Skip to main content
Log in

Effect fingerprints of antipsychotic drugs on neural networks in vitro

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

We compared the acute effect of typical (haloperidol) and atypical (aripiprazole, clozapine, olanzapine) antipsychotic drugs (APDs) on spontaneous electrophysiological activity of in vitro neuronal networks cultured on microelectrode arrays (MEAs). Network burst analysis revealed a “regularizing” effect of all APDs at therapeutic concentrations, i.e., an increase of network-wide temporal synchronization. At supratherapeutic concentrations, all APDs but olanzapine mediated a decrease of burst and spike rates, burst duration, number of spikes in bursts, and network synchrony. The rank order of potency of APDs was: haloperidol > aripiprazole > clozapine > olanzapine (no suppression). Disruption of network function was not due to enhanced cell death as assessed by trypan blue staining. APDs promoted distinct concentration-dependent alterations yielding acute effect fingerprints of the tested compounds. These effects were rather characteristic for individual compounds than distinctive for typical vs. atypical APDs. Thus, this dichotomy may be of value in distinguishing clinical features but has no apparent basis on the network or local circuitry level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arana GW (2000) An overview of side effects caused by typical antipsychotics. J Clin Psychiatry 61(Suppl 8):5–11

    CAS  PubMed  Google Scholar 

  • Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 1093:41–53

    Article  CAS  Google Scholar 

  • Colombi I, Mahajani S, Frega M, Gasparini L, Chiappalone M (2013) Effects of antiepileptic drugs on hippocampal neurons coupled to micro-electrode arrays. Front Neuroeng 6:10. https://doi.org/10.3389/fneng.2013.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R (2008) Dysfunctional neural plasticity in patients with schizophrenia. Arch Gen Psychiatry 65:378–385

    Article  Google Scholar 

  • DeLisi LE (1997) Is schizophrenia a lifetime disorder of brain plasticity, growth and aging? Schizophr Res 23:119–129

    Article  CAS  Google Scholar 

  • Dietrich-Muszalska A, Kontek B, Rabe-Jablonska J (2011) Quetiapine, olanzapine and haloperidol affect human plasma lipid peroxidation in vitro. Neuropsychobiology 63:197–201

    Article  CAS  Google Scholar 

  • Dzyubenko E, Juckel G, Faissner A (2017) The antipsychotic drugs olanzapine and haloperidol modify network connectivity and spontaneous activity of neural networks in vitro. Sci Rep 7:11609

    Article  Google Scholar 

  • Goonawardena AV, Riedel G, Hampson RE (2011) Cannabinoids alter spontaneous firing, bursting, and cell synchrony of hippocampal principal cells. Hippocampus 21:520–531

    Article  CAS  Google Scholar 

  • Gottschling C, Geissler M, Springer G, Wolf R, Juckel G, Faissner A (2016) First and second generation antipsychotics differentially affect structural and functional properties of rat hippocampal neuron synapses. Neuroscience 337:117–130

    Article  CAS  Google Scholar 

  • Gramowski A, Jugelt K, Weiss DG, Gross GW (2004) Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur J Neurosci 19:2815–2825

    Article  Google Scholar 

  • Gramowski A et al (2006) Functional screening of traditional antidepressants with primary cortical neuronal networks grown on multielectrode neurochips. Eur J Neurosci 24:455–465

    Article  Google Scholar 

  • Heiser P, Enning F, Krieg JC, Vedder H (2007) Effects of haloperidol, clozapine and olanzapine on the survival of human neuronal and immune cells in vitro. J Psychopharmacol 21:851–856

    Article  CAS  Google Scholar 

  • Hiemke C et al (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235

    Article  Google Scholar 

  • Hondebrink L et al (2016) Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. Neurotoxicology 55:1–9

    Article  CAS  Google Scholar 

  • Jackson-Siegal JM, Schneider LS, Baskys A, Haupt DW (2004) Recognizing and responding to atypical antipsychotic side effects. J Am Med Dir Assoc 5:H7–H10

    Article  Google Scholar 

  • Johnstone AF, Gross GW, Weiss DG, Schroeder OH, Gramowski A, Shafer TJ (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31:331–350

    Article  CAS  Google Scholar 

  • Koch M, Schmiedt-Fehr C, Mathes B (2016) Neuropharmacology of altered brain oscillations in schizophrenia. Int J Psychophysiol 103:62–68

    Article  Google Scholar 

  • Kubota T, Jibiki I, Kurokawa S (2001) Effects of risperidone, an atypical antipsychotic drug, on excitatory synaptic responses in the perforant path-dentate gyrus pathway in chronically prepared rabbits. Pharmacol Biochem Behav 70:237–242

    Article  CAS  Google Scholar 

  • Lazar A, Lenkey N, Pesti K, Fodor L, Mike A (2015) Different pH-sensitivity patterns of 30 sodium channel inhibitors suggest chemically different pools along the access pathway. Front Pharmacol 6:210

    Article  Google Scholar 

  • Lesh TA et al (2015) A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry 72:226–234

    Article  Google Scholar 

  • Mack CM, Lin BJ, Turner JD, Johnstone AF, Burgoon LD, Shafer TJ (2014) Burst and principal components analyses of MEA data for 16 chemicals describe at least three effects classes. Neurotoxicology 40:75–85

    Article  CAS  Google Scholar 

  • Martins MR, Petronilho FC, Gomes KM, Dal-Pizzol F, Streck EL, Quevedo J (2008) Antipsychotic-induced oxidative stress in rat brain. Neurotox Res 13:63–69

    Article  CAS  Google Scholar 

  • Meltzer HY (2013) Update on typical and atypical antipsychotic drugs. Annu Rev Med 64:393–406

    Article  CAS  Google Scholar 

  • Nordin C, Alme B, Bondesson U (1995) CSF and serum concentrations of clozapine and its demethyl metabolite: a pilot study. Psychopharmacology 122:104–107

    Article  CAS  Google Scholar 

  • Ogata N, Yoshii M, Narahashi T (1989) Psychotropic drugs block voltage-gated ion channels in neuroblastoma cells. Brain Res 476:140–144

    Article  CAS  Google Scholar 

  • Perez SM, Lodge DJ (2014) New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways. Drug Des Dev Ther 8:887–896

    Google Scholar 

  • Price R, Salavati B, Graff-Guerrero A, Blumberger DM, Mulsant BH, Daskalakis ZJ, Rajji TK (2014) Effects of antipsychotic D2 antagonists on long-term potentiation in animals and implications for human studies. Prog Neuropsychopharmacol Biol Psychiatry 54:83–91

    Article  CAS  Google Scholar 

  • Raudenska M et al (2013) Haloperidol cytotoxicity and its relation to oxidative stress. Mini Rev Med Chem 13:1993–1998

    Article  CAS  Google Scholar 

  • Reinke A, Martins MR, Lima MS, Moreira JC, Dal-Pizzol F, Quevedo J (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160

    Article  CAS  Google Scholar 

  • Schwarz CS et al (2012) Ammonium chloride influences in vitro-neuronal network activity. Exp Neurol 235:368–373

    Article  CAS  Google Scholar 

  • Singh OP, Chakraborty I, Dasgupta A, Datta S (2008) A comparative study of oxidative stress and interrelationship of important antioxidants in haloperidol and olanzapine treated patients suffering from schizophrenia. Indian J Psychiatry 50:171–176

    Article  Google Scholar 

  • Skogh E, Sjodin I, Josefsson M, Dahl ML (2011) High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. J Clin Psychopharmacol 31:4–9

    Article  CAS  Google Scholar 

  • Tischbirek CH et al (2012) Use-dependent inhibition of synaptic transmission by the secretion of intravesicularly accumulated antipsychotic drugs. Neuron 74:830–844

    Article  CAS  Google Scholar 

  • Vassallo A et al (2017) A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology 60:280–292

    Article  CAS  Google Scholar 

  • Wu C, Gopal KV, Lukas TJ, Gross GW, Moore EJ (2014) Pharmacodynamics of potassium channel openers in cultured neuronal networks. Eur J Pharmacol 732:68–75

    Article  CAS  Google Scholar 

  • Xia Y, Gopal KV, Gross GW (2003) Differential acute effects of fluoxetine on frontal and auditory cortex networks in vitro. Brain Res 973:151–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (IST-81175937) from Bristol Myers-Squibb GmbH & Co. KG, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lange-Asschenfeldt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Görtz, P., Henning, U., Theiss, S. et al. Effect fingerprints of antipsychotic drugs on neural networks in vitro. J Neural Transm 126, 1363–1371 (2019). https://doi.org/10.1007/s00702-019-02050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-019-02050-8

Keywords

Navigation