Skip to main content
Log in

Solvothermal synthesis of porous superparamagnetic RGO@Fe3O4 nanocomposites for microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance and corrosion-resistant microwave absorbers are required response to environmental degradation. Herein, monodisperse and superparamagnetic porous RGO@Fe3O4 nanocomposites are prepared by a simple one-pot method based on solvothermal treatment of Fe(acac)3 and graphene oxide solution. The as-prepared samples have been characterized using XRD, Raman spectroscopy, XPS, SEM and TEM. The magnetic properties and electromagnetic parameters analyses indicated that the nanocomposites show superparamagnetism with relatively high saturation magnetization and excellent electromagnetic wave (EMW) absorption properties. The minimum reflection loss (RLmin) and maximum effective absorption bandwidth (EAB) are − 65.7 dB and 6.0 GHz, respectively. Significantly, after hydrochloric acid treatment for 1 month, RGO@Fe3O4 hybrids still exhibited superior microwave absorption capabilities. It is suggested that our approach proposes an economic and green route for the controllable synthesis of porous functionalized graphene materials, a kind of corrosion-resistant synergistic microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6, 2447–2454 (2014)

    Article  CAS  Google Scholar 

  2. Z. Li, R.G. Wang, R.J. Young, L.B. Deng, F. Yang, L.F. Hao, Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 54, 6437–6446 (2013)

    Article  CAS  Google Scholar 

  3. X.H. Ma, Y. Li, B. Shen, L.H. Zhang, Z.P. Chen, Y.F. Liu, W.T. Zhai, W.G. Zheng, Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 38255–38263 (2018)

    Article  CAS  Google Scholar 

  4. D. Prasai, J.C. Tuberqui, R.R. Har, G.K. Jennings, K.I. Bolotin, Graphene: corrosion-inhibiting coating. ACS Nano 6, 1102–1108 (2012)

    Article  CAS  Google Scholar 

  5. J. Kong, F. Wang, X. Wan, J.R. Liu, M. Itoh, K. Machida, Template-free synthesis of Co nanoporous structures and their electromagnetic wave absorption properties. Mater. Lett. 78, 69–71 (2012)

    Article  CAS  Google Scholar 

  6. W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, M.S. Chao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3, 2097–2107 (2015)

    Article  CAS  Google Scholar 

  7. X.Y. Li, X.L. Huang, D.P. Liu, X. Wang, S.Y. Song, L. Zhou, H.J. Zhang, Synthesis of 3D hierarchical Fe3O4/Graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 115, 21567–21573 (2011)

    Article  CAS  Google Scholar 

  8. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)

    Article  CAS  Google Scholar 

  9. X. Fan, J. Guan, Z. Li, F.Z. Mou, G.X. Tong, W. Wang, One-pot low temperature solution synthesis, magnetic and microwave electromagnetic properties of single-crystal iron submicron cubes. J. Mater. Chem. 20, 1676–1682 (2010)

    Article  CAS  Google Scholar 

  10. W. Chao, X.J. Han, X.L. Zhang, S.R. Hu, T. Zhang, J.Y. Wang, Y.C. Du, X.H. Wang, P. Xu, controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C 114, 3196–3203 (2010)

    Article  Google Scholar 

  11. G.X. Tong, Q. Hu, W.H. Wu, W. Li, H.S. Qian, Y. Liang, Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J. Mater. Chem. 22, 17494–17504 (2012)

    Article  CAS  Google Scholar 

  12. J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016)

    Article  CAS  Google Scholar 

  13. A. Ghasemi, A. Hossienpour, A. Morisako, Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 302, 429–435 (2006)

    Article  CAS  Google Scholar 

  14. Z.J. Wang, L.N. Wu, J.G. Zhou, B.Z. Shen, Z.H. Jiang, Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Adv. 3, 3309–3315 (2013)

    Article  CAS  Google Scholar 

  15. Y.C. Qing, W.C. Zhou, S.S. Huang, Z.B. Huang, F. Luo, D.M. Zhu, Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. J. Alloys Compd. 583, 471–475 (2014)

    Article  CAS  Google Scholar 

  16. H.X. Pan, X.W. Yin, J.M. Xue, L.F. Cheng, L.T. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016)

    Article  CAS  Google Scholar 

  17. S. Qiu, H.L. Liu, J.R. Liu, Y.Z. Liu, N.N. Wu, W. Liu, Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave Absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces 8, 20258–20266 (2016)

    Article  CAS  Google Scholar 

  18. B. Qu, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730–3735 (2016)

    Article  CAS  Google Scholar 

  19. M. Lu, X. Wang, W. Cao, J. Yuan, M.S. Cao, Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27, 065702 (2015)

    Article  Google Scholar 

  20. X. Bai, Y.H. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115, 11673–11677 (2011)

    Article  CAS  Google Scholar 

  21. H. Chen, R. Hong, Q.C. Liu, S.K. Li, F.Z. Huang, Y. Lu, L. Wang, K.Z. Li, H. Zhang, CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 7, 52115–52122 (2018)

    Google Scholar 

  22. Z.S. Wu, S. Yang, Y. Sun, K. Parvez, X.L. Feng, K. Mullen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 9082–9085 (2012)

    Article  CAS  Google Scholar 

  23. X.L. Zheng, J. Feng, Y. Zong, H. Miao, X.Y. Hu, J.T. Bai, X.H. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015)

    Article  CAS  Google Scholar 

  24. Z.X. Li, X.H. Li, Y. Zong, G.G. Tan, Y. Sun, Y.U. Lan, M. He, Z.Y. Ren, X.L. Zheng, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017)

    Article  CAS  Google Scholar 

  25. M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo, J. Zheng, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3, 23638–23648 (2013)

    Article  CAS  Google Scholar 

  26. Q. Zeng, X.H. Xiong, P. Chen, Q. Yu, Q. Wang, R. Wang, H.R. Chu, Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance. J. Mater. Chem. C 4, 10518–10528 (2016)

    Article  CAS  Google Scholar 

  27. J.X. Huang, J.Q. Wang, Z.G. Yang, S.R. Yang, High-performance graphene sponges reinforced with polyimide for room temperature piezoresistive sensing. ACS. Appl. Mater. Interfaces 10, 8180–8189 (2018)

    Article  CAS  Google Scholar 

  28. R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baralidi, S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315–17321 (2011)

    Article  CAS  Google Scholar 

  29. X. Sun, J.P. He, G.X. Li, J. Tang, T. Wang, Y.X. Guo, H.R. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1, 765–777 (2012)

    Article  CAS  Google Scholar 

  30. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  31. Y.W. Liu, M.X. Guan, L. Feng, S.L. Deng, J.F. Bao, S.Y. Xie, Z. Chen, R.B. Huang, L.S. Zheng, Facile and straightforward synthesis of superparamagnetic reduced graphene oxide- Fe3O4 hybrid composite by a solvothermal reaction. Nanotechnology 24, 025604 (2012)

    Article  Google Scholar 

  32. L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, L, Zhang Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117, 19701–19711 (2013)

    Article  CAS  Google Scholar 

  33. P. Liu, Y. Liu, Huang, Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J. Polym. Res. 21, 1–5 (2014)

    Google Scholar 

  34. J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016)

    Article  CAS  Google Scholar 

  35. D.W. Xu, X.H. Xiong, P. Chen, Q. Yu, H. Chu, S. Yang, Q. Wang, Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties. J. Magn. Magn. Mater. 46, 428–436 (2019)

    Article  Google Scholar 

  36. M. Jazirehpour, S.A. Seyyed Ebrahimi, Carbothermally synthesized core–shell carbon–magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface. J. Alloys Compd 639, 280–288 (2015)

    Article  CAS  Google Scholar 

  37. P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorptionproperties. ACS. Appl. Mater. Interfaces 8, 5536–5546 (2016)

    Article  CAS  Google Scholar 

  38. Y. Sera, T. Horibe, K. Isobe, E. Yamashita, H. Hashimoto, Synthesis of amorphous Fe2O3/RGO composite and its application to photoinduced hydrogen evolution. J. Photochem. Photobiol. A 15, 631–638 (2018)

    Article  Google Scholar 

  39. C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    Article  CAS  Google Scholar 

  40. H.R. Chu, Q. Zeng, P. Chen, Q. Yu, D.W. Xu, X.H. Xiong, Q. Wang, Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method. J. Alloys Compd 719, 296–307 (2017)

    Article  CAS  Google Scholar 

  41. C. Li, S. Ji, W. Jiang, G. Waterhouse, Z. Zhang, L. Yu, Microwave absorption by watermelon-like microspheres composed of γ-Fe2O3, microporous silica and polypyrrole. J. Mater. Sci. 53, 9635–9649 (2018)

    Article  CAS  Google Scholar 

  42. Z. Guan, J. Jiang, N. Chen, Y. Gong, L. Zhen, Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties. Nanotechnology 29, 305604 (2018)

    Article  Google Scholar 

  43. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    Article  CAS  Google Scholar 

  44. J. Deng, S. Li, Y. Zhou, L. Liang, B. Zhao, X. Zhang, R. Zhang, Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cub ic phases) through interfacial polarizations. J. Colloids Interfaces Sci. 509, 406–413 (2018)

    Article  CAS  Google Scholar 

  45. S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang, Y. Chen, J. Zhang, X. Li, Y. Qin, Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016)

    Article  CAS  Google Scholar 

  46. Y.X. Huang, Y. Wang, Z.M. Li, Z. Yang, C.H. Shen, C.C. He, Effect of pore morphology on the dielectric properties of porous carbons for microwave absorption applications. J. Phys. Chem. C 118, 26027–26032 (2014)

    Article  CAS  Google Scholar 

  47. P. Wang, L.F. Cheng, Y. Zhang, L.T. Zhang, Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning. J. Alloys Compd. 716, 306–320 (2017)

    Article  CAS  Google Scholar 

  48. B. Zhao, C. Zhao, M. Hamidinejad, C. Wang, R. Li, S. Wang, K. Yasamin, C.B. Park, Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J. Mater. Chem. C 6, 10292–10300 (2018)

    Article  CAS  Google Scholar 

  49. Q.L. Liu, D. Zhang, T.X. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93, 013110 (2008)

    Article  Google Scholar 

  50. Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang, Q. Ouyang, Three-dimensional SiO2@ Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5, 12296–12303 (2013)

    Article  CAS  Google Scholar 

  51. Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang, Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys. 106, 054303–054303 (2009)

    Article  Google Scholar 

  52. B. Zhao, B. Fan, G. Shao, W. Zhao, R. Zhang, Facile synthesis of novel heterostructure based on SnO2 nanorods grown on submicron Ni walnut with tunable electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 7, 18815–18823 (2015)

    Article  CAS  Google Scholar 

  53. M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike alpha-MnO2 nanostructures. J. Phys. Chem. C 115, 1398–1402 (2011)

    Article  CAS  Google Scholar 

  54. B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties. Nano. Res. 10, 331–343 (2017)

    Article  CAS  Google Scholar 

  55. Z. Wang, H. Bi, P. Wang, M. Wang, Z. Liu, L. Shen, X. Liu, Magnetic and microwave absorption properties of self-assemblies composed of core–shell cobalt–cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)

    Article  CAS  Google Scholar 

  56. M. Zong, Y. Huang, N. Zhang, Reduced graphene oxide-CoFe2O4 composite: synthesis and electromagnetic absorption properties. Appl. Surf. Sci. 345, 272–278 (2015)

    Article  CAS  Google Scholar 

  57. B. Zhao, W.Y. Zhao, G. Shao, B.B. Fan, R. Zhang, Morphology-control synthesis of a core–shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS. Appl. Mater. Interfaces 7, 12951–12960 (2015)

    Article  CAS  Google Scholar 

  58. C.R. Patra, S. Patra, A. Gabashvili, A microwave route for the synthesis of nanoflakes and dendrites-type β-In2S3 and their characterization. J. Nanosci. Nanotechnol. 6, 845–851 (2006)

    Article  CAS  Google Scholar 

  59. H.L. Lv, G.B. Ji, X.H. Liang, H.Q. Zhang, Y.W. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3, 5056–5064 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Defense key program Fundamental Research program (No.A35201XXXXX), National Natural Science Foundation of China (No.51303106), Fundamental Research Funds for the Central Universities (DUT18GF107), Liao Ning Revitalization Talents Program (No.XLYC1802085 and No.XLYC1807003), Dalian Science and Technology Innovation Fund Project (2019J11CY007), Aviation science foundation (No.20173754009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Chen or Qi Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, D., Chen, P. et al. Solvothermal synthesis of porous superparamagnetic RGO@Fe3O4 nanocomposites for microwave absorption. J Mater Sci: Mater Electron 30, 17106–17118 (2019). https://doi.org/10.1007/s10854-019-02057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02057-7

Navigation