Skip to main content

Advertisement

Log in

Authors’ reply to the comment “Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism”

  • Rebuttal letter
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

The Original Article was published on 26 August 2019

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Vitiello GAF, Amarante MK, Banin-Hirata BK, Campos CZ, de Oliveira KB, Losi-Guembarovski R, Watanabe MAE (2019) Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism in Brazilian breast cancer patients: association with susceptibility, clinicopathological features, and interaction with TGFB1 haplotypes. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-019-05370-1

    Article  PubMed  Google Scholar 

  2. Yasri S, Wiwanitkit V (2019) Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-019-05414-6

    Article  PubMed  Google Scholar 

  3. Seijo ER, Song H, Lynch MA, Jennings R, Qong X, Lazaridis E, Muro-Cacho C, Weghorst CM, Muñoz-Antonia T (2001) Identification of genetic alterations in the TGFβ type II receptor gene promoter. Mutat Res/Fundam Mol Mech Mutagen 483(1–2):19–26. https://doi.org/10.1016/s0027-5107(01)00217-2

    Article  CAS  Google Scholar 

  4. Choe B-K, Kim SK, Park HJ, Park H-K, Kwon KH, Lim SH, Yim S-V (2012) Polymorphisms of TGFBR2 contribute to the progression of papillary thyroid carcinoma. Mol Cell Toxicol 8(1):1–8. https://doi.org/10.1007/s13273-012-0001-0

    Article  CAS  Google Scholar 

  5. Huang Y-S, Zhong Y, Yu L, Wang L (2014) Association between the TGFBR2 G-875A polymorphism and cancer risk: evidence from a meta-analysis. Asian Pac J Cancer Prev 15(20):8705–8708. https://doi.org/10.7314/apjcp.2014.15.20.8705

    Article  PubMed  Google Scholar 

  6. Zhang MEI, Guo L-L, Cheng Z, Liu R-Y, Lu Y, Qian Q, Lei ZHE, Zhang H-T (2011) A functional polymorphism of TGFBR2 is associated with risk of breast cancer with ER + , PR + , ER + PR + and HER2 − expression in women. Oncol Lett 2(4):653–658. https://doi.org/10.3892/ol.2011.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim SJ, Im YH, Markowitz SD, Bang YJ (2000) Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 11(1–2):159–168

    Article  CAS  Google Scholar 

  8. Sato M, Kadota M, Tang B, Yang HH, Yang YA, Shan M, Weng J, Welsh MA, Flanders KC, Nagano Y, Michalowski AM, Clifford RJ, Lee MP, Wakefield LM (2014) An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-beta in human breast cancer. Breast Cancer Res: BCR 16(3):R57. https://doi.org/10.1186/bcr3668

    Article  CAS  PubMed  Google Scholar 

  9. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM, Jakobsson L, Betsholtz C, Sund M, Karlsson MC, Fuxe J (2016) TGF-beta1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR9/CCL21-mediated chemotaxis. Oncogene 35(6):748–760. https://doi.org/10.1038/onc.2015.133

    Article  CAS  PubMed  Google Scholar 

  10. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL (2011) TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Can Res 71(13):4707–4719. https://doi.org/10.1158/0008-5472.CAN-10-4554

    Article  CAS  Google Scholar 

  11. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL (2013) TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Investig 123(3):1348–1358. https://doi.org/10.1172/JCI65416

    Article  CAS  PubMed  Google Scholar 

  12. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki K (2013) miR-655 is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE 8(5):e62757. https://doi.org/10.1371/journal.pone.0062757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Liang S, Duan X (2019) Molecular mechanism of miR-153 inhibiting migration, invasion and epithelial-mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF-beta) signaling pathway. J Cell Biochem 120(6):9539–9546. https://doi.org/10.1002/jcb.28230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angelica Ehara Watanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors and requires no informed consent provision.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitiello, G.A.F., Amarante, M.K., Banin-Hirata, B.K. et al. Authors’ reply to the comment “Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism”. Breast Cancer Res Treat 179, 519–520 (2020). https://doi.org/10.1007/s10549-019-05452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05452-0

Navigation