Skip to main content

Advertisement

Log in

Anisotropic growth and photoluminescence of Li2Si2O5 hydrate rods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we developed a facile one-pot hydrothermal route to synthesize uniform functional Li2Si2O5 hydrate rod-like crystals. The growth of such unique anisotropic morphology underwent an in situ crystallization involving ordered attachment and Ostwald ripening of Li2SiO3 nanoparticles, and reactive transformation of Li2SiO3-to-Li2Si2O5 hydrate processes. The obtained Li2Si2O5 hydrate rods possessed a uniform size with a length of about 5 µm and a diameter of about 100–200 nm, indicating aspect ratio higher than 20 that reflected the anisotropic growth. The Li2Si2O5 hydrate rods exhibited excellent adsorption performance of methylene blue and the methylene blue-bearing Li2Si2O5 hydrate featured interesting photoluminescence performance of red emission at 675 nm compared with the reported value. The result endowed the Li2Si2O5 hydrate rods with a potential application as an optical probe for organic dye’s recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Lammert, M. Kunow, A. Heuer, Complete identification of alkali sites in ion conducting lithium silicate glasses: a computer study of ion dynamics. Phys. Rev. Lett. 90(21), 215901 (2003)

    Article  Google Scholar 

  2. D. Cruz, S. Bulbulian, Synthesis of lithium silicate tritium breeder powders by a modified combustion method. J. Nucl. Mater. 312(2–3), 262–265 (2003)

    Article  CAS  Google Scholar 

  3. Y. Tomczak, K. Knapas, M. Sundberg, M. Leskelä, M. Ritala, In situ reaction mechanism studies on lithium hexadimethyldisilazide and ozone atomic layer deposition process for lithium silicate. J. Phys. Chem. C 117(27), 14241–14246 (2013)

    Article  CAS  Google Scholar 

  4. G.J. Gardopee, R.E. Newnham, A.S. Bhalla, Pyroelectric Li2Si2O5 glass-ceramics. Ferroelectrics 33(1), 155–163 (1981)

    Article  CAS  Google Scholar 

  5. N. Nur, V. Guckan, N. Kizilkaya, T. Depci, C. Ahmedova, A. Ozdemir, V. Altunal, Z. Yegingil, Thermoluminescence properties of non-stoichiometric Li2Si2O5 synthesized from natural amethyst quartz. J. Lumin. 179, 366–371 (2016)

    Article  CAS  Google Scholar 

  6. H. Pfeiffer, P. Bosch, S. Bulbulian, Synthesis of lithium silicates. J. Nucl. Mater. 257(3), 309–317 (1998)

    Article  CAS  Google Scholar 

  7. D. Cruz, S. Bulbulian, E. Lima, H. Pfeiffer, Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). J. Solid State Chem. 179(3), 909–916 (2006)

    Article  CAS  Google Scholar 

  8. B. Zhang, A.J. Easteal, N.R. Edmonds, Sol-gel preparation and characterization of lithium disilicate glass-ceramic. J. Am. Ceram. Soc. 90(5), 1592–1596 (2007)

    Article  Google Scholar 

  9. W. Hölland, V. Rheinberger, E. Apel, C. Ritzberger, F. Rothbrust, H. Kappert, F. Krumeich, R. Nesper, Future perspectives of biomaterials for dental restoration. J. Eur. Ceram. Soc. 29(7), 1291–1297 (2009)

    Article  Google Scholar 

  10. V. Singh, S. Watanabe, T.K. Gundu Rao, R.S. Kumaran, H. Gao, J.L. Li, H.Y. Kwak, Characterization, luminescence, and defect centers of a Ce3+-doped Li2Si2O5 phosphor prepared by a solution combustion reaction. J. Electron. Mater. 44(8), 2736–2744 (2015)

    Article  CAS  Google Scholar 

  11. A. Alemi, S. Khademinia, S.W. Joo, M. Dolatyari, A. Bakhtiari, Lithium metasilicate and lithium disilicate nanomaterials: optical properties and density functional theory calculations. Int. Nano Lett. 3(1), 14 (2013)

    Article  Google Scholar 

  12. M. Vinod, D. Bahnemann, Materials for all-solid-state thin-film rechargeable lithium batteries by sol–gel processing. J. Solid State Electrochem. 6(7), 498–501 (2002)

    Article  CAS  Google Scholar 

  13. F.X. Liang, C.L. Sun, H.Y. Yang, E.Z. Li, S.R. Zhang, Synthesis and study of lithium silicate glass-ceramic. J. Mater. Sci.: Mater. Electron. 28(20), 15405–15410 (2017)

    CAS  Google Scholar 

  14. M. Taddia, P. Modesti, A. Albertazzi, Determination of macro-constituents in lithium zirconate for tritium-breeding applications. J. Nucl. Mater. 336(2), 173–176 (2005)

    Article  CAS  Google Scholar 

  15. D. Cruz, S. Bulbulian, Synthesis of Li4SiO4 by a modified combustion method. J. Am. Ceram. Soc. 88(7), 1720–1724 (2005)

    Article  CAS  Google Scholar 

  16. J.S. Xu, D.F. Xue, Fabrication of malachite with a hierarchical sphere-like architecture. J. Phys. Chem. B 109(35), 17157–17161 (2005)

    Article  CAS  Google Scholar 

  17. Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, J.N. Yao, Controllable assembly of WO3 nanorods-nanowires into hierarchical nanostructures. J. Phys. Chem. B. 110, 23829–23836 (2006)

    Article  CAS  Google Scholar 

  18. M. Lin, Z.Y. Fu, H.R. Tan, J.P.Y. Tan, S.C. Ng, E. Teo, Hydrothermal synthesis of CeO2 nanocrystals—Ostwald ripening or oriented attachment. Cryst. Growth Des. 12, 3296–3303 (2012)

    Article  CAS  Google Scholar 

  19. X.Y. Li, H.M. Yang, Morphology-controllable Li2SiO3 nanostructures. Cryst. Eng. Commun. 16, 4501–4507 (2014)

    Article  CAS  Google Scholar 

  20. Q. Feng, M. Hirasawa, K. Yanagisawa, Synthesis of crystal-axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chem. Mater. 13(2), 290–296 (2001)

    Article  CAS  Google Scholar 

  21. N.R. Tomilov, T.I. Samsonova, I.A. Poroshina, A.S. Berger, Solid phases in the Li2O–SiO2–H2O system. Zh. Neorg. Khim. 23(12), 3333–3339 (1978)

    CAS  Google Scholar 

  22. G.D. Ilyushin, L.N. Demianets. Hydrothermal systems LiOHÐ(MeO2)–GeO2–H2O (Me—Ti, Sn, Zr, Hf): phase relations and crystal-chemical correlations between Li, Me-and Li, Ge-germanates. Joint 6th Int. Symp. on Hydrothermal Reactions & 4th Int. Conf. on Solvo-Thermal Reactions (Kochi, 2000), pp. 2–27

  23. A. Alemi, S. Khademinia, M. Dolatyari, A. Bakhtiari, Hydrothermal synthesis, characterization, and investigation of optical properties of Sb3+-doped lithium silicates nanoparticles. Int. Nano Lett. 2(1), 1–9 (2012)

    Article  Google Scholar 

  24. S.F. Huang, Z.H. Huang, W. Gao, P. Cao, In situ high-temperature crystallographic evolution of a nonstoichiometric Li2O·2SiO2 glass. Inorg. Chem. 52(24), 14188–14195 (2013)

    Article  CAS  Google Scholar 

  25. A.X. Yang, H.J. Wang, W. Li, J.L. Shi, Synthesis of lithium metasilicate powders at low temperature via mechanical milling. J. Am. Ceram. Soc. 95(6), 1818–1821 (2012)

    Article  CAS  Google Scholar 

  26. A.R. Molla, R.P.S. Chakradhar, C.R. Kesavulu, J.L. Rao, S.K. Biswas, Microstructure, mechanical, EPR and optical properties of lithium disilicate glasses and glass–ceramics doped with Mn2+ ions. J. Alloys Compd. 512(1), 105–114 (2012)

    Article  CAS  Google Scholar 

  27. Z.G. Yin, K. Wang, P.F. Zhao, X.L. Tang, Enhanced CO2 chemisorption properties of Li4SO4, using a water hydration-calcination technique. Ind. Eng. Chem. Res. 55(4), 1142–1146 (2015)

    Article  Google Scholar 

  28. Y.Q. Wang, G.Z. Wang, H.Q. Wang, C.H. Liang, Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment. Chem. Eur. J. 16(11), 3497–3503 (2010)

    Article  CAS  Google Scholar 

  29. C.X. Gui, Q.Q. Wang, S.M. Hao, J. Qu, Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb2+ and methylene blue adsorption. ACS Appl. Mater. Interfaces. 6(16), 14653–14659 (2014)

    Article  CAS  Google Scholar 

  30. A.S. Barnard, P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121(9), 4276–4283 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (Grant No. 2017YFB0310300), the National Natural Science Foundation of China (Grant No. 51672209) for the support of this work. We also thank Pro. Wei Wang and Pro. Shengwu Guo for operating the instruments of FE-SEM and HRTEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, J. & Yang, J. Anisotropic growth and photoluminescence of Li2Si2O5 hydrate rods. J Mater Sci: Mater Electron 30, 17405–17411 (2019). https://doi.org/10.1007/s10854-019-02090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02090-6

Navigation