology. For simplicity we focus our workload-based evaluation only on TCP ap-
plications as our previous measurements dealt with UDP. In general, we use a similar
methodology to the one described in Section 7.5. For all the TCP-based measurements, we
configured the tenant VMs to run the respective TCP server and from the client (LG) we
benchmark the server to measure the throughput and/or response time. The topologies,
resources and setup used to make these measurements are slightly nuanced which we
highlight next.

7.6 Workload-based Evaluation 91

B MTS
p2v

B MTS
v2v

(a)

0

2

4

6

8

10

sh
ar

ed
Ip

er
f (

Gb
ps

)

B MTS
p2v

B MTS
v2v

(b)

0

10

20

30

40

50

Ap
ch

 (K
Re

qs
/s

)

B MTS
p2v

B MTS
v2v

(c)

0

50

100

150

200

250

300

M
ch

d
(K

Op
s/

s)

 B MTS
p2v

 B MTS
v2v

(d)

0

50

100

150

200

250

300

Ap
ch

 re
sp

. t
im

e
(m

s)

 B MTS
p2v

 B MTS
v2v

(e)

0

5

10

15

20

25

M
ch

d
re

sp
. t

im
e

(m
s)

B MTS
p2v

B MTS
v2v

(f)

0

2

4

6

8

10

iso
la

te
d

Ip
er

f (
Gb

ps
)

B MTS
p2v

B MTS
v2v

(g)

0

10

20

30

40

50
Ap

ch
 (K

Re
qs

/s
)

B MTS
p2v

B MTS
v2v

(h)

0

50

100

150

200

250

300

M
ch

d
(K

Op
s/

s)

 B MTS
p2v

 B MTS
v2v

(i)

0

50

100

150

200

250

300

Ap
ch

 re
sp

. t
im

e
(m

s)

 B MTS
p2v

 B MTS
v2v

(j)

0

5

10

15

20

25

M
ch

d
re

sp
. t

im
e

(m
s)

B MTS
p2v

B MTS
v2v

(k)

0

2

4

6

8

10

dp
dk

Ip
er

f (
Gb

ps
)

B MTS
p2v

B MTS
v2v

(l)

0

10

20

30

40

50

Ap
ch

 (K
Re

qs
/s

)

B MTS
p2v

B MTS
v2v

(m)

0

50

100

150

200

250

300

M
ch

d
(K

Op
s/

s)

 B MTS
p2v

 B MTS
v2v

(n)

0

50

100

150

200

250

300

Ap
ch

 re
sp

. t
im

e
(m

s)

 B MTS
p2v

 B MTS
v2v

(o)

0

5

10

15

20

25

M
ch

d
re

sp
. t

im
e

(m
s)

Fig. 7.6: Iperf throughput, Apache and Memcached throughput and latency (shown in the columns)
comparison of MTS. The rows indicate the resource mode where the bottom row is for security
Level-3 in the isolated resource mode combined with the other security levels. The legend is
the same as in Figure 7.5.

Traffic Scenarios. Only the p2v and v2v patterns are evaluated with workloads as we want
to understand the performance of applications hosted in the server.

Resources. The ingress and egress ports for all the traffic are on the same physical NIC port
unlike in the previous section where the ingress and egress ports were on separated physical
ports of the NIC. Hence, each tenant’s vswitch VM was given 1 VF for In/Out and 1 tagged
Gw VF. Each tenant VM was given 1 VF.

Setup. The applications generating the load are standard TCP, Apache and Memcached
benchmarking tools respectively Iperf3 v3.0.11 [88], ApacheBench v2.3 (ab) [9] and libMem-
cached v1.0.15 (memslap) [130]. Instead of the Endace card we used a similar Mellanox
card at the LG.

7.6.1 Workloads and Results

Iperf. To compare the maximum achievable TCP throughput, we ran Iperf clients for 100 s
with a single stream from the LG to the respective Iperf servers in the DUT’s tenant VM. The
aggregate throughput was then reported as the sum of throughput for each client-server. We

92 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

collected 5 such measurements for each experimental configuration and report the mean
with 95% confidence.

Web Server. To study workloads from web servers (a very common cloud application),
we consider the open-source Apache web server. Using the ApacheBench tool from the
LG, we benchmarked the respective tenant web servers by requesting a static 11.3 KB web
page from four clients (one for each web server). Each client made up to 1,000 concurrent
connections for 100 s after which we collected the throughput and latency statistics reported
by ApacheBench. In the v2v scenario, we used only two client-servers as one of the tenant
VMs simply forwarded packets using the DPDK l2fwd app. We collected 5 such repetitions
to finally report the average throughput and latency for each experimental configuration
with 95% confidence.

Key-Value Store. Key-value stores are also commonly used cloud applications (e.g., with
with web servers). We opted for the open-source Memcached key-value store as it also has
an open-source benchmarking tool libMemcached-memslap. We used the default Set/Get
ratio of 90/10 for the measurements. The methodology and reporting of the measurements
are the same as the web server.

Results. The data for the Iperf measurements in the shared mode is shown Fig. 7.6(a). The
data for the isolated mode is shown in Fig. 7.6(f) and Fig. 7.6(k) depicts the throughput
for Level-3. As seen in Section 7.5.1, here too we observe that MTS has a higher throughput
(more than 2x in the shared mode) than the Baseline except when DPDK is used in the v2v
topology. MTS saturated the 10G link in the p2v scenario when isolated and DPDK modes
were used.

The data from the throughput measurements for the Apache web server and Memcached
key-value store are first reported in the shared mode in Fig. 7.6(b) and (c) respectively. For
the isolated mode they are shown in Fig. 7.6(g) and (h). Level-3 throughput is shown in
Fig. 7.6(l) and (m). The three main results from the throughput measurements for Apache
and Memcached are the following. MTS can offer nearly 1.5-2x throughput and 4x isolation
(Level-2) in the shared mode. In the isolated and Level-3 modes, Apache’s and Memcached’s
throughput saturated with MTS: we expected the throughput to increase as the vswitch VMs
increase when the compartments have isolated cores, however, we do not observe that. This
is further validated when using DPDK. Apache’s and Memcached’s throughput are highly
sensitive when the Baseline uses multiple cores in the isolated and DPDK modes which
means that using 2 or more cores requires workload specific tuning to the Host: the DPDK
parameters, e.g., drain interval, and the workload VMs, e.g., allocating more cores, which
may not always be necessary with MTS.

The data from the response time measurements for the Apache web server and Memcached
key-value store are first reported in the shared mode in Fig. 7.6(d) and (e) respectively. For
the isolated mode they are shown in Fig. 7.6(i) and (j). Level-3 throughput is shown in
Fig. 7.6(n) and (o). Regarding the latency, we again discern that MTS can offer multiple
levels of isolation and maintain a lower response time (approximately twice as fast) than
the Baseline.

7.6 Workload-based Evaluation 93

Key Findings. Our web server and key-value store benchmarks reveal that application
throughput and latency of real application are improved by MTS. However, for user-space
packet processing, the resource costs go up for a fractional benefit in throughput or latency.
Hence, biting the bullet for shared resources, offers 4x isolation and approximately 1.5-2x
application performance compared to the Baseline.

7.7 Scaling MTS

Depending on the number of cores per server, the number of tenant VMs co-located on
the same server will vary. Hence, our design should also accommodate servers that host
more than 4 tenants. However, as we have seen, unmodified VMs for vswitches impose a
resource limitation. Therefore, to scale with the number of co-located tenants per server, a
lightweight isolation mechanism is necessary in addition to the VM isolation.

7.7.1 Using Containers

A suitable choice for lightweight virtualization is containers for three reasons. First, they are
well supported by multiple OSes, e.g., Linux, FreeBSD, Windows. Second, they offer user-
space and kernel-space (network namespace) isolation allowing us to run several vswitch
containers in the same VM (we can run the OvS kernel module for each container). Third,
they use the resources allocated to the VM: we can run several containers within a VM
without necessarily increasing the compute and memory allocated to the VM.

Implementation. We extended our framework to support containers using docker [131].
We considered other options as well, e.g., gVisor [220] and Kata Containers [221]. However,
after looking into the projects, we concluded that gVisor was still nascent and Kata Containers
has too much overhead (it runs containers in lightweight VMs). Hence, we continued to use
our already supported VM approach and simply integrated docker into the workflow. Using
pipeworks [208], we were able to attach the VFs in the VM to specific containers.

7.7.2 Evaluation

We experimented with scaling MTS using containers in VMs. In the following we describe
how we achieved this and cast light on the packet processing throughput of such a system.

Methodology. As a first step we only evaluated the throughput of our container based
system. We adapted the methodology as described in Section 7.5 for measuring the raw
packet processing throughput. To understand the security-performance-resource tradeoffs
of using containers, we created two sets of experiments, one comparable with using four
tenants and their respective VMs, and another set to measure the scaling capabilities. For
the traffic scenarios, we only used the p2p and p2v. We had to allocate slightly different
resources and tenants which we describe next.

94 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

Fig. 7.7: Forwarding throughput comparison of MTS with four tenants in the p2p and p2v scenarios.
The vswitch runs in VMs (gray bars) or in containers in VMs (green bars).

Resources. We allocated resources only in the shared mode, i.e., all the vswitch VMs
shared a singly physical core, as we believe this is the most economical mode for cloud
providers. The memory allocation remained the same for the vswitch VMs, when scaling
and comparing with the four tenants. However when we made the scaling measurements,
the tenant VM was allocated a minimum of 4 GB memory and 1 GB per tenant flow. The
number of VFs allocated to each vswitch container and tenant (DPDK) application was the
same as described in Section 7.5.

Security Levels and Tenants. We only measured the throughput of MTS as the Baseline
by default does not support multiple containers. We first configured MTS in Level-1. Next,
in Level-2 we configured MTS for comparison with four tenants, and we also configured it
with upto a total of 16 containers (in a single VM and 4 containers in 4 VMs). We note that
the number of tenants configured determined the maximum number of containers. In this
evaluation, we used a single tenant VM with sufficient VFs to emulate several tenants, e.g.,
8, 12 and 16. We did not include Level-3 for two reasons: i) we used the shared mode,
hence, scaling MTS in containers with DPDK would require more resources and ii) to avoid
the complexity involved with configuring and supporting DPDK in containers

Setup. We used the same setup as described in Section 7.5. We used docker-18.09.2 and
linux cgroups to run OvS in containers. For the single tenant VM we ran multiple instances
of DPDK, e.g., if we had a total of 8 containers, we ran 8 DPDK l2fwd instances in the tenant
VM. A bug/limitation with QEMU prevented us from attaching 37 or more VFs to a VM, hence,
we could not evaluate scenarios that required more than 37 VFs per vswitch VM, e.g., 16
tenants in a single vswitch VM container.

Results. The data comparing OvS in containers in VMs with OvS only in VMs is shown in
Figure 7.7. The results of the throughput of using as many supported containers in VMs with
our hardware is shown in Figure 7.8 and Figure 7.9. From Fig. 7.7 we can see a minor but
negligible overhead of using containers in both the p2p and p2v. However, as we scale the
number of vswitch containers and tenants to a maximum of 16 tenants shown in Fig. 7.8
and 7.9, we make 3 observations. First, the impact of containers for software switching (p2p
scenario) is minor. Second, in the p2v scenario, the throughput decreases as the number
of vswitch containers in a given vswitch VM increases. Third, for the same number of
total vswitch containers, the throughput slightly decreases as the number of vswitch VMs
increase.

7.7 Scaling MTS 95

Fig. 7.8: Forwarding throughput comparison of scaling MTS using containers in multiple VMs in the
p2p and p2v scenarios. Note that the number of containers is equal to the number of tenants
and that they are evenly distributed across all the VMs.

Fig. 7.9: Forwarding throughput of MTS with 16 tenants and maximum number of supported vswitch
containers in VMs in the p2v scenario.

The main reasons for the drop in throughput in the p2v scenario are as follows. The kernel is
unable to forward the incoming packets fast enough as the number of egress ports increase,
which causes the incoming buffers to remain full resulting in packets being dropped on the
ingress port of the respective vswitch container. Although not shown in the Figures, we also
observed that for a fixed number of vswitch containers, as the number of tenants increase
(recall this means that that the vswitch now has an extra gw VF for each new tenant), the
throughput drops. Here again we notice that the bottleneck is in moving packets from the
incoming buffer to the transmit buffer. Furthermore, as the number of transmit queues
increase (i.e., more VFs attached to the VM and the respective vswitch containers), the
kernel drops more packets.

Key Findings. On a single core we could scale MTS upto 16 containers across 4 VMs with
minor loss in p2p forwarding throughput. However, in the p2v scenarios the throughput
dropped by half as the number of attached VFs to containers increased. Hence, the key
message here is that MTS can scale using containers, however, it requires more compute (and
memory) resources to scale with the number of tenants.

7.8 Discussion

Centralized Control, Accounting and Monitoring. MTS introduces the possibility to real-
ize multi-tenant virtual networks which can expose tenant/compartment specific interfaces
to a logically centralized control/management plane. This opens up possibilities for full net-

96 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

work virtualization, how to expose the interface, and also how to integrate MTS into existing
cloud management systems in an easy and usable way. Additionally, MTS also enables the
cloud provider to develop/adopt novel virtual network embedding algorithms as the vswitch
can now be allocated dedicated and isolated resources. Furthermore, controllers may need
to manage more device, topology and forwarding information, however, the computations
(e.g., routing) should remain the same. From an accounting and billing perspective, we
strongly believe that MTS is a new way to bill and monitor virtual networks at granularity
more than a simple flow rule [69]: CPU, memory and I/O for virtual networking can be
charged.

SR-IOV: A Double-Edged Sword. If an attacker can compromise SR-IOV, she could
violate isolation and in the worst case get access to the Host OS via the PF driver. Hence,
a rigorous security analysis of the SR-IOV standard, implementations and SR-IOV-NIC
drivers can reduce the chance of a security vulnerability. Compartmentalizing the PF driver
is a promising approach [22] to secure the driver software. However, if the attacker has
compromised the SR-IOV-NIC hardware then MTS cannot guarantee isolation, as MTS assumes
the NIC is trusted and operates in accordance with the cloud provider. When a vswitch VM
is shared among tenants, performance isolation issues could lead to covert channels [15] or
denial-of-service attacks [206, 250]. Although not yet widely supported, VM migration with
SR-IOV can be introduced [134] as proposed by Xu and Davda [246]. SR-IOV NICs have
limited VFs and MAC addresses which could limit the scaling properties of MTS, e.g., when
using containers as compartments instead of VMs.

Evaluation Limitations. The results from our experiments are from a network and appli-
cation performance perspective using a 10 Gbps NIC. For a deeper understanding of the
performance improvement we obtained in this chapter using SR-IOV, further measurements
are necessary, e.g., using the performance monitoring unit (PMU) to collect a breakdown
of the packet processing latencies. Such an understanding is important and relevant when
dealing with data center applications that require high NIC bandwidth, e.g., 40/100 Gbps.

As described by Neugebauer et al. [142], the PCIe bus can be a bottleneck for special data
center applications (e.g., ML applications): A typical x8 PCIe 3.0 NIC (with a maximum
payload size of 256 bytes and maximum read request of 4096 bytes) has an effective (usable)
bi-directional bandwidth of approximately 50 Gbps. Hence, the usability of MTS with PCIe 3.0
and 8 lanes can indeed be a limitation which we did not observe in this chapter. Nevertheless,
increasing the lanes to x16 is one potential workaround to double the effective bandwidth
to around 100 Gbps. Furthermore, with chip vendors initiating PCIe 4.0 devices [23], the
PCIe bus bandwidth will increase to support intense I/O applications.

7.9 Related Work

There has been noteworthy research and development on isolating multi-tenant virtual
networks in cloud (datacenter) networks: tunneling protocols have been standardized [237,
66], multi-tenant datacenter architectures have been proposed [110], and real cloud systems
have been built by many companies [59, 44]. Furthermore, considerable effort has gone into
enforcing performance isolation in the cloud [113, 212, 202, 96, 173]. However, most of

7.9 Related Work 97

the previous work still co-locates the vswitch with the Host as we discussed in Section 7.1.1.
Hence, here we discuss previous and existing attempts specifically addressing the security
weakness of vswitches.

To the best of our knowledge, in 2012 Jin et al. [98] (see Research prototype in Table 7.1)
were the first to point out the security weakness of co-locating the virtual switch with the
hypervisor. However, the proposed design, while ahead of its time, (i) lacks a principled
approach which this chapter proposes; (ii) has only a single vswitch VM whereas MTS

supports multiple vswitch compartments making it more robust; (iii) is resource (compute
and memory) intensive as the design used shared memory between the vswitch VM and
all the tenant VMs while MTS uses an inexpensive interrupt-based SR-IOV network card
for complete mediation of tenant-vswitch-VM and tenant-host networking; (iv) requires
considerable effort, expertise and tuning to integrate into virtualization system whereas MTS
can easily be scripted into existing cloud systems.

In 2014 Stecklina [211] followed up on this line of work and proposed sv3, a user-space
switch, which can enable multi-tenant virtual switches (see sv3 in Table 7.1). sv3 adopts
user-space packet processing and also supports compartmentalization, i.e., the Host can
run multiple vswitches. However, it is still co-located with the Host, partially adopts the
security principles outlined in this chapter, lacks support for real cloud virtual networking,
and requires changes to QEMU. Our system on the other hand moves the vswitch out of
the Host, supports production vswitches such as OvS and does not require any changes to
QEMU.

Between 2016 and 2017, Panda et al. [162] and Neves et al. [143] took a language-
centric approach to enforce data plane isolation for virtual networks. However, language-
centric approaches require existing vswitches to be reprogrammed/annotated which reduces
adoption. Hence the solution of using compartments and SR-IOV in MTS allows existing
users to easily migrate using their existing software. Shahbaz et al. [198] reduced the attack
surface of OvS by introducing support for the P4 domain specific language which reduces
potentially vulnerable protocol parsing logic (see PISCES in Table 7.1.

In 2018, Pettit et al. [167] proposed to isolate virtual switch packet processing using eBPF:
which is conceptually isolating potentially vulnerable parsing code in a kernel-based runtime
environment. However, the design still co-locates the virtual switch and the runtime with
the Host.

In early 2019 Zhuo et al. [251] (see SLIM in Table 7.1) introduced faster virtual networking
for container networks in the cloud using connection-based network virtualization. Although
SLIM bypasses the vswitch and is implemented in user-space with an optional module
to enforce security in the kernel, it is still monolithic and co-located with the Host. By
compromising SLIM, an attacker breaks into the Host’s namespace and can take control
of the Host. Later on, Hedayati et al. [74] introduced Hodor, which enables multiple
(untrusted) user-space applications to share the underlying hardware, e.g., NIC, when
kernel-bypass libraries such as DPDK are used. Currently, it is not possible to share the
underlying hardware, e.g., NIC, when an application uses DPDK. However, even without
Hodor, using SR-IOV does enable such sharing and furthermore Mellanox’s ConnectX-4 NIC

98 Chapter 7 Bringing Multi-Tenancy to Network Virtualization

for example implements a bifurcated driver model that enables sharing the NIC between the
user-space application and the kernel.

7.10 Conclusion

This chapter was motivated by the observation that while vswitches have been designed to
enable multi-tenancy, today’s vswitch designs lack strong isolation between tenant virtual
networks. Accordingly, we presented a novel vswitch architecture based on 4 secure design
principles which extends the benefits of multi-tenancy to the virtual switch, offering improved
isolation and performance, at a modest additional resource cost. When used in the shared
mode (only one extra core), with four vswitch compartments the forwarding throughput (in
pps) is 1.5-2 times better than the Baseline. The tenant workloads (web server and key-value
stores) we evaluated also receive a 1.5-2 times performance (throughput and response time)
improvement with MTS.

We believe that MTS is a pragmatic solution that can enhance the security and performance
of virtual networking in the cloud. In particular, MTS introduces a way to schedule an entire
core for tenant-specific network virtualization which has three benefits: (i) application and
packet processing performance is improved, (ii) this could be integrated into pricing models
to appropriately charge customers on-demand and generate revenue from virtual networking
for example and (iii) virtual network and Host isolation is maintained even when the vswitch
is compromised.

With this we conclude Part II of this dissertation. We saw how the vswitch can be exploited
by an attacker to violate isolation policies and mechanisms as well as a new network
virtualization architecture namely MTS, that can ensure multi-tenant network isolation
policies and mechanisms can be enforced for uncompromised vswitches.

7.10 Conclusion 99

8Future Work

We believe this dissertation opens up several interesting avenues for further research which
we outline in the following.

Detecting Malicious Switches. This dissertation was motivated by the possibility that
the switches in the data center network can be compromised. Having seen the potential
capabilities of malicious switches in a data center network in this dissertation, a follow-up
research question to ask could be: How can we detect malicious switches in the network? The
question is a fundamental one and may even prove to be impossible to do [63]. Nonetheless,
by restricting the scope of the problem, novel detection systems can be introduced, as we
have done e.g., with Preacher [225].

Detecting Covert Channels. To identify teleportation attacks, and similarly covert channels
in production networks, detection systems and algorithms have to be devised, else they will
go undetected. As we saw in Section 4.3.1, changes to the specifications may not suffice: the
flow reconfiguration techniques can modulate legitimate configuration messages to covertly
communicate. Furthermore we expect that even if detection systems are designed and
implemented, they will need to be tuned to the operator’s network and allocated sufficient
resources [50, 51]. Hence, identifying suitable values and resources for various networks is
also another research path.

Programmable Data Planes. With programmable data planes gaining momentum [126],
researchers are revisiting functions that can be offloaded to the data plane [93, 199, 54,
122]. As we have seen in this dissertation, the data plane is shared by several users that
need to be isolated from each other. Hence, the functions offloaded to the data plane
need to communicate and process data in isolation, e.g., in secure enclaves/environments.
Investigating systems that can offer such offload functionality and security can prove useful
for confidential/sensitive information processing. SmartNICs that run multicore ARM
processors with Linux are a potential candidate that can offer isolation via VMs to run tenant
workloads in the NIC and reduce CPU usage as well as latency. However, to the best of
our knowledge these interfaces are still nascent [54] and further research evaluation is
necessary.

Virtual Switches. Designing and evaluating an alternative secure vswitch design is also a
promising direction. For example, following the lines of Jin et al. [98], that uses shared
memory instead of SR-IOV for multiple vswitches using KVM/QEMU could be an alterna-
tive approach. A clean-slate approach could also be adopted wherein safe programming
languages are used for the vswitch. The concept of compartmentalization can be extended
to the software architecture of the vswitch as well.

101

Pricing and Isolation. Cloud providers are attempting to take on more responsibility by
managing and scaling resource requirements, thereby allowing developers not only to focus
on writing code rather than set-up infrastructure but also to offer competitive pricing models,
i.e., only pay for running your code at the granularity of seconds [61]. In such a model [100],
the isolation mechanisms and policies are oblivious to the tenants, making it critical that
tenant isolation is correctly enforced, and tenants only pay for what they use. Initial work
on performance isolation has already been carried out by Wang et al. [242, 106], and we
believe further research is necessary if the market decides to adopt the “serverless” model.

Security Metrics. Finally, developing accurate and quantitave metrics to measure network
isolation is an interesting field of work. The typical metric used is static lines of code (SLOC),
however, this is not meaningful when comparing designs and systems with no access to the
source code.

102 Chapter 8 Future Work

9Conclusion

This dissertation was motivated by the thesis statement: “Network-wide security policies
or mechanisms in multi-tenant data center networks can be circumvented by malicious
data plane systems. Hence, appropriate security measures need to be taken to tolerate
compromised data planes in the network”. Our argument was divided into two parts.

In Part I of this dissertation, we described how the design, specification and implementations
of logically centralized control planes in data center networks can be exploited by malicious
switches and end hosts to covertly communicate with each other (at high and low rates) using
teleportation. We presented four teleportation techniques that malicious switches can use to
bypass data plane isolation mechanisms meant to enforce (network-wide) security policies,
e.g., firewalls. We established three reasons for the existence of teleportation: i) malicious
switches share the same logical controller ii) lack of authentication and authorization in the
specification of OpenFlow and controller implementations and iii) introduction of automation
and programmability (e.g., intent networking) into the operation of the network. We
reinforced reasons i) and ii) by modeling the OpenFlow handshake to design and implement
a covert timing channel that can be used by malicious switches to exfiltrate private data.
The practical significance of this work has been acknowledged by the community and hence
resulted in fixes to SDN controllers (ONOS, RYU and ODL) and specifications (OpenFlow
and P4Runtime).

In Part II of this dissertation, our security analysis uncovered multiple design flaws in multi-
tenant network virtualization systems that use virtual switches as their isolation enforcement
mechanism. The flaws enable an attacker to compromise an entire data center network
(virtual switches, centralized controller and servers) in a few minutes. We attributed the
findings to the lack of appropriate threat models and design decisions, e.g., co-locating
the vswitch with the hypervisor and increasing complexity in the vswitch. To justify our
argument, we fuzzed OvS (a widely used vswitch), discovered multiple vulnerabilities and
demonstrated a data center wide compromise using OpenStack (a widely used CMS). Our
deeper analysis of the design of existing virtual switches shows that the state-of-the-art
violates basic secure design principles. To address the identified weaknesses and enable easy
adoption in the cloud, we introduced a new network virtualization system namely MTS, that
is based on four secure design principles. MTS prevents the Host from being compromised
via the virtual switch, maintains multi-tenant network isolation and reduces the chance of a
data center wide compromise occurring via the virtual switch. We obtained promising results
from the scalable prototype we developed and evaluated using real-world workloads.

As cloud operators and operations expand, multi-tenant data center networks will also
increase [124]. Hence, the work described in this dissertation should motivate cloud
operators and adopters to pay more attention to potential design and programming flaws
that can lead to security breaches in unintended ways, e.g., as we explained with our work

103

on teleportation and vswitches. The ease with which we could compromise OvS (used in
Google’s GCP [235]), emphasizes: i) the validity of our threat model and ii) the large scale
impact malicious (virtual) switches have in the data center. Compromising a hardware
switch can follow a similar approach adopted in this dissertation, e.g., fuzzing the packet
processing logic.

Furthermore, many countries have digitalization on their agenda. This means that is it highly
likely that more data centers will be designed and used in the future. With only a handful of
vendors capable of delivering equipment for such networks, and the increasing reliance on
such critical infrastructure, attackers be it nation state or script-kiddies, will attempt to find
the weakest link in the chain. We hope that this dissertation is i) a reminder that malicious
switches are a real threat and ii) that we have to a degree prevented the centralized network
controller and data plane systems from being weak links.

104 Chapter 9 Conclusion

Bibliography

[1]Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. „Control-flow Integrity“. In: Proc.
ACM Conference on Computer and Communications Security (CCS). 2005, pp. 340–353 (cit. on
p. 72).

[2]Stefan Achleitner, Thomas La Porta, Trent Jaeger, and Patrick McDaniel. „Adversarial network
forensics in software defined networking“. In: Proceedings of the Symposium on SDN Research.
ACM. 2017, pp. 8–20 (cit. on p. 1).

[3]Dan Gonzales et al. „Cloud-Trust - a Security Assessment Model for Infrastructure as a Service
(IaaS) Clouds“. In: Proc. IEEE Conference on Cloud Computing PP.99 (2017), pp. 1–1 (cit. on
p. 65).

[4]Nawaf Alhebaishi, Lingyu Wang, Sushil Jajodia, and Anoop Singhal. „Threat Modeling for
Cloud Data Center Infrastructures“. In: Intl. Symposium on Foundations and Practice of Security.
Springer. 2016, pp. 302–319 (cit. on p. 65).

[5]Tim Allclair. Secure Container Isolation: Problem Statement & Solution Space. https://docs.
google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A. Accessed:
05-01-2019. 2018 (cit. on pp. 79, 81).

[6]Amazon AWS. The Trusted Cloud for Government. https://aws.amazon.com/government-
education/government/. 2019 (cit. on p. 1).

[7]L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas. LDP Specification. RFC 3036
(Proposed Standard). Obsoleted by RFC 5036. Internet Engineering Task Force, 2001 (cit. on
p. 68).

[8]Markku Antikainen, Tuomas Aura, and Mikko Särelä. „Spook in Your Network: Attacking an
SDN with a Compromised OpenFlow Switch“. In: 2014, pp. 229–244 (cit. on p. 38).

[9]Apache. ab - Apache HTTP server benchmarking tool. https://httpd.apache.org/docs/2.2/
en/programs/ab.html. Accessed: 07-01-2019 (cit. on p. 92).

[10]Sergei Arnautov, Bohdan Trach, Franz Gregor, et al. „SCONE: Secure Linux Containers with
Intel SGX“. In: Proc. Usenix Operating Systems Design Principles (OSDI). 2016 (cit. on p. 82).

[11]AWS. Enhanced Networking on Linux. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/enhanced-networking.html. Accessed: 24-01-2018. 2018 (cit. on pp. 79, 80,
83).

[12]AWS Case Study: Robinhood. https://aws.amazon.com/solutions/case-studies/robinhood/. 2019
(cit. on p. 1).

[13]Microsoft Azure. Create a Linux virtual machine with Accelerated Networking. https://docs.
microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-

cli. Accessed: 24-01-2018. 2018 (cit. on p. 83).

105

https://docs.google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A
https://docs.google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A
https://aws.amazon.com/government-education/government/
https://aws.amazon.com/government-education/government/
https://httpd.apache.org/docs/2.2/en/programs/ab.html
https://httpd.apache.org/docs/2.2/en/programs/ab.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli

[14]Julian Bangert and Nickolai Zeldovich. „Nail: A practical tool for parsing and generating data
formats“. In: Proc. Usenix Operating Systems Design Principles (OSDI). 2014, pp. 615–628 (cit. on
p. 64).

[15]Adam Bates, Benjamin Mood, Joe Pletcher, et al. „On detecting co-resident cloud instances
using network flow watermarking techniques“. In: Springer International Journal of Information
Security (2014) (cit. on p. 97).

[16]Antoine Beaupré. Updates in container isolation. https://lwn.net/Articles/754433. Ac-
cessed: 09-01-2019. 2018 (cit. on pp. 79, 81).

[17]Kevin Benton, L. Jean Camp, and Chris Small. „OpenFlow Vulnerability Assessment“. In: Proc.
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN). 2013 (cit. on
p. 1).

[18]Kevin Benton, L. Jean Camp, and Chris Small. „OpenFlow Vulnerability Assessment“. In: Proc.
ACM Workshop on Hot Topics in Software Defined Networking (HotSDN). 2013, pp. 151–152
(cit. on p. 38).

[19]BESS Comitters. BESS (Berkeley Extensible Software Switch). https://github.com/NetSys/
bess. Accessed: 09-05-2017. 2017 (cit. on pp. 8, 64, 78).

[20]Matthew A Bishop. Introduction to computer security. Vol. 50. Addison-Wesley Boston, 2005
(cit. on pp. 77, 80, 81).

[21]Matthew A Bishop. The art and science of computer security. Addison-Wesley, 2002 (cit. on p. 42).

[22]Silas Boyd-Wickizer and Nickolai Zeldovich. „Tolerating Malicious Device Drivers in Linux.“ In:
Usenix Annual Technical Conference (ATC). 2010 (cit. on p. 97).

[23]Broadcom Samples Thor, World’s First 200G Ethernet Controller with 50G PAM-4 and PCIe 4.0.
https://www.broadcom.com/company/news/product- releases/2367107. Accessed:
06-05-2019 (cit. on p. 97).

[24]Bug 1578652 (CVE-2018-1000155). https://bugzilla.redhat.com/show_bug.cgi?id=
CVE-2018-1000155. Accessed: 16 September 2019. 2018 (cit. on p. 56).

[25]Kevin Butler, Toni Farley, Patrick McDaniel, and Jennifer Rexford. A Survey of BGP Security Issues
and Solutions. Tech. rep. AT&T Labs - Research, Florham Park, NJ, 2004 (cit. on p. 1).

[26]Serdar Cabuk, Carla E Brodley, and Clay Shields. „IP covert timing channels: design and
detection“. In: Proc. ACM Conference on Computer and Communications Security (CCS). 2004,
pp. 178–187 (cit. on p. 41).

[27]M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. „A distributed and robust SDN control plane
for transactional network updates“. In: Proc. IEEE INFOCOM. 2015, pp. 190–198 (cit. on p. 38).

[28]Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rexford. „A NICE Way
to Test OpenFlow Applications“. In: Proc. Usenix Networked Systems Design and Implementation
(NSDI). 2012, pp. 127–140 (cit. on p. 38).

[29]Jiahao Cao, Qi Li, Renjie Xie, et al. „The CrossPath Attack: Disrupting the SDN Control Channel
via Shared Links“. In: Proc. Usenix Security Symp. 2019, pp. 19–36 (cit. on p. 1).

[30]Martín Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. „Virtualizing the Net-
work Forwarding Plane“. In: Proc. ACM CoNEXT Workshop on Programmable Routers for Extensible
Services of Tomorrow. 2010, 8:1–8:6 (cit. on p. 9).

[31]Case Studies for Financial Services. https://aws.amazon.com/financial-services/case-studies/.
Accessed: 09-09-2019. 2019 (cit. on p. 1).

[32]D. Chasaki and T. Wolf. „Design of a secure packet processor“. In: Proc. ACM/IEEE Architectures
for Networking and Communication Systems (ANCS). 2010, pp. 1–10 (cit. on p. 76).

106 Bibliography

https://lwn.net/Articles/754433
https://github.com/NetSys/bess
https://github.com/NetSys/bess
https://www.broadcom.com/company/news/product-releases/2367107
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2018-1000155
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2018-1000155

[33]Danai Chasaki and Tilman Wolf. „Attacks and Defenses in the Data Plane of Networks“. In: Proc.
IEEE/IFIP Transactions on Dependable and Secure Computing (DSN) 9.6 (2012), pp. 798–810
(cit. on p. 76).

[34]Stephen Checkoway, Jacob Maskiewicz, Christina Garman, et al. „A systematic analysis of the
Juniper Dual EC incident“. In: Proc. ACM Conference on Computer and Communications Security
(CCS). ACM. 2016, pp. 468–479 (cit. on p. 1).

[35]Cisco VN-Link: Virtualization-Aware Networking. White paper. 2009 (cit. on p. 8).

[36]Patrick Colp, Mihir Nanavati, Jun Zhu, et al. „Breaking up is hard to do: Security and Func-
tionality in a Commodity Hypervisor“. In: Proc. ACM Symposium on Operating System Principles
(SOSP). 2011 (cit. on p. 80).

[37]A. Costin. „All your cluster-grids are belong to us: Monitoring the (in)security of infrastructure
monitoring systems“. In: Proc. IEEE Communications and Network Security (CNS). 2015, pp. 550–
558 (cit. on pp. 66, 75).

[38]Crispin Cowan et al. „StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
overflow Attacks“. In: Proc. Usenix Security Symp. 1998, pp. 5–5 (cit. on pp. 69, 72).

[39]Levente Csikor, Christian Rothenberg, Dimitrios P. Pezaros, et al. „Policy Injection: A Cloud
Dataplane DoS Attack“. In: Proc. ACM SIGCOMM Posters and Demos. 2018 (cit. on pp. 77–79).

[40]CVE-2016-2074. https://nvd.nist.gov/vuln/detail/CVE- 2016- 2074. Accessed: 9
September 2019. 2016 (cit. on p. 3).

[41]CVE-2018-1000155: Denial of Service, Improper Authentication and Authorization, and Covert
Channel in the OpenFlow 1.0+ handshake. https : / / www . openwall . com / lists / oss -
security/2018/05/09/4. Accessed: 9 September 2019. 2018 (cit. on pp. 3, 63).

[42]CVE listing for CVE-2016-10377. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-10377. Accessed: 7-11-2019 (cit. on p. 68).

[43]CVE listing for CVE-2016-2074. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-2074. Accessed: 19-07-2016 (cit. on p. 67).

[44]Michael Dalton, David Schultz, Jacob Adriaens, et al. „Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization“. In: Proc. Usenix Networked Systems Design
and Implementation (NSDI). 2018 (cit. on pp. 8, 64, 77, 78, 86, 97).

[45]Denial-of-Service (DoS) due to exceptions in application packet processors. https : / / wiki .
onosproject.org/display/ONOS/Security+advisories. Accessed: 9 September 2019.
2015 (cit. on p. 3).

[46]Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. „SPHINX: Detecting
Security Attacks in Software-Defined Networks.“ In: Proc. Internet Society Symposium on Network
and Distributed System Security (NDSS). 2015 (cit. on pp. 1, 27, 38, 65, 75).

[47]Mihai Dobrescu and Katerina Argyraki. „Software Dataplane Verification“. In: Proc. Usenix
Networked Systems Design and Implementation (NSDI). 2014, pp. 101–114 (cit. on p. 76).

[48]Jeremy M. Dover. A denial of service attack against the Open Floodlight SDN controller. Tech. rep.
Dover Networks, 2013 (cit. on pp. 1, 39).

[49]Dpdk. Writing Efficient Code. https://doc.dpdk.org/guides/prog_guide/writing_

efficient_code.html. Accessed: 06-01-2019 (cit. on p. 90).

[50]Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. „Operational Experiences
with High-volume Network Intrusion Detection“. In: Proc. ACM Conference on Computer and
Communications Security (CCS). CCS ’04. ACM, 2004, pp. 2–11 (cit. on p. 101).

Bibliography 107

https://nvd.nist.gov/vuln/detail/CVE-2016-2074
https://www.openwall.com/lists/oss-security/2018/05/09/4
https://www.openwall.com/lists/oss-security/2018/05/09/4
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10377
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10377
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2074
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2074
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html

[51]Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. „Predicting the Resource
Consumption of Network Intrusion Detection Systems“. In: Recent Advances in Intrusion Detection.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 135–154 (cit. on p. 101).

[52]Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. „Performance characteristics
of virtual switching“. In: Proc. IEEE Conference on Cloud Networking. 2014 (cit. on p. 86).

[53]Endace DAG 10X4-P Datasheet. https://www.endace.com/dag-10x4-p-datasheet.pdf.
Accessed: 07-01-2019 (cit. on p. 88).

[54]Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. „NICA: An Infras-
tructure for Inline Acceleration of Network Applications“. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19). Renton, WA: USENIX Association, 2019, pp. 345–362 (cit. on
p. 101).

[55]Snorre Fagerland, Waylon Grange, and Blue Coat Systems Inc. The Inception Framework: Cloud-
Hosted APT. http://dc.bluecoat.com/Inception_Framework. Accessed: 2017-02-06. 2014
(cit. on p. 15).

[56]Anja Feldmann, Philipp Heyder, Michael Kreutzer, et al. „NetCo: Reliable Routing With Unreliable
Routers“. In: IEEE Workshop on Dependability Issues on SDN and NFV. 2016 (cit. on p. 65).

[57]Tobias Fiebig, Franziska Lichtblau, Florian Streibelt, et al. „SoK: An Analysis of Protocol Design:
Avoiding Traps for Implementation and Deployment“. In: arXiv preprint arXiv:1610.05531 (2016)
(cit. on p. 61).

[58]Daniel Firestone. „VFP: A Virtual Switch Platform for Host SDN in the Public Cloud“. In: Proc.
Usenix Networked Systems Design and Implementation (NSDI). 2017, pp. 315–328 (cit. on pp. 6,
8, 61, 63, 64, 78).

[59]Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, et al. „Azure Accelerated Networking:
SmartNICs in the Public Cloud“. In: Proc. Usenix Networked Systems Design and Implementation
(NSDI). 2018 (cit. on pp. 8, 64, 77, 78, 80, 86, 97).

[60]Fix for CVE-2018-1000155. https://github.com/opennetworkinglab/onos/commit/
f69e3e34092139600404681798cebeefebcfa6c6. Accessed: 16 September 2019. 2018 (cit. on
p. 56).

[61]Sadjad Fouladi, Francisco Romero, Dan Iter, et al. „From Laptop to Lambda: Outsourcing
Everyday Jobs to Thousands of Transient Functional Containers“. In: 2019 USENIX Annual
Technical Conference (USENIX ATC 19). Renton, WA: USENIX Association, 2019, pp. 475–488
(cit. on p. 102).

[62]Jessie Frazelle. Hard Multi-Tenancy in Kubernetes. https://blog.jessfraz.com/post/hard-
multi-tenancy-in-kubernetes. Accessed: 09-01-2019. 2018 (cit. on pp. 61, 79, 82).

[63]Felix C. Freiling. Detecting Targeted Attacks Considered Impossible. Dagstuhl Seminar 12502.
Accessed on 25.10.2015. 2012 (cit. on p. 101).

[64]Marcos Garcia. How connection tracking in Open vSwitch helps OpenStack performance. https:
/ / www . redhat . com / en / blog / how - connection - tracking - open - vswitch - helps -

openstack-performance. Accessed: 17-09-2019. 2016 (cit. on p. 67).

[65]Yuri Gbur. A Feasibility Study of SDN Teleportation in P4Runtime. Bachelor’s Thesis. https:
//github.com/yurigbur/publications/blob/master/Bachelorthesis.pdf. 2018 (cit.
on p. 56).

[66]Geneve: Generic Network Virtualization Encapsulation. https://tools.ietf.org/html/draft-
ietf-nvo3-geneve-08. Accessed: 03-01-2019 (cit. on p. 97).

[67]Michael Gilleland and Merriam Park Software. Levenshtein Distance, in Three Flavors. https:
//people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/

Levenshtein%20Distance.htm. Accessed: 02-01-2018. 2017 (cit. on p. 52).

108 Bibliography

https://www.endace.com/dag-10x4-p-datasheet.pdf
http://dc.bluecoat.com/Inception_Framework
https://github.com/opennetworkinglab/onos/commit/f69e3e34092139600404681798cebeefebcfa6c6
https://github.com/opennetworkinglab/onos/commit/f69e3e34092139600404681798cebeefebcfa6c6
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes
https://www.redhat.com/en/blog/how-connection-tracking-open-vswitch-helps-openstack-performance
https://www.redhat.com/en/blog/how-connection-tracking-open-vswitch-helps-openstack-performance
https://www.redhat.com/en/blog/how-connection-tracking-open-vswitch-helps-openstack-performance
https://github.com/yurigbur/publications/blob/master/Bachelorthesis.pdf
https://github.com/yurigbur/publications/blob/master/Bachelorthesis.pdf
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-08
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-08
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20Distance.htm
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20Distance.htm
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20Distance.htm

[68]C. Gray Girling. „Covert Channels in LAN’s“. In: IEEE Trans. Software Engineering 13.2 (1987),
p. 292 (cit. on p. 41).

[69]Google Compute Engine Pricing. https://cloud.google.com/compute/pricing. Accessed:
03-01-2019. 2018 (cit. on p. 97).

[70]Andy Gospodarek. The Rise of SmartNICs – offloading dataplane traffic to...software. https:
//youtu.be/AGSy51VlKaM. Open vSwitch Conference. 2017 (cit. on pp. 8, 64, 78, 79).

[71]Nicholas Gray, Thomas Zinner, and Phuoc Tran-Gia. „Enhancing SDN Security by Device Fin-
gerprinting“. In: In Proc. IFIP/IEEE International Symposium on Integrated Network Management
(IM). 2017 (cit. on p. 56).

[72]Bernd Grobauer, Tobias Walloschek, and Elmar Stöcker. „Understanding Cloud Computing
Vulnerabilities“. In: IEEE Security & Privacy Magazine 9.2 (2011), pp. 50–57 (cit. on p. 65).

[73]Theodore G Handel and Maxwell T Sandford. „Hiding data in the OSI network model“. In: Proc.
Intl. Workshop on Information Hiding. Springer. 1996, pp. 23–38 (cit. on p. 41).

[74]Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, et al. „Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries“. In: Usenix Annual Technical Conference (ATC). 2019,
pp. 489–504 (cit. on p. 98).

[75]Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. „mSwitch: a highly-scalable,
modular software switch“. In: Proc. ACM Symposium on SDN Research (SOSR). 2015 (cit. on
pp. 8, 64, 77, 78).

[76]Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. „Poisoning Network Visibility in Software-
Defined Networks: New Attacks and Countermeasures.“ In: Proc. Internet Society Symposium on
Network and Distributed System Security (NDSS). 2015 (cit. on pp. 1, 76).

[77]Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. „Poisoning Network Visibility in Software-
Defined Networks: New Attacks and Countermeasures“. In: NDSS. 2015 (cit. on pp. 27, 38).

[78]HowTo Launch VM over OVS-DPDK-17.11 Using Mellanox ConnectX-4 and ConnectX-5. https:
//community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-

using-mellanox-connectx-4-and-connectx-5. Accessed: 09-01-2019 (cit. on p. 88).

[79]Yiyuan Hu, Xiangyang Li, and Xenia Mountrouidou. „Improving covert storage channel analysis
with SDN and experimentation on GENI“. In: National Cyber Summit 16 (2016), pp. 7–9 (cit. on
p. 41).

[80]Huawei HG8245 backdoor and remote access. http://websec.ca/advisories/view/Huawei-
web-backdoor-and-remote-access. Accessed: 2017-02-06. 2013 (cit. on p. 1).

[81]Jinho Hwang, KK Ramakrishnan, and Timothy Wood. „NetVM: high performance and flexible
networking using virtualization on commodity platforms“. In: Proc. Usenix Networked Systems
Design and Implementation (NSDI). 2014 (cit. on pp. 8, 64, 78).

[82]Boris Iglewicz and David Caster Hoaglin. How to detect and handle outliers. Vol. 16. Asq Press,
1993 (cit. on p. 35).

[83]India Poised for Massive Data Center Growth. https://www.whatsnextcw.com/india-poised-
for-massive-data-center-growth/. Accessed: 28-10-2019. 2018 (cit. on p. 1).

[84]Federal Office for Information Security (BSI). BSI: Recommendations for critical information in-
frastructure protection. https://www.bsi.bund.de/EN/Topics/Criticalinfrastructures/
criticalinfrastructures_node.html. Accessed: 28-10-2019. 2015 (cit. on p. 1).

[85]Intel. Enabling NFV to Deliver on its Promise. https://www-ssl.intel.com/content/www/us/
en/communications/nfv-packet-processing-brief.html. Accessed: 28-10-2019. 2015
(cit. on p. 83).

Bibliography 109

https://cloud.google.com/compute/pricing
https://youtu.be/AGSy51VlKaM
https://youtu.be/AGSy51VlKaM
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
http://websec.ca/advisories/view/Huawei-web-backdoor-and-remote-access
http://websec.ca/advisories/view/Huawei-web-backdoor-and-remote-access
https://www.whatsnextcw.com/india-poised-for-massive-data-center-growth/
https://www.whatsnextcw.com/india-poised-for-massive-data-center-growth/
https://www.bsi.bund.de/EN/Topics/Criticalinfrastructures/criticalinfrastructures_node.html
https://www.bsi.bund.de/EN/Topics/Criticalinfrastructures/criticalinfrastructures_node.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html

[86]Intent-Based Networking (IBN) Explained. https://www.cisco.com/c/en/us/solutions/
intent-based-networking.html. Accessed: 25-10-2019. 2019 (cit. on p. 39).

[87]Internet Science Working Group. Internet as a Critical Infrastructure: Security, Resilience and
Dependability Aspects (JRA7). http://www.internet- science.eu/groups/internet-
critical- infrastructure- security- resilience- and- dependability- aspects. Ac-
cessed: 2017-02-06. 2015 (cit. on p. 1).

[88]iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/. Accessed:
07-01-2019 (cit. on p. 92).

[89]Ethan J. Jackson, Melvin Walls, Aurojit Panda, et al. „Softflow: A middlebox architecture for
open vswitch“. In: Usenix Annual Technical Conference (ATC). 2016, pp. 15–28 (cit. on pp. 8, 61,
63).

[90]Van Jacobson. „Congestion avoidance and control“. In: ACM Computer Communication Review
(CCR). 1988 (cit. on p. 74).

[91]Raj Jain and Sudipta Paul. „Network virtualization and software defined networking for cloud
computing: a survey“. In: IEEE Communication Magazine 51.11 (2013) (cit. on pp. 8, 61, 77,
78).

[92]Michael Jarschel, Christopher Metter, Thomas Zinner, Steffen Gebert, and Phuoc Tran-Gia.
„OFCProbe: A platform-independent tool for OpenFlow controller analysis“. In: Communications
and Electronics (ICCE), 2014 IEEE Fifth International Conference on. IEEE. 2014, pp. 182–187
(cit. on pp. 33, 52).

[93]Theo Jepsen, Daniel Alvarez, Nate Foster, et al. „Fast String Searching on PISA“. In: Proceedings
of the 2019 ACM Symposium on SDN Research. ACM. 2019, pp. 21–28 (cit. on p. 101).

[94]Samuel Jero, Xiangyu Bu, Cristina Nita-Rotaru, et al. „BEADS: Automated Attack Discovery in
OpenFlow-Based SDN Systems“. In: Proc. RAID Recent Advances in Intrusion Detection. 2017
(cit. on pp. 1, 65).

[95]Samuel Jero, William Koch, Richard Skowyra, et al. „Identifier Binding Attacks and Defenses in
Software-Defined Networks“. In: Proc. Usenix Security Symp. 2017 (cit. on p. 1).

[96]Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, et al. „EyeQ: Practical Network
Performance Isolation at the Edge“. In: Proc. Usenix Networked Systems Design and Implementation
(NSDI). 2013, pp. 297–311 (cit. on p. 97).

[97]Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. „CoVisor: A Compositional
Hypervisor for Software-Defined Networks“. In: Proc. Usenix Networked Systems Design and
Implementation (NSDI). 2015 (cit. on p. 39).

[98]Xin Jin, Eric Keller, and Jennifer Rexford. „Virtual Switching Without a Hypervisor for a More
Secure Cloud“. In: Proc. USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (HotICE). 2012 (cit. on pp. 8, 64, 65, 78, 79, 83, 98, 101).

[99]Chen Jing. Zero-Copy Optimization for Alibaba Cloud Smart NIC Solution. http : / / www .

alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-

solution_593986. Accessed: 03-01-2019. 2018 (cit. on pp. 8, 77, 79, 80, 83).

[100]Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, et al. „Cloud Programming Simplified: A
Berkeley View on Serverless Computing“. In: CoRR abs/1902.03383 (2019). arXiv: 1902.03383
(cit. on p. 102).

[101]Daya Kamath et al. „Edge virtual Bridge Proposal, Version 0. Rev. 0.1“. In: Apr 23 (2010),
pp. 1–72 (cit. on p. 8).

[102]Andrzej Kamisiński and Carol Fung. „FlowMon: Detecting Malicious Switches in Software-
Defined Networks“. In: Proc. ACM Workshop on Automated Decision making for Active Cyber
Defense. 2015, pp. 39–45 (cit. on p. 76).

110 Bibliography

https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
http://www.internet-science.eu/groups/internet-critical-infrastructure-security-resilience-and-dependability-aspects
http://www.internet-science.eu/groups/internet-critical-infrastructure-security-resilience-and-dependability-aspects
https://iperf.fr/
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://arxiv.org/abs/1902.03383

[103]Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. „Optimizing the "One Big
Switch" Abstraction in Software-defined Networks“. In: Proc. ACM CoNEXT. 2013 (cit. on p. 24).

[104]Kallol Krishna Karmakar, Vijay Varadharajan, and Uday Tupakula. „Mitigating attacks in Software
Defined Network (SDN)“. In: Proc. IEEE Software Defined Systems (SDS). 2017, pp. 112–117
(cit. on p. 65).

[105]Peyman Kazemian, George Varghese, and Nick McKeown. „Header Space Analysis: Static Check-
ing for Networks“. In: Proc. Usenix Networked Systems Design and Implementation (NSDI). 2012,
pp. 113–126 (cit. on p. 38).

[106]Junaid Khalid, Eric Rozner, Wesley Felter, et al. „Iron: Isolating Network-based CPU in Container
Environments“. In: 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). Renton, WA: USENIX Association, 2018, pp. 313–328 (cit. on p. 102).

[107]Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. „Ver-
iFlow: Verifying Network-Wide Invariants in Real Time“. In: Proc. Usenix Networked Systems
Design and Implementation (NSDI). 2013, pp. 467–472 (cit. on p. 38).

[108]R. Klöti, V. Kotronis, and P. Smith. „OpenFlow: A security analysis“. In: Proc. IEEE International
Conference on Network Protocols (ICNP). 2013, pp. 1–6 (cit. on pp. 1, 38, 75).

[109]Mike Ko and Renato Recio. Virtual Ethernet Bridging. http://www.ieee802.org/1/files/
public/docs2009/new- hudson- vepa_seminar- 20090514d.pdf. Accessed: 06-01-2019
(cit. on p. 82).

[110]Teemu Koponen, Keith Amidon, Peter Balland, et al. „Network Virtualization in Multi-tenant
Datacenters“. In: Proc. Usenix Networked Systems Design and Implementation (NSDI). 2014 (cit.
on pp. 1, 8, 61, 77, 78, 97).

[111]Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. „Towards Secure and Dependable
Software-defined Networks“. In: Proc. ACM Workshop on Hot Topics in Software Defined Network-
ing (HotSDN). 2013, pp. 55–60 (cit. on pp. 1, 38, 75).

[112]Robert Krösche, Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. „I DPID It My Way! A
Covert Timing Channel in Software-Defined Networks“. In: Proceedings of the IFIP Networking
Conference (IFIP Networking) and Workshops. IEEE. 2018, pp. 217–225 (cit. on p. ix).

[113]Praveen Kumar, Nandita Dukkipati, Nathan Lewis, et al. „PicNIC: Predictable Virtualized NIC“.
In: Proc. ACM SIGCOMM. 2019, pp. 351–366 (cit. on p. 97).

[114]Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M. Maggs. „R-BGP: Staying connected
in a connected world“. In: Proc. Usenix Networked Systems Design and Implementation (NSDI).
2007 (cit. on p. 1).

[115]Patrick Kutch. „PCI-SIG SR-IOV primer: An introduction to SR-IOV technology“. In: Intel applica-
tion note (2011), pp. 321211–002 (cit. on p. 83).

[116]Volodymyr Kuznetsov et al. „Code-Pointer Integrity“. In: Proc. Usenix Operating Systems Design
Principles (OSDI). 2014, pp. 147–163 (cit. on p. 72).

[117]Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. „What You Need to Know About SDN Flow
Tables“. In: Proc. Passive and Active Measurement (PAM). 2015 (cit. on p. 39).

[118]Butler W Lampson. „A note on the confinement problem“. In: Communications of the ACM 16.10
(1973), pp. 613–615 (cit. on p. 42).

[119]Sihyung Lee, Tina Wong, and Hyong S Kim. „Secure split assignment trajectory sampling: A
malicious router detection system“. In: Proc. IEEE/IFIP Transactions on Dependable and Secure
Computing (DSN). 2006, pp. 333–342 (cit. on p. 76).

[120]T. Lévai, G. Pongrácz, P. Megyesi, et al. „The Price for Programmability in the Software Data
Plane: The Vendor Perspective“. In: IEEE J. Selected Areas in Communications (2018) (cit. on
p. 83).

Bibliography 111

http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf

[121]Felix Lindner. Cisco IOS router exploitation. Tech. rep. Accessed: 2017-02-06. Recurity Labs, 2009
(cit. on p. 1).

[122]Ming Liu, Tianyi Cui, Henry Schuh, et al. „Offloading Distributed Applications Onto smartNICs
Using iPipe“. In: Proc. ACM SIGCOMM. SIGCOMM ’19. ACM, 2019, pp. 318–333 (cit. on p. 101).

[123]Sheng Liu, Michael K Reiter, and Vyas Sekar. „Flow reconnaissance via timing attacks on SDN
switches“. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE. 2017, pp. 196–206 (cit. on p. 1).

[124]Angus Loten. Data-Center Market Is Booming Amid Shift to Cloud. https://www.wsj.com/
articles/data-center-market-is-booming-amid-shift-to-cloud-11566252481. 2019
(cit. on p. 103).

[125]Stephanos Matsumoto, Samuel Hitz, and Adrian Perrig. „Fleet: Defending SDNs from malicious
administrators“. In: Proc. ACM Workshop on Hot Topics in Software Defined Networking (HotSDN).
2014, pp. 103–108 (cit. on p. 75).

[126]James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker. „Thoughts on load dis-
tribution and the role of programmable switches“. In: ACM SIGCOMM Computer Communication
Review 49.1 (2019), pp. 18–23 (cit. on p. 101).

[127]Nick McKeown, Tom Anderson, Hari Balakrishnan, et al. „OpenFlow: enabling innovation in
campus networks“. In: SIGCOMM Comput. Commun. Rev. 38.2 (2008), pp. 69–74 (cit. on pp. 6,
61).

[128]Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. „Revisiting Traffic Anomaly Detection
Using Software Defined Networking“. In: Proc. RAID Recent Advances in Intrusion Detection. 2011,
pp. 161–180 (cit. on p. 38).

[129]Mellanox. Mellanox BlueField SmartNIC. https://bit.ly/2JaMitA. Accessed: 05-06-2018.
2017 (cit. on pp. 8, 64, 78, 79).

[130]Memcached. https://libmemcached.org/libMemcached.html. Accessed: 07-01-2019 (cit. on
p. 92).

[131]Dirk Merkel. „Docker: lightweight linux containers for consistent development and deployment“.
In: Linux Journal (2014), p. 2 (cit. on p. 94).

[132]Dan Meyer. Microsoft Scores Cloud Deal With India’s Reliance Jio. https://www.sdxcentral.
com/articles/news/microsoft- scores- cloud- deal- with- indias- reliance- jio/

2019/08/. Accessed: 28-10-2019. 2019 (cit. on p. 1).

[133]Microsoft. Hyper-V Virtual Switch Overview. https://technet.microsoft.com/en- us/
library/hh831823(v=ws.11).aspx. Accessed: 27-01-2017. 2013 (cit. on pp. 8, 64, 78).

[134]Microsoft. SR-IOV VF Failover and Live Migration Support. https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-

support. Accessed: 03-01-2019. 2017 (cit. on p. 97).

[135]David L Mills. „On the accuracy and stablility of clocks synchronized by the network time
protocol in the Internet system“. In: ACM Computer Communication Review (CCR) 20.1 (1989),
pp. 65–75 (cit. on p. 49).

[136]Mirantis. Control plane virtual machines. https://docs.mirantis.com/mcp/q4-18/mcp-ref-
arch/infra-nodes-plan/cluster-nodes-overview.html. Accessed: 17-09-2019. 2019
(cit. on p. 67).

[137]László Molnár, Gergely Pongrácz, Gábor Enyedi, et al. „Dataplane Specialization for High-
performance OpenFlow Software Switching“. In: Proc. ACM SIGCOMM. 2016 (cit. on pp. 8, 64,
78).

112 Bibliography

https://www.wsj.com/articles/data-center-market-is-booming-amid-shift-to-cloud-11566252481
https://www.wsj.com/articles/data-center-market-is-booming-amid-shift-to-cloud-11566252481
https://bit.ly/2JaMitA
https://libmemcached.org/libMemcached.html
https://www.sdxcentral.com/articles/news/microsoft-scores-cloud-deal-with-indias-reliance-jio/2019/08/
https://www.sdxcentral.com/articles/news/microsoft-scores-cloud-deal-with-indias-reliance-jio/2019/08/
https://www.sdxcentral.com/articles/news/microsoft-scores-cloud-deal-with-indias-reliance-jio/2019/08/
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/infra-nodes-plan/cluster-nodes-overview.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/infra-nodes-plan/cluster-nodes-overview.html

[138]Jayaram Mudigonda, Praveen Yalagandula, Jeff Mogul, Bryan Stiekes, and Yanick Pouffary.
„NetLord: A Scalable Multi-tenant Network Architecture for Virtualized Datacenters“. In: Proc.
ACM SIGCOMM. 2011, pp. 62–73 (cit. on p. 38).

[139]Assaf Muller. OVS ARP Responder – Theory and Practice. https://assafmuller.com/2014/05/
21/ovs-arp-responder-theory-and-practice/. Accessed: 06-01-2019 (cit. on p. 85).

[140]Jad Naous, Michael Walfish, Antonio Nicolosi, et al. „Verifying and Enforcing Network Paths
with Icing“. In: Proc. ACM CoNEXT. 2011, 30:1–30:12 (cit. on p. 1).

[141]Netis Routers Leave Wide Open Backdoor. http : / / blog . trendmicro . com / trendlabs -
security-intelligence/netis-routers-leave-wide-open-backdoor/. Accessed: 2017-
02-06. 2014 (cit. on p. 1).

[142]Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, et al. „Understanding PCIe performance
for end host networking“. In: Proc. ACM SIGCOMM. 2018 (cit. on p. 97).

[143]Miguel Neves, Kirill Levchenko, and Marinho Barcellos. „Sandboxing Data Plane Programs for
Fun and Profit“. In: Proc. ACM SIGCOMM Posters and Demos. 2017 (cit. on p. 98).

[144]ONOS. Security advisories. https://wiki.onosproject.org/display/ONOS/Security+
advisories. Accessed: 2017-02-06. 2015 (cit. on pp. 23, 30).

[145]ONOS Wiki Home. https://wiki.onosproject.org/display/ONOS/Wiki+Home. Accessed:
02-01-2018. 2017 (cit. on p. 51).

[146]P.C. van Oorschot, Tao Wan, and Evangelos Kranakis. „On Interdomain Routing Security and
Pretty Secure BGP (psBGP)“. In: ACM Trans. Inf. Syst. Secur. 10.3 (2007) (cit. on p. 1).

[147]Open vSwitch. Open vSwitch. http://openvswitch.org. Accessed: 02-01-2018. 2018 (cit. on
pp. 8, 51).

[148]OpenFlow protocol bug to get mitigations, not a rewrite. https://www.theregister.co.uk/
2018/05/14/onf_wont_patch_openflow_protocol_vulnerability/. Accessed: 9-9-2019
(cit. on p. 3).

[149]OpenFlow protocol has a switch authentication vulnerability. https://www.theregister.co.
uk/2018/05/10/openflow_switch_auth_vulnerability/. Accessed: 9 September 2019.
2018 (cit. on p. 3).

[150]OpenFlow Spec. In: openflow.org (2013) (cit. on pp. 6, 7).

[151]OpenFlow Switch Specification. ONF TS-009. Version 1.3.2 Wire Protocol 0x04. Open Networking
Foundation. Open Networking Foundation, 2013 (cit. on pp. 7, 42).

[152]OpenStack. Control plane architecture. https://docs.openstack.org/arch-design/design-
control-plane.html. Accessed: 17-09-2019. 2019 (cit. on p. 63).

[153]OpenStack. Native Open vSwitch firewall driver. https://docs.openstack.org/newton/
networking-guide/config-ovsfwdriver.html. Accessed: 17-09-2019. 2019 (cit. on p. 67).

[154]OpenStack. Provider networks with Open vSwitch. https://docs.openstack.org/liberty/
networking-guide/scenario-provider-ovs.html. Accessed: 17-09-2019. 2016 (cit. on
pp. 66, 67).

[155]OpenStack Security Guide. http://docs.openstack.org/security-guide. Accessed: 27-01-
2017. 2016 (cit. on pp. 62, 66, 75).

[156]Adar Ovadia, Rom Ogen, Yakov Mallah, Niv Gilboa, and Yossi Oren. „Cross-Router Covert
Channels“. In: Proc. Usenix Workshop on Offensive Technologies (WOOT). 2019 (cit. on p. 41).

[157][ovs-announce] CVE-2016-2074: MPLS buffer overflow vulnerabilities in Open vSwitch. https://
mail.openvswitch.org/pipermail/ovs-announce/2016-March/000082.html. Accessed:
9 September 2019. 2016 (cit. on p. 3).

Bibliography 113

https://assafmuller.com/2014/05/21/ovs-arp-responder-theory-and-practice/
https://assafmuller.com/2014/05/21/ovs-arp-responder-theory-and-practice/
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://wiki.onosproject.org/display/ONOS/Wiki+Home
http://openvswitch.org
https://www.theregister.co.uk/2018/05/14/onf_wont_patch_openflow_protocol_vulnerability/
https://www.theregister.co.uk/2018/05/14/onf_wont_patch_openflow_protocol_vulnerability/
https://www.theregister.co.uk/2018/05/10/openflow_switch_auth_vulnerability/
https://www.theregister.co.uk/2018/05/10/openflow_switch_auth_vulnerability/
https://docs.openstack.org/arch-design/design-control-plane.html
https://docs.openstack.org/arch-design/design-control-plane.html
https://docs.openstack.org/newton/networking-guide/config-ovsfwdriver.html
https://docs.openstack.org/newton/networking-guide/config-ovsfwdriver.html
https://docs.openstack.org/liberty/networking-guide/scenario-provider-ovs.html
https://docs.openstack.org/liberty/networking-guide/scenario-provider-ovs.html
http://docs.openstack.org/security-guide
https://mail.openvswitch.org/pipermail/ovs-announce/2016-March/000082.html
https://mail.openvswitch.org/pipermail/ovs-announce/2016-March/000082.html

[158]P4Runtime Specification. https://github.com/p4lang/p4runtime. Accessed: 16 September
2019. 2019 (cit. on p. 56).

[159]Oded Padon, Neil Immerman, Aleksandr Karbyshev, et al. „Decentralizing SDN Policies“. In:
Proc. ACM POPL. 2015 (cit. on p. 38).

[160]Nicolae Paladi and Christian Gehrmann. „SDN Access Control for the Masses“. In: Elsevier
Computers & Security (2019) (cit. on p. 82).

[161]Nicolae Paladi and Christian Gehrmann. „Towards Secure Multi-tenant Virtualized Networks“.
In: Proc. IEEE Trustcom/BigDataSE/ISPA. Vol. 1. 2015, pp. 1180–1185 (cit. on p. 65).

[162]Aurojit Panda, Sangjin Han, Keon Jang, et al. „NetBricks: Taking the V out of NFV“. In: Proc.
Usenix Operating Systems Design Principles (OSDI). 2016 (cit. on p. 98).

[163]Manoj Panicker. Enabling Hardware Offload of OVS Control & Data plane using LiquidIO. https:
//youtu.be/qjXBRCFhbqU. Open vSwitch Conference. 2017 (cit. on pp. 8, 64, 78, 79).

[164]Mathias Payer. Too much PIE is bad for performance. http://e-collection.library.ethz.
ch/eserv/eth:5699/eth-5699-01.pdf. Accessed: 27-01-2017. 2012 (cit. on p. 72).

[165]Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. „Characterizing Hypervisor Vulnerabilities
in Cloud Computing Servers“. In: Proc. ACM Workshop on Security in Cloud Computing. 2013,
pp. 3–10 (cit. on p. 76).

[166]Justin Pettit and Thomas Graf. Stateful connection tracking & Stateful NAT. Open vSwitch Fall
Conference 2014. 2014 (cit. on p. 67).

[167]Justin Pettit, Ben Pfaff, Joe Stringer, et al. „Bringing platform harmony to VMware NSX“. In:
ACM SIGOPS Operating System Review (2018) (cit. on p. 98).

[168]Justin Pettit, Ben Pfaff, Chris Wright, and Madhu Venugopal. OVN, Bringing Native Virtual
Networking to OVS. https://networkheresy.com/2015/01/13/ovn-bringing-native-
virtual-networking-to-ovs/. Accessed: 27-01-2017. 2015 (cit. on pp. 8, 61, 77, 78).

[169]Ben Pfaff. Open vSwitch: Past, Present, and Future. http://openvswitch.org/slides/ppf.
pdf. Accessed: 27-01-2017. 2013 (cit. on pp. 8, 64, 67, 78).

[170]Ben Pfaff, Justin Pettit, Keith Amidon, et al. „Extending Networking into the Virtualization Layer.“
In: Proc. ACM Workshop on Hot Topics in Networks (HotNETs). 2009 (cit. on pp. 9, 61, 65).

[171]Ben Pfaff, Justin Pettit, Teemu Koponen, et al. „The design and implementation of Open vSwitch“.
In: Proc. Usenix Networked Systems Design and Implementation (NSDI). 2015 (cit. on pp. 8, 9, 61,
63, 73, 75).

[172]Gregory Pickett. „Abusing software defined networks“. In: Black Hat EU (2014) (cit. on p. 65).

[173]Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, et al. „FairCloud: Sharing the Network in
Cloud Computing“. In: Proc. ACM SIGCOMM (2012), pp. 187–198 (cit. on p. 97).

[174]Philip Porras, Seungwon Shin, Vinod Yegneswaran, et al. „A Security Enforcement Kernel for
OpenFlow Networks“. In: Proc. ACM Workshop on Hot Topics in Software Defined Networking
(HotSDN). 2012, pp. 121–126 (cit. on pp. 1, 38, 39).

[175]Phillip Porras, Steven Cheung, Martin Fong, Keith Skinner, and Vinod Yegneswaran. „Securing
the Software-Defined Network Control Layer“. In: Proc. Internet Society Symposium on Network
and Distributed System Security (NDSS). 2015 (cit. on p. 39).

[176]Kaushik Kumar Ram, Alan L Cox, Mehul Chadha, Scott Rixner, and TW Barr. „Hyper-Switch: A
Scalable Software Virtual Switching Architecture“. In: Usenix Annual Technical Conference (ATC).
2013 (cit. on pp. 8, 64, 78).

[177]Re: [Ryu-devel] CVE-2018-1000155. https://sourceforge.net/p/ryu/mailman/message/
36320200/. Accessed: 16 September 2019. 2018 (cit. on p. 56).

114 Bibliography

https://github.com/p4lang/p4runtime
https://youtu.be/qjXBRCFhbqU
https://youtu.be/qjXBRCFhbqU
http://e-collection.library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
http://openvswitch.org/slides/ppf.pdf
http://openvswitch.org/slides/ppf.pdf
https://sourceforge.net/p/ryu/mailman/message/36320200/
https://sourceforge.net/p/ryu/mailman/message/36320200/

[178]Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. „Consistent Updates for
Software-defined Networks: Change You Can Believe in!“ In: Proc. HotNets. 2011, 7:1–7:6
(cit. on p. 38).

[179]Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. „Hey, You, Get off of My
Cloud: Exploring Information Leakage in Third-party Compute Clouds“. In: Proc. ACM Conference
on Computer and Communications Security (CCS). 2009, pp. 199–212 (cit. on p. 75).

[180]Sasko Ristov, Marjan Gusev, and Aleksandar Donevski. Openstack cloud security vulnerabilities
from inside and outside. Technical Report. 2013 (cit. on p. 75).

[181]Luigi Rizzo. „Netmap: a novel framework for fast packet I/O“. In: Usenix Annual Technical
Conference (ATC). 2012 (cit. on p. 83).

[182]Luigi Rizzo and Giuseppe Lettieri. „VALE, a Switched Ethernet for Virtual Machines“. In: Proc.
ACM CoNEXT. 2012 (cit. on pp. 8, 64, 78).

[183]Jordan Robertson and Michael Riley. The Big Hack: How China Used a Tiny Chip to Infiltrate U.S.
Companies. https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-
how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies. Accessed:
5-11-2018. 2018 (cit. on p. 1).

[184]Robin G. Open vSwitch with DPDK Overview. https : / / software . intel . com / en - us /
articles/open-vswitch-with-dpdk-overview. Accessed: 27-01-2017. 2016 (cit. on pp. 8,
64, 78, 83).

[185]Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. „Return-Oriented Program-
ming: Systems, Languages, and Applications“. In: ACM Trans. on Information and System Security
(TISSEC) 15.1 (2012), 2:1–2:34 (cit. on p. 70).

[186]ROPGadget Tool. https://github.com/JonathanSalwan/ROPgadget/tree/master. Ac-
cessed: 02-06-2016 (cit. on p. 70).

[187]Eric C. Rosen et al. MPLS Label Stack Encoding. RFC 3032 (Proposed Standard). Internet
Engineering Task Force, 2001 (cit. on pp. 68–70).

[188]Eric C. Rosen, Arun Viswanathan, and Ross Callon. Multiprotocol Label Switching Architecture.
RFC 3031 (Proposed Standard). Internet Engineering Task Force, 2001 (cit. on p. 69).

[189]Joanna Rutkowska and Rafal Wojtczuk. „Qubes OS architecture“. In: Invisible Things Lab Tech
Rep 54 (2010) (cit. on p. 65).

[190][Ryu-devel]: CVE-2018-1000155: Denial of Service, Improper Authentication and Authorization,
and Covert Channel in the OpenFlow 1.0+ handshake. https://sourceforge.net/p/ryu/
mailman/message/36329676/. Accessed: 9 September 2019. 2018 (cit. on p. 3).

[191]Jerome H. Saltzer and Michael D. Schroeder. „The protection of information in computer
systems“. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308 (cit. on pp. 77, 80).

[192]Takayuki Sasaki, Christos Pappas, Taeho Lee, Torsten Hoefler, and Adrian Perrig. „SDNsec:
Forwarding accountability for the SDN data plane“. In: 2016 25th International Conference on
Computer Communication and Networks (ICCCN). IEEE. 2016, pp. 1–10 (cit. on p. 1).

[193]Len Sassaman et al. „Security Applications of Formal Language Theory“. In: IEEE Systems Journal
7.3 (2013), pp. 489–500 (cit. on pp. 61, 64).

[194]Security concerns for the P4Runtime handshake. https://github.com/p4lang/p4runtime/
pull/161. Accessed: 16 September 2019. 2019 (cit. on p. 56).

[195]Security-Mode ONOS. https://wiki.onosproject.org/display/ONOS/Security-Mode+
ONOS. Accessed: 2017-02-06. 2015 (cit. on p. 39).

Bibliography 115

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://github.com/JonathanSalwan/ROPgadget/tree/master
https://sourceforge.net/p/ryu/mailman/message/36329676/
https://sourceforge.net/p/ryu/mailman/message/36329676/
https://github.com/p4lang/p4runtime/pull/161
https://github.com/p4lang/p4runtime/pull/161
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS

[196]SecuritytWeek. CSA’s Cloud Adoption, Practices and Priorities Survey Report. http://www.
securityweek.com/data-security-concerns-still-challenge. Accessed: 09-01-2019.
2015 (cit. on p. 77).

[197]Send a raw Ethernet frame in Linux. https://gist.github.com/austinmarton/1922600.
Accessed: 2017-02-06. 2011 (cit. on p. 24).

[198]Muhammad Shahbaz, Sean Choi, Ben Pfaff, et al. „Pisces: A programmable, protocol-independent
software switch“. In: Proc. ACM SIGCOMM. 2016 (cit. on pp. 8, 64, 78, 98).

[199]Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. „Approximating Fair
Queueing on Reconfigurable Switches“. In: 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). Renton, WA: USENIX Association, 2018, pp. 1–16 (cit. on
p. 101).

[200]Bhargava Shastry, Markus Leutner, Tobias Fiebig, et al. „Static Program Analysis as a Fuzzing
Aid“. In: Proc. RAID Recent Advances in Intrusion Detection. 2017 (cit. on p. 61).

[201]Rob Sherwood, Glen Gibb, Kok-Kiong Yap, et al. Flowvisor: A network virtualization layer. Tech.
rep. OpenFlow, 2009 (cit. on p. 39).

[202]Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas Saha. „Sharing the
Data Center Network“. In: Proc. Usenix Networked Systems Design and Implementation (NSDI).
Boston, MA, 2011, pp. 309–322 (cit. on p. 97).

[203]S. Shin, P. Porras, V. Yegneswaran, et al. „Fresco: Modular composable security services for
software-defined networks“. In: Proc. Internet Society Symposium on Network and Distributed
System Security (NDSS). 2013 (cit. on pp. 1, 38).

[204]Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. „AVANT-GUARD: Scalable
and Vigilant Switch Flow Management in Software-defined Networks“. In: Proc. ACM Conference
on Computer and Communications Security (CCS). 2013, pp. 413–424 (cit. on pp. 38, 75).

[205]Gustavus J. Simmons. „A Secure Subliminal Channel (?)“ In: Advances in Cryptology. 1986,
pp. 33–41 (cit. on p. 41).

[206]Igor Smolyar, Muli Ben-Yehuda, and Dan Tsafrir. „Securing Self-Virtualizing Ethernet Devices“.
In: Proc. Usenix Security Symp. 2015 (cit. on p. 97).

[207]Snowden: The NSA planted backdoors in Cisco products. http://www.infoworld.com/article/
2608141/internet- privacy/snowden-- the- nsa- planted\- backdoors- in- cisco-

products.html. Accessed: 02-01-2018. 2014 (cit. on p. 1).

[208]Software-Defined Networking tools for LXC (LinuX Containers). https://github.com/jpetazzo/
pipework. Accessed: 18-09-2019 (cit. on p. 94).

[209]John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. „Enabling Practical Software-
defined Networking Security Applications with OFX“. In: Proc. Internet Society Symposium on
Network and Distributed System Security (NDSS). 2016 (cit. on p. 75).

[210]John Sonchack, Anurag Dubey, Adam J Aviv, Jonathan M Smith, and Eric Keller. „Timing-based
reconnaissance and defense in software-defined networks“. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM. 2016, pp. 89–100 (cit. on p. 1).

[211]Julian Stecklina. „Shrinking the Hypervisor One Subsystem at a Time: A Userspace Packet
Switch for Virtual Machines“. In: Proc. ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE). 2014 (cit. on pp. 8, 64, 78, 98).

[212]Brent Stephens, Aditya Akella, and Michael Swift. „Loom: Flexible and Efficient NIC Packet
Scheduling“. In: Proc. Usenix Networked Systems Design and Implementation (NSDI). 2019, pp. 33–
46 (cit. on p. 97).

[213]Ryan Stone. PCI SR-IOV on FreeBSD. https://people.freebsd.org/~rstone/BSDCan_SRIOV.
pdf. Accessed: 06-01-2019 (cit. on p. 83).

116 Bibliography

http://www.securityweek.com/data-security-concerns-still-challenge
http://www.securityweek.com/data-security-concerns-still-challenge
https://gist.github.com/austinmarton/1922600
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
https://github.com/jpetazzo/pipework
https://github.com/jpetazzo/pipework
https://people.freebsd.org/~rstone/BSDCan_SRIOV.pdf
https://people.freebsd.org/~rstone/BSDCan_SRIOV.pdf

[214]Joe Stringer. OVS conntrack support. https://lwn.net/Articles/652967/. Accessed: 17-09-
2019. 2015 (cit. on p. 67).

[215]SYNful Knock - A Cisco router implant - Part I. https://www.fireeye.com/blog/threat-
research/2015/09/synful_knock_-_acis.html. Accessed: 2017-02-06. 2015 (cit. on p. 1).

[216]T. Koponen et al. „Network Virtualization in Multi-tenant Datacenters“. In: 11th USENIX Sympo-
sium on Networked Systems Design and Implementation. 2014 (cit. on p. 9).

[217]Rashid Tahir et al. „Sneak-Peek: High speed covert channels in data center networks“. In: Proc.
IEEE INFOCOM. 2016, pp. 1–9 (cit. on p. 41).

[218]Technical whitepaper for afl-fuzz. http://lcamtuf.coredump.cx/afl/technical_details.
txt. Accessed: 02-06-2016 (cit. on p. 67).

[219]The Fast Data Project. What is the Fast Data Project (FD.io)? https://fd.io/about. Accessed:
05-06-2018. 2017 (cit. on pp. 8, 64, 78, 83).

[220]The gVisor project. https://github.com/google/gvisor. Accessed: 09-01-2019. 2018 (cit. on
pp. 82, 94).

[221]The Kata Containers project. https://katacontainers.io. Accessed: 09-01-2019. 2018 (cit.
on pp. 82, 94).

[222]The Tale of One Thousand and One DSL Modems. https://securelist.com/analysis/
publications/57776/the-tale-of-one-thousand-and-one-dsl-modems/. Accessed:
2017-02-06. 2012 (cit. on p. 1).

[223]Kashyap Thimmaraju, Saad Hermak, Gábor Rétvári, and Stefan Schmid. „MTS: Bringing Multi-
Tenancy to Virtual Networking“. In: Proceedings of the USENIX Annual Technical Conference (ATC).
USENIX. 2019, pp. 521–536 (cit. on pp. ix, 8, 64, 78).

[224]Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. „Outsmarting Network Security with
SDN Teleportation“. In: Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE. 2017, pp. 563–578 (cit. on pp. ix, 1, 65).

[225]Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. „Preacher: Network Policy Checker for
Adversarial Environments“. In: 38th International Symposium on Reliable Distributed Systems
(SRDS) 2019. 2019 (cit. on p. 101).

[226]Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, et al. „Taking Control of SDN-based
Cloud Systems via the Data Plane“. In: Proceedings of the Symposium on SDN Research (SOSR).
ACM. 2018, pp. 1–15 (cit. on p. ix).

[227]Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, et al. „Taking Control of SDN-based
Cloud Systems via the Data Plane“. In: Proc. ACM Symposium on SDN Research (SOSR). 2018
(cit. on pp. 1, 78–80).

[228]Kashyap Thimmaraju et al. „Taking Control of SDN-based Cloud Systems via the Data Plane“. In:
Proc. ACM Symposium on SDN Research (SOSR). 2018 (cit. on pp. 37, 38).

[229]Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, et al. „The vAMP Attack: Taking Control
of Cloud Systems via the Unified Packet Parser“. In: Proceedings of ACM Cloud Computing Security
Workshop (CCSW). ACM. 2017, pp. 11–15 (cit. on pp. ix, 61).

[230]Kashyap Thimmaraju, Gábor Rétvári, and Stefan Schmid. „Virtual Network Isolation: Are We
There Yet?“ In: Proceedings of the Workshop on Security in Softwarized Networks: Prospects and
Challenges (SECSON). ACM. 2018, pp. 1–7 (cit. on p. ix).

[231]Heidi J. Tretheway et al. „A snapshot of Openstack users’ attitudes and deployments.“ In:
Openstack User Survey (Apr 2016) (cit. on pp. 6, 66).

Bibliography 117

https://lwn.net/Articles/652967/
https://www.fireeye.com/blog/threat-research/2015/09/synful_knock_-_acis.html
https://www.fireeye.com/blog/threat-research/2015/09/synful_knock_-_acis.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://fd.io/about
https://github.com/google/gvisor
https://katacontainers.io
https://securelist.com/analysis/publications/57776/the-tale-of-one-thousand-and-one-dsl-modems/
https://securelist.com/analysis/publications/57776/the-tale-of-one-thousand-and-one-dsl-modems/

[232]Shin-Yeh Tsai and Yiying Zhang. „A Double-Edged Sword: Security Threats and Opportunities
in One-Sided Network Communication“. In: Proc. Usenix Workshop on Hot Topics in Cloud
Computing (HotCloud). 2019 (cit. on p. 76).

[233]Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang. „Pythia: Remote Oracles for the Masses“. In:
Proc. Usenix Security Symp. 2019, pp. 693–710 (cit. on p. 76).

[234]Janet Tseng et al. „Accelerating Open vSwitch with Integrated GPU“. In: Proc. ACM Workshop on
Kernel-Bypass Networks. 2017 (cit. on pp. 8, 64, 78).

[235]Amin Vahdat. Enter the Andromeda zone - Google Cloud Platform’s latest networking stack. https:
//cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-

platforms-latest-networking-stack.html. Accessed: 19-10-2017. 2014 (cit. on pp. 6, 8,
104).

[236]Rick Vanover. Virtual switching to become enhanced with Cisco and VMware announcement.
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-

enhanced-with-cisco-and-vmware-announcement. Accessed: 27-01-2017. 2008 (cit. on
pp. 8, 61, 64, 78).

[237]Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer
2 Networks over Layer 3 Network. https://tools.ietf.org/html/rfc7348. Accessed:
01-06-2016 (cit. on pp. 8, 97).

[238]VMware. NSX Controller Installation and Clustering. https://docs.vmware.com/en/VMware-
NSX-T-Data-Center/2.1/com.vmware.nsxt.install.doc/GUID-447C0417-A37B-4C2E-

965E-499F52587160.html. Accessed: 17-09-2019. 2018 (cit. on p. 63).

[239]VMware. VMware ESX 4.0 Update 1 Release Notes. https://bit.ly/2sFTuTy. Accessed:
05-06-2018. 2009 (cit. on pp. 8, 61, 64, 77, 78).

[240]Open vSwitch. Flowgen. https://github.com/openvswitch/ovs/blob/branch-2.3/tests/
flowgen.pl. Accessed: 17-09-2019. 2013 (cit. on p. 67).

[241]Haopei Wang, Lei Xu, and Guofei Gu. „FloodGuard: a dos attack prevention extension in software-
defined networks“. In: Proc. IEEE/IFIP Transactions on Dependable and Secure Computing (DSN).
2015, pp. 239–250 (cit. on p. 1).

[242]Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift. „Peeking
behind the curtains of serverless platforms“. In: Usenix Annual Technical Conference (ATC). 2018,
pp. 133–146 (cit. on p. 102).

[243]What is Openstack? https://www.openstack.org/software. 2016 (cit. on p. 6).

[244]Hanqian Wu et al. „Network security for virtual machine in cloud computing“. In: Proc. IEEE
Conference on Computer Sciences and Convergence Information Technology. 2010, pp. 18–21
(cit. on p. 75).

[245]Jiarong Xing, Adam Morrison, and Ang Chen. „NetWarden: Mitigating Network Covert Chan-
nels without Performance Loss“. In: Proc. Usenix Workshop on Hot Topics in Cloud Computing
(HotCloud). 2019 (cit. on p. 41).

[246]Xin Xu and Bhavesh Davda. „SRVM: Hypervisor Support For Live Migration With Passthrough
SR-IOV Network Devices“. In: Proc. ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE). 2016, pp. 65–77 (cit. on p. 97).

[247]Dongting Yu, Andrew W Moore, Chris Hall, and Ross Anderson. Security: a Killer App for SDN?
Tech. rep. Indiana Uni. at Bloomington, 2014 (cit. on p. 65).

[248]Yu Zhao. PCI: Linux kernel SR-IOV support. https://lwn.net/Articles/319651/. Accessed:
06-01-2019. 2009 (cit. on p. 83).

118 Bibliography

https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
https://tools.ietf.org/html/rfc7348
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/2.1/com.vmware.nsxt.install.doc/GUID-447C0417-A37B-4C2E-965E-499F52587160.html
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/2.1/com.vmware.nsxt.install.doc/GUID-447C0417-A37B-4C2E-965E-499F52587160.html
https://docs.vmware.com/en/VMware-NSX-T-Data-Center/2.1/com.vmware.nsxt.install.doc/GUID-447C0417-A37B-4C2E-965E-499F52587160.html
https://bit.ly/2sFTuTy
https://github.com/openvswitch/ovs/blob/branch-2.3/tests/flowgen.pl
https://github.com/openvswitch/ovs/blob/branch-2.3/tests/flowgen.pl
https://www.openstack.org/software
https://lwn.net/Articles/319651/

[249]Wenxuan Zhou, Dong (Kevin) Jin, Jason Croft, Matthew Caesar, and Philip Brighten Godfrey.
„Enforcing Customizable Consistency Properties in Software-Defined Networks“. In: Proc. Usenix
Networked Systems Design and Implementation (NSDI). 2015, pp. 73–85 (cit. on p. 38).

[250]Zhe Zhou, Zhou Li, and Kehuan Zhang. „All Your VMs are Disconnected: Attacking Hardware
Virtualized Network“. In: Proc. ACM Conference on Data and Application Security and Privacy
(CODASPY). 2017 (cit. on p. 97).

[251]Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, et al. „Slim: OS Kernel Support for a Low-Overhead
Container Overlay Network“. In: Proc. Usenix Networked Systems Design and Implementation
(NSDI). Boston, MA: USENIX Association, 2019, pp. 331–344 (cit. on pp. 8, 64, 78, 98).

Bibliography 119

List of Figures

2.1 Abstract representation of an MTDC network topology and the key compo-
nents: (i) centralized controller to operate the physical and virtual network
infrastructure, (ii) vswitch for network virtualization. 6

2.2 High-level illustration of network virtualization using virtual switches in an
MTDC. The vswitch isolates the green and orange tenant networks via tenant-
specific flow table entries thereby giving each tenant the illusion of a single
network. 7

2.3 High-level architecture of Open vSwitch. 9

4.1 Illustration of teleportation: Malicious switches (with red horns) exploit the
controller for hidden communication, possibly bypassing data plane security
mechanisms such as a firewall. 16

4.2 Message sequence pattern for path update teleportation. Switch s2 teleports
information to s1 when s1 receives the Flow-delete message from controller c0. 19

4.3 Message sequence pattern for path reset teleportation. Switch s1 teleports
information to s2 and s3 via Flow-add messages sent by the controller c0. . . 20

4.4 Message sequence pattern for switch identification teleportation when the
controller denies the second switch a connection. When s2’s connection is
terminated, s1 successfully teleports information to s2. 22

4.5 Message sequence pattern for switch identification teleportation when con-
trollers c1 and c2 send different Role-request messages to s1 and s2 respectively.
When s1 receives the Role-request=Master message whereas s2 receives the
Role-request=Equal message. In this manner s1 teleports information to s2
when s2 received the Role-request=Equal message. 23

4.6 Message sequence pattern for out-of-band forwarding teleportation. The con-
troller c0 receives the Packet-in from s1 and accordingly sends a Packet-out

to s2, successfully teleporting packets from s1 to s2. 24

4.7 An SDN topology with OpenFlow switches s1 and s2 and an OpenFlow con-
troller c0 (ONOS). k1 and k3 are connected to s1 while k2 and k4 are connected
to s2. s1 and s2 are separated by a firewall fw1 that denies hosts on s1 to com-
municate with hosts on s2 and vice-versa. k1 can use out-of-band forwarding
teleportation to transfer data to k2, bypassing fw1. 25

4.8 An SDN topology of OpenFlow switches s1, s2, s3 and s4, OpenFlow con-
troller c0 (ONOS). Hosts k1 and k3 are connected to s1 and k2 and k4 are
connected to s2. c0 has installed flows on s1, s3 and s2 so that k1 and k2 can
communicate bi-directionally. Teleportation traffic is via c0. 26

121

4.9 An SDN topology with independent OpenFlow switches controlled by inde-
pendent OpenFlow controllers (ONOS). c1 and c2 share and synchronize state
information via an independent controller network. s1 is controlled by c1 and s2
is controlled by c2 respectively. 28

4.10 An SDN topology with OpenFlow switches s1, s2, s3 and s4 and an OpenFlow
controller c0 (ONOS). k1 and k3 are connected to s1 while k2 and k4 are
connected to s2. Note that s2 is not connected to the other switches, and
thereby is isolated in the data plane. k2 can still exfiltrate data to k1 using
out-of-band forwarding teleportation circumventing the data plane isolation. . 29

4.11 The message sequence pattern for evading policy conflicts using out-of-band for-
warding teleportation. The side effect of Flow-mod messages are avoided when
Jumbo frames are used from a masqueraded MAC address; only Packet-ins
and Packet-outs are used. 30

4.12 An SDN topology with OpenFlow switches s1 and s2 with c0 the OpenFlow con-
troller (ONOS). k1 and k3 are connected to s1 while k2 is connected to s2. fw1
denies k2 to communicate with k1 and k3 and vice-versa via the data plane. s1
and k2 being malicious, exploit the out-of-band forwarding teleportation to
eavesdrop and modify communication data between k1 and k3 bypassing fw1. 31

4.13 Out-of-Band Forwarding performance characteristics without and with load on
the controller. (a) Received throughput, (b) Jitter and (c) Packet loss. 34

4.14 Received throughput using Out-of-Band Forwarding (a) without load (b) with
load on the controller. 34

4.15 (a) CPU load using Out-of-Band Forwarding without and with load on the
controller. (b) Memory usage using Out-of-Band Forwarding without and with
load on the controller. 36

4.16 Scatter plot of the CPU usage on the controller for Out-of-Band Forwarding. (a)
Without load on the controller. (b) With load on the controller. Legend as in
Fig. 4.13. 36

5.1 Message sequence pattern for the OpenFlow handshake and switch identification
teleportation when the controller denies the second switch a connection. In
this way, s2 can infer a bit value after it gets disconnected. 43

5.2 State machine for the sender to send one binary value. 44

5.3 State machine for the receiver to receive one binary value. 45

5.4 Channel accuracy for time intervals 30-100 ms, and frame lengths 7, 14 and
28 when δoffset = 5ms, OpenFlow status is checked at ∆/2, with no load and
with load on the controller. 53

5.5 Missed start bit errors for time intervals 30-100 ms, and frame lengths 7, 14
and 28 when δoffset = 5ms, OpenFlow status is checked at ∆/2, and there is
no load on the controller. 53

5.6 Channel accuracy for time intervals 30-100 ms, and frame lengths 7, 14 and
28 when δoffset = 5ms, OpenFlow status is checked at 2∆/3, with no load and
with load on the controller. 54

5.7 Channel accuracy for time intervals 30-100 ms, and frame lengths 7, 14 and
28 when δoffset = 5ms, OpenFlow status is checked at ∆/3, with no load and
with load on the controller. 54

122 List of Figures

5.8 End of message errors and Missed start bit errors for time intervals 30-100
ms, and frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow status is
checked at ∆/3, with no load. 54

5.9 Channel accuracy for message lengths 64, 512 and 1024 for time intervals
30−100 ms, and frame length 7, when OpenFlow status is checked at 2Delta/3,
with no load and with load on the controller. 55

6.1 The total number of parsed network protocols in two popular virtual switches
(OvS and Cisco’s Nexus 1000V) and OpenFlow from 2009-2019. 62

6.2 An overview of the security implications of current multi-tenant network virtual-
ization architectures that use virtual switches. An attacker can exploit Host OS
co-location, centralized and virtualized control, and complex packet processing
(in the Unified packet parser) of untrusted data to launch an attack from a VM
on the virtualization layer (1). From there, the attacker can propagate to the
controller node (2) and then compromise other servers in the cloud (3). . . 63

6.3 MPLS label stacks are placed in the Shim header between the Ethernet and IP
headers. 68

6.4 Forwarding latency of OvS with and without countermeasures on a vanilla
kernel and grsecurity enabled kernel in the slow and fast path. 74

6.5 Forwarding throughput of OvS with and without countermeasures on a vanilla
kernel and grsecurity enabled kernel in the slow and fast path. 75

7.1 A high-level view depicting the security-performance-resource tradeoffs for the
state-of-the-art and MTS network virtualization architectures. 79

7.2 High-level overview of MTS in security Level-2. The Red and Blue vswitch
compartments (VMs) are allocated dedicated virtual functions (VFs) to com-
municate with external networks using the In/Out VF, their respective tenants
using the Gw VF and T VF. Communication between the vswitches, tenants and
the Host physical function (PF) are mediated via the SR-IOV NIC switch. . . . 83

7.3 A step-by-step illustration of how packets enter and leave the Red tenant from
Figure 7.2 in MTS. a shows how ingress packets reach TenantRed. b shows
how TenantRed packets reach an external system TenantExt. 84

7.4 Three canonical traffic scenarios evaluated: p2p, p2v and v2v 88
7.5 The security, throughput, latency and resource tradeoff comparison of MTS. The

rows indicate the resource mode. The columns are ordered as throughput,
latency and resources. The security levels used are shown in the legend. Note
the bottom row is for security Level-3 in the isolated resource mode combined
with other security levels. 89

7.6 Iperf throughput, Apache and Memcached throughput and latency (shown in
the columns) comparison of MTS. The rows indicate the resource mode where
the bottom row is for security Level-3 in the isolated resource mode combined
with the other security levels. The legend is the same as in Figure 7.5. 92

7.7 Forwarding throughput comparison of MTS with four tenants in the p2p and
p2v scenarios. The vswitch runs in VMs (gray bars) or in containers in VMs
(green bars). 95

7.8 Forwarding throughput comparison of scaling MTS using containers in multiple
VMs in the p2p and p2v scenarios. Note that the number of containers is equal
to the number of tenants and that they are evenly distributed across all the VMs. 96

List of Figures 123

7.9 Forwarding throughput of MTS with 16 tenants and maximum number of sup-
ported vswitch containers in VMs in the p2v scenario. 96

124 List of Figures

List of Tables

1.1 List of assigned CVEs presented in this dissertation 3

2.1 List of virtual switches surveyed in this dissertation. MTS is introduced in this
dissertation. 8

4.1 Summary of teleportation techniques, types, messages and associated threats. 22
4.2 Summary of teleportation attacks and involved entities. 39

6.1 Design characteristics of virtual switches surveyed in this dissertation. MTS is
presented in this dissertation. 64

7.1 Design characteristics of surveyed virtual switches in this dissertation. MTS is
presented in this chapter. 78

125

	Titlepage
	Abstract
	Zusammenfassung
	Bibliographic Note
	Acknowledgement
	Dedication
	Contents
	1 Introduction
	2 The Multi-Tenant Data Center
	2.1 Overview
	2.2 Software-Defined Centralized Control
	2.3 Network Virtualization

	3 Threat Model
	I Covert Channels via the Control Plane
	4 Outsmarting Network Security with Teleportation
	4.1 Preliminaries
	4.2 Modeling Teleportation
	4.3 Teleportation Techniques
	4.4 Switch- and Host-based Attacks
	4.5 Out-of-Band Forwarding Performance
	4.6 Countermeasures
	4.7 Related Work
	4.8 Conclusions

	5 Peekaboo! I DPID You: A Novel OpenFlow Covert Channel
	5.1 A Covert Channel using Teleportation
	5.2 Design and Performance Challenges
	5.3 Evaluation
	5.4 Discussion
	5.5 Conclusions

	II Network Isolation via the Data Plane
	6 Reins to the Cloud via the Virtual Switch
	6.1 Security Analysis
	6.2 Case Study: OvS in OpenStack
	6.3 Software Countermeasures
	6.4 Related Work
	6.5 Conclusion

	7 Bringing Multi-Tenancy to Network Virtualization
	7.1 Securing Virtual Switches
	7.2 Threat Model
	7.3 Design Principles and Security Levels
	7.4 The MTS Architecture
	7.5 Evaluating Tradeoffs
	7.6 Workload-based Evaluation
	7.7 Scaling MTS
	7.8 Discussion
	7.9 Related Work
	7.10 Conclusion

	8 Future Work
	9 Conclusion
	Bibliography
	List of Figures
	List of Tables

