Skip to main content
Log in

Cost effective and eco-friendly synthesis of LiFePO4/C cathode material from a natural mineral magnetite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A cost effective and eco-friendly approach for the preparation of LiFePO4/C cathode material is proposed in this paper. High-purity natural mineral magnetite (Fe3O4 ≥ 99%) was employed as the only ferric source in the synthesis routine. By ultrafine ball milling and subsequent oxidation, the magnetite was converted into FePO4·2H2O. After dehydration, the iron phosphate reacted with Li2CO3 and sucrose to form the target LiFePO4/C composite. Mössbauer result revealed that all the Fe cations exhibited + 2 valence state in the LiFePO4 lattice although redox process of the species occurred during the synthesis. SEM observations indicated that the pure phase LiFePO4 powders with round shape were constructed by fine primary grains with size of 100–200 nm. Such micro-nano structure offered an increased Li diffusion by increasing the surface area and reducing the migration pathway. LiFePO4/C composite synthesized by this magnetite approach exhibited excellent performance with a specific capacity of 161.1 mAh g−1 at 0.1 C and a capacity retention rate of 98.8% after 100 cycles at 1 C. The new approach we proposed presents the remarkable advantages of low cost and environmental friendliness, and therefore suggest significant potential in mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Andersson, J.O. Thomas, J. Power Sources (2001). https://doi.org/10.1016/S0378-7753(01)00633-4

    Article  Google Scholar 

  2. A.S. Andersson, B. Kalska, L. Häggström, J.O. Thomas, Solid State Ionics (2000). https://doi.org/10.1016/S0167-2738(00)00311-8

    Article  Google Scholar 

  3. A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc. (2001). https://doi.org/10.1149/1.1348257

    Article  Google Scholar 

  4. A. Yamada, M. Hosoya, S.C. Chung, Y. Kudo, K. Hinokuma, K.Y. Liu, Y. Nishi, J. Power Sources (2003). https://doi.org/10.1016/S0378-7753(03)00239-8

    Article  Google Scholar 

  5. B. Jin, H.B. Gu, Solid State Ionics (2008). https://doi.org/10.1016/j.ssi.2007.12.057

    Article  Google Scholar 

  6. L. Wang, W. Sun, X. Tang, X. Huang, X. He, J. Li, Q. Zhang, J. Gao, G. Tian, S. Fan, J. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2013.03.101

    Article  Google Scholar 

  7. Y.C. Lin, G.T.K. Fey, P.J. Wu, J.K. Chang, H.M. Kao, J. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2013.04.024

    Article  Google Scholar 

  8. C.A. Bridges, K.L. Harrison, R.R. Unocic, J.C. Idrobo, M.P. Paranthaman, A. Manthiram, J. Solid State Chem. (2013). https://doi.org/10.1016/j.jssc.2013.07.011

    Article  Google Scholar 

  9. Q. Fan, L. Lei, Y. Chen, Y. Sun, J. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2012.12.013

    Article  Google Scholar 

  10. S.B. Lee, S. Cho, S. Cho, G. Park, S. Park, Y. Lee, Electrochem. Commun. (2008). https://doi.org/10.1016/j.elecom.2008.06.007

    Article  Google Scholar 

  11. S.M. Wang, M.S. Zheng, Q.F. Dong, Electrochemistry (2008). https://doi.org/10.13208/j.electrochem.2008.04.011

    Article  Google Scholar 

  12. J. Ni, H. Zhou, J. Chen, X. Zhang, Mater. Lett. (2005). https://doi.org/10.1016/j.matlet.2005.02.080

    Article  Google Scholar 

  13. X.F. Guo, H. Zhan, Y.H. Zhou, Solid State Ionics (2009). https://doi.org/10.1016/j.ssi.2008.11.021

    Article  Google Scholar 

  14. S. Yang, N. Zhao, H. Dong, J. Yang, H. Yue, Electrochim. Acta (2005). https://doi.org/10.1016/j.electacta.2005.04.013

    Article  Google Scholar 

  15. M. Fang-Li, Z. Dong-Yun, C. Cheng-Kang, X. Jia-Yue, A. Kamzin, J. Inorg, Mater. (2016). https://doi.org/10.15541/jim20150583

    Article  Google Scholar 

  16. D. Dastan, S. Panahi, A.P. Yengntiwar, A. Banpurkar, Adv. Sci. Lett. (2016). https://doi.org/10.1166/asl.2016.7130

    Article  Google Scholar 

  17. D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109–119 (2015).

    Google Scholar 

  18. X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01840-w

    Article  Google Scholar 

  19. D. Dastan, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  Google Scholar 

  20. S.L. Panahi, D. Dastan, N.B. Chaure, Adv. Sci. Lett. (2016). https://doi.org/10.1166/asl.2016.6980

    Article  Google Scholar 

  21. T. Muraliganth, A.V. Murugan, A. Manthiram, J. Mater. Chem. (2008). https://doi.org/10.1039/B812165F

    Article  Google Scholar 

  22. X. Huang, S. Yan, H. Zhao, L. Zhang, R. Guo, C. Chang, X. Kong, H. Han, Mater. Charact. (2010). https://doi.org/10.1016/j.matchar.2010.04.002

    Article  Google Scholar 

  23. L. Pang, M. Zhao, X. Zhao, Y. Chai, J. Power Sources (2012). https://doi.org/10.1016/j.jpowsour.2011.10.096

    Article  Google Scholar 

  24. J. Xiang, J. Tu, Y. Qiao, X. Wang, J. Zhong, D. Zhang, C. Gu, J. Phys. Chem. C (2011). https://doi.org/10.1021/jp108261t

    Article  Google Scholar 

  25. J. Park, W.G. Moon, G.-P. Kim, I. Nam, S. Park, Y. Kim, J. Yi, Electrochim. Acta (2013). https://doi.org/10.1016/j.electacta.2013.04.170

    Article  Google Scholar 

  26. H. Liu, C. Li, H. Zhang, L. Fu, Y. Wu, H. Wu, J. Power Sources (2006). https://doi.org/10.1016/j.jpowsour.2005.10.098

    Article  Google Scholar 

  27. H. Liu, Q. Cao, L.J. Fu, C. Li, Y. Wu, H. Wu, Electrochem. Commun. (2006). https://doi.org/10.1016/j.elecom.2006.07.014

    Article  Google Scholar 

Download references

Funding

The research was supported by Science and Technology Commission of Shanghai Municipality (14520503100 and 201310-JD-B2-009) and Shanghai Municipal Education Commission (15ZZ095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkang Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., He, H., He, Q. et al. Cost effective and eco-friendly synthesis of LiFePO4/C cathode material from a natural mineral magnetite. J Mater Sci: Mater Electron 30, 17128–17136 (2019). https://doi.org/10.1007/s10854-019-02059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02059-5

Navigation