Skip to main content

Advertisement

Log in

Fabrication of BaTiO3 ceramic filler incorporated PVC-PEMA based blend nanocomposite gel polymer electrolytes for Li ion battery applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In spite of promising electrochemical characteristics of the Gel polymer electrolytes (GPEs) it’s applicability in Li ion cells are limited due to their low mechanical strength and poor interfacial stability. Herein, we propose composite polymer electrolyte (CPE) fabricated by dispersing hydrothermally derived BaTiO3 (BT) nanoparticle in PVC (5)-PEMA (25)-EC/DMC (67)-LiClO4 (8). We show that the proposed CPE prepared by solution casting technique exhibits enhanced mechanical strength and interfacial stability. The effects of concentration (2.5–10 wt%) of nano BT on GPEs were investigated by various spectroscopic and electro-analytic techniques. Remarkably, 2.5 wt% nano BT incorporated CPE have a higher ionic conductivity and thermal stability compared to ceramic free GPE. Besides, it also has better interfacial stability and display high Li transference number with extended electrochemical stability window. The outstanding electrochemical performance of CPE is due to presence of nano BT that facilitates charge transport behavior and modifies the crystallinity leading to high Li ion transport in CPE. GPE with 2.5 wt% nano BT showed the best electrochemical performance and may be a promising reliable CPE cum separator for Li ion battery (LiBs) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu, K. Liu, Y. Cui, High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016)

    Article  CAS  Google Scholar 

  2. J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss, K. Amine, The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016)

    Article  CAS  Google Scholar 

  3. M. Sasikumar, A. Jagadeesan, M. Raja, R. Hari Krishna, P. Sivakumar, The effects of PVAc on surface morphological and electrochemical performance of P(VdF-HFP)-based blend solid polymer electrolytes for lithium ion-battery applications. Ionics 25(5), 2171–2181 (2018). Online (1862-0760)

    Article  Google Scholar 

  4. H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, Y. Yang, A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017)

    Article  CAS  Google Scholar 

  5. M. Sasikumar, A. Ganeshkumar, M.N. Chandraprabha, R. Rajaram, R. Hari Krishna, N. Ananth, P. Sivakumar, Investigation of antimicrobial activity of CTAB assisted hydrothermally derived Nano BaTiO3. Mater. Res. Express 6, 025408 (2019)

    Article  Google Scholar 

  6. B. Hou, Z. Li, X. Yao, W. Dong, Y. Sun, Size-controllable barium titanate nanopowder synthesized via one-pot solvothermal route in a mixed solvent. J. Electroceram. 16, 127–133 (2006)

    Article  CAS  Google Scholar 

  7. M. Sasikumar, M. Raja, R. Harikrishna, A. Jagadeesan, P. Sivakumar, S. Rajendran, Influence of hydrothermally synthesized cubic structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity and thermal behavior of P(VdF-HFP):PVAc based composite solid polymer electrolytes for lithium ion batteries. J. Phys. Chem. C 122, 25741–25752 (2018)

    Article  CAS  Google Scholar 

  8. J. Reiter, O. Krejza, M. Sedlarikova, Electrochromic devices employing methacrylate-based polymer electrolytes. Sol. Energy Mater. Sol. Cells 93, 249–255 (2009)

    Article  CAS  Google Scholar 

  9. L.N. Sim, S.R. Majid, A.K. Aof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3CO3 salt. Vib. Spectrosc. 58, 57–66 (2012)

    Article  CAS  Google Scholar 

  10. H.J. Rhoo, H.T. Kim, J.K. Park, T.S. Hwang, Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim. Acta 42, 1571–1579 (1997)

    Article  CAS  Google Scholar 

  11. H.-S. Han, H.-R. Kang, S.-W. Kim, H.-T. Kim, Phase-separated polymer electrolyte based on poly(vinyl chloride)/poly(ethyl methacrylate) blend. J. Power Sources 112, 461–468 (2002)

    Article  CAS  Google Scholar 

  12. M.T. Ahmed, T. Fahmy, Distributed relaxations in PVC/PEMA polymer blends as revealed by thermostimulated depolarization current. Polym. Test. 18, 589–599 (1999)

    Article  CAS  Google Scholar 

  13. M. Ulaganathan, S. Rajendran, Novel Li-ion conduction on poly(vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. J. Appl. Electrochem. 41, 83–88 (2011)

    Article  CAS  Google Scholar 

  14. Ming Lin, Z.Y. Fu, H.R. Tan, J.P.Y. Tan, S.C. Ng, E. Teo, Hydrothermal synthesis of CeO2 nanocrystals: Ostwald ripening or oriented attachment? Cryst. Growth Des. 12, 3296–3303 (2012)

    Article  CAS  Google Scholar 

  15. S. Bodoardo, C. Gerbaldi, G. Meligarana, A. Tuel, S. Enzo, N. Penazzi, Optimisation of some parameters for the preparation of nanostructured LifePO 4/C cathode. Ionics 15, 19–26 (2008)

    Article  Google Scholar 

  16. M.R. Mohammadi, D.J. Frayb, Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: effect of Ce: Ti molar ratio on physical and sensing properties. Sens. Actuators B 15, 631–640 (2010)

    Article  Google Scholar 

  17. S. Ramesh, H.L. Koay, K. Kumutha, A.K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimi. Acta A 66, 1237–1242 (2007)

    Article  CAS  Google Scholar 

  18. Y. Ikezawa, H. Nishi, In situ FTIR study of the Cu electrode/ethylene carbonate+ dimethyl carbonate solution interface. Electrochim. Acta 53, 3663–3669 (2008)

    Article  CAS  Google Scholar 

  19. J.E. Katon, M.D. Cohen, The vibrational spectra and structure of dimethyl carbonate and its conformational behavior. Can. J. Chem. 53, 1378–1386 (1975)

    Article  CAS  Google Scholar 

  20. P. Pradeepa, S. Edwinraj, M. Ramesh Prabhu, Effects of ceramic filler in poly (vinyl chloride)/poly (ethyl methacrylate) based polymer blend electrolytes. Chin. Chem. Lett. 26, 1191–1196 (2015)

    Article  CAS  Google Scholar 

  21. M. Salomon, M. Xu, E.M. Eyring, S. Petrucci, Molecular structure and dynamics of LiClO4-poly-ethylene oxide-400(dimethyl ether and diglycol systems) at 25 °C. J. Phys. Chem. 98, 8234–8244 (1994)

    Article  CAS  Google Scholar 

  22. M. Ulaganathan, C.M. Mathew, S. Rajendran, highly porous lithium ion conducting solvent free poly (vinylidene fluoride-co-hexafluoropropylene)/poly (ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochem. Acta 93, 230–235 (2013)

    Article  CAS  Google Scholar 

  23. B. Kumar, J.D. Schaffer, N. Munichandraiah, L.G. Scalon, An electrochemical study of PEO: LiBF4—glass composite electrolytes. J. Power Sources 47, 63–78 (1994)

    Article  CAS  Google Scholar 

  24. S. Rajendran, K. Kesavan, R. Nithya, M. Ulaganathan, Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li ion battery applications. Curr. Appl. Phys. 12, 789–793 (2012)

    Article  Google Scholar 

  25. M.S. Michael, M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ion. 98, 167–174 (1997)

    Article  CAS  Google Scholar 

  26. J.M.G. Cowie, G.H. Spence, Ion conduction in macroporous polyethylene film doped with electrolytes. Solid State Ion. 109, 139–144 (1998)

    Article  CAS  Google Scholar 

  27. R. Chakrabarti, D. Chakraborty, Modification of the physical, mechanical and thermal properties of poly (vinyl chloride) by blending with poly (ethyl methacrylate). J. Appl. Polym. Sci. 105, 1377–1384 (2007)

    Article  CAS  Google Scholar 

  28. L.N. Sim, S.R. Majid, A.K. Aof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3CO3 salt. Vib. Spectrosc. 58, 57–66 (2012)

    Article  CAS  Google Scholar 

  29. S. Ramesh, M.F. Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes. Mater. Sci. Eng. B 139, 240–245 (2007)

    Article  CAS  Google Scholar 

  30. D. Aurbach, A. Zaban, Impedance spectroscopy of lithium electrodes. J. Electroanal. Chem. 348, 155–179 (1993)

    Article  CAS  Google Scholar 

  31. Y.J. Hwang, K.S. Nahm, T. Prem Kumar, A. Manuel Stephan, Poly (vinylidene fluoride-hexafluoropropylene)-based membranes for lithium batteries. J. Membr. Sci. 310, 349–355 (2008)

    Article  CAS  Google Scholar 

  32. K. Kaniappan, S. latha, Certain investigations on the formulation and characterization of the polystyrene/poly (methyl methacrylate) blends. Int. J. ChemTech Res. 3, 708–717 (2011)

    CAS  Google Scholar 

  33. J. Kolarik, L. Fambri, M. Slouf, D. Konecny, Heterogeneous polyamide 66/syndiutactic polystyrene blends: phase structure and thermal and mechanical properties. J. Appl. Polym. Sci. 96, 673–684 (2005)

    Article  CAS  Google Scholar 

  34. S. Ramesh, C.-W. Liew, E. Morris, R. Durairaj, Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend based polymer electrolytes. Thermochim. Acta 511, 140–146 (2010)

    Article  CAS  Google Scholar 

  35. S. Rajendran, M. Ramesh Prabhu, Effect of different plasticizer on structural and electrical properties of PEMA-based polymer electrolytes. J. Appl. Electrochem. 40(327), 332 (2010)

    Google Scholar 

  36. N. Shukla, A.K. Thakur, Enhancement in electrical and stability properties of amorphous polymer based nanocomposite electrolyte. J. Non-Cryst. Solids 357, 3689–3701 (2011)

    Article  CAS  Google Scholar 

  37. D. Aurbach, A. Zaban, Impedance spectroscopy of lithium electrodes. J. Electroanal. Chem. 348, 155–179 (1993)

    Article  CAS  Google Scholar 

  38. E. Peled, Film forming reaction at the lithium/electrolyte interface. J. Power Sources 9(3), 253–266 (1983)

    Article  CAS  Google Scholar 

  39. V. Gentili, S. Panero, P. Reale, B. Scrosati, Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. J. Power Sources 170(1), 185–190 (2007)

    Article  CAS  Google Scholar 

  40. C. Gerbaldi, J.R. Nair, G. Meligrana, R. Bongiovanni, S. Bodoardo, N. Penazzi, UV curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications. Electrochim. Acta 55, 1460–1467 (2010)

    Article  CAS  Google Scholar 

  41. S. Rajendran, M. Ramesh Prabhu, M. Usha Rani, Ionic conduction in poly(vinyl chloride)/poly(ethyl methacrylate)-based polymer blend electrolytes complexed with different lithium salts. J. Power Sources 180, 880–883 (2008)

    Article  CAS  Google Scholar 

  42. F.-B. Dias, L. Plomp, J.-B.-J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88, 169–191 (2000)

    Article  CAS  Google Scholar 

  43. K.-M. Kim, N.-G. Park, K.-S. Ryu, S.-H. Chong, Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim. Acta 51, 5636–5644 (2006)

    Article  CAS  Google Scholar 

  44. J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987)

    Article  CAS  Google Scholar 

  45. Y. Lin, Y. Cheng, J. Li, J.D. Miller, J. Liu, X. Wang, Biocompatible and biodegradable solid polymer electrolytes for high voltage and high temperature lithium batteries. R. Soc. Chem. 7, 24856–24863 (2017)

    CAS  Google Scholar 

  46. C.H. Park, D.W. Kim, J. Prakash, Y.-K. Sun, Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion. 159, 111–119 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. P. Elumalai, Department of Green Energy Technology, Pondicherry University for his help in Li-ion cell fabrication and fruitful discussion.

Funding

P. Sivakumar received financial support from the University Grants Commission (UGC/MRP/No. F. 42-807/2013 (SR)), New Delhi. India. H. A. Therese is grateful to the Science and Engineering Research Board, India, (SERB/F/4176/2015-16) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sivakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesan, A., Sasikumar, M., Jeevani, R. et al. Fabrication of BaTiO3 ceramic filler incorporated PVC-PEMA based blend nanocomposite gel polymer electrolytes for Li ion battery applications. J Mater Sci: Mater Electron 30, 17181–17194 (2019). https://doi.org/10.1007/s10854-019-02065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02065-7

Navigation