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Abstract. The impact of volatile organic compound (VOC) emissions to the atmosphere on the production of secondary 

pollutants, such as ozone and secondary organic aerosol (SOA), is mediated by the concentration of nitric oxide (NO). Polluted 30 

urban atmospheres are typically considered to be “high-NO” environments, while remote regions such as rainforests, with 

minimal anthropogenic influences, are considered to be “low-NO”. Policy to reduce urban air pollution is typically developed 

assuming that the chemistry is controlled by the high-NO regime. However, our observations from central Beijing show that 

this simplistic separation of regimes is flawed. Despite being in one of the largest megacities in the world, we observe 

significant formation of gas and aerosol phase oxidation products associated with the low-NO ‘rainforest-like’ regime during 35 

the afternoon. This is caused by a surprisingly low concentration of NO, coupled with high concentrations of VOCs and of the 

atmospheric oxidant hydroxyl (OH). Box model calculations suggest that during the morning high-NO chemistry predominates 

(95%) but in the afternoon low-NO chemistry plays a greater role (30%). With increasing global emphasis on reducing air 

pollution, the modelling tools used to develop urban air quality policy need to adequately represent both high- and low-NO  

regimes if they are to have utility. 40 
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1 Introduction 

The atmosphere in polluted urban areas has a markedly different chemical composition to that in remote regions (e.g. 

rainforests). This can lead to changes in the chemical oxidation pathways for volatile organic compounds (VOCs), giving rise 

to the formation of different secondary pollutants. Oxidation by hydroxyl radicals (OH) is the dominant daytime sink for 

VOCs, leading to the formation of highly reactive peroxy radicals (RO2). In atmospheres with high concentrations of nitric 45 

oxide (NO), emitted by combustion sources such as vehicles, cooking, and energy generation, RO2 radicals react predominantly 

with NO (Orlando and Tyndall, 2012). This tends to break the initial VOC down to smaller, more oxidised VOCs, and can also 

produce organic nitrates (RONO2). This pathway also produces NO2, the photolysis of which leads to ozone production. In 

contrast, in low-NO atmospheres RO2 predominantly react with other RO2, including hydroperoxyl radicals (HO2), or can 

isomerize/auto-oxidise to form different multi-functionalized oxygenated RO2 (Crounse et al., 2013). These low NO pathways 50 

tend to maintain the original carbon skeleton. The large highly oxidised molecules formed can efficiently partition to the 

aerosol phase to yield secondary organic aerosol (SOA) (Bianchi et al., 2019), which often comprises a large fraction of 

submicron atmospheric particulate matter (PM) in many regions (Jimenez et al., 2009).  

 

Biogenic sources dominate global emissions of VOCs to the atmosphere, with the highly reactive VOC isoprene (2-methyl-55 

1,3-butadiene) contributing ~70% by mass (Sindelarova et al., 2014). The gas and aerosol phase products of isoprene oxidation 

have been extensively characterized in the laboratory (Wennberg et al., 2018). In this work a range of isoprene oxidation 

products are used as tracers of the changing atmospheric chemical environment. For isoprene, the low-NO oxidation pathway 

leads to low volatility products, such as isoprene hydroperoxides (ISOPOOH), that can go on to form significant quantities of 

SOA via formation of isoprene epoxides (IEPOX) (Figure 1) (Paulot et al., 2009; Surratt et al., 2010; Lin et al., 2012). The 60 

high-NO pathway can also form SOA via the formation of methacrolein (MACR), which can react further to form SOA 

constituents such as 2-methylglyceric acid (2-MGA) and corresponding oligomers (Kroll et al., 2006; Surratt et al., 2006; 

2010; Nguyen et al., 2015) (Figure 1). Other significant contributors to isoprene-SOA formed via the high NO pathway include 

nitrates (e.g. ISOPONO2) and dinitrates (Schwantes et al., 2019). 

2 Results 65 

Beijing is a megacity (population of 21.4 M) with an atmospheric reactive VOC mix with both biogenic and anthropogenic 

influences. Mean diurnal cycles of ozone, NO, isoprene, and a range of gas and aerosol phase isoprene oxidation products 

measured at a city-centre site in summer 2017 (Shi et al., 2019) are shown in Figure 2. Ozone increases throughout the day to 

a mid-afternoon peak (Figure 2a), driven by the photolysis of NO2, which is rapidly regenerated through the reactions of ozone, 

RO2 and HO2 with NO. The high level of ozone acts to suppress NO concentrations. Such a diurnal cycle is typical of urban 70 

environments (Ren et al., 2003; Whalley et al., 2018). However, ozone is so high in Beijing, with mixing ratios regularly >100 
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ppbv in the afternoon, that on many days NO concentrations fall to < 0.5 ppbv in the afternoon, and on some days to < 0.1 

ppbv (see Supplementary Information). 

The observed diurnal cycles of ‘low-NO’ and ‘high-NO’ isoprene oxidation products (Figure 1) in both the gas and aerosol 

phases can be explained by the observed diurnal cycle of NO (Figure 2a). The high-NO product isoprene nitrate (ISOPONO2) 75 

(Figure 2c) is produced through the morning from reaction of isoprene peroxy radicals (ISOPOO) with NO. During the 

afternoon, an increasing fraction of ISOPOO begins to react with HO2 or RO2 as the NO concentration drops. This leads to the 

observed decrease in ISOPONO2, and an increase in IEPOX + ISOPOOH through the afternoon (Figure 2b). The profile of 

the high-NO products MACR+MVK (Figure 2d) is very similar to that of ISOPONO2 until about 15:00, when they begin to 

increase, with a second peak observed at around 17:00. This latter peak may be an observational artefact as a result of the 80 

conversion of ISOPOOH to MACR on metal surfaces within the inlet of the PTR instrument (Rivera-Rios et al., 2014). Isoprene 

oxidation products can also partition into the particle phase and undergo heterogeneous reactions to form organosulfates, with 

concentrations driven by a number of additional factors such as particulate sulfate and water vapour concentrations. Specific 

organosulfate tracers from the high-NO (2-MGA-OS, Figure 2e) and low-NO (2-methyltetrol-OS formed from IEPOX, Figure 

2f) pathways were observed, with low concentrations overnight, increasing during the day to a peak around 15:00-16:00.   85 

 

The observed temporal profiles of the isoprene tracer products suggest a chemical cycle switching from a high-NO to a low-

NO chemical regime during the day in Beijing. First, isoprene nitrates, formed predominantly during the morning (Figure 2c), 

are characteristic of high-NO chemistry. Second, isoprene hydroperoxides (ISOPOOH) and epoxydiols (IEPOX) (Figure 2b), 

formed predominantly during the afternoon, are characteristic of low-NO chemistry, where the reaction of ISOPOO with HO2 90 

dominates over reaction with NO. The formation of highly oxygenated molecules (HOMs), characteristic of RO2 isomerisation 

and auto-oxidation in low NO environments, has also been observed during the afternoon at this site (Brean et al., 2019). Third, 

the observation of large amounts of 2-methylglyceric acid (2-MGA-OS) (Figure 2e) in the aerosol is suggestive of both high 

and low NO chemistry having occurred. The precursor to 2-MGA, methacrolein (MACR), is formed predominantly via 

reactions of ISOPOO with NO (Figure 1), i.e. during the morning. In the afternoon, the RO2 formed from oxidation of MACR 95 

reacts with NO2 (in preference to NO, because of the very low NO/NO2 ratio) and further oxidation leads to 2-MGA (Surratt 

et al., 2010; Chan et al., 2010; Nguyen et al., 2015). 

3 Box Modeling 

The chemical box model DSMACC (Emmerson and Evans, 2009), coupled with the near-explicit oxidation mechanism for 

isoprene from the Master Chemical Mechanism (MCM v3.3.1) (Jenkin et al., 1997; 2015), was used to assess the sensitivity 100 

of the fraction of ISOPOO reacting with NO (fNO) to varying NO concentrations and the OH reactivity (∑𝑘#$%&#' [VOC]). 

The model was run to steady state at a range of different fixed concentrations of [OH], [NO], and [isoprene], using fixed 

photolysis rates typical of Beijing daytime (see Supplementary Information). Figure 3 shows that, as expected, fNO increases 
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with increasing NO concentration. It also shows that fNO is not a fixed value for a given concentration of NO, but decreases 

with the increasing reactivity of the system (the x-axis in Figure 3). The reactivity varies as a function of the VOC mixing 105 

ratios, the reactive mix of VOCs, and the OH concentration, i.e. [OH] x OH reactivity* (Equation E1). This term effectively 

defines the rate of production of RO2. Higher reactivity and higher OH concentrations both lead to a higher concentration of 

peroxy radicals ([HO2] + å[RO2]), reducing fNO. Average measurements of ([OH] ́  OH reactivity*) and [NO] for the afternoon 

(12:00 – 20:00) from a range of different environments are shown in Figure 3 (see also Table S1). The RO2 chemistry in the 

rural southeastern US and the Borneo rainforest lies in the low NO regime (i.e. fNO < 0.5) for the whole afternoon. In the urban 110 

areas of London and New York the chemistry remains in the high NO regime through the whole afternoon. However, in 

Beijing, the extreme suppression of NO concentrations in the afternoon drives the chemistry from a regime in which > 95 % 

of the RO2 is reacting with NO during the morning, to one in which less than 70 % is reacting with NO by mid-afternoon.  

4 Discussion and Conclusions 

The major driver of the very low afternoon NO mixing ratios is the high levels of ozone. However, model runs with the regional 115 

chemical transport model GEOS-Chem show that the low NO levels cannot be explained solely through suppression by ozone 

using current understanding of atmospheric chemistry (Supplementary Information). One explanation may be additional NO 

sinks that recycle OH without producing O3 which have previously been proposed for the high VOC-low NO (< 1ppbv) 

conditions seen in Beijing and other cities (Hofzumahaus et al., 2009; Whalley et al., 2018; Tan et al., 2019). Another 

explanation may be the presence of high concentrations of other species that can convert NO to NO2 e.g. halogen oxides. The 120 

failure of regional and global models to accurately replicate this chemistry has wider implications for the prediction of 

secondary pollutants and hence for determining policies to control air pollution episodes. 

 

Our observations from Beijing challenge the commonly accepted view of polluted urban areas as high-NO atmospheric 

environments in two ways. First, very high ozone regularly reduces afternoon NO to < 1ppbv, and on some days to < 0.1 ppbv. 125 

This leads to the formation of ‘low-NO’ products in the gas and aerosol phase. Second, the level of NO that is required for 

‘low-NO chemistry’ to occur is not a fixed value, but is dependent on the concentration and reactivity of the VOCs present 

and the concentration of OH. Hence NO concentrations that represent ‘low-NO’ conditions in a tropical rainforest, for example, 

are different to those that represent ‘low-NO’ conditions in a highly polluted urban environment with elevated VOC/OH 

reactivity.  130 

 

Under the conditions observed in Beijing, the production of low-NO SOA and the associated increase in PM is shown to be 

closely linked to photochemical ozone production. Policies that reduce the afternoon ozone peak might also be expected to 

reduce the production of these aerosol-phase products. However, such policies must also take account of the complex 

interactions between NOx, VOCs, ozone, and PM. For example, reducing NOx emissions can counter-intuitively lead to 135 
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increases in ozone, as has occurred in other major cities (Air Quality Expert Group, 2009), while reducing PM has also been 

shown to lead to increases in ozone (Jacob et al., 2019). With many existing and developing megacities being located in 

subtropical regions with high emissions of reactive biogenic VOCs, and with the continued and increasing use of fossil fuels 

for transport and power generation, such extreme chemical environments as that observed in Beijing can be expected to 

proliferate. In these environments, biogenic emissions of isoprene can dominate the OH reactivity making reduction of VOC 140 

reactivity through emissions controls very difficult. Additionally, since many Asian megacities are situated within much larger 

densely populated regions, attempts to control air quality are likely to be ineffective unless implemented on a regional scale. 

Identification of the best policy for a particular city-region will require detailed atmospheric chemical modelling with chemical 

mechanisms capable of simulating the appropriate chemical environments both for the present day and for future environments. 

 145 

Methods 

The site was located at the Institute of Atmospheric Physics, between the 3rd and 4th ring road. Measurements took place 

between 17/05/2017 and 24/06/2017. The site is typical of central Beijing, surrounded by residential and commercial properties 

and is near several busy roads. It is also close to several green spaces, including a tree-lined canal to the south and the Olympic 

forest park to the north-east. Isoprene mixing ratios were measured by dual channel gas chromatography (DC-GC-FID). 150 

IEPOX/ISOPOOH were observed using iodide chemical ionisation mass spectrometry. The sum of MACR + MVK was 

measured using proton transfer mass spectrometry. Particle samples were collected onto filter papers at either 3 hourly or 1 

hourly time periods, depending on pollution levels. Filters were extracted and analysed with a high throughput method using 

ultra high-pressure liquid chromatography coupled to a Q-Exactive Orbitrap mass spectrometer. Nitric oxide, NO, was 

measured by chemiluminescence with a Thermo Scientific Model 42i NOx analyser. Nitrogen dioxide, NO2, was measured 155 

using a Teledyne Model T500U Cavity Attenuated Phase Shift (CAPS) spectrometer. Ozone, O3, was measured using a 

Thermo Scientific Model 49i UV photometer.  

 

DC-GC-FID 

Observations of VOCs were made using a dual-channel GC with flame ionisation detectors. Air was sampled at 30 L min-1 at 160 

a height of 5m, through a stainless-steel manifold (½” internal diameter). 500 mL subsamples were taken, dried using a glass 

condensation finger held at -40oC and then pre-concentrated using a Markes Unity2 pre-concentrator on a multi-bed Ozone 

Precursor adsorbent trap (Markes International Ltd). These samples were then transferred to the GC oven for analysis following 

methods described by Hopkins et al (2011). 

 165 

CIMS 

A time of fight chemical ionisation mass spectrometer (ToF-CIMS) (Lee et al., 2014; Priestley et al., 2018) using an iodide 

ionisation system was couple deployed here. Experimental set up of the University of Manchester ToF-CIMS has been 

previously described in Zhou et al. (2019).  During the campaign, gas phase backgrounds were established through regularly 
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overflowing the inlet with dry N2 for 5 continuous minutes every 45 minutes and were applied consecutively. The overflowing 170 

of dry N2 will have a small effect on the sensitivity of the instrument to those compounds whose detection is water dependent. 

Here we find that due to the very low instrumental background for C5H10O3 and C5H9NO4, the absolute error remains small 

from this effect (<10 ppt in both reported measurements).  

Field calibrations were regularly carried out using known concentration formic acid gas mixtures made in a custom-made gas 

phase manifold. A range of other species were calibrated for after the campaign, and relative calibration factors were derived 175 

using the measured formic acid sensitivity during these calibrations, as has been performed previously (Le Breton et al. 2018, 

Bannan et al. 2015). In addition to this, offline calibrations, prior to and after the field work project, of a wide range of organic 

acids, HNO3 and Cl2 were performed to assess possible large scale sensitivity changes over the measurement period.  No 

significant changes were observed. Offline calibrations after the field work campaign were performed specific to the isoprene 

oxidation species observed here. IEPOX (C5H10O3) synthesized by the University of North Carolina, Department of 180 

Environmental Sciences & Engineering was specifically calibrated for here. Aliquots of known concentrations of IEPOX 

(C5H10O3) were thermally desorbed into a known continuous flow of nitrogen. For C5H9NO4 there was no direct calibration 

source available and concentrations using the calibration factor of C5H10O3 are presented here.  

 

PTR-MS 185 

A Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS 2000, Ionicon Analytik GmBH, Innsbruck) was 

deployed at the base of the 325m meteorological tower at the IAP field site. This instrument has been described in detail by 

Jordan et al. (2009). The PTR-ToF-MS was operated at a measurement frequency of 5 Hz and an E/N ratio (where E represents 

the electric field strength and N the buffer gas density) in the drift tube of 130 Td. To enable accurate calibration of the mass 

scale trichlorobenzene was introduced by diffusion into the inlet stream. 190 

The instrument was switched between two inlet systems in an hourly cycle. For the first 20 minutes of each hour, the PTR-MS 

sampled from a gradient switching manifold and for the next 40 minutes, the instrument subsampled a common flux inlet line 

running from the 102m platform on the tower to the container in which the PTR-ToF-MS was housed. Gradient measurements 

were made from 3, 15, 32, 64 and 102 m with air sampled down 0.25 inch O.D. PFA lines and split between a 3 L min-1 bypass 

and 300 ml min-1 sample drawn to a 10 L stainless steel container. During the gradient sampling period, the PTR-ToF-MS 195 

subsampled for 2 minutes from each container giving an hourly average concentration at each height. In this work, only data 

from the 3m gradient height is discussed. 

Zero air was generated using a platinum catalyst heated to 260 °C and was sampled hourly in the gradient switching cycle. 

During the field campaign, the instrument was calibrated twice weekly using a 15 component 1 ppmv VOC standard (National 

Physical Laboratory, Teddington). The calibration gas flow was dynamically diluted into zero air to give a six-point calibration. 200 

Data was analysed using PTR-MS Viewer 3. 
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PM2.5 filter sampling and analysis 

PM2.5 filter samples were collected using an ECOTECH HiVol 3000 (Ecotech, Australia) high volume air sampler with a 205 

selective PM2.5 inlet, with a flow rate of 1.33 m3 min-1. Filters were baked at 500 oC for five hours before use. After collection, 

samples were wrapped in foil, and then stored at -20 oC and shipped to the laboratory. Samples were collected at a height of 8 

m, on top of a building in the IAP complex. Hourly samples were taken on 11th June between 08:00-17:00, with one further 

sample taken overnight. The extraction of the organic aerosol from the filter samples was based on the method of Hamilton et 

al. (2008). Initially, roughly an 8th of the filter was cut up into 1 cm2 pieces. 4 ml of LC-MS grade H2O was then added to the 210 

sample and left for two hours. The samples were then sonicated for 30 minutes. Using a 2 ml syringe, the water extract is then 

pushed through a 0.22μm filter (Millipore) into another sample vial. An addition 1 mL of water was added to the filter sample, 

then extracted through the filter, to give a combined aqueous extract. This extract was then reduced to dryness using a vacuum 

solvent evaporator (Biotage, Sweden). The dry sample was then reconstituted in 1 mL 50:50 MeOH:H2O solution, ready for 

analysis. 215 

The extracted filter samples and standards were analysed using UPLC-MS2, using an Ultimate 3000 UPLC (Thermo Scientific, 

USA) coupled to a Q-exactive Orbitrap MS (Thermo Fisher Scientific, USA) with a heated electrospray ionisation (HESI). 

The UPLC method uses a reverse phase 5 μm, 4.6 x 100mm, Accucore column (Thermo scientifc, UK) held at 40 oC. The 

mobile phase consists of LC-MS grade water and 100 % MeOH (Fisher Chemical, USA). The water was acidified using 0.1 

% formic acid to improve peak resolution. The injection volume was 2 μl. The solvent gradient was held for a minute at 90:10 220 

H2O:MeOH, the gradient then changed linearly to 10:90  H2O:MeOH over 9 minutes, it was then held for 2 minutes at this 

gradient before returning to 90:10  H2O:MeOH over 2 minutes and then held at 90:10 for the remaining 2 minutes, with a flow 

rate of 300 μL min-1. The mass spectrometer was operated in negative mode using full scan MS2. The electrospray voltage was 

4.00 kV, with capillary and auxiliary gas temperatures of 320 oC. The scan range was set between 50 - 750 m/z. Organosulfates 

were quantified using an authentic standard of 2-MGA-OS obtained from J. Surratt using the method in Bryant et al. (2019). 225 

 

OH measurements 

The OH radical measurements were made from the roof of the University of Leeds FAGE instrument container at the IAP field 

site. Two Fluorescence Assay by Gas Expansion (FAGE) detection cells where housed in a weather-proof enclosure at a 

sampling height of approximately 4 m. OH and HO2 radicals were detected sequentially in the first cell (the HOx cell), whilst 230 

HO2* and total RO2 radical observations were made using the second FAGE cell (the ROx cell) which was coupled with a flow 

reactor to facilitate RO2 detection (Whalley et al., 2018). A Nd:YAG pumped Ti:Sapphire laser was used to generate 5 kHz 

pulsed tunable UV light at 308 nm and used to excite OH via the Q1(1) transition of the 𝐀𝟐𝚺%, 𝐯0 = 𝟎	 ← 	𝐗𝟐𝚷𝐢, 𝐯" = 𝟎	band. 

On-resonance fluorescence was detected using a gated micro-channel plate photomultiplier and photon counting. A 

background signal from laser and solar scatter and detector noise was determined by scanning the laser wavelength away from 235 

the OH transition (OHWAVE-BKD). For the entire campaign, the HOx cell was equipped with an inlet pre injector (IPI) which 

chemically scavenged ambient OH by periodically by injecting propane into the air stream just above the FAGE inlet. The 
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removal of ambient OH by chemical reaction provided an alternative means to determine the background signal (OHCHEM-BKD), 

without the need to tune the laser wavelength. By comparison with OHWAVE-BKD, OHCHEM-BKD was used to identify if any OH 

was generated internally within the FAGE cell, acting as an interference signal. In general, good agreement between OHCHEM-240 

BKD and OHWAVE-BKD was observed, with a ratio of 1.07 for the whole campaign (Woodward-Massey, 2018). In this paper, the 

OHCHEM observations are used. The instrument was calibrated every few days by over-flowing the detection cell inlet with a 

turbulent flow of high purity humid air containing a known concentration of OH (and HO2) radicals generated by photolysing 

a known concentration of H2O vapour at 185 nm. The product of the photon flux at 185 nm and the time spent in the photolysis 

region was measured before and after the campaign using N2O actinometry (Commane et al., 2010). 245 

 

OH reactivity measurements 

OH reactivity measurements were made using a laser flash photolysis pump-probe technique (Stone et al., 2016). Ambient air, 

sampled from the roof of the FAGE container, was drawn into a reaction cell at a flow rate of 15 SLM. A 1 SLM flow of high 

purity, humidified air which had passed by a Hg lamp, generating ~50 ppbv of ozone, was mixed with the ambient air at the 250 

entrance to the reaction cell. The ozone present was photolysed by 266 nm laser light at a pulse repetition frequency of 1 Hz 

along the central axis of the reaction cell, leading to the generation of a uniform profile of OH radicals following the reaction 

of O(1D) with H2O vapour. The decay in the OH radical concentration by reaction with species present in the ambient air was 

monitored by sampling a portion of the air into a FAGE cell positioned at the end of the reaction cell. A fraction of the 5 kHz, 

308 nm radiation generated by the Ti:Sapphire laser, passed through the OH reactivity FAGE cell, perpendicular to the air 255 

stream, electronically exciting the OH radicals and the subsequent laser-induced fluorescence signal was detected with a gated 

channel photomultiplier tube. The 1 Hz OH decay profiles were integrated for 5 minutes and fitted to a first-order rate equation 

to determine the observed loss rate of OH (kobs). The total OH reactivity, k(OH), was calculated by subtracting the rate 

coefficient associated with physical losses of OH (kphys) from kobs. kphys was determined by monitoring the decay of OH when 

the ambient air was replaced with a flow of 15 SLM high purity air. A small correction to account for dilution of the ambient 260 

air by the 1 SLM flow of ozone-containing synthetic air was also applied. 

 

Box Modelling 

The box modelling that feeds into Figure 3 was performed using the Dynamically Simple Model of Atmospheric Chemical 

Complexity (DSMACC), zero-dimensional box model (Emmerson and Evans, 2009), together with the isoprene scheme, 265 

together with the relevant inorganic chemistry, from the near explicit chemical mechanism the Master Chemical Mechanism 

(MCM) v3.3.1 (Jenkin et al., 1997; Jenkin et al., 2015). The complete isoprene degradation mechanism in MCM v3.3.1 consists 

of 1926 reactions of 602 closed shell and free radical species, which treat the chemistry initiated by reaction with OH radicals, 

NO3 radicals and ozone. It contains much of the isoprene HOX recycling chemistry identified as important in recent years 

under “low NO” conditions, including the peroxy radical 1,4 and 1,6 H-shift chemistry described in the LIM1 mechanism 270 
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(Peeters et al., 2009; 2014), as summarized in Wennberg et al. (2018). Model photolysis rates were calculated using the 

Tropospheric Ultraviolet and Visible Radiation Model (TUV v5.2) (Madronich, 1993). 

The box model was initialised with a range of different concentrations of isoprene (1.7 ppb, 3.4 ppb, 5.0 ppb, 6.7 ppb), and 

OH (0.25, 0.5, 1.0, 3.0, 10, 20 × 106 cm-3). [CH4] was fixed at 1.85 ppmv and [CO] at 110 ppbv, and T = 298 K. Entrainment 

loss rates for all model species were set to 1 × 10-5 cm-3 s-1. For the box model, a column average value for deposition velocity, 275 

Vd, was calculated according to the functionalities of each species (Table S2). These terms prevent the build-up of secondary 

products. The values are based on reported deposition rates in Nguyen et al. (2015). A boundary layer height (BLH) of 1.5 km 

was assumed. Loss rates (Ld) for each species to dry deposition are then Ld = Vd/BLH. Photolysis rates were fixed to mean rates 

for the day time period 09:00-17:00 calculated for July 1. The model was then run to steady state for a range of fixed NO 

mixing ratios from 0 – 16,000 pptv. 280 

Data availability 

Data are available at http://catalogue.ceda. ac.uk/uuid/7ed9d8a288814b8b85433b0d3fec0300 (last access: 13 Feb 2020). 

Specific data are available from the authors on request (jacqui.hamilton@york.ac.uk). 

 Author Contributions 

JRH, RED, JFH, WJFA, CNH, BL and XW provided the VOC measurements. FAS, WSD and JDL provided the NOx and O3 285 

measurements. TJB, AM, SDW, AB, CJP and HC collected and analysed the CIMS data. TQ and JDS provided the organo-

sulfate standards. DB, WD and JFH provided the organo-sulfate aerosol measurements. LKW, DEH, EJS, RW-M and CY 

provided the OH and HO2 data. MN, PME and ARR provided the MCM box modelling. PDI and MJE provided the GEOS-

Chem model run. ACL is the PI of the AIRPRO-Beijing project. MJN, JFH and ARR conceived and wrote the manuscript 

with input and discussion with all co-authors. 290 

Competing Interests 

The authors declare that they have no conflict of interest.  

Acknowledgements  

This project was funded by the Natural Environment Research Council, the Newton Fund and Medical Research Council in 

the UK, and the National Natural Science Foundation of China (NE/N007190/1, NE/N006917/1). We acknowledge the support 295 

from Pingqing Fu, Zifa Wang, Jie Li and Yele Sun from IAP for hosting the APHH-Beijing campaign at IAP. We thank 

Zongbo Shi, Roy Harrison, Tuan Vu and Bill Bloss from the University of Birmingham, Siyao Yue, Liangfang Wei, Hong 

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

Ren, Qiaorong Xie, Wanyu Zhao, Linjie Li, Ping Li, Shengjie Hou, Qingqing Wang from IAP, Kebin He and Xiaoting Cheng 

from Tsinghua University, and James Allan from the University of Manchester for providing logistic and scientific support for 

the field campaigns.  300 

References 

Air Quality Expert Group: Ozone in the United Kingdom, Department for the Environment, Food and Rural Affairs, 

http://www.defra.gov.uk/environment/airquality/aqeg, 2009. 

 

Bannan, T. J., Booth, A. M., Bacak, A., Muller, J. B. A., Leather, K. E., Le Breton, M., Jones, B., Young, D., Coe, H., Allan, 305 

J., Visser, S., Slowik, J. G., Furger, M., Prevot, A. S. H., Lee, J. Dunmore, R. E., Hopkins, J. R., Hamilton, J. F., Lewis, A. C., 

Whalley, L. K., Sharp, T., Stone, D., Heard, D. E., Fleming, Z. L., Leigh, R., Shallcross, D. E., and Percival, C. J.: The first 

U.K. measurements of nitryl chloride using a chemical ionisation mass spectrometer in London, ClearfLo Summer, 2012, and 

an investigation of the role of Cl atom oxidation. Journal of Geophysical Research, 120, 5638-5657, 2015. 

 310 

Bannan, T. J., Le Breton, M., Priestley, M., Worrall, S. D., Bacak, A., Marsden, N. A., Mehra, A., Hammes, J., Hallquist, M., 

Alfarra, M. R., Krieger, U. K., Reid, J. P., Jayne, J., Robinson, W., McFiggans, G., Coe, H., Percival, C. J., and Topping, D.: 

A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application, 

Atmos. Meas. Tech., 12, 1429–1439, https://doi.org/10.5194/amt-12-1429-2019, 2019. 

 315 

Bianchi F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, 

T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N. Kjaergaard, H. G., and 

Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key 

Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472-3509, 2019. 

 320 

Brean, J., Harrison, R. M., Shi, Z., Beddows, D. C. S., Acton, W. J. F., Hewitt, C. N., Squires, F. A., and Lee, J.: Observations 

of highly oxidized molecules and particle nucleation in the atmosphere of Beijing, Atmos. Chem. Phys., 19, 14933–14947, 

https://doi.org/10.5194/acp-19-14933-2019, 2019. 

 

Bryant, D. J., Dixon, W. J., Hopkins, J. R., Dunmore, R. E., Pereira, K. L., Shaw, M., Squires, F. A., Bannan, T. J., Mehra, A., 325 

Worrall, S. D., Bacak, A., Coe, H., Percival, C. J., Whalley, L. K., Heard, D. E., Slater, E. J., Ouyang, B., Cui, T., Surratt, J. 

D., Liu, D., Shi, Z., Harrison, R., Sun, Y., Xu, W., Lewis, A. C., Lee, J. D., Rickard, A. R., and Hamilton, J. F.: Strong 

anthropogenic control of secondary organic aerosol formation from isoprene in Beijing, Atmos. Chem. Phys. Discuss., 

https://doi.org/10.5194/acp-2019-929, in review, 2019. 

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



11 
 

 330 

Chan, A. W. H., Chan, M. N., Surratt, J. D., Chhabra, P. S., Loza, C. L., Crounse, J. D., Yee, L. D., Flagan, R. C., Wennberg, 

P. O., and Seinfeld, J. H.: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation, Atmos. 

Chem. Phys., 10, 7169–7188, https://doi.org/10.5194/acp-10-7169-2010, 2010. 

 

Commane, R., Floquet, C. F. A., Ingham, T., Stone, D., Evans, M. J., and Heard, D. E.: Observations of OH and HO2 radicals 335 

over West Africa, Atmos. Chem. Phys., 10, 8783–8801, https://doi.org/10.5194/acp-10-8783-2010, 2010. 

 

Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and Wennberg, P.: Autooxidation of Organic Compounds in 

the Atmosphere, J. Phys. Chem. Lett., 4, 3513-3520, 2013.  

 340 

Emmerson, K. M., and Evans, M. J.: Comparison of tropospheric gas-phase chemistry schemes for use within global models, 

Atmos. Chem. Phys., 9, 1831-1845, https://doi.org/10.5194/acp-9-1831-2009, 2009. 

 

Hamilton, J. F., Lewis, A.C., Carey, T. J., and Wenger, J. C.: Characterization of Polar Compounds and Oligomers in 

Secondary Organic Aerosol Using Liquid Chromatography Coupled to Mass Spectrometry, Anal. Chem., 80, 474-480, 2008. 345 

 

Hopkins, J. R., Jones, C. E., and Lewis, A. C.: A dual channel gas chromatograph for atmospheric analysis of volatile organic 

compounds including oxygenated and monoterpene compounds, J. Environ. Monit., 13, 2268-2276, 2011. 

 

Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: a protocol for 350 

mechanism development, Atmos. Environ., 31, 81–104, 1997. 

 

Jenkin, M. E., Young, J. C., and Rickard, A. R. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 

15, 11433-11459, 2015.Hofzumahaus, A., Rohrer, F., Lu, K., et al.: Amplified Trace Gas Removal in the Troposphere, Science, 

324, 1702-1704, 2009. 355 

 

Jimenez, J. L., Canagaratna, M. R., Donahue, Prevot, A. S. H., Zhang, Q., Kroll, J. H. DeCarlo, P. F., Allan, J. D., Coe, H., 

Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, 

K. R., Lanz, V. A., Hueglin,  C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., 

Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., 360 

Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., 

Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, 

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



12 
 

J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.. Middlebrook, A. M., Kolb, C. 

E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-1529, 2009. 

 365 

Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R., Sulzer, P., and Märk T.D.: A 

high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), Int. J. Mass 

Spectrom., 286, 122-128, 2009. 

 

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from isoprene 370 

photooxidation, Environ. Sci. Technol., 40, 1869–1877, 2006.  

 

Le Breton, M., Wang, Y., Hallquist, Å. M., Pathak, R. K., Zheng, J., Yang, Y., Shang, D., Glasius, M., Bannan, T. J., Liu, Q., 

Chan, C. K., Percival, C. J., Zhu, W., Lou, S., Topping, D., Wang, Y., Yu, J., Lu, K., Guo, S., Hu, M., and Hallquist, M.: 

Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing 375 

utilizing a FIGAERO ToF-CIMS, Atmos. Chem. Phys., 18, 10355-10371, https://doi.org/10.5194/acp-18-10355-2018, 2018. 

 

Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R., and Thornton, J. A.: An iodide-adduct high-resolution 

time-of-flight chemical-ionization mass spectrometer: Application to atmospheric inorganic and organic compounds, Environ. 

Sci. Technol., 48, 6309-6317, 2014. 380 

 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017 trends in summer 

surface ozone in China, Proc. Natl. Acad. Sci., 116, 422-427, 2019. 

 

Lin, Y-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H., Rubitschin, C. L., Shaw, S. L., Knipping, E. M., 385 

Edgerton, E. S., Kleindienst, T. E., Gold, A., Surratt, J. D.: Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol 

Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds, Environ. Sci. Technol., 46, 250-258, 2012.  

 

Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, Th. F., Lutz, A., Hallquist, M., Worsnop, 

D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a 390 

Filter Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 

2014. 

 

Madronich, S.: The Atmosphere and UV-B Radiation at Ground Level. In: Young, A. R., Moan, J., Björn, L. O., Nultsch, W., 

editors. Environmental UV Photobiology. Boston, MA, Springer US, pp. 1-39., 1993. 395 

 

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



13 
 

Nguyen, T. B., Crounse, J. D., Teng, A. P., Clair, J. M. S., Paulot, F., Wolfe, G. M., and Wennberg, P. O.: Rapid deposition 

of oxidized biogenic compounds to a temperate forest, Proc. Natl. Acad. Sci., 112, E392-E401, 2015. 

 

Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H., Zhang, X., Kjaergaard, H. G., Surratt, J. D., Lin, P., Laskin, A., 400 

Seinfeld, J. H., and Wennberg, P. O.: Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) 

and its pathway toward secondary organic aerosol formation in the atmosphere, Phys. Chem. Chem. Phys., 17, 17914–17926, 

https://doi.org/10.1039/C5CP02001H, 2015.  

 

Orlando, J. J., and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent 405 

issues of atmospheric significance, Chem. Soc. Rev., 41, 6294-6317, 2012. 

 

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected 

epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730-733, 2009. 

 410 

Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regeneration in the oxidation of isoprene, Phys. Chem. Chem. Phys., 

11, 5935-5939, 2009. 

 

Peeters, J., Müller, J. -F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl Radical Recycling in Isoprene Oxidation Driven by 

Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism, J. Phys. Chem. A., 118, 8625-8643, 2014. 415 

 

Priestley, M., Le Breton, M., Bannan, T. J., Leather, K. E., Bacak, A., Reyes‐Villegas, E., de Vocht, F., Shallcross, B. M. A., 

Brazier, T., Khan, M. A., Allan, J., Shallcross, D. E., Coe, H., Percival, C. J.: Observations of isocyanate, amide, nitrate and 

nitro compounds from an anthropogenic biomass burning event using a ToF‐CIMS, J Geophys. Res. Atmos., 123, 7687-7704, 

2018. 420 

 

Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brune, W. H., Schwab, J. J., Demerjian, K. L., He, 

Y., Zhou, X., and Gao, H.: OH and HO2 chemistry in the urban atmosphere of New York City, Atmos. Environ., 37, 3639–

3651, 2003.  

 425 

Rivera-Rios, J. C., Nguyen, T. B., Crounse, J. D., Jud, W., St. Clair, J. M., Mikoviny, T., Gilman, J. B., Lerner, B. M., Kaiser, 

J. B., de Gouw, J., Wisthaler, A., Hansel, A., Wennberg, P. O., Seinfeld, J. H., and Keutsch, F. N.: Conversion of 

hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus 

anthropogenically controlled atmospheric chemistry, Geophys. Res. Lett., 41, 8645–8651, doi:10.1002/ 2014GL061919, 2014. 

 430 

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



14 
 

Sanchez, D., Jeong, D., Seco, R., Wrangham, I., Park, J. H., Brune, W. H., Koss, A., Gilman, J., de Gouw, J., Misztal, P., 

Goldstein, A., Baumann, K., Wennberg, P. O., Keutsch, F. N., Guenther, A., and Kim. S.: Intercomparison of OH and OH 

reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS), 

Atmos. Environ., 174, 227-236, 2018. 

 435 

Schwantes, R. H., Charan, S. M., Bates, K. H., Huang, Y., Nguyen, T. B., Mai, H., Kong, W., Flagan, R. C., and Seinfeld, J. 

H.: Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-

NOx conditions, Atmos. Chem. Phys., 19, 7255–7278, https://doi.org/10.5194/acp-19-7255-2019, 2019. 

 

Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. 440 

E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., Beddows, D., Bloss, W. J., Calzolai, 

G., Carruthers, D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Crilley, L., Coe, H., Dai, T., Doherty, R., Duan, F., 

Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D., Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., 

Jiang, X., Jones, R., Kalberer, M., Kelly, F. J., Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., 

Loh, M., Lu, K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E., O'Connor, F., Ouyang, 445 

B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G., Spracklen, D., Stevenson, D., Sun, 

Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang, X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., 

Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the special issue “In-depth study of air 

pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., 19, 7519–

7546, https://doi.org/10.5194/acp-19-7519-2019, 2019. 450 

 

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and 

Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. 

Phys., 14, 9317-9341, https://doi.org/10.5194/acp-14-9317-2014, 2014. 

 455 

Stone, D., Whalley, L. K., Ingham, T., Edwards, P. M., Cryer, D. R., Brumby, C. A., Seakins, P. W., and Heard, D. E.: 

Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy, Atmos. Meas. 

Tech., 9, 2827–2844, https://doi.org/10.5194/amt-9-2827-2016, 2016. 

 

Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., 460 

Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Chemical composition of secondary organic aerosol formed from 

the photooxidation of isoprene, J. Phys. Chem. A., 110, 9665–9690, 2006.  

 

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



15 
 

Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M. N., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, 

P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proc. Natl. 465 

Acad. Sci., 107, 6640-6645, 2010. 

 

Tan, Z., Lu, K., Hofzumahaus, A.: Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation 

in the Pearl River Delta in China 2014, Atmos. Chem. Phys., 19, 7129-7150, 2019. 

 470 

Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B., Praske, E., 

Schwantes, R. H., Smarte, M. D., St. Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld J. H.: Gas-phase reactions of isoprene 

and its major oxidation products, Chem. Rev., 118, 3337-3390, 2018. 

 

Whalley, L. K., Edwards, P. M., Furneaux, K. L., Goddard, A., Ingham, T., Evans, M. J., Stone, D., Hopkins, J. R., Jones, C. 475 

E., Karunaharan, A., Lee, J. D., Lewis, A. C., Monks, P. S., Moller, S. J., and Heard, D. E.: Quantifying the magnitude of a 

missing hydroxyl radical source in a tropical rainforest, Atmos. Chem. Phys., 11, 7223-7233, https://doi.org/10.5194/acp-11-

7223-2011, 2011. 

 

Whalley, L. K., Stone, D., Bandy, B., Dunmore, R., Hamilton, J. F., Hopkins, J., Lee, J. D., Lewis, A. C., and Heard, D. E.: 480 

Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production, 

Atmos. Chem. Phys., 16, 2109-2122, https://doi.org/10.5194/acp-16-2109-2016, 2016. 

 

Whalley, L. K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A. C., Williams, P., Kleffmann, J., 

Laufs, S., Woodward-Massey, R., and Heard, D. E.: Understanding in situ ozone production in the summertime through radical 485 

observations and modelling studies during the Clean air for London project (ClearfLo), Atmos. Chem. Phys., 18, 2547-2571, 

https://doi.org/10.5194/acp-18-2547-2018, 2018. 

 

Woodward-Massey, R.: Observations of radicals in the atmosphere: measurement validation and model comparisons, PhD 

Thesis, University of Leeds, 2018. 490 

 

Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen, 

Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R., 

Percival, C. J., Coe, H., and Sun, Y.: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmos. Chem. Phys., 

18, 11581-11597, https://doi.org/10.5194/acp-18-11581-2018, 2018. 495 

  

https://doi.org/10.5194/acp-2020-35
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



16 
 

 
Figure 1: Formation pathways of isoprene oxidation products used as tracers of high / low-NO chemistry in this work. Following reaction 
of the primary VOC, isoprene, with OH, a peroxy radical intermediate (ISOPOO) is formed. At low NO concentrations, ISOPOO reacts 
with HO2 (or other RO2), to yield hydroperoxide (ISOPOOH) isomers ((4,3)-ISOPOOH isomer is shown), which can be rapidly oxidized 500 
to isoprene epoxydiol (IEPOX) isomers. At high NO concentrations, ISOPOO reacts with NO, a minor product of which is an isoprene 
nitrate (ISOPONO2). One of the major products of ISOPOO reaction with NO is methacrolein (MACR), the subsequent oxidation of which, 
in the presence of NO2, can lead to 2-methylglyceric acid (2-MGA) and its corresponding oligomers and organosulfates in the aerosol phase. 
Measurements of these products in the gas or aerosol phase can be used as tracers for the chemical environment in which they were formed.  

 505 
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 510 
Figure 2: Mean diurnal variation of measured organic and inorganic species in the gas phase and aerosol during the Beijing summer 
observations. a. Mean diurnal cycle of the inorganic species NO and ozone (O3) and of the product precursor isoprene (C5H8). Shaded areas 
are at night; area between the dotted lines indicates where > 25% of the isoprene chemistry is driven by low NO pathways (Fig. 3). b&c. 
Mean diurnal cycle of the gas phase isoprene ‘low NO’ oxidation products, IEPOX + ISOPOOH (b), and ‘high NO’ oxidation product, 
isoprene nitrate (ISOPONO2) (c). d. Mean diurnal cycle of the gas phase isoprene oxidation products methacrolein (MACR) (precursor to 515 
2-MGA) + methyl vinyl ketone (MVK). e&f. SOA components: 2-methyltetrol-organosulfate (2-MT-OS) and 2-methylglyceric acid-
organosulfate (2-MGA-OS), both measured on the 11/12th June 2017, the last filter sample was taken from 17:30 11 June - 08:30 12 June. 
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Figure 3: Variation of the fraction of ISOPOO reacting with NO as a function of NO concentration and the reactivity of the system. The 520 
plot is derived from a series of zero-dimensional box model runs performed as a function of fixed concentrations of [NO], [OH], and 
[isoprene]. Photolysis is fixed to an average of 09:00-17:00 conditions. OH reactivity* is total OH reactivity of the chemical system minus 
the contribution from OH + NOx (Equation E1), since these reactions do not produce RO2.      

OH reactivity* =	∑𝑘#$%&#' [VOC] (E1) 

The dashed line shows the fraction of ISOPOO reacting with NO fNO = 0.50, dotted lines show fNO = 0.25 and 0.75. Points are average diurnal 525 
hourly measurements of NO, OH, and OH reactivity* for the period 12:00 – 20:00 pm from a range of different environments: The rural 
sites, Borneo (Whalley et al., 2011) (only shown for 12:00-18:00) and the Southeast US (Sanchez et al., 2018), and the urban sites London 
(Whalley et al., 2016), New York City (Ren et al., 2003), and Beijing (this work). See the SI for full details. 
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