Skip to main content
Log in

Simulative study of all-optical frequency encoded dibit-based controlled multiplexer and de-multiplexer using optical switches

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optics is already established as potential candidate due to its super-fast speed in communication and computation. Therefore, different logical, combinational and sequential circuit operations using all-optical frequency encoding technique have been proposed by several authors. Here, the authors have projected dibit scheme, which reduces the bit error problem and gives the benefit of high-speed operation. Exploiting this fact, here we have proposed all-optical frequency encoded dibit-based multiplexer and de-multiplexer, using the optical switches like add/drop multiplexer and reflected semiconductor optical amplifier. The operation of it has been verified through proper simulation using MATLAB (R2008a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84(8), 1069–1074 (2010). https://doi.org/10.1007/s12648-010-0101-4

    Article  ADS  Google Scholar 

  2. A.K. Ghosh, A. Bhattacharya, M. Raul, A. Basuray, Trinary arithmetic and logic unit (TALU) using savart plate and spatial light modulator (SLM) suitable for optical computation in multivalued logic. Opt. Laser Technol. 44(5), 1583–1592 (2012). https://doi.org/10.1016/j.optlastec.2011.11.044

    Article  ADS  Google Scholar 

  3. P.P. Sarkar, S. Mukhopadhyay, All optical frequency encoded NAND logic operation along with the simulated result. J. Opt. 43(3), 177–182 (2014). https://doi.org/10.1007/s12596-014-0197-6

    Article  Google Scholar 

  4. B. Ghosh, S. Mukhopadhyay, A novel realization of all-optical dibit represented frequency encoded Boolean and quaternary inverters without switching device. Opt. Int. J. Light Electron Opt. 124(21), 4813–4815 (2013). https://doi.org/10.1016/j.ijleo.2013.02.035

    Article  Google Scholar 

  5. P.P. Sarkar, B. Ghosh, S.N. Patra, S. Mukhopadhyay, A new scheme of an all optical frequency encoded dibit based latch with its simulated result. J. Opt. Technol. 84(9), 631–634 (2017). https://doi.org/10.1364/JOT.84.000631

    Article  Google Scholar 

  6. P.P. Sarkar, B. Satpati, S. Mukhopadhyay, New simulative studies on performance of semiconductor optical amplifier based optical switches like frequency converter and add-drop multiplexer for optical data processors. J. Opt. 42(4), 360–366 (2013). https://doi.org/10.1007/s12596-013-0133-1

    Article  Google Scholar 

  7. V. Çakmak, F. Ufuk, N. Karabulut, Diffusion-weighted MRI of pulmonary lesions: comparison of apparent diffusion coefficient and lesion-to-spinal cord signal intensity ratio in lesion characterization. J. Magn. Reson. Imaging 45(3), 845–854 (2017). https://doi.org/10.1002/jmri.25426

    Article  Google Scholar 

  8. G. Hu, D. Xiao, Y. Wang, T. Xiang, Q. Zhou, Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes. Opt. Lasers Eng. 98, 123–133 (2017). https://doi.org/10.1016/j.optlaseng.2017.06.013

    Article  Google Scholar 

  9. J. Zhu, P. Zhou, X. Su, Z. You, Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination. Opt. Express 24(25), 28549–28560 (2016). https://doi.org/10.1364/oe.24.028549

    Article  ADS  Google Scholar 

  10. C. Taraphdar, T. Chattopadhyay, J.N. Roy, Polarization encoded all-optical ternary Max gate. 4th International Conference on Computers and Devices for Communication, Kolkata, India, December 2009, p. 1–4

  11. S. Mukhopadhyay, Binary optical data subtraction by using a ternary dibit representation technique in optical arithmetic problems. Appl. Opt. 31(23), 4622–4623 (1992). https://doi.org/10.1364/AO.31.004622

    Article  ADS  Google Scholar 

  12. P.P. Sarkar, S. Hazra, B. Ghosh, S.N. Patra, S. Mukhopadhyay, Realization of all-optical frequency-encoded dibit-based OR and NOR logic gates with simulated verification, in Computer, Communication and Electrical Technology, 1st edn., ed. by D. Guha, B. Chakraborty, H. Dutta (CRC Press, Boca Raton, 2017), pp. 153–158. https://doi.org/10.1201/9781315400624-30

    Chapter  Google Scholar 

  13. B. Ghosh, S. Biswas, S. Mukhopadhyay, A novel method of all-optical wavelength encoded logic and inhibitor operations with dibit representation technique. Opt. Int. J. Light Electron Opt. 126(4), 483–489 (2015). https://doi.org/10.1016/j.ijleo.2014.09.015

    Article  Google Scholar 

  14. I.S. Amiri, S.E. Alavi, M. Bahadoran, A. Afroozeh, H. Ahmad, Nanometer bandwidth soliton generation and experimental transmission within nonlinear fiber optics using an add-drop filter system. J. Comput. Theor. Nanosci. 12(2), 221–225 (2015). https://doi.org/10.1166/jctn.2015.3721

    Article  Google Scholar 

  15. S. Chen, Y. Shi, S. He, D. Dai, Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photonics Technol. Lett. 28(17), 1874–1877 (2016). https://doi.org/10.1109/LPT.2016.2574459

    Article  ADS  Google Scholar 

  16. J. Wang, L.R. Chen, Low crosstalk Bragg grating/Mach–Zehnder interferometer optical add-drop multiplexer in silicon photonics. Opt. Express 23(20), 26450–26459 (2015). https://doi.org/10.1364/OE.23.026450

    Article  ADS  Google Scholar 

  17. R. Mansoor, S. Koziel, H. Sasse, A. Duffy, Crosstalk suppression bandwidth optimisation of a vertically coupled ring resonator add/drop filter. IET Optoelectron. 9(2), 30–36 (2015). https://doi.org/10.1049/iet-opt.2014.0059

    Article  Google Scholar 

  18. P.P. Sarkar, B. Ghosh, S.N. Patra, Simulative study of all optical frequency encoded dibit based universal NAND and NOR logic gates using a reflective semiconductor optical amplifier and an add/drop multiplexer. J. Opt. Technol. 83(4), 257–262 (2016). https://doi.org/10.1364/JOT.83.000257

    Article  Google Scholar 

  19. B. Ghosh et al., A novel approach to realize of all optical frequency encoded dibit based XOR and XNOR logic gates using optical switches with simulated verification. Opt. Spectrosc. 124(3), 337–342 (2018). https://doi.org/10.1134/S0030400X1803013X

    Article  ADS  Google Scholar 

  20. S. Saha, S. Biswas, S. Mukhopadhyay, Optical scheme of conversion of a positionally encoded decimal digit to frequency encoded Boolean form using Mach–Zehnder interferometer-based semiconductor optical amplifier. IET Optoelectron. 11(5), 201–207 (2017). https://doi.org/10.1049/iet-opt.2016.0078

    Article  Google Scholar 

  21. S. Singh, S. Kaur, R. Kaur, R.S. Kaler, Photonic processing of all-optical Johnson counter using semiconductor optical amplifiers. IET Optoelectron. 11(1), 8–14 (2016). https://doi.org/10.1049/iet-opt.2015.0106

    Article  Google Scholar 

  22. D.K. Gayen, T. Chattopadhyay, K.E. Zoiros, All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach-Zehnder interferometer. J. Comput. Electron. 14(1), 129–138 (2015). https://doi.org/10.1007/s10825-014-0632-6

    Article  Google Scholar 

  23. M. Connelly, Semiconductor Optical Amplifiers and Their Applications (University of Limerick, Limerick, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Hazra, S. & Sarkar, P.P. Simulative study of all-optical frequency encoded dibit-based controlled multiplexer and de-multiplexer using optical switches. J Opt 48, 365–374 (2019). https://doi.org/10.1007/s12596-019-00547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00547-9

Keywords

Navigation