Skip to main content
Log in

Oxygen reduction/evolution activity of air electrodes using nitrogen-doped and perovskite-type oxide-loaded reduced graphene oxides

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen reduction/evolution bi-functional air electrodes with high activity are required for constructing high-performance metal–air secondary batteries. Conventionally, carbon-supported electrocatalysts have been used as the air electrode materials. However, these types of air electrodes have a problem that the carbon black is corroded to water-soluble organic compounds during oxygen evolution reaction. Therefore, we have investigated reduced graphene oxides as an alternative to the conventional carbon black. Cyclic voltammetry in the range of the potential in which the oxygen evolution reaction occurs revealed that the reduced graphene oxide is stable against corrosion during the oxygen evolution reaction. This result indicates that the reduced graphene oxide is a promising candidate electrode material for bi-functional air electrodes. To improve the oxygen reduction and evolution activities of reduced graphene oxides, doping of nitrogen species and loading of perovskite-type oxide catalysts to reduced graphene oxide were examined. It was found that doping of nitrogen species was effective for improving both the oxygen reduction and evolution activity. LaMnO3 and LaNiO3 catalysts were effective for improving the oxygen reduction and evolution activities, respectively. The best oxygen reduction and evolution activity was obtained by the LaMnO3-loaded nitrogen-doped reduced graphene oxide and LaNiO3-loaded nitrogen-doped reduced graphene oxide, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145

    Article  CAS  Google Scholar 

  2. Kordesch K, Hacker V, Gsellmann J, Cifrain M, Faleschini G, Enzinge P, Fankhauser R, Ortner M, Muhr M, Aronson RR (2000) Alkaline fuel cells applications. J Power Sources 86:162–165. https://doi.org/10.1016/S0378-7753(99)00429-2

    Article  CAS  Google Scholar 

  3. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrog Energy 27:507–526. https://doi.org/10.1016/S0360-3199(01)00181-1

    Article  CAS  Google Scholar 

  4. Morimoto T, Suzuki K, Matsubara T, Yoshida N (2000) Oxygen reduction electrode in brine electrolysis. Electrochim Acta 45:4257–4262. https://doi.org/10.1016/S0013-4686(00)00558-2

    Article  CAS  Google Scholar 

  5. Moussallem I, Jörissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38:1177–1194. https://doi.org/10.1007/s10800-008-9556-9

    Article  CAS  Google Scholar 

  6. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326. https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  7. Pletcher D, Li X (2011) Prospects for alkaline zero gap water electrolysers for hydrogen production. Int J Hydrog Energy 36:15089–15104. https://doi.org/10.1016/j.ijhydene.2011.08.080

    Article  CAS  Google Scholar 

  8. Appleby AJ, Jacquier M (1976) The CGE circulating zinc/air battery: a practical vehicle power source. J Power Sources 1:17–34. https://doi.org/10.1016/0378-7753(76)80003-1

    Article  CAS  Google Scholar 

  9. Jörissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32. https://doi.org/10.1016/j.jpowsour.2005.07.038

    Article  CAS  Google Scholar 

  10. Neburchilov V, Wang H, Martin JJ, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195:1271–1291. https://doi.org/10.1016/j.jpowsour.2009.08.100

    Article  CAS  Google Scholar 

  11. Yeger E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537. https://doi.org/10.1016/0013-4686(84)85006-9

    Article  Google Scholar 

  12. Geniès L, Faure R, Durand R (1998) Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta 44:1317–1327. https://doi.org/10.1016/S0013-4686(98)00254-0

    Article  Google Scholar 

  13. Chatenet M, Genies-Bultel L, Aurousseau M, Durand R, Andolfatto F (2002) Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide—comparison with platinum. J Appl Electrochem 32:1131–1140. https://doi.org/10.1023/A:1021231503922

    Article  CAS  Google Scholar 

  14. Jiang L, Hsu A, Chu D, Chen R (2009) Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J Electrochem Soc 156:B643–B649. https://doi.org/10.1149/1.3098478

    Article  CAS  Google Scholar 

  15. Lionpart S, Yu LT, Mas JC, Mendiboure A, Vignaud R (1990) Oxygen-regeneration of discharged manganese dioxide electrode. J Electrochem Soc 137:371–377. https://doi.org/10.1149/1.2085654

    Article  Google Scholar 

  16. Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905. https://doi.org/10.1021/cm901698s

    Article  CAS  Google Scholar 

  17. Meadowcroft DB (1970) Low-cost oxygen electrode material. Nature 226:847–848. https://doi.org/10.1038/226847a0

    Article  CAS  PubMed  Google Scholar 

  18. Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N (1990) Bi-functional oxygen electrode using large surface area La1−xCaxCoO3 for rechargeable metal-air battery. J Electrochem Soc 137:3430–3433. https://doi.org/10.1149/1.2086234

    Article  CAS  Google Scholar 

  19. Gojkovic SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction. J Electrochem Soc 145:3493–3499. https://doi.org/10.1149/1.1838833

    Article  CAS  Google Scholar 

  20. Xie XY, Ma ZF, Ma XX, Ren Q, Schmidt VM, Huang L (2007) Preparation and electrochemical characteristics of MnOx–CoTMPP/BP composite catalyst for oxygen reduction reaction in alkaline solution. J Electrochem Soc 154:B733–B738. https://doi.org/10.1149/1.2739906

    Article  CAS  Google Scholar 

  21. Yuasa M, Sakai G, Shimanoe K, Teraoka Y, Yamazoe N (2004) Exploration of reverse micelle synthesis of carbon-supported LaMnO3. J Electrochem Soc 151:A1477–A1482. https://doi.org/10.1149/1.1782165

    Article  CAS  Google Scholar 

  22. Yuasa M, Tachibana N, Shimanoe K (2013) Oxygen reduction activity of carbon-supported La1−xCaxMn1−yFeyO3 nanoparticles. Chem Mater 25:3072–3079. https://doi.org/10.1021/cm401276y

    Article  CAS  Google Scholar 

  23. Giordano N, Antonucci PL, Passalacqua E, Aricò AS, Kinoshita K (1991) Relationship between physicochemical properties and electrooxidation behavior of carbon materials. Electrochim Acta 36:1931–1935. https://doi.org/10.1016/0013-4686(91)85075-I

    Article  CAS  Google Scholar 

  24. Ross PN, Sattler M (1988) The corrosion of carbon black anodes in alkaline electrolyte III. The effect of graphitization on the corrosion resistance of furnace blacks. J Electrochem Soc 135:1464–1470. https://doi.org/10.1149/1.2096029

    Article  CAS  Google Scholar 

  25. Yuasa M, Nishida M, Kida T, Yamazoe N, Shimanoe K (2011) Bi-functional oxygen electrodes using LaMnO3/LaNiO3 for rechargeable metal-air batteries. J Electrochem Soc 158:A605–A610. https://doi.org/10.1149/1.3562564

    Article  CAS  Google Scholar 

  26. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992. https://doi.org/10.1039/c000417k

    Article  CAS  Google Scholar 

  27. Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 6:1388–1414. https://doi.org/10.1039/c3ee23870a

    Article  CAS  Google Scholar 

  28. Hyodo T, Hayashi M, Miura N, Yamazoe N (1996) Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution. J Electrochem Soc 143:L266–L267. https://doi.org/10.1149/1.1837229

    Article  CAS  Google Scholar 

  29. Allahbakhsh A, Sharif F, Mazinani S, Kalaee MR (2014) Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int J Nano Dimens 5:11–20. https://doi.org/10.7508/ijnd.2014.01.002

    Article  Google Scholar 

  30. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358. https://doi.org/10.1021/nn103584t

    Article  CAS  Google Scholar 

  31. Chamoli P, Das MK, Kar KK (2018) Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film. J Phys Chem Solids 113:17–25. https://doi.org/10.1016/j.jpcs.2017.10.001

    Article  CAS  Google Scholar 

  32. Baldovino FH, Quitain AT, Dugos NP, Roces SA, Koinuma M, Yuasa M, Kida T (2016) Synthesis and characterization of nitrogen-functionalized graphene oxide in high-temperature and high-pressure ammonia. RSC Adv 6:113924–113932. https://doi.org/10.1039/c6ra22885b

    Article  CAS  Google Scholar 

  33. Ozaki J, Kimura N, Anahara T, Oya A (2007) Preparation and oxygen reduction activity of BN-doped carbons. Carbon 45:1847–1853. https://doi.org/10.1016/j.carbon.2007.04.031

    Article  CAS  Google Scholar 

  34. Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan LJ, Alvi SF, Li L (2013) Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew Chem Int Ed 52:11755–11759. https://doi.org/10.1002/anie.201303924

    Article  CAS  Google Scholar 

  35. Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9:341–350. https://doi.org/10.1002/smll.201202196

    Article  CAS  PubMed  Google Scholar 

  36. Guo F, Creighton M, Chen Y, Hurt R, Külaots I (2014) Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 66:476–484. https://doi.org/10.1016/j.carbon.2013.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Luo J, Chen S (2017) Carbon oxidation reactions could misguide the evaluation of carbon black-based oxygen-evolution electrocatalysts. Chem Commun 53:11556–11559. https://doi.org/10.1039/c7cc04611a

    Article  CAS  Google Scholar 

  38. Forouzandeh F, Li X, Banham DW, Feng F, Ye S, Birss V (2018) Understanding the corrosion resistance of meso- and micro-porous carbons for application in PEM fuel cells. J Electrochem Soc 165:F3230–F3240. https://doi.org/10.1149/2.0261806jes

    Article  CAS  Google Scholar 

  39. Avasarala B, Moore R, Haldar P (2010) Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta 55:4765–4771. https://doi.org/10.1016/j.electacta.2010.03.056

    Article  CAS  Google Scholar 

  40. Forouzandeh F, Li X, Banham DW, Feng F, Ye S, Birss V (2015) Evaluation of the corrosion resistance of carbons for use as PEM fuel cell cathode supports. J Electrochem Soc 162:F1333–F1341. https://doi.org/10.1149/2.0381512jes

    Article  CAS  Google Scholar 

  41. Pawlyta M, Rouzaud JN, Duber S (2015) Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information. Carbon 84:479–490. https://doi.org/10.1016/j.carbon.2014.12.030

    Article  CAS  Google Scholar 

  42. Jäger C, Henning Th, Schlögl R, Spillecke O (1999) Spectral properties of carbon black. J Non-Cryst Solids 258:161–179. https://doi.org/10.1016/S0022-3093(99)00436-6

    Article  Google Scholar 

  43. Chai GL, Boero M, Hou Z, Terakura K, Cheng W (2017) Indirect four-electron oxygen reduction reaction on carbon materials catalysts in acidic solutions. ACS Catal 7:7908–7916. https://doi.org/10.1021/acscatal.7b02548

    Article  CAS  Google Scholar 

  44. Murdachaew G, Laasonen K (2018) Oxygen evolution reaction on nitrogen-doped defective carbon nanotubes and graphene. J Phys Chem C 122:25882–25892. https://doi.org/10.1021/acs.jpcc.8b08519

    Article  CAS  Google Scholar 

  45. Zinkevich M, Solak N, Nitsche H, Ahrens M, Aldinger F (2007) Stability and thermodynamic functions of lanthanum nickelates. J Alloys Compd 438:92–99. https://doi.org/10.1016/j.jallcom.2006.08.047

    Article  CAS  Google Scholar 

  46. Bockris JO’M, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–302. https://doi.org/10.1149/1.2115565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate Dr. K. Suematsu (Kyushu University) for his help with the X-ray photoelectron spectroscopy. This work was supported by Kindai University Research Enhancement Grant (No. SK-17) and Grant-in-Aid for Scientific Research (C) (No. 26420885) of Japan Society for the Promotion of Science (JSPS), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yuasa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuasa, M., Suenaga, Y., Nakamura, R. et al. Oxygen reduction/evolution activity of air electrodes using nitrogen-doped and perovskite-type oxide-loaded reduced graphene oxides. J Appl Electrochem 49, 1055–1067 (2019). https://doi.org/10.1007/s10800-019-01350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01350-x

Keywords

Navigation