Skip to main content
Log in

An accelerated Uzawa method for application to frictionless contact problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The Uzawa method is a method for solving constrained optimization problems, and is often used in computational contact mechanics. The simplicity of this method is an advantage, but its convergence is slow. This paper presents an accelerated variant of the Uzawa method. The proposed method can be viewed as application of an accelerated projected gradient method to the Lagrangian dual problem. Preliminary numerical experiments suggest that the convergence of the proposed method is much faster than the original Uzawa method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    Article  MathSciNet  Google Scholar 

  2. Allaire, G.: Numerical Analysis and Optimization. Oxford University Press, New York (2007)

    MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  4. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4, 1–39 (2011)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  6. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  Google Scholar 

  7. Ferris, M.C., Munson, T.S.: Interfaces to PATH 3.0: design, implementation and usage. Comput. Optim. Appl. 12, 207–227 (1999)

    Article  MathSciNet  Google Scholar 

  8. Ferris, M.C., Munson, T.S.: Complementarity problems in GAMS and the PATH solver. J. Econ. Dyn. Control 24, 165–188 (2000)

    Article  MathSciNet  Google Scholar 

  9. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (A Tribute to M. Vidyasagar), pp. 95–110. Springer, Berlin (2008)

    Chapter  Google Scholar 

  10. Haslinger, J., Kučera, R., Dostál, Z.: An algorithm for the numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164–165, 387–408 (2004)

    Article  MathSciNet  Google Scholar 

  11. Kanno, Y.: A fast first-order optimization approach to elastoplastic analysis of skeletal structures. Optim. Eng. 17, 861–896 (2016)

    Article  MathSciNet  Google Scholar 

  12. Koko, J.: Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem. Appl. Math. Lett. 22, 1534–1538 (2009)

    Article  MathSciNet  Google Scholar 

  13. Lee, Y.T., Sidford, A.: Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems. In: IEEE 54th Annual Symposium on Foundations of Computer Science, Berkeley, pp. 147–156 (2013)

  14. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^{2})\). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  15. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  16. O’Donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. 15, 715–732 (2015)

    Article  MathSciNet  Google Scholar 

  17. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 127–239 (2014)

    Article  Google Scholar 

  18. Puso, M.A., Laursen, T.A., Solberg, J.: A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Methods Appl. Mech. Eng. 197, 555–566 (2008)

    Article  MathSciNet  Google Scholar 

  19. Raous, M.: Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: Wriggers, P., Panagiotopoulos, P. (eds.) New Developments in Contact Problems, pp. 101–178. Springer, Wien (1999)

    Google Scholar 

  20. Rudoy, E.M.: Domain decomposition method for a model crack problem with a possible contact of crack edges. Comput. Math. Math. Phys. 55, 305–316 (2015)

    Article  MathSciNet  Google Scholar 

  21. Shimizu, W., Kanno, Y.: Accelerated proximal gradient method for elastoplastic analysis with von Mises yield criterion. Jpn. J. Ind. Appl. Math. 35, 1–32 (2018)

    Article  MathSciNet  Google Scholar 

  22. Temizer, İ.: A mixed formulation of mortar-based frictionless contact. Comput. Methods Appl. Mech. Eng. 223–224, 173–185 (2012)

    Article  MathSciNet  Google Scholar 

  23. Temizer, İ., Wriggers, P., Hughes, T.J.R.: Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 209–212, 115–128 (2012)

    Article  MathSciNet  Google Scholar 

  24. The MathWorks, Inc.: MATLAB documentation. http://www.mathworks.com/. Accessed Nov 2016

  25. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. B95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  26. Uzawa, H.: Iterative methods for concave programming. In: Arrow, K.J., Hurwicz, L., Uzawa, H. (eds.) Studies in Linear and Non-Linear Programming, pp. 154–165. Stanford University Press, Stanford (1958)

    Google Scholar 

  27. Vikhtenko, E.M., Namm, R.V.: Duality scheme for solving the semicoercive Signorini problem with friction. Comput. Math. Math. Phys. 47, 1938–1951 (2007)

    Article  MathSciNet  Google Scholar 

  28. Wriggers, P.: Computational Contact Mechacnics, 2nd edn. Springer, Berlin (2006)

    Book  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI 26420545 and 17K06633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. An accelerated Uzawa method for application to frictionless contact problem. Optim Lett 14, 1845–1854 (2020). https://doi.org/10.1007/s11590-019-01481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01481-2

Keywords

Navigation