Skip to main content
Log in

Study on the main factors affecting the breakdown voltage of (Bi0.5Na0.5) TiO3-added (Ba0.659Pb0.341)TiO3 PTCR ceramic materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The breakdown voltage (Vb) was studied for (Bi0.5Na0.5)TiO3 (BNT)-added positive temperature coefficient of resistance (PTCR) ceramic samples based on (Ba0.659Pb0.341)TiO3, which were prepared by a traditional solid-reaction method and sintered in an air atmosphere. By measuring the electrical properties and microstructures of the materials, the breakdown voltage was found to depend on neither the room-temperature resistivity nor the maximum resistivity, but on the grain size (D) of the samples to some extent. With a decrease in the grain size, the Vb value increases rapidly, especially for samples with fine grains. With the help of Heywang-Jonker theory, the depletion width (LD) was calculated to determine the dominant factor affecting the Vb value using the approximate equation Vb= 600 × LD/D + 100; i.e., the breakdown voltage is approximate directly proportional to the ratio of LD/D. However, the room-temperature resistivity increased slightly with LD/D, and the PTC performance remained at a high level (α > 34%, Rmax/Rmin > 1 × 103). It is more advantageous to increase the breakdown voltage by adjusting LD/D than by reducing grain size alone. The variations in the grain size and the depletion layer width of different samples are mainly due to the generation of VNa′ and VBiʺ′ inside of the lattice. The ratio of LD/D can also be used to explain the variation in room-temperature resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.G. Harman, Phys. Rev. A 106, 1358 (1957)

    Article  CAS  Google Scholar 

  2. O. Saburi, J. Phys. Soc. Jpn. 14, 1159 (1959)

    Article  CAS  Google Scholar 

  3. J.G. Fagan, V.R.W. Amarakoon, Am. Ceram. Soc. Bull. 72(3), 119–132 (1993)

    CAS  Google Scholar 

  4. K.Y. Kim, S.C. Kim, M.S. Kim, Int. J. Automot. Technol. 13, 971 (2012)

    Article  Google Scholar 

  5. M. Park, S. Kim, Energies 10, 1494 (2017)

    Article  Google Scholar 

  6. D. Zhang, D. Zhou, S. Jiang, X. Wang, S. Gong, Sens. Actuators A 101, 123 (2002)

    Article  CAS  Google Scholar 

  7. N. Mukherjee, R. Roseman, Ferroelectrics 281, 19 (2002)

    Article  CAS  Google Scholar 

  8. C. Fang, D.-X. Zhou, S.-P. Gong, Phys. B 405, 852 (2010)

    Article  CAS  Google Scholar 

  9. D.H. Kim, I.K. Park, W.S. Um, H.G. Kim, Jpn. J. Appl. Phys. 34, 4862 (1995)

    Article  CAS  Google Scholar 

  10. S. Leng, G. Li, L. Zheng, W. Shi et al., J. Mater. Sci. 24(1), 431 (2013)

    CAS  Google Scholar 

  11. J. Wei, P. Yu, Y. Mao, J. Wang, J Ferroelectrics 403(1), 91–96 (2010)

    Article  CAS  Google Scholar 

  12. H. Takeda, T. Shimada, Y. Katsuyama et al., J. Electroceram. 22, 263 (2008)

    Article  Google Scholar 

  13. P.-H. Xiang, H. Takeda, T. Shiosaki, Jpn. J. Appl. Phys. 46, 6995 (2007)

    Article  CAS  Google Scholar 

  14. W. Huo, Y. Qu, Sens. Actuators A 128, 265 (2006)

    Article  CAS  Google Scholar 

  15. T.A. Plutenko, O.I.V. Yunov, A.G. Belous et al., J. Adv. Ceram. 5, 117 (2016)

    Article  CAS  Google Scholar 

  16. T. Shimada, K. Touji, Y. Katsuyama, H. Takeda et al., J. Eur. Ceram. Soc. 27(13–15), 3877–3882 (2007)

    Article  CAS  Google Scholar 

  17. S.P. Gong, D.X. Zhou, PTCR materials and their applications (HuaZhong University of Science and Technology Press, Wuhan, 1989)

    Google Scholar 

  18. G.H. Jonker, Solid-State Electron. 7, 895 (1964)

    Article  CAS  Google Scholar 

  19. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964)

    Article  CAS  Google Scholar 

  20. C.H. Lai, Y.Y. Lu, T.Y. Tseng, J. Appl. Phys. 74, 3383 (1993)

    Article  CAS  Google Scholar 

  21. H. Ihrig, W. Puschert, J. Appl. Phys. 48, 3081 (1977)

    Article  CAS  Google Scholar 

  22. D.Y. Wang, K. Umeya, J. Am. Ceram. Soc. 73(6), 1574–1581 (1990)

    Article  CAS  Google Scholar 

  23. M.A. Zubair, C. Leach, J. Eur. Ceram. Soc. 28, 1845 (2008)

    Article  CAS  Google Scholar 

  24. E. Brzozowski, M.S. Castro, J. Eur. Ceram. Soc. 24, 2499 (2004)

    Article  CAS  Google Scholar 

  25. H. Ihrig, D. Hennings, Phys. Rev. B 17, 4593 (1978)

    Article  CAS  Google Scholar 

  26. G.H. Jonker, Mater. Res. Bull. 2, 401 (1967)

    Article  CAS  Google Scholar 

  27. C. Liang-Fu, Tseng Tseung-Yuen, IEEE Trans. Compon., Packag. Manuf. Technol. 19, 423 (1996)

    Google Scholar 

  28. M.A. Zubair, C. Leach, Appl. Phys. Lett. 91, 082105 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwen Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Chen, Y., Yu, J. et al. Study on the main factors affecting the breakdown voltage of (Bi0.5Na0.5) TiO3-added (Ba0.659Pb0.341)TiO3 PTCR ceramic materials. J Mater Sci: Mater Electron 30, 17046–17052 (2019). https://doi.org/10.1007/s10854-019-02051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02051-z

Navigation