Skip to main content

Advertisement

Log in

Inter-comparison of carbon content in PM10 and PM2.5 measured with two thermo-optical protocols on samples collected in a Mediterranean site

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Scientific interest is focusing on different approaches for characterising organic carbon (OC), elemental carbon (EC) and equivalent black carbon (eBC), although EUSAAR2 protocol has been established and frequently used in EU for regulatory purposes. Discrepancies are observed due to thermal protocols used for OC/EC determinations and the effect of the chemical-physical properties of aerosol using optical measurements for eBC. In this work, a long-term inter-comparison of carbon measurements with two widely used protocols (EUSAAR2 and NIOSH870) was performed on PM2.5 and PM10 samples. The influence of the protocol on the evaluation of secondary organic aerosol (SOC) and on the correlation between EC and eBC was investigated. An extensive check of repeatability gave typical uncertainties of ~ 5% for TC and OC, and ~ 10% for EC for both thermal protocols. Results show that OC is statistically comparable between the two protocols but EC is significantly higher with EUSAAR2, especially during the warm season. The ratio OC/EC is lower with EUSAAR2, also showing a seasonality (lower values in the warm season) not observed with NIOSH870. Despite the differences in OC/EC ratios, the contribution of SOC to OC (~ 50%), evaluated using the EC-tracer method, did not differ significantly between the two protocols and for both size fractions. Further, SOC/OC ratios were comparable in cold and warm periods. eBC/EC ratios larger than one for both protocols were obtained, 1.62 (EUSAAR2) and 1.92 (NIOSH870), and also correlated with the ratio OC/EC for both protocols, especially in the cold season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amato F, Alastuey A, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Severi M, Becagli S, Gianelle VL, Colombi C, Alves C, Custódio D, Nunes T, Cerqueira M, Pio C, Eleftheriadis K, Diapouli E, Reche C, Minguillón MC, Manousakas M-I, Maggos T, Vratolis S, Harrison RM, Querol X (2016) AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmos Chem Phys 16:3289–3309

    CAS  Google Scholar 

  • Baumgardner D, Popovicheva O, Allan J, Bernardoni V, Cao J, Cavalli F, Cozic J, Diapouli E, Eleftheriadis K, Genberg PJ, Gonzalez C, Gysel M, John A, Kirchstetter TW, Kuhlbusch TAJ, Laborde M, Lack D, Müller T, Niessner R, Petzold A, Piazzalunga A, Putaud JP, Schwarz J, Sheridan P, Subramanian R, Swietlicki E, Valli G, Vecchi R, Viana M (2012) Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. Atmos Meas Tech 5:1869–1887

    CAS  Google Scholar 

  • Bautista AT, Pabroa PCB, Santos FL, Quirit LL, Asis JLB, Dy MAK, Martinez JPG (2015) Intercomparison between NIOSH, IMPROVE_A, and EUSAAR_2 protocols: finding an optimal thermal–optical protocol for Philippines OC/EC samples. Atmos Pollut Res 6:334–342

    Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    CAS  Google Scholar 

  • Brown RJC, Beccaceci S, Butterfield DM, Quincey PG, Harris PM, Maggos T, Panteliadis P, John A, Jedynska A, Kuhlbusch TAJ, Putaud JP, Karanasiou A (2017) Standardisation of a European measurement method for organic carbon and elemental carbon in ambient air: results of the field trial campaign and the determination of a measurement uncertainty and working range. Environ Sci Process Impacts 19:1249–1259

    CAS  Google Scholar 

  • Cavalli F, Viana M, Yttri KE, Genberg J, Putaud JP (2010) Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos Meas Tech 3:79–89

    CAS  Google Scholar 

  • CEN-TC264 (2017) European Committee for Standardisation, EN 16909:2017, Ambient air – measurement of elemental carbon (EC) and organic carbon (OC) collected on filters. CEN, Brussels

  • Cesari D, Donateo A, Conte M, Merico E, Giangreco A, Giangreco F, Contini D (2016a) An inter-comparison of PM2.5 at urban and urban background sites: chemical characterization and source apportionment. Atmos Res 174–175:106–119

    Google Scholar 

  • Cesari D, Donateo A, Conte M, Contini D (2016b) Inter-comparison of source apportionment of PM10 using PMF and CMB in three sites nearby an industrial area in central Italy. Atmos Res 182:282–293

    CAS  Google Scholar 

  • Cesari D, De Benedetto GE, Bonasoni P, Busetto M, Dinoi A, Merico E, Chirizzi D, Cristofanelli P, Donateo A, Grasso FM, Marinoni A, Pennetta A, Contini D (2018a) Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci Total Environ 612:202–213

    CAS  Google Scholar 

  • Cesari D, Merico E, Dinoi A, Marinoni A, Bonasoni P, Contini D (2018b) Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmos Res 200:97–108

    CAS  Google Scholar 

  • Chen D, Cui H, Zhao Y, Yin L, Lu Y, Wang Q (2017) A two-year study of carbonaceous aerosols in ambient PM2.5 at a regional background site for western Yangtze River Delta, China. Atmos Res 183:351–361

    CAS  Google Scholar 

  • Cheng Y, He KB, Duan F, Zheng M, Du ZY, Ma YL, Tan J (2011) Ambient organic carbon to elemental carbon ratios: influences of the measurement methods and implications. Atmos Environ 45:2060–2066

    CAS  Google Scholar 

  • Cheng Y, He KB, Duan F, Du Z, Zheng M, Ma YL (2014) Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications. Sci Total Environ 468–469:1103–1111

    Google Scholar 

  • Cheng Y, He KB, Engling G, Weber R, Liu JM, Du ZY, Dong SP (2017) Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci Total Environ 599-600:1047–1055

    CAS  Google Scholar 

  • Chow JC, Watson JG (2002) PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites. J Geophys Res Atmos 107(D21):8344

    Google Scholar 

  • Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazler CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality studies. Atmos Environ 27(8):1185–1201

    Google Scholar 

  • Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 34:23–34

    CAS  Google Scholar 

  • Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmuller H, Fung K (2004) Equivalence of elemental carbon by thermal/ optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38:4414–4422

    CAS  Google Scholar 

  • Conny JM, Klinedinst DB, Wight SA, Paulsen JL (2003) Technology optimizing thermal-optical methods for measuring atmospheric elemental (Black) carbon: a response surface study. Aerosol Sci Technol 37:703–723

    CAS  Google Scholar 

  • Contini D, Cesari D, Genga A, Siciliano M, Ielpo P, Guascito MR, Conte M (2014) Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci Total Environ 472:248–261

    CAS  Google Scholar 

  • Contini D, Vecchi R, Viana M (2018) Carbonaceous aerosols in the atmosphere. Atmosphere 9(5):181

    Google Scholar 

  • Day MC, Zhang M, Pandis SN (2015) Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmos Environ 112:317–325

    CAS  Google Scholar 

  • Ding X, Wang XM, Gao B, Fu XX, He QF, Zhao XY, Zheng M (2012) Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J Geophys Res Atmos 117(5):1–14

    Google Scholar 

  • Dinoi A, Donateo A, Belosi F, Conte M, Contini D (2017a) Comparison of atmospheric particle concentration measurements using different optical detectors: potentiality and limits for air quality applications. Meas J Int Meas Confed 106:274–282

    Google Scholar 

  • Dinoi A, Cesari D, Marinoni A, Bonasoni P, Riccio A, Chianese E, Tirimberio G, Naccarato A, Sprovieri F, Andreoli V, Moretti S, Gullì D, Calidonna CR, Ammoscato I, Contini D (2017b) Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy. Atmosphere 8:243

    Google Scholar 

  • Donateo A, Lo Feudo T, Marinoni A, Dinoi A, Avolio E, Merico E, Calidonna CR, Contini D, Bonasoni P (2018) Characterization of in situ aerosol optical properties at three observatories in the Central Mediterranean. Atmosphere 9:369. https://doi.org/10.3390/atmos9100369

    Article  CAS  Google Scholar 

  • Escudero M, Viana M, Querol X, Alastuey A, Díez Hernández P, García Dos Santos S, Anzano J (2015) Industrial sources of primary and secondary organic aerosols in two urban environments in Spain. Environ Sci Pollut Res 22:10413–10424

    CAS  Google Scholar 

  • Gentner DR, Isaacman G, Worton DR, Chan AWH, Dallmann TR, Davis L, Liu S, Day DA, Russell LM, Wilson KR, Weber R, Guha A, Harley RA, Goldstein AH (2012) Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc Natl Acad Sci U S A 109:18318–18323

    CAS  Google Scholar 

  • Giannoni M, Calzolai G, Chiari M, Cincinelli A, Lucarelli F, Martellini T, Nava S (2016) A comparison between thermal-optical transmittance elemental carbon measured by different protocols in PM2.5 samples. Sci Total Environ 571:195–205

    CAS  Google Scholar 

  • Godec R, Jakovljević I, Šega K, Čačković M, Bešlić I, Davila S, Pehnec G (2016) Carbon species in PM10 particle fraction at different monitoring sites. Environ Pollut 216:700–710

    CAS  Google Scholar 

  • Grivas G, Cheristanidis S, Chaloulakou A (2012) Elemental and organic carbon in the urban environment of Athens Seasonal and diurnal variations and estimates of secondary organic carbon. Sci Total Environ 414:535–545

    CAS  Google Scholar 

  • Hitzenberger R, Petzold A, Bauer H, Ctyroky P, Pouresmaeil P, Laskus L, Puxbaum H (2006) Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location. Environ Sci Technol 40:6377–6383

    CAS  Google Scholar 

  • Huntzicker JJ, Johnson RL, Shah JJ, Cary RA (1982) Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method. In: Wolff GT, Klimisch RL (eds) Particulate carbon: atmospheric lifecycle. Plenum, New- York, pp 79–88

    Google Scholar 

  • Ji D, Zhang J, He J, Wang X, Pang B, Liu Z, Wang Y (2016) Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos Environ 125:293–306

    CAS  Google Scholar 

  • Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, De Carlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in atmosphere. Science 326:1525–1529

    CAS  Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123

    CAS  Google Scholar 

  • Kanaya Y, Komazaki Y, Pochanart P, Liu Y, Akimoto H, Gao J, Wang T, Wang Z (2008) Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. Atmos Chem Phys 8:7637–7649

    CAS  Google Scholar 

  • Khan B, Hays MD, Geron C, Jetter J (2012) Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis. Aerosol Sci Technol 46:127–137

    CAS  Google Scholar 

  • Khan MB, Masiol M, Formenton G, Di Gilio A, De Gennaro G, Agostinelli C, Pavoni B (2016) Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Sci Total Environ 542:172–181

    CAS  Google Scholar 

  • Kroll JH, Seinfeld JH (2008) Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42:3593–3624

    CAS  Google Scholar 

  • Maenhaut W, Clayes M (2007) Characterisation and sources of carbonaceous atmospheric aerosol, in: Scientific support plan for a sustainable development policy (SPSD II). Belgian Science Policy, Bruxelles

    Google Scholar 

  • Massabò D, Caponi L, Bove MC, Prati P (2016) Brown carbon and thermal-optical analysis: a correction based on optical multi-wavelength apportionment of atmospheric aerosol. Atmos Environ 125:119–125

    Google Scholar 

  • Massling A, Nielsen IE, Kristensen D, Christensen JH, Sørensen LL, Jensen B, Nguyen QT, Nøjgaard JK, Glasius M, Skov H (2015) Atmospheric black carbon and sulfate concentrations in Northeast Greenland. Atmos Chem Phys 15:9681–9692

    CAS  Google Scholar 

  • Mbengue S, Fusek M, Schwarz J, Vodička P, Šmejkalová AH, Holoubek I (2018) Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe. Atmos Environ 182:335–346

    CAS  Google Scholar 

  • Na K, Sawant AA, Song C, Cocker DR III (2004) Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos Environ 38:1345–1355

    CAS  Google Scholar 

  • Novakov T, Corrigan CE (1995) Thermal characterization of biomass smoke particles. Mikrochim Acta 119:157–166

    CAS  Google Scholar 

  • Panteliadis P, Hafkenscheid T, Cary B, Diapouli E, Fischer A, Favez O, Quincey P, Viana M, Hitzenberger R, Vecchi R, Saraga D, Sciare J, Jaffrezo JL, John A, Schwarz J, Giannoni M, Novak J, Karanasiou A, Fermo P, Maenhaut W (2015) ECOC comparison exercise with identical thermal protocols after temperature offset correction-instrument diagnostics by in-depth evaluation of operational parameters. Atmos Meas Tech 8:779–792

    CAS  Google Scholar 

  • Park K, Chow JC, Watson JG, Trimble DL, Doraiswamy P, Arnott WP, Stroud KR, Bowers K, Bode R, Petzold A, Hansen ADA (2006) Comparison of continuous and filter-based carbon measurements at the Fresno Supersite. J Air Waste Manage Assoc 56:474–491

    CAS  Google Scholar 

  • Peterson MR, Richards MH (2002) Thermal-optical transmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in PM2.5 by the EPA/NIOSH method. In: Winegar ED, Tropp RJ (eds) Proceedings, Symposium on Air Quality Measurement Methods and Technology-2002. Air & Waste Management Association, Pittsburgh, pp 83-1–83-19

    Google Scholar 

  • Petzold A, Kramer H, Schönlinner M (2002) Continuous measurement of atmospheric black carbon using a multi-angle absorption photometer. Environ Sci Pollut Res 4:78–82

    Google Scholar 

  • Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Beletnsperger U, Holzer-Popp T, Kinne S, Pappalardo G, Sugimoto N, Wehrli C, Wiedensohler A, Zhang XY (2013) Recommendations for reporting “black carbon” measurements. Atmos Chem Phys 13:8365–8379

    CAS  Google Scholar 

  • Piazzalunga A, Bernardoni V, Fermo P, Valli G, Vecchi R (2011) Technical note: on the effect of water-soluble compounds removal on EC quantification by TOT analysis in urban aerosol samples. Atmos Chem Phys 11:10193–10203

    CAS  Google Scholar 

  • Pio C, Cerqueira M, Harrison RM, Nunes T, Mirante F, Alves C, Oliveira C, Sanchez de la Campa A, Artíñano B, Matos M (2011) OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ 45:6121–6132

    CAS  Google Scholar 

  • Plaza J, Artíñano B, Salvador P, Gómez-Moreno FJ, Pujadas M, Pio CA (2011) Short-term secondary organic carbon estimations with a modified OC/EC primary ratio method at a suburban site in Madrid (Spain). Atmos Environ 45(15):2496–2506

    CAS  Google Scholar 

  • Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmannd H, Hitzenberger R, Hüglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Raesa F (2010) A European aerosol phenomenology-3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320

    CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in northern India. Atmos Res 97:335–342

    CAS  Google Scholar 

  • Reisinger P, Wonaschutz A, Hitzenberger R, Petzold A, Bauer H, Jankowski N, Puxbaum H, Chi X, Maenhaut W (2008) Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: influence of biomass combustion. Environ Sci Technol 42:884–889

    CAS  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262

    CAS  Google Scholar 

  • Sahu LK, Kondo Y, Miyazaki Y, Pongkiatkul P, Kim Oanh NT (2011) Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. J Geophys Res Atmos 116:1–14

    Google Scholar 

  • Salako GO, Hopke PK, Cohen DD, Begum BA, Biswas SK, Pandit GG, Chung Y, Rahman SA, Hamzah MS, Davy P, Markwitz A, Shagjjamba D, Lodoysamba S, Wimolwattanapun W, Bunprapob S (2012) Exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual Res 12:1–7

    CAS  Google Scholar 

  • Salameh D, Detournay A, Pey J, Pérez N, Liguori F, Saraga D, Bove MC, Brotto P, Cassola F, Massabò D, Latella A, Pillon S, Formenton G, Patti S, Armengaud A, Piga D, Jaffrezo JL, Bartzis J, Tolis E, Prati P, Querol X, Wortham H, Marchand N (2015) PM2.5 chemical composition in five European Mediterranean cities: a 1-year study. Atmos Res 155:102–117

    CAS  Google Scholar 

  • Samara C, Voutsa D (2014) Organic and elemental carbon associated to PM10 and PM 2.5 at urban sites of northern Greece. Environ Sci Pollut Res 21:1769–1785

    CAS  Google Scholar 

  • Sandrini S, Fuzzi S, Piazzalunga A, Prati P, Bonasoni P, Cavalli F, Bove MC, Calvello M, Cappelletti D, Colombi C, Contini D, de Gennaro G, Di Gilio A, Fermo P, Ferrero L, Gianelle V, Giugliano M, Ielpo P, Lonati G, Marinoni A, Massabò D, Molteni U, Moroni B, Pavese G, Perrino C, Perrone MG, Perrone MR, Putaud JP, Sargolini T, Vecchi R, Gilardoni S (2014) Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos Environ 99:587–598

    CAS  Google Scholar 

  • Schauer JJ, Mader BT, Deminter JT, Heidemann G, Bae MS, Seinfeld JH, Flagan RC, Cary RA, Smith D, Huebert BJ, Bertram T, Howell S, Kline JT, Quinn P, Bates T, Turpin B, Lim HJ, Yu JZ, Yang H, Keywood MD (2003) ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ Sci Technol 37(5):993–1001

    CAS  Google Scholar 

  • Seguel AR, Morales SRGE, Leiva GMA (2009) Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City, Chile. Atmos Environ 43:2125–2131

    Google Scholar 

  • Singh A, Rajput P, Sharma D, Sarin MM, Singh D (2014) Black carbon and elemental carbon from postharvest agricultural-waste burning emissions in the Indo-Gangetic plain. Adv Meteorol. 10 pages

  • Snyder DC, Schauer JJ (2007) An inter-comparison of two black carbon aerosol instruments and a semi-continuous elemental carbon instrument in the urban environment. Aerosol Sci Technol 41:463–474

    CAS  Google Scholar 

  • Subramanian R, Khlystov AY, Robinson AL (2006) Effect of peak inert-mode temperature on elemental carbon measured using thermal-optical analysis. Aerosol Sci Technol 40:763–780

    CAS  Google Scholar 

  • Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res Atmos 11:1–12

    Google Scholar 

  • ten Brink H, Maenhaut W, Hitzenberger R, Gnauk T, Spindler G, Even A, Chi X, Bauer H, Puxbaum H, Putaud J-P, Tursic J, Berner A (2004) INTERCOMP2000: the comparability of methods in use in Europe for measuring the carbon content of aerosol. Atmos Environ 38:6507–6519

    Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544

    CAS  Google Scholar 

  • Venkatachari P, Zhou L, Hopke PK, Schwab JJ, Demerjian KL, Weimer S, Hogrefe O, Felton D, Rattigan O (2006) An intercomparison of measurement methods for carbonaceous aerosol in the ambient air. Aerosol Sci Technol 40:788–795

    CAS  Google Scholar 

  • Watson JG, Chow JC, Chen L-WA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res 5:65–82

    CAS  Google Scholar 

  • Wu C, Yu JZ (2016) Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmos Chem Phys 16:5453–5465

    CAS  Google Scholar 

  • Wu C, Hilda Huang XH, Man Ng W, Griffith SM, Zhen Yu J (2016) Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion. Atmos Meas Tech 9:4547–4560

    CAS  Google Scholar 

  • Yang F, Huang L, Duan F, Zhang W, He K, Ma Y, Brook JR, Tan J, Zhao Q, Cheng Y (2011) Carbonaceous species in PM2.5 Carbonaceous species in PM2.5 at a pair of rural-urban sites in Beijing, 2005-2008. Atmos Chem Phys 11:7893–7903

    CAS  Google Scholar 

  • Yu JZ, Xu J, Yang H (2002) Charring characteristics of atmospheric organic particulate matter in thermal analysis. Environ Sci Technol 36:754–761

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by I-AMICA (Infrastructure of High Technology for Environmental and Climate Monitoring—PONa3_00363).

Funding

The project was funded by National Operational Program (PON) for ‘Research and Competitiveness 2007–2013’ and co-funded with the European Regional Development Fund (ERDF) and National resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Merico.

Additional information

Responsible editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Compliance with ethical standards

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merico, E., Cesari, D., Dinoi, A. et al. Inter-comparison of carbon content in PM10 and PM2.5 measured with two thermo-optical protocols on samples collected in a Mediterranean site. Environ Sci Pollut Res 26, 29334–29350 (2019). https://doi.org/10.1007/s11356-019-06117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06117-7

Keywords

Navigation